

Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia

Departamento de Informática

Dissertação de Mestrado em Engenharia Informática

Quantitative Assessment of Modularity of CaesarJ Components

Miguel Santos Silva Baptista de Almeida

Orientador

Prof. Doutor Miguel Jorge Tavares Pessoa Monteiro

Co-Orientador

Prof. Doutor Miguel Carlos Pacheco Afonso Goulão

14 de Fevereiro de 2011

ii

Nº do aluno: 26619

Nome: Miguel Santos Silva Baptista de Almeida

Título da dissertação: Quantitative Assessment of Modularity of CaesarJ Components

Palavras-Chave:

 Modularidade

 CaesarJ

 Programação orientada por Aspectos

 Métricas de Software

Keywords:

 Modularity

 CaesarJ

 Aspect-Oriented Programming

 Software Metrics

iii

Acknowledgements

Em primeiro lugar quero agradecer aos meus orientadores, Professor Miguel Monteiro e

Professor Miguel Goulão. A vossa contínua supervisão, orientação e sugestões e foram

essenciais para a concretização deste projecto. Acima de tudo, obrigado pela vossa confiança em

mim ao me terem aceitado, mesmo estando com um emprego a tempo inteiro.

À minha família e aos meus amigos, que sempre me apoiaram e incentivaram ao longo da minha

vida.

E finalmente, à pessoa mais importante da minha vida. Obrigado Vera pela tua paciência e

carinho enquanto estive a fazer a tese. Sem o teu apoio incondicional não teria conseguido.

iv

Resumo

Os defensores do paradigma de programação orientada a aspectos afirmam que este paradigma

oferece melhor modularidade que a programação orientada a objectos, assim como um melhor

suporte para separação de facetas transversais. Embora o AspectJ seja a linguagem de AOP mais

conhecida, e alvo de mais estudos, surgiram novas linguagens de programação que propõem

diferentes formas de instanciar este paradigma. O CaesarJ é uma destas linguagens. Possui

abstracções e mecanismos que o diferenciam do AspectJ, tais como classes virtuais,

polimorfismo de família e uma maneira diferente de representar um aspecto.

Qualquer alegação de uma linguagem ser melhor, à luz de um critério bem definido (neste caso,

a modularidade), tem que ser apoiada por avaliações rigorosas de implementações feitas nessa

linguagem. Este trabalho pretende fazer isso com um estudo comparativo entre as duas

linguagens em termos da modularidade que se obtém em software por elas implementado. Em

particular, vai-se estudar uma faceta da modularidade: a coesão. Este estudo utiliza da estrutura

padrão de relatórios experimentais em Engenharia de Software, assim como todos os testes

estatísticos apropriados. Para este fim, foi desenvolvida uma métrica de coesão que foi usada,

juntamente com várias métricas de tamanho para avaliar 51 exemplos de implementações de

padrões de concepção. No contexto desta dissertação a ferramenta de recolha automática de

métricas MuLATo foi adaptada para suportar esta nova métrica de coesão. Os resultados do

estudo efectuado sugerem que o CaesarJ é mais verboso que Java mas contem componentes

menos complexos e mais coesos.

v

Abstract

Proponents of the aspect oriented programming paradigm claim that this paradigm yields better

modularity over object-oriented programming and provides a better support for separation of

crosscutting concerns. Although AspectJ is the most popular aspect oriented programming

language, and subject of most studies, more recent languages appeared that propose varying

ways to realize the paradigm’s concepts. CaesarJ is one such language, providing mechanisms

that differentiate it from AspectJ, namely virtual classes, family polymorphism and a different

way to represent an aspect module.

Any claim of a language being better with respect to some criterion should be supported by

rigorous assessments based on that criterion. This work aims to do this with a comparative study

using the “standard” experimental report structure for Software Engineering between the two

languages in terms of modularity. To this end, a new cohesion metric was developed and used,

along with several size metrics to evaluate 51 examples of design pattern implementations. In the

context of this dissertation MuLATo, an automated metrics-collecting tool was adapted to

support this new metric of cohesion. Results of the study suggest that CaesarJ is more verbose

than plain Java but yields more cohesive and less complex components. These results are

confirmed with the appropriate statistical tests.

vi

Table of Contents

1. Introduction ... 1

1.1 Motivation ... 1

1.2 Problem description... 2

1.3 Presented Solution ... 2

1.4 Contributions ... 3

1.5 Document Structure... 3

2. Aspect-oriented programming and CaesarJ .. 4

2.1 Aspect Oriented Programming .. 4

2.2 Background on CaesarJ Features .. 4

2.2.1 Virtual Classes .. 5

2.2.2 Family Polymorphism .. 5

2.3 CaesarJ .. 6

2.4 CaesarJ Component ... 6

2.4.1 Collaboration Interfaces ... 6

2.4.2 CaesarJ Implementations .. 7

2.4.3 CaesarJ Bindings .. 8

2.4.4 Weavelets.. 9

2.4.5 Component Instantiation and deployment .. 9

2.5 Illustrating example: The Observer Pattern .. 9

2.5.1 Implementing Observer in Java .. 10

2.5.2 Observer in CaesarJ .. 12

2.5.3 CaesarJ Limitations .. 17

3. Existing metrics for modularity ... 18

3.1 Software Attributes ... 18

3.1.1 Cohesion ... 18

3.1.2 Coupling ... 19

3.1.3 Size ... 19

3.2 Software Metrics ... 19

3.2.1 Size Metrics .. 20

3.2.2 Existing Cohesion Metrics.. 21

4. A new cohesion metric for Java and CaesarJ .. 24

vii

4.1 Terminology and formalism .. 24

4.2 Definition of the metric ... 25

4.3 Inheritance ... 25

4.4 Access Methods... 26

4.5 Validation of the metric... 26

4.6 Illustrating example: The Observer pattern .. 27

5. Tool support for metric collection ... 30

6. Evaluating CaesarJ against Java ... 34

6.1 Introduction ... 34

6.1.1 Research Objectives ... 34

6.1.2 Context ... 34

6.2 Background ... 34

6.2.1 Related studies .. 34

6.2.2 Relevance to practice .. 35

6.3 Experimental planning .. 35

6.3.1 Goals ... 35

6.3.2 Experimental Units ... 36

6.3.3 Experimental Material .. 37

6.3.4 Tasks ... 37

6.3.5 Hypotheses ... 37

6.3.6 Independent variables ... 38

6.3.7 Dependent variables ... 38

6.3.8 Design ... 38

6.3.9 Procedure .. 39

6.3.10 Analysis procedure ... 39

6.4 Execution ... 39

6.4.1 Preparation .. 39

6.4.2 Deviations ... 40

6.5 Analysis ... 40

6.6 Descriptive statistics .. 43

6.7 Data set reduction .. 46

6.8 Hypotheses testing... 46

6.9 Discussion ... 48

6.9.1 Interpretation of results ... 48

6.9.2 Limitations and threats to validity .. 54

6.9.3 Inferences.. 55

7. Related work.. 56

7.1 Quantitative study of Design Patterns in Java and AspectJ by Garcia et al. 56

7.2 Analysis of modularity in aspect oriented design by Lopes et al. 60

viii

7.3 TAO – A Testbed for Aspect Oriented Software Development Project 60

8. Conclusions and future work ... 63

8.1 Conclusions ... 63

8.2 Future work ... 64

9. References .. 65

ix

Index of Figures

Figure 1. General structure of a CaesarJ component .. 7

Figure 2. Structure of the design pattern Observer ... 10

Figure 3. Class Diagram of the CaesarJ Flower Observer example ... 12

Figure 4. Class Diagram of the Collaboration Interface for the Flower Observer example 13

Figure 5. Class Diagram of the CaesarJ Binding for the Flower Observer example 16

Figure 6. MuLATo metric collecting process ... 32

Figure 7. Measurement values of Lines of Code for Java and CaesarJ .. 48

Figure 8. Measurement values of Vocabulary Size for Java and CaesarJ 49

Figure 9. Measurement values of Number of Attributes for Java and CaesarJ 50

Figure 10. Measurement values of Number of Operations for Java and CaesarJ 51

Figure 11. Measurement values of Weighted Operations per Component for Java and CaesarJ . 52

Figure 12. Measurement values of LCOO-HS for Java and CaesarJ ... 53

Figure 13. Example of cohesion degree by Chae et al. ... 55

Figure 14. Coupling chart from TAO study .. 62

Figure 15. Lack of Cohesion chart from TAO study .. 62

x

Index of Listings

Listing 1. Flower Class for the Observer example in Java ... 11

Listing 2. Bee Class of the Observer example in Java .. 11

Listing 3. Collaboration Interface of the CaesarJ Flower Observer example 13

Listing 4. CaesarJ Implementation of the Observer example ... 14

Listing 5. Alternative CaesarJ Implementation of the Observer example 14

Listing 6. CaesarJ Binding of the Observer example ... 15

Listing 7. Weavelet for the Observer example ... 16

Listing 8. Alternative Weavelet for the Observer example .. 16

Listing 9. Class Flower without the Observer Logic .. 17

Listing 10. Class Bee without the Observer Logic ... 17

xi

Index of Tables

Table 1. LCOO-HS results for the Flower Observer example .. 28

Table 2. CaesarJ metrics supported by MuLATo 0.1.1 .. 30

Table 3. Research goals .. 35

Table 4. Gang-of-Four Design Patterns repositories implemented in Java 36

Table 5. Design pattern implementations implemented in CaesarJ .. 37

Table 6. Research hypotheses ... 38

Table 7. Values of collected metrics ... 42

Table 8. Descriptive statistics of the metrics .. 44

Table 9. Normality tests .. 45

Table 10. Wilcoxon signed-rank test ranks... 47

Table 11. Wilcoxon signed-rank test statistics ... 47

Table 12. Overall Results for Separation of Concerns by Garcia et al. .. 57

Table 13. Overall Results for Coupling and Cohesion by Garcia et al. .. 58

Table 14. Overall Results for Size Measures by Garcia et al. .. 59

Table 15. Metrics collected in the TAO study .. 61

1

1. Introduction

In this chapter the motivation behind this dissertation is presented in Section 1.1. Section 1.2

describes the problem this dissertation aims to solve. Section 1.3 describes the approach

chosen to tackle this issue; Section 1.4 lists the contributions of this thesis and, finally, in

section 1.5, the structure of this document is presented.

1.1 Motivation

Aspect-oriented software development (AOSD) is characterized by a systematic approach to

the abstractions, modularity and composability of crosscutting concerns (Rashid & Moreira,

2006).

Separation of Concerns (Parnas, 1972) refers to the ability to decompose and organize

systems into manageable modules, which have as little knowledge about the other modules of

the system as possible. Separation of concerns helps managing software complexity,

enhancing understandability and traceability throughout the development process.

AOSD claims to improve the separation of concerns (Kiczales, et al., 1997) (Bergmans &

Aksits, 2001) in software development and contributes to make it easier to maintain and

reuse (in comparison to object-oriented programming). This leads to the reduction of the

amount of code written and higher cohesion (Alexander, 2003) which makes for better

software quality. These claims need to be backed up by rigorous evaluations of design and

implementation. We need empirical and quantitative studies and the appropriate measuring

tools to verify these claims. Software metrics are means of qualifying software but most

existing metrics cannot be applied straightforwardly to AOSD (Zakaria & Hosny, 2003),

(Sant’Anna, Garcia, Chavez, Pereira de Lucena, & von Staa, 2003).

