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Resumo

Hoje em dia, as empresas num ambiente competitivo são obrigadas a adaptar-se às mudanças

repentinas na indústria de manufactura. Há uma maior busca de novos meios para criar

produtos com ciclos de vida curtos e a baixo custo, enquanto se mantêm os mesmos ńıveis

de produtividade e qualidade. Isto gerou a necessidade de criar sistemas de manufactura

cada vez mais ágeis, que se adaptassem facilmente e a baixo custo às mudanças no mercado.

Avanços nas tecnologias de informação permitem alcançar novos ńıveis de agilidade

em sistemas de manufactura, abrindo portas para novas abordagens. Estes mesmos avanços

ajudaram empresas em vários sectores, para além da manufactura, a aumentar a sua eficácia,

sincronizando os processos dos seus vários departamentos com o uso de ferramentas de

Gestão de Processos de Negócio.

Esta dissertação propõe um sistema que reage e se adapta a diferentes ordens de

produção através de reconfiguração. Para alcançar esse objectivo, foi usado o conceito de

Gestão de Processos de Negócio. Este conceito, já usado em muitas empresas, permite a

que estas modelem o seu funcionamento interno de acordo com processos que podem ser

alterados conforme as suas necessidades. Um sistema de manufactura que o use ficará igual-

mente ágil e ainda poderá alterar o seu funcionamento em concordância com as necessidades

de outros departamentos da mesma empresa.

Para criar o sistema apresentado nesta dissertação foi usada uma arquitectura de

multi-agentes, baseada em execução de processos. Cada agente contém uma base de co-

nhecimento, usada pelos seus processos, que guarda informação interna ou externa. Este

sistema pode ser usado, não só na área da manufactura mas também em qualquer outra

área de uma empresa.

Esta dissertação apresenta também uma aplicação para o sistema na área da manufac-

tura, baseada no conceito de Sistemas de Produção Evolutivos, no qual cada agente repre-

senta um recurso de manufactura que oferece serviços úteis para o processo de produção. Os
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recursos, através dos agentes, podem agregar-se entre si para executar serviços em conjunto.

Palavras-chave: Sistema de manufactura, sistema multi-agente, ontologia, processo, BPM,

EPS.
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Abstract

Nowadays, companies in a challenging environment are compelled to adapt to the rapid

changes in the manufacturing business. The search for new processes to create products

with short life-cycles at low cost, while keeping the same levels of productivity and quality

is greater than ever. This has generated the need to create even more agile manufacturing

systems, which could easily adapt to the market changes at a low cost.

Advances in information technologies have allowed manufacturing systems to achieve

new levels of agility, opening the doors to new approaches. These same advances helped

companies in several sectors other than manufacturing to gain effectiveness through the

synchronization of the processes of their several departments by using Business Process

Management tools.

This thesis proposes a system that reacts and adapts itself to different production

orders by means of reconfiguration. To reach this goal, the concept of Business Process

Management was used. This concept, already used in many companies, allows them to

model their inner behaviours with processes that can be changed according to their needs.

A manufacturing system using this may become equally agile and alter its functioning in

accordance with the needs of other departments of the same company.

To create the system presented in this thesis it was used a multi-agent architecture

based on process execution. Each agent contains a knowledge base, used by its processes,

that stores internal or external information. This system may be used not only in the

manufacturing shop floor, but also in any other areas within a company.

This thesis also presents an application of the system to the shop floor, based on the

Evolvable Production Systems concept, in which each agent represents a manufacturing

resource that offers a given set of services useful to the production process. The resources,

by means of the agents, may aggregate among themselves to execute services together.

Keywords: Manufacturing system, multi-agent system, ontology, process, BPM, EPS.
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Chapter 1

Introduction

When faced with unexpected faults, last minute order changes or totally different product

order needs, manufacturing companies require continuous reconfigurations and adaptations

in their shop floors [Barata, 2005]. This may be a problem in terms of costs and time spent,

so a solution is needed in order to provide an advantage to manufacturing companies. So, to

keep competitive, companies aim to improve their flexibility and agility while maintaining

their productivity and quality [Leitão and Restivo, 2006].

The terms flexibility and agility are used separately, since they mean separate con-

cepts: A flexible company is one that can adapt itself to produce a certain range of products

efficiently, which means the products must be known prior to the system design or must not

be very different from each other, while an agile company operates efficiently in a dynamic

and uncertain environment. There is a considerable amount of research about manufactur-

ing in the area of flexibility [Gullander, 1999, Vos, 2001, ElMaraghy, 2005] and also in the

area of agility [Huff and Edwards, 1999, Leitao, 2004].

Currently, tendency goes to research systems that attain agility by using self-organ-

isation and self-adaptation so that the response to changes in the manufacturing needs

may be achieved with high productivity and low costs. Distributed Systems like Multi-

Agent Systems (MAS) provide a solution for this situation, distributing the control of the

system to a number of autonomous entities, reducing the complexity of the entire system

by dividing it by each individual, assigning them well-defined tasks and responsibilities.

This increases the flexibility and enhances fault tolerance [Merdan et al., 2008]. Emer-

gent control approaches that can be implemented under the support of these concepts are
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agent-based manufacturing, Holonic Manufacturing Systems (HMS), Reconfigurable Manu-

facturing Systems (RMS), Evolvable Production Systems (EPS) and Evolvable Production

Systems (EPS) [Ribeiro et al., 2008].

1.1 Objectives

The work described in this thesis falls under the domain of the EPS paradigm, which

gets inspiration from areas like complexity theory, artificial life, autonomic computing,

agents and self-organisation [Barata et al., 2007]. All of these areas affected, in one point

or another, the objectives defined for this work. It was given more emphasis to the areas

of agents and self-organization, since they were a central part of the thesis here presented,

although the other areas also influenced some of the decisions during the planning.

The system described in this document aims to be an agile system with some self-

organization capabilities, able to control shop floor resources in a dynamic way, so that

when sudden changes in production orders or reorganization of the physical placement of

the machines take place, it is able to adapt itself or be easily reconfigured without the

need to be reprogrammed. In order to attain the desired level of flexibility and agility, the

proposed system is set to fulfil the following requirements:

• Modularity - The modularization of manufacturing components assigns specific

tasks to specific modules making them specialized and the system scalable. The

combined efforts of two or more modules can result in a more complex behaviour.

One analogy to this kind of reasoning is the human brain, where certain areas are

specialized in a certain task and the combined effort of such tasks can result in more

complex human actions, for example, eye coordination and several muscles coordina-

tion areas can combine in order to externalize the emotion of sadness [Damásio, 2003].

As stated before, this reduces the overall programming complexity of the entire ar-

chitecture.

• Reduce programming effort - The act of reprogramming entire systems in order

to cope with production changes or the addition or removal of a manufacturing com-

ponent can be quite time-intensive and costly. So, one of the main objectives is to

have a system with minimal or no reprogramming needs, switching all the work to

configuration, which is easier and much faster.
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• Re-usability - Manufacturing modules should be reused for as long as possible

[Barata, 2005]. This implies the need to support updates and reconfiguration of their

behaviours, thus adapting to new scenarios.

• Self-Organization - Modularized components have to be able to organize themselves

in order to achieve certain goals, which may require the execution of complex tasks

involving multiple modules. Also, modules have to respect each one’s restrictions and

needs as best as possible. This amounts to a self-organized system in which each

constituent has an active part in it by exchanging information and reasoning over it.

In the approach chosen, the objective was the development of a process-based system,

taking examples from the area of Business Process Management (BPM) which addresses

many problems similar to the ones already cited, like the need to adapt to change in de-

mands or the requirement for shorter life-cycles [Ryan K.L. Ko, 2009]. The system planned

for this thesis is a Multi-Agent Systems (MAS) where each agent is able to execute pro-

cesses1 containing a certain set of activities. This approach would allow the reduction of

programming effort and encourage re-usability.

Each constituent of the system (conveyors, cranes, manufacturing cells, etc.), repre-

sented by an agent, becomes a module with a certain degree of reasoning. This decentralized

approach allows a modularization of the system and self-organization. Also, this modular

point of view provides emergent properties to the system, that is, properties that cannot

be predicted by analysing each part of the system separately. The smaller the parts and

the less work entrusted to them, and therefore the higher granularity, the easier it is to

coordinate and structure the system or change it altogether, providing it with a high degree

of agility [Maraldo et al., 2006].

When developing Evolvable Production Systems (EPS), the highly dynamic life-cycle

is the main problem to be considered, which, of course, contains some other problems itself,

like the creation and re-engineering of systems (creation, dissolution and changing of a

given production cell), the development of an architecture for an individual module and

the development of an architecture that supports a society of modules [Onori et al., 2005].

These problems were addressed by the author as best as possible in the defined architecture.

1In the context of this work, processes and agent behaviours mean the same thing, as behaviours
were programmed in a process-based way. When justifiable, these concepts are mentioned indepen-
dently. In Chapter 3.3 a better explanation of BPM and processes is given, while in Chapter 5, the
actual application of processes in this work is discussed.
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1.2 Thesis Outline

This thesis is divided in seven chapters: Introduction, Manufacturing Systems: A State-

of-the-Art, Supporting Concepts and Technologies, A BPM-Based Architecture for EPS, A

Process Model Specification, Implementation of the System and Conclusions and Future

Work.

The current chapter gives a brief introduction to the research problem, states the

objectives outlined for this work and identifies some of the most important concepts used

in this thesis.

Chapter 2 gives an overview of the state-of-the-art in manufacturing systems along

with the current state of research in this area. Flexible and agile manufacturing systems

are described in this chapter, as well as Evolvable Production Systems (EPS), which is the

basis of this work.

Chapter 3 introduces the concepts used in the implementation of the work here de-

scribed. Agents, ontologies and Business Process Management (BPM) are explained there.

This chapter also gives an overview of the technologies used in the actual implementation

of this thesis.

Chapter 4 is one of the main chapters in this thesis by presenting the generic multi-

agent architecture that works under the BPM paradigm. In that chapter it is also explained

the application of said architecture to the manufacturing environment, by detailing a higher-

level EPS architecture.

Chapter 5 describes the theory behind the actual execution of processes, by detailing

the model created for this effect. This is the most important chapter in this thesis, since

all the work done is based on the technology in it described.

Chapter 6 describes the actual implementation of the architecture defined in Chapter 4

as well the implementation of the process model defined in Chapter 5. Later, it details how

the architecture was configured to create the higher-level EPS architecture, also presented

in Chapter 4. Lastly, the testing scenarios used in this work, as well as some results, are

also presented.

Chapter 7 discusses the conclusions and contributions of this work. Also, it proposes

more topics for further research.
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Chapter 2

Manufacturing Systems: A

State-of-the-Art

Nowadays, the needs are for highly customized products, with a short life-cycle, high quality

and low costs. So, and with the increase of competitiveness, companies constantly need to

achieve higher productivity, flexibility and agility in order to stay in the market.

Companies that can not solve their problems internally, tend to look for cooperation

amongst themselves in order to increase competitiveness by creating Virtual Enterprises

(VEs) or other types of alliances, fulfilling specific demands. This is the case of many Small

and Medium Enterprisess (SMEs) that have poor engineering resources.

The use of competitive and up-to-date technologies is also one of the key factors for

companies to stay on the market, and is a major topic in this thesis. With the creation

of Computer Integrated Manufacturing (CIM), Flexible Manufacturing Systems (FMS) or

different control architectures, new, cheaper and innovative ways of creating manufacturing

systems were found gave companies a boost when competing with each other. Studies and

works in this area also gave birth to concepts such as agile manufacturing or Evolvable

Production Systems (EPS) and Evolvable Assembly Systems (EAS).

This chapter contextualizes the work in this thesis, introducing to manufacturing sys-

tems and giving an overview of the evolution in this area. It also describes new approaches

that were studied to address some of the problems in the manufacturing business. This

chapter also gives a glimpse of how manufacturing controls are an important part of this

industry.
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2.1 Manufacturing Systems

The chosen definition for the process of manufacturing may be found in [Groover, 2007].

According to this book:

Manufacturing can be defined as the application of physical and chemical pro-
cesses to alter the geometry, properties and/or appearance of a given starting
material to make parts or products; manufacturing also includes the joining
of multiple parts to make assembled products. The processes that accomplish
manufacturing involve a combination of machinery, tools, power and manual
labour.

Consequently, manufacturing systems, during the production process, involve ma-

chines, tools, material-handling systems and humans in charge of manual labour. The pro-

duction process has also inputs of raw materials, information, energy, the guidelines that

tell the system how to produce, product demands and external disturbances [Leitao, 2004].

This results in finished products, along with new information about performance or the

current status of the system. Also, unused or useless material comes in the form of waste.

An abstract model of a manufacturing system can be seen in Figure 2.1.

Figure 2.1: An Abstract model of a manufacturing system, found in [Leitao, 2004].
The system inputs, along with the resources contained in it, generate several outputs.
The resources in the system have to obey to several constraints in order to work. There
are also ways to measure the system performance.
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To design manufacturing systems, all the factors shown in the previous figure need

to be taken into account. Many of these factors determine how manufacturing control

architectures are created. Figure 2.2 shows the steps required to design a control structure

and where external factors influence that design.

Figure 2.2: Activities to create a manufacturing control/supervision architecture,
found in [Barata, 2005], which are the definition of requirements, methodology creation
and architecture creation. Each activity depends on external factors.

Requirements, depending on several external factors, need to be defined in order

to design the control structure. These requirements are applied to the creation of the

methodology that will be used in the architectural planning of the control and supervision

structure.

A planning like the one in Figure 2.2 may be executed several times, because the

control structure defined at one time may not be suitable for future products [Barata, 2005].

Therefore, the manufacturing environment is in constant evolution. This evolution started

at the end of the nineteenth century with the paradigm of Craft Production, where products

were created to suit a single customer needs, using highly skilled workers and simple, but

flexible tools [Piore and Sabel, 1984].

With the industrial revolution, the concept of Mass Production emerged: a product

was manufactured in large scale using a rigid assembly line [Leitao, 2004]. This term was

popularized by Henry Ford [Ford and Crowther, 1926, Gross et al., 1996].
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After the late 1970s, studies were conducted to discover why the Japanese production

techniques were more successful than the ones used in the western world. Such studies con-

cluded that an efficient manufacturing technique was being used in Japan. This technique

was later called Lean Manufacturing [Womack et al., 1990]. This concept relies on the prin-

ciple of delivering high quality and low cost products with minimal waste. Waste is any

activity that absorbs resources and does not add any value to the production [Barata, 2005].

With the constantly rising demand in the market for more personalized products at

lower prices, while keeping the same quality levels, came the concept of Mass Customization

[Pine and Davis, 1999]. This can be defined as a fast increase in the variety and customiza-

tion of products while keeping the same costs. At its limit it is the mass production of

individually customized products [Barata, 2005].

The integration of CIM in the manufacturing environment allowed new approaches to

be designed. Flexible Manufacturing and Agile Manufacturing are two of such approaches

that mark the latest years of research in the manufacturing domain. Since these concepts

also fall in the domain of this thesis, they are described more thoroughly in Sections 2.2

and 2.3.

Another concept worth referring, is Business Process Reengineering (BPR), which

is mainly an organizational philosophy applied in the higher management aspects of a

manufacturing company. It has yet no application in the shop floor [Barata, 2005]. Ideally,

a company should apply this concept in all its levels but this does not happen. BPR specifies

how and when to redesign old processes, eliminating waste [Victor and Boynton, 1998].

Discussion on this subject will be picked up later in this document, since it is closely

related to some of the concepts here used.

2.2 Flexible Manufacturing

With the advent of CIM, which introduced computerized control in the manufacturing

environment [Browne et al., 1988, Camarinha-Matos et al., 1995, Miller and Walker, 1990],

concepts like Flexible Manufacturing Systems (FMS) appeared to deal with the varying

products and demands, in order to increase the competitiveness of companies throughout

the manufacturing world by using the advantages of computers and automation. A FMS

is composed of a reconfigurable set of work stations, interconnected by a flexible material

handling system, and controlled by an integrated computational system [Upton, 1990].
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A more specific definition may be found in the book Flexible Manufacturing System

[Shivanand, 2006], where it is stated that:

A flexible manufacturing system (FMS) is an arrangement of machines [...]
interconnected by a transport system. The transporter carries work to the ma-
chines on pallets or other interface units so that work-machine registration is
accurate, rapid and automatic. A central computer controls both the machines
and transport system.

The adoption of the FMS approach meant that machines in a given system would

be flexible enough to perform a wide range of tasks, which brought many advantages to

the manufacturing domain, like increasing of productivity, decreasing of production costs,

reduction of inventory and stocks and superior quality [Rembold et al., 1993, Ranky, 1990].

Even though machines were able to perform a certain range of tasks, they were never

excellent performers performers at any of the individual tasks. This was one of the downsides

of FMS. The systems would be flexible enough to cope with several different problems but

would not resolve them in the best way possible. Another problem was that the FMS was

flexible while producing a range of known products but, when it came to produce something

from a different and previously unknown product family, it became inflexible [Leitao, 2004],

because agility was not a concern at the time and the life cycle support lacked from the

concept [Barata, 2005].

2.3 Agile Manufacturing

Nowadays, the unpredictability of the factors that influence the manufacturing domain, like

the markets or society itself, caused for the research of a new and innovative way to handle

systems. The solution for these problems came in the form of agile manufacturing, which

was first mentioned in a report by Nagel and Dove [R. Nagel, 1992].

Agile manufacturing is a step forward to the previously mentioned FMS and similar

systems. Even though a FMS can be used to produce a wide range of products and can

accommodate some internal changes, they only work in a predictive environment. This is

not the case if the system is agile, since agile manufacturing deals better with things that

cannot be controlled [Maskell, 2001] or, in other words, uncertain environments.

Agility is used in many different areas of manufacturing, from the lower shop floor

to the management of manufacturing companies. One may say that the concern for agility
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is a company-wide effort, where all the areas need to be integrated in order to obtain the

best results. A successful implementation of an agile manufacturing system requires the

following points [Barata, 2005]:

• Political decisions - Regulations are needed to help cooperation and innovation.

Also, political decisions may affect the bounds in which a company should work.

• Business cooperation - Companies should be able do diversify cooperative relation-

ships by creating virtual partnerships, in which they share their business competencies

with each other, providing focused services and products to the customer.

• Customer focus - It is important to create a philosophy to focus the company on

the customer. Creating solutions to add value to products or services is vital for

companies to gain the attention of the customer, enabling more demand and higher

profit.

• Information technology - In all areas of an agile company, computational support

is essential, from creating a virtual partnership with another company to controlling

the shop floor.

• Processes re-engineering - Involves identifying what processes must exist and

redesigning them if needed. Process-centric approaches in companies are widely used

nowadays. Since this is one of the main subjects of this thesis, this concept will be

further discussed in Section 3.3.

• New work organization - An organization based on teams and cooperation, with

skilled and autonomous workers must be implemented. These workers need to be

highly trained, since their competences may fall under several domains within the

companies and autonomy is highly needed.

• New agile shop floor strategies - As stated before, the current approaches, like

FMS, do not deal well with uncertain environments. A new strategy is needed to

cope with these problems, like EPS. Also, a careful study of all the entities involved

in the process of manufacturing is needed in order to create a new methodology that

integrates them.

• Willingness to change - All the actors involved must be constantly monitoring the

surrounding environment and be willing and prepared to react in case of need.
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2.4 Evolvable Production Systems

In recent years, a new concept of manufacturing systems was created, even though it

has yet no actual implementation in the real manufacturing world: the Evolvable Pro-

duction Systems (EPS)1. Much research on this subject was already accomplished by

many different authors [Frei and Barata, 2008, Barata and Onori, 2006, Shen et al., 2006,

Maraldo et al., 2006].

An EPS is a system that can dynamically adapt itself to new products and production

scenarios. This means that the addition and removal of manufacturing modules and changes

in the production orders stimulate the system to adapt to new scenarios at run-time, without

the need to completely stop for reprogramming. This can be achieved by designing systems

that can integrate any form or type of equipment, which, in turn, must be broken down into

smaller, process oriented components. Ontologies and Knowledge Bases (KBs) need to be

created to structure the assembly process. Once the process requirements are captured, an

assembly platform will be attainable. This platform is linked to the product designers, in

order for them to know the system capabilities and the constraints related to the product

design. This is a highly adaptable and re-configurable system [Maraldo et al., 2006].

The EPS modular point of view provides emergent properties to the system, which

are properties that cannot be predicted by analysing each part of the system separately.

The smaller the parts and the less work entrusted to them, the easier it is to coordinate

and structure the system [Shen et al., 2006, Maraldo et al., 2006].

Studies concluded that EPS needed a certain set of qualitative features to be de-

scribed, as can be seen below [Shen et al., 2006, Barata and Onori, 2006]:

• Module - Represents any unit that can process an operation and integrates a specific

interface. A module may represent a single manufacturing component, like a driller,

or represent a coalition of several components, like a cell.

• Granularity - The lowest level of device considered within a reference architecture.

For instance, if a robotic arm and a gripper are considered individually, they may

communicate and new characteristics may arise, like flipping an object. The lower

the level, the higher the emergence.

1In this work, most of the references presented for EPS call it Evolvable Assembly Systems (EAS).
These concepts share the same meaning and only have different names. This might be due to different
researches about the same subject being performed at the same time.
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• Plugability - The ability to add or remove system components. This aspect is very

important when considering a system that may need new manufacturing resources

when a new product order is issued.

• Reconfigurability - The ability to rearrange available system components to per-

form new, but pre-defined, operations when a new module is added or to discard

operations when an existing module is removed.

