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Abstract 
Decision making is a crucial process that can dictate success or failure in today’s businesses 

and organizations. Decision Support Systems (DSS) are designed in order to help human users 
with decision making activities. Inside the big family of DSSs there is OnLine Analytical 
Processing  (OLAP) - an approach to answer multidimensional queries quickly and effectively. 

Even though OLAP is recognized as an efficient technique and widely used in mostly every 
area, it does not offer spatial analysis, spatial data visualization nor exploration. Geographic 
Information Systems (GIS) had a huge growth in the last years and acquiring and storing spatial 
data is easier than ever. In order to explore this potential and include spatial data and spatial 
analysis features to OLAP, Bédard introduced Spatial OLAP (SOLAP). Although it is a relatively 
new area, many proposals towards SOLAP’s standardization and consolidation have been made, 
as well as functional tools for different application areas. 

There are however many issues and topics in SOLAP that are either not covered or with 
incompatible/non general proposals. We propose to define a generic model for SOLAP 
interaction based on previous works, extending it to include new visualization options, 
components and cases; create and present a component-driven architecture proposal for such 
a tool, including descriptive metamodels, aggregate navigator to increase perfomance and a 
communication protocol; finally, develop an example prototype that partially implements the 
proposed interaction features, taking into consideration guidelines for a user friendly, yet 
powerful and flexible application. 





 

 

Resumo 
A tomada de decisões é um processo crucial que pode ditar o sucesso ou insucesso dos 

negócios e organizações de hoje. Os Sistemas de Apoio à Decisão (SAD) são desenhados de 
modo a ajudar os utilizadores humanos nas actividade de tomada de decisões. Dentro da 
grande família dos SAD está o Processamento Analítico Online (OLAP) - uma aproximação para 
dar resposta a consultas multidimensionais de modo rápido e eficaz. 

Ainda que OLAP seja reconhecido como uma técnica eficiente e amplamente utilizada em 
praticamente qualquer área, esta não oferece análise espacial, visualização de dados espaciais 
nem exploração. Os Sistemas de Informação Geográfica (SIG) tiveram um crescimento enorme 
nos últimos anos e adquirir e armazenar dados espaciais é mais fácil que nunca. De modo a 
explorar este potencial e incluir dados espaciais e funcionalidades de análise espacial em OLAP, 
Bédard introduziu o Spatial OLAP (SOLAP). Apesar de ser uma área relativamente nova, várias 
propostas no sentido de criar standards e consolidar SOLAP têm sido efectuadas, assim como 
ferramentas funcionais para diferentes áreas de aplicação. 

Existem no entanto vários problemas e assuntos em SOLAP que ou não estão cobertos ou 
têm propostas incompatíveis/não gerais. Propomo-nos definir um modelo de interacção 
genérico para SOLAP baseado em trabalhos prévios, extendendo-o de modo a incluir novas 
opções de visualização, componentes e casos; criar e apresentar uma arquitectura baseada em 
componentes para uma tal ferramenta, incluindo metamodelos descritivos, navegador de 
agregados de modo a melhorar o desempenho e um protocolo de comunicação; finalmente, 
desenvolver um protótipo de exemplo que implemente parcialmente as funcionalidades 
propostas, tendo em consideração boas práticas para o desenvolvimento de uma aplicação de 
fácil utilização, poderosa e flexível. 
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This chapter starts by presenting the context and motivations for the elaboration of this thesis, 
including some introductory information about OLAP and SOLAP. Next, it mentions the objective and 
contributions of this thesis and finally there is an overview of its structure. 

1.1. Context and Motivation 

Decision Support Systems (DSS) are a class of computer applications that helps human users with 
decision making activities on business and other organizations. It is considered that the concept of 
Decision Support Systems became an independent area of research in mid 1970’s, evolving to a larger 
scale during the 1980’s. At the conceptual level, Power differentiates DSSs in five different categories 
[1]:  

 A model-driven DSS emphasizes access to and manipulation of a statistical, financial, 
optimization, or simulation model. Model-driven DSS use data and parameters provided by 
DSS users to aid decision makers in analyzing a situation, but they are not necessarily data 
intensive; 

 A communication-driven DSS supports more than one person working on a shared task; 
(collaborative tools); 

 A data-driven DSS or data-oriented DSS emphasizes access to and manipulation of a time 
series of internal company data and, sometimes, external data; 

 A document-driven DSS manages, retrieves and manipulates unstructured information in a 
variety of electronic formats; 

 A knowledge-driven DSS provides specialized problem solving expertise stored as facts, 
rules, procedures, or in similar structures. 

Data-driven systems are designed in order to provide decision makers with useful information 
compiled from the organization’s raw data that will help them choose between alternatives in a given 
situation. The decision-making process is no longer associated with a single central entity - it is 
spread across multiple users with different backgrounds and positions. This democratization led to 
the development of this kind of systems. Data-driven DSSs provide data reasoning operations such as 
comparison, pattern and outliers finding, tendencies, among others. These operations allow the user 
to improve his efficiency in problem solving and encourages exploration and discovery. 

 OnLine Analytical Processing (OLAP) is part of the family of Data-driven DSSs and Business 
Intelligence (BI). It is an approach for answering multidimensional analytical queries quickly and 
effectively. OLAP tools provide the user with an interaction standard and ease of use. All the usage 
benefits of a Decision Support System become available to heterogeneous users using typical OLAP 
operations to explore and analyze data, mainly slice and aggregation. Slice operations enable the 
user to focus on the essential data for each analysis. Aggregation is characterized by summarization 
(how data is summarized) and detail level (data granularity). The interaction is made by varying the 
summarization formulas/algorithms and detail levels, through roll-up and drill-down operations. 
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 While OLAP meets all the requirements for an easy-to-use, fast and intuitive system, it has no 
support for spatial data visualization and analysis.  

 Geographic Information System (GIS) is a computer-based information system that enables 
capture, modeling, storage, retrieval, sharing, manipulation, and presentation of geographically 
referenced data. 

Even though GIS is adequate for most applications that need to display or manipulate 
geographical data, it does not have the efficiency required from an analysis tool that deals with large 
amounts of data like OLAP, as Rivest and Bédard mention: “(...) despite interesting spatiotemporal 
analysis capabilities, it is recognized that actual GIS systems per se are not optimally designed to be 
used to support decision applications and that alternative solutions should be used” [2]. 

Nowadays there are large amounts of GIS data available. There are also many techniques to 
acquire it with increasing accuracy and precision. As more data with higher quality and reliability 
becomes available, new applications and tools are possible, including the usage of GIS capabilities as 
tools for analyzing spatial-related data. 

It has been estimated that about 80 percent of all data stored in corporate databases are spatial 
data [3]. This is a clear indicator that spatial data analysis has a very wide application area. This factor 
along with the advance of GIS tools and DataBase Management Systems (DBMS) supporting GIS data, 
allowed the development of a new type of tools that combined OLAP and GIS called SOLAP (Spatial 
OLAP). 

Rivest, Bédard et al. defined a SOLAP tool as “a visual platform built especially to support rapid 
and easy spatio-temporal analysis and exploration of data following a multidimensional approach 
comprised of aggregation levels available in cartographic displays as well as in tabular and diagram 
displays” [4]. These tools add spatial analysis and visualization to the standard OLAP interaction. 

Several SOLAP tools have been implemented since then, however they are specific to a strict and 
pre-determined context and of complex usage. This complexity prevents the analysis and consequent 
decision making process to be made by different users, something that regular OLAP tools achieved 
through interaction standards and general ease of use. The work of Rosa Matias [5] and subsequent 
research by Marlene Vitorino and Rodolfo Caldeira [6] led to a generic, although limited, SOLAP 
interaction model. 

A generic interaction model with extended analysis capabilities should be the foundation for 
standardization of SOLAP tools, opening a way for generic and easy to use applications to be 
developed instead of the complex and specific already existent. 



Chapter 1 – Introduction
 

 4 

1.1.1. Multidimensional Model 

Using a multidimensional approach to model a system is enforcing simplicity [7]. A 
multidimensional model is composed of hypercubes, measures, dimensions, levels, hierarchies and 
attributes. 

Dimensions are used to map and categorize data into entities that are relevant to the organization 
(such as product, date and warehouse in a retail sales model). Attributes are the characteristics of 
these dimensions (such as name, description and price in product dimension). 

Each dimension can index data at several detail/aggregation levels. Hierarchies can then be 
defined using the levels of a dimension. For example, the date dimension can have day, week, month, 
year as a hierarchy and month, trimester, year as another. 

A hypercube is a logical structure that has the organization's data indexed by the dimensions. Each 
of its cells represents an intersection from all the dimensions and contains measures – values 
associated to this relationship. 

“The simplicity of the model is inherent because it defines objects that represent real-world 
business entities. Analysts know which business measures they are interested in examining, which 
dimensions and attributes make the data meaningful, and how the dimensions of their business are 
organized into levels and hierarchies.” [8] 

1.1.2. Data Granularity 

Regarding data granularity, Joe Oates says in DMReview [9]: “Granularity refers to the level of 
detail of the data stored fact tables in a data warehouse. High granularity refers to data that is at or 
near the transaction level. Data that is at the transaction level is usually referred to as atomic level 
data. Low granularity refers to data that is summarized or aggregated, usually from the atomic level 
data. Summarized data can be lightly summarized as in daily or weekly summaries or highly 
summarized data such as yearly averages and totals.” 

Data granularity is a very important point in a data warehouse and data analysis. Typical OLAP 
operations use several data granularity levels in order to summarize and present data to the user. In 
order to aggregate data, an aggregation operator is needed for each measure: sum, average, etc for 
numerical measures; union, intersection, etc for spatial measures. 

1.1.3. Typical OLAP Operations 

As mentioned before, the main OLAP operations are related to either slicing or aggregating data. 

Slice performs a selection on one dimension of a given cube. It selects a subset of that cube’s 
elements where certain attributes match a given value or range of values. This operation allows the 
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analyst to focus on the relevant data. For example, if the analyst is interested in data from January 
2009 only, he will apply a slice operation on the time dimension, selecting rows where the year 
attribute is equal to '2009' and month is equal to 'January'.  

A user can filter data based on measure values, excluding elements that do not match the 
required criteria (Example: “Consider only sales of over 1,000 units”). Selection operations relative to 
measure values are also possible, such as Top/Bottom X elements. Along with slice, this enables 
queries such as “What were the top 10 selling products on Lisbon region in 2008?”. Note that filtering 
is applied before data is aggregated, while top/bottom operations are applied after. 

Data aggregation levels are changed using two operations: Roll-up and drill-down. Roll-up consists 
on summarizing or aggregating data by going up a hierarchy towards the least detailed level. Drill-
down is the opposite operation, going down a hierarchy towards the most detailed level. By using 
drill-down operations, the analyst can understand the reasons behind summarized data. By using roll-
up operations, the analyst can see the impact of the facts on a larger scale. As an example, consider a 
minimalist multidimensional model of a sales company containing two dimensions: product and time. 
The lowest data granularity represents the sale of a certain product at a certain time. To the store 
manager, a monthly report detailing the sales of each product in each hour, wouldn't be very helpful 
for his decision making process. Probably a report depicting sales per product type and per week (roll-
up) would be more reasonable. However, if the analyst detects an abnormal sales amount on one of 
those weeks, he may perform a drill-down operation to explain the data at a lower level (product, 
day or hour) in order to detect the cause. 

1.1.4. OLAP Modes 

There are three different modes for storing cubes in a data warehouse: Multidimensional OLAP 
(MOLAP), Relational OLAP (ROLAP), and Hybrid OLAP (HOLAP). 

In MOLAP data is stored in multidimensional cubes built for fast data retrieval. Aggreations are 
pre-calculated, meaning that response times are very good. Also because of this pre-calculation, it 
can only handle a limited amount of data. This can be countered by pre-calculating only part of the 
aggregations. 

In ROLAP, the underlying data is stored in a relational database with multiple related tables. It's 
conceptual model gives the appearance of traditional OLAP operations such as slicing and roll-
up/drill-down using the dimensions. It can handle large amounts of data but it has slower response 
times. It is also limited by the SQL functionalities when executing queries. To address this limitation 
there are extensions to the SQL language especially designed to deal with multidimensional models. 

HOLAP is an approach that tries to combine the strengths of both MOLAP and ROLAP: It uses data 
cubes for summarized data and a relational model for drilling-down a hierarchy. 
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There are two main ways of arranging tables when using a ROLAP approach: Star-schema and 
snowflake schema. The star-schema (see Figure 1) is the simplest one and it consists of fact tables (or 
just one) referencing multiple dimension tables. 

 

Figure 1 - A Star Schema 

In the snowflake schema (Figure 2), the fact tables are also centralized and reference dimension 
tables, but dimensions are normalized into multiple related tables, resembling a snowflake. 

 

Figure 2 - A Snow Flake 
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1.1.5. SOLAP Challenges 

SOLAP poses a lot of challenges. Some of those are shared with standard OLAP tools but it also has 
specific ones that were not an issue before. 

Semantic and spatial data integration 

Integrating spatial and non-spatial data is the base for a SOLAP tool. This integration poses several 
issues regarding how and where to store both types of data (data structures, databases vs GIS, 
pointers to spatial data, etc) in order to work together as a single tool.  

Performance 

A fast response to queries is a critical requirement for OLAP tools and its importance to SOLAP is 
not lower. Because SOLAP deals with spatial data and operations, an acceptable response time is 
harder to achieve, since those operations usually involve much more processing and thus more time 
to perform than those using regular data. 

Ease of use 

Being easy to use is a very important characteristic for an analysis tool, especially when it is 
designed to be used by different classes of users. This allows the user to focus on the actual data 
analysis rather than how to do it. Dealing with maps and other geographical information poses 
another obstacle to interface design and user interaction. 

Standardization 

Defining standards is an approach to support innovation, increasing productivity and assuring the 
quality of a product or group of related products. SOLAP standards are far from being reached - Lots 
of subjects are still under discussion or reasearch and several different methods are proposed for the 
same objective such as multidimensional models for spatial data, spatial measures, spatial 
hierarchies, interaction models, topological operators, etc. 

1.2. Objective and Contributions 

The objective of this thesis is to extend the generic SOLAP interaction model by including new 
components on the base framework and redefining the interaction and presentation on the different 
cases and scenarios. The initial models’ limitations are presented as well as the new proposal to 
overcome them and extend its capabilities. An architecture for such a system and a prototype to 
exemplify some of the features proposed in the interaction model will also be developed. 

With thesis we hope to achieve relevant contributions on: 
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 SOLAP Interaction Model - Extending and improving: 
o Visualization components 
o Interaction cases 
o Analysis options 

 Metamodel for SOLAP - A new proposal that allows the usage of aggregates in order to 
improve performance 

 Prototype - An application that partially implements the proposed features in the 
interaction model: 

o General 
o Easy to use 
o Flexible 
o Aggregate-aware 

1.3. Thesis Structure 

The content of this thesis is structured in seven chapters and one annex. Follows the listing and 
description of each chapter: 

Chapter one (Introduction) presents the context, motivation and objective of this thesis, followed 
by its structure. In chapter two (State of the Art), the state of the art in Spatial OLAP and related 
technologies is presented. Chapter three (Extended Interaction Model) contains our proposal for an 
extended SOLAP interaction model, including the definition of new visualization components, options 
and interaction cases. Chapter four (Architecture) describes the architecture of our system, as well as 
the communication protocol and metamodels. Chapter five (Implementation) describes 
implementation decisions and details of our prototype. In chapter six (Use Case and Validation) we 
present several interaction examples of the implemented prototype. The thesis is concluded in 
chapter seven (Conclusions and Future Work), where conclusions are drawn and possible future work 
is presented. The annex includes XML Schemas for the communication protocol and metamodels. It is 
present in the digital version of this document only.  
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This chapter presents the state of the art in SOLAP 
related works, presenting technologies, tools, 
multidimensional models for spatial data and 
previous interaction models. 
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The introduction of spatial data can be a huge step in the decision making process of many 
organizations, even those already using conventional OLAP tools for their spatio-temporal analysis. 
With a plain OLAP tool, analysts don’t have the features to visualize spatial data, perform spatial 
analysis or explore the data using a map. [4]. 