Most of the few of these studies that measure modularity for AOP are mainly about AspectJ

(Sant’Anna, Garcia, Chavez, Pereira de Lucena, & von Staa, 2003) (Hannemann & Kiczales,

2002) (Kiczales, et al., 1997) (Garcia A. , Sant’Anna, Figueiredo, Kulesza, Lucena, & von

Staa, 2006), (Cacho, Sant’Anna, Figueiredo, Garcia, Batista, & Lucena, 2006). Although

AspectJ (Ramnivas, 2003) is the first and most well-known AOP language, a great number of

languages have been developed afterwards and offer alternatives to AspectJ. Among those

languages is CaesarJ.

CaesarJ is an aspect-oriented programming (AOP) language that provides new features of

supporting modularity by providing new language constructs and concepts (Aracic, Gasiunas,

Mezini, & Ostermann, 2006). It makes use of mechanisms like virtual classes (Madsen &

2

Møller-Pedersen, 1989) and family polymorphism (Ernst, 2001), which are absent in AspectJ

(Ramnivas, 2003). However, the alleged superiority of CaesarJ, when compared to AspectJ

and Java is mostly supported by argumentation, usually based on a few illustrative examples

(Mezini & Ostermann, 2003). To our knowledge, there has not yet been published any kind

of quantitative study for the CaesarJ programming language. Systematic studies and

quantitative data supporting such claims are lacking. This project contributes to fill this gap

by enabling a rigorous comparison of Java and CaesarJ.

1.2 Problem description

There are not many studies focused on comparing the strengths and limitations of AOP

programming languages when compared to Object-Oriented Programming (OOP), as well as

their potential for modularity. Even less studies have been done with this aim focused on

CaesarJ. One reason for the lack of publications with this objective is the inexistence of a

metrics tool that supports this language. Presently, proper tools for collecting metrics for

AOP are also lacking and collecting metrics manually is tedious, not scalable and error-

prone, especially in complex, non-trivial systems.

The problem this dissertation aims at solving is the lack of cohesion metrics that can be

applied to both the Java and CaesarJ languages taking into consideration the latter’s specific

characteristics. Also, aims to mitigate the lack of a rigorous study comparing CaesarJ and

Java, that would provide some insight into the advantages and disadvantages of each one,

with a focus on each language’s impact in modularity and complexity.

1.3 Presented Solution

To evaluate 2 different programming languages, metrics that support them both are required.

In this dissertation, various size metrics are adapted to support CaesarJ and a new cohesion

metric is proposed. The Lack of Cohesion in Operations (LCOO-HS) is formalized in an

unambiguous manner and is an evolution from a well-known OOP metric, Lack of Cohesion

in Methods (Chidamber & Kemerer, 1994) to support CaesarJ.

To validate the proposed metrics, we evolved the MuLATo
1
 tool to include support for the

automatic collection of the new metrics. Automatic metrics collection is essential, for the

sake of the scalability and replicability of experimental studies. The former allows going

beyond toy examples in the quantitative studies comparing Java with CaesarJ. As noted in

the previous section, the costs of manually collecting metrics would be prohibitive, and the

results of such collection would be error-prone. Furthermore, we would miss the potential

economies of scale that metrics collection tool support brings to quantitative studies.

Researchers trying to replicate our experimental studies in their own context would not

benefit much from our metrics collection experience. In practice, this would make replication

1
 http://swen.uwaterloo.ca/~ttonelli/mulato/

3

very hard. As observed in (Sjoeberg, Hannay, & Hansen, 2005), the lack of replication of

experimental studies in Software Engineering is one of the major weaknesses in the

validation of claims such as the alleged modularity improvements brought by CaesarJ.

A rigorous comparative study between Java and CaesarJ is made based on 51

implementations of design patterns. This study followed the standard experimental report

structure for Software Engineering and uses the appropriate statistical tests to confirm the

drawn conclusions.

1.4 Contributions

The contributions this dissertation brings are the following:

 The proposal of a cohesion metric than can be applied to the CaesarJ programming

language.

 The adaptation of an existing tool, the Multi Language Assessment Tool (MuLATo)

to support new metrics for CaesarJ.

 A comparative analysis between Java and CaesarJ from the source code of 51

examples of Gang-of-Four design patterns, implemented in both Java and CaesarJ.

This quantitative study focuses on 5 software metrics:

o Lines of Code

o Vocabulary Size

o Number of Attributes

o Number of Operations

o Lack of Cohesion in Operations (HS)

1.5 Document Structure

The rest of this dissertation is organized as follows: Chapter 2 presents the CaesarJ

programming language and its mechanisms are discussed, illustrated with the appropriate

examples when necessary. Chapter 3 provides relevant background on software attributes and

existing metrics that leads to the definition of a new cohesion metric that can be used with

Java and CaesarJ, in Chapter 4. Chapter 5 describes the MuLATo tool and the development

that was made in the context of this dissertation.

Chapter 6 provides a quantitative case study between Java and CaesarJ in terms of

modularity and finally, Chapter 8 ends by presenting the dissertation conclusions and

outlines future work.

4

2. Aspect-oriented programming and CaesarJ

This chapter is structured in the following manner: Section 2.1 introduces the main concepts

of Aspect-oriented programming. Section 2.2 explains important concepts of CaesarJ like

virtual classes (2.2.1) and family polymorphism (2.2.2).

Section 2.3 presents the CaesarJ programming language and Section 2.4 describes the four

conceptual modules that make up and aspect in CaesarJ. Section 2.5 presents the

implementation of the Observer pattern in both Java (2.5.1) and CaesarJ (2.5.2) to better

illustrate the differences between them. Section 2.5.3 mentions some CaesarJ’s limitations.

2.1 Aspect Oriented Programming

In computer science, a concern is a particular set of behaviours with a particular goal or

purpose needed by a computer program. Hopefully each concern would be represented in its

module in order to facilitate the understanding and maintainability of a system. The ability of

identifying, encapsulating and manipulating these concerns is known as separation of

concerns (Dijkstra, 1976)

Crosscutting concerns are pieces of a program that cut across other concerns and existing

module boundaries. They are hard or impossible to be separated into their own modules, and

eventually its implementation is scattered across multiple modules and intermixed with the

implementation of other concerns (Kiczales, et al., 1997). This is called code scattering and

code tangling, respectively. Some examples of crosscutting concerns are logging, tracing,

security and persistence.

Aspect-oriented programming is a programming paradigm that aims to enhance modularity

of software, with a focus on the modularization of crosscutting concerns (Rashid & Moreira,

2006). This yields more reusable code, and also more flexibility to couple/decouple, manage,

maintain and evolve software systems. This is an improvement over Object Oriented

Programming (OOP), which lacks the support for this systematic separation.

2.2 Background on CaesarJ Features

This section presents some relevant features that CaesarJ adds to Java. They are virtual

classes (2.2.1) and family polymorphism (2.2.2).

5

2.2.1 Virtual Classes

Virtual classes (Madsen & Møller-Pedersen, 1989) are inner classes that can be treated like

as class methods and subject to dynamic dispatch (the same way as methods in mainstream

OOP languages).

The term “virtual” highlights the similarity with the virtual methods present in traditional

OOP languages since they correspond to different blocks of code depending on the dynamic

type of the running object (Ernst, Ostermann, & Cook, 2006).

The enclosing class of the inner classes is called family class and the instance of this family

class is called family object.

The main difference between Java internal classes and virtual classes is that the latter allows

classes the capability to treat inner classes polymorphically, subject to overriding and

dynamic (or late) binding. This polymorphism applies to their own class names, with the

result that even an expression that uses the “new” keyword to create a new instance is

polymorphic, and such expressions are to be variation points of the program.

Each virtual class can be polymorphically refined in any subclass of the enclosing class (the

family class). These refinements include adding new methods, fields and inheritance

relationships as well as the overriding of inherited methods.

Virtual classes can only be accessed through the family object (the instance of its family

class). Consequently, an inner class is identified by its name and its enclosing family object

(Ernst, 2001). The implementation of the virtual class can be dynamically bound (or late

bound) to multiple, different classes (the same way method calls are late bound to specific

implementations in Java) depending on the particular instance of the family class, i.e. the

family object that is called from.

This is accomplished by providing the type checker the ability to distinguish between

multiple instances of a given family of classes, based on the identity of the family object.

2.2.2 Family Polymorphism

Thanks to the virtual class mechanism, CaesarJ can implement family polymorphism. Family

polymorphism was first proposed by Ernst (Ernst, 2001) and is a mechanism that allows a set

of unique classes to be grouped in a larger class, such that the member classes and their

instances are uniquely owned by the enclosing instance. This feature solves the problem of

expressing and managing family of related classes while enabling the type system to still

guarantee type soundness while keeping the flexibility of using an unbounded number of

families and ensures that their instances aren’t mixed.

The main advantage of family polymorphism is to allow the type checker to allow a lot of

new combinations of types without compromising the security of a sound type system. It is

the family object’s identity that provides the type checker necessary information. The

6

traditional OO languages do not provide the necessary information to the verifier to do this,

which requires new language mechanisms that endow a language that expression.

2.3 CaesarJ

CaesarJ
2
 is an AOP extension of the Java programming language that has plug-in support

(the CDT: CaesarJ Developer Tool) for the Eclipse platform much like AspectJ
3
, the first and

most popular AOP language. Although both languages have much in common, there are

significant differences between the two languages.

Being an extension of Java, it can be integrated with any Java program up to Java 2. The

most recent version, used in this document, is 0.9.0 from April 2008.

CaesarJ uses the CaesarJ class, a new type of class that enhances a plain Java class. It is used

with the keyword cclass. Cclasses extend normal classes by adding several additional

constructs. In CaesarJ, every top-level cclass is a family class and any nested cclass is a

virtual class. These virtual classes are used to implement family polymorphism.

2.4 CaesarJ Component

In CaesarJ, an aspect is represented by a CaesarJ component composed of several conceptual

modules that collaborate with each other (Mezini & Ostermann, 2004). The following

sections present the modules that make a CaesarJ’s component. They are the Collaboration

Interfaces (CI) (2.4.1), CaesarJ Implementations (CJImpls) (2.4.2), CaesarJ Bindings

(CJBindings) (2.4.3) and Weavelets (2.4.4).

CaesarJ supports multiple inheritance and a typical implementation of a CaesarJ component

consists of two "lines" of inheritance: one for the internal implementation of the component,

one for the bindings. One of the roles of CI is to declare high-level operations that elements

of the "lines" must know, so that the modules of each line can use other modules, without

relying on them. Only depend on the "contract" established by the CI

Figure 1 shows a general structure of the aspect component and its modules.

2.4.1 Collaboration Interfaces

The most high-level module of a CaesarJ component is the Collaboration Interface (Mezini

& Ostermann, 2002). A CI is a family class that contains the declaration (as inner nested

CaesarJ classes) of the roles that each participant will have and the collaborations between

them. Each of these roles represents an abstraction of the modular structure of the aspect

(Mezini & Ostermann, 2003). The CI describes all the methods that each participant class in

2 http://caesarj.org/
3 http://www.eclipse.org/aspectj/

7

the aspect must have. The actual implementation of the aspect component is in the

CJBindings and the CJImpls. Different CJBindings and CJImpls can be combined to create

distinctive implementations of the component.

CIs support reuse of the same functionality in different contexts (Aracic, Gasiunas, Mezini,

& Ostermann, 2006).

Figure 1. General structure of a CaesarJ component

Figure 1 illustrates the general structure of a CaesarJ component, describing all CaesarJ modules,

their mutual relations and the relations to classes in applications as explained the previous

sections.