• Evolvability - If a fully reconfigurable system platform exhibits an emergent behav-

iour which introduces new or refined levels of functionality. This may be achieved by

applying the previously stated points to a system.

In practice, in order to comply with the qualitative features above, an EPS containing

a certain set of quantitative features to address each required quality has to be implemented.

Table 2.1 adapted from [Shen et al., 2006, Barata and Onori, 2006] shows these features.

Table 2.1: EPS qualitative versus quantitative features.

EPS qualitative features EPS quantitative features

Evolvability-conformity Skills repository and Management

Plugability and Reconfigurability - control
specifications

Module description/blueprint

Plugability-user requirements Application guidelines

Granularity-Safety conformity Safety certification procedures

Evolvability and Safety Rules related to emergent behaviour

Plugability-practical implementation EPS ”wrapper” solution: hardware

Evolvability-practical implementation EPS ”wrapper” solution: software

Evolvability and Precision
EPS architecture approach (granularity to
lowest level)

An EPS system requires a virtual repository to store all the structures needed for

users to comply with specifications and also the reference architecture. Specifications must

be added in order to attain plugability, so that external users can import their equipment to

the system. Also, specifications are needed for data exchange and adaptation. Emergence

may cause undesirable characteristics to appear and raise safety issues, so rules and safety

certification procedures have to be enforced. Modules need to interact between each other
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and with the hardware, so wrapper interfaces, also called Advanced Enabling Interface

(AEI), need to be created. This also implies that legacy components may be adapted to the

EPS format. Finally an extremely well defined reference architecture has to be implemented.

The main building blocks of an EPS are the modules, which may represent physical

components of the architecture or aggregations of these components that present the emer-

gent properties resulting from such aggregation. Physical modules must describe the set of

characteristics of the components they represent and should also capture the behaviour of

the component and realize the necessary control actions that must be issued for the behav-

iour to be accomplished [Onori et al., 2005]. These behaviours are viewed by the system as

skills and each skill represents the capability of the module to perform a certain task. A skill

execution may involve performing a sequence of control actions offered by the component

controller. The behaviours that emerge out of the interaction of the individual modules

represent the complex functionalities, or complex skills, of the system [Onori et al., 2006].

These complex skills are offered by higher level modules representing the aggregation of

other modules.

An example of an EPS is CoBasa [Barata, 2005]. Figure 2.3 shows the basic func-

tioning of this system.

Figure 2.3: CoBasa consortia formation.
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The CoBasa architecture is based on consortia formation, where each module is placed

in a cluster waiting for a re-engineering opportunity. When this opportunity arises, several

consortia are created between the modules, each with a specific operation plan that fits in

the production.

2.5 Manufacturing Controls

One of the things that influences the final performance of manufacturing systems is their

control architectures. Traditionally, the architectures can be classified as centralised, hi-

erarchical, modified hierarchical and heterarchical [Dilts et al., 1991]. These architectures

can be seen in Figure 2.4.

(a) Centralized. (b) Hierarchical.

(c) Modified hierarchical. (d) Heterarchical.

Figure 2.4: The traditional control architectures: centralized, hierarchical, modified
hierarchical and heterarchical.

The centralized architecture consists of one central node that coordinates all the in-

ferior nodes. This approach provides simpler coordination issues, since most of the logic is

placed inside the central node, but has several disadvantages, like the difficulty of modifi-

cation or extension or the excessive complexity of the central node, in comparison to the

inferior ones.
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The hierarchical architecture releases the central node from most of the complexity

by transferring it to inferior nodes. This can provide adaptive behaviours and can reach a

nearly optimal performance under stable situations but has poor fault tolerance.

The modified hierarchical architecture derives from the hierarchical architecture by

adding connections between the inferior nodes. This aims to improve disturbance responses

and provides better expandability to the system.

The heterarchical architecture takes the central node out of the picture, distributing

control over the inferior nodes. The advantage is the great flexibility of this type of control

but, on the other hand, the absence of a central node can render impossible an appropriate

control over the system.

2.6 Conclusions

Even though the technological evolution of manufacturing covers many concepts, some of

them described in the previous sections, the work of this thesis was solely to create and

study a new approach in the context EPS. And, even then, implementing a full EPS with all

the described features would require an amount of work too great for a master thesis. This

chapter was written only to contextualize the reader in the current state of manufacturing

systems, giving the necessary background to this work.

As already stated, this work evolved around a process-based approach which eases the

configuration of shop floor control. This does not mean that it is turned into a simple task,

as configuring a full-fledged EPS would still require a great amount of labour and many

other considerations beyond what was achieved through the course of this work. This thesis

may be viewed as a contribution to an on-going study on new approaches for more agile

and better manufacturing control architectures, able to cope with many of the problems

described in this chapter.
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Chapter 3

Supporting Concepts and

Technologies

The development of this thesis required the support of some concepts and technologies.

The motto ”Standing on the shoulders of giants” was taken seriously and a great deal of

effort was spent in studying different approaches and technologies to implement this work,

culminating in the choice of the ones that actually support this framework.

The purpose of this chapter is to introduce the reader to these underlying concepts

in order to have a better comprehension of the following chapters and of the reasons that

influenced their choices. What is described in this chapter is just an introduction to the

concepts and the references scattered throughout the text should be consulted for better

insight on the subjects.

This chapter firstly explains the idea of Multi-Agent Systems (MAS) and the used

technology for their implementation, Java Agent Development Framework (JADE). Sec-

ondly, the ontology concept is described. In the context of this thesis, the used ontology

language was Web Ontology Language (OWL), which is based on Resource Description

Framework (RDF). Also, for querying and asserting facts on ontological KBs, SPARQL

Protocol and RDF Query Language (SPARQL) was used, along with its variant that allows

the update of KBs. All of these languages and respective implementation technologies, Jena

and Protégé, are also described in the ontology section. Lastly, an introduction to Business

Process Management (BPM) is given, explaining what it is and why it is in the scope of

this work.
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3.1 Multi-agent Systems

The traditional manufacturing control systems do not support efficiently the current re-

quirements imposed to the manufacturing systems [Leitão and Restivo, 2006]. Leitão also

states that, because of the increase of powerful, inexpensive and widely available compu-

tational resources, the architectures evolved from centralised to distributed and dynamic

approaches.

Multi-agent systems, being distributed systems by nature, tend to be used now in or-

der to solve the flexibility problems in manufacturing systems. Many researches and studies

have been focused in this area [Barata and Camarinha-Matos, 2002, Barata et al., 2005,

Colombo et al., 2006].

3.1.1 Individual Agents

The definition of an agent is a controversial subject, as there is no consensus about what the

exact definition is. Nonetheless, in this work, the adopted definition was [Wooldridge, 2002]:

An agent is a computer system that is situated in some environment, and that
is capable of autonomous action in this environment in order to meet its design
objectives.

This means agents need to reason about their surrounding environment in order to

take an autonomous action. Even though this may mean the agents are intelligent, a simple

program that gathers information, reasons over it and takes an action, like, for example,

the software that detects the Computer Processor Unit (CPU) temperatures and fires an

alarm when they are too high, can hardly be described as an intelligent program. Below,

a list of the kinds of capabilities one might expect from an intelligent agent is presented

[Wooldridge and Jennings, 1995]:

• Reactivity - The capability an agent has to react to environment changes in order

to satisfy its objectives.

• Pro-activeness - The capability of agents to have a goal-directed behaviour in order

to achieve their objectives.

• Social ability - The capability agents have of interacting with each other and to

achieve their objectives.
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Creating purely reactive or pro-active systems is not very difficult as they are made all

the time, but a system that balances these characteristics is the key for an intelligent agent

functioning. Also, the social ability is not only the passing of bit streams from an agent to

another, but also their capability of negotiating and cooperating to achieve a common goal.

Programmers that use object-oriented programming may think that agents are more

or less the same but there are differences [Wooldridge, 2002]:

• Agents have a stronger notion of autonomy than objects and they decide for them-

selves whether or not to perform a particular action on external request.

• Agents are capable of flexible behaviour, unlike objects.

• A multi-agent system is inherently multi-threaded, with each agent having at least

one thread of control.

There may also exist some confusion between the concept of agency and expert sys-

tems but there are differences [Wooldridge, 2002]:

• ’Classic’ expert systems are not coupled to any environment to act in. They rather

act through a user as a ’middleman’.

• Expert systems are not generally capable of flexible behaviour (reactive, proactive

and social).

3.1.2 Agent Typologies

Agents can be classified into three architectural types, according to their attitude towards

the surrounding environment [Wooldridge and Jennings, 1994]: deliberative, reactive and

hybrid.

3.1.2.1 Deliberative Agents

This type of architecture was first described in the book Logical Foundations of Artificial

Intelligence [Genesereth and Nilsson, 1987] and is characterized by agents that reason over

an internal representation of the environment surrounding the agent. This internal repre-

sentation is what the agent believes the environment should be, which might not be the

real environment These agents have a goal-oriented behaviour dictated by their actions.
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The most well-known architecture inside the deliberative agent paradigm is the Belief-

Desire-Intention (BDI) architecture, which contains data structures loosely corresponding to

these mental states [Wooldridge, 2000]. The BDI architecture includes the agent knowledge

about the environment (beliefs), preferred states to achieve in the long-term (desires) and

planned decisions to be made to complete a plan (intentions).

3.1.2.2 Reactive Agents

Agents that fall inside the reactive paradigm do not contain an internal representation of

the surrounding environment. They merely react to the environment without reasoning

over it [Wooldridge, 2002]. The ideas behind this type of architecture are [Brooks, 1991b,

Brooks, 1991a]:

• Intelligent behaviour can be generated without explicit representations of the kind

that symbolic Artificial Intelligence (AI) proposes.

• Intelligent behaviour can be generated without explicit abstract reasoning of the kind

that symbolic AI proposes.

• Intelligence is an emergent property of certain complex systems, where the interaction

of several simple and reactive nodes may generate more complex behaviours.

3.1.2.3 Hybrid Agents

The hybrid architecture is an alternative to the limitations imposed by both the deliberative

and reactive architectures. Purely reactive agents are not capable of implementing a goal-

oriented behaviour, while deliberative agents may become incapable of rapidly responding

to external stimuli.

This hybrid type of architecture merges the advantages of both the deliberative agents

and the reactive agents. This is accomplished by creating an hierarchy of layers in the

agents [Wooldridge, 2002]. Each one of these layers may represent a reactive or a pro-

active component. There should be a minimum of two layers each representing a different

typology. Control flow in layers can be horizontal or vertical. An example of horizontal

layered architectures is the TouringMachine [Ferguson, 1992] and for the vertical layered

architectures, the InteRRaP [Muller and Pischel, 1993].
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3.1.3 Agent Communication

Since a single agent represents only a part of a multi-agent system, agents must communicate

so that all the parts of the system may interact and achieve common goals. To attain

this purpose, the agents need to understand each other via communication languages and

ontologies. Since ontologies are one of the main subjects in this thesis, they are described

in detail in Section 3.2.

The Agent Communication Language (ACL) was directly influenced by the Speech

Act theory, which treats communication as an action. One main ACL was created by the

DARPA-funded Knowledge Sharing Effort (KSE): The Knowledge Query and Manipulation

Language (KQML). This language was intended to be an envelope language for agent

messages, in which the agent can state the intended use of the message. The contents of

the messages did not matter for this language. KSE released the Knowledge Interchange

Format (KIF) for the description of the contents of the messages.

Table 3.1: The FIPA parameters for ACL messages. Adapted from [FIPA, 2002a]

Parameter Description

performative Denotes the type of the communicative act of the ACL message.

sender
Denotes the identity of the sender of the message, that is, the name
of the agent of the communicative act.

receiver Denotes the identity of the intended recipients of the message.

content
Denotes the content of the message; equivalently denotes the object
of the action. The meaning of the content of any ACL message is
intended to be interpreted by the receiver of the message.

language Denotes the language in which the content parameter is expressed.

ontology
Denotes the ontology(s) used to give a meaning to the symbols in the
content expression.

protocol
Denotes the interaction protocol that the sending agent is employing
with this ACL message.

conversation-id
Introduces an expression which is used to identify the ongoing se-
quence of communicative acts that together form a conversation.

Later, the Foundation for Intelligent Physical Agents (FIPA) released the FIPA-ACL

language, which is almost identical to KQML. The FIPA-ACL describes every commu-

nicative act with both a narrative form and formal semantics based on modal logic, and
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it also includes a normative description of a set of high-level interaction protocols, such

as requesting information and contract-net [Labrou et al., 1999]. This language was used

throughout the implementation of this work, so it deserves a little more explanation. A

message in this language contains a set of one or more message parameters. The most

important parameters are defined in the Table 3.1.

The table takes out one important feature of this type of messages: the ability to

contain user-defined fields, which allows a user to add fields to a message that make sense

in the scope of his work. Also, the performative is very important, which defines the com-

municative act attached to the message. Communicative acts define whether the message

is a request, a proposal or any other type defined in the FIPA specifications [FIPA, 2000].

(a) The FIPA request protocol. (b) The FIPA query protocol.

(c) The FIPA subscribe protocol.

Figure 3.1: Some of the communication protocols specified by FIPA for ACL mes-
sages.
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FIPA-ACL supports a series of message exchange protocols, which use the commu-

nicative acts to differentiate the messages during the exchange. In a given protocol the

conversation-id should always be the same in order for the agents to know that the mes-

sages belong to the same conversation. In the context of this work, only three protocols

were considered, even though there are many more specified by FIPA. The Request protocol

consists on an agent requesting another agent to perform a certain action, which may be

successful or not [FIPA, 2002c]. The Query protocol is used when an agent needs to be

queried for information at a given moment [FIPA, 2002b]. The Subscribe protocol allows an

agent to request a receiving agent to perform an action on subscription and subsequently

when the referenced object changes [FIPA, 2002d]. All of these protocols are shown in

Figure 3.1.

3.1.4 JADE

MAS can be implemented using regular programming languages, such as Java, by imple-

menting the needed features for agent communication, ontology support, yellow and white

pages service, message encoding, parsing and transport and agent life-cycle management ser-

vices [Leitao, 2004]. Several platforms that support such features are already implemented

and Java Agent Development Framework (JADE) is among them [JADE, 2010].

JADE is a framework for creating and managing agents that is compliant with the

FIPA specifications. It provides a naming service, yellow-page service, message transport

and parsing service, and a library of FIPA interaction protocols. Additionally, JADE pro-

vides the mandatory components defined by FIPA to manage the agent platform, which are

the Agent Communication Channel (ACC), the Agent Management System (AMS), and

the Directory Facilitator (DF). The DF is a particularly useful service, since it provides

yellow pages services needed to find other agents and services in the network by sharing the

information it contains when queried.

An agent in JADE must be able to carry out several concurrent tasks in response to

different external events. In order to make agent management efficient, every JADE agent is

composed of a single execution thread where all its tasks are modelled. These tasks can be

implemented as what is called behaviours, which are simply atomic tasks that are executed

sequentially inside the agent thread. A developer who wants to define an agent-specific task

should define one or more behaviours and add them to the task list [Bellifemine et al., 2010].
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The communications between agents are performed through ACL messages. JADE

provides the FIPA Semantic Language (SL) content language and the agent management

ontology, as well as the support for user-defined content languages and ontologies. Also, the

FIPA-ACL message exchange protocols and message parameters, described in the previous

section, are also supported by JADE. Some of the protocol implementations have simplified

versions where less messages are exchanged for optimization purposes. In most of the cases,

there is an omission of the section of the protocols where an acceptance or refusal is made.

JADE also provides a generic Graphical User Interface (GUI) that may be used to

monitor active agents and communications between them, among other details. It can also

be used to influence the system itself by creating and killing agents as well as performing

other actions. This GUI is shown in Figure 3.2. The JADE GUI comes with several useful

tools to gather specific information from the deployed agents, which include the sniffer

agent, responsible for tracking all the messages sent in the system, and the introspector

agent, which may inspect the states of the behaviours inside the agents.

Figure 3.2: The JADE GUI main window, where the user may get essential informa-
tion about the currently running agents.

Since the JADE framework is implemented in Java, it is possible to integrate it

with other frameworks in the same programming language in order to extend the MASs

to support new features. In the context of this thesis this has been done with the Jena

framework, which is described in Section 3.2.4
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3.2 Ontologies

In philosophical terms ontology is the science of the kinds and structures of objects, prop-

erties, events, processes and relations in every area of reality and it is often used by philoso-

phers as a synonym of metaphysics [Smith, 2009]. Later, ontologies became popular in

other areas outside philosophy, like knowledge management, artificial intelligence, cooper-

ative information systems and other areas in which a common knowledge of things was

needed.

An ontology provides a common understanding of concepts inside a particular do-

main. This opens the way for shareable and reusable KBs. Several works, which motivated

the evolution of ontologies in this area, were already accomplished [Gruber et al., 1993,

Guarino et al., 1993, Guarino and Poli, 1995].

In practical terms an ontology is a formal explicit description of concepts or classes in

a certain domain, properties of each concept describing various features and attributes of the

concept, and restrictions on properties [Noy et al., 2001]. Each concept can be instantiated

in order to form an individual. Inference rules can also be defined in order to fine-grain

the relationships between concepts, properties and restrictions. As an example, the concept

Person and properties name and sibling, one could create two instances of Person, one

whose value for the property name is Alice and the other is Bob. These two instances may

then be connected using the property sibling. This would be the same as stating The Person

whose name is Alice is a sibling of the Person whose name is Bob.

According to [Barata, 2005], the probable reasons why ontologies are becoming more

and more important are:

• Increasing use of computer agents - Software agents acting independently from

humans need to have a common language in order to understand each other.

• More Knowledge Management Practices - Organizations need to structure and

maintain information. This makes a common information definition a very valuable

asset.

• The importance of the World Wide Web - The growing importance of the web,

not only for organizations but also for personal users, led to the creation of the concept

of Semantic Web, which provides means for defining machine-understandable data as

opposite to the current concept where all the data is only human-understandable.
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Several ontology implementations are currently in use to aid the implementation of

computer-based systems. Some of them are:

• Knowledge Interchange Format (KIF) - It is a variant of the language of the

first-order predicate calculus, motivated by the goal of developing an expressive,

flexible, computer- and human-readable medium for exchanging knowledge bases

[Smith, 2009].

• Ontolingua - It is an extension of KIF with additional syntax, and organizes knowl-

edge in object-centered hierarchies with inheritance.

• DAML+OIL - It is the ontology of the Defense Advanced Research Projects Agency,

a combination of the DARPA Agent Markup Language, with the so-called Ontology

Inference Layer. It was created to facilitate the concept of Semantic Web.

• Web Ontology Language (OWL) - The Web Ontology Language is an extension

of the Resource Description Framework (RDF) and Resource Description Framework

Schema (RDFS) specifications used to describe the classes and relations between

them that are inherent in Web documents and applications. It can describe classes

and properties in complex ways allowing even more expressiveness than RDF and

RDFS.

In the manufacturing research domain, ontological descriptions have been already used

in several multi-agent systems in order to achieve more flexible controls [Merdan et al., 2008,

Mercian et al., 2006, Alsafi and Vyatkin, 2010, Pouchard et al., 2000].

3.2.1 RDF

The Resource Description Framework (RDF) is a language for representing information

about resources in the World Wide Web based in eXtensible Markup Language (XML).

It was created with the intention to be used to represent meta-data about Web resources,

such as the title, author, and modification date of a Web page. However, by generalizing

the concept of a Web resource, RDF also started to be used to represent information about

things that can be identified on the Web, even when they can not be directly retrieved on

it, allowing the creation of off-line descriptions.
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RDF is intended for cases in which this information needs to be processed by appli-

cations, rather than being only displayed to people. RDF provides a common framework

for expressing this information so it can be exchanged between applications without loss

of meaning. Since it is a common framework, application designers can leverage the avail-

ability of common RDF parsers and processing tools. The ability to exchange information

between different applications means the information may be made available to applications

other than those for which it was originally created.

RDF is based upon the idea of identifying things using Web identifiers, or Uniform

Resource Identifiers (URIs), and describing resources in terms of simple properties and

property values. This enables RDF to represent simple statements about resources as a

graph of nodes and arcs representing the resources, and their properties and values.

The example graph in Figure 3.3 represents the statement There is a resource of

the type http:// www.fct.unl.pt/ ontologies/ example.owl#Person, whose given identification

is http:// www.fct.unl.pt/ ontologies/ example.owl#alice, whose name is Alice and whose

surname is Cooper. Or, more simply put, Alice Cooper is a Person.

Figure 3.3: An example of a RDF graph. The resources are represented by the blue
nodes, values are represented by the yellow nodes and properties are represented as
arcs.

RDF has much more capabilities and, along with its integration with Resource De-

scription Framework Schema (RDFS), provides an expressive language to create simple on-

tologies but not as expressive as OWL, which is explained in the next section. More details

on these subjects can be found on the specifications web sites [W3C, 2004d, W3C, 2004c].
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3.2.2 OWL

As described earlier, Web Ontology Language (OWL) is an ontology language for the Se-

mantic Web built on top of the RDF language. As RDF, it is designed for applications that

need to process the content of information instead of just presenting information to humans.

OWL provides greater machine understanding of Web content than that supported by XML,

RDF, and RDFS by providing additional vocabulary along with a formal semantics. OWL

provides three sublanguages [W3C, 2004b]:

• OWL Lite - Allows functionality for the users that primarily need a classification

hierarchy and simple constraints.

• OWL DL - Is more complex than OWL Lite by supporting maximum expressiveness

while retaining computational completeness, meanings that all the conclusions are

guaranteed to be computable.