 It has been estimated that about 80 percent of all data stored in corporate databases is spatial 
data [3]. Among these large numbers is a wide variety of areas onto which spatial analysis could be 
applied: Airline companies that work with plane routes, railroad companies dealing with tracks, 
phone operators registering calls’ origins and destinations, pharmaceutical companies knowing the 
locations of hospitals, health centers, etc. [5]. 

 Even though SOLAP is a relatively new area of research, there have been important works that are 
slowly leading to its applicability and standardization. Some researchers have managed to define 
many concepts related to spatial data and several multidimensional models have been proposed. 

 Next in this chapter we will give an overview on previous work on geometrical data types, 
operations and their implementation on conventional DBMSs that eventually allowed spatial data 
analysis to progress. The next section refers works on multidimensional models for spatial data - the 
base foundation for SOLAP tools, including spatial dimensions, hierarchies and measures. We will 
then present SOLAP systems/generic interaction models already existent and the possible usage of 
clustering in those tools. 

2.1. Geometrical Data Types in DBMS 

An entity is geographic if it has attributes that are associated with the earth coordinate system. 
These entities can have two kinds of components: semantic or descriptive attributes and spatial 
attributes. For example, a county has attributes that represent it’s name, population, unemployment 
rate, etc (semantic) and attributes that depict its boundaries, cities, etc (spatial). 

 DataBase Management Systems were initially designed and optimized to deal with simple 
alphanumeric data. With the growth of GIS and the expansion of available spatial data, DBMSs 
started to include structures to handle this kind of data. It is required that the spatial module of a 
DBMS has the following properties [5]: 

 Abstract types for spatial data - The possibility to create conceptual and logical models 
using spatial data 

 Spatial query language - It is necessary that the SQL language is extended in order to 
handle spatial data 

 Optimized techniques for query execution - Getting an acceptable response time when 
dealing with spatial data is much more difficult than using alphanumeric data. It is then 
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required that optimized mechanisms be developed and implemented in order to efficiently 
execute spatial queries. 

The Open Geospatial Consortium (OGC) was founded in 1994 by a group of both public and private 
organizations with the intent of promoting development and usage of non-proprietary norms or 
standards on spatial data processing. To do this, the OGC develops and revises specifications where 
protocols and interfaces are described. 

The OpenGIS Simple Feature Specification for SQL [10] is an OGC specification that contains a norm 
defining spatial objects in a class diagram (see Figure 3). From the abstract class Geometry derives 
Point, Curve, Surface and GeometryCollection. 

Point is used to describe objects with zero dimensions, such as city locations on a map. Curve is 
used to represent objects like roads or rivers. Surface enables us to represent regions, areas or any 
other two-dimensional objects such as counties, natural reservations, etc. GeometryCollection allows 
more complex objects resulting from the combination of multiple objects by using spatial functions 
such as union, intersection, etc. 

 

Figure 3 - Geometry Class Hierarchy from OpenGIS Features 

Besides describing spatial objects, the OpenGIS Simple Feature Specification for SQL also describes 
multiple functions to test a geometry’s properties, calculate numerical values based on a geometry, 
obtain a geometry using another, test topological and directional relationships between geometries 
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and distance functions. Some of these functions are general for all kinds of geometries (returning the 
description of a geometry type) but most of them are specific for each type - returning the X 
coordinate of a point (Point), returning the length of a curve (Curve), return the area (Surface), etc. 

2.2. Multidimensional Models for Spatial Data 

Even though multidimensional models have been used for data analysis for a long time and have 
solid foundations, the introduction of spatial data requires a rethinking of the concepts associated 
with it, mainly those related to dimensions, hierarchies and measures. 

 The usage of spatial dimensions allows the analyst to execute new and powerful slices using 
topological operators for example “Amount of fishing products sales in shops that are within a 5 km 
buffer of a river or lake”, “What is the crime rate percentage in districts that are at least 2 km away 
from a police station?”, “Return the top 10 plants on CO2 emissions that are inside a protected 
region“, etc. 

Several works [4][2][11][12] categorize spatial dimensions based on the type of data on each of its 
hierarchy levels: a) Non-geometric (when all levels contain only descriptive data); b) geometrical to 
non-geometrical (when the finest granularity levels contain geometrical data and the coarser 
granularity levels contain descriptive data) and c) fully geometrical (when all the levels contain 
geometrical data only). These types are depicted in Figure 4: 

 

Figure 4 - Types of spatial dimensions based on the levels’ data type 
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Fidalgo et al. [11] proposed a framework to be used as guidance for designing geographical 
dimensional schemas, considering geographical (only geographical attributes) and hybrid 
(geographical and conventional attributes) dimensions. It includes modeling guidelines in order to 
minimize redundancy of spatial data by normalizing Composed Geographical Dimensions (a 
dimension with multiple spatial attributes) into Primitive Geographical Dimensions (one that contains 
only one spatial attribute).  

Spatial dimension hierarchies and the associated aggregation/summarization issues are subject to 
research in some works [13][11][14][15]. In particular, Malinowsky and Zimányi [13] defined different 
kinds of spatial hierarchies and gave a conceptual model for them. The summarizability problems 
that arises for some of those hierarchies is also studied. The conceptual model for the hierarchies is 
simple and effective, covering relationships between levels (denoted by child and parent) and 
respective cardinalities, spatial data types and topological relationships. Using real-world 
examples/applications, a generic classification of hierarchies (both spatial and non-spatial) is defined: 
Simple, Non-Strict, Multiple and Parallel. 

Simple spatial hierarchies are those where the relationships between their members can be 
represented as a tree, for example a hierarchy depicting a relationship between stores, counties and 
states. Symmetric hierarchies have at the schema level only one path where all levels are mandatory. 
This implies that, at the instance level, the members form a tree where all the branches have the 
same length. Asymmetric hierarchies have only one path at the schema level but some of the lower 
levels of the hierarchy are not mandatory, causing the members at the instance level to generate a 
non-balanced tree. Generalized hierarchies contain multiple exclusive paths sharing some levels 
among them. At the instance level, each member belongs to only one path. 

Non-strict spatial hierarchies are those that have at least one many-to-many cardinality. The 
previous hierarchy types can also be non-strict in addition to their already defined type. Most of the 
non-strict hierarchies arise when a partial containment relationship exists (only part of a river 
belonging to a county for example). 

 Multiple alternative spatial hierarchies have multiple non-exclusive simple spatial hierarchies 
sharing some levels. At the instance level, these hierarchies form a graph, since a child member can 
be associated with more than one parent member belonging to different levels. 

 Parallel spatial hierarchies arise when a dimension has multiple spatial hierarchies for different 
analysis criteria. In a parallel independent hierarchy, hierarchies do not share levels, as opposed to a 
parallel dependent hierarchy. 

 A method for identifying allowed topological relationships between spatial levels (considering 
those will be used for measure aggregation purposes) (Figure 5) is also presented. This method is 
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based on the result of the intersection between the geometric union of the spatial extent of child 
members and the spatial extent of their associated parent member. 

 

Figure 5 - Classification of topological relationship for aggregation procedures [13] 

The same authors also proposed a conversion for this multidimensional model into an object-
relational schema, based on SQL [16]. In this article, examples of spatial functions including 
aggregation functions can also be found. 

The usage of spatial measures is a widely discussed subject far from having a standard defined, 
both on when and how to apply them. In the works that address this subject, there are three main 
approaches on how to define spatial measures: 

1) Using the concept of geographical measure: an entity described by geometric, metric and 
thematic (textual) attributes. Complex aggregation functions must be defined for these entities since 
multiple attributes may need to be aggregated using different functions [17][18][14][19]. An example 
of a geographical measure using this approach would be the following element: 

{Name = “Region1”; Shape = (PolygonCoordinates); Type = “A”; MeasureValue = “100”} 

 2) As a numerical value that is calculated by applying a spatial or topological operator like area or 
distance to an existent geometric object [16][2]. In this case, a spatial measure could be: 
SUM(Region1.area() + Region2.area()) 

 3) A geometric shape obtained by combining two or more spatial attributes from spatial 
dimensions using functions like union, intersection, etc [16][2]. In [16] this is called a spatial fact 
relationship and it also considers the existence of numerical measures associated with it. A spatial 
fact relationship example would be the line resulting from the intersection between a road and a 
county. 
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Several problems related to spatial measure aggregations arise. Different aggregation functions 
are required, since there are different data types (spatial and semantic) with distinct meanings for 
each measure. To deal with the geometric part of a measure, a spatial aggregation function is needed 
in order to receive possibly multiple objects as input and return a single object as the output. This 
function can become especially complex and ineffective when the geometric objects are themselves 
calculated using spatial operations, causing a chain of time-costly geometric operations. 

 In conclusion, in most of the studied works, the geometric part of the spatial measure is an 
existent object or a new one computed based on existent ones from spatial dimensions – either a 
county, region or any other logical of administrative boundary. The only slight reference to an 
arbitrary geometric shape directly and solely related to a fact is present in a work by Matias and 
Moura-Pires [20]. In this work, an arbitrary spatial measure  is proposed to represent the pollutant 
emission cloud as a polygon. The emission cloud is only related to the event of an emission, not to 
any spatial attribute or hierarchy from the dimensions. 

2.3. SOLAP Systems 

 Bédard et. al. [4] defined and presented the features of a SOLAP system in three main areas: 
Visualization of Data, Exploration of Data and Structure of Data. 

 Under Visualization of Data, the authors defend the need for cartographic and non-cartographic 
displays, and their flexibility, either by using multiple displays at the same granularity or at different 
levels. The representation of multiple measures is another focused point as well as an interactive 
legend that allows the user to visualize numerical information at different levels while remaining at 
the same spatial level. The importance of using charts and guidelines for their construction is 
discussed by Tufte [21] and MacEachren [22]. Usage of context information is encouraged as it helps 
the user locate the displayed information. 

Related to Exploration of Data, the authors explain the need for the availability of the data 
exploration operations in all display types, both cartographic and non-cartographic; availability of 
both topological and metric functions for data analysis and a timeline component for manipulating 
the temporal dimension. Also in this section is placed emphasis on calculated measures (measures 
calculated from other measures stored in the cube), filtering on the dimension members (slicing 
operations) and the display of significant data aggregates only, by eliminating irrelevant or empty 
cells from the aggregation process. 

 Under Structure of Data the need for tools to support multiple spatial dimensions is explained, as 
well as full-support for the standard geometric primitives. Automatic generalization of data sets to be 
displayed based on user actions such as zooming in/out, support for storage of historical geometric 
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data (changing over time) and support for different data sources, mainly the three OLAP modes 
(MOLAP, ROLAP, HOLAP) are also noted. 

Even though this work provides many important guidelines for the development of SOLAP 
applications, it lacks detail on how to model and implement the proposed features throughout the 
article. 

2.3.1.  StatCan 

StatCan [23] is a tool to analyze data from the Census of Canada. The usual census data is available 
such as age, gender, residence status, etc. The main SOLAP tools are available: slice, roll-up and drill-
down. It includes several possible measures such as population, births and deaths. 

 

Figure 6 - StatCan interface 

The interface (see Figure 6) contains a panel for the map and one for the table. At any time the 
analyst can request a chart based on the information presented. In that case, a new panel is opened 
and the related chart is presented. 

 The table works in a matrix format, adapting its rows and columns by dragging semantic 
attributes or numerical measures to the analysis. It allows expanding and collapsing data into lower 
or higher level spatial attributes, representing elements at different levels of granularity on the table. 
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 The map offers the possibility to display multiple numerical measures by using charts associated 
with each region. It also has the basic features of zoom, spatial selection and labeling. 

 Slice operations are made by selecting one or more values for each attribute. Roll-up and drill-
down operations can be made on either the map panel or the table panel. Applying those operations 
to one panel causes the other one to adapt its representation to the appropriate granularity level and 
executing the necessary summarization. 

2.3.2. The Spatial One 

Vitorino, M. and Caldeira, R. developed a generic SOLAP interaction model [6] based on a previous 
interaction model by Matias, R. [5]. They defined both the components and the behavior of the 
system based on several generic interaction cases from the user. Those interaction cases are the base 
for any specific SOLAP application that may use the generic model defined. This model features the 
usage of spatial slices mentioned before, namely the possibility to slice by distance to a certain point, 
by topological operator (such as “contained in”, “touches”, ...) and by the top/bottom elements (ex.: 
“the 10 nearest factories to river X”). 

 The base framework proposed has three main components: The map, the support table and the 
detail table (Figure 7). 

 

Figure 7 - The Spatial One base framework 

The map is where reference maps, spatial objects and other SOLAP information are presented to 
the user. 
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The support table is used to show the base data from which the map representation depends. This 
includes attributes from dimensions (semantic attributes) and measures. 

The detail table is a tool to provide the user with more in-depth analysis. In order to maintain the 
1:1 relationship between the support table and the map, drill-down operations resulting in certain 
detail levels should not be expressed in the support table, because they can’t be represented in the 
map (The 1:1 relationship need is explained further on). In these cases, the detail table is used to 
analyze that data at a lower aggregation level. 

Any one of the three components can also show numerical measures. 

The 1:1 relationship between the map and the support table is an important property that should 
be kept in any situation. It helps the analysis process as to each spatial object on the map, there is a 
corresponding line in the support table. 

To justify this property we have to look at the alternatives to a 1:1 relationship. Those are: 

1. Multiple lines in the support table to one spatial object on the map (Figure 8) 

In this case, we would have multiple rows associated with each spatial object. Selecting a spatial 
object in the map would select multiple rows, possibly spread along the table, making it difficult for 
the user to relate the information in the table to the objects on the map.  

 

Figure 8 - Alternative 1 

2. One line in the support table to multiple spatial objects in the map (Figure 9) 

On the other hand, having one measure (one support table line) associated to multiple spatial 
objects would prevent the analyst from realizing the contribution of each spatial object to the global 
value while looking at the map. 
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Figure 9 - Alternative 2 

Data in the support table is usually aggregated at a certain level. However, if the user requires a 
more in-depth analysis, he/she can use the detail level, where the same data is shown but at a lower 
level of aggregation. This means that for each line in the support table, we will possibly have multiple 
lines in the detail table that represent the same data, thus the 1:N relationship. 

Using this framework, the authors defined a generic interaction model contemplating the 
following cases: 

1. One numerical measure 
2. Multiple numerical measures 
3. Using semantic attributes from semantic dimensions 
4. Using semantic attributes from spatial dimension 
5. Using spatial attributes from the same dimension 
6. Using spatial attributes from different dimensions 

2.4. Clustering 

Even though clustering is not directly related to the SOLAP area, it will have a very important role 
in our interaction model proposal, used at several levels and with different goals, as we will explain 
further on. 

 Data analysis is a process that requires ease of use and fast response times so that the user can 
maintain his train of thought. The amount of data presented to the user and its level of detail is also 
extremely important: Too much or too detailed data presented at one time to the user will prevent 
him from drawing conclusions. 

 When dealing with SOLAP tools, these aspects have to be considered not only for the support 
table but also for the respective map visualization. If we try to represent a lot or too close spatial 
objects on the map, we can end up with a cluttered map where the analysis process becomes 
impossible. 
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 To address this problem we propose clustering or merging nearby spatial objects into groups 
represented by a single entity on the map. These groups have no semantic meaning and the spatial 
objects they contain are similar only on their geographical position, so that would be the only feature 
to be used as an input parameter on the clustering algorithm. 

 CLARANS [24] is a k-medoid clustering algorithm which identifies circular clusters based on a 
distance function. Each point is assigned to the cluster to which the distance to its respective k-
medoid point has the smaller value. This algorithm requires an input parameter K – the number of 
clusters to be generated. Since we are only considering grouping by geographical proximity, circular 
clusters identified by CLARANS seems to be adequate in this case. 