2.4.2 CaesarJ Implementations

The CaesarJ Implementation is a cclass that implements the members and methods inherited

from the CI that are common to the majority of the implementations i.e. it implements the

context independent parts of the CI. There can be more than one CJImpl for a single CI. This

means that at any given moment one CJImpl can be switched by another without impact on

the code of the remaining modules. In addition, because the CJImpl is based on an interface

(the CI), it can invoke methods or members from other modules in a transparent manner. The

CJImpl can also add members and methods that are not defined in the CI.

8

2.4.3 CaesarJ Bindings

CJBinding acts like the “glue” between the component and a particular application.

All the application specific parts are implemented in the CJBinding. This module

complements the CJImpl for the purpose of providing the implementation of the CaesarJ

component. While the CJImpl implements the abstract part of the CI, the CJBinding

implements the methods that enclose the entire logic specific to the application. This way the

aspect is composed to that application. This mapping is done through Wrapper Classes

(Mezini & Ostermann, Integrating independent components with on-demand

remodularization, 2002).

CJBinding also support the use of the pointcut and advice mechanism, much like AspectJ

(Kiczales, Hilsdale, Hugunin, Kersten, Palm, & Griswold, 2001). In this mechanism, a

joinpoint is a clear point in the program flow. A pointcut picks out a certain joinpoint and

value at that point and an advice is the code that is executed when a joinpoint is reached.

An important difference between the pointcuts of AspectJ and CaesarJ is that in the latter the

pointcuts can be activated and deactivated during the deployment while the pointcuts of

AspectJ are always active. This introduces a dynamic that doesn’t exist in the pointcuts of

AspectJ.

Wrapper Classes

Wrapper classes map one or more application objects to the roles defined in the CI. This

application objects are the wrappees in the class.

To avoid multiple wrappers for the same object CaesarJ has a mechanism implemented

called wrapper recycling. This mechanism guarantees a one and only one wrapper for each

unique pair of a component role instance and a specific object in the application domain. To

ensure this, instead of instantiating a new wrapper with the new constructor call, it is used an

outerClassInstance.innerClassInstance(constructarg) construct, where outerClassInstance is

the family object, innerClassInstance is the virtual class that defines the wrapper class, and

constructarg is the wrappee. With this constructor whenever an instance with these

arguments already exists, the existing object is returned; otherwise, a new instance is created.

Wrappers also have some limitations; currently, it is not possible to for one wrapper class to

wrap two objects (Gasiunas, Mezini, & Ostermann, 2007). This prevents the mapping of new

concepts, internal to the CaesarJ component, based on the application objects to which it

wants to compose. Also, CaesarJ does not allow classes with wrapper declarations to be

refined in sub-classes that declare different wrappers; CaesarJ lacks a mechanism to integrate

with inheritance hierarchies polymorphically. The developer is forced to declare different

wrappers for subclasses of already wrapped classes (Braz, 2009)

9

2.4.4 Weavelets

A Weavelet is a cclass that composes the CJImpls with the CJBinding to create the complete

aspect component. This procedure is done through mix-in composition (Bracha & Cook,

1990); it takes abstract subclasses (in this case the CJImpls and CJBinding) to specialize the

behaviour of the parent class (the CI). The component that represents an aspect in CaesarJ is

the instantiation of a Weavelet.

2.4.5 Component Instantiation and deployment

In CaesarJ and unlike in AspectJ, aspects can be explicitly instantiated through the “new”

keyword, allowing the instantiation of several Weavelets.

These provide the developer the capability of creating various aspect instances in the same

application and manage them as different objects.

Once a Weavelet is defined, it must be deployed in order to activate its pointcuts and advices.

This deployment can be done statically or dynamically. Static deployment can be done in

compile time (through the use of the deployed modifier) or in load time (with the deployed

modifier in the instantiation of a final static object). Dynamic deployment can be either local

or thread-based. To dynamically deploy the component must be instanced by the

instantiation of the Weavelet. For local deployment, the keywords deploy (which defines the

scope of the aspect) and undeploy are used to respectively activate and deactivate the

pointcut/advice parts of the aspect. In thread-based deployment, the activation of the

component is done with a deploy block. The aspect is deployed within the scope of the

control flow inside the block without having influence in concurrent executions.

2.5 Illustrating example: The Observer Pattern

A design pattern (Gamma, Helm, Johnson, & Vlissides, 1995) is a description of a common

software engineering problem and its solution. The patterns implementation is affected by its

implementation language. The most popular design patterns are the 23 Gang-of-Four (GoF)

patterns that suggest flexible solutions for several design and structural issues. This

collection of patterns provide a rich catalogue of problems and corresponding solutions that

can be found in complex systems so its implementations make for good case studies for

research (Hannemann & Kiczales, 2002) (Sousa & Monteiro, 2008).

To better illustrate the differences between Java and CaesarJ, as well its advantages, the

Observer design pattern is used in this section.

The primary aim of Observer is to define a one-to-many relation between interdependent

objects. More specifically, it defines one (or more) object’s dependency of another object’s

state while avoiding their direct dependency on each other at the level of the source-code. It

10

must be possible to remove one or the other from the system without giving rise to

compilation errors.

Figure 2 illustrates the structure of the Observer pattern. Observer prescribes two roles:

Subject and Observer. Subject is the class that Observer classes depend upon. When a

Subject object’s state changes, the Observer objects interested in it must be notified. Class

Subject keeps track of everybody who wants to be updated when a change happens. For this

purpose the Subject class must always have a Notify() function that notifies observer objects

whenever the subject changes its state. The Subject must also provide the operations

addObserver(Observer) and removeObserver(Observer) to add or remove respectively an

observer and a list of all the observers that are interested in the subject. Class Observer is

interested in the state of class Subject. If there is a change in the Subject class, the observers

must be updated. As such, its class must have an Update() function that is called by the

notify() function of the Subject. Class ConcreteSubject holds the state that the observers are

interest in and the class ConcreteObserver implements the Update() method.

Figure 2. Structure of the design pattern Observer

2.5.1 Implementing Observer in Java

The following example of Observer was been taken from Bruce Eckel’s book “Thinking in

Patterns” (Eckel, 2003). The subject in this case represents a Flower. A Flower can open or

close its petals. Listing 1 represents the Flower class. This class extends the Observable class

of the Java API to implement all the logic related to the Subject role, that includes the storage

of the interested observers as well the means to notify them of the status updates. The Bee

and the Hummingbird will take the role of Observers. They are interested in knowing when

the flower opens or closes its petals. When the petals open its time for the Bee and

Hummingbird to eat and when it closes it is time for them to sleep.

Listing 2 represents the Bee class. This class implements the Observer interface as well as its

update() method. The Hummingbird class is similar to the Bee’s so it won’t be depicted here.

In Listing 1 and Listing 2, instead of extending and implementing the Observable and

Observer classes directly, inner classes are used to isolate the code related to the assigned

roles of the pattern.

11

01 class Flower {

02 private boolean isOpen;

03 private OpenNotifier oNotify = new OpenNotifier();

04 private CloseNotifier cNotify = new CloseNotifier();

05 public Flower() { isOpen = false; }

06 public void open() { // Opens its petals

07 isOpen = true;

08 oNotify.notifyObservers();

09 cNotify.open();

10 }

11 public void close() { // Closes its petals

12 isOpen = false;

13 cNotify.notifyObservers();

14 oNotify.close();

15 }

16 public Observable opening() { return oNotify; }

17 public Observable closing() { return cNotify; }

18 private class OpenNotifier extends Observable {

19 private boolean alreadyOpen = false;

20 public void notifyObservers() {

21 if(isOpen && !alreadyOpen) {

22 setChanged();

23 super.notifyObservers();

24 alreadyOpen = true;

25 }

26 }

27 public void close() { alreadyOpen = false; }

28 }

29 private class CloseNotifier extends Observable{

30 // Logic for the notifying closing events

31 }

32 }

Listing 1. Flower Class for the Observer example in Java

01 class Bee {

02 private String name;

03 private OpenObserver openObsrv = new OpenObserver();

04 private CloseObserver closeObsrv = new CloseObserver();

05 public Bee(String nm) { name = nm; }

06 // An inner class for observing openings:

07 private class OpenObserver implements Observer{

08 public void update(Observable ob, Object a) {

09 System.out.println("Bee " + name + "'s breakfast time!");

10 }

11 }
12 // Another inner class for closings:

13 private class CloseObserver implements Observer{

14 public void update(Observable ob, Object a) {

15 System.out.println("Bee " + name + "'s bed time!");

16 }

17 }

18 public Observer openObserver() {

19 return openObsrv;

20 }

21 public Observer closeObserver() {

22 return closeObsrv;

23 }

24 }

Listing 2. Bee Class of the Observer example in Java

12

2.5.2 Observer in CaesarJ

The CaesarJ implementations of the Flower example of Observer were produced by Sousa et

al. (Sousa & Monteiro, 2008). Figure 3 illustrates the class diagram for the CaesarJ’s

implementation of the Flower Observer example. Figure 4 represents the class diagram for

the collaboration interface of the Flower Observer example.

Figure 3. Class Diagram of the CaesarJ Flower Observer example

13

Figure 4. Class Diagram of the Collaboration Interface for the Flower Observer example

01 public abstract cclass ObserverProtocol {

02 public abstract cclass Subject {

03 public abstract void addObserver(Observer obs);

04 public abstract void removeObserver(Observer obs);

05 public abstract void removeObserver();

06 public abstract void notifyObservers();

07 public abstract Object getState();

08 }

09

10 public abstract cclass Observer {

11 public abstract void refresh(Subject s);

12 }

13 }

Listing 3. Collaboration Interface of the CaesarJ Flower Observer example

In Listing 3, the abstract cclass ObserverProtocol describes the collaboration between the

two roles of the Subject and the Observer. Both these classes are abstract virtual classes that

are mutually recursive in that the name of one type is used in the declaration of the other.

All of these classes are inner nested CaesarJ classes (and therefore virtual) and their

implementations are in the modules presented next.

The CJImpl in Listing 4 implements the CI shown in Listing 3, comprising the addObserver,

removeObserver, and notifyObservers abstract methods from the previous listing because

they aren’t context sensitive.

01 public abstract cclass ObsImpl1 extends ObserverProtocol{

02 public cclass Subject {

03 private ArrayList observers = new ArrayList();

04

05 public void addObserver(Observer obs){

06 this.observers.add(obs);

07 }

08 public void removeObserver(Observer obs){

09 this.observers.remove(obs);

10 }

11 public void removeObserver(){

12 this.observers.clear();

13 }

14 public void notifyObservers(){

15 Iterator it = this.observers.iterator();

14

16 while(it.hasNext())

17 ((Observer)it.next()).refresh(this);

18 }

19 public Object getState(){

20 return null;

21 }

22 }

23 }

Listing 4. CaesarJ Implementation of the Observer example

Listing 5 illustrates an alternative CJBinding for the Observer example where the

programmer chooses to implement the list of observers with a Hashmap instead of an

ArrayList as in the first example. This illustrates the reuse that CJImpls provide since one can

replace one implementation with another without impact on the remaining modules of the

CaesarJ component.

01 public abstract cclass ObsImpl extends ObserverProtocol{

02 public cclass Subject {

03 private HashMap observers = new HashMap();

04

05 public void addObserver(Observer obs){

06 this.observers.put(obs, obs);

07 }

08 public void removeObserver(Observer obs){

09 this.observers.remove(obs);

10 }

11 public void removeObserver(){

12 this.observers.clear();

13 }

14 public void notifyObservers(){

15 Iterator it = this.observers.keySet().iterator();

16 while(it.hasNext())

17 ((Observer)it.next()).refresh(this);

18 }

19 public Object getState(){

20 return null;

21 }

22 }

23 }

Listing 5. Alternative CaesarJ Implementation of the Observer example

In the CJBinding of Listing 6, the pointcut openCloseEvents captures the method call isOpen

of the Flower class so it notifies the interested observers of this state change. This CJBinding

has six wrappers classes: FlowerOpening, FlowerClosing, BeeIsOpenObserver,

BeeIsCloseObserver, HummingbirdIsOpenObserver and HummingbirdIsCloseObserver.