• OWL Full - This is the most complex sublanguage and supports maximum expres-

siveness and the syntactic freedom of RDF with no computational guarantees.

In terms of terminology, OWL has some concepts that are worth pointing out, as they

execute an important role in the work here presented:

• Individual - Corresponds to an instance of any given class. Or, in an object-oriented

view, it corresponds to and object.

• Class - It is a concept that corresponds to a collection of instances (or individuals).

In OWL there is a special class, Thing, which represents anything. All classes defined

in this language are subclasses of Thing.

• Property - A directed binary relation that describes class characteristics. Individuals

of a given class will use these characteristics as its attributes. Properties may possess

logical capabilities such as being transitive, symmetric, inverse and functional.

• Datatype Property - A subset of properties that relate individuals of a given class

to RDF literals or XML schema datatypes, like integers, booleans or Strings.

• Object Property - Since datatype properties only relate individuals to datatype

values, there must also exist a subset of properties that handles relations between

individuals, which is exactly what object properties do.

28



CHAPTER 3. SUPPORTING CONCEPTS AND TECHNOLOGIES

A simple example of an OWL ontology can be seen in Listing 3.1. This example states

that the individuals bill and alice are both of the class Person and that the individual alice

has an object property hasSon, which points to the individual bill. Both have a name

property which, in the case of alice has the value Alice and in the case of bill has the value

Bill. To simplify, this ontology means that Bill and Alice are both persons and that Bill is

Alice’s son.

Listing 3.1: An example of OWL, showing an ontology meaning that Bill and Alice

are persons and that Bill is Alice’s son.

<?xml ve r s i on=” 1 .0 ”?>

<rdf:RDF

xmlns=” ht tp : //www. f c t . unl . pt/ on t o l o g i e s /example . owl#”

xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns:owl=” ht tp : //www.w3 . org /2002/07/ owl#”

xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema#”

xmlns : rd f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”

xml:base=” ht tp : //www. f c t . unl . pt/ on t o l o g i e s /example . owl”>

<owl:Ontology rd f : about=””/>

<owl :C la s s rd f : ID=”Person”/>

<owl :ObjectProperty rd f : ID=”hasSon”>

<rd f s :domain r d f : r e s o u r c e=”#Person”/>

<r d f s : r a n g e r d f : r e s o u r c e=”#Person”/>

</ owl :ObjectProperty>

<owl :Funct iona lProperty rd f : ID=”name”>

<r d f s : r a n g e r d f : r e s o u r c e=” ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g ”/>

<rd f s :domain r d f : r e s o u r c e=”#Person”/>

<r d f : t y p e r d f : r e s o u r c e=” ht tp : //www.w3 . org /2002/07/ owl#DatatypeProperty ”/>

</ owl :Funct iona lProperty>

<Person rd f : ID=” a l i c e ”>

<name rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g ”

>Al i c e</name>

<hasSon>

<Person rd f : ID=” b i l l ”>

<name rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g ”

>B i l l</name>

</Person>

</hasSon>

</Person>

</rdf:RDF>

OWL is a full-fledged ontological language with hundreds of key-words and possibili-

ties. It provides a great deal of expressiveness. Further examples, references or details can

be found in the OWL reference site [W3C, 2004b].
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3.2.3 SPARQL

Much like Structured Query Language (SQL) for databases, a query language for RDF

exists by the name of SPARQL Protocol and RDF Query Language (SPARQL). It can be

used to express queries across diverse data sources, whether the data is stored natively as

RDF or viewed as RDF via middleware. The results of SPARQL queries can be results sets

or RDF graphs.

Since OWL is a subset of the RDF language, SPARQL is also compatible with on-

tology graphs, which is very useful in the context of this thesis, although it is not op-

timized to query OWL. To overcome some of the limitations SPARQL-DL was created

[Sirin and Parsia, 2007], which natively queries OWL-DL.

SPARQL has a very expressive syntax that allows the queries to, for example, limit

their results or sort them in ascending or descending way, along with many other possibili-

ties, much like in SQL. Beyond that, it has four query forms to retrieve information from

a RDF graph: SELECT, CONSTRUCT, ASK and DESCRIBE. In the next paragraphs,

these forms will be explained.

The SELECT query returns all, or a subset of, the variables bound in a query pattern

match. An example of this query can be seen in Figure 3.2, where a query is being made to

the example ontology in Listing 3.1 to select all the persons that have a son along with the

respective sons. This query will yield a result of ”Alice” for the variable person and ”Bill”

for the variable son.

Listing 3.2: An example of a SELECT query, which returns a person and her son.

PREFIX ex : <http ://www. f c t . unl . pt/ on t o l o g i e s /example . owl#>

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

SELECT ? person ? son

WHERE

{
? person ex : hasSon ? son .

? person rd f : type ex : Person .

}

The CONSTRUCT query returns a RDF graph constructed by substituting variables

in a set of triple templates. The example in Listing 3.3 shows the construction of a new

graph using the triples found in the WHERE clause.
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Listing 3.3: An example of a CONSTRUCT query, which returns a graph containing

all the sons and respective parents.

PREFIX ex : <http ://www. f c t . unl . pt/ on t o l o g i e s /example . owl#>

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

CONSTRUCT

{
? son ex : hasParent ? person .

}
WHERE

{
? person ex : hasSon ? son .

? person rd f : type ex : Person .

}

The ASK query returns a boolean indicating whether a query pattern matches or not.

As shown in Listing 3.4, the example query will return true if a person that has a son exists

in the queried graph.

Listing 3.4: An example of an ASK query, confirming if a person with a son exists.

PREFIX ex : <http ://www. f c t . unl . pt/ on t o l o g i e s /example . owl#>

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

ASK

WHERE

{
? person ex : hasSon ? son .

? person rd f : type ex : Person .

}

The DESCRIBE query returns a RDF graph that describes the resources found. In

Listing 3.5, the query will return a graph containing the description of all the persons in

the queried graph.

Listing 3.5: An example of a DESCRIBE query, which returns a graph containing all

the triples of a given person.

PREFIX ex : <http ://www. f c t . unl . pt/ on t o l o g i e s /example . owl#>

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>

DESCRIBE ? person

WHERE

{
? person rd f : type ex : Person .

}
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SPARQL is a very dynamic query language that offers many possibilities to get in-

formation from RDF graphs. Further examples, references and details can be found in the

SPARQL submission page [W3C, 2008a].

3.2.3.1 SPARQL/Update

Another useful feature of SQL is the ability to update database tables. Analogously,

SPARQL has a derived language that has that same purpose for RDF graphs. This lan-

guage is SPARQL/Update. Update operations are performed on a collection of graphs in

a Graph Store. Operations are provided to change existing RDF graphs as well as create

and remove graphs within a graph store, which is a group of graphs where updates may be

made.

Among many query types this language uses, the most common ones are INSERT

and DELETE, which are used to insert and remove data from a graph, respectively. It is

also allowed to use update operations aided by standard SPARQL queries and syntax. In

Figure 3.6 an example query is shown where Brian is inserted as Alice’s husband and Bill

is removed as Alice’s son.

Listing 3.6: An example of a INSERT/DELETE query, which asserts that Brian is

the husband of Alice. It also deletes the triples stating that Bill is Alice’s son.

PREFIX ex : <http ://www. f c t . unl . pt/ on t o l o g i e s /example . owl#>

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
INSERT DATA

{
ex : Brian ex : husbandOf ex : A l i c e .

}
DELETE DATA

{
ex : B i l l ex : hasParent ex : A l i c e .

ex : A l i c e ex : hasSon ex : B i l l .

}

SPARQL/Update is as expressive as SPARQL and also has many other features. Its

implementations are limited, since it is used in few frameworks other than Jena, which was

used in this thesis and will be described in the next section. Further examples, references

and details can be found in the SPARQL/Update submission [W3C, 2008b].
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3.2.4 Jena

In the scope of this thesis, a programmatic bridge between Java and both OWL and

SPARQL was necessary. The Jena framework makes this bridge, by supporting RDF,

RDFS, OWL and SPARQL, and allowing the integration of these languages with any Java-

based framework, such as JADE.

This framework holds information of both RDF and OWL graphs in containers called

models. In the specific case of OWL, the models are more complex, containing more de-

tailed access methods to manage ontologies without, however, changing the representation

originally created in RDF triples.

One of the biggest reasons for creating ontology-based applications is to apply the

use of a reasoner in order to derive more knowledge from the information a model already

contains, adding it to the knowledge the model already contains. An example of reasoning

could be, for the ontology shown in Figure 3.4, if alice is declared of the type Human, then

a reasoner might also conclude that alice is of the type Organism.

Figure 3.4: An example of reasoning, where the new knowledge is represented by the
red connection, stating that if the individual alice is a Human, it also is an Organism.

SPARQL is also very important in the context of this work and Jena supports it, along

with SPARQL/Update. Queries are made directly to the RDF graph contained in a model

and the returned information comes in a form depending on the query type: for a SELECT,

the information comes in the form of a result set, for a DESCRIBE or a CONSTRUCT, a

model is returned and for an ASK, the query merely outputs a boolean value. Any of these

information types are compatible within Jena, allowing exchange of information between

models.
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Thus, the model system in the Jena framework can be represented as shown in Fig-

ure 3.5; The basis is the RDF graph, where the information is contained and queries are

made. Above, the reasoner, which adds new knowledge to the graph. Finally, on top, the

ontology model containing an interface with ontology-focused methods, simplifying queries

and knowledge update.

Figure 3.5: The Jena ontology model structure, from [Hewlett-Packard, 2010]

Jena has much more concepts and utilities implemented, such as conversion from

RDF to Java or permanent storage for ontologies, so for more information about using this

framework, its home website should be consulted [Hewlett-Packard, 2010].

3.2.5 Protégé

Protégé is a free program for editing ontologies, with support for RDF and OWL, developed

by the Department of Medical Informatics, Stanford University [Gennari et al., 2003]. Even

though it has been developed for biomedical applications, the system may be used in any

other areas.

The architecture of Protégé is separated into two components. The component mod-

ule (Protégé Application Programming Interface (API)) and the component view (Protégé

GUI). The first component is located in the mechanism of internal representation of on-

tologies and KBs. The objective of the second component is to interface with the user in a

visual fashion for easy editing and manipulation.

Even though the API does basically the same thing as the, previously described,

Jena API, the choice was not to use this one since it is not directly based on RDF and
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OWL from the start as Jena is, which makes implementations more difficult. On the other

hand, the Protégé GUI was very useful for visually constructing ontologies, since it contains

class, property and individual editors, along with the support for plugins that aid in the

visualization of the ontological descriptions. This graphical environment can be seen in

Figure 3.6.

Figure 3.6: The Protégé GUI.

3.3 Business Process Management

As stated before, enterprises need to adapt quickly to new demands in order to keep com-

peting in today’s market. To deal with these types of challenges, companies have started to

use Information Technology (IT) to manage business processes. As the time went by, busi-

ness planning replaced paper by computers, in what was later known as Business Process

Management (BPM) [Ryan K.L. Ko, 2009].

A definition is needed for BPM an many literature items are in agreement that it

consists in [Ryan K.L. Ko, 2009]:

Supporting business processes using methods, techniques and software to design,
enact, control and analyse operational processes involving humans, organiza-
tions, applications, documents and other sources of information.

35



CHAPTER 3. SUPPORTING CONCEPTS AND TECHNOLOGIES

The BPM concept is used in what is known as a Business Process Management

System (BPMS), which can be defined as [van der Aalst et al., 2003]:

A generic software system that is driven by explicit process designs to enact
and manage operational business processes.

The basic principle of BPM, as the name states, is the use of processes and their

application in the business world. Processes are very general concepts. Keeping that in

mind, throughout this work, the considered definition of a process is the one cited below

[Davenport, 1993]:

... a process is simply a structured, measured set of activities designed to produce
a specified output for a particular customer or market. It implies a strong
emphasis on how work is done within an organization, in contrast to a product
focus’s emphasis on what.

BPM enables businesses to respond to changing consumer, market, and regulatory

demands faster, creating competitive advantage. To be able to have such a quick adaptation

to changes, it is always in constant change within a certain company. This is due to the fact

that BPM activities form a life-cycle. This brings with it the benefit of being able to simulate

changes to business processes based on real-life data. Also, the coupling of BPM to industry

methodologies allows users to continually optimize the process to ensure that it is tuned to

its market needs. The BPM life-cycle describes the various phases in support of operational

business processes. The phases are shown in Figure 3.7 [van der Aalst et al., 2003].

Figure 3.7: The BPM life-cycle. It consists of four stages: process design, system
configuration, process enactment and diagnosis.
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As shown in the figure, the BPM life-cycle consists in four stages: process design,

system configuration, process enactment and diagnosis. These are described below.

• Process Design - In this stage, the various processes are identified and a flow be-

tween them is designed by using tools for the effect.

• System Configuration - The BPMSs are configured, roles are analysed and vari-

ables are introduced to the processes.

• Process Enactment - The configured BPMSs are deployed into engines that will

execute them whenever requested to do so.

• Diagnosis - The BPMSs are analysed and statistics are taken, using tools for that

purpose, in order to be improved when the cycle reaches the process design stage

again.

BPM is, therefore, very useful to define enterprise functioning stages as processes. In

the case of manufacturing, processes, like product development, are made of activities that

require certain skills to be accomplished. Product designs are generated by research and

development, tested for market and evaluated by manufacturing or engineering as shown in

Figure 3.8 [Davenport, 1993].

Figure 3.8: A cross functional process. Adapted from [Davenport, 1993]. A process
of a new product development requires research and development, marketing and man-
ufacturing to achieve a new prototype.

If an organization is viewed in terms of processes from the top to the bottom of the

chain, cost reduction and quality improvement can be some of the advantages.

BPM derives from Business Process Reengineering (BPR), which is a concept that

arose in the 1990s whose objective was to help companies to cope with the constantly

changing environment. BPR strived for the perfect process definition model a company
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could use, re-organizing the whole functioning whenever it was not viable. This radical

view was not very practical. BPM has taken the advantage of the BPR experience and

conceptually is more flexible in terms of extensibility and intensity. Unlike BPR, which

targets end-to-end process by radically redesigning it, BPM can be applied part by part to

the whole enterprise at a time, by adopting much more practical, iterative and incremental

changes in business processes [Ryan K.L. Ko, 2009].

3.3.1 BPM vs. Workflow Management

Business Process Management (BPM) and Workflow Management (WfM) are two con-

cepts often used together [Ryan K.L. Ko, 2009]. There are two main viewpoints regard-

ing the differences between these two subjects. The first is that BPM should be consid-

ered a discipline, with WfM providing the technological support for its implementation

[Hill et al., 2008]. The second, and accepted by most studies, is that features in WfM

are a subset of the ones in BPM, the main difference being the support for diagnosis in

BPM [Georgakopoulos et al., 1995]. However, according to Ryan Ko [Ryan K.L. Ko, 2009],

BPMS and Workflow Management Systems are in fact the same, as BPMSs still do not

have a mature support for diagnosis.

Regardless of the similarity between BPM and WfM, the author of this thesis decided

to base the work in BPM, since the theory behind is more easily applied to its context.

3.4 Conclusions

This chapter provided a basis for the rest of this document, as it introduced several concepts

and technologies within the scope of this work. MAS, along with its Java implementation,

JADE, was used to create a basic architecture, in which each agent was assigned with

specific tasks and responsibilities and, by means of the communication standards referred

in this chapter, organized itself with the rest of the system. Ontologies and Jena were

implemented on top of the created MAS to provide a language both for communication and

for knowledge storage and analysis. Finally, the concept of BPM was used to implement a

process engine inside each agent, granting it the power of complex behaviour coupled with

easily configured features. This process engine will be detailed further in Chapter 5 and in

Section 6.3.
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The choice of technologies took in account the possibility of integration between them,

along with community usage and support. Also, JADE implemented a well-defined system

for agent communication as well as a yellow page service to find agents in the network.

Jena, on the other hand, provided support for ontological definitions in OWL and SPARQL,

which, in turn, were chosen due to their growing expressiveness and rich syntax, as well as

due to the fact that both enabled integration with other technologies, if needed.

In the next chapters, the actual usage of the described concepts and technologies in

this thesis will be explained.
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Chapter 4

A BPM-Based Architecture for

EPS

As stated in Chapter 1, the objective of this thesis was to build a system that coped with

changes in the production orders and organization of the machines in terms of layout and

cooperation objectives, so that the orders might be executed with optimal or near optimal

efficiency. So, the system had to be sufficiently agile in order to deal with the re-organization

issues. To achieve this goal, the points of modularity, programming effort reduction, re-

usability and self-organization were considered during the planning stages.

This system uses the benefits of reconfiguration and decentralization to reach the

above objectives. The reconfiguration capability comes from the idea of BPM where all

the tasks in a given company are described by processes, which are, by nature, easily

reconfigurable. Also, the use of ontologies for description helps with this feature, along with

the need for the common understanding between the system components. Decentralization

comes from the fact that the system here presented is a MAS, which distributes the workload

by individual agents.

This chapter explains the approach used for the design and description of the over-

all process-based architecture identifying the several agent types involved in the developed

MAS as well as their responsibilities and interactions. It then moves on to the discussion

of the EPS sub-architecture, which consists on a configuration of the process-based archi-

tecture with processes and ontologies designed to control and describe the components of a

manufacturing system.
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4.1 Generic Process-Based MAS Architecture

Agility was a major concern while implementing this system. As previously stated, the BPM

concept is closely related with agility within enterprises and, therefore, ideal to integrate in

this work.

Tools that offer BPM-related solutions are, by nature, easily reconfigurable, which

allows companies to adapt quickly to internal or external changes by redesigning the ser-

vices and products offered or fine-tuning their internal operations. TIBCO ActiveMa-

trix BPM [TIBCO, 2011a], Microsoft BizTalk [Microsoft, 2011] and Bonita Open Solution

[Bonitasoft, 2011] are some of the tools already used by companies.

BPM has a close relationship with Service-Oriented Architecture (SOA), thus gener-

ating applications such as Tibco ActiveMatrix BusinessWorks [TIBCO, 2011b] or specifi-

cations such as OWL-S [W3C, 2004a]. Also, and as stated in the previous chapter, BPM

has a close relationship with workflows. That is why many implementations of BPM en-

gines are based on the XML Process Definition Language (XPDL) standard for workflow

specification [WfMC, 2008].

The architecture presented in this thesis took into account the work of the afore-

mentioned tools and specifications, using concepts based on what has already been done,

thus introducing a process-based approach to a MAS, while also supporting descriptions in

OWL. Due to its BPM nature, this architecture is generic, making it able to be reused in

other contexts beyond manufacturing. As an example, a manufacturing company could be

process-oriented from its top administrative level to the lowest shop floor level and, there-

fore, agile from top to bottom. In order to have a more specific system, the agents need to

be properly configured. This base architecture is shown in Figure 4.1.

As illustrated in Figure 4.1, the base architecture contains only two types of agents:

The Process Agent and the Monitor Agent. These agents will be explained in detail in the

following sections. For now it is only necessary to know that the Process Agent is in charge

of executing processes and the Monitor Agent is an interface for the human user, allowing

creation, destruction, monitoring or changing of the rest of the agents in the system.

All system agents support OWL, whether it is for communication, configuration or

knowledge storage. In the case of the Process Agent, for example, its configuration is based

solely on this language, meaning that both processes and other descriptions need to be

imported using OWL.
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Figure 4.1: The basic architecture of the process-based system, which consists of
a Monitor Agent and several Process Agents that execute processes and are able to
communicate with each other.

Even though the description of the system is a well-defined set of ontologies created in

order to support a great number of concepts (like manufacturing modules), there is always

a very high risk of change it in order to support another concept or to create a whole new

functionality altogether. In these cases, in many systems, a single change in the ontological

description of the classes may require reprogramming or a new system altogether. This

is why the system is process-based: any ontological alteration may only require a simple

reconfiguration in the executed processes, if any change is needed. Therefore, the agent

system is as generic as possible. Each agent can be configured with a certain ontology and,

without further programming, can act according the information given.

Ideally, only one type of agent would be needed in such a system, since it may be

dynamically configured to do anything. But more specific agents, like the Monitor Agent,

may be found useful to the system as they may simplify some roles, while keeping the system
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generic, as long as they respect concepts that are fixed throughout the system in order to

be compatible with it.

In this system, as in any MAS system, it is important for agents to communicate with

each other in order to reach a certain goal. It is, therefore, important that agents understand

each other. Even though JADE already provides an built-in ontology creation solution for

messages, it was decided that all the agents in this system would exchange messages in

OWL, SPARQL or SPARQL/Update languages. Since all the agents KBs are constructed

through ontological descriptions in OWL format, values described inside may be sent by the

messages directly, without any kind of translation to a communication-specific language.

Inversely, messages received may be put directly in the KBs in order to be reasoned with

or queried.

4.1.1 The Process Agent

The base of the entire system is the Process Agent, which was designed to be as generic as

possible. Figure 4.2 shows the inner architecture of this agent.

Figure 4.2: The architecture of the Process Agent, which contains a communication
layer, a KB and a process engine, all interconnected.

This agent is able to load an OWL ontology to its KB, which may be changed ex-

ternally if necessary. In order for this agent to support execution of generic behaviours, a

process engine was created so processes defined in the ontology can be loaded and executed.

This engine enables the agent to have the functionality the system designer aims for without
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any need for reprogramming. It still has a communication layer, which enables messaging

with other agents using OWL, SPARQL or a combination of both. This allows the agent

to send orders or queries to other agents keeping its surrounding environment perception

up-to-date.