 Clustering techniques can also be used to discover similar elements based on their associated 
measures. Note that in this case the geographical location is not relevant, only the measures related 
to them. 

 DBSCAN [25] is a density-based clustering algorithm that relies on notions of core and border 
points to determine which points belong to which cluster. Since it is density-based and not distance-
based like CLARANS, it generates clusters with arbitrary shapes and doesn’t need an input parameter 
specifying the number of clusters to generate. In order to identify clusters based on feature vectors, 
DBSCAN is more accurate (as it does restrict itself to circular clusters) and with better response times 
than CLARANS. It is adequate for clustering needs that are not location/geography based, such as 
identifying similar elements based on multiple measures. 

 More recent works [26][27] aim to define techniques and algorithms for clustering spatial objects. 
Those can be interesting for simplifying visualization when dealing with polygons. 

2.5. Aggregate Navigators 

According to Ralph Kimball [28], providing a proper set of aggregate records is the best way to 
improve performance of a data warehouse. These aggregate records are summarized records 
obtained from the original data. Since they are summarized, operations over them are faster than 
having to compute all the original records. 

There is, however, the problem of the user knowing when and which aggregate to use with a 
certain query. Hardcoding the end-user applications with knowledge of the aggregates removes the 
database administrator’s flexibility to add and remove aggregates, as the applications would have to 
be recoded. The answer is to use an Aggregate Navigator [29][28][30] - a component that stands 
between the end-user applications and the DBMS, capturing the SQL queries and converting them to 
use the best possible aggregate (if available): 
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Figure 10 - An aggregate navigator 

The SQL generated by the end-user application always refers the base multidimensional model’s 
fact tables and dimensions - it is the responsibility of the aggregate navigator to convert that base 
SQL into aggregate-aware SQL, where aggregate tables are referenced in case a usable aggregate is 
present. 

2.6. Other Works on Spatial Performance 

Even though this issue is not within the scope of our work, we believe a few considerations on this 
are important. Response time is a major concern in any analysis tool: Users expect to be able to see 
the results of their requested operations in timely fashion, allowing him to maintain his train of 
thought. An already crucial issue to a standard OLAP tool is taken to an even higher level when 
dealing with SOLAP, since manipulating spatial data is usually much more time costly. 

 Stefanovic et. al. [31] proposed time efficient methods for computing spatial measures, merging 
spatial objects and selecting pre-aggregated cuboids based on an adapted greedy algorithm for 
spatial databases. 

 Papadias et. al. [32] presented a method that uses aggregation trees based on Minimum 
Bounding Rectangles to discover arbitrary spatial hierarchies. These newly discovered hierarchies are 
then added to a greedy algorithm that will decide which pre-aggregates to materialize. 

 Spatial operations are very time costly, both on I/O and CPU. In order to minimize the cost of 
polygon amalgamation operations, an algorithm that reduces the number of polygons used in those 
operations to the absolute minimum was developed [33]. This algorithm works by identifying the 
internal polygons which would not be used in the amalgamation process. Two methods can be used 
for this identification, polygon adjacency or spatial indexes. 

2.7. Conclusion 

In order to achieve standard levels for SOLAP, there is still much to be done. Even though there 
are several proposals for most of the issues presented, many of those proposals are not compatible 
with each other, leading to the development of specific applications rather than generic interaction 
models or tools. Spatial measures is a particular case of an issue with different and incompatible 
proposals which has a lot of open possibilities to explore. 

The presented generic interaction models by Matias [5] and Vitorino and Caldeira [6] opened 
many possibilities, however, many of the proposed solutions are far from optimal and flexible. 
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Our work proposal is to extend the generic SOLAP interaction model previously presented [6]. We 
aim to redefine the behavior on several interaction aspects as well as adding new components to the 
visualization and new interaction cases that were not considered before. 

 This chapter starts by introducing a few concepts related to our multidimensional model and 
presenting our extended framework components followed by an explanation on how data is 
represented. An overview of the considered interaction cases is then presented. Finally, each of the 
interaction cases is exposed in detail. 

3.1. Multidimensional Model Concepts and Extended Framework 

We consider two types of dimensions in our model, depending on what kind of data they contain: 
Semantic dimensions and Spatial dimensions.  

A dimension is constituted by levels. These levels are organized within one or more hierarchies 
inside the dimension and each level can contain multiple attributes. Levels can be compared with 
each other, being higher or lower in case they are on the same hierarchy or incomparable if they are 
on different hierarchies. This issue is addressed on section 4.3 when studying aggregates. 

 A dimension is semantic if it has semantic attributes only. If the dimension has at least one spatial 
attribute, then it is considered a spatial dimension. 

Definition 1: Semantic attribute (sA) is a textual or numerical attribute from a dimension. 

Definition 2: Spatial attribute (spA) is an attribute from a dimension containing a coordinate or 
group of coordinates that represent a spatial object. Each spatial attribute has an associated 
semantic attribute used to represent it in a table or another textual component. The associated 
semantic attribute to a spatial attribute is represented as sA(spA). 

Definition 3: Spatial object (spO) is a GIS element that is either a point (ex.: client location), line 
(ex.: road) or polygon (ex.: county). It is not necessarily connected to a dimension. 

Our interaction model considers the two most common multidimensional model architectures: 
Star Schema and Snow Flake. The fact table is where the relationships between the dimensions as 
well as possible measures are present. Measures can also be of two kinds: Numerical measures and 
spatial measures. 

Definition 4: Numerical measure (nM) is a numerical value associated with a fact and stored in 
the fact table. 
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Definition 5: Spatial measure (spM) is a coordinate or group of coordinates that represent a 
spatial object. It is associated with a fact and stored in the fact table. Note that these are arbitrary 
spatial measures only, as mentioned in section 2.2. 

 The extended framework we propose (see figure below) has two new components and some 
changes to the previous ones on how information is presented. The new components are the support 
chart and the detail chart. 

 

Figure 11 - The extended framework 

The map is used to present reference maps, spatial objects and other SOLAP information to the 
user. 

 The support table is used to show textual and numerical data at the same granularity as the map. 
This includes attributes from dimensions and measures. The detail table is a tool to provide the user 
with more in-depth analysis, usually at a finer granularity level by applying drill-down operations to 
the data in the support table. 

 The support chart is a tool used to visualize data referring to the support table. The detail chart is 
related to the data in the detail table. 

 These components will be addressed in detail as we expose the interaction cases. 
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Figure 14 - Example partition and respective vector object (vObj) 

These transformations are not required for the detail components - the vector objects are directly 
obtained from the lower granularity rowset. Having multiple rows referring the same spatial object is 
not a problem in these cases because for each element in the higher level components (map, support 
table, support chart) there are N elements in the lower level components (detail table and chart), 
allowing a more in-depth analysis. 

Each component has a specific representation function. A representation function (RF) is a 
function that maps a set of vector objects ({݆ܾܱݒ}) to a visual representation on a certain 
component, namely map RF (mRF), support table RF (stRF), support chart RF (scRF), detail table RF 
(dtRF) and detail chart RF (dcRF): 

({݆ܾܱݒ})   ோி  ሱۛ ሮ  ݊݋݅ݐܽݐ݊݁ݏ݁ݎ݌ܴ݁ ݈ܽݑݏܸ݅

According to the component, the output from the respective representation function will be a 
spatial object on the map (Map), a line on a table (Support table, Detail table) or a chart (Support 
chart, Detail chart). All these functions take a sub-set of the vectors’ elements as input. While 
presenting the interaction cases, the input of the representation functions will be adapted to the 
given scenarios. 

Generally, a representation function maps a set of vector objects to a component. The visual 
representation of each vector object may depend not only of the object being represented but also 
on the values or properties of all the other vector objects on the same set. For example, if we want to 
create visual elements representing arbitrary groups of objects based on their geographical proximity 
(using clustering techniques), the entire set of objects has to be considered. 
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There are however, two particular cases of the representation function: The first case is when 
each vector object can be represented individually, without the need for any other information, for 
instance, a row in the detail table. This representation function could be defined as: 

({݆ܾܱݒ})ܨܴ =  ∑ ௜(௜݆ܾܱݒ)݂ݎ , where ∑  represents the successive call of a representation ()݂ݎ
function for each vector object. 

The second particular case is when each vector object can be represented individually but 
requiring some context information; an example would be a bar in a chart - it can be represented 
individually but it would require a maximum and minimum scale value, both of which are context 
variables, not information from the object itself. This representation function could be defined as: 

({݆ܾܱݒ})ܨܴ =  ∑ ,௜݆ܾܱݒ)݂ݎ ௜(({݆ܾܱݒ})ݕݎܽ݉݉ݑݏ , where ∑  represents the successive call of ()݂ݎ
a representation function for each vector object and ({݆ܾܱݒ})ݕݎܽ݉݉ݑݏ is the context information, 
previously extracted from the global set. 

As mentioned before, there are three high granularity and two low granularity representation 
functions, one for each component: Map, Support Table and Support Chart as  higher level 
visualization components and Detail Table and Detail Chart as lower level components. The following 
sub-sections describe those representation functions. 

3.2.1. Map Representation Function (mRF) 

 The different types of parameters taken by the representation functions determine different 
spatial object properties on the map. The selected sub-set of the spatial attributes in the rowset 
determines the location of the respective spatial object on the map. If only one spatial attribute is 
used, then its location is determined by the spatial attribute’s plain coordinates. If more than one 
spatial attribute is used in the representation function, an additional spatial object is computed using 
a Geometric Grouping Function (݃݃ܨ) that takes multiple spatial attributes as input. Then, the new 
spatial object’s coordinates determine its location on the map. ݃݃ܨ can be defined as: (ܣ݌ݏଵ, … , (௜ܣ݌ݏ   ௚௚ி  ሱۛ ሮۛ  where ݅ is the number of spatial attributes used in the representation ,(݆ܾܱ݌ݏ)
function (see Figure 15). 

 

Figure 15 - Geometric Grouping Function 
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 varies depending on the interaction case: It can be a spacial intersection, union, difference or ܨ݃݃
any other function that generates a spatial object from multiple spatial objects. Representing only 
one spatial object on the map for each element ensures the 1:1 relationship between the support 
table and the map explained above. 

 The selected sub-set of the rowset’s semantic attributes and measures determines the color, 
pattern, shape, associated chart or any other characteristic regarding that spatial object. 

 In the simplest case we would have one spatial attribute representing a point and one measure. A 
single point would be marked on the map (at the same coordinates as the ones from the spatial 
attribute) with a certain color or size (determined by the measure value). 

 The most complex case would be multiple spatial attributes that represent polygons and multiple 
measures and/or semantic attributes. In this case we have more than one spatial attribute, therefore ݃݃ܨ would be used, taking those spatial attributes as input and returning a representative spatial 
object. Then, the representation function takes all the measures/semantic attributes and determines 
the new object’s color, associated chart, pattern, etc. 

Slicing and filtering the data for analysis is a crucial step in any OLAP/SOLAP interaction. However, 
even after executing those operations, the map representation when dealing with multiple spatial 
attributes can still be complex. To minimize this problem we propose using clustering algorithms and 
grouping/aggregating data sets based on their spatial location. Those ad-hoc groups do not have any 
semantic meaning other than being geographically near each other. Groups can be created or 
decomposed by user interaction or automatically related to zoom variation. This group generation is 
also the responsibility of ݃݃ܨ, even though it’s results have to be available to the other components, 
in order to maintain the consistency among the represented data. 

3.2.2. Support Table Representation Function (stRF) 

 maps a set of vector objects to a table representation. In most cases, this representation ܨܴݐݏ 
function falls into the first particular case presented above, where it can be decomposed into 
multiple representation functions, each of them mapping a vector object individually. This is not the 
case when using visualization clustering for example. In this case we would need the general ܴܨ 
approach of mapping the entire set of vectors. 

An example of the second particular case would be if we wanted to set the background color of 
each line of the support table with the same color used for the respective spatial object in the map. 
We can still map each vector object individually, but we will require some context information: the 
color to use (Figure 16). 
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 Base scenario: One or more numerical measures are present in addition to a spatial attribute and 
corresponding semantic attribute: 

3. Semantic attributes from semantic dimensions ݆ܾܱݒ = ,ܣ݌ݏ} ,ܣݏ ,ଵܯ݊ … , ,௡ܯ݊ ,ଵܣݏ … ,  {௜ܣݏ
4. Semantic attributes from spatial dimension 

݆ܾܱݒ  = ,ܣ݌ݏ} ,ܣݏ ,ଵܯ݊ … , ,௡ܯ݊ ,ଵܣݏ … ,  {௜ܣݏ
5. Spatial attributes from the same dimension ݆ܾܱݒ = ,ଵܣ݌ݏ} ,ଵܣݏ … , ,௜ܣ݌ݏ ,௜ܣݏ ,ଵܯ݊ … ,  {௡ܯ݊
6. Spatial attributes from different dimensions ݆ܾܱݒ = ,ଵܣ݌ݏ} ,ଵܣݏ … , ,௜ܣ݌ݏ ,௜ܣݏ ,ଵܯ݊ … ,  {௡ܯ݊

 The last (7th) group of interaction cases is related to spatial measures. 

 Even though they are not mentioned in the following interaction cases, the spatial slice 
possibilities used in the works of Vitorino and Caldeira [6] and mentioned in section 2.3.2 are 
adopted - distance to a point, topological operators and neighbours (top/bottom). 

 Some of the given examples use data from Instituto Nacional de Estatística (INE). 

3.4. Case 1: One Numerical Measure 

The first interaction case depicts the representation of a single numerical measure associated to a 
spatial attribute, where ݆ܾܱݒ = ,ܣ݌ݏ} ,(ܣ݌ݏ)ܣݏ  is the semantic attribute associated (ܣ݌ݏ)ܣݏ .{ܯ݊
with the spatial attribute ܣ݌ݏ. 

3.4.1. Support Table 

In the spatial dimensions, for each spatial attribute ܣ݌ݏ there is a corresponding semantic 
attribute ܣݏ. The support table has a column for the semantic attributes and one column for the 
respective numerical measure. The spatial attribute is not represented in the support table (as you 
can see in Figure 17), therefore: ܨܴݐݏ = ,(ܣ݌ݏ)ܣݏ)݂  .(ܯ݊

 

Figure 17 - An example support table displaying one numerical measure 
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Each line can be colored with the same color from the map’s legend, in order to more easily 
establish a relation between a line and the corresponding spatial object in the map. The map’s legend 
component is addressed further on. 

3.4.2. Map 

As it was pointed out before, the visualization has a one to one relationship with the support, 
meaning that for each line in the support table, there is a corresponding spatial object on the map. 

The representation function for each ݆ܾܱݒ is then defined as ܴ݉ܣ݌ݏ)݂ = ܨ, ,(ܣ݌ݏ)ܣݏ  This .(ܯ݊
function generates a spatial object on the map based on the input values - in this case the spatial 
object’s properties (such as size, color, etc) are conditioned by the measure value and the type of 
object (point, line, polygon). 

 determines the color, shape, size, or any ܯ݊ determines each spatial object’s location, while ܣ݌ݏ
other characteristic that can graphically map a value.  

As an example, we will consider ܣ݌ݏ is a polygon that represents a Portuguese region. That said, ܴ݉ܨ can’t use neither size nor shape as those are relevant for the location. Color has been chosen 
because it is easy  to recognize for the user and it also offers more personalization options than the 
pattern approach for example. For each spatial object ܨܴ݉ ,݆ܾܱ݌ݏ sets its color to a value that is 
determined by the respective numerical measure ݊ܯ (using a mapping function). 