In BeeIsOpenObserver for instance, Bee takes the role of wrappee.

01 public abstract cclass ObsBinding extends ObserverProtocol{

02 public cclass FlowerOpening extends Subject wraps Flower {}

03 public cclass FlowerClosing extends Subject wraps Flower {}

04

05 public cclass BeeIsOpenObserver extends Observer wraps Bee {

15

06 public void refresh(Subject s) { wrappee.dinner(); }

07 }

08

09 public cclass BeeIsCloseObserver extends Observer wraps Bee {

10 public void refresh(Subject s) { wrappee.rest(); }

11 }

12

13 public cclass HummingbirdIsOpenObserver extends Observer wraps Hummingbird

{
14 public void refresh(Subject s) { wrappee.dinner(); }

15 }

16

17 public cclass HummingbirdIsCloseObserver extends Observer wraps

Hummingbird {
18 public void refresh(Subject s) { wrappee.rest(); }

19 }

20

21 pointcut openCloseEvents(Flower f) : (set(* Flower.isOpen)) && this(f);

22 void around(Flower f, boolean new_val) : openCloseEvents(f) &&

args(new_val) {
23 boolean old_val = f.isOpen();

24 proceed(f,new_val);

25 if(old_val != new_val)

26 if(new_val)

27 FlowerOpening(f).notifyObservers();

28 else

29 FlowerClosing(f).notifyObservers();

30 }

31 }

Listing 6. CaesarJ Binding of the Observer example

Figure 5 shows the structure of the CJBinding of Flower Observer example, and its wrapping

relations to the classes in the base application.

16

Figure 5. Class Diagram of the CaesarJ Binding for the Flower Observer example

Listing 7 and Listing 8 illustrate two possible Weavelets that use the CJImpls ObsImpl1 and

ObsImpl2 respectively that were depicted in and Listing 5.

01 public cclass FlowerObserverDeploy extends ObsImpl1 & ObsBinding{

02 }

Listing 7. Weavelet for the Observer example

01 public cclass FlowerObserverDeploy extends ObsImpl2 & ObsBinding{

02 }

Listing 8. Alternative Weavelet for the Observer example

The following listings, Listing 9 and Listing 10, present the Flower and Bee classes

respectively without the all the Observer pattern logic that went to the aspect. It is visibly

simpler since all the code relative to the pattern is in the aspect’s module.

17

01 public class Flower {

02 private boolean isOpen;

03 public boolean isOpen(){return this.isOpen;}

04 public Flower(){

05 this.isOpen=false;

06 }

07 public void open(){

08 this.isOpen=true;

09 }

10 public void close(){

11 this.isOpen=false;

12 }

13 }

Listing 9. Class Flower without the Observer Logic

01 public class Bee {

02 private String name;

03 public Bee(String name){

04 this.name = name;

05 }

06 public void dinner(){

07 System.out.println("Bee " + name + "'s dinner time!");

08 }

09 public void rest(){

10 System.out.println("Bee " + name + "'s bed time!");

11 }

12 }

Listing 10. Class Bee without the Observer Logic

2.5.3 CaesarJ Limitations

Cclasses also have some limitations. Cclasses cannot be casted as regular java classes, or

vice-versa, because cclasses cannot extend Java’s regular classes (although they can

implement Java interfaces). In addition, arrays of cclass modules are not supported.

18

3. Existing metrics for modularity

The current chapter is structured in the following manner: Section 3.1 presents some software

attributes related to modularity. Afterwards, section 3.2 describes 5 AOP size metrics

formalized to CaesarJ (3.2.1) and provides some background of available cohesion metrics

(3.2.2).

3.1 Software Attributes

One of the most fundamental principles of solving large and complex problems is that

breaking up the problem into smaller parts enhances understandability and tractability

(Polya, 1957)

Modularity is the division of a software system in smaller parts (modules). This software

attribute allows a program to be intellectually manageable (Myers, 1978). The way the

division of these modules is made is essential to achieve good modularity. A module is a unit

whose structural elements are powerfully connected among them and relatively weakly

connected to elements in other units (Baldwin & Clark, 1999).

One of the most well accepted ways modules should be separated is according to their

functionality, i.e. a module should be functionally independent (Pressman, 2000).

Modularity can be applied at several levels of abstraction, from the requirements

specification’s level to the executable code one. In this dissertation, the term modularity

refers to modularity at the code level.

Good modularity helps to decrease the complexity of a system, in order to make it more

likely to be managed.

In this chapter, two classic software attributes (Chidamber & Kemerer, 1994) related to

modularity are explained, specifically cohesion (3.1.1) and coupling (3.1.2) and one attribute

related to complexity, namely size (3.1.3).

3.1.1 Cohesion

Cohesion is defined by how strongly related are the interactions within a software module

(Myers, 1978). These interactions must have a common functional objective. Cohesion is

positively correlated with the number of interactions. Cohesiveness of methods within a class

is desirable, since it promotes encapsulation of objects (Chidamber & Kemerer, 1994). Low

19

cohesion increases complexity (Zakaria & Hosny, 2003) (Rosenberg & Hyatt, 1997), thereby

increasing the likelihood of errors during the development process, increasing the difficulty

to maintain, reuse and understand a software system. One way modularity can be assessed is

by combining coupling and cohesion. (Pressman, 2000) (Tsang, Clarke, & Baniassad, 2004).

3.1.2 Coupling

Coupling is the degree of interaction between modules (Myers, 1978), i.e., the measure of

relative interdependence between modules. Even if, by definition, modules must interact with

each other to satisfy requirements, one module should depend as little as possible on other

modules. Low coupling is positively correlated with understandability, reusability and

reduction on the impact of modifications and consequently error propagation (Pressman,

2000).

3.1.3 Size

Size is the most well-known software attribute. It is the measure of the physical size of the

system’s design and code. Size is a key factor in a program complexity (Fenton & Pfleeger,

1998).

Complexity has a large impact on modularity (Kumar, Kumar, & Grover, 2008).

3.2 Software Metrics

Software metrics measure properties of software artefacts defined at different abstraction

levels. Metrics are often used to get information about quality attributes related to the design

and implementation of software applications. A software metric is a function that has as input

a software artefact (or a set of related software artefacts) and returns a numeric value that can

be interpreted and evaluated (Kaner & Bond, 2004). This helps to decide what good design

and implementation choices one must make in a consistent manner with an objective and

repeatable evaluation, regardless of who makes it. Unfortunately, measuring software can be

a difficult task. It is not always clear what to measure, or how to interpret the collected

metrics. Also, some metrics are ambiguously defined, which leads to the same code having

different results for allegedly the same metric, depending how the metric’s definition is

interpreted and the metric’s collection is implemented. For instance, Lincke et al. surveyed a

number of tools and concluded that for the same software system and metrics, the metrics

values are tool depended (Lincke, Lundberg, & Löwe, 2008).

A set of AOP metrics is required to evaluate AOP systems since OOP metrics can’t be

applied to them in a straightforward manner (Zakaria & Hosny, 2003), (Zhao, Towards A

Metrics Suite for Aspect-Oriented Software, 2002).

20

A number of metrics AOP metrics have been proposed but they seem to be specific to

AspectJ (Gélinas, Badri, & Badri, 2006), or for AspectJ-like languages. (Zhao, Measuring

Coupling in Aspect-Oriented Systems, 2004) (Sant’Anna, Garcia, Chavez, Pereira de

Lucena, & von Staa, 2003). Although AspectJ and CaesarJ share some features (like the

pointcut-advice mechanism), they have many differences. AspectJ’s aspect module is very

different from traditional classes. Not only it has new constructs, but it also lacks some

capabilities common in classes such as explicit instantiation with “new” (Rajan & Sullivan,

2005). Also, CaesarJ doesn’t have the “aspect” as an individual construct and has several

features that are not present in AspectJ. For these reasons, most AOP metrics are only

suitable for AspectJ, disregarding other AOP languages.

This chapter describes some metrics adapted for CaesarJ grouped by the software attributes

that they measure.

Section 3.2.1 lists Size metrics and section 3.2.2 and describe existing cohesion metrics.

The term component in the current chapter has a different meaning from the previous one. In

chapter 2, a (CaesarJ) component is an aspect that is composed by several conceptual

modules. In the current chapter, a component has a more general meaning (it can be a class,

interface or a cclass).

3.2.1 Size Metrics

Size metrics measure the size of the software (in terms of the length of the system’s design

and code). Usually the bigger the system, the harder is to understand it. In other words, size

and complexity are often positively correlated (Sant’Anna, Garcia, Chavez, Pereira de

Lucena, & von Staa, 2003), (Fenton N. , 1994). The following size metrics are taken from

Sant’Anna et al.’s suite of metrics (Sant’Anna, Garcia, Chavez, Pereira de Lucena, & von

Staa, 2003). Though it claims to be for AOP in general, its definitions do not take CaesarJ’s

specific constructs into account. Therefore its definitions were updated, in the context of this

dissertation, to reflect them. They are the following:

 Vocabulary Size (VS): Also known as Number of Components, this metric counts the

number of system components (classes and aspects) in in the application. It covers

only the name of the components and not instances. Although its original definition

(Sant’Anna, Garcia, Chavez, Pereira de Lucena, & von Staa, 2003) only considers a

component to be a class or an aspect, this definition is extended to consider also

cclasses.

 Lines of Code (LOC): The simplest and most well-known metric, it counts the

number of code lines. The count criteria must be consistent when the results are

compared i.e., the formatting style should be the same. Documentation and

21

implementation comments as well as blank lines are not taken into account for this

purpose.

 Number of Attributes (NOA): This metric counts the number of attributes per

component. The term “component” is the same as the one defined in the VS metric.

Inherited attributes are not counted.

 Number of Operations (NOO): This metric counts the number of operations per

component. Inherited operations are not counted, unless they are overridden.

Although the original definition of “operation” only comprised of methods and

advices, it is extended in the context of this thesis to include also, constructors,

wrapper constructors, pointcuts, and declare statements.

 Weighted Operations per Component (WOC): WOC (Sant’Anna, Garcia, Chavez,

Pereira de Lucena, & von Staa, 2003) measures the complexity of a component in

terms of its operations. The complexity of each operation can be measured by the sum

of parameters each operation has (the more parameters it has, the more complex the

operation is). WOC is an extension of CK’s Weighted Methods Per Class metric

(Chidamber & Kemerer, 1994).

3.2.2 Existing Cohesion Metrics

Cohesion metrics measure how strong the relation between internal components is in terms

of responsibilities. High cohesion is typically desirable because the readability and

reusability of a highly cohesive system is greater while its complexity is kept manageable

(Barnes, Jr., Hale, Hale, & Smith, 2006).

Lack of Cohesion in Methods (LCOM-CK): Chidamber and Kemerer define (Chidamber

& Kemerer, 1994) the cohesion of a class as the degree of similarity of the methods within a

class. In this OO metric, we take each pair of methods in the class and determine the set of

fields each access. If the two methods have disjointed sets of field accesses (i.e., no common

attribute references), the count P increases by one. If the two methods share at least one field

access, Q is incremented by one. After considering each pair of methods:

LCOM-CK

If a class has a large number of similar methods, it results in a low LCOM-CK value, which

indicates high cohesion between them. This also indicates potentially high reusability and

good class design. The viewpoints listed for this metric are:

22

1) Cohesiveness of methods within a class is desirable, since it promotes encapsulation

of objects.