In the architecture, the communications component is directly linked to the KB com-

ponent, allowing direct KB updates or for the agent to be queried for knowledge contained

in it. The third component is the process engine whose responsibility is to load and execute

processes. This engine is directly connected to the KB so that it can execute the processes

based on information already existing in the ontologies. It is also directly connected to the

communications component. This allows the loaded processes to evaluate messages from or

send messages to other agents.

(a) Request to execute a process. (b) Query to the KB.

(c) Subscription for KB update. (d) Request to execute orders.

Figure 4.3: The default communication interactions of the Process Agent, based on
the FIPA standards.
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Because this is a generic agent, it may support any FIPA communication protocol as

long as the processes loaded support it. Despite this, a certain number of default interactions

were developed so that the agents support operations like executing external processes,

updating or querying the KB and subscribing to get all the ontological information of the

KB. These interactions can be seen in Figure 4.3.

In the proposed system, processes inside a given Process Agent may be invoked re-

motely. The exchange of messages depicted in Figure 4.3a exemplifies how this may be

accomplished. By using the full FIPA Request Interaction Protocol1, the invoker sends

a request to execute a process, as well as other relevant data like the input parameters

if needed. The Process Agent who received the message may agree or refuse to execute,

depending on the data received in the request. If the execution is agreed, then the Process

Agent sends the resulting information, like the outputs generated by the process. If, for

any reason, the execution failed, the Process Agent also informs the invoker of the failure,

along with the associated errors.

In many cases there may be a need to change, at run-time, the ontological descriptions

of a given agent like, for example, to manually recover from errors. There may also be a need

to query the KB in the agent for more information. In order to make this possible, support

for the reception of SPARQL and SPARQL/Update was inserted in the Process Agents.

In this case the FIPA Query Interaction Protocol was used for the message exchange.

Thus, as described in Figure 4.3b, the Process Agent receives a query in SPARQL (for

ontological queries) or SPARQL/Update (for ontological updates). The agent, after the

query is executed, returns an information message. This message contains the response in

the case of a query to the KB. If the order was to update the KB of the agent, then the

information message simply states that the update was successful. If, for any reason, the

query or update execution failed, the Process Agent returns a failure message.

It may, sometimes, be necessary to make some sort of debug to the KB of Process

Agents. For this, an external agent may require access to it in order to analyse the stored

information. In this case, the FIPA Subscribe Interaction Protocol was used so that other

agents could access the needed information, as can be seen in Figure 4.3c. For this exchange

1The reason why a full FIPA Request Interaction Protocol is mentioned is because JADE provides
simpler versions certain protocols, which take out the agreement or refusal part, resulting in less
exchanged messages and providing a faster interaction between agents.
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of messages, the Process Agent receives a subscription message. Upon receiving this mes-

sage, the agent may agree to the subscription, sending an agreement message, along with

all the data already stored in the KB, or refuse by sending a refusal message. If the Process

Agent has agreed to the subscription, whenever its KB is changed, it sends an information

message with the appropriate update, stated in the SPARQL/Update language.

Process Agents also need support for orders so that they may execute some pre-defined

behaviours, like deactivation, for instance. Orders may be sent using a simpler version of

the FIPA Request Interaction Protocol that is provided by JADE. This version takes out

the agreement/refusal message from the protocol to speed up the exchange of messages.

Therefore, the Process Agent simply receives a request with the intended order and replies

with an information message if it was successfully executed or a failure message otherwise,

as shown in Figure 4.3d.

There is a very tight relationship between all the components contained in the archi-

tecture of the Process Agent. Information is constantly exchanged between them, as can

be seen in Figure 4.4.

Figure 4.4: Information flow inside the Process Agent. 1-Information is received from
the external environment. 2-The information is caught by the reasoner, which draws
further conclusions. 3-The process engine uses the information during execution. 4-
The process engine may update the KB with further information. 5-The process engine
may communicate with the external environment.
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The previous figure shows the several steps of informational flow within the Process

Agent. In step 1, the information perceived from the surrounding environment is received

and inserted in the KB. This information is caught by the attached reasoner, as seen in

step 2, which draws the adequate conclusions. The process engine uses the information

outputted by the reasoner, in step 3, to execute the stored processes. The processes can

assert new knowledge to the KB, through the connection in step 4, or execute actions in

the surrounding environment of the agent, as shown in step 5.

The KB component is the second-most important part of the architecture and is re-

sponsible for storing all the knowledge of the agent and deducing new knowledge, through

the reasoner, giving it a certain intelligence. In every case where a KB is inserted in the

architecture, it always has an attached reasoner to infer new knowledge based on the one

already stored, as described in Chapter 3.2.4. The KB is dynamic, since the information

about the agent and the surrounding environment is in constant change. Also, the informa-

tion may be changed due to new concepts arriving or the system designer concluding that

a new description is better than the previous one. This implies that the KB and agent pro-

gramming must be dynamic enough to cope with the changes. In order fulfil this demand,

the agent is capable of updating the KB on-the-fly and of generating new conclusions.

The KB component and the process engine component have a very tight relationship,

since the processes are described in OWL and loaded directly from the KB. Also, the engine

must constantly query the KB to get all sorts of information. This process engine is the

most important component in the architecture, being the core of the Process Agent and

controlling its actions by means of the loaded processes. It allows the agent to assume

any behaviour loaded in the KB using the ontologies. This makes each Process Agent fully

configurable and removes the need to hard-code the agent behaviours. This component uses

the BPM paradigm to execute the behaviours. Each process contains a set of activities that

are executed in a given order. The activities may execute a certain action inside the agent,

influence the outside environment or assert or query facts from the KB. Since this is the

most important component in the whole architecture, Chapter 5 was created specifically to

explain the process model behind it.

To keep ontological descriptions coherent without any contradictions throughout the

system, each Process Agent is solely responsible for its own KB information. Event though

a use of a central agent to store all the ontologies in the system could be useful, this might

generate incoherences due to the fact that information in the Processes Agents is in constant
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evolution. Also, if the central agent were to be shut down for any reason, the system would

be extremely crippled. For this purpose if it is necessary to query the information of a given

agent, this query is made directly to it instead of using a central repository, as shown in

Figure 4.5.

Figure 4.5: External queries between the Process Agents. This allows the system to be
completely distributed, without the need for a central entity to manage the knowledge.

This scattering of information is made possible by the fact that all the agents possess

a phantom KB that represents the common ontology of the whole system. This KB itself

does not contain any information, instead, when any query inside the agent is directed to

this KB, it will result in an exchange of messages with the appropriate agent containing

such information, using the FIPA Query Interaction Protocol, in Figure 4.3b. Agents are

also able to insert knowledge in the KB of other agents, by updating this phantom KB. In

order to know where to send the queries or updates, each agent possesses a list of all the

other agents in the system. All the agents are subscribed to the JADE DF agent, which

updates their lists whenever a new agent enters the system.

4.1.2 The Monitor Agent

Much like in the definition of BPM, this architecture supports process diagnosis, by using

a third agent dedicated to it. This agent is useful for the system designer to monitor the

current state of the system, by showing and processing all the information contained in the

Process Agents. This agent is able to keep track of ontologies of the other agents by storing

their updates in its KB and reasoning over them. It is also capable of directly changing the
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ontologies of other agents so that the designer may correct the values he chooses. Its inner

architecture can be seen in Figure 4.6.

Figure 4.6: The architecture of the Monitor Agent, containing a communication layer,
a KB to store the external information and a user interface.

In terms of communications, this agent supports all the message exchanges defined

for the Process Agents and shown in Figure 4.3. These are supported so that the Monitor

Agent is able to be informed of the contents of all the KBs in the system, alter information

in the Process Agents, execute processes for debug purposes and send orders to, for example,

shut down agents.

The Monitor Agent also has a KB with an attached reasoner to store the information

of the agents it monitors. All information from the user interface is taken from this KB.

The visual interface also allows a designer to perform system actions such as creating or

destroying agents, update their KBs or view the status of running processes.

4.2 EPS System Architecture

The previously described architecture is flexible enough to control a MAS in a wide variety

of domains, since the agents can be configured with any set of processes a designer deems fit

to his needs. In the case of this thesis, the system was configured to control a manufacturing

shop floor using the EPS paradigm.
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The core concepts adopted by many EPSs already developed are Modules and Skills,

which are described in many works about the subject [Onori et al., 2005, Frei et al., 2010,

Maraldo et al., 2006, Barata and Onori, 2006]. In this work, manufacturing equipment (like

drillers, conveyors, grippers or cranes) and aggregates of these (a cell able to perform a

transport of a product to and from a drilling location) can be seen as modules, while the

ability of each module to perform tasks, like drilling or transporting, can be seen as skills.

This approach is similar to the one presented in previous chapters about EPS and can be

seen in Figure 4.7.

Figure 4.7: The base EPS architecture. In this architecture, the manufacturing
components are controlled by agents. These components are positioned within the
shop floor and organized among themselves to perform manufacturing actions.

Some of the principles in this architecture were based in the CoBasa system, which

was already described in Section 2.4. A set of modules represented by agents is placed in

the system. Another agent acts as a broker as well as a re-organizer to place the modules in

the shop floor. This agent is responsible for dynamically positioning the modules according
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to their skills and to the manufacturing plans in the shop floor. After the positioning of

the agents, they organize themselves in order to be aware of partners with which they will

execute skills. This process originates, as a result, several cells that perform certain tasks

inside the manufacturing plant.

The agent responsible for positioning the modules in the plant is not in the scope

of this thesis. It was developed in another master thesis, using Genetic Algorithms (GAs)

approach to achieve near-optimal module positioning [Pereira, 2011]. On the other hand,

the objective of this work was to describe and control the agents representing modules in a

re-configurable way.

Picking up on the work described in the previous section, Process Agents can be

used to represent manufacturing modules, while skills can be a special subset of the process

model the agent contains. This is described in Figure 4.8.

Figure 4.8: A Process Agent configured to control a manufacturing module. This
agent contains processes that are used to execute skills of the component.

Since the Process Agents are configurable in OWL, it is necessary a description

of the modules in this language. Although a manufacturing ontology was created from

scratch for this EPS architecture, this kind of configuration is compatible with the trends

of the new agile systems, as many already are described in OWL [Lemaignan et al., 2006,

Merdan et al., 2008, Lin et al., 2011].

In the previous section, it was stated that Process Agents were able to request exe-

cution of external processes, via the FIPA Request Interaction Protocol. This provides a

very useful feature in this particular architecture, allowing modules to use their own skills

in conjunction with skills of other modules. An example of this is shown in Figure 4.9.
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Figure 4.9: An example of external skill execution, where two conveyors must trans-
port a pallet between them. The first conveyor requests the execution of the reception
skill of the second conveyor.

In the case of Figure 4.9, to transport a pallet between two conveyors, the conveyor

containing the pallet starts moving its belt and orders the receiving conveyor to execute

the correct skill in order to receive an object. According to many works, a skill like this

can be considered a Complex Skill, since it involves a coordination between two or more

agents [Maraldo et al., 2006, Barata and Onori, 2006]. Complex skills are described as skills

dynamically formed from several simpler skills. Even though, in the case of Figure 4.9, two

skills are being executed to perform higher-level action, this is not considered a complex

skill for the following reasons:

• This skill is still simple enough to be managed by the two agents containing the

simpler skills without the need of a Coalition Leader, which is used in many other

works [Barata et al., 2005, Maraldo et al., 2006].

• To form a complex skill, in theory, the process should be able to dynamically pick

several skills and create a new sequence of actions, permitting the skill to be executed.

The complex skill would not be known a priori. This would require a very complex

algorithm to form the new, higher-level skill.
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• In these cases the designer already knows most of the skills a certain module can

perform with the help of other modules. It is much easier and reliable to just let the

designer create these skills, which is what is done in most works [Barata et al., 2005].

Because of the above reasons, in the current architecture there are no complex skills.

All skills that require one or more modules are pre-configured to automatically search

for the correct module and skill to be performed. In the example shown in Figure 4.9,

conveyors know a priori they need another conveyor to perform the transport skill with.

Upon deployment, they search in their neighbourhood for other conveyors that are able to

perform it and insert that information in their KB. Whenever the transportation skill is

requested, the conveyor sees whether it has an available neighbour to perform it with and,

if that is the case, the skill is executed.

In the current architecture, modules can be divided into two subclasses in order to be

better understood:

• Unit Modules - These modules represent a physical equipment contained in the

system, like robots or conveyors. These components are able to perform only simple

tasks. But, when aggregated to other units, the tasks may be more complex.

• Cell Modules - These modules do not represent any physical components but are

needed for the organisation of the system. Cells represent a group of modules that

work together with the purpose of manufacturing a certain product. These contain

a manufacturing plan for the unit modules contained in them and are formed during

the placement phase of unit modules in the shop floor. The process of forming such

modules is described in the Thesis of Nuno Pereira.

Manufacturing processes in cell modules may be considered complex skills, even

though they are not explicitly described like that. These processes can be considered state-

ments that say, for example, I can input a pallet, drill the products, glue the products and

output it back. These types of process are much more complex that skills provided by unit

modules.

Units, in the current architecture, were further divided into Material Handling Units

and Transforming Units for better control over the system. Material handling units are

solely responsible for handling the transportation and storing of products. Every action

in the system that requires product handling must be performed by one of these units,
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which can be conveyors or buffers, among others. A transforming unit performs some

type of operation on the product that may alter its physical properties. An example of a

transforming unit is a driller machine.

With cell modules and unit modules introduced, the control of the system will be as

in Figure 4.10. This architecture is similar to a modified hierarchical architecture, which

was described in Section 2.5.

Figure 4.10: The EPS control architecture. Similar to a modified hierarchical archi-
tecture.

In the figure, one can see that the cell modules can control more cell modules or unit

modules and unit modules can communicate between them to coordinate simple skills that

require a few number to execute.

4.3 Conclusions

In this chapter, it was presented the basic architectures for the proposed system. In a lower

level, the process-based architecture provides a framework comprised of a MAS able to load

and use ontological descriptions, along with a process engine that defines the behaviour

of the agents. In the manufacturing context, the EPS architecture presented is merely

a configuration of the process-based architecture with ontologies and processes to control

manufacturing components.
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The conjunction of the two architectures provides an agile system that may easily be

modified, since the supporting concept is BPM. The advantage of this approach is that, if

the EPS architecture is deemed unfit to cope with certain challenges, it may be reconfigured

to work in a completely different way without the need to be hard-coded.

Since the introduction of agility in the manufacturing context, many research has

already been made, resulting in several different systems to cope with the problem of adap-

tation to sudden changes. These systems provided good ideas and solutions. It is the

author’s belief that the architecture presented in this chapter contributes with new ideas

for new systems that may arise.

The heart of both these architectures is the process engine, since it controls the

functioning of each agent in the system. This subject will be covered in the next chapter.
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Chapter 5

A Process Model Specification

In the context of this work, a specification was required to model the execution and repre-

sentation of module skills in a generic way to avoid the need for hard-coded skills, which

prevent agility. Many skills require more than a simple invocation of their actions, they

need a more complex orchestration in order to be dynamic and realistically plausible.

Other constraint was the need to be compatible with the OWL ontology language,

the chosen language for the description of the manufacturing modules, and, at the same

time, it had to be in conformity with the definition of process and activity already defined

in many ontologies for manufacturing systems so that compatibility could be achieved with

other descriptions in the same language.

As a result, the following specification was developed in OWL. In order to have a dy-

namic functionality, the SPARQL language and its subset SPARQL/Update were seamlessly

integrated in it. This specification goes along the lines of several other specifications already

published in manufacturing-related works [Lemaignan et al., 2006, EUPASS, 2006] as well

as existing process and workflow specifications [TIBCO, 2011b, WfMC, 2008, W3C, 2004a],

being specifically created for a MAS based on OWL descriptions.

This chapter is totally dedicated to the explanation of the theory behind the process

definition used in this work. A process model specification is detailed here and will be further

discussed in Chapter 6.3 with the explanation of the engine behind it. This chapter starts

by explaining the overall process definition and, afterwards, describes each constituent of

the specification. Also, a special section was dedicated to explain the error handling inside

processes. Finally, there will be a discussion on other process specifications and technologies.
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5.1 Description of the Process Model

In Section 3.3 a process was defined as a structured set of activities. This is what the

developed process model aimed for. Structure comes from the use of transitions and flow

controls to control the execution of each activity. The structure of a process in the context

of this thesis is shown in Figure 5.1.

Figure 5.1: The structure of a process, showing that it is composed of activities
contained inside flow controls and nodes connected by transitions.

As described in the figure, a process contains activities, which are atomic actions

taken in each step of the execution of the process. Activities and other nodes are contained

inside flow controls, which control the pace of the execution of the process. Controls may

state that a certain set of nodes is to be executed in parallel with another or that the same

set may be executed in a loop. Finally the transitions determine the sequence of execution

of the nodes contained in the process.

All the components in the figure allow a process to have a complex behaviour, while

being able to be easily configured to perform several different tasks. Activities, transitions

and flow controls are described in the following sections as well as the process itself.

5.1.1 Process

A process is the main subject in this chapter and the executable component of the engine,

which may contain flow controls, transitions and activities inside. A detailed view of a

process is described in Figure 5.2.

As shown in the figure, a process has an input, to use certain external values to

execute, and an output, that returns a desired set of values that emerged from the execution.

To achieve this parameters may be defined for each purpose. Also, if there is need for the
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Figure 5.2: A detailed view of a process. It shows that a process may have inputs,
generate outputs or contain local parameters. Also, a process may be prompted for
execution externally or when a starting condition is evaluated and returns true.

process to hold temporary information during its execution, a set of local parameters can

be defined, which are accessible to all the components inside it. When the execution ends,

the local parameters are deleted from the memory.

The figure also depicts a starting condition for the process. This condition is a

SPARQL query that is evaluated periodically and, whenever it is met, initiates the execution

of the process automatically. This allows processes to be treated as rules, in which the If

clause is the query and the Then clause is the process itself.

All processes are associated to certain actors, which means that only the actors con-

taining those processes are able to execute them. Process inside these actors may not be

executed by other actors unless a request has explicitly been made to the owner. Figure 5.3

shows the relationship between actors and processes.

Figure 5.3: The actor-process relationship. Actors are able to execute their own
processes or request other actors to execute external processes.

Processes can also be defined as disabled in order for the actor not to execute them

in certain conditions. This allows for inter-process control, where processes that require

a certain process to be disabled may do so. Also, processes may be defined as singleton,

which means that there may not be more than one instance running.
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As previously stated, the flow controls define the pace of the execution of each node

within the process. In the current model, the process itself does not manage activities nor

transitions. This task is for the flow controls. This is why, all the processes must define a

main flow control, which is the base manager of its execution.

5.1.2 Flow Control

This is a very important type of node in the processes whose sole purpose is to control

the execution flow of the activities. They are containers for activities, transitions and even

other controls or processes and control how the execution should be scheduled.

In this specification, several types of flow controls where developed to provide possi-

bility for several types behaviours within processes:

• Sequence - This control schedules its children to run in sequence. The order of the

sequence is determined by the transitions, which will be discussed ahead.

• Split - All the children of this class of controls are executed in parallel. No transitions

are allowed in a Split.

• Unordered - This control executes its children sequentially but in no particular

order, therefore transitions are also not allowed in this control.

• Loop - This is an abstract control that is used as a template for looping controls.

It requires a SPARQL query to be used as an iteration validation. Children of this

control are executed sequentially. A number of controls where implemented using this

template:

– Iterate - Given an instance that contains a property with multiple values, this

control, iterates through all those values, executing once per value and making

the current value available for its children.

– Repeat Until - This control repeats its execution until a certain condition is

evaluated to true.

– While - This control will sequentially repeat its execution while a certain con-

dition holds.

Alone, these controls are simple but, since this specification allows controls to be

inside controls or connected to other controls, the processes may execute complex flows.

60



CHAPTER 5. A PROCESS MODEL SPECIFICATION

5.1.3 Transition

Transitions dictate the order of sequentially executed flows. To achieve that, transitions

must have a source and a target. The source is the currently executed activity, control or

process and the target is the next scheduled activity, control or process.

In tree-like processes, where the execution chooses a certain flow depending on a

certain condition, conditional transitions need to be used. These types of transitions require

a SPARQL ASK query that is evaluated by the engine. If it is evaluated to true, the next

node in the transition will be executed. In certain cases, transitions may substitute looping

flow controls by creating a loop themselves with the help of their conditions. This may

visually simplify the process analysis.

A special type of transition is the error transition, which handles errors from its source

node. This transition will be described later in Section 5.2.

5.1.4 Activity

Activities define the specific atomic actions a process may execute. These may need an

input, produce a certain output or simply act in a certain way useful for the process. These

may range from printing a simple String of text in a console to send a message to another

agent. The details of an activity are shown in Figure 5.4.

Figure 5.4: A detailed view of an activity. It may require an input or produce an
output. In between, a certain action is executed.

In case a certain activity requires a given input for it to be successfully executed, a

SPARQL/Update query needs to be defined. This will fill the correct values at runtime.

The advantage of this technique is that input parameters may be filled in whichever way

the designer wants without any further constraints of information. In the case of outputs,

the activities must inject the returning values in the process memory.

In terms of OWL, an activity is a class that is defined by whoever wants to create

a new type of action execution. The designer of the activity does not have to explicitly
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define which parameters are inputs or outputs. Whenever the activity is executed, the

input SPARQL/Update query has to fill the right parameters for execution. This query can

also be used to get the correct output parameters from previous activities. Activities and

their correct configuration are further described in Section 6.3 and Appendix C.