A legend is used to map the colors to the measure values (or ranges of values). In the figure below, 
we have one possible result of applying ܴ݉ܨ to 18 vector objects of {ܣ݌ݏ, ,(ܣ݌ݏ)ܣݏ  where the ,{ܯ݊
spatial attributes represent polygons, resulting in 18 instances of ݆ܾܱ݌ݏ differentiated by color. The 
semantic attribute has not been used in this example, however they are often used to label the 
spatial objects on the map, establishing a direct connection to the respective table rows. 
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Figure 18 - Example of representation of one single numerical measure using color and legend 

3.4.3. Support Chart 

In the extended model, associated with our support table we have a support chart. This 
component’s function varies with the type and number of attributes and measures being used for the 
analysis. The support chart representation function (ܨܴܿݏ) takes a set of vector objects as input 
݆ܾܱݒ) = ,ܣ݌ݏ} ,(ܣ݌ݏ)ܣݏ  .to produce the chart ({ܯ݊

In this case, semantic associated attributes ((ܣ݌ݏ)ܣݏ) are represented along one axis and 
numerical measures values (݊ܯ) along the other. Besides the possibility to order the chart bars by 
alphabetic order (semantic attribute), ascending/descending measure value or user-defined, we can 
also order the chart by the return values of a function not shown in the chart  (ℎܨ). The values 
returned by ℎܨ are represented on the support table. 

This function takes one spatial attribute as input and returns an orderable, real number.  

Let ℎ(ܣ݌ݏ)݂ = ܨ, so we have: (ܣ݌ݏ)      ௛ி     ሱۛ ۛۛ ሮ (݊) , where ݊ is a real number. 

Examples for that function would be “Area” or “Distance to point X”.  
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Ordering the chart by one of these functions would allow the user to possibly draw certain 
conclusions on the relation between the measure values and the function values for each element, 
for example “Smaller regions tend to have a larger population” (Using “Area”), as seen in Figure 19 
and Figure 20: 

 

Figure 19 - Chart showing "Population" as a numerical measure and ordered by a hidden function "Area" (Source: 
INE) 

 

Figure 20 - Support table ordered by hidden function "Area" (ascending order) (Source: INE) 

In the example, the support table’s data and order is the same as the chart, but that is not 
mandatory.  

 As another example, “Crime rate significantly reduces with distance from point X” (Using 
“Distance to point X”)(See Figure 21, Figure 22 and Figure 23): 
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3.4.4. Detail Table 

The detail table is a component used to explain data in greater detail (lower granularity) or 
without the need to change the current visualization on the map or support table. It can display extra 
semantic attributes and numerical measures not present in the map/support table. Depending on the 
levels to which those attributes belong, it can cause a drill-down on the data. 

The rows presented in the detail table vary - it can present rows related to all the elements on the 
support table or only the ones related to user selection. 

In the example below (݀ܣݏ)݂ = ܨܴݐ,  depicted by Figure 24 and Figure 25, we have the ,((ܯ݊
support table displaying data at NUTS II level. When the user selects “Alentejo”, lower granularity 
data used to produce that aggregation is shown in the detail table: 

 

Figure 24 - Support table at lower detail level (Source: INE) 

 

Figure 25 - Detail table at higher detail level (Source: INE) 

3.4.5. Detail Chart 

The detail chart is a direct chart representation of the data in the detail table (see Figure 26 for an 
example). That data can be represented using different kinds of charts, depending on the analysis 
needs and/or semantic meaning of those values. Just like the support chart, the input for the 
respective representation function (ܴ݀ܿܨ) is a set of object vectors. 
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Figure 26 - Detail chart example (Source: INE) 

3.5. Case 2: Multiple Numerical Measures 

The second interaction case is characterized by the usage of multiple numerical measures in the 
analysis, therefore: ݆ܾܱݒ = ,ܣ݌ݏ} ,(ܣ݌ݏ)ܣݏ ,ଵܯ݊ … ,  {௡ܯ݊

3.5.1. Support Table 

The support table for multiple numerical measures has the same structure as the one for a single 
measure, with the exception that it has a column for each measure (Figure 27). ܨܴݐݏ = ,(ܣ݌ݏ)ܣݏ)݂ ,ଵܯ݊  .(ଶܯ݊

 

Figure 27 - Example support table with two numerical measures 

3.5.2. Map 

In this interaction scenario, the representation function will use the spatial attribute ܣ݌ݏ to 
determine the spatial object’s location, just as before. Now, multiple measures will have to be 
represented for each spatial object. We can associate ݊ܯଵ with color, ݊ܯଶ with pattern, ݊ܯଷ with 
line style, and so on. However, this approach is limited to a couple or a few numerical measures, 
because human perception is lost with too many similar graphical elements (for example: pattern, 
line type and line weight can be easily confused). 



Section 3.5 - Case 2: Multiple Numerical Measures 
 

 39

 In order to simplify and make perception easier for the user,  additional measures are 
represented in a chart for each spatial object. The kind of chart used depends on the values to 
compare and type of analysis desired. If we consider that a chart can represent up to 3 or 4 
measures, this approach would cover the large majority of spatial analysis needs.  

 As an example, consider we want to represent 4 numerical measures named ݊ܯଵ, ݊ܯଶ, ݊ܯଷ, ݊ܯସ. The map representation function would be ܴ݉ܨ = f(ܣ݌ݏ, ,(ܣ݌ݏ)ܣݏ ,ଵܯ݊ ,ଶܯ݊ ,ଷܯ݊  ସ). Inܯ݊
the example below (Figure 28) we have associated ݊ܯଵ with color and the remaining measures with 
a pie-chart. Representation styles, such as colors and charts are a complex matter and will be 
discussed in section 3.12. 

 

Figure 28 - Example of combination of charts and colors to represent four numerical measures 

3.5.2.1. Discovery of Spatial and Measure Values Relations 

Besides representing numerical measure on the map, it would be interesting to find relations 
between the numerical measures and the areas/regions on the map. To do this, we propose to use 
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the numerical measures’ values from each line as feature vectors in a clustering algorithm (Figure 
29). This will create clusters of similar elements based on their measure values. 

 

Figure 29 - Selected values for clustering algorithm (feature vectors) 

After the clusters are determined, to each geometrical element is associated a color (or any other 
property) on the map and conclusions may be drawn. 

 In the following example (Figure 30), we have two numerical measures associated with a number 
of regions: “Financial Income of Enterprises (€)” and “Employment rate”. 

 

Figure 30 - Example support table for clustering 

We take those values associated with each region and use a clustering algorithm to determine 
similar counties (Figure 31): 
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year and product_type are semantic attributes from semantic dimensions. 

3.6.1. Support Table 

As we add a new semantic attribute (year (ܣݏ)) to the analysis, the support table representation 
function receives a new argument: ܨܴݐݏ = ,(ܣ݌ݏ)ܣݏ)݂ ,ܣݏ  the ,݆ܾܱݒ After it is applied to every .(ܯ݊
following table is generated (Figure 37): 

 

Figure 37 - An example support table with year attribute 

“2006”, “2007” and “2008” are possible values from year (ܣݏ). Values inside the table cells are 
sales (݊ܯ) for each store_name and year. You can also see a couple of examples of support tables 
when adding more semantic attributes or numerical measures in Figure 38 and Figure 39. 

 

Figure 38 - Support table for two semantic attributes from semantic dimensions and one numerical measure 

 

Figure 39 - Support table for one semantic attribute from semantic dimension and two numerical measures 
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It is important to note that this is a new approach considering the previously defined model by 
Vitorino and Caldeira [6]: Using that approach we could not represent multiple numerical columns 
associated with each spatial object, as it would disrupt the 1:1 relationship between the map and 
support table. Using pivot-like tables (also called matrix view) allows us to keep this relationship 
while representing multiple numerical columns both on the table and on the map. 

This matrix view of the table is used in some applications such as pivot tables or the presented 
StatCan application [23]. However, while in the pivot tables and StatCan it is permitted to use 
attribute values on the table lines, our interaction model does not allow this approach, as it would 
disrupt the one to one relationship between the table and the map. Because of this support table 
design, adding too many semantic attributes and/or numerical measures, would make it extremely 
complex to the user. The topic of visualization complexity is discussion in section 3.11. 

3.6.2. Map 

In order to represent the measure values associated with each value of a semantic attribute ܣݏ, 
the previous interaction model [6] used a slider with multiple maps. In each of those maps, a possible 
value for ܣݏ was chosen, and measure values related to that attribute were represented. 

Even though the slider with multiple maps approach allows us to view the changes to the 
measures across several values of a semantic attribute ܣݏ, it doesn’t give the analyst a global view of 
those values, making it difficult to draw conclusions based on non-adjacent values. It is, however, 
useful for orderable attributes, especially from data/time dimensions since it allows the user to view 
the evolution of values through time. 

The most commonly used group of attributes of this kind are probably those from date/time 
dimensions (Year, trimester, month, ...), so we’re going to use them on the examples below. 

The proposed method to allow the comparison among several measure values associated with the 
respective attribute’s value is to add/adapt a chart to each spatial object on the map. The chart 
should have the measure values on one axis (Y) and the orderable attribute’s values on the other (X). 
That way a user can easily compare several values at the same time without the need to scroll back 
and forth. 

This method assumes that there is a relatively low number of distinct values of the semantic 
attribute, or only a low number of those values is used at the same time. 

In the example below (Figure 40), ܴ݉ܨ = ,ܣ݌ݏ)݂ ,(ܣ݌ݏ)ܣݏ ,ܯ݊  :(ܣݏ
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Figure 40 - An example map where a numerical measure is represented along with 3 distinct values for a semantic 
attribute 

Multiple measures and semantic attributes can be used on this approach but, problems arise on 
the map, as this component becomes excessively cluttered with text and graphical data. In order to 
represent multiple measures/attributes on the map we would need to adapt the chart for this 
representation. This can be done by creating multiple groups of bars, where each one represents 
either a measure distributed by several attribute's values or the opposite situation. 

This method ensures that a 1:1 relationship is kept between the support table and the map, where 
for each line in the first corresponds a spatial object in the latest. 

3.7. Case 4: Semantic Attributes from a Spatial Dimension 

Like in the previous interaction case (presented in section 3.6), we define how data is represented 
when dealing with semantic attributes (ܣݏ), with the difference that ܣݏ is from a spatial dimension 
this time. Note that there is already a spatial attribute (ܣ݌ݏ) and at least a numerical measure (݊ܯ) 
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present, as you can see by a representative vector object for this case: ݆ܾܱݒ = ,ܣ݌ݏ} ,(ܣ݌ݏ)ܣݏ ,ଵܯ݊ … , ,௡ܯ݊  .is the new semantic attribute ܣݏ where ,{ܣݏ

 When adding a semantic attribute (ܣݏ) from a spatial dimension it is important to consider the 
level at which both ܣ݌ݏ and ܣݏ are (comparing levels is described in detail in section 4.3). If ܣݏ is at 
the same or higher level than ܣ݌ݏ, then there is only one value of ܣݏ for each ܣ݌ݏ.  

On the other hand, if ܣݏ is at a lower or incomparable level than ܣ݌ݏ, then there are possibly 
multiple values of ܣݏ for each ܣ݌ݏ. In this case, a different approach is needed in order to keep the 
1:1 relationship between the map and the support table as we’ll see. 

3.7.1. Semantic Attribute at the Same or Higher Level than the Spatial 

Attribute 

3.7.1.1. Support Table 

In this case, the number of lines in the support table is not altered. A new column indicating the 
value of ܣݏ for each line is added (ܨܴݐݏ = ,(ܣ݌ݏ)ܣݏ)݂ ,ܣݏ  :(Figure 41)((ܯ݊

 

Figure 41 - Support table after adding sA 

3.7.1.2. Map 

In order to represent the semantic attribute, a spatial object property has to be chosen. The 
spatial objects we consider in this example are points. Since we are using color to represent the 
measure (as proposed in the first interaction case), we could choose among size, shape, pattern or 
any other. In the following map (Figure 42), shape was used to represent the semantic attribute and 
color to represent the measure (ܴ݉ܨ = ,ܣ݌ݏ)݂ ,(ܣ݌ݏ)ܣݏ ,ܯ݊  :((ܣݏ
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Figure 42 - Map with numerical measure and semantic attribute representation 

3.7.2. Semantic Attribute at an Incomparable or Lower Level than the Spatial  

       Attribute 

When the semantic attribute ܣݏ is at a lower level than the spatial attribute ܣ݌ݏ or at an 
incomparable level (meaning that there is no path between the two levels), the support table 
representation function receives the same arguments, but as we can see in Figure 43, the table 
structural representation is different: 

 

Figure 43 - Support table after adding store_type (sA) 

Notice that this case is identical to the one presented in the previous section (3.6). The 
representation function ܴ݉ܨ would produce a similar map, since the input support table has the 
same structure. 

Once again this matrix structure ensures the 1:1 relationship between the lines in the support 
table and the spatial objects represented in the map. 

3.8. Case 5: Spatial Attributes from the Same Dimension 

The base scenario in this case contains one or more numerical measures (݊ܯ௜) in addition to a 
spatial attribute (ܣ݌ݏ) and respective associated attribute (ܣ݌ݏ)ܣݏ. 
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3.8.1.2. Map 

The map representation function ܴ݉ܨ is used in the same way as the previous interaction cases, 
since we have only one spatial attribute and one or more numerical measures. Figure 45 shows 
examples of roll-up and drill-down operations. 

 

Figure 45 - Roll-up and drill-down operations (Average used as aggregation function) 

3.8.2. Attributes from Different Hierarchies 

If the spatial attribute we are adding is not in the same hierarchy tree as the one already present 
in the analysis, there are two possible approaches, depending on whether the inclusion principle is 
verified or not in the situation. 

Let ܣ݌ݏଵ be the spatial attribute already present in the visualization and ܣ݌ݏଶ the spatial attribute 
we are adding. ܣ݌ݏ௕௔௦௘ is the spatial attribute at the lowest level of granularity on the same spatial 
dimension. 

Definition 6: The inclusion principle between ܣ݌ݏ௕௔௦௘, ⊃ ௕௔௦௘ܣ݌ݏ ଵ andܣ݌ݏ ⊃ ௕௔௦௘ܣ݌ݏ ଶ is verified iffܣ݌ݏ ଵ andܣ݌ݏ  . ଶܣ݌ݏ 
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If the inclusion principle among the three relevant attributes is verified, both the support table 
and the map will generate and represent intersections between ܣ݌ݏଵ and ܣ݌ݏଶ, as depicted in the 
following example: 

 Consider the following hierarchies in the Portuguese administrative subdivisions (Figure 46). 

 

Figure 46 - Portuguese administrative subdivisions 

Consider data (store sales) at the “Município” level (ܣ݌ݏ௕௔௦௘). ܣ݌ݏଵwill be “Distrito” and ܣ݌ݏଶ will 
be “NUTS II” (see Figure 47, Figure 48 and Figure 49). 

 

Figure 47 - "Município" subdivision - lowest data granularity 
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Figure 48 - "Distrito" subdivision 

The three regions marked in red (Figure 48) are the ones we will consider in our example. 

 

Figure 49 - "NUTS II" subdivision 

Figure 50 shows that the inclusion principle is verified among the three spatial attributes 
considered: 
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Figure 50 - Verifying the inclusion principle 

Since the inclusion principle is verified, we will have five elements to represent, which are the 
result of the intersection between ܣ݌ݏଵ and ܣ݌ݏଶ, shown in Figure 51: 

 

Figure 51 - Intersections between "Distrito" and "NUTS II" 
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The support table will have five lines (Figure 52), one for each intersection. The map maintains the 
1:1 relationship, having five corresponding spatial objects (Figure 53) (Notice that the Geometric 
Grouping Function described above is used in these cases, since we will have two spatial attributes as 
input for one spatial object): 

 

Figure 52 - Support table 

 

Figure 53 - Map (with legend) 

If the inclusion principle between the three parts is not verified, a different approach is required, 
presented in the next section. 

3.9. Case 6: Spatial Attributes from Two Dimensions (or with no 

inclusion) 

In this case, we will often refer to ܣ݌ݏଵ and ܣ݌ݏଶ. The first one is the spatial attribute already 
present in the analysis, while spAଶ is the spatial attribute being added. 