2) Lack of cohesion implies classes should probably be split into two or more sub-

classes.

3) Any measure of disparateness of methods helps to identify flaws in the design of

classes.

4) Low cohesion contributes to complexity, thereby increasing the likelihood of errors

during the development process.

However this metric has some problems. Since it isn’t normalized and there is no guideline

on the interpretation of any particular value, it is not obvious by the results the degree of

cohesiveness of a class (Henderson-Sellers, 1996): if LCOM-CK = 0 the class is maximally

cohesive, but there are not any reference values to evaluate the need to split that class if

LCOM-CK > 1. Also, this metric can give a value a zero for very different reasons such as

|P| = |Q| (which, by itself, shouldn’t imply the maximum cohesiveness).

Chidamber and Kemerer (CK) do not state if inherited methods or attributes are included in

this metric.

Lack of Cohesion in Operations (LCOO): LCOO (Sant’Anna, Garcia, Chavez, Pereira de

Lucena, & von Staa, 2003) is an AOP metric that measures the quantity of method/advice

pairs of a component (classes and aspects) that do not access the same instance variable.

Consequently, it measures the lack of cohesion of a component. Given a component C1 and

operations (methods and advices) Oi, ..., On

 {Ij} is set of instance variables used by operation Oj.

 |P| is the number of null intersections between instance variables sets.

 |Q| is the number of non-empty intersections between instance variables sets.

 LCOO

This metric extends the CK’s metric Lack of Cohesion of Methods (LCOM-CK) (Chidamber

& Kemerer, 1994) and, by extension, inherits all its shortcomings (Gélinas, Badri, & Badri,

2006). Also, this metric is based on the principle that all AOP languages are similar to

AspectJ. Treating advices as methods and aspects as classes seems a rather simplistic view

for CaesarJ and doesn’t cover the constructs not shared with AspectJ.

Lack of Cohesion in Methods (LCOM-HS): This is an improvement on the previous

LCOM and is proposed by Henderson-Sellers (Henderson-Sellers, 1996). It is defined as

follows:

23

LCOM-HS =

where a and m are the number of attributes and methods of the class, respectively, and μ(Aj)

is the number of methods that access the datum Aj (1≤j≤a).

The LCOM-HS value varies between 0 and 1. If LCOM-HS = 0, each method of the class

references every attribute of the class (which results in perfect cohesion). If LCOM-HS = 1,

each method of the class references a unique attribute each. Values between 0 and 1 are to be

interpreted as percentages of the perfect value.

If there is only one method or less in a class, or if there are no attributes in a class LCOM-HS

is undefined. An undefined LCOM-HS is displayed as zero. This way, the metric is

normalized and simplified.

The authors do not mention whether inherited methods and attributes are accounted for.

24

4. A new cohesion metric for Java and CaesarJ

As previously stated, OOP existing metrics cannot be applied straightforwardly to AOP and

although there are some metrics for the latter, most of them are for AspectJ-like languages.

This chapter proposes an adapted version of the LCOO metric with the CaesarJ features in

mind. It also clarifies some ambiguities not covered in its original definition.

This metric measures the lack of cohesion of a component in Java and CaesarJ.

As this metric is an extension of the LCOM metric of Henderson-Sellers to be used with

CaesarJ, the same theoretical concepts are used; only the calculated variables will be revised

to reflect the features of CaesarJ.

Many of the current OOP cohesion (and coupling) metrics have very ambiguous definitions

and can yield very different results depending on their interpretation. When defining a

software metric, one should establish a proper terminology and formalism in an

unambiguously and fully operational manner so that no additional interpretation is required

on behalf of the user of the metric (Briand, Daly, & Wust, 1998). This metric uses the same

terminology and formalism presented by Bartolomei et al.. (Bartolomei, Garcia, Sant'Anna,

& Figueiredo, 2006). In this context we will only use the definitions applicable for Java and

CaesarJ.

4.1 Terminology and formalism

The key elements of this metric are:

 Component: includes classes, interfaces, and cclasses.

 Operation: includes methods, constructors, wrapper constructors, pointcuts, advices,

declare statements and static initializers.

 Attribute: includes all fields, (static and non-static, public, private and protected).

Another option pondered would be to consider as a component the group of cclasses that

comprise the internal structure of an aspect in CaesarJ (explained in section 2.4). The

reasoning is that since the “aspect component” is so closely connected because of virtual

classes and family polymorphism that it should be evaluated together. However, the

abstraction level for this “aspect component” is different than that used considering just

individual classes (or cclasses) and it does not seem reasonable to consider individual classes

and a group of cclasses at the same level. Furthermore, the “aspect component” is just a

recommendation made by the CaesarJ’s authors to compose an aspect, taking full advantage

25

of its features. It is not mandatory to use it that way. Also, precisely identifying this “aspect

component” automatically is not feasible.

4.2 Definition of the metric

This new metric is defined as:

 LCOO-HS =

Where o, a and μ(Aj) are defined as

 o: number of operations in a class

 a: number of attributes in a class.

 μ(Aj): number of operations that access the that access the datum Aj (1≤j≤a).

If the component doesn’t have any attributes (a = 0) or there are no more than one operation

in it (o <= 1) then LCOO-HS = 0.

The scale of this metric remains the same as LCOO-HS:

 The measure yields 0, if each operation of the component references every attribute of

the component (perfect cohesion).

 The measure yields 1, if every operation of the component accesses a unique

attribute.

 Values between 0 and 1 are interpreted as percentages of the perfect value.

4.3 Inheritance

Next some typical problems and ambiguities usually found in cohesion metrics will be

reviewed and a proposal to address them is presented.

Most cohesion metrics do not address the influence of inheritance, or how to deal with it

(Briand, Daly, & Wust, 1998). There are several approaches available one can take:

1. Count only newly implemented (not inherited or overridden) operations and

attributes.

2. Count overridden and newly implemented operations and attributes

3. Count all inherited (overridden and non-overridden) and newly implemented

operations and attributes.

The first option doesn’t make much sense in the context of this dissertation. Since the

attribute/operation relation is the main element being analysed in cohesion, excluding

overridden operations that could use new attributes would influence the result without any

empirical justification.

26

This metric will only count overridden and newly implemented operations and attributes

because these are the ones that add something new to the class. The inherited (non-

overridden) operations are already counted in the superclass, so counting them again in the

sub-classes would artificially increase their value.

4.4 Access Methods

An access method provides read or write access to an attribute of the class. Access methods

typically reference only one attribute, specifically the one they provide access to.

The presence of access methods artificially increases the value of LCOM. They increase the

number of pairs of methods in the class that do not use attributes in common (Briand, Daly,

& Wust, 1998).

Access methods can also inflate the value of LCOM in some circumstances (Hitz &

Montazeri, 1995). If a method M references an access method M’ instead of the attribute A,

the relation M-A is not counted in the metric.

Unfortunately, excluding these methods in the implementation of a tool is very challenging,

because, to our knowledge, the only way to identify these methods automatically is through

the name (for example, getter methods are those whose names start with “get”). The same

naming convention would have to be ensured in all the systems where this metric is applied,

thus narrowing the set of systems with which the tool can be used. Furthermore, this could

lead to inaccurate results. For example, if the convention were setAttributeName, a method

with the name settleAccount or setupWebsite would also be excluded. Therefore, access

methods are counted.

4.5 Validation of the metric

To validate the LCOO-HS metric, Abreu’s set of criteria for the development of software

metrics (Brito e Abreu & Carapuça, 1994) is used. It comprises of 7 criterions:

i) Metrics determination should be formally defined

LCOO-HS is formally defined so different users at different times or places yield the same

results when measuring the same system. As the results of the metric are considered a

percentage, they are also objective.

ii) Non-size metrics should be system size independent

LCOO-HS can be collected, analyzed and compared with many different projects with

different sizes because its results have a fixed scale. It is not dependent on the project’s size.

27

iii) Metrics should be dimensionless or expressed in some consistent unit system

As previously stated, the units of measurement of LCOO-HS are not subjective.

iv) Metrics should be obtainable early in the life cycle

LCOO-HS does not meet this criterion. This metric is only collectable when code is

available. This metric was developed to be used the context of a study that has the purpose

of determining to what extent the use of a programming language affects the modularity and

complexity. This criterion is particularly relevant if we want to detect potential quality

problems with a particular design before we get to the implementation phase. The

“relaxation” of this criterion is not compromising for the context of this work.

v) Metrics should be down scalable

LCOO-HS can be applied to a whole system or to each one of its modules or sub-systems.

vi) Metrics should be easily computable

A tool has already been developed, in the context of this dissertation, to collect LCOO-HS.

vii) Metrics should be language independent

LCOO-HS is valid for 2 programming languages: Java and CaesarJ. These languages are the

subjects of the study developed in the context of this dissertation

It is planned to extend it to support more AOP languages.

4.6 Illustrating example: The Observer pattern

In this section the LCOO-HS metric is illustrated using the same example of the Observer

pattern that was previously described in chapter 2.5. Table 1 lists the components that make

the Flower Observer example and its LCOO-HS metric values. The components named

component1$component2 represent an inner component component2 of the top-level

component component1.

Component Attributes Operations
LCOO

-HS

ObserverProtocol 0 0 0 0

ObserverProtocol$Subject 0 5 0 0

ObserverProtocol$Observer 0 1 0 0

FlowerObserverDeploy 0 0 0 0

28

ObserverFlowerBinding 0 2 0 0

ObserverFlowerBinding$FlowerOpening 0 0 0 0

ObserverFlowerBinding$FlowerClosing 0 0 0 0

ObserverFlowerBinding$BeeIsOpenObserver 0 1 0 0

ObserverFlowerBinding$BeeIsCloseObserver 0 1 0 0

ObserverFlowerBinding$HummingbirdIsOpenObserver 0 1 0 0

ObserverFlowerBinding$HummingbirdIsCloseObserver 0 1 0 0

ObsImpl1 0 0 0 0

ObsImpl1$Subject 1 5 5 0,25

Flower 1 4 4 0

Bee 1 3 3 0

Table 1. LCOO-HS results for the Flower Observer example

Neither the ObserverProtocol component (and its two inner classes) depicted in Listing 3

nor the FlowerObserverDeploy component (depicted in Listing 7) have any attributes, so

LCOO-HS = 0

The ObserverFlowerBinding component (showed in Listing 6) is an interesting case that is

very common in CaesarJ. It does not have attributes so LCOO-HS = 0; this component also

has 6 internal components (the wrapper classes), each one with o >= 1, so, for each one of

them, LCOO-HS = 0.

The ObsImpl1 component (illustrated in Listing 4) has LCOO-HS = 0. It has no attributes or

operations). It has one inner class Subject with the following variables:

 a = 1;

 o = 5;

 = 5;

replacing these values to the LCOO-HS formula results in LCOO-HS = ((4/1) – 5 / (1-5) =

0,25

The Flower component represented in Listing 9 the variables of the component are

 a = 1;

 o = 4;

 = 4;

applying these values to the LCOO-HS formula ends in LCOO-HS = ((4/1) – 4) / (1-4) = 0

In the Bee component represented in Listing 10 the variables of the component are

 a = 1;

29

 o = 3;

 = 3;

which applied to the LCOO-HS formula results in LCOO-HS = ((3/1) – 3) / (1-3) = 0

30

5. Tool support for metric collection

Collecting metrics manually, especially in complex, non-trivial systems, is a tedious, not

scalable and error-prone activity. For this reason, proper tool support is advisable for metrics

collection. There are several applications to collect metrics for Java available on the Internet.