Since activities are to be implemented externally, when creating a new type a designer

must keep in mind that the ontological definition must have a reference to the correct

implementation class, so that, when the engine sets up, it will be able to correctly execute

the activity.

5.2 Error Control

Sometimes, when an activity is executed, it may fail due to errors generated internally. A

designer may prefer to direct the flow of the process in a certain way when these errors

appear. From this need arose a special feature of this specification, which is error handling.

Errors in processes may be handled in one of two ways: a per-activity way, where a

specific activity is analysed for errors, depicted in Figure 5.5a or a general way, where any

error in the process may be caught no matter in which activity it occurred, as shown in

Figure 5.5b.

(a) Error control using transitions. (b) Error control using flow control.

Figure 5.5: Error control types. The first type requires a transition from the ac-
tivity that generated the error, while the second type activates an error flow control
independently of the activity that generated the error.

For the first case, a special type of transition was created. This error transition

connects the analysed activity to the node the designer wants to use to repair the error.

This transition is chosen whenever the activity generates an error.
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For the second case, a special type of flow control was created. This control is activated

whenever an activity, that does not have an error transition, generates an error. This flow

control executes sequentially the children nodes inside of it, acting exactly like the sequential

flow control.

Activities need to explicitly generate errors and append them to their output in order

for the next nodes to have access to the type of error, in case the designer wants to analyse

the it and take the necessary actions. When an error occurs, that is not handled, will be

appended to the output of the process.

5.3 Conclusions

In this chapter the process model specification used throughout this thesis was explained and

its components detailed. Since this subject played a significant role in the implementation

of the system, by detailing how agents would behave, it was decided to have a chapter full

for its own.

This work was developed so that agents could be reconfigured rather than repro-

grammed, so one of the conditions was that the specification needed to be generic enough

for that to happen. One of the by-products of this constraint is that the system developed

in this thesis may be applied not only in the manufacturing context but also in any context

that requires a MAS.

The author does not claim that this is the best solution for the problem of agility in

the manufacturing environment or MASs. It is worth noting, though, that BPM approaches

have been used for years in other departments of business companies with a great level of

success, since it allows them to quickly modify or correct erroneous or obsolete processes,

which could be a great asset in the shop floor of a manufacturing company.

Even though many process execution specifications and implementations exist, the

author decided to create a new one because the existing did not fulfil certain objectives

drawn for this thesis at the time of conception.

JADE already has one implementation for WfM called Workflow Agents Development

Environment (WADE) [WADE, 2010]. Though this framework provides process (or work-

flow) execution functionalities for agents, it has no support whatsoever for OWL. Also,

workflows have to be hard-coded into the agents, so reconfigurability would be harder to

implement in this system.
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There is a specification compatible with OWL that may be used to compose processes,

called OWL-S [W3C, 2004a]. This specification is very complex and did not have some of

the characteristics planned for this work, like the ability to externally program activities

for greater extensibility. Also, this specification was too orientated to WebServices, since

its main objective was of invoking them in a certain sequence, and support for ACL would

have to be manually integrated in it.

XPDL, created by the Workflow Management Coalition (WfMC), is a widely used

standard for workflow and process definition [WfMC, 2008]. The problem with this ap-

proach was that it is based in XML instead of OWL, which would result in a more complex

implementation of a process engine inside the agents.

The author is aware these and other process specifications are more complete and

functional than the one presented here. But, for the stated reasons, they were not used. In

Chapter 7.2 further enhancements and ideas are discussed for the current implementation.
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Implementation of the System

In order to validate what has been written so far, a full system was implemented using

the concepts, technologies and architectures mentioned in the previous chapters. This

system is a MAS, where all the agents use ontological descriptions to configure themselves,

communicate and store information. The agents also possess a process engine, that dictates

their behaviour in accordance with the processes loaded in their ontologies.

Ontological descriptions and process definitions were created to configure the system

to control several manufacturing components within a shop floor. This new configuration

aimed to be an EPS, where the modules that represented each component would organize

themselves to be able to execute skills together in order to follow a production plan.

This chapter describes the implementation of the proposed architecture in Chapter 4,

as well as the implementation of the process engine whose process model was already dis-

cussed in Chapter 5. It also explains how both were configured in order to act upon a simple

manufacturing shop floor using the EPS paradigm.

The basis of the whole system are OWL ontologies, which were used to configure the

agents, so the ones created specifically for this work will be detailed first. Next, it will be

described the inner functioning of the process engine as well as ways to configure it with

new activities. The Process and Monitor agents will be explained in the following sections,

as well as the graphical process editor programmed for the purpose of facilitating process

creation. Next, there will be an explanation of proposed EPS, along with the configuration

of each module that was created to control specific manufacturing components based on the

MOFA kit. Lastly, the test scenarios and corresponding results will be discussed.
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6.1 System Ontologies

The whole system runs on the premise that it can be configured via ontological descriptions.

These descriptions were written in OWL. This language was chosen because it is highly

expressive and has a large user base. Its usage is growing at a fast pace in many applications,

including the description of manufacturing systems. For the creation of the ontologies, the

Protégé tool was used, since it provides an easy-to-use interface and has many tools to edit

an analyse ontologies. Both OWL and Protégé were already described in previous chapters.

Different class ontologies were created for different domains. This domain separation,

eases the readability and edition of ontologies. All the domains in this system are inter-

connected and are imported by each other, as shown in Figure 6.1. This is one of the

advantages of OWL, because it allows ontologies to import other ontologies.

Figure 6.1: The relationship between the different ontology domains in the system.
This package diagram shows how the different domains are related.

The considered domains for the core ontological descriptions in the current system

were the Concepts domain, the Process domain, the Agent domain and the Communications

domain. Each of these domains has its own class ontology which will be described along

the following sections.

6.1.1 Concepts Ontology

The concepts ontology defines a series of general auxiliary concepts used in all the other

ontologies. These are generic concepts that may be found in everyday applications. The

URI for this ontology is http://www.fct.unl.pt/ontologies/eas-concepts-ontology.owl. The

class diagram for this ontology is shown in Figure 6.2.

Figure 6.2: The concepts ontology class diagram, showing the three classes that
compose it.
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6.1.1.1 Coordinate

This class defines a set of Cartesian coordinates to place object or points in a given one,

two or three dimensional space. For this purpose, this class has three properties:

• x - The X coordinate of a point.

• y - The Y coordinate of a point.

• z - The Z coordinate of a point.

6.1.1.2 Dimension

The Dimension class defines a given volume of an object in a three dimensional space. It

can also define areas, by omitting the length property. This class has three properties:

• width - The width of the object or space to describe.

• length - The length of the object or space to describe.

• height - The height of the object or space to describe.

6.1.1.3 Rotation

The definition of rotations of objects or modules was required in several descriptions in this

thesis. This class serves that purpose. It has three properties:

• roll - The rotation in the x axis.

• pitch - The rotation in the y axis.

• yaw - The rotation in the z axis.

6.1.2 Process Ontology

This ontology is the most important in the whole system, as it describes how process

descriptions should be created. The whole behaviour of the process engines inside the

Process Agents depends on what is defined using this class description. Every process

contains instances of these classes which are loaded to the KBs.

67



CHAPTER 6. IMPLEMENTATION OF THE SYSTEM

Manufacturing ontologies describe manufacturing processes, so, this ontology was

planned to be as generic as possible to be able to describe such processes and also expressive

enough to define sequences of activities that might actually be executed inside an agent

equipped with an engine.

This ontology imports the previous description in the concepts domain. Its URI is

http://www.fct.unl.pt/ontologies/eas-process-ontology.owl. Since the associations between

classes defined for processes are a bit complex, a simplified version of the Unified Modelling

Language (UML) class diagram is shown in Figure 6.3.

Figure 6.3: The process ontology class diagram. It shows all the classes used in this
ontology. For readability purposes, the connections between them were simplified.

6.1.2.1 Entity

An entity is a basic structure that contains a name and a description. All the classes

requiring both of these properties should be subclasses of Entity. This class is useful not

only for the process ontology but also for all the ontologies that import it. This results in
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an extensive use of this class as a superclass of other concepts in many of the presented

ontologies. The two properties defined for an Entity are:

• name - A String that contains the name of the entity.

• description - A String that contains a textual description of the entity to inform the

users of anything related to it.

6.1.2.2 Node

This is the base class for all the functional components of the process ontology and a direct

subclass of the Entity class. The use of a superclass like this can be justified by the fact

that processes, activities, controls and transitions may be seen as nodes of a tree that can

be inserted inside each other, this way parent and child nodes are allowed. It also helps in

the graphical representation of a process, when using an editor to view it. The properties

that define this class are:

• hasNode - Defines a sub-node of the current node. It is an inverse property of

inNode. This is also a transitive property, which means that the sub-nodes of a given

node are also sub-nodes of its parent node.

• hasError - If the node finished its execution with errors, they should be referenced

using this property.

• inNode - Defines a parent node of the current node. It is an inverse property of

hasNode.

• nodePosition - Binds the current node to an instance of Coordinate, which was

described in the concepts ontology, that defines the position of the node in a graph.

This property is useful when designing a graphical process editor or visualizer.

• nodeDimension - Binds the current node to an instance of Dimension, which was

described in the concepts ontology, that defines the length and width of the node.

Like in the previous property, this one is also useful for visualizing nodes in a graphical

environment.
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6.1.2.3 SPARQLQuery

It was necessary to insert whole SPARQL and SPARQL/Update queries inside process

ontologies. The SPARQLQuery class was used to meet this need. The instances of this

class can store queries in a String as well as variable bindings, much like expressions in

OWL-S [W3C, 2004a].

This class makes possible the creation of conditions for transitions and input assign-

ment in activities. The two properties defined for this class were:

• expressionText - This is a String that contains the query text in the SPARQL

language format.

• variableBinding - A reference to a parameter representing of a variable defined

inside the query text. This may be used to convert results from the SPARQL query

into values that might actually be used in the processes. A SPARQLQuery may have

more than one variable binding.

6.1.2.4 Parameter

This class is one of the most important classes in this ontology. Its purpose is to hold

variable values in the processes. These variables may have pre-defined values or have their

values assigned at run-time. This is useful to create bindings for queries, local variables or

in other situations when the value or type of the variables is unknown before run-time. The

parameter class is defined by the properties:

• paramType - The URI of the class of the value contained in the parameter. This

URI may also point to datatype URIs like String or Integer.

• paramName - A String holding the name of the parameter. Useful for variable

bindings or for informational purposes.

• paramValue - This property stores the actual value of the parameter. It may hold

any type of value (Instances or native types).

6.1.2.5 Actor

An actor is an entity able to execute processes. Each actor has a set of processes bound to

it, which means that these processes are only in the domain of their respective actor. Only
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the actor whose processes are defined as his own may execute them. In descriptions that

extend this ontology where more detailed types of actors are needed, the Actor class should

be extended by these new classes. This class only has one property defined:

• process - References a process that may be executed by the actor being defined. An

actor may have more than one occurrences of this property.

6.1.2.6 Process

This is the class that defines an actual process. A process is composed of a series of

activities that, connected with each other in a certain order, create a series of actions in

a given domain. A process contains activities, transitions and controls as its sub nodes in

order to define the flow of data and the ordering of activities. In this ontology, this class is a

subclass of Node, since it may be displayed in a graph visualization tool. As for properties,

the ones defined for a process are:

• startQuery - This property references an instance of SPARQLQuery. If the de-

signer of the process requires it to be automatically executed in certain conditions, a

SPARQLQuery instance with the corresponding query must be inserted in this prop-

erty. So, if the query evaluates to true at any given moment, the process is executed.

This may very well substitute the use of rules in many applications since it allows an

if-then-else logic in the process engine. If the SPARQLQuery instance has variable

bindings in it, these will be passed as inputs of the process.

• hasStartControl - The starting flow control must be defined so that an engine knows

how to actually start running a process. This property points to the first flow control

instance to be activated.

• hasLocalParameter - Processes may have local parameters which are only tempo-

rary values used when it is in an execution state. Local parameters are deleted when

the process ends its execution. Other process engines already implement similar ap-

proaches [TIBCO, 2011b]. This property references an instance of the Parameter

class.

• hasInputParameter - Input parameters may be defined for processes that need

external values in order to be executed.
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• hasOutputParameter - When a process is executed, it may output values for ex-

ternal entities to use.

• enabled - A boolean that states whether the process is enabled or not. This allows

the process to be enabled/disabled at run-time for any reason necessary.

• actor - This is an inverse property of the process property in the Actor class. It

references the actor instance that owns the process.

• singleton - A boolean value that, if true, marks the process as only being able to

be executed once at a time. By nature, when a process needs to be executed, a new

instance is created inside the engine. However, sometimes, certain processes must

not have several instances being executed at the same time. This property allows the

designer to control this situation.

6.1.2.7 FlowControl

As stated in Chapter 5, processes need a way to control the flow of the executed activities

(Whether they should be executed sequentially, in parallel, etc.). The purpose of this class

is to give a template for flow control description. Actual flow controls are subclasses of this

class. All the properties described in the following itemization are sub-properties of the

hasNode property:

• hasActivity - References instances of the class Activity contained inside a flow con-

trol. This allows the engine to know which activities to load for any given control.

• hasControl - Controls can have inner controls in order to create processes with more

complex behaviours. This property references all the sub controls.

• hasTransition - Controls also contain information about the transitions between

their inner nodes. This is because transitions are treated as nodes, helping with the

optimization of process loading.

• hasProcess - A process may need to invoke another process defined in the same

actor. This property allows controls to place sub-processes inside them.

As previously stated, the FlowControl class is just an abstract class. The actual flow

control implementations are shown in Figure 6.4 and described afterwards.
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Figure 6.4: The flow control class diagram, showing the created classes for process
control.

• Sequence - This subclass of the flow control class states that any activity, control

or process contained inside must be executed sequentially. Even if there are two

Transitions that evaluate to true from one activity, only one will be selected. In

order for the engine to know how this control starts and when this control ends, the

properties hasFirstNode and hasLastNode where defined pointing to the first node to

be executed and to the last node to be executed, respectively. It should be clear that

a sequence may have more than one final node to allow branching.

• Split - Is a flow control that allows the nodes contained in it to be executed in parallel.

Its execution finishes when all the children nodes have finished theirs. No transitions

are allowed in a split control, so it is best used in coordination with other controls to

achieve a more complex behaviour. It has no specific properties.

• Unordered - All the nodes contained in this control are executed in no specific order.

It depends only in the order they were read from the process definition. Like in the

split control, no transitions are allowed inside the unordered control.
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• Loop - This is an abstract subclass of the FlowControl class. This class is a template

class that allows the nodes contained in it to be executed repeatedly until a certain

condition is evaluated to true. Only one property was created for this class, the

iterationQuery, which references an instance of a SPARQLQuery that contains the

query evaluated for the loop. All the subclasses of this control are also subclasses of

the sequence control and they are:

– Iterate - Reads all occurrences of a given property filled for a given instance

and iterates through them until there are no more occurrences to be read. The

iterate control has thee properties, the iterationElement, where the instance

whose property is to be read is defined, the iterationProperty, containing the

URI of the property to iterate and the iterationValue, that will be filled at

run-time with the current value to be analysed.

– RepeatUntil - Repeats the execution of all the nodes contained in it until the

iterationQuery evaluates to true.

– While - This control loops over the contained nodes while the iterationQuery

is true.

• ErrorControl - This special control class was created for error handling as defined

in Chapter 5.2. It has no properties defined.

6.1.2.8 Activity

Activities are the atomic actions a given process may execute. This class by itself, when

instantiated, will not create valid activities, since it is just a template definition. A developer

must subclass it in order to create more fine-grained activities. Every activity may have

inputs, outputs and even configuration values. It is a subclass of the Node class, since it

may be represented as a graph node. The defined properties for this class are:

• inControl - Defines the parent flow control of this activity and is a sub-property of

inNode.

• inputQuery - Input values, in a given process, are passed between activities by

means of a SPARQLQuery. Languages such as SPARQL can be used to query the

data model of the current process execution for outputs of previous activities or local
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parameters and assign the desired values to the inputs of an activity. This property

serves this purpose by pointing to a query to assign the values as inputs of this

activity.

When creating a subclass of Activity, the designer also needs to provide certain fixed

values for the new activity. These values come in the form of OWL annotation proper-

ties, which are constant throughout the instances of a class. In this context, the required

annotation properties are:

• configuration - States the Java instance that should be used to configure an instance

of this activity in case an editor is being used to create processes.

• icon - Provides the path of an icon associated with the new activity type. An icon is

useful for visual representations of processes.

• implementation - References the Java instance responsible for the actual implemen-

tation of the behaviour of the newly created type of activity.

• label - This is a generic OWL annotation property. In this case it is used to place

a textual representation of the new type of activity. Useful for both editing and

visualizing processes.

6.1.2.9 Transition

Along with flow controls, transitions help defining the flow of the process. They point to

the next node to execute and may help with optional executions. Transitions are also useful

for a designer to understand the flow of a given process. Since a transition may exist inside

other nodes, it was created as a subclass of the Node class. The defined properties for

transitions are:

• from - References the instance of the previous node in the transition.

• to - References the instance of the next node in the transition.

6.1.2.10 ConditionalTransition

In order to have branching in the execution of a process, there is a subclass of the Transition

class called ConditionalTransition. This type of transitions are only executed when a certain

condition evaluates to true. The only property defined for this class is:
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• condition - When executing a process, the designer may want it to flow in a certain

path when a given condition is true and flow in another path when this condition is

false. For this purpose, any conditional transition may reference a SPARQLQuery

that is evaluated when the transition is reached. If this condition is true, the next

node in the transition is executed, if not, the transition will not allow it to be executed.

6.1.2.11 ErrorTransition

When a node finishes its execution with errors and if it has an error transition coming from

it, an alternate path to recover from that error may be created, as described in Chapter 5.2.

This class is a subclass of the Transition class and has no properties defined for it.

6.1.2.12 Error

An instance of this class should be used whenever a node finishes execution with errors. This

class describes the error and can be subclassed to create more fine-grained error definitions.

Three properties were defined for instances of this class:

• errorActor - References the actor in which the error occurred.

• errorInNode - References the node where the error occurred.

• errorID - A String containing a text identification of the error in order for further

analysis of it.

• errorDescription - A String containing the description of the error, suitable for a

user to be able to have a more detailed information of what happened.

6.1.3 Agent Ontology

Since the process engines work in a MAS, an ontology was required to define agents and

their properties, so that queries and message exchange could be performed in OWL. This

ontology defines classes compatible with the ones defined in the JADE framework and its

URI is http://www.fct.unl.pt/ontologies/eas-agent-ontology.owl. Also, to be compatible

with process execution, this ontology imports the classes from the process domain. In

Figure 6.5, the UML class diagram of this description is shown.
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Figure 6.5: The agent ontology class diagram. This UML diagram shows the classes
defined for the agent ontology in order to provide compatibility with the JADE frame-
work.

In the figure, some classes of the process ontology are shown in order to best under-

stand the relationships between that ontology and the one being currently described. In

the following sub-sections the classes in this ontology are described.

6.1.3.1 Agent

As an agent executes processes, the Agent class was defined as a subclass of Actor. This

class defines the basic information of a JADE agent in the system. The defined properties

are:

• aid - A String that contains the textual representation of the Agent Identifier (AID)

of the agent.

• isDescribedBy - Holds the instance that describes the agent. This property was

created to support the extension of the system. As an example, in the case of this

thesis, this property will reference to the instance that describes the module the agent

represents.

• receivedMessage - This property references instances of the ACLMessage class,

described in the next section, that represent messages received by the agent.
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• state - Holds a String describing the current state of the agent. In this implementa-

tion, this property only supports three values: SETUP, RUNNING and END.

• agentDescription - References instances of the AgentDescription class. These in-

stances represent neighbour agents.

• processLog - References instances of the ProcessLog class, which contain the logs of

the executed processes.

6.1.3.2 ACLMessage

In order to give this system some compatibility with the JADE framework, this class was

created to contain the descriptions of the ACL messages. This class allows the agents

to insert the descriptions of the exchanged messages in their KB in order to be able to

execute queries about them as with any other description they may contain. Therefore, the

properties of this class mimic the properties of its sister class in JADE:

• content - This property references the main instance of the content of a given mes-

sage. Since a message can be sent using any class, this property supports all the

possible classes.

• convID - A String holding the conversation identification of the message, useful for

identifying messages within exchanges using the same protocol.

• performative - An integer that represents the performative of the message. In

JADE, performatives are what distinguish the message types. As examples, perfor-

matives may state that a certain message is of the Request or of the Inform types.

• protocol - A String representing the name of the protocol the message belongs to.

Protocols may be FIPA Interaction Protocols or any other protocol the designer may

decide to use.

• receiver - The String representation of the AID of the receiver of the message, which

is useful when compiling a certain message to be sent.

• sender - The String representation of the AID of the sender of the message, which

allows the receiver to respond to messages.
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6.1.3.3 ProcessLog

An useful feature of the agents in this system is keeping logs of the processes that were exe-

cuted, as well as which nodes were activated during the respective execution. A ProcessLog

instance keeps these logs by filling the properties below:

• activatedNode - References an instance of a node that was activated during the

execution of the process.

• logDate - Holds the date of execution of the process, allowing the designer to know

exactly when a given instance of a process was created.

• elapsedTime - A long containing the total milliseconds the process took to finish

execution.

• loggedProcess - References the instance of the logged process.

6.1.3.4 AgentDescription

Agents need to have short descriptions of the other agents in the network in order to be able

to query or alter their KBs. The currently needed information is stored in the following

properties:

• aid - A String containing the text representation of the AID of the remote agent, so

that agents are able to send queries between them using the JADE messaging system.