In the previously defined interaction model [6], visualizing spatial attributes from different 
dimensions  would only be possible by fixing a value of ܣ݌ݏଵ. That way, multiple maps and support 
tables would be created, one for each distinct value of ܣ݌ݏଵ. 

Even though this approach allows the user to analyze data for each value of ܣ݌ݏଵ, it doesn’t offer 
a comprehensive view on the relations between the two spatial attributes, making it extremely hard 
to make comparative analysis among them. 
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3.9.1. Roll-Up and Drill-Down Operations 

When representing spatial attributes from different dimensions, roll-up and drill-down operations 
can still be used by following each attribute’s hierarchies. The previous example considered both 
spatial attributes at a level where their respective spatial object is a point, however, when a roll-up 
operation is performed on one or both attributes, their representation may be an area (polygon). 

Consider the same support table and representation using relationship-lines in Figure 57 (the 
above hierarchy level to which the points will roll-up is marked by the Greek letters α, β and γ): 

 

Figure 57 - Example using relationship-lines 

If the user applies a roll-up operation on ܣ݌ݏଵ (to which (ܣ݌ݏ)ܣݏଵ is the related semantic 
attribute) an aggregation will take place and the respective spatial objects will be polygons (α, β and 
γ). In this example, the aggregation functions applied were sum to ݊ܯଵ and average to ݊ܯଶ, 
producing the new support table in Figure 58: 

 

Figure 58 - New support table with aggregated data 

Based on the new granularity data, ܴ݉ܨ produces the following representation (see Figure 59) (A 
ghost point (definition 7, see below) is used for each area): 
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Figure 59 - New map representation 

The same principle applies when using the chart-based representation (only ݊ܯଵ is 
represented)(Figure 60): 

 

Figure 60 - New map representation using charts 

Definition 7: Ghost point is an auxiliary GIS object (point) that is used to represent an area. 
Several approaches can be used when determining an area’s (polygon) ghost point such as: User-
defined, horizontal/vertical centered relative to the polygon, computed based on lower-level points, 
etc. 



 

3.9.2. Vi

As it wa
make the 
the follow
clustering)

Using v
in this exa
hoc groups

3.10. Sp

Spatial 
several wo

isualizati

as mention
analysis pro

wing suppo
(Figure 61)

Figur

isualization
mple) wou
s/clusters w

Fig

patial Me

measures w
orks in whic

ion Clust

ned in secti
ocess easie
ort table a
: 

re 61 - Suppo

 clustering,
ld be gene

with no sem

gure 62 - Supp

easures 

were not co
h they are p

ering 

on 3.2 (Da
er for the us
and direct

rt table and m

, a new agg
rated and t
antic mean

port table and

onsidered i
proposed us

ta Represe
ser. As an e
 map rep

map represen

gregated su
therefore a
ing)(Figure 

d map represe

in the prev
sing differe

ntation), cl
example of

presentation

ntation withou

pport table
 new repre
62): 

entation with

ious interac
nt approach

Se

ustering m
f automatic
n by ܴ݉ܨ

ut visualizatio

e (used sum
esentation b

 visualization

ction mode
hes (see Ch

ection 3.10 - S

ay be very
 group creaܨ (without 

on clustering 

m as aggrega
by ܴ݉ܨ (A

n clustering 

el even tho
apter 2).  

Spatial Measu

y important
ation consid

visualizat

 

ation funct
 and B are 

 

ugh there a

ures 
 

59

 to 
der 
ion 

ion 
ad 

are 



Chapter 3 – Extended Interaction Model
 

 60

As it was mentioned, none of the studied works covers spatial measures that are arbitrary 
geometric shapes directly and solely related to a fact/event. These arbitrary spatial measures allow a 
much higher flexibility - they are not related to already existent spatial attributes and therefore have 
no restrictions on their shape and size. Using arbitrary spatial measures we can represent the area of 
a fire, the radioactive cloud of a nuclear incident or any other spatial value that is not related to pre-
defined spatial hierarchies in a multidimensional model. 

We have to take into consideration that since the spatial measures are stored in the fact table, the 
number of spatial elements to store in the database and process for analysis is much higher than 
when we’re dealing with spatial attributes from dimensions. Being measures and not attributes from 
dimensions also influences greatly on both map representation and aggregation of spatial data. 

Representing and aggregating spatial measures are the two main issues that require further 
research in order to reach a compliant and useful interaction model supporting them. We would 
suggest starting with spatial measures represented by points for two reasons: 1) it is easier to acquire 
real world data where events are characterized by simple coordinates (points) than areas (polygons) 
and 2) visualization, clustering and aggregation is more intuitive using points. This subject is not 
studied further on this thesis. 

3.11. Visualization Complexity 

A table’s complexity is associated with the number of rows, columns and cells it contains. The 
number of cells can be calculated simply by multiplying the number of rows by the number of 
columns in the table. 

In our interaction model it is assumed that the support table has a one to one relationship with 
the map at all times. This means that for each row in the support table there is a spatial object in the 
map. Adding a new spatial object to the analysis means that a new row will be added to the table. 

The number of columns is more complex - even though it is related to the number of measures 
and attributes, it is not a linear relationship as it would be if we were using a regular table. In order to 
maintain the “one row, one spatial object” property, our table can have nested headers. This 
happens when the added attribute has either a lower level, is from a different dimension or from a 
different hierarchy than the current spatial attribute. For the remaining of this section, whenever we 
mention “header attribute”, we’re referring only to these. You can think of such a table as a tree 
where nodes contain header attribute values and leaves (cells) contain the measure values 
associated with a specific combination of header attributes values. For example, the following two 
representations of the same table are equivalent (both diagrams represent a table with two 
measures (M1 and M2) and two header attributes, each of which has two distinct values (‘X’, ‘Y’ and 
‘A’, ‘B’): 



 

Whenev
the table. 
formula: 

݉ݑܰ
As we c

higher leve
adding a h
values. 

In orde
spatial obj
the same 
controlled 

When w
column, co
value to th
have more
column - e
visual prop

ver a measu
The total n

ݏ݊݉ݑ݈݋ܥ݉
can see fro
el than the 
header attr

r to mainta
ects in the 
spatial obj
for each co

we have on
ontaining th
he size of t
e than one 
each object 
perties of th

ure or attrib
number of 

= ܮ݊ܫ݉ݑܰ
m the form
considered
ibute leads

ain a one t
map, we ha
ject. This m
olumn in ou

ly one mea
he measure
he spatial o
measure a
has multip

he spatial o

Figure

Figure

bute is add
columns in

ݏܾ݅ݎݐݐܣ݁݊݅ܮ
mula, while 

 spatial attr
s to a much

to one relat
ave to be ab
means that 
r support ta

asure and n
e’s value. T
object (if it 
nd/or head

ple values a
objects, one

e 63 - Table re

e 64 - Tree re

ed to the a
 the suppo

ݏ + ܯ݉ݑܰ 
adding In-

ribute) lead
h higher gro

tionship be
ble to repre

we need 
able.  

o header a
This can be 

is a point) 
der attribute
ssociated w
e for each c

epresentation

presentation

nalysis, it w
ort table ca

ݏ݁ݎݑݏܽ݁ܯ ∗
Line attribu

ds to a linea
owth that d

etween the 
esent all the
a visual pr

ttributes, o
easily repr
or it’s colo

es, our sup
with it. In th
column. Ins

Section 3

n 

will possibly 
n be calcul

 ෑேு௘௔ௗ௘௥஺௧௧
௜ୀଵ

utes (those 
ar growth in
depends on

rows in th
e values ass
roperty of 

our support 
esented by

or (in case i
port table 

his case we 
stead of ass

.11 - Visualiza

 

 

add multip
lated using 

௧௥௜௕௦݅ݐݏ݅ܦܰ

that are at
n the numbe
n the numb

he support 
sociated wit
the spatial 

table has o
y mapping t
t’s a polygo
will have m
have to co

sociating ea

ation Complex

ple columns
the follow

 (݅)ݏݐܿ݊݅

t the same
er of colum
ber of disti

table and t
th each row

object to 

one numeri
the respect
on). When 

more than o
ontrol multi
ach value w

xity 
 

61

s to 
ing 

 or 
ns, 
nct 

the 
w in 

be 

ical 
tive 
we 

one 
ple 

with 



Chapter 3

 62

properties 
charts - on

The cog
the comple
table to a s
earlier, th
effectively 

3.12. St

While s
Using diffe
with a colo

The po
main facto
those obje

The fol
relevant co

The cas
adds a hea
into multip
looking for

3 – Extended 

 such as pat
ne chart for 

gnitive proc
exity of the
small numb
is can be 
 by limiting 

tyles and

patial objec
erent styles 
or gradient, 

ssible/reco
ors: The geo
ects. 

lowing figu
ombination

ses where t
ader attribu
ple. In these
r: If the use

Interaction M

ttern or das
each object

cess of a use
 spatial obj

ber (and the
done by li
the numbe

d Legend

cts indicate 
we can con
a chart, etc

mmended 
ometry of t

ure shows s
: 

Figure

there is mo
ute, which a
e cases the 
er wants to 

Model

sh, which w
t, where ea

er is then c
ects that de

erefore the 
miting the 

er of header

d 

what to dis
ntrol wheth
c. 

representa
he spatial o

some of th

e 65 - Possible

ore than on
adds a new 
recommen
compare th

would be ext
ch bar map

conditioned
erive from t
number of 
number o

r attributes 

splay on a m
her we wan

tions (and 
objects and 

he possible 

e and recomm

ne column 
GROUP BY 
ded style w
he values fo

tremely har
ps a column

 not only b
the first. Ke
bars in a ch

of in-line at
and their r

map, a style
nt to display

therefore 
the numbe

styles and

mended visual

but only on
element an

would depen
or each spa

rd to analyz
/value. 

y the table
eping the n

hart) is esse
ttributes a
espective d

e is a descrip
y a variable

the applied
er of values

d the recom

lization styles

ne measure
nd causes th
nd on the ty
tial object b

ze, our appr

’s complexi
number of c
ential. As it w
nd measur

distinct valu

ption of how
e size point 

d style) de
s to represe

mmended s

s 

e happen w
he measure
ype of analy
between th

roach involv

ity but also 
columns in t
was explain

res, but mo
es. 

w to display
marker, are

epend on t
ent on each

style for ea

when the u
e value to sp
ysis the use

hemselves, t

 
ves 

by 
the 
ned 
ore 

y it. 
eas 

wo 
h of 

ach 

 

ser 
plit 
r is 
the 



Section 3.12 - Styles and Legend 
 

 63

pie chart is the optimal choice. On the other hand, if the user wants to compare values among 
different spatial objects, the bar chart is more clear. 

In certain cases it is important to know if our numerical values are components of a measure: 
Consider ݒଵ, … , ,ଵݒ .௜ as being the numerical columns we want to representݒ … ,  ௜  are theݒ
components of a measure ܺ if ܺ = ଵݒ  + ⋯ +  ௜ . Example: “Public expense” is a component ofݒ 
“Expense” because “Expense” = “Public expense” + “Private expense”. 

A pie chart is usually used to represent a whole divided into its parts (the components of a 
measure). When we have only one measure split into multiple values due to a header attribute, it is 
exactly the case where a pie chart is a good representation. The pie chart style is not recommended 
in the other cases because if we have more than one measure, we are representing values related to 
different concepts. Two different measures are not part of a whole, so it would be illogical to use a 
pie chart to represent them - in these cases, measures can be represented by a simple bar or line 
chart, where to every measure corresponds a bar/line. The aim of the analysis in these cases is 
usually the absolute values of each measure, and not the proportion among them. 

There are many subjects related to styles and legend that are open for discussion - the usage of 
local and global scale for different charts, adapting the bar’s scale according to the measure it 
represents, using both constant and variable value groups in a legend, style/legend editor, etc. These 
subjects are out of the scope of this work but research on these topics would probably lead to the 
implementation of many new analysis features related to styles and legends. 
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This chapter presents the proposed architectural design for the prototype to be developed. It 
starts by an overview of the entire system, its components and their communication, followed by a 
more detailed insight into the SOLAP+ Server and Client. It is then presented the Communication 
Protocol between the SOLAP+ Server and Client and finally the Meta Model definition. 

4.1. Architecture Overview 

There are five main components in our proposed logical architecture: SOLAP+ Client, SOLAP+ 
Server, Spatially Compliant Data Server, Map Server and Metadata Repository. 

The SOLAP+ Client handles all user interaction, data presentation and request generation. It 
communicates with the SOLAP+ Server to send data requests and receive responses.  It also 
communicates with the Map Server to request maps and present them to the user. The SOLAP+ 
Server is responsible for listening to client requests, processing them using the required metadata 
information from the Metadata Repository and retrieving the appropriate data stored in the Spatially 
Compliant Data Server. It can also communicate with the Map Server to retrieve map data. The 
Metadata Repository is where all the required metadata for the system is stored. It is accessed only 
by the SOLAP+ Server in several situations described in this chapter. 

Map Server and Spatially Compliant Data Server are external components that permit generation 
of dynamic maps and retrieval of data respectively, both based on request/response approaches. 

 

Figure 66 - SOLAP+ Logical Architecture 
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4.2. SOLAP+ Server Architecture 

A SOLAP+ request is handled by the server as follows: First the request goes through a parser, 
where it is validated. The parameters are then extracted and sent to a processor. Requests that do 
not require information from the database (such as List Cubes) are processed using the request 
parameters and metadata only, producing response parameters that are sent back. Other kinds of 
requests (such as Get Data) require access to the database. In these cases, the processor uses the 
request parameters, auxiliary metadata and database-retrieved information to generate the 
appropriate response parameters. Finally, the actual XML response is generated based on the 
received response parameters and sent back to the client. 

In this process we can identify four main components inside the SOLAP+ Server: Communication 
Handler, Metadata Request Processor, Data Request Processor and SQL Query Processor: 

 

Figure 67 - SOLAP+ Server Architecture 

Communication Handler receives the XML request from the client and validates it using an internal 
XML Schema. If the request is valid, it also extracts the parameters from the request and sends them 
to the appropriate component (Metadata Request Processor or Data Request Processor) depending 
on the type of request. 

As mentioned above, the Metadata Request Processor component deals only with requests that 
do not require database access. The received request parameters along with the model information 
from the Metadata allows this component to produce response parameters and send them to the 
Response Builder without the need for any other component. 
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The Data Request Processor deals with requests that involve database access. It receives request 
parameters and model information metadata from the Metadata Request Processor, producing 
requests for database information. This information is received and compiled, creating response 
parameters and sent to the Communication Handler. This component is fairly complex and will be 
detailed further on. 

SQL Query Processor acts like a database connector - it receives queries from other components 
and executes them on the DBMS. It is also responsible for retrieving the results and sending them 
back to the requesting component. 

Finally, the Communication Handler component is also responsible for compiling all the response 
parameters received and generates a SOLAP+ XML response with the required information. This XML 
response is then sent back to the client. 

As mentioned before, the Data Request Processor (Figure 68) handles requests that require 
database access as well as metadata and request parameters. Once the request parameters are 
received, the first action taken is the choice of an aggregate by the Aggregate Navigator (detailed 
ahead). Once an aggregate is chosen, this information along with the request parameters are sent to 
the SQL Generator which in turn calls one or more auxiliary components (Table SQL Generator, 
Spatial SQL Generator, Distincts SQL Generator or any other SQL module) depending on the request 
type. When the response parameters are ready, they are sent back to the Communication Handler 
component. 

 

Figure 68 - Server’s Data Request Processor Architecture 
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SOLAP+ XML requests are not aggregate-aware. This means that a request sent to the server 
always refers the original multidimensional model’s entities such as fact tables and dimensions. It is 
the Aggregate Navigator’s responsibility to select the best possible aggregate to use for each 
request/situation based on the request parameters.  