However, the same metric calculated by different tools, often gives different results (Lincke,

Lundberg, & Löwe, 2008). This seems to be particularly frequent in cohesion and coupling

metrics. For this reason, when comparing the same metric in different systems, one way of

mitigating this problem is to have the same metrics collection tool be used to ensure the

coherence and comparability of those results. Since this study comprises of two different

programming languages, a tool that supports both languages is necessary. To the best of our

knowledge, there is only one metric collection tool that works for CaesarJ. The Multi

Language Assessment Tool (MuLATo)
4
 is a Java application for collecting metrics from

programs written in several languages. The core module provides parsers for Java, AspectJ

and CaesarJ programs and can be extended for other languages. The GUI was developed as

an Eclipse plug-in, but other types of user interfaces can be built on top of the core module.

The most recent version is 0.1.1 from September of 2006 and it is available under open

source in (Bartolomei T. T., 2007).

MuLATo can use Java, AspectJ or CaesarJ projects as input and creates a CSV file with its

supported metrics.

Table 2 shows the metrics MuLATo currently supports for CaesarJ, aggregated by software

attribute.

Software Attribute Metric

Size

Weighted Operations per Component (WOC)

Number of Attributes (NOA)

Number of Operations (NOO)

Vocabulary Size (VS)

Unfortunately only a few size metrics are available in the current version.

In the context of this dissertation, the MuLATo tool was further developed to support new

metrics. These new metrics are:

4 http://swen.uwaterloo.ca/~ttonelli/mulato/

Table 2. CaesarJ metrics supported by MuLATo 0.1.1

31

 Lack of Cohesion in Operations (LCOO-HS): metric adapted from the LCOM

metric of Henderson-Sellers.

 Lack of Cohesion in Operations (LCOO-BDW): metric adapted from the LCOM

metric of Briand et al. (Briand, Daly, & Wust, 1998) using the same formalisms

depicted in 4.1

 Vocabulary Size (VS): counts the number of classes in the system.

 Number of Inner components (NIC): counts the number of inner components in the

system.

In the Eclipse Metrics plugin
5
, the LCOM-CK and LCOM-HS are supported. In these

implementations, operations are only included if they access at least one attribute. The

MuLATo implementation of LCOO-HS supports this count as well as counting all the

operations of a component. The results of the LCOM-HS metric in Java with the Metrics

plugin and the MuLATo plugin are the same (when the latter only counts operations that

access at least one attribute)

The VS metric was re-developed because the version that was already implemented only

gave a result at a system level, not allowing computing the metric for a specific package, for

example.

Developing MuLATo is not a trivial task since it required. In addition to knowledge of the

metric, a proper understanding of the MuLATo tool and the CaesarJ compiler (which is an

extension of the Polyglot (Nystrom, Clarkson, & Myers, 2003) Java compiler) is required.

Neither MuLATo nor the CaesarJ compiler has any documentation so the only way to

understand them is by examining the source code.

5 http://metrics2.sourceforge.net/

32

Figure 6. MuLATo metric collecting process

Figure 6 illustrates the metric collecting process after the developments made in the context

of this dissertation. The forms with the perforated lines did not need to be altered. The shapes

with the normal lines were altered and the ones with the thick lines are new and were not

present in the previous versions of MuLATo.

The CaesarJ Model Extractor module takes as input all the source files (classes, interfaces

and cclasses) and detects the structure of the analyzed files, in terms of their components

(e.g. attributes, pointcuts, operations and statements). The Extractor module parses the

CaesarJ code and builds a representative model of the system, called CaesarJ Source Model.

This model is a suitable representation of the source code. Two sub-modules comprise the

Model Extractor: the Source Code Parser and the References Analyzer. The first sub-module

extracts information from the code while the second captures the existing relationships

between syntactic elements (e.g. imports, inheritance, associations and method calls).

The Metric Collector module is responsible for computing the metrics.

CaesarJ Model
Extractor

Source
Code

Source Code
Parser

Reference
Analyzer

CaesarJ Source
Model

Metric Collections

Size Cohesion

Metric
Results

SpreadSheet
Template

Collected
Data

Visitor

33

To retrieve information from a system, it is necessary to navigate the parse tree built by

MuLATo (the CaesarJ Source Model) from the subject’s source code and collect all the

needed values. Next, these are exported to a CSV file where it can be used in conjunction

with a spreadsheet “template” file to compute the desired metrics. The use of an Excel

template file also gives the freedom to choose which components are to be included (or

excluded) from the calculations.

Besides confirming the results of LCOO-HS collected by the tool with manual calculations,

another kind of validation was made.

To validate the implementation of the LCOO-HS metric, results were collected from various

Java projects and compared with the results of LCOM-HS metric collected by the Metrics

plugin. Both results are equal.

34

6. Evaluating CaesarJ against Java

This chapter presents the study of the size and cohesion software attributes for the Java and

CaesarJ languages. Its organization is adapted from the “standard” experimental report

structure for Software Engineering (Jedlitschka, Ciolkowski, & Pfahl, 2008).

6.1 Introduction

6.1.1 Research Objectives

The purpose of this study is to analyse the CaesarJ language, for the purpose of assessing

the usefulness of its language constructs (using the Java language as a yardstick), with

respect to software size and cohesion, from the point of view of developers who

implemented analogous systems in both the CaesarJ and Java languages, in the context of a

study on several repositories that includes several examples of functionally equivalent pattern

implementations in both Java and CaesarJ.

6.1.2 Context

This study builds on previous work, namely the implementation of the well-known GoF

design patterns in CaesarJ developed by Sousa et al (Sousa & Monteiro, 2008) and Braz

(Braz, 2009). Six repositories of implementations of the GoF are used: Hannemann &

Kiczales’ (Hannemann & Kiczales, 2002), Cooper’s (Cooper, 1998), Eckel’s (Eckel, 2003),

Fluffycat’s (Truett), Huston’s (Huston, 2007), and Polanco’s (Polanco, 2002).

We consider results from this study valid only in the context of the patterns’ examples used,

rather than as applying to software modules in general. Further research must be conducted

to assess which conclusions are specific to the implementations used and which are

generalizable.

6.2 Background

6.2.1 Related studies

Some studies related to this one have already been made. Garcia et al. (Garcia A. ,

Sant’Anna, Figueiredo, Kulesza, Lucena, & von Staa, 2006) presented a quantitative study

35

that compared aspect-based and OO solutions for the 23 Gang-of-Four patterns. They used

AspectJ as the AOP langue and Java as the OOP one. They’ve found that the use of aspects

reduced coupling between components and increased cohesion for most solutions. They also

discovered, for the size attribute, the results were much better for the aspect-based solutions.

Other related case study is the HealthWatcher, in the context of the TAO research project

(Lancaster University, 2007) funded by the Lancaster University for the assessment and

comparison of AOSD techniques with existing ones. It was concluded that concerns

aspectized upfront tend to show superior modularity stability in the AO designs. Results also

showed better coupling and cohesion in AOP. Unfortunately the CaesarJ implementation of

the study is very similar to the AspectJ implementation as they share the same class diagram

and do not take into account the particular features of CaesarJ.

6.2.2 Relevance to practice

Before adopting a programming language for its alleged benefits, it is important to realize the

extent to which this benefits are real and in what circumstances are observed or not. This

work aims to do this with a comparative study that sheds some light on the claims of CaesarJ

being better Java with respect of modularity and complexity.

6.3 Experimental planning

6.3.1 Goals

The study focuses on the comparison of complexity (which is measured indirectly via size)

and cohesion.

For this purpose, this goal is broken down into 6 sub-goals, where the variation lies on the

metric under assessment. The sub-goals definitions are depicted in Table 3.

Goals Description

G1 Compare the Java and CaesarJ languages with respect to the LOC metric

G2 Compare the Java and CaesarJ languages with respect to the VS metric

G3 Compare the Java and CaesarJ languages with respect to the NOA metric

G4 Compare the Java and CaesarJ languages with respect to the NOO metric

G5 Compare the Java and CaesarJ languages with respect to the WOC metric

G6 Compare the Java and CaesarJ languages with respect to the LCOO-HS metric

Table 3. Research goals

Goals G1 to G5 contributes to complexity and goal G6 is related to cohesion.

36

6.3.2 Experimental Units

There are several existing Java repositories of the design patterns. These repositories are

available online for free. Some of them are the following:

Repository

reference name
Author(s) Repository URL

Thinking in

patterns
Bruce Eckel

http://www.mindviewinc.com/downloads/TIPatterns-

0.9.zip

Design pattern

Java companion
James Cooper http://www.patterndepot.com/put/8/JavaPatterns.htm

Fluffy Cat Larry Truett http://www.fluffycat.com/Java-Design-Patterns/

Hannemann et al.

Jan Hannemann

and Gregor

Kiczales

http://hannemann.pbwiki.com/Design+Patterns

Huston Vince Huston http://www.vincehuston.org/dp/

Guidi Polanco
Franco Guidi

Polanco

http://eii.ucv.cl/pers/guidi/documentos/Guidi-

GoFDesignPatternsInJava.pdf
Table 4. Gang-of-Four Design Patterns repositories implemented in Java

The repositories of the CaesarJ implementations are refactorings to CaesarJ of existing

examples in originally coded in Java, developed by Sousa et al (Sousa & Monteiro, 2008)

and Braz (Braz, 2009) and were developed taking into account the specific features of

CaesarJ, including pointcuts, advice, virtual classes and family polymorphism.

Table 5 indicates the available implementations in both Java and CaesarJ. Each “X”

represents an implementation of a scenario for a given pattern. There are a total of 51

examples available in both languages.

Thinking

in

patterns

(Eckel,

2003)

DP Java

companion

(Cooper,

1998)

Fluffycat

(Truett)

Hanneman

n et al.

(Hanneman

n &

Kiczales,

2002)

Huston

(Huston

, 2007)

Guidi

Polanco

(Polanco

, 2002)

Abstract

Factory
X X X X

Adapter

X

X

Bridge X

X X X

Builder X

X

Chain of Res-

ponsibility
X X X

X

Command

X

X

Composite X X

X X

http://www.mindviewinc.com/downloads/TIPatterns-0.9.zip
http://www.mindviewinc.com/downloads/TIPatterns-0.9.zip
http://www.patterndepot.com/put/8/JavaPatterns.htm
http://www.fluffycat.com/Java-Design-Patterns/
http://hannemann.pbwiki.com/Design+Patterns
http://www.vincehuston.org/dp/
http://eii.ucv.cl/pers/guidi/documentos/Guidi-GoFDesignPatternsInJava.pdf
http://eii.ucv.cl/pers/guidi/documentos/Guidi-GoFDesignPatternsInJava.pdf

37

Decorator X

X X

X

Facade X

Factory

Method
X

X

Flyweight

Interpreter

X

Iterator

X

X

Mediator

X X X

Memento

Observer X X X X

X

Prototype

X X X

Proxy

Singleton

X

State

Strategy

Template

Method
X

X

Visitor X X X X X

Table 5. Design pattern implementations implemented in CaesarJ

6.3.3 Experimental Material

All 51 implementations from all the repositories are used as subject of this study. This will be

done for greater statistical reliability.

6.3.4 Tasks

As noted on the previous sub-section, the subjects of this study are design pattern

implementations. As such, the “tasks” item in the experimental design description is not

applicable for this study.

6.3.5 Hypotheses

The goals lead to test six different basic hypotheses, in order to assess the effect of CaesarJ

on each metric (when compared to Java). The hypotheses were identified as H1, H2, H3, H4,

H5 and H6 (Table 6). For each hypothesis, both a null and an alternative hypothesis were

formulated.