• agent - References the instance of the Agent class of the remote agent, which helps

identifying the remote agent in queries.

• agentDesciptor - References the main instance of the description of the remote

agent. This is just an utility reference to make queries easier and smaller.

6.1.4 Communication Ontology

Communication between agents may be performed using OWL instead of the built-in on-

tology format of JADE. With this in mind, an ontological specification was created for

the communications. This ontology is used for direct communication between the agents
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and specifies the actions or other information the agents may share in their message ex-

changes. This ontology imports the agent ontology to be aware of its concepts during mes-

sage exchange and its URI is http://www.fct.unl.pt/ontologies/eas-comm-ontology.owl. In

Figure 6.6 an UML class diagram is displayed for better comprehension.

Figure 6.6: The communication ontology class diagram, which contains the default
classes for agent communication in this system.

As with the previous diagrams, classes from imported ontologies were placed in this

diagram for better comprehension of the relationships between the concepts.

6.1.4.1 Message

This is the base class for all the classes in the message ontology. All other classes in the

communication domain that represent communicative acts, are subclasses of Message.

6.1.4.2 ProcessAgentSubscription

A message containing an instance of this class is intended to create a subscription in the

target Process Agent to get details about its ontology.
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6.1.4.3 ProcessAgentDetails

When a Process Agent receives a subscription message, the agent sends its details, using

instances of this class. It may contain the full ontology of the agent in a textual form

or simple SPARQL/Update queries with the latest updates in the KB of the agent. An

instance of this class may have two properties:

• ontologyDetails - References an instance of the OntologyDetails class, which con-

tains the full textual description of the ontology in the agent.

• ontologyUpdate - References the instance of a SPARQLQuery containing the latest

KB updates of the agent.

6.1.4.4 OntologyDetails

An instance of this class contains the full text description of an ontology as well as the

corresponding URI. This is useful for agents to send their full KB contents to other agents.

This class has two properties:

• ontologyText - A String with the full text description of a given ontology.

• ontologyURI - A String with the URI of the described ontology.

6.1.4.5 ExecuteProcess

Process Agents can be requested to execute a given process. When this is the case the

initiator agent must send a message with an instance of this class. Three properties were

defined for an instance of the class ExecuteProcess:

• execute - References the instance of the process to execute, since Process Agents

need to search correct process to execute it.

• inParam - References the Parameter instances with the correct values the process

has as inputs.

• outParam - After the process is executed and if it returns any parameters, the values

of these are put in this property when the information message is sent.
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• error - Processes may finish their execution with errors. If that is the case, these

must be sent to the requester agent in order for it to analyse them. This property

makes sure that the proper errors are referenced in the message.

6.1.4.6 UnloadProcessAgent

When a Process Agent receives a request containing an instance of this class, it should

perform a clean shut down, by finishing execution of all the processes and checking if there

are any final processes to execute.

6.1.4.7 KillProcessAgent

A Process Agent can be requested to terminate its execution immediately without further

checks. An instance of this class in a request makes sure of this.

6.1.4.8 GetProcessDetails

Processes, whenever executed, store the execution information in a private KB inside the

Process Agent, apart from the other KBs. This is why the Monitor Agent does not have

direct access to this information and has to explicitly make a request to retrieve it. When

the Monitor Agent needs to get the details of a specific logged process execution, it sends

a message containing an instance of this class. Two properties were defined for the class

GetProcessDetails:

• process - Specifies from which process the logged execution should be retrieved. This

property is used for faster search inside the Process Agents.

• processLog - References the instance of the process log of the previously specified

process. This log should be searched within the specified process by the receiving

agent.

6.1.4.9 ProcessDetails

When a Process Agent receives a request from another agent to get the private details of a

specific execution, it bundles that information in an instance of this class and then sends

it in the reply message. For the ProcessDetails two properties were specified to store the

information:

82



CHAPTER 6. IMPLEMENTATION OF THE SYSTEM

• processLog - References the instance of the process log of whose details are being

sent. This is for the receiver to know how to process the requested information.

• ontologyText - Contains a String with the textual description of the ontology con-

tained in the requested log. This description contains all the information stored

during a specific execution of a process.

6.2 The Implemented MAS

In Chapter 4 it was explained that the generic MAS is composed of two types of agents:

the Process Agent and the Monitor Agent. These agents were implemented using JADE,

while their KBs were programmed using Jena ontology models. Both of these technologies

were already explained in Chapter 3.

Messages in this system are exchanged in OWL, SPARQL or SPARQL/Update lan-

guages. In all of the cases, the chosen approach was similar to the one already used in a

project called Agent OWL, in which several agents exchange messages in String format using

these languages [Laclavık et al., 2006]. As described in Section 3.1.3, FIPA-ACL messages

have certain useful parameters that may be filled in a message so that the receiving agent

may understand its contents and, among these is the language parameter. For agents to

correctly act according to the received message, the language parameter must be filled with

the correct language used in the content (OWL, SPARQL or SPARQL/Update). If not, the

message is discarded.

Normally, a SPARQL message is a query to the KB inside an agent, which will

require a response containing the results, depending on the operation specified. SPARQL

operations were already covered in Section 3.2.3. This behaviour is ideal for the FIPA Query

Interaction Protocol.

A SPARQL/Update message implies an update to the KB inside a given agent. In

this system these messages also use the FIPA Query Interaction Protocol, although the

response message has no content. It only states whether the update was successful or not.

The update not being successful, might mean that the query has an incorrect syntax.

Consequently, queries in SPARQL or SPARQL/Update are sent between agents in

the ACL message format shown in Listing 6.1.
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Listing 6.1: An example of an ACL message containing a SPARQL query. In this

example, the language property is set to SPARQL and the query is located in the

content of the message.

(QUERY−REF
: sender ( agent− i d e n t i f i e r : name agent1@10 . 176 . 2 33 . 1 82 : 1 099/JADE

: addre s s e s ( sequence http :// example . com:7778/ acc ) )

: r e c e i v e r ( s e t ( agent− i d e n t i f i e r : name agent2@10 . 176 . 233 . 1 82 : 1 099/JADE ) )

: language SPARQL

: p ro to co l Process−Execution

: conversat ion−id ID 17970505 3835313490176

: content

SELECT ? s

WHERE

{
? s <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type>

<http ://www. f c t . unl . pt/ on t o l o g i e s / eas−system−onto logy . owl#Unit> .

}
)

Messages in OWL are a special case. This language is used for agents to trade in-

formation that has to be analysed and acted upon. While SPARQL and SPARQL/Update

messages are merely orders to be directly used inside a KB, OWL messages must be inter-

preted. As far as the system knows, messages in this language are only small fragments of

KBs that are being exchanged between agents. In technical terms, to send a message, the

agents create a new, independent KB, via a Jena ontology model, and convert it to String,

much like in Agent OWL. The implementation of this method can be seen in Listing 6.2.

Listing 6.2: Java code to convert Jena ontology models to String. In this listing, the

method receives a model, whose contents are written to a String.

pub l i c s t a t i c S t r ing modelToString (Model model )

{
Str ingWri te r wr i t e r = new Str ingWri te r ( ) ;

model . wr i t e ( wr i te r , ”RDF/XML−ABBREV” ) ;

r e turn wr i t e r . t oS t r i ng ( ) ;

}

When received, messages need to be converted back to a Jena ontology model for an

agent to be able to analyse it and do whatever it needs to do with it. The code for this

conversion can be seen in Listing 6.3.
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Listing 6.3: Java code to convert ontology String representations to Jena ontology

models. This method receives a String containing an ontology and parses it to a new

Jena model.

pub l i c s t a t i c Model stringToModel ( S t r ing text )

{
Str ingReader reader = new Str ingReader ( t ex t ) ;

Model model = ModelFactory . createDefau l tMode l ( ) ;

model . read ( reader , nu l l ) ;

r eader . c l o s e ( ) ;

r e turn model ;

}

Messages in OWL are composed of a main instance, which contains the core informa-

tion of their purpose. For example, a message that orders an agent to kill itself, contains a

main instance of the class KillProcessAgent. But this main instance may refer to other in-

stances contained inside the message and so on, which, adding to the fact that neither JADE

nor Jena have a way of determining which instance is the main instance in the contents of

any given message, creates a problem in analysing the message.

As described in Section 3.1.3, the FIPA-ACL standard provides a way of adding user-

defined parameters to the ACL messages. To cope with the problem of searching for the

main instances of a message, two new parameters were defined for any exchange of messages

in the OWL language:

• X-MAIN - Contains the URI of the main instance in the contents of a message.

This is how usually an agent finds this instance in order to know what the subject of

the message is.

• X-TYPE - Contains the URI of the type of the main instance of the message. This

field was not required for agents to analyse a message but adds to the performance.

If this field is wrong or points to a wrong ontological class, the message may be

discarded without having to convert it to a Jena ontology model.

In the current system, unless the message is sent in the SPARQL language, the de-

scribed fields are obligatory. This way agents may search for the main instance inside a

message to get the needed information. An example of and ACL message with the content

in OWL is shown in Listing 6.4.

85



CHAPTER 6. IMPLEMENTATION OF THE SYSTEM

Listing 6.4: An example of an ACL message containing an OWL content. One should

not how the parameters X-MAIN and X-TYPE point to the main instance and its

respective type.

(REQUEST

: s ende r ( agent− i d e n t i f i e r :name agent1@10 . 1 76 . 2 33 . 1 82 :1099 /JADE

: add r e s s e s ( sequence h t tp : // example . com:7778/ acc ) )

: r e c e i v e r ( s e t ( agent− i d e n t i f i e r :name agent2@10 . 1 76 . 2 33 . 1 82 :1099 /JADE ) )

: l anguage OWL

:p r o t o c o l Process−Execution

: conve r sa t i on−id ID 17970505 3835313490176

:X−MAIN ht tp : // example/ agent1 . owl#execute

:X−TYPE ht tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−comm−onto logy . owl#ExecuteProcess

: c on t en t

<rdf:RDF

xmlns :proc=” ht tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−process−onto logy . owl#”

xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns:owl=” ht tp : //www.w3 . org /2002/07/ owl#”

xmlns:comm=” ht tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−comm−onto logy . owl#”>

<comm:ExecuteProcess rd f : abou t=” ht tp : // ex/ agent1 . owl#execute ”>

<comm:execute>

<proc :P roc e s s rd f : abou t=” ht tp : // ex/ agent2 . owl#agent2 proc ”/>

</comm:execute>

</comm:ExecuteProcess>

</rdf:RDF>

)

One might have noticed that the name in the protocol field is neither one of the already

discussed FIPA protocols in both Listing 6.1 and Listing 6.4. To provide extension to the

system, every exchange of messages already pre-defined, like a process execution request,

contains the Process-Execution name in the protocol field. This allows the users to use the

correct names for FIPA Interaction Protocols if needed.

6.2.1 The Process Agent

In the JADE framework, all the agent implementations must extend the generic class Agent.

In the context of this work, an intermediate class was created, OntAgent, which extends

Agent. This class provides generic methods for printing identified messages in the console,

registering the agent in the JADE DF and loading ontologies in OWL by means of the

Jena framework. The Process Agent is an extension of OntAgent, inheriting all its basic

functionalities and adding a process engine as well as other utility methods.
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A Process Agent must be initialized with three specific arguments or it will shut itself

down before performing any other action:

• The path of the file containing the ontological description the agent needs to load to

its KB. This file must contain both the description of the entity the agent represents

and the definitions of the processes it executes.

• The URI of the loaded ontology. This is needed because Jena uses it to create several

enhancements in the KB for enhanced writing of the ontology.

• The URI of the Agent class instance the agent has to represent in order for the it to

gain an identity of its own.

During the initialization the agent goes through the steps described in Figure 6.7

before it can be fully functional. In some of these steps, if they fail, the agent will shut

itself down.

Figure 6.7: The initiation of the Process Agent. This UML state diagram shows all
the steps the Process Agent goes through in order to initiate.
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There are two types of finalization the Process Agent can execute upon itself when

requested. The first type is a clean finalization, where the agent still finalizes its process

engine in order to properly finish process execution and is shown in Figure 6.8. The second

type bypasses the engine finalization and simply takes the agent down.

Figure 6.8: The finalization of the Process Agent. The steps shown in this UML state
diagram are executes whenever the Process Agent performs a clean shut down.

In Section 4.1 it was mentioned that Process Agents could access each others KB in

order to share knowledge. To make this possible, a Process Agent is equipped with two

Jena ontology models: one is used for the agent to keep his own ontology in and the other to

make possible the querying external ontologies as if it was the agent’s own ontology. Also,

each agent has what was called of a Proxy Agent, which is a mirror agent that contains

exactly the same ontology as the original Process Agent. This Proxy Agent is updated

whenever the corresponding Process Agent is updated. These are the base assumptions to

get the agents to share their ontologies with the community.

When a Process Agent becomes active, it registers itself in the default JADE DF

agent, putting the following information in the registration entry:

• The URI of the Agent class. This is the identity of the agent, which was passed as

an argument at the beginning its initialization.

• The URI of the corresponding agent description, defined by the isDescribedBy prop-

erty. This identifies what entity is defining the agent.

• The URI of the ontology the agent has just loaded. The ontology the agent loaded is

its own domain, so this informs the other agents who is taking care of what.

Agents also subscribe to the default DF service allowing them to receive a message

whenever an agent has registered itself in it. So, whenever a new registration message

arrives, the agents store the previously described details in their own KB by means of an

instance of AgentDescription. They also create a new ontology model and add it as a sub

model of the shared ontology model as can be seen in Figure 6.9.

The ontology models for each of the external agents contain a graph created by the

author, which will not contain any information stored inside. Instead, these graphs route
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Figure 6.9: The shared model tree. This tree shows that a shared model exists
containing a sub-model for each of the other agents in the network. Whenever an
operation is made one of the models, the external graph routes it to the corresponding
agent.

the queries and assertions to the corresponding agent, which will perform them in its default

KB model. This way the agents do not need to store the full KB information of the external

agents, while remaining able to query them as if querying one of their own KBs.

The above explanation still does not explain the reason for Proxy Agents. When

querying external KBs, the agents had to do so without recurring to behaviours, since the

Jena framework is not prepared to work directly with the JADE framework. Due to this

fact, while a Process Agent was querying another agent, its current thread of execution

would be blocked until the query was completed. It was already referred in Section 3.1.4

that JADE agents have only a single thread of execution. The problem with this approach

was that, if two agents queried each other at the same time, both would be blocked, which

meant that no one would respond to the query rendering both agents useless. To resolve

this conflict, the agents, instead of querying each other, they query their corresponding

Proxy Agents which will never be blocked. This workaround was the same as having two

threads running in the same agent but, since the JADE framework is not directly prepared

to handle two threads receiving and sending messages from the same agent, the Proxy
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Agent solution was used. A two-thread solution would be viable if the JADE framework

was extended for that purpose, which would consume much programming time and certain

architectural changes in the current system. As for assertions to the KB in the agents, there

is no problem if they are directly made in the Process Agent instead of the Proxy Agent. In

Figure 6.10 the interactions between the Process Agents and the Proxy Agents are shown.

Figure 6.10: Interactions between Process Agents and Proxy Agents. The Process
Agents constantly update their corresponding Proxy Agents so that queries the queries
always return updated values. Assertions are made directly in the Process Agents.

The configuration described above, plus the ability of Jena to create common model

stores to query models for information, allows the agent to query external agents transpar-

ently as if it is querying its own KB. Which simplifies the work and keeps all the ontological

descriptions in the system coherent, since updates in a certain domain may only be done in

the corresponding agent.

As for active behaviours, the Process Agent has one that is always listening for re-

quests, whether they are to execute a process or to shut the agent down. Another behaviour

listens for subscriptions for the ontological information in the agent and sends an informa-

tion message whenever its description has been altered. The Process Agent is also equipped

with a behaviour that receives any type of messages and inserts them in its KB, by creating

and filling an instance of the ACLMessage ontology class.

As for the process engine, since it is one of the main objectives of this work, is

described in Section 6.3.
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6.2.2 The Monitor Agent

The Monitor Agent serves as a generic GUI so that the designer may monitor and analyse

the operating Process Agents and the data they contain. Although the Process Agent can

be activated independently, the Monitor Agent allows for the user to create agents and

attach them to the corresponding ontologies.

Figure 6.11 shows the basic set-up of the GUI associated to the Monitor Agent,

containing several useful features do diagnose the system.

Figure 6.11: The GUI associated to the Monitor Agent. This image also shows the
Details tab, which provides details related to the ontologies contained in the selected
Process Agent.

In the figure, to the left a list of active Process Agents can be seen. This agent has

a subscription in the DF agent that informs it whenever a Process Agent was activated or

deactivated. In the center several tabs show information about the currently selected agent.

To get this information from the agents, the Monitor Agent subscribes to them to get their

full ontologies and get updates whenever these ontologies are modified. On the top, a menu

bar provides several options for the user to interact with the system.

Also, the figure shows one of the informational tabs this agent offers. This tab shows

the details about a given instance in the ontology of the selected agent, by inserting all its

statements in a table for easier reading. This tab also allows to search for an instance to

get the details from or directly selecting it using a drop-down list.

If the table view is not enough to analyse the ontologies, their a textual representations

can be accessed using the Ontology tab. See Figure 6.12.
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Figure 6.12: The Ontology tab. This tab provides a textual representation of an
ontology.

As was previously mentioned, the primary role of Process Agents is managing and

executing processes. Therefore, this agent also provides a way to monitor the loaded and

executed processes of a Process Agent. This monitoring is done in the Processes tab of the

GUI, shown in Figure 6.13.

Figure 6.13: The Processes tab. This tab provides details about processes contained
in Process Agent. It also shows which nodes were activated upon execution.

The tab in the figure shows the details of the processes the selected agent contains. On

the left side, there is a tree that shows the loaded processes as well as their logged executions

ordered by date. When any of these items in the tree is selected, the corresponding process
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graph is shown in the center of the tab. If a log was selected, the graph will highlight the

activated nodes during the logged execution. Below, there is a Get Details button that,

when clicked, will request the selected agent for details of the logged execution, which will,

in turn, be shown in a new dialog. These details consist on the contents of the private KB

of the executed process. This private KB will be discussed in Section 6.3.

The GUI in the Monitor Agent also contains a menu bar that allows the user to

perform certain operations in the system. This menu bar contains the two menus shown in

Figure 6.14.

(a) Agent Menu. (b) Actions Menu.

Figure 6.14: The menus in the GUI of the Monitor Agent.

This agent is able to load, unload or kill Process Agents. All three actions can be

achieved by accessing the Agent menu in the bar, whose details are shown in Figure 6.14a.

When loading an agent, a dialog to choose a file will appear. The user may then

choose the .properties file that refers to the information needed to create the new Process

Agent. This file contains contains four fields, three of which are used as the initial arguments

to initiate the agent. These fields are:

• agent.name - The name that will be given to the newly created agent. This name

will appear in the agent’s AID.

• agent.ontology.uri - The URI of the ontology the agent needs to load. This field is

used by the Process Agent to bind it with the loaded ontology.

• agent.ontology.file - The path to the file containing the ontology in OWL format.

The Process Agent will open and load this file into its KB.

• agent.ontology.main - The URI of the instance of the Agent class that ontologically

represents the Process Agent to load. As previously stated, this is used by the agent

to gain an identity of its own.
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When the file is read, the Monitor Agent gets the above mentioned data and uses it

to initialize the Process Agent by filling its initial arguments, as described in the previous

section.

To unload or kill an agent, the user simply has to click on the corresponding menu

item and the action will be performed on the selected agent. Unloading the agent performs

a clean finalization on it, while killing agent will simply take it down, as described in the

previous section.

The menu bar in the GUI also has an Actions menu, shown in Figure 6.14b, which pro-

vides two more options that allow the user to send messages to the selected Process Agent.

The Send SPARQL/Update Message option allows the sending of a SPARQL/Update mes-

sage to the selected agent in order to update its KB. When this item is clicked, a dialog is

opened, containing the SPARQL/Update editor shown in Figure 6.15. This editor provides

an easy-to-use interface to edit and search SPARQL terms. When the user has finished

editing the message and clicks the Send button, the update is sent to the selected agent

and performed in its KB.

Figure 6.15: The SPARQL editor in the Monitor Agent. This editor provides a tree
to search for classes and instances (upper left), a list to search for properties (lower
left) and a text area to edit the update. Clicking twice on the classes, instances or
properties will make them appear in the text area. It also provides validation of the
syntax used in the update, as well as the option to load it from an external file.
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The Actions menu also has the Send OWL Message item, which allows the user to send

a pure OWL message to the selected Process Agent. When this item is clicked, the dialog

in Figure 6.16 is shown, where the user is prompted to select a pre-created file containing

the ontological description of the message contents, select the message performative and

the message protocol. When the Send button is clicked, the message is sent to the selected

Process Agent.

Figure 6.16: The OWL message chooser in the Monitor Agent. This dialog allows the
user to load the contents of the message and choose its main individual, performative
and protocol.

The described agent proved very useful for managing and monitoring Process Agents.

Since it contains the complete descriptions of each ontology in the system, debugging and

error control was much easier during the implementation of the proposed system. It also

quickened the process of loading and shutting down agents in the system.

6.3 The Process Engine

The work for this thesis was mostly implemented by means of processes. Chapter 5 described

the theory behind the current process implementation and the resulting OWL class ontology

of this theory was detailed in Section 6.1.2. In this section the actual implementation is

described and how it was integrated with JADE and Jena.