Receiving requests that always refer the original multidimensional model takes away the 
complexity of choosing an aggregate from the analyst/client. As explained before when presenting 
aggregates, the possible ones are selected based on the referenced levels in the request 
parameters/query. If there is an aggregate that can be used, it will be selected and all further 
processing will use the aggregate’s tables instead of the original ones; otherwise, the original fact 
table and dimensions will be used. In case there is more than one possible aggregate for a certain 
query, an heuristic will have to be used to select one of them. Comparing aggregate’s performance 
and selecting the best aggregate from within a list is, however, out of the scope of this work. 

After the aggregate is selected, all the required information is sent to the SQL Generator (request 
parameters and aggregate information). This components determines, based on the request 
parameters, which generator(s) are to be used: If the request is get_distincts, only the Distincts SQL 
Generator is used. If the request is get_data, the Table SQL Generator is called, along with the Spatial 
SQL Generator in case the spatial flag is set to true; that is, if the client requires a spatial SQL query to 
be generated. Other SQL generator modules can be implemented. 

Both the Distincts SQL Generator and Table SQL Generator components generate SQL queries 
based on the request parameters and send them to the SQL Query Processor to be executed on the 
server. They then receive a data rowset that is sent back and used to build a response.  

The Spatial SQL Generator works in a different way: While the other two components execute 
their generated SQL queries and receive rowsets as results, the Spatial SQL Query’s objective is only 
to produce an SQL query. This query is attached to the response that goes back to the client and it 
should then be forwarded to the Map Server to generate a map that represents the same 
information as the associated rowset produced by the Table SQL Generator. 

4.3. Aggregates 

There are two main issues regarding aggregates that need to be addressed: Which aggregate 
tables to build and which of the existent aggregates to use in each of the user’s interactions/queries. 
In our work, we’re assuming that the first issue is already solved, i.e., we already have a defined set 
of aggregates to use (aggregates can be described using our metamodel proposal, as seen in section 
4.6.3). We now have to define techniques to select the best aggregate for each situation from our 
initial set. This is done in two steps: 1) Select the possible aggregates and 2) Select the best aggregate 
from among the possible. 



Chapter 4

 70

Next in 
which we a

4.3.1. Di

For rep
node and 
lowest leve
determine

Conside
In this cas
granularity

A speci
Using the e

4 – Architectu

this section
address the

imension

resentation
arcs repres
el of a dime
 one or mo

er ߙ and ߚ a
e, ߙ is lowe

y and the hi

al level nam
example fro

ure

n we prese
e two steps 

ns, Levels

n purposes, 
sent hierarc
ension (fine
re hierarchi

as levels in 
er (<) than 
gher level (

med all can
om the prev

nt a repres
mentioned

s, Hierarc

we conside
chic relatio

er granularit
ies (see Figu

Figure 69 -

a dimensioߚ. This graߚ) has coar

Figure 70 - R

n exist in a
vious figure 

entation an
. 

chies and

er a dimens
nships betw
ty). Followi
ure 69). 

 Levels organ

n: ߚ is high
aph relation
rser granula

Relationships 

ny dimensi
but now re

nd definition

d Aggrega

sion as an o
ween two l
ng the arcs 

ized in hierar

er (>) than 
nship mean
arity (see Fig

between two

on. It is th
epresenting

n of concep

ates Repre

oriented gra
levels. The 
starting fro

 

rchies ߙ if a graph
ns that the 
gure 70). 

 

o levels 

e highest le
g the all leve

pts used fur

esentatio

aph where 
root node 

om the root

h path exist
lower leve

evel for ev
el: 

rther on, af

on 

each level i
is always t

t node we c

s from ߙ to
l (ߙ) has fin

ery hierarc

 
fter 

is a 
the 
can 

o ߚ. 
ner 

hy. 



 

ߚ and ߙ
and ߚ be
established

An aggr
define the
suitable to

Even th
slice and/
operations

are incom ߚ
long to dif
d (Figure 72

regate is ch
 granularity

o answer a q

= ݃ܣ
ough it is p
or filter ex
s can obviou

mparable if 
fferent hie
2). 

aracterized
y at which 
query or not

= ܮଵ݉݅ܦ} ) 
ossible (and
xpressions, 
usly be exec

F

there is no
rarchies an

Figure 7

 by a level o
that aggreg
t. 

,ଵ݈ݒܮ . . . , ݅ܦ
d maybe re

those will
cuted over t

igure 71 - The

o graph pat
nd a granu

72 - Two incom

or set of lev
gate is and 

݅݉ଵ݈ݒܮ௡}, . .
levant in so
l not be c
the aggrega

e all level 

h that cont
ularity relat

mparable leve

vels for eac
will be use

. . , ݒܮ௞݉݅ܦ}
ome cases) t
considered 
ated data.

 

tains both l
tionship be

 

els 

h dimensio
ed to deter

,ଵ݈ݒ . . . , ݉݅ܦ
to create ag
in our wo

Section 

evels. This 
etween the

n it indexes
mine if tha

݉௞݈ݒܮ௜} ) 

ggregates w
ork. Howev

4.3 - Aggrega

means that
em cannot 

s. Those lev
t aggregate

with integrat
er, slice/fil

ates 
 

71

t ߙ 
be 

vels 
e is 

ted 
ter 



Chapter 4 – Architecture
 

 72

Aggregates can also be compared, establishing a hierarchy among them. An aggregate ܣ ଵ݃ is 
higher or equal (≥) than an aggregate ݃ܣଶ iff all levels from ܣ ଵ݃ are higher or equal to the respective 
levels from ݃ܣଶ: 

ܣ ଵ݃ ≥ ଶ݃ܣ ↔ ଵ௜஽௜௠೔௅௩௟ೕ݃ܣ ∀ ∈ ܣ ଵ݃: ܣ ଵ݃௜஽௜௠೔௅௩௟ೕ ≥ ଶ௜஽௜௠೔௅௩௟ೕ݃ܣ   

After parsing a query and extracting the levels it references for each dimension, we can build a 
representation of it that follows the same structure as an aggregate: 

ܳ = ,ଵ݈ݒܮଵ݉݅ܦ} )  . . . , ,{௡݈ݒܮଵ݉݅ܦ . . . , ,ଵ݈ݒܮ௞݉݅ܦ} . . . ,  ( {௜݈ݒܮ௞݉݅ܦ

 

4.3.2. Selecting Possible Aggregates 

An aggregate ݃ܣ is suitable to answer a query ܳ if, for each dimension, each of the levels in ܳ is 
higher than at least one of the levels in ݃ܣ: 

∀ ܳ௟௘௩௘௟೔ ∈ ܳ, ௟௘௩௘௟ೖ: ܳ௟௘௩௘௟೔݃ܣ ∃ ≥ ௟௘௩௘௟ೖ݃ܣ   

Note that when a level is not present it is considered as all, which is the highest in any hierarchy. 

4.3.3. Selecting the Best Aggregate 

Using aggregates improves a system’s perfomance because aggregation operations up to a certain 
level are already made, meaning that this new table has less rows than the base fact table, and 
therefore further operations will involve fewer rows. 

At this point we already have a set of possible aggregates that can be used to answer a query. The 
best aggregate to use will be the one where all levels are equal to the ones referenced by the query, 
named ݃ܣொ. If that aggregate does not exist, we should use (one of) the aggregate(s) immediately 

below ݃ܣொ in the hierarchy, as those are the closest to the best. 

If more than one aggregate is selected this way, an heuristic will have to be used in order to 
choose one of them. Following the reasoning explained in the first paragraph, one of the possible 
approaches would be to select the aggregate that has the lowest number of rows in its fact table. 
That would result in fewer operations and therefore better perfomance. 

4.4. SOLAP+ Client Architecture 

The SOLAP+ Client is responsible for generating and sending requests to the SOLAP+ Server as well 
as processing the responses and displaying results. These requests are triggered by user interaction in 
the interface, generating a message according to the communication protocol and sent to the server. 



Section 4.4 - SOLAP+ Client Architecture 
 

 73

When a reply is received, it is parsed and processed, producing a visual representation of the 
respective data (such as a table). If there is a spatial query included in the response, it is used to 
request a new map to the Map Server, which is finally displayed in the user interface. 

In this process we can identify four main components that constitute our SOLAP+ Client: User 
Interface, Communication Handler, Data Processor and Map Control (Figure 73): 

 

Figure 73 - SOLAP+ Client Architecture 

The User Interface component is responsible for triggering events based on user interaction (such 
as adding attributes and measures, slices, zooming on the map, etc) as well as displaying visual 
information, namely the support and detail tables and the map.  

These events (except the ones directed only at the map) are captured by the Communication 
handler which produces XML messages that comply with the specified communication protocol 
based on the user’s actions. They are then sent to the SOLAP+ Server and processed as described in 
the previous section. When a response from the SOLAP+ Server is received, it is parsed, extracting its 
parameters and sent to the Data Processor. 

The Data Processor component is where the response data is actually processed. There are 
different types of responses according to the type of request that was issued, but it always comes 
down to generating a visual representation of the received data, whether it is displaying the 
information from a newly loaded cube/session or rendering tables and map. The most common 
request is get data. The response to such a request includes a rowset which, along with some extra 
information, permits the Data Processor to generate a visual representation of it, namely the support 
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table and/or detail table. In case it was flagged as a spatial request, a spatial query is also included in 
the response. This SQL query, along with some information required for style generation is sent to 
the Map Control component. The Data Processor’s inner architecture will be detailed further on. 

Map Control is the bridge between the SOLAP+ Client and the external Map Server component. As 
stated before, it receives a spatial SQL query and some extra information from the Data Processor. Its 
main objective is to request appropriate maps to the Map Server. In order to do this, it needs to 
generate dynamic themes (using the spatial SQL query) and dynamic styles (using the extra 
information, such as number of measures, the spatial attribute’s type of geometry, etc). After the 
themes and styles are defined, the map request is sent and a new map is received, which is then 
forwarded to the User Interface. The Map Control component also captures some of the interaction 
events from the interface, such as zooming, panning, layer displaying, etc. These events are handled 
by sending requests to the Map Server and receiving a new map. 

The client’s Data Processor (Figure 74) is basically a collection of components to produce visual 
representations of the received data. Based on the received response parameters, one or more of 
these auxiliary components are used to produce an output, which is then sent to the User Interface 
for presentation: 

 

Figure 74 - Client's Data Processor Architecture 

The Component Builder is responsible for forwarding the spatial-related information to the Map 
Control component, as well as deciding which auxiliary builder component(s) to call. In a normal get 
data request, the Support Table Builder and/or the Detail Table Builder components are used to 
generate visual representations of the rowset(s) received, according to the interaction model. Other 
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kinds of requests, such as get distincts or load cube require drop-down lists, trees or other 
components to be associated with data structures, such as arrays, vectors, etc. This is done by the 
Component-Associated Structure Builder. All of these auxiliary components produce a visual data 
representation, which is sent to the User Interface, associated with a certain component and 
presented to the user. 

4.5. Communication Protocol 

The communication between the client and server follows a request/response pattern. As 
described before, the SOLAP+ Server acts as a web service and listens for XML requests from clients. 
When one is received, it is validated and processed, generating a XML response which is sent back to 
the client. 

Client requests can be split into two types: session requests and data requests. Session requests 
refer to loading or saving session information to a file. Data requests require that the SOLAP+ server 
sends information back to the client, such as a request for a new map / support table. 

All SOLAP+ requests have the same XML base format: 

<?xml version="1.0" encoding="UTF-8"?> 
<solapplus> 
 <request call=”request_name” spatial=”boolean_value”> 
  ... 
 </request> 
</solapplus> 

Where request_name is the request identifier and boolean_value determines if a spatial query is 
to be produced by the server. Most of the requests require additional information which is supplied 
in the form of extra XML elements under the <request> element. 

In the same way, all SOLAP+ responses follow the same base structure: 

<?xml version="1.0" encoding="UTF-8"?> 
<solapplus> 
 ... 
</solapplus> 

The specific response data is added inside the root element. 

Data requests are the most frequent and most important requests as they provide the means to 
perform the actual data analysis. There are four different data requests in our communication 
protocol: “List Cubes”, “Load Cube”, “Get Data” and “Get Distincts”. The responses to the first two 
are derived from the metamodels only, while the latest two require data to be retrieved from the 
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database. Next in this section we will present the detailed structure of each data request to the 
SOLAP+ server, as well as their respective responses. 

4.5.1. List Cubes 

List cubes is a base request aimed at getting information about the available cubes in the server. It 
has the following structure: 

<?xml version="1.0" encoding="UTF-8"?> 
<solapplus> 
 <request call=”list_cubes” /> 
</solapplus> 

This request does not require any additional information apart from the request identifier, 
therefore it’s structure is exactly the same as the base structure presented above. 

The response to list_cubes is basically a list of the available cubes in the server, as well as some 
associated information, namely the filename where they are described and a textual description of 
what they represent: 

<?xml version="1.0" encoding="UTF-8"?> 
<solapplus> 
 <cube id=”1” name=”CubeA” filename=”cubea.xml” description=”A desc.” /> 
 <cube id=”2” name=”CubeB” filename=”cubeb.xml”  description=”B desc.” /> 
</solapplus> 

4.5.2. Load Cube 

Load cube is the request to get all the necessary information regarding a model so that a client can 
interact with it. 

The XML request contains the cube ID and filename: 

<?xml version="1.0" encoding="UTF-8"?> 
<solapplus> 
 <request call=”load_cube”> 
  <params cubeId=”1” filename=”cubea.xml” /> 
 </request> 
</solapplus> 

The response includes not only cube-specific data such as dimensions and measures, but also 
auxiliary information such as connection specifications for the map server, the base map to use and 
available layers: 

<?xml version="1.0" encoding="UTF-8"?> 
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<solapplus> 
 <cube id=”1” name=”CubeA” description=”A description”> 
  <maps>...</maps> 
  <dimensions>...</dimensions> 
  <measures>...</measures> 
 </cube> 
</solapplus> 

4.5.3. Get Data 

Get Data is the request for the actual data to be displayed and analyzed by the user. The base 
request contains the cube ID and the spatial boolean flag. Specifying the information we want and 
the restrictions to apply is done by including additional elements inside <request>, as in the following 
example: 

<?xml version="1.0" encoding="UTF-8"?> 
<solapplus> 
 <request call=”get_data” spatial=”true”> 
    <params cubeId=”1” spatial=”true”/> 
    <measure id=”1” operator=”SUM” /> 
    <level dimensionId=”1” levelId=”3” /> 
    <attribute dimensionId=”1” levelId=”3” attributeId=”1” /> 
    <slice dimensionId=”1” levelId=”3” attributeId=”1” operator=”LESS”      
    value1=”100” />  
    <spatialSlice dimensionId=”1” levelId=”3” attributeId=”7”  layerId=”2”   
    operator=”INSIDE” /> 
    <fieldFilter measureId=”1” operator=”GREATER” value1=”2500” /> 
    <measureFilter measureId="1" operator="GREATER" value1="100"             
    measureOperator="SUM"/> 
    <nFilter measureId="1" operator="TOP" nRows="10" measureOperator="AVG"/> 
 </request> 
</solapplus> 

This example contains one of each possible element in a SOLAP+ request, but there can be 
multiple elements of the same type. For details on these elements please check the XML Schema for 
the request messages (attached document). 

<measure> element 

 A measure can be either numeric or calculated. A numeric measure has a set of possible 
aggregation operators associated with it, so one has to be specified along with the measure ID: 

If we want to add a calculated measure, only the ID is needed (no operator required), since a 
calculated measure has a specific formula associated with it. 

<level> element 
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In order to get data at a certain aggregation level, the server needs both the dimension and the 
level’s ID. 

<attribute> element 

An attribute is added to the analysis by specifying it’s own ID and the respective ID’s from the 
dimension and level it belongs to. 

<slice> element 

A slice is the base for applying constraints or restrictions on the data. A slice is specified by 
indicating the attribute on which we want to create a restriction (identified by dimension, level and 
attribute), the operator to apply and the value to be compared. 