38

Hypotheses

H1 H10 CaesarJ provides no significant improvement on the patterns’ LOC.

H11 CaesarJ provides a significant improvement on the patterns’ LOC

H2 H20 CaesarJ provides no significant improvement on the patterns’ VS

H21 CaesarJ provides a significant improvement on the patterns’ VS

H3 H30 CaesarJ provides no significant improvement on the patterns’ NOA

H31 CaesarJ provides a significant improvement on the patterns’ NOA

H4 H40 CaesarJ provides no significant improvement on the patterns’ NOO

H41 CaesarJ provides a significant improvement on the patterns’ NOO

H5 H50 CaesarJ provides no significant improvement on the patterns’ WOC

H51 CaesarJ provides a significant improvement on the patterns’ WOC

H6 H60 CaesarJ provides no significant improvement on the patterns’ LCOO-HS

H61 CaesarJ provides a significant improvement on the patterns’ LCOO-HS

Table 6. Research hypotheses

6.3.6 Independent variables

The independent variable is the same for all the hypotheses. This variable, which we’ll call

“Is CaesarJ”, assumes the value true for pattern instances implemented in CaesarJ and false

otherwise.

6.3.7 Dependent variables

The variables used in this experiment represent the various metrics collected. These metrics

can be applied to both Java and CaesarJ and have already been explained in the previous

chapters. They are:

 Lines of Code (LOC)

 Vocabulary Size (VS)

 Number of Attributes (NOA)

 Number of Operations (NOO)

 Weighted operations per component (WOC)

 Lack of Cohesion in Operations (LCOO-HS)

6.3.8 Design

In this case study we have 51 scenarios, each implemented in two different programming

languages. We have 2 observations for each subject (i.e. scenario). The first observation is

39

the metrics collection for the Java scenario. The second observation is the refactorings in

CaesarJ.

6.3.9 Procedure

First each Java and CaesarJ repository project was organized to ensure that each pattern

implementation of the standards used the same data structures (some CaesarJ examples had

multiple implementations of the same patterns using different data structures, e.g. ArrayLists

and WeakHashMaps). Then Metrics
6
 tool was used in each class of each of the 102 examples

to collect LOC. Afterwards we used the MuLATo tool to collect the remaining metrics. An

illustration of this process is in depicted in Figure 6.

This tool returns a CSV file with the metric results for each class. We grouped these results

by pattern. After all the values of the pretended metrics for every implementations of each

repository are collected, they are converted to the format of SPSS so that we can run the

appropriate statistical tests. For each metric, we performed statistical and normality tests to

verify data normality. After verifying that non-parametric tests were the most suitable for our

samples, we executed the Wilcoxon signed-rank test for each pair of metrics.

6.3.10 Analysis procedure

The following steps were taken:

 Compute descriptive statistics: For all the independent and dependent variables, a

set of descriptive statistics, (specifically the mean value within the sample, standard

deviation, minimum value, maximum value, range, skewness and kurtosis) was

collected. These descriptive statistics provide a first overview of the data, which is

further detailed in subsequent analyses.

 Normality tests: Data is checked for normality, so that the statistics tests that are

suitable for the data and our experimental design

 Analysis of differences between groups: Finally, a test to detect whether there are

significant differences between groups is executed. This allows the test of the

hypotheses stated in sub-section 6.3.5.

The first two steps are depicted in section 6.6. Then the analysis of differences between

groups are showed in section 6.8

6.4 Execution

6.4.1 Preparation

6 http://metrics2.sourceforge.net/

40

The implementations of CaesarJ were divided into different projects, organized by repository

and each implementation was compared to the its Java equivalent because some CaesarJ

implementations had multiple alternatives (for instance, one example had various alternatives

for a list implementation like an ArrayList, HashMap or a custom class).

No other special preparations were required, other than installing the version of the MuLATo

plugin developed in this dissertation context and the Metrics plugin.

6.4.2 Deviations

Data collection followed the plan outlined in sub-section 6.3.9.

6.5 Analysis

The results of the data collection are depicted in Table 7. The design patterns are grouped in

the two rightmost columns by repository. The collected metrics are the ones listed in section

6.3.7. The first 5 metrics have already been explained in chapter 3.2.1 and the LCOO-HS in

chapter 4.

41

LOC VS NOA NOO WOC LCOO-HS

Repository Design Pattern Java CaesarJ Java CaesarJ Java CaesarJ Java CaesarJ Java CaesarJ Java CaesarJ

HK

Abstract Factory 145 139 7 7 5 5 16 14 3,571 3,140 0,000 0,000

Adapter 35 34 4 4 3 1 5 5 2,500 2,500 0,000 0,000

Bridge 98 125 7 35 1 1 17 19 3,714 0,770 0,000 0,000

Builder 72 87 4 9 3 4 13 16 6,000 3,000 0,125 0,060

Chain of Responsibility 108 155 6 26 4 2 12 25 3,667 1,880 0,000 0,000

Command 68 82 5 16 1 2 7 8 2,000 0,690 0,000 0,040

Composite 92 135 4 24 5 5 22 22 9,000 1,375 0,213 0,010

Decorator 48 120 6 4 1 0 9 11 3,000 5,250 0,000 0,000

Facade 55 24 5 3 0 0 9 5 3,000 2,670 0,000 0,000

Factory Method 65 85 4 12 1 3 8 10 2,250 1,080 0,000 0,000

Interpreter 152 152 9 13 8 9 29 29 7,222 4,540 0,000 0,000

Iterator 74 79 4 7 3 3 15 15 6,000 3,140 0,063 0,040

Mediator 69 110 5 19 5 5 8 17 3,000 1,320 0,000 0,000

Observer 116 174 5 27 6 5 21 36 7,600 2,296 0,250 0,025

Prototype 66 105 3 15 2 2 9 13 4,667 1,200 0,000 0,000

Singleton 76 64 3 6 6 3 8 8 3,000 2,170 0,278 0,000

Template Method 55 55 4 4 0 0 11 11 5,500 5,500 0,000 0,000

Visitor 104 118 7 19 5 5 18 18 4,429 1,680 0,071 0,030

JCooper

Abstract Factory 238 247 11 15 14 15 33 33 4,273 3,200 0,222 0,106

Adapter 134 140 3 4 9 9 13 13 6,000 4,500 0,488 0,366

Chain of Responsibility 313 361 9 34 23 14 34 37 6,444 1,971 0,441 0,034

Command 86 97 8 11 15 8 14 9 2,875 1,364 0,000 0,000

Composite 198 273 4 23 19 26 20 34 9,000 2,174 0,380 0,062

Iterator 200 204 6 10 11 12 19 21 5,000 3,200 0,222 0,136

Mediator 399 480 13 33 38 35 48 71 5,769 3,303 0,522 0,156

Observer 166 260 8 24 17 18 16 33 3,375 2,208 0,358 0,118

Prototype 208 238 4 15 17 18 19 22 6,250 1,933 0,585 0,108

Template Method 136 136 6 6 13 13 16 16 7,500 7,500 0,306 0,306

Visitor 184 193 7 19 13 12 26 25 6,714 2,421 0,202 0,071

Beckel

Abstract Factory 77 64 11 14 7 0 17 14 2,000 1,429 0,121 0,000

Bridge 143 168 9 37 3 3 34 31 4,222 0,919 0,000 0,000

Builder 110 130 14 27 6 6 23 23 2,429 1,259 0,000 0,000

Composite 42 106 4 23 2 3 9 19 3,000 1,217 0,000 0,000

Decorator 124 128 10 16 12 12 27 28 3,500 1,813 0,500 0,313

Observer 204 201 14 21 23 10 30 33 3,714 2,714 0,241 0,036

Visitor 97 104 9 23 3 2 18 12 3,556 0,783 0,000 0,000

42

LOC VS NOA NOO WOC LCOO-HS

Repository Design Pattern Java CaesarJ Java CaesarJ Java CaesarJ Java CaesarJ Java CaesarJ Java CaesarJ

FluffyCat

Abstract Factory 139 216 16 35 3 2 36 24 2,875 0,971 0,031 0,014

Bridge 113 117 9 37 2 2 20 15 2,444 0,486 0,000 0,000

Chain of Responsibility 177 241 5 22 8 8 36 47 10,800 3,409 0,417 0,084

Decorator 69 69 4 8 3 3 9 9 3,000 1,250 0,167 0,000

Mediator 149 185 6 23 10 9 24 41 7,167 2,870 0,444 0,126

Observer 239 323 4 24 9 11 26 45 14,250 3,833 0,413 0,074

Prototype 90 132 7 19 4 4 13 15 2,571 1,053 0,071 0,026

Visitor 129 167 8 29 5 8 27 27 6,500 1,690 0,083 0,057

Polanco

Chain of Responsibility 74 154 7 28 1 1 8 24 2,286 1,750 0,000 0,000

Decorator 85 84 6 9 4 3 17 18 4,000 2,444 0,083 0,056

Factory Method 83 87 7 12 4 4 14 11 3,429 1,750 0,071 0,042

Observer 69 148 4 22 4 5 7 24 3,250 1,955 0,000 0,000

Vhuston

Bridge 120 200 6 36 8 8 16 33 3,500 1,167 0,042 0,007

Composite 157 168 14 30 13 4 28 28 3,286 1,400 0,107 0,000

Visitor 260 105 25 18 5 6 56 19 4,120 1,667 0,027 0,074

Table 7. Values of collected metrics

43

6.6 Descriptive statistics

Descriptive statistics are used to describe the basic features of the data in the study. They

provide simple summaries about the sample and the measures.

For each variable, we present in Table 8 the following statistics:

 Number of cases: count of the total of observations in each series.

 Mean value within the sample: sum of observations divided by the number of

observations in the series. It is commonly used to describe the central tendency of

variables.

 Standard deviation: measure of dispersion that is calculated based on the values of

the data. It allows us to see how widely the data are dispersed around the mean.

 Minimum value: smaller value of the observations.

 Maximum value: higher value of the observations.

 Range: it is calculated by subtracting the smallest observation (minimum value) from

the greatest (maximum value) and provides an indication of statistical dispersion

 Skewness: measure of whether the peak is centred in the middle of the distribution. A

positive value means that the peak is off to the left, and a negative value suggests that

it is off to the right.

 Kurtosis: measure of the extent to which data are concentrated in the peak versus the

tail. A positive value indicates that data are concentrated in the peak; a negative value

indicates that data are concentrated in the tail.

44

N Range Minimum Maximum Mean

Std.

Deviation
Variance Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic
Std.

Error
Statistic Statistic Statistic

Std.

Error
Statistic

Std.

Error

LOC Java 51 364 35 399 127,6471 10,14715 72,46512 5251,193 1,55 0,333 3,121 0,656

LOC CJ 51 456 24 480 152,3333 11,82615 84,45559 7132,747 1,58 0,333 3,793 0,656

VS Java 51 22 3 25 7,2549 0,5711 4,07845 16,634 2,088 0,333 6,207 0,656

VS CJ 51 34 3 37 18,7647 1,39764 9,98116 99,624 0,172 0,333 -0,953 0,656

NOA

Java
51 38 0 38 7,5882 1,01331 7,23651 52,367 1,98 0,333 5,297 0,656

NOA CJ 51 35 0 35 6,8431 0,94532 6,75092 45,575 2,079 0,333 5,744 0,656

NOO

Java
51 51 5 56 19,4118 1,51001 10,78365 116,287 1,223 0,333 1,825 0,656

NOO CJ 51 66 5 71 22,2745 1,74088 12,43234 154,563 1,409 0,333 3,427 0,656

WOC

Java
51 12,25 2 14,25 4,6906 0,3436 2,4538 6,021 1,692 0,333 3,693 0,656

WOC CJ 51 7,01 0,49 7,5 2,2707 0,19255 1,37511 1,891 1,609 0,333 3,403 0,656

LCO-HS

Java
51 0,59 0 0,59 0,1479 0,02487 0,17764 0,032 0,992 0,333 -0,326 0,656

LCO-HS

CJ
51 0,37 0 0,37 0,0505 0,01151 0,08218 0,007 2,471 0,333 6,362 0,656

Table 8. Descriptive statistics of the metrics

45

To decide whether it is appropriate to use parametric tests, we need to check if the variables

have a normal distribution.