The engine is responsible for loading, managing and executing processes inside a

Process Agent. It loads the process definitions from an ontology file and converts them to

executable objects within the agent. In Figure 6.17 a detailed depiction on how the engine

works is shown.

When the ontology is loaded from the file chosen for the current Process Agent, the

engine reads all the descriptions of the processes associated to the actor represented by the

agent. All those descriptions are converted to Java description instances and stored in the
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Figure 6.17: The conversion of a process described in OWL to JADE behaviours.
This image shows how a file containing an OWL description of processes is parsed into
the process manager, in the engine, and then instantiated to behaviours at run-time.

process manager instance of the agent. This conversion to instances in Java was devised for

performance issues: When a request comes to execute a certain process, its faster to read

its description from an instance in Java than to read it directly from the KB. The manager

will then hold all the descriptions of the processes, which, in turn, contain the descriptions

of the nodes associated to them, mirroring what was already described in the loaded OWL

ontology file.

After parsing the ontology and having all the processes in memory, the manager is

then able to receive requests for execution of its contained processes. If such a request

comes, the manager checks if it contains the required process and if the correct inputs are

filled. If that is the case, it instantiates the corresponding JADE behaviour, which will

instantiate the needed node behaviours during execution, as needed.

In Section 3.1.4, it was stated that JADE models all of its tasks as behaviours. These

were ideal for the implementation of processes, since their modelling is node-like, as is the

process model in this work. Therefore, each process, flow control or activity is represented

as a JADE behaviour.

96



CHAPTER 6. IMPLEMENTATION OF THE SYSTEM

One may have noticed that the transitions changed from the process ontological de-

scription to the process behaviour. This is because all the transitions are checked directly

by the flow control behaviour containing them, that is, during execution, whenever a node

has finished its own execution, the parent flow control will make a check for the transition

from it to the next node.

Processes have a temporary memory which is only active in run-time. After the

execution of a given process, there is no use to have it occupying space in the KB of the

agents. Therefore, for easy removal, each process has its own KB, which imports the KB

of the base agent. Activities need also private KBs as they may need to store temporary

values in it, like their inputs, which are only valid during their execution. The private KB

of an activity imports the KB of the corresponding process. In Figure 6.18 a KB tree can

be seen, explaining all the imports.

Figure 6.18: The KB tree inside a process engine. Below there is the agent KB. The
processes import this KB. On the top level the activities contained in a given process
import its KB.

As can be seen in the tree in the figure, the processes have access to the values in

the agent’s ontology, while the activities have access to the process’ and agent’s ontologies.

This way, when a process behaviour finishes its execution, its KB is removed from the tree

along with the KBs of its activities. For logging purposes, the contents of that KB are

stored in the corresponding execution log for a user to be able to debug the agent.
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No activities were implemented directly in the engine. As was stated both in Chap-

ter 5 and Section 6.1.2, the defined models for activities are only templates that should

be sub-classed for implementations. In the current system all the activities used were im-

plemented in external libraries and described in external ontological files. The framework

provides abstract Java classes that should be extended to implement activities: RActiv-

ityOneShot, RActivityRequestInitiator and RActivitySimple. These classes were created

to mimic the OneShotBehaviour, AchieveREInitiator and SimpleBehaviour, respectively, of

JADE [Bellifemine et al., 2010], while maintainig compatibility with the process framework.

An example of an activity implementation is shown in Listing 6.5.

Listing 6.5: Template to implement an activity. This template may be used to

implement a RActivityOneShot. All the code within the activity should be placed

inside the action method.

pub l i c c l a s s MyActivity extends RActivityOneShot

{

pub l i c MyActivity ( ProcessAgent agent , RProcessBehaviour p roce s s

, OActivity oAct iv i ty )

{
super ( agent , process , oAct iv i ty ) ;

}

@Override

pub l i c void ac t i on ( )

{
// Act iv i ty implementation .

}
}

When all the activities are implemented, by creating subclasses of the provided tem-

plates and filling the needed methods, and their respective libraries are generated, the

config/config.properties file in the agent’s root directory, needs to be edited to point to the

location of the newly created .jar files.

Designers have also to create the ontological descriptions of the new activities. To

do this, they need to import the process ontology, create a subclass of the Activity class

and provide the necessary properties, as seen in Figure 6.19. The created ontology with

all the activities has, then, to be imported by the ontology the designer wished to create

the activity instance in. For example, if the activity is used in a given ontology of a

manufacturing module, it needs to be imported into that ontology.
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Figure 6.19: A new activity as a subclass of the Activity class. This image was taken
from the Protégé editor.

When all of the above steps are complete, the next Process Agent that is instantiated

will dynamically load the custom activities and be instantaneously able to execute them

without any kind of reprogramming. A set of default activities was created for the current

implementation which will be described in Appendix A.

For a better understanding of process configuration and execution, in Appendix C

the creation of a simple example process is explained.

6.4 The Process Editor

Even though the processes in this work have a well-defined model for implementation, along

with many features to simplify their creation, using a normal OWL editor like Protégé would

render process creation very complex. Process creation generates rather large ontologies that

might easily confuse a designer. For this reason, a GUI was created to allow the designer to

create processes for agents using the previously described specification. This editor manages

processes in a single ontology and is similar to most of the existing software in the market,

so its use is easy to master.

The designer may create new process ontologies or alter existing ones. The processes

are shown in a tree on the top left corner of the interface. In the bottom-left corner, the

available activities are shown and the user may drag them to the selected process in the

center of the frame. The main window of this editor can be seen in Figure 6.20.
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Figure 6.20: The main window of the Process Editor.

This editor also supports viewing the textual representation of the ontologies and

each process, activity, flow control or transition can be configured via dialogs provided by

it. A SPARQL editor, identical to the one shown in Section 6.2.2, was also implemented in

this tool to ease the creation of queries.

Even though this editor was only designed to create processes, the OWL file gener-

ated by it may be later edited using external tools, like Protégé, to complete ontological

definitions. There is no problem whatsoever of loading the edited file again by this program.

It is even recommended to do so, in order to add more terms to use in the SPARQL editor.

Just like in the process engine, new activities can be dynamically added by loading

a .jar and an ontology file with their description. The process of creating new libraries for

the editor slightly different, since the new library will not have the actual implementation

of the activities. Instead it will contain the implementation of the configuration panel of

the activity to use in the editor. It will do basically the same as the process engine to load

external activities. It also has a configuration file in its root directory in which the user may

insert the path to the .jar file of the library. An example of an activity implementation is

shown in Listing 6.6.
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Listing 6.6: Template to implement an activity in the editor. The method delete is

invoked when the activity is removed from the process and where the code to remove

the correct properties from the ontology should be. The method getConfigurationDialog

must return a dialog programmed to correctly configure the activity.

pub l i c c l a s s MyActivity extends Act i v i ty

{

pub l i c MyActivity ( Proces sEd i to r ed i to r , NProcess p roce s s

, I nd i v i dua l node )

{
super ( ed i to r , process , node ) ;

}

@Override

pub l i c void d e l e t e ( )

{
//When an a c t i v i t y i s de l e t ed from a process ,

// t h i s method i s c a l l e d .

//A de s i gne r may ove r r i d e i t f o r a more complex d e l e t i o n .

}

@Override

pub l i c ComponentDialog ge tCon f i gura t i onDia l og ( )

{
//This method should re turn a user−c rea ted c on f i gu r a t i on

// d i a l o g f o r the a c t i v i t y .

}
}

For further explanation on this subject, Appendix C, as well as exemplifying a process

creation, also demonstrates some of the features of the Process Editor, like the SPARQL

editor dialog.

6.5 EPS System Implementation

The described MAS was used to implement a simple control structure based in process

execution in the scope of EPS, which was already described in Chapter 4. This system

was implemented using the MOFA France kit components serving as a basis for all the

manufacturing modules. It is generally used for testing implementations of projects in the

manufacturing area. An image of this kit is can be seen in Figure 6.21, showing conveyor

belts, drillers, a crane and a buffer, along with other modules.
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Figure 6.21: The MOFA France kit, deployed in its default configuration for simula-
tion purposes. This kit provides several test components, like conveyor belts, cranes,
machine tools, buffers or machine tables.

Rather than using the actual kit, a simulator based on its components was created.

The reason for this was to simulate module repositioning to achieve evolvability in the

system. Although the current implementation was created to work with the simulator, it

can easily be reconfigured to become compatible with the physical kit: one simply has to

edit the activities responsible for interfacing with the simulator to interface with the actual

kit. The mentioned simulator is described in Section 6.5.5.

To emulate driver reading and writing, two custom activities for this purpose were

created specifically for this system. These activities, instead of sending messages to the

actual drivers of the kit, are programmed to send ACL messages to the simulator using

the FIPA Request Interaction protocol. Contrary to all the other messages in the system,

these do not use ontologies. They use simple commands in String format for simplicity

purposes. The most commonly used requests are to write to the drivers, which send orders

to a given component in the simulator, and read from the drivers, which query a component

for information about sensors and positions. Both of these interactions are shown in the

UML sequence diagrams in Figure 6.22.
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(a) The write request. (b) The read request.

Figure 6.22: The requests to exchange information with the simulator. Messages are
exchanged using the FIPA Request Interaction Protocol.

Another topic to consider is, even though the system supports user-defined message

exchange, all the interactions between the modules were implemented only by external

process invocation. In other words, whenever a module needs to send information in order

for another module to process it, it invokes the corresponding process, which was already

shown in Section 4.2.

Several generic processes were implemented which are common to most of the modules.

Even though their implementation may vary from module to module, the objective is the

same. These processes are shown in Table 6.1.

Table 6.1: Common processes to all the modules.

Process Description

Add neighbour
Adds a neighbour module to the list of neighbours. Neigh-
bour modules may perform skills together.

Remove neighbour
Removes a neighbour module from the list of neighbours.
All interactions with this neighbour will cease.

Deploy module
Deploys the module in a given coordinate of the shop floor,
allowing it to find new neighbours.

Undeploy module
Undeploys the module from its current position in the shop
floor, removing all its previous neighbours.

103



CHAPTER 6. IMPLEMENTATION OF THE SYSTEM

Neighbour-related processes are only implemented by material handling modules. In

the current implementation, modules that may provide product transporting or storing,

need to be aware of neighbours with whom they may interact in order to handle the products.

Neighbour search occurs upon deployment, when modules become aware of their position

in the shop floor. When a module is deployed, it searches for modules whose positions are

compatible with the execution of transporting, storing or feeding skills. If that is the case

the module invokes the Add Neighbour of the new neighbour and that fact is asserted in each

others KB. A generic deployment process involving two modules is shown in Figure 6.23.

Note that in some modules this process might be a little different.

Figure 6.23: A generic deployment process. The deployed module searches for neigh-
bours and, when one is found, it invokes the other module’s Add Neighbour process.

In the same figure, the process in which the other module adds the current module as

a neighbour when it is requested, can also be seen. When both the processes are finished,

all the modules should have asserted the new neighbours in their KBs and are then ready

to perform skills together.

The undeployment of a module is the exact opposite of a deployment process: It

removes the module positioning in the shop floor and removes all the neighbours from its

KB, invoking their Remove Neighbour process so they may remove the module from their

own KB.
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All the modules described in the following sections have an ontological description

with the properties of the components they represent as well as the processes they need to

load. This description is loaded to a Process Agent that will be in charge of controlling the

module.

In order to accommodate new concepts related to manufacturing, a new ontology was

created for this particular system. More details on this ontology are provided in Appendix B.

6.5.1 Conveyor Implementation

The conveyor Process Agent implements the functionalities of a given conveyor belt in

the system. The MOFA France conveyors are equipped with a sensor, which is activated

whenever there is an object on them, and are able transfer products between other conveyors

of the same type. The skills considered for this agent are described in Table 6.2.

Table 6.2: The skills of the conveyor agent.

Skill Description

Transport
Transports a product from the conveyor to a neighbour con-
veyor or receives a product from the neighbour conveyor.

GetPosition
Gets an available position to insert a product in the con-
veyor. A conveyor only has one position where products
may be placed.

Feed
Causes the module to release its handling off a given product
and sets the conveyor position as free.

Store
Stores a given product in the conveyor, marking its position
as occupied.

Since conveyors are able of influencing the position of a given product, they are

considered material handlers. In the implemented system, the they may interact with the

crane and other conveyors to transport a product. This is achieved by conveyors adding

the nearby modules as neighbours.

A skill that is worthwhile describing is the one that allows conveyors to transport

products between themselves. It requires two conveyors to be executed: a source conveyor

and a target conveyor. Both of the conveyors need to be neighbours. An UML sequence

diagram representing this skill is shown in Figure 6.24.
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Figure 6.24: A diagram of the transportation skill in conveyors. This UML sequence
diagram shows how two conveyors transport a product between each other.

The transportation diagram shows how the skill works both for the source conveyor

as well as for the target conveyor. It involves also the skill used to get a position from the

conveyor in order to check its availability. If any of the processes fail, an error is asserted

into the KB of the agent.

6.5.2 Crane Implementation

This agent allows the control of a MOFA France crane. The crane may pick a product from

anywhere in the system, as long as it is able to reach it, and place it in another location.

The skill provided by the crane agent is shown in Table 6.3.

Table 6.3: The skills of the crane agent.

Skill Description

Pick and place
A sub-set of the transport skill. The crane uses this skill
when it comes for it to transport a product from one location
to another.
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A crane is a material handling module capable of transporting a product but may

not store it in its position, therefore the main skill of this agent is the pick and place skill.

It requires synchronization with the source target modules. An activity diagram depicting

the functioning of the skill can be seen in Figure 6.25.

Figure 6.25: A diagram of the transportation skill in cranes. The crane interacts
with both the source and target modules.

The source and target modules in the figure were kept generic in their functioning, as

their execution of the assigned tasks varies from module to module. It also shows that the

crane will invoke the Feed, Hold and GetPosition of other modules in order to transport a

product. If an error occurs during the execution, it is asserted in the KB for later recovery,

if needed.

As for neighbours, the crane will accept any module that possesses the needed skills

for a pick and place, whose position is contained inside its range of movement. It is worth

to note that conveyors next to a driller will not be able to become neighbours of the crane,

since the path to their position is blocked.
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6.5.3 Buffer Implementation

A buffer may store products in one of its available positions or feed products to the system

from one of the same positions. In the current system, the products processed inside a cell

start off inside the buffer and also end inside it. The skills supported by the buffer agent

are shown in Table 6.4.

Table 6.4: The skills of the buffer agent.

Skill Description

Feed Outputs a piece to the system.

Store Inputs a piece from the system.

GetPosition Gets an available position from the buffer.

Even though this module is not able of actively transporting products, it handles

products by keeping them in one of its positions. This way it influences such transport

operations with its Feed and Store skills, making it also a material handling unit.

Since the buffer has more than one position in which the products may be placed,

all of the skills inside this module have a more complex behaviour than the ones in the

conveyor, having to choose from one of the positions.

In the current configuration, the buffer is only able to add the crane as its neighbour

for skill cooperation, since it is the only module that can take a product out or put a product

in one of its positions.

6.5.4 Driller Implementation

The driller agent controls one of the machine tools in the MOFA France kit. The driller is

the only machine that actually performs some sort of transformation in the products. The

skill performed by this module is shown in Table 6.5.

Table 6.5: The skills of the driller agent.

Skill Description

Drill Drills a hole in a given product.
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The drilling skill of this agent is a simple skill where the machine simply moves towards

the product and rotates the driller. Being this a skill that influences the physical properties

of a product, this module is considered a transforming unit and not a material handling

unit, like the previously described modules.

Though it is not able to transport a product anywhere, all the transporters in the

system will work to transport a product towards it.

6.5.5 EPS Monitor Agent

In order to facilitate the deployment of the agents in the EPS system, the EPS Monitor

Agent was designed. It allows the designer to visually place all the other Modules in the

system in a physical place within the shop floor. This eases the testing of different layouts.

The main interface of this agent can be seen in Figure 6.26.

Figure 6.26: The EPS Monitor Agent GUI. It allows the user to drag modules into
the virtual shop floor and to create products for simulation purposes. The modules
show animations in accordance to the orders received.

This agent also behaves as a simulator for the deployed modules. When the modules

activate their drivers in order to execute certain skills, the GUI of this agent shows the

animations. The designer can test what happens to products fed to the system by adding

one to any of the material handling units. This visual representation of the system eased

the implementation of the other agents.
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As mentioned earlier, the implemented system does not communicate with the phys-

ical kit, because, with this agent, the user is able to put the modules anywhere and with

different rotations, which simulates the adding or removal of physical components of the

system as well as repositioning.

The need of an agent like this became clear when working together with the student

Nuno Pereira to create an EPS. Since the the author’s colleague was in charge of the

algorithm for repositioning and control of manufacturing cells and his work was independent

from the one in this thesis, a need arose to simulate the placement of modules, which was

incomplete at the time, as was also this implementation.

6.6 Testing Scenario

To validate the implemented system two testing scenarios were created by means of two

cells with different behaviours.

In the first scenario, a cell agent was configured with a single process that allowed

products to start in the buffer and be transported to a driller, where they were processed.

These products were then transported back to the buffer to be stored. Figure 6.27 shows

the used configuration.

Figure 6.27: The first testing scenario with the initial shop floor configuration. It
also shows the production process below.
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The created cell agent contained a series of references to the products and to the

modules contained in it. Whenever products were in their initial state, the cell invoked the

transportation skills of the correct modules to carry the products to the conveyor in front

of the driller. When the products were in place, the driller would be invoked by the cell to

perform its drilling skill. After the products were stored back in the buffer, the cell would

set their state to the final value.

This is the most static of both scenarios, although it allows a great degree of reconfig-

urability. When a module is added or removed from the system, or a different path has to be

chosen, the designer only has to correct the process of the cell to cope with this change. In

Figure 6.28 can be seen that, when the initial configuration was changed, the corresponding

process had to be adapted. Those adaptations are shown in red.

Figure 6.28: The first testing scenario with the shop floor configuration after a change.
It also includes the change in the production process below.

In the second testing scenario, the cell relies of a plan to perform the correct operations

on a product. For more information on the plans see Appendix B.

The plan contains the operations to be performed to the products, as well as infor-

mation about the path towards the place were such operations are to be performed. In

this scenario, any alteration to the plan does not require reconfiguration of the processes

executed by the cell so they may be executed at run-time. In Figure 6.29 the basic set-up

of the system is shown for this scenario.
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Figure 6.29: The second testing scenario, where cell execution is performed with the
aid of a plan.

Although this approach relies on more generic processes and, therefore, less freedom to

cope with certain specific issues of the system, it opens the way for dynamic reconfiguration

of the production process by means of algorithms to calculate paths whenever a disturbance

in the system occurs.

An important note that is worth referring is that, when creating both test scenarios,

no hard-coding was needed. It was only required to create new ontological configurations

for the different cells.

These actions were all accomplished using processes in all the different agents in the

system. Even though these were simple testing scenarios, the theory and implementations

backing them up were complex. The author considers that, as simple as this might be,

his objectives were achieved, by proving that an EPS could indeed be controlled using the

concept of BPM.
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Chapter 7

Conclusions and Future Work

During the previous chapters, it was proposed a new way of controlling manufacturing

components in a shop floor, resorting to a process-based MAS with support for ontological

descriptions and following the EPS paradigm. This culminated in an implementation of a

framework that was validated by two test scenarios.

This chapter concludes this document, summarizing the work done in this thesis and

discussing the results achieved. It also proposes future work in this area to cope with more

problems and extend the capabilities of the technologies here developed.

7.1 Conclusion

Recent works in the manufacturing area tend to rely more on distributed architectures and

ontological descriptions to control production and assembly systems. However, companies

also have different areas other than the shop floor, like marketing or product planning which

share applications so that they may become more agile by use of BPM.

In recent years, companies, whether large or small, have relied even more in BPM to

achieve inter-operability and easy reconfiguration of their processes, resulting in a growth of

demand for more and better BPMSs. Nevertheless, there are many areas within companies

still mostly ignored when applying this concept, whether its because current process-based

systems still only support higher-level activities or because actual implementations may

require more than simple adaptations. This is the case of the manufacturing shop floor,

where control architectures tend to be implemented using more traditional ways.
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Current research that applies BPM to a manufacturing context does so at a very high

level within the company, leaving out the machine control during the production process.

In this context, this work focused on a new approach that applies process execution and

analysis to the shop floor, as a supporting technology for an EPS. This merging of two

seemingly unrelated concepts was ideal to achieve easy reconfiguration, which is highly

stressed when discussing distributed manufacturing systems.

The idea of applying process execution within the shop floor environment became ap-

parent at a very early stage of this work when a way was needed to create skills within man-

ufacturing modules that might be easily reconfigured in order to keep the system generic. A

first approach was do define them as rules, using a rule engine, but this was discarded due

to the fact that it would require a great amount of rules to create a single skill, since they

are merely composed of if-then-else statements and have limited syntax for more complex

behaviours. Another approach was to use a separate scripting language to define them but

that would add complexity to skill creation when the objective was the exact opposite.

Finally, and after some research, the process-based approach was chosen, due to the fact

that it can generate complex behaviour in a simple way and is easily configurable.

Initially, the only intent was to generate the skills in modules using the BPM para-

digm, while keeping other interactions, like the additions of neighbours, hard-coded. But,

as the time passed and new developments were made, it was clear that it was viable to

spend an additional effort in creating a generic system solely based on process execution

and create all the interactions in the manufacturing context on top of that, by means of

configuration instead of coding.