Some operators (such as BETWEEN) require two values to be used on comparison operations 
instead of just one; in these cases, an extra attribute (value2) is added to the <slice> element. The 
possible operators are in the XML Schema. 

<spatialSlice> element 

Spatial slices allow the user to apply spatially-related constraints (the same as the ones presented 
in section 2.3.2). These require both a spatial attribute and a spatial object (or layer) to be compared 
according to the chosen operator. 

Other operators may require additional attributes on the <spatialSlice> element; for example the 
WITHIN_DISTANCE operator requires a measuring unit (unit) and a distance (value). 

The NEIGHBOURS operator allows selecting only the closest N elements to a certain spatial object. 
In this case, the value attribute determines the number of neighbors to select. 

<fieldFilter> element 

A measure field filter restricts the considered data to only those elements that comply with the 
respective condition before the aggregation operators are applied. It can only be applied to numeric 
measures and requires the measure ID, an operator and a value. 

<measureFilter> element 

This element applies a filter to the aggregate value of a measure and can be used with both types 
of measures. Just like when adding a measure, if it is numeric, then an aggregation operator is 
required. 
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<nFilter> element 

This element defines a restriction on the returned rows to the top or bottom X rows, ordered by a 
certain measure. An aggregation operator is required when using numeric measures. 

The response to these requests includes two main sections: Spatial information and table 
information. Spatial information is compiled within the <query> element, containing both a spatial 
SQL query and the type of geometry to be generated. Table information includes the number of rows 
in the rowset, the number of measures, the data rowset itself, additional information about the 
associated attributes, selected attributes’ levels and their relation to the considered spatial attribute: 

<?xml version="1.0" encoding="UTF-8"?> 
<solapplus> 
 <query sql=”SELECT ... “ geometryType=”polygon” /> 
 <table count=”7” nMeasures=”2”> 
  <rowset>...</rowset> 
  <associatedAttributes>...</associatedAttributes> 
  <attributesLevels>...</attributesLevels> 
 </table> 
</solapplus> 

4.5.4. Get Distincts 

When creating a slice on a certain attribute, it is helpful to provide the user with a list of the 
existing values in the database for that attribute. The base format for this request specifies an 
attribute identified by it’s dimension, level and it’s own ID: 

<?xml version="1.0" encoding="UTF-8"?> 
<solapplus> 
 <request call=”get_distincts”> 
  <params cubeId=”1” filename=”cubea.xml” /> 
  <distinct dimensionId=”1” levelId=”1” attributeId=”5” /> 
  ... 
 </request> 
</solapplus> 

Optionally, <slice> elements can be added to the request inside the <request> element. The 
<slice> element has the same syntax as the one presented in the “Get Data” request. Here is an 
example of a “Get Distincts” request including two slices: 

<?xml version="1.0" encoding="UTF-8"?> 
<solapplus> 
 <request call=”get_distincts”> 
    <params cubeId=”1” filename=”cubea.xml” /> 
    <distinct dimensionId=”1” levelId=”1” attributeId=”5” /> 
    <slice dimensionId="1" levelId="1" attributeId="4" operator="EQUAL"     
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    value1="X" /> 
    <slice dimensionId="1" levelId="1" attributeId="2" operator="EQUAL"     
    value1="AAA" /> 
 </request> 
</solapplus> 

The response to this request is basically a list of values, structured as the example below: 

<?xml version="1.0" encoding="UTF-8"?> 
<solapplus> 
 <distincts> 
  <distinct value=”A1” /> 
  <distinct value=”A2” /> 
  <distinct value=”B1” /> 
 </distincts> 
</solapplus> 

4.6. Meta Model 

A meta model file is a metadata description of all needed information for a data model to be used 
with SOLAP+. This includes not only information about the data warehouse itself, but also about 
external spatial components to be used, such as the map generator server. 

The purpose of a meta model file is mainly to define spatial cubes by mapping the 
multidimensional model of the data warehouse to the relational model used by the DBMS. A meta 
model is described by a XML file in accordance with a specific XML Schema (provided in attachment). 
In order to present these files’ structure, we will use parts of one possible XML file that complies with 
the mentioned schema as examples. 

There are three elements at the root level: databases, mapservers and multidimensional. These 
are related to the relational model, the map servers and the multidimensional model respectively. 

 

Figure 75 - Meta Model Root Element 

4.6.1. Database Element 

This element describes the databases available for cube and dimension definition. It contains one 
database element for each available database. 
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A database element contains an identification attribute and two sub-elements: connection and 
tables. The first one contains necessary information so that the system can connect to the DBMS, 
namely the host, port, user authentication and database name: 

<connection  
 name="fct"  
 host="localhost"  
 port="1521"  
 username="SYSTEM"  
 password="abc" 
/> 

The tables element is constituted by multiple table elements, each of which describes a physical 
table in the database.  

table includes an ID, the table name (physical table name as in the database) and sub-elements 
columns and constraints. Each column contains an ID, a name and a type attribute. constraints is 
where primary and foreign keys for the table are defined. Each of these keys can be constituted by 
one or more table columns: 

<table id="1" name="actividade"> 
 <columns> 
    <column id="1" name="actividade_id" type="number"/> 
    <column id="2" name="codigo" type="string"/> 
    <column id="3" name="categoria_id" type="string"/> 
    <column id="4" name="categoria" type="string"/> 
 </columns> 
 <constraints> 
    <primaryKey> 
       <column columnRef="1"/> 
    </primaryKey> 
 </constraints> 
</table> 

4.6.2. Mapservers Element 

This element describes the available map servers that can be used for map, theme and style 
generation. It contains one mapserver element for each server. 

A mapserver element contains an ID attribute and three main elements: connection, layers and 
maps. The first element contains information necessary to connect to the map server, such user 
authentication and data source: 

<connection  
 driver="mapviewer"  
 host="my-host"  
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 port="8888"  
 name="mapviewer"  
 datasource="solap" 
/> 

The layers element contains multiple layer elements, each of which defines a layer by referring a 
certain table and column. For example, the following defines a layer containing the Portuguese rivers: 

<layer  
 id="3"  
 tableRef="12"  
 columnRef="85"  
 label="false"  
 name="SOLAP.RIOS"  
 title="Rios"  
 object="false" 
/> 

The label attribute defines if this is a geometrical object layer (false) or a plain text label layer 
(true). The object attribute indicates if this should also be used as a map viewing layer (false) or used 
only for spatial slices (true). 

Finally the maps element can contain multiple map elements. Each map element defines a base 
map for this model by specifying a set of one or more layers to be used: 

<map id="1" name="SOLAP.PORTUGAL" title="Países" srid="8307"> 

 <layers> 
  <layer layerRef="1"/> 
 </layers> 
</map> 

The srid attribute indicates the coordinate system type, which will be used later as a parameter on 
map requests to the map server. 

4.6.3. Multidimensional Element 

This is the most complex element in a meta model. It describes the whole multidimensional model 
(star schema or snow flake), including dimensions and their respective levels/attributes, measures 
and aggregates. This element is divided into two main categories: dimensions and cubes. 

The dimensions element contains multiple dimension elements, where each defines a dimension 
and all its associated information, such as ID, name and table reference. This table is the main 
dimension table, since snow-flaked dimensions are also supported. A dimension element is 
constituted by levels and hierarchies: 
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<dimension id="1" name="Actividade" masterTableRef="1"> 
 <levels/> 
 <hierarchies/> 
</dimension> 

The levels element has an attribute that indicates which of the following level should be 
considered as the base level. It is important to mention that our model does not consider varying-size 
levels/hierarchies. This kind of levels/hierarchies was studied by Malinowsky and Zimányi [13] (Also 
see section 2.2). Asymmetric spatial hierarchies are also in this case as they have one or more lower 
levels that are not mandatory for each member. The few cases that require them can be adapted to 
our model by creating auxiliary levels.  

Each level element inside levels contains an ID, name, references to its primary, display and sort 
attribute, a list of attribute and an indication of the levels above it. Each attribute has an ID, a name 
and a reference to a column in the dimension’s master table: 

<level id="1" name=”...” primaryAttribute="1" displayAttribute="1"          
sortAttribute="1"> 
 <attribute id="1" columnRef="1" name="..."/> 

 <attribute id="2" columnRef="2" name="..."/> 
 <upperLevels> 
    <upperLevel levelRef="2"/> 
 </upperLevels> 
</level> 

A hierarchy element is defined by an ID, name, type (semantic, spatial or hybrid) and a list of level: 

<hierarchy id="1" name="..." type="semantic"> 
 <level levelRef="1"/> 
 <level levelRef="2"/> 
</hierarchy> 

The cubes element can contain multiple cube elements. Each one of these has an ID, a name and 
description, and also references to the respective fact table, database and map server. Inside the 
cube element there are five main elements: maps, dimensions, measures, aggregates and 
aggregateChildren: 

<cube id="1" name="..." factTableRef="6" databaseRef="1"  mapserverRef="1" 
description="..."> 
 <maps/> 
 <dimensions/> 
 <measures/> 
 <aggregates/> 
 <aggregateChildren/> 
</cube> 
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The maps element contains a basemap element and a layers element. The basemap has 
information that will be used to setup the initial map, namely the map reference, the center 
coordinates and the zoom level. The layers element contains a list of the layers that can be applied to 
this map. 

<maps> 
 <basemap mapRef="1" centerX="-7" centerY="39.56" zoomLevel="1"/> 
 <layers> 
    <layer layerRef="2"/> 
    <layer layerRef="3"/> 
 </layers> 
</maps> 

The dimensions element defines a list of the dimensions used in this cube: 

<dimensions> 
 <dimension dimensionRef="1"/> 
 <dimension dimensionRef="2"/> 
 <dimension dimensionRef="3"/> 
 <dimension dimensionRef="4"/> 
 <dimension dimensionRef="5"/> 
</dimensions> 

The measures element contains a list of measure elements, each one defining a measure for this 
cube. It includes an ID, name, a type (numeric or calculated) and a format (which can be used as a 
guide to format values for display). If this is a calculated measure, we need a formula to calculate the 
values. In case this is a numeric measure (as it happens most of the time), we need a reference to a 
column in the fact table and a list of the possible aggregation operators: 

<measure id="1" name="..." columnRef="60" type="numeric" 
format="999999999999.99"> 
 <aggregationOperators> 
    <numeric operator="SUM"/> 
    <numeric operator="AVG"/> 
 </aggregationOperators> 
</measure> 

To define an aggregate we need an ID, a name and a reference to a fact table as attributes. We 
also need a list of dimensions and their respective conform dimensions for this aggregate: 

<aggregate id="2" name="..." factTableRef="17"> 
 <dimensions> 
    <dimension dimensionRef="1" conformDimensionRef="1"/> 
    <dimension dimensionRef="2" conformDimensionRef="2"/> 
    <dimension dimensionRef="3" conformDimensionRef="14"/> 
    <dimension dimensionRef="4" conformDimensionRef="4"/> 
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    <dimension dimensionRef="5" conformDimensionRef="5"/> 
 </dimensions> 
</aggregate> 

The aggregateChildren element defines a hierarchy among the existing aggregates by indicating, 
for each aggregate, the aggregates at a lower level. This element can be calculated using the 
upperLevels element in the dimensions. It exists as an auxiliary structure for the Aggregate Navigator 
component to choose the appropriate aggregates for each query. The top attribute indicates that this 
aggregate is not a child of any other: 

<aggregateChildren> 
 <aggregateChild aggregateRef="1" top="true"> 
    <child aggregateRef="2"/> 
 </aggregateChild> 
 <aggregateChild aggregateRef="2" top="false"> 
 </aggregateChild> 
</aggregateChildren>
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In the previous chapter we have described our system’s architecture. Now we will present an 
overview of the prototype’s features, followed by a description of the technologies/applications used 
to implement our components, the reasons that lead to that choice and some important 
implementation details, as well as an interface/interaction description. 

5.1. Implemented Features 

Regarding the main components, the map, support table and detail table were implemented. The 
map visualization supports several styles that vary according to the context of analysis (variable size 
marker, color gradient, bar and pie charts). The support table adapts accordingly to maintain the 1:1 
relationship, turning into a pivot-like table whenever needed. The support and detail charts were not 
implemented. 

All of the interaction cases were implemented in the prototype except for case 6 (two spatial 
attributes from different dimensions) and 7 (spatial measures). Case 6 was not implemented due to 
time and technology constrainsts, but it can be included using the current system architecture. Case 
7 requires further studying before considering actual implementation. 

Visualization clustering is also not present in the prototype. In order to be implemented, it would 
require some pre-processing server-side. The client architecture would require no major changes, as 
it would simply present the spatial objects returned by the server. Changes would be focused on 
interacting with the ad-hoc groups, such as expanding/collapsing them. 

Calculated measures are not implemented. They are, however, considered in the meta model and 
communication protocol. 

Post-aggregation measure filters and n-row filters are implemented and handled by the server, 
but they were not implemented in the client simply as a design decision, as they have low relevance 
in a SOLAP system. 

5.2. External Components 

Both the Spatially Compliant Data Server and the Map Server components were not implemented, 
therefore external applications were considered for these roles. 

5.2.1.  Spatially Compliant Data Server 

The Spatially Compliant Data Server is basically a Database Management System which is able to 
deal with both regular and spatial data, according to the standard Open GIS Consortium (OGC) 
specifications [10]. The possibility to define indexes over the spatial data in order to improve 
performance is also a requirement, as operations on this kind of data usually require intense 
processing. 
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Two Database Management Systems that fit these requirements were considered: Oracle (with 
Spatial module) and Microsoft SQL Server 2008. Even though they have similar features regarding 
spatial data, Oracle has had spatial data implementation for a few versions, while in the SQL Server it 
has just been integrated in the last version (2008). The decision to use Oracle was based on their 
experience with spatial data and proof given with previous versions. 

Oracle Spatial is compliant with both the OGC standards for data types and operations and also 
with SQL/MM. Spatial data (points, lines, polygons) is stored in table columns with a specific data 
type named SDO_GEOMETRY. In order to create spatial indexes that facilitate the execution of spatial 
operations over these columns, it is necessary to add spatial metadata about the table and column in 
which we are creating the index. 

5.2.2.  Map Server 

Regarding the Map Server there were also some alternatives such as Oracle’s MapViewer [34], 
Esri’s ArcView and MapInfo. Considering that our interaction model needs for representation such as 
charts, color gradients, legends, etc are covered in Oracle’s MapViewer, along with multiple API’s and 
easy integration with the DBMS, it was the chosen application as the Map Server component. 

Oracle’s MapViewer is a J2EE service for rendering maps using spatial data managed by Oracle 
Spatial. This application was deployed to WebLogic server [35]. MapViewer has four main 
components: Map Rendering Engine, Map Definitions, Map Builder and APIs. 
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certain SOLAP+ model, used in every analysis as the reference map. The theme is a dynamic selection 
of spatial objects related to the current analysis criteria (slices, filters, etc).  

According to our interaction model, the maps we want to present should be customized (such as 
area colors, marker size or bar charts) taking into consideration the information we are representing 
on it (type of geometry, number of measures, ...). This customization is made by creating styles - 
information on how to render a map and the spatial objects in it. Styles can be static or dynamic: 
Static styles are defined once, saved physically in the database and applied to multiple generated 
maps. Dynamic styles are generated in execution time, specifically for the current map and usually 
discarded afterwards. 

5.3. Implemented Components Overview 

The SOLAP+ Server was presented as a component that listens to requests, processes them and 
returns a response to the client. The most important requirement this component should have is 
independence from the client’s implementation, both regarding operating system and programming 
language. In order to create a component with such a behavior, we have decided to implement it as a 
Web service, taking advantage of its properties, mainly the interoperability between various software 
applications running on different platforms. By using the HTTP protocol, they can work through most 
firewalls and their text-based structure is easier to understand. 