The use of a MAS and ontologies as the lower level technologies of this system was

a decision that stood from the beginning, with the help of Professor José Barata and

Dr. Regina Frei. This would also allow the system to remain generic, being configured

through ontological descriptions, and cope with changes in a modular way, by only affecting

the correct agent. So, the objective was to create a BPM-based system on top of both

technologies to make the best of their advantages.

The EPS to control the manufacturing shop floor components was then created on

top of the process-based technology developed in this thesis, by using the advantages of

easy configuration. This system was very simple, when compared with actual implementa-

tions in previous researches. This was because a new approach was being validated, which

could be further developed in future works. The main focus in this thesis was having a
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manufacturing system working with a process-based MAS, and therefore, a great deal of

effort was applied in creating a process execution framework compatible with OWL and a

Multi-Agent platform, in this case, JADE.

During the implementation and validation of the proposed system, the modularity

provided by the use of a MAS proved priceless in terms of task assignment to specific

entities and a more localized configuration. When it came to adjust the system to work in

a certain way, most of the times, there was only need of configuring a single agent. Also,

the fact that agents possess well-defined communication protocols and languages provided

a solid basis for interactions within this system.

The use of ontological descriptions in OWL to represent a manufacturing system,

along with SPARQL to query KBs provides extensibility to the work of the designers. By

relying on ontological descriptions to map the current states of the system, instead of hard-

coding them, it was possible to easily handle complex changes in KBs. Therefore, equipment

may be dynamically added or removed to the system, processes may be changed or agent

behaviour may be modified by only affecting the ontological descriptions.

The BPM-based approach proved to ease the configuration of each manufacturing

module, by providing concepts for easy-to-use creation and diagnosis tools. Reconfigurabil-

ity reached a level where an agent could attain a completely different behaviour by resorting

only to the edition of a single ontological file containing its process definitions.

The test cases to the solution presented in this work proved that it was agile enough

to cope with changes in descriptions and manufacturing processes without the need to

completely reprogramming the agents. Therefore, the agility objectives previously proposed

in the beginning this thesis (Modularity, programming effort reduction, re-usability and self-

organization) were achieved. Another result worth mentioning is that, the fact that this was

a BPM-based approach, made it possible for the developed process model to be used in areas

other than manufacturing, allowing a company-wide communication between departments

to follow the whole production process.

Several months of research led up to this work, analysing and testing many different

approaches and technologies, some with more success than others. During this time, two

documents were co-written by the author detailing the research accomplished up to that

point. A technological report was created for the Birkbeck College in London and an

architecture was presented in the Industrial Electronics (ISIE), 2010 IEEE International

Symposium containing earlier versions of this work [Frei et al., 2009, Frei et al., 2010].
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7.2 Future Work

In this work, the system proposed is a simplified version of a system with BPM capabilities.

As stated before, there are other more powerful BPMSs in the market. As simple as it is,

this system provided a way to merge BPM with ontological descriptions in OWL and MASs

in JADE.

Further work with the core process engine could include extension to provide full

diagnosis for process execution. Processes could be debugged at execution-time so the

designer could see in real time the inputs and outputs of each activity. Also, benchmarks

and statistics could be gathered at run-time.

The implemented process engine is still very much data-driven: The designer has

to know a priori all the concepts related with its functioning in order to work with it.

The author proposes a new version, which is more event-driven, abstracting the data and

providing support for asynchronous messaging. Another addition to the engine could be the

use of policies to help boost process execution and creating safety rules within the system

without affecting the processes themselves.

The presented system already supports OWL and SPARQL and, to aid with these

technologies it is used the basic reasoner Jena provides. This reasoner is a relatively simple

one and with many limitations but it was the only option due to incompatibilities between

SPARQL/Update and other more powerful reasoners, like Pellet. These problems will even-

tually be fixed. The use of better reasoners would provide extra extensibility to this system,

since they would allow faster reasoning and the use of extra OWL-related technologies, like

Semantic Web Rule Language (SWRL), used to create rules in ontologies.

The implemented EPS was fairly simple because this work threaded in relatively new

grounds for manufacturing inside the shop floor. The author proposes a future imple-

mentation using more complex ontological descriptions and processes in order to make the

best of the concept of EPS. These descriptions could help coping with different problems

in the manufacturing context, like diagnosis, error recovery or Product Lifecycle Manage-

ment (PLM) [Sudarsan et al., 2005], just to state a few.
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Custom Activities

In previous chapters it was stated that the developed process engine did not contain any

default activities, although it could be provided with them by dynamically loading external

libraries. So, in order to have a fully functional system, there was a need to create several

base activities. This could prove both that this was a sufficiently agile system to control a

manufacturing shop floor and that it was fully extensible, even in its atomic actions.

This appendix describes the two libraries containing activities created specifically for

this work: The Default library and the EPS library. These libraries provided the base set

of activities that helped create all the processes in the presented architectures.

The Default library consists of general activities that might be used in processes

created for any area. This library includes generic activities such as printing or asserting

facts in the KB. These activities are listed in Table A.1. All these activities have their

implementation in a separated .jar file, which is imported by the system at run-time.

The other library was created to provide more activities directed to the context of

the implemented EPS architecture, such as driver-related operations. This library contains

activities that are more complex than the normal ones and involve more processing, like

Cartesian calculations. The activities in this library are listed in Table A.2.

The possibility to create this type of libraries proves the extensibility of the presented

system. If more activities were needed, they could be easily added via new ontological

descriptions coupled with libraries containing the actual implementations. Also, as is the

case in this work, several sets of activities may be created according to different domains

for easier understanding and configuration.
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Table A.1: The set of activities contained in the Default library.

Activity Description

Assert
Uses a SPARQL/Update query to assert new knowledge
in the KB.

Null
Does nothing. In many cases, a null activity is useful for
a designer to keep the process readable.

Print Receives a String as an input and prints it in the console.

ExecuteExternalProcess
Executes a process contained in a different actor, by us-
ing the default interaction protocol already discussed in
Section 4.1.1.

SetLocal Sets the value of a given local parameter.

SetOutput Sets the output value of the process this activity is in.

GenerateError
Generates an error in the output of the process this ac-
tivity is in. This is useful when the designer wants to
create customized errors.

SendACLMessage
Sends an ACL message with several parameters and
OWL content.

ReceiveACLMessage
Receives an ACL message, by comparing the input pa-
rameters as if they were templates.

GetSystemDate Gets the current system date.

Table A.2: The set of activities contained in the EPS library.

Activity Description

DriverRead
Sends a request to the simulator in order to receive data
about a given module.

DriverWrite
Sends a request to the simulator containing orders for a
given module to perform.

ConvertCoordinates
Gets the new coordinates of a given point, by translating
it by a certain distance and/or rotating it by a certain
angle.
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EPS Ontology

Besides the ontologies already defined for the generic process-based system, there was need

of configuring it to control a set of manufacturing components. To do so, they had to contain

and understand manufacturing-related concepts. This way, an ontology was created that

provided EPS-related concepts for modules to have a common language. The several classes

and properties of this ontology is detailed in this appendix. One must understand that, if

this explanation were to be done within the core chapters of this thesis, it would become

rather bulky and long.

In Chapter 4, several concepts were described in order to create an agile and self-

organizable manufacturing system, taking advantage of the EPS paradigm. The ontology

here presented was describe these concepts. This ontology imports the already described

process ontology to provide extra concepts and to not have to define them all over again.

Here, relationships between manufacturing resources, skills and products are defined. The

URI for this ontology is http://www.fct.unl.pt/ontologies/eas-system-ontology.owl.

This is the most complex description in the entire system, so, for readability purposes,

the UML diagrams were divided into three categories (equipment, modules and products and

plans), even though they belong to the same domain. In Figure B.1 is shown the section

containing the description of the equipment.

Physical manufacturing modules have a set of static properties which describe their

traits. The figure shows that the previously described modules (Driller, Buffer, Conveyor

and Crane) have their own classes. All the descriptions of these modules are instances of

the shown classes. As also can be seen, the Equipment class is a subclass of Entity, which
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Figure B.1: UML class diagram of the equipment, showing all the classes and prop-
erties related solely to the physical equipment. Here, it can be seen the concepts that
describe the equipment used to control the MOFA France components.

was already defined in the process ontology. Some of the classes also reference Coordinate

and Dimension, both of these already defined in the concepts ontology.

As was described in Section 4.2, the system is composed of modules, which, in turn,

contain skills that represent their abilities and add value to the manufacturing processes.

To address this, the classes shown in Figure B.2 were created.

The diagram shows that both units and cells are subclasses of modules. One important

topic in this ontology is the distinction between transforming units and material handling

units. A transforming unit is a piece of equipment responsible for physically altering a given

product, while a material handling unit aids in the transportation or general handling of a

product in a shop floor. In this work the only transforming unit in the system is the driller,

while the other components are material handling units.
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Figure B.2: UML class diagram of the modules and skills.

A material handling unit may have zero or more handling positions. These special

positions are places where the products may be stored in that unit or key points for product

transport. As an example, the buffer has ten handling positions. Also, material handling

units may add other units as their neighbours, as well as their distance and relative position

(whether the other module is above, below, on the left or on the right of the current module).

Cells are another type of modules, which may control and monitor a certain set of

units and are responsible for a certain set of products. This type of module is responsible

for executing a production plan and coordinating all the units it controls and is not directly

associated with any physical equipment.
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Independently of their type, modules may have a certain set of skills, which are a type

of processes. Being a subclass of Process, skills may be directly invoked by the system and

perform the tasks associated to them. In the current implementation, the defined types of

skill were Drill, Feed, Store, FreePosition and Transport. Material handling units that may

transport a product, have skills of the Transport class. If these material handling units can

keep a product in one of their handling positions, they have skills of the Feed, Store and

FreePosition types.

Another important part of this ontology is how cells manage their manufacturing

plans for the products they are responsible for. The diagram in Figure B.3 shows the class

descriptions that manage the plans inside cells.

Figure B.3: UML class diagram of products and plans.

A cell contains a product plan, which states the operations to be performed in the

product. Each operation may contain a reference to the transforming unit that will perform

an operation on the product and the respective skill used for it. It also holds a reference

to the current material handling unit that should contain the product at the time of the

operation. Since there may be more than one operation, each one contains a reference to

the next operation to be performed.
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Operations contain paths that are used to transport the product to the location where

they should be performed. Each path component needs a reference to the material handling

unit currently containing the product, the skill needed to transport the product to the next

handler and the actor responsible for performing that skill. Also it has a reference to the

next path component.

For the cell to keep track of the current product status, each product has a reference

of its assigned plan, the operation currently being executed on it and the current material

handling unit currently holding it.

This section of the ontology is not vital for the overall production task, since it may

directly be defined as a simple process. Nevertheless, it may be used as a bridge for path-

finding algorithms in future implementations, contributing to other approaches that already

use these concepts to achieve self-organization.
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Appendix C

An Example Process

The work described in this document, even if it had a simple objective, had a fairly complex

background and all of its contents do not easily fit in a thesis this size. This chapter aims to

explain a little better how processes are created by presenting a simple practical example,

which may shed some light on many doubts that may have arose during the reading of this

document.

In this example, the process receives a String input containing a given message. It

will, then, generate an unique identification and, afterwards, print a line of text in the

console with the concatenation of the message with the generated identification. It may be

executed inside an agent and, since it does not possess a starting condition, the agent must

be explicitly requested to do so.

In order to implement this process, the following two activity types were needed,

which were defined in external ontological descriptions and Java libraries in the way already

explained in Section 6.3:

• GenerateUniqueID - This activity generates an unique identification based on the

current time stamp and the hash code of the agent it is executed in. This identification

is outputted as a String. This activity type was created specifically for this example

but used a Java method already defined in the current framework.

• Print - Simply prints a line of text in the console. The text printed needs to be an

input of this type of activity. This activity type was not created just for the current

example and is used in many processes implemented in this thesis.
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The process itself contains a single sequence flow control, which, in turn contains the

two instances of the needed activities, as well as a connection between them. This way, the

execution will flow from the activity that generates the identification to the activity that

will print the text. Figure C.1 shows the main sequence control of the process, as created

in the Process Editor.

Figure C.1: A section of the example process, as seen in the editor.

It is very useful that instances, in processes or any other ontology, have an identi-

fication for easier querying. In this example, the URI identifications defined for the most

important instances shown in Table C.1:

Table C.1: The set of instances inside the example process.

Instance Class

http://example.owl#actor1 Actor

http://example.owl#example process Process

http://example.owl#GenerateUniqueID 19828596223120 GenerateUniqueID

http://example.owl#Print 19843723608352 Print

http://example.owl#message parameter Parameter

Activities to generate unique identifications do not require any inputs, but activities to

print lines of text do. Figure C.2 shows how the input for the print activity was created. The

SPARQL/Update query was inserted in the configuration of the print instance, as defined in

the process model specification. Basically, the query states that the output of the previous

activity and the value of the input parameter of the process are to be concatenated and
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the result of this operation is inserted as an input of the print activity, using the property

printText.

Figure C.2: The input of the print activity, as seen in the editor.

Another important subject is that the concat function is a pre-defined SPARQL func-

tion provided by Jena. This API has many more useful features for querying ontological

KBs, which helped in many processes throughout this work. More information on these

features may be accessed through the Jena website [Hewlett-Packard, 2010].

As a result of the execution of this process inside a deployed agent, if the input

message is ”Hello, World!”, the printed text will be a concatenation of this message with

an unique identification, ”ID 17970505 3835313490176Hello, World!”.

This is a very simple example with no practical use but it helps explaining how the

processes can be created. Every agent of this thesis can be configured using this principle

without the need for hard-coding.

To better understand this example, the full OWL code is displayed in Listing C.1.

The listing shows a fairly large code for such a simple process. This is the reason why an

editor was very useful for the creation of the presented system. A good examination of the

code, may help clearing some doubts about the work developed in this thesis, tying some

loose ends.
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Listing C.1: The full OWL code of the presented example.

<rdf:RDF

xmlns :de f=” ht tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−process−de fau l t−onto logy . owl#”

xmlns :proc=” ht tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−process−onto logy . owl#”

xmlns : rd f=” ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#”

xmlns :agt=” ht tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−agent−onto logy . owl#”

xmlns:owl=” ht tp : //www.w3 . org /2002/07/ owl#”

xmlns:xsd=” ht tp : //www.w3 . org /2001/XMLSchema#”

xmlns=” ht tp : //www. f c t . unl . pt/ on t o l o g i e s / d e f au l t . owl#”

xmlns:cnp=” ht tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−concepts−onto logy . owl#”

xmlns : rd f s=” ht tp : //www.w3 . org /2000/01/ rdf−schema#”>

<owl:Ontology rd f : about=” ht tp : //www. f c t . unl . pt/ on t o l o g i e s / d e f au l t . owl”>

<owl : imports r d f : r e s o u r c e=” ht tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−process−eas−onto logy . owl”/>

<owl : imports r d f : r e s o u r c e=” ht tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−process−de fau l t−onto logy . owl”/>

<owl : imports r d f : r e s o u r c e=” ht tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−process−onto logy . owl”/>

</ owl:Ontology>

<proc :Actor rd f : about=” ht tp : // example . owl#actor1 ”>

<p ro c : p r o c e s s>

<proc :Proce s s rd f : about=” ht tp : // example . owl#example process ”>

<proc :ha sSta r tCont ro l>

<proc :Sequence rd f : about=” ht tp : // example . owl#Sequence 19806796742941 ”>

<proc:nodeDimension>

<cnp:Dimension>

<cnp :he ight rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#double ”

>240 .0</ cnp :he ight>

<cnp:width rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#double ”

>420 .0</ cnp:width>

</ cnp:Dimension>

</proc:nodeDimension>

<proc :nodePos i t i on>

<cnp:Coordinate>

<cnp:y rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#double ”

>140 .0</ cnp:y>

<cnp:x rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#double ”

>240 .0</ cnp:x>

</ cnp:Coordinate>

</ proc :nodePos i t i on>

<proc:hasLastNode>

<de f :P r i n t rd f : about=” ht tp : // example . owl#Print 19843723608352 ”>

<proc:nodeDimension>

<cnp:Dimension>

<cnp :he ight rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#double ”

>50 .0</ cnp :he ight>

<cnp:width rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#double ”

>50 .0</ cnp:width>

</ cnp:Dimension>

</proc:nodeDimension>

<proc :nodePos i t i on>

<cnp:Coordinate>

<cnp:y rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#double ”

>125 .0</ cnp:y>

<cnp:x rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#double ”

>335 .0</ cnp:x>

</ cnp:Coordinate>

</ proc :nodePos i t i on>

<proc: inputQuery>

<proc:SPARQLQuery>

<proc:queryText rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g ”

>PREFIX comm: &l t ; h t tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−comm−onto logy . owl#&gt ;

PREFIX pro t e g e : &l t ; h t tp : // protege . s tan fo rd . edu/ p lug in s /owl/ protege#&gt ;

PREFIX xsp : &l t ; h t tp : //www. owl−on t o l o g i e s . com/2005/08/07/ xsp . owl#&gt ;

PREFIX cnp: &l t ; h t tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−concepts−onto logy . owl#&gt ;
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PREFIX r d f s : &l t ; h t tp : //www.w3 . org /2000/01/ rdf−schema#&gt ;

PREFIX sw r l : &l t ; h t tp : //www.w3 . org /2003/11/ swr l#&gt ;

PREFIX d e f : &l t ; h t tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−process−de fau l t−onto logy . owl#&gt ;

PREFIX owl : &l t ; h t tp : //www.w3 . org /2002/07/ owl#&gt ;

PREFIX xsd : &l t ; h t tp : //www.w3 . org /2001/XMLSchema#&gt ;

PREFIX swr lb : &l t ; h t tp : //www.w3 . org /2003/11/ swrlb#&gt ;

PREFIX r d f : &l t ; h t tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#&gt ;

PREFIX ag t : &l t ; h t tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−agent−onto logy . owl#&gt ;

PREFIX proc : &l t ; h t tp : //www. f c t . unl . pt/ on t o l o g i e s / eas−process−onto logy . owl#&gt ;

PREFIX ap f : &l t ; java:com . hp . hpl . j ena . query . p funct ion . l i b r a r y .&gt ;

PREFIX l i s t : &l t ; h t tp : // jena . hpl . hp . com/ARQ/ l i s t#&gt ;

INSERT

{
#In s e r t s the concatenated message as input o f Pr int

&l t ; h t tp : // example . owl#Print 19843723608352&gt ;

d e f : p r i n tTex t ? text .

}
WHERE

{
#Gets the parameter

&l t ; h t tp : // example . owl#message parameter&gt ;

proc :parameterValue ?message .

#Gets the unique ID

&l t ; h t tp : // example . owl#GenerateUniqueID 19828596223120&gt ;

de f :un iqueID ?unique .

#Creates the concatenated message

? text ap f : c onca t (? unique ?message ) .

}</ proc :queryText>

</proc:SPARQLQuery>

</ proc: inputQuery>

<p r o c : d e s c r i p t i o n rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g ”

></ p r o c : d e s c r i p t i o n>

<proc:name rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g ”

>Print Message</proc:name>

</ d e f :P r i n t>

</proc:hasLastNode>

<proc :hasFi r s tNode>

<def :GenerateUniqueID rd f : about=” ht tp : // example . owl#GenerateUniqueID 19828596223120”>

<proc:nodeDimension>

<cnp:Dimension>

<cnp :he ight rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#double ”

>50 .0</ cnp :he ight>

<cnp:width rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#double ”

>50 .0</ cnp:width>

</ cnp:Dimension>

</proc:nodeDimension>

<proc :nodePos i t i on>

<cnp:Coordinate>

<cnp:y rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#double ”

>125 .0</ cnp:y>

<cnp:x rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#double ”

>95 .0</ cnp:x>

</ cnp:Coordinate>

</ proc :nodePos i t i on>

<p r o c : d e s c r i p t i o n rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g ”

></ p r o c : d e s c r i p t i o n>

<proc:name rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g ”

>Generate Unique ID</proc:name>

</def :GenerateUniqueID>

</ proc :hasFi r s tNode>

<proc :ha sTrans i t i on>
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<proc :Tran s i t i on rd f : about=” ht tp : // example . owl#Trans i t ion 19853776841362 ”>

<proc : t o r d f : r e s o u r c e=” ht tp : // example . owl#Print 19843723608352 ”/>

<proc : f rom rd f : r e s o u r c e=” ht tp : // example . owl#GenerateUniqueID 19828596223120”/>

</ p ro c :Tran s i t i on>

</ proc :ha sTrans i t i on>

<proc : ha sAc t i v i t y r d f : r e s o u r c e=” ht tp : // example . owl#Print 19843723608352 ”/>

<proc : ha sAc t i v i t y r d f : r e s o u r c e=” ht tp : // example . owl#GenerateUniqueID 19828596223120”/>

<proc:name rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g ”

>Message Sequence</proc:name>

</ proc :Sequence>

</ proc :ha sSta r tCont ro l>

<proc:hasInputParameter>

<proc:Parameter rd f : about=” ht tp : // example . owl#message parameter ”>

<proc:parameterName rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g ”

>Message</proc:parameterName>

<proc:paramType rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#anyURI”

>ht tp : //www.w3 . org /2001/XMLSchema#s t r i n g</proc:paramType>

</ proc:Parameter>

</ proc :hasInputParameter>

<p ro c : a c t o r r d f : r e s o u r c e=” ht tp : // example . owl#actor1 ”/>

<proc : enab l ed rd f : da ta type=” ht tp : //www.w3 . org /2001/XMLSchema#boolean ”

>t rue</ proc : enab l ed>

</ proc :Proce s s>

</ p r o c : p r o c e s s>

</ proc :Actor>

</rdf:RDF>
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