 The chosen programming language was Java. The reasons for this choice were mainly because of 
its portability and exhaustive API support for many tasks. Two of those tasks that are important to 
mention are the XML messages manipulation and the database connectivity. The first one is related 
to XML message parsing and generation, both on the client and server components - the Java 
Document Object Model (DOM) API was used for this purpose. For the database connectivity we 
used the Java Database Connectivity (JDBC) API - a set of classes and interfaces that allow the 
execution of SQL queries in a relational database. 

 Considering that SOLAP clients are used by a wide variety of users with different backgrounds, 
positions and technical knowledge, it is very important to keep in mind it’s usability when designing 
not only the interface but also the interaction procedures. It was decided to implement the SOLAP+ 
Client as a Web application - this eliminates the need for program installation on the user’s computer 
(since it just needs a web browser) and makes the update process much easier, as it is a one-side job. 
To do this, we’ve decided to use Java Server Faces (JSF) [36], a relatively new and very promising 
technology that allows the development of rich web applications by combining reusable and 
customizable components. The application logic is coded in Java and the interface components are 
used for data presentation and user interaction. 
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 In order to interact with Oracle’s Map Viewer, a few API’s were available, including Oracle Maps - 
an AJAX API that includes several typical features (zooming, panning, ...) out-of-the-box. This was the 
main map control API and every map request has to be sent through it, that’s why there is no 
communication between the SOLAP+ Server and the Map Server. JavaScript functions were also 
created from scratch to deal with user interaction such as layer visualization. A combination of 
JavaScript and Map Viewer’s low-level XML API was also used to generate dynamic themes, styles 
and legends when requesting maps. 

 Regarding the Metadata Repository, it was implemented as simple XML/XML Schema files. 
However, the information required could have been supplied to the server in any other way, as long 
as the XML elements structure is maintained. 

 The following picture shows an overview of the main physical architecture, as well as the most 
important technologies used: 

 

Figure 77 - Implementation Overview 

5.4. SOLAP+ Server 

The SOLAP+ Server was implemented as a stateless web service using Java. This means that each 
request is handled independently and no previous interaction information is ever needed. This allows 
a client to be served by different hosts without conflicts. 
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 When a request is received, it is validated using an internal XML Schema. If it is valid, it is parsed 
using the Java DOM API and the information is stored in parameter objects. In case it is a get data 
request, those parameters are processed and clause objects are generated. These clauses are actually 
SQL fragments that are later combined to create SQL queries: 

 

Figure 78 - SOLAP+ Request Lifecycle 

 There is a particular case when generating a spatial SQL query: When an attribute that causes a 
measure to split among multiple values (creating multiple columns in the support table) is present in 
the current session, the spatial SQL query cannot be similar to the table SQL query. This happens 
because Oracle Maps associates a mapping representation (such as a color or a bar from a chart) to 
each numeric value in the returned rows.  

For example, consider a retail business where the analyst wants to check the sum of the sales for 
two product types (A and B) in three regions (R1, R2 and R3) This would work perfectly if the rowset 
returned by the database had a structure similar to the following: 

<rowset> 
    <row> 
        <region>R1</region> 
        <sales_product_A>5000</sales_product_A> 
        <sales_product_B>7000</sales_product_B> 
    </row> 
    <row> 
        <region>R2</region> 
        <sales_product_A>1000</sales_product_A> 
        <sales_product_B>2000</sales_product_B> 
    </row> 
    <row> 
        <region>R3</region> 
        <sales_product_A>700</sales_product_A> 
        <sales_product_B>1300</sales_product_B> 
    </row> 
</rowset> 

In that case, Oracle Maps would associate each numeric value in each row with a bar from a chart, 
generating three bar charts (one for each region) with two bars each (two distinct values for the 
attribute, or two numeric columns in each row). 

However, if we execute an SQL query where the product_type attribute is in the GROUP BY clause 
(as usual), the returned rowset has this structure: 
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<rowset> 
    <row> 
        <region>R1</region> 
        <product>A</product> 
        <sales>5000</sales> 
    </row> 
    <row> 
        <region>R1</region> 
        <product>B</product> 
        <sales>7000</sales> 
    </row> 
    <row> 
        <region>R2</region> 
        <product>A</product> 
        <sales>1000</sales> 
    </row> 
    <row> 
        <region>R2</region> 
        <product>B</product> 
        <sales>2000</sales> 
    </row> 
    <row> 
        <region>R3</region> 
        <product>A</product> 
        <sales>700</sales> 
    </row> 
    <row> 
        <region>R3</region> 
        <product>B</product> 
        <sales>1300</sales> 
    </row> 
</rowset> 

If we use a similar spatial SQL query in Oracle Maps, instead of creating three spatial objects with 
two numeric values each, it will create six spatial objects (three of them overlapping the other three 
on the map, as they refer the same location) with only one numeric value each. 

The workaround is then to generate a temporary table with a physical column for each value we 
want to represent, filled with the actual data to be represented in the client. This means 
manipulating the returned rowset and generating new (and less) rows. The spatial SQL query 
returned is then a simple select statement over this temporary table, without any constraints. 

5.5. SOLAP+ Client 

The SOLAP+ Client was implemented as a browser front-end and a web application deployed in an 
application server. The next sections describe implementation details regarding the application logic 
and interface/interaction. 
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5.5.1.  Backing Beans 

The SOLAP+ Client has two main responsibilities:  

1. Produce XML data requests compliant with the defined communication protocol according 
to the user’s actions 

2. Process data responses, producing visual representations 

As mentioned before, the client was developed using Java Server Faces (JSF). This technology 
allows associating interface components with data structures or methods from Java classes, called 
backing beans. The two main backing beans in the client implementation are directly connected to 
the two main responsibilities listed: SessionBean.java for data request generation and MainBean.java 
for response retrieval and data processing. 

Session Bean 

The session bean contains all the structures of Java objects required to represent and interact with 
a loaded SOLAP+ Model, such as dimensions, measures and layers. When the user interacts with the 
components associated with these data structures, events are fired and processed in this backing 
bean, generating XML request elements. For example, when the user adds a slice, a method in this 
bean is called, which will create a <slice> element to be included in the XML request, based on the 
options provided by user interaction (attribute, values, slice operator, ...). The SOLAP+ Client 
interface and respective interaction is presented in the next section (5.5.2). 

Main Bean 

The main bean is responsible for executing the requests generated by the session bean, as well as 
receiving the responses, processing them and presenting the formatted data. The spatial data 
information is forwarded to the Map Control component, which is implemented by Oracle Maps and 
other JavaScript functions. The processing inside this bean refers mainly to the support and detail 
tables. 

While each row in the detail table is a visual representation of a row in the received rowset from 
the database, the support table representation requires this rowset to be transformed before it is 
represented, since it is not a direct mapping of the rowset rows (refer to the  
Extended Interaction Model chapter).  

The support table has two sections, produced separately: Headers and body. Headers are 
generated taking into consideration the <attributesLevels> element present in a SOLAP+ XML 
data response (see Communication Protocol ?). The content of this element, along with the number 
of measures (also in the XML response) allows headers to be created and possibly nested depending 
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on the attributes represented, as described in the  
Extended Interaction Model chapter. In the table body, the associated attributes are displayed first, 
followed by the in-line attributes and finally the measure values: 

 

Figure 79 - Support Table Structure 

The associated attributes are the ones present in the <associatedAttributes> response element. 
In-Line attributes are determined based on <attributesLevels> element. Measures are always the 
first elements in the returned rowset. Each measure value from a row in the returned rowset will 
then correspond to a column in the support table - the column number is calculated based on the 
combination of attribute values and measure it is associated with. 

Other Beans 

An additional backing bean was created to handle the dynamic panel interface presented in the 
next section. Each main panel is associated with an object whose properties are changed whenever 
the user interacts with them, such as minimizing a panel. 

5.5.2.  Interface / Interaction 

For the interface/interaction development, a component library named RichFaces [37] was used. 
These are enhanced or new JSF components that allow skinnability using CSS. 

 The SOLAP+ Client interface is constituted by five main panels. Map (1), Support Table (2) and 
Detail Table (3) are data presentation panels, at the center; Control Panel (4) and SOLAP Model (5) 
are the side panels: 
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This chapter presents a use case and interaction 
examples in order to validate the implemented 
prototype. 
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The prototype we have implemented is general, i.e., it can be used with many different databases 
as long as the XML metamodel for that database is provided. In order to test and validate the 
prototype, we used a specific database for which we created the XML metamodel that describes it. 

6.1. Presentation 

The Portuguese Environment Institute (Instituto do Ambiente Português) is a branch of the 
Portuguese Ministry of Environment (Ministério do Ambiente, Ordenamento do Território e 
Desenvolvimento Regional). It is responsible for studying, planning, coordinating and giving technical 
support in the areas of environment management and sustainable development.  

One of its objectives is to make reports regarding the environment status in Portugal. To do this, 
they have records of industrial installations and their respective pollutant emissions. There are 
characteristics related to these emissions (such as the pollutants involved, the type of emission 
(air/water), etc) and associated with the installations (geographical and administrative location, main 
activity, responsible, etc). These emissions are closely associated with spatial data, as each of those 
emissions occurs at a location and affects an area/region. 

Spatially analyzing the available data on pollutant emissions can help to: 1) Obtain indications on 
air and water quality; 2) identify environmentally endangered zones; 3) uncover possible causes on 
water course contamination; 4) study the concentration of chemical agents on the ground; 5) 
establish connections between pollution and health; and 6) verify the compliance with international 
protocols regarding pollutant emission. 

6.2. Data Model 

Each industrial installation has an associated primary activity such as energy production or metal 
transformation. They also have processes related to their industrial activities, named NOSEP. 

Each pollutant emission is characterized by the industrial installation, activity, type of emission 
(pollutant, mean, etc), NOSEP and time. Those activities and NOSEP processes may not be the same 
as the installation’s primary activity/NOSEP. 

The data model has the following structure: 
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Figure 94 - Data model for the use case 

Installation (Instalação) is the spatial dimension. It has five spatial attributes: installation location, 
drainage basin, Freguesia, Concelho and Distrito. The last three are Portuguese administrative 
divisions. Hierarchically those levels are organized as seen in Figure 95. 

 

Figure 95 - Spatial hierarchies for dimension Installation 

6.3. Interaction Examples 

A series of interaction examples using our prototype with the previously described database were 
produced. These examples are closely related to most of the cases proposed in our extended 
interaction model. 

6.3.1.  Example 1 

In this first example we wanted to analyze the nitrogen emissions amount for the ten closest 
industrial installations to the Tagus river (Rio Tejo).  
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The examples given here were all based on the pollutant emission scenario, however it is 
important to mention that this is a generic SOLAP system, able to adapt to any case where spatial 
information is a key analysis feature. From transportation to retail sales, from medical care to civil 
protection - they all can benefit from the discovery and explanation of spatially-related patterns, 
trends, anomalies and clusters, helping them perform their duties more efficiently by focusing on the 
core of the problem. 
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This chapter draws final conclusions on the design and implementation of this thesis and presents 
future work. 

7.1. Conclusions 

In this thesis we have proposed an extended SOLAP interaction model that provides a user with 
both spatial and numeric analysis options while keeping a simple and intuitive interaction. This allows 
users with different backgrounds and positions to be able to use this decision support system without 
the need for specific technical knowledge. This model adds new interaction cases and visualization 
options as well as redefining some already presented in previous works. The main contributions 
regarding the interaction model are: 

 Using pivot-like tables in order to open new analysis possibilities or enrich existing ones. 
This new approach allows the representation of multiple numerical values (both multiple 
measures and values grouped by attributes) while maintaining the 1:1 relationship 
between the map and the support table. 

 Proposing an innovative approach for the analysis process when dealing with two spatial 
attributes from different dimensions 

 Using clustering techniques to control the amount of spatial objects represented on the 
map by creating ad-hoc groups for both the map and support table, based on the elements’ 
geographical proximity 

 Integrating charts associated with the support table including spatial aspects/options 
 Using clustering techniques on non-spatial data in order to draw spatially-related 

conclusions and/or patterns 

Even though the subject was not thoroughly studied, the state of the art analysis on spatial 
measures and the identification of arbitrary spatial measures (those related solely to an event and 
not the result of a spatial operation between spatial attributes) is worth mentioning. 

After the interaction model was defined, an architecture for a system implementing that model 
was proposed. This architecture is based on a client-server approach with external auxiliary 
components. The SOLAP+ Client provides the user with a graphical interface, converting the 
interaction into requests for the SOLAP+ Server. Communication between these components is 
achieved through a request-response protocol, in which the SOLAP+ Server is stateless, i.e., all 
requests are treated independently, allowing a client to interact with multiple servers without 
conflicts. The SOLAP+ Server processes the requests, generates a response and sends it back to the 
SOLAP+ Client, which displays both the textual/numeric and spatial information in the interface. 

A specific communication protocol defining the possible requests from the client and respective 
responses from the server was created using XML and XML Schema for validation. This allows the 



Section 7.2 - Future Work 
 

 119

implementation of other client applications in different programming languages or platforms, as long 
as the XML request structure is maintained.  

The SOLAP models to be used in this system also follow a defined XML Meta Model where the 
necessary information for a certain analysis case is present, such as database, map and 
multidimensional information. This metamodel description permits to use any multidimensional 
model in our system, given its XML description. 

A prototype of a SOLAP+ system was implemented in order to exemplify some of the proposed 
features in the interaction model. The main visualization component’s behavior is visible when 
dealing with one or multiple measures and different spatial object geometries (points and polygons) 
that can be static or dynamic (area intersection). The numeric relationships between the map, 
support table and detail table are exemplified and preserved in all cases. It allows the addition of 
alphanumeric slices and sliders, spatial slices with multiple possible spatial operators and measure 
filters, all using a simple yet flexible GUI based mainly on drag-and-drop items, dialog boxes and 
collapsible panels. Outside the scope of the interaction model, an aggregate navigator was also 
implemented in the server, allowing the system to retrieve data from aggregate tables (faster 
execution) whenever possible, based on the client’s requests and the existing aggregates. 

Regarding the prototype, the following contributions should also be considered: 

 Implementation using standard technologies and a web-based client 
 Using dynamic styles for the map, based on a modular architecture in order to suggest 

appropriate styles depending on the analysis context 
 Using aggregates, by extending the meta model and implementing an aggregate navigator 

that selects and uses the appropriate tables without the need for any user indication 

This prototype follows the defined architecture with some minor changes due to technological and 
time constraints. The implemented features were applied in a case study, exemplifying and validating 
the proposed interaction model for a fully functional and general Spatial OLAP application. 

7.2. Future Work 

This section presents future activities related with the SOLAP interaction model. Regarding these 
activities, the following points are suggested: 

Clustering - Further research on dynamic visualization clustering and group creation based on 
geographical proximity and zoom level can lead to a very useful analysis feature when dealing with 
large numbers of spatial objects. 
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Spatial measures - The ability to calculate and visualize arbitrary spatial objects associated with 
events (facts) would make spatial analysis even more interesting in many areas, providing new 
analysis options and draw conclusions that are not possible at the moment. However, spatial 
measures still need profound research in order to reach a well-defined and usable model. 

Representing spatial attributes from different dimensions - Due to technological and time 
constraints, it was not possible to implement the features regarding the representation of spatial 
attributes from different dimensions presented in our interaction model. A prototype that 
exemplifies this behavior would be interesting as it would allow a different kind of spatial analysis 
that is not possible when representing one attribute at a time. 

Charts - Some ideas for the usage of support and detail charts were given in our interaction model 
but not implemented in the prototype. Besides ordering the charts elements based on spatial 
functions, they could be used to represent sub-sets of data or particular selected elements. 

Legend and styles - The process of choosing an appropriate style for a map representation and 
creating the respective legend is complex. In our interaction model/prototype implementation, we 
have used a simple approach of selecting a recommended style based on a couple of factors, 
however, there is a lot of potential in customizing the visualization of data in the map depending on 
the kind of analysis, attributes and measure types, user preferences, etc. This is a promising research 
area that would enrich the interaction model and data visualization. 
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