An important detail to consider is that the variables are being compared in pairs. Therefore,

if one element of the pair is not normal, it is safest to assume that the data from the pair is not

normal.

Positive skewness indicates an asymmetric distribution, with a higher frequency of the

variable’s lower values. In other words, the distribution is right-skewed. This contrasts with

the normal distribution, which is symmetric and should therefore exhibit a skewness of 0,

providing a hint on the non-normality of the data. Further tests are used to confirm the non-

normality of this variable.

Table 9 presents results of two such tests: the Kolmogorov- Smirnov with the Lilliefors

correction and the Shapiro-Wilk’s normality tests. The former is the most widely used test

and adequate for this sample size. The latter is often used with smaller samples, and used

here for confirmation purposes only. The null hypothesis, for each of the tests, is that the

sample comes from a normal distribution. The alternative is that the sample comes from a

non-normal distribution.

 Kolmogorov-Smirnov
a
 Shapiro-Wilk

Metric Language Statistic df Sig. Statistic df Sig.

LOC
Java 0,114 51 0,098 0,875 51 0

CaesarJ 0,16 51 0,002 0,897 51 0

VS
Java 0,192 51 0 0,804 51 0

CaesarJ 0,075 51 ,200
*
 0,95 51 0,031

NOA
Java 0,195 51 0 0,813 51 0

CaesarJ 0,165 51 0,001 0,81 51 0

NOO
Java 0,125 51 0,044 0,906 51 0,001

CaesarJ 0,123 51 0,053 0,905 51 0,001

WOC
Java 0,184 51 0 0,842 51 0

CaesarJ 0,151 51 0,005 0,867 51 0

LCOO
Java 0,211 51 0 0,808 51 0

CaesarJ 0,276 51 0 0,633 51 0

a. Lilliefors Significance Correction

*. This is a lower bound of the true significance.

Table 9. Normality tests

For values of significance less than 0.05, the data is not considered normal. These values

confirm the non-normality of the sample, as there is no pair in that both implementations

46

have a value above 0.05. As such, non-parametric procedures will be used for testing the

hypotheses.

6.7 Data set reduction

No experimental units were removed from the sample.

6.8 Hypotheses testing

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis test for the case of

two-sample designs involving repeated measures or “before” and “after” measures. In this

case, the “before” case is the implementation of the design patterns in Java and the “after” is

the implementations in CaesarJ.

N

Mean

Rank

Sum of

Ranks

LOC

(CaesarJ) –

LOC (Java)

Negative

Ranks
8

a
 15,19 121,5

a. LOCCJ <

LOCJ

Positive Ranks 39
b
 25,81 1006,5

b. LOCCJ >

LOCJ

Ties 4
c

c. LOCCJ =

LOCJ

Total 51

VS (CaesarJ)

- VS (Java)

Negative

Ranks
3

d
 7,17 21,5

d. VSCJ < VSJ

Positive Ranks 44
e
 25,15 1106,5 e. VSCJ > VSJ

Ties 4
f
 f. VSCJ = VSJ

Total 51

NOA

(CaesarJ) -

NOA (Java)

Negative

Ranks
16

g
 17,94 287

g. NOACJ <

NOAJ

Positive Ranks 14
h
 12,71 178

h. NOACJ >

NOAJ

Ties 21
i

i. NOACJ =

NoAJ

Total 51

NOO

(CaesarJ) -

NOO (Java)

Negative

Ranks
11

j
 17,86 196,5

j. NOOCJ <

NOOJ

Positive Ranks 26
k
 19,48 506,5

k. NoOCJ >

NoOJ

Ties 14
l

l. NOOCJ =

NOOJ

Total 51

WOC

(CaesarJ) -

Negative

Ranks
47

m
 24,45 1149

m. WOCCJ <

WOCJ

http://en.wikipedia.org/wiki/Non-parametric_statistics
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing

47

WOC (Java) Positive Ranks 1
n
 27 27

n. WOCCJ >

WOCJ

Ties 3
o

o. WOCCJ =

WOCJ

Total 51

LCOCJ -

LCOJ

Negative

Ranks
29

p
 16,52 479

p. LCOCJ <

LCOJ

Positive Ranks 2
q
 8,5 17

q. LCOCJ >

LCOJ

Ties 20
r

r. LCOCJ =

LCOJ

Total 51
Table 10. Wilcoxon signed-rank test ranks

 H1 H2 H3 H4 H5 H6

LOCCJ -

LOCJ

VSCJ -

VSJ

NOACJ -

NOAJ

NOOCJ -

NOOJ

WOCCJ -

WOCJ

LCOCJ -

LCOJ

Z -4,683a
 -5,743a

 -1,147b
 -2,342a

 -4,683a
 -5,743a

Asymp. Sig. (2-

tailed)
0 0 0,252 0,019 0 0

a. Based on negative ranks.

 b. Based on positive ranks.

 c. Wilcoxon Signed Ranks Test

 Table 11. Wilcoxon signed-rank test statistics

The Wilcoxon signed-rank test rank results are summarized in Table 10 and the test statistics

are depicted in Table 11. The asymptotic significance is the probability that the differences

between Java and CaesarJ are by chance (the smaller the value, the more this difference is

unlikely to be casual).

It can be observed that for hypotheses H1, H2, H5 and H6, the null hypothesis can be

rejected with p < 0,01. Hypothesis H4 can also be rejected with p < 0,05. For hypothesis H3,

no significant differences were found, so it can be rejected. In other words, for all hypotheses

except H3, significant differences in metrics values were found for CaesarJ instances when

comparing with their Java counterparts.

48

6.9 Discussion

6.9.1 Interpretation of results

The Lines of Code (LOC) metric has a significant difference between Java and CaesarJ. 39 of

the 51 implementations in CaesarJ have a higher LOC than Java. Vocabulary Size (VS) also

has a noteworthy noticeable between Java and CaesarJ with 44 implementations in CaesarJ

with greater VS than Java. With respect of Number of Attributes (NOA), no significant

differences were found. The Number of operations (NOO) metric also had a significant

difference. In the 51 implementations, 26 have lower value in Java and 14 have the same

value. By themselves, one cannot take many conclusions about theses metrics. But studying

them together can yield some interesting conclusions.

Figure 7 illustrates with a graphic the measurement values of LOC for CaesarJ and Java

(lower values are better).

Figure 7. Measurement values of Lines of Code for Java and CaesarJ

From 51 design patterns:

 8 (16%) Java implementations have a higher value of LOC.

 39 (76%) CaesarJ implementations have a higher value of LOC.

 4 (8%) cases have the same value of LOC.

0

100

200

300

400

500

600

A
b

st
ra

ct
 F

ac
to

ry

B
ri

d
ge

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

C
o

m
p

o
si

te

Fa
ca

d
e

In
te

rp
re

te
r

M
e

d
ia

to
r

P
ro

to
ty

p
e

Te
m

p
la

te
 M

et
h

o
d

A
b

st
ra

ct
 F

ac
to

ry

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

C
o

m
p

o
si

te

M
e

d
ia

to
r

P
ro

to
ty

p
e

V
is

it
o

r

B
ri

d
ge

C
o

m
p

o
si

te

O
b

se
rv

er

A
b

st
ra

ct
 F

ac
to

ry

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

M
e

d
ia

to
r

P
ro

to
ty

p
e

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

Fa
ct

o
ry

 M
e

th
o

d

B
ri

d
ge

V
is

it
o

r
Java

CaesarJ

49

In Figure 8 are the measurement values for the VS metric (lower values are better).

Figure 8. Measurement values of Vocabulary Size for Java and CaesarJ

Of the 51 design patterns:

 3 (6%) Java implementations have a higher value of VC.

 44 (86%) CaesarJ implementations have a higher value of VC.

 4 (8%) cases have the same value of VC.

Besides the majority of CaesarJ implementations have a larger value than the ones in Java,

these implementations have an increase of 322%.

Figure 9 illustrates the measurement values of NOA for Java and CaesarJ (lower values are

better).

0

5

10

15

20

25

30

35

40
A

b
st

ra
ct

 F
ac

to
ry

B
ri

d
ge

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

C
o

m
p

o
si

te

Fa
ca

d
e

In
te

rp
re

te
r

M
e

d
ia

to
r

P
ro

to
ty

p
e

Te
m

p
la

te
 M

et
h

o
d

A
b

st
ra

ct
 F

ac
to

ry

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

C
o

m
p

o
si

te

M
e

d
ia

to
r

P
ro

to
ty

p
e

V
is

it
o

r

B
ri

d
ge

C
o

m
p

o
si

te

O
b

se
rv

er

A
b

st
ra

ct
 F

ac
to

ry

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

M
e

d
ia

to
r

P
ro

to
ty

p
e

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

Fa
ct

o
ry

 M
e

th
o

d

B
ri

d
ge

V
is

it
o

r

Java

CaesarJ

50

Figure 9. Measurement values of Number of Attributes for Java and CaesarJ

From the 51 design patterns:

 16 (31%) Java implementations have a higher value of NOA.

 14 (27%) CaesarJ implementations have a higher value of NOA.

 21 (41%) cases have the same value of NOA.

In Figure 10 are the measurement values for the NOO metric (lower values are better).

0

5

10

15

20

25

30

35

40

A
b

st
ra

ct
 F

ac
to

ry

B
ri

d
ge

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

C
o

m
p

o
si

te

Fa
ca

d
e

In
te

rp
re

te
r

M
e

d
ia

to
r

P
ro

to
ty

p
e

Te
m

p
la

te
 M

et
h

o
d

A
b

st
ra

ct
 F

ac
to

ry

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

C
o

m
p

o
si

te

M
e

d
ia

to
r

P
ro

to
ty

p
e

V
is

it
o

r

B
ri

d
ge

C
o

m
p

o
si

te

O
b

se
rv

er

A
b

st
ra

ct
 F

ac
to

ry

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

M
e

d
ia

to
r

P
ro

to
ty

p
e

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

Fa
ct

o
ry

 M
e

th
o

d

B
ri

d
ge

V
is

it
o

r

Java

CaesarJ

51

Figure 10. Measurement values of Number of Operations for Java and CaesarJ

From 51 design patterns:

 11 (22%) Java implementations have a higher value of NOO.

 26 (51%) CaesarJ implementations have a higher value of NOO-

 14 (27%) cases have the same value of NOO.

In Figure 11 are the measurement values for the WOC metric (lower values are better).

0

10

20

30

40

50

60

70

80

A
b

st
ra

ct
 F

ac
to

ry

B
ri

d
ge

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

C
o

m
p

o
si

te

Fa
ca

d
e

In
te

rp
re

te
r

M
e

d
ia

to
r

P
ro

to
ty

p
e

Te
m

p
la

te
 M

et
h

o
d

A
b

st
ra

ct
 F

ac
to

ry

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

C
o

m
p

o
si

te

M
e

d
ia

to
r

P
ro

to
ty

p
e

V
is

it
o

r

B
ri

d
ge

C
o

m
p

o
si

te

O
b

se
rv

er

A
b

st
ra

ct
 F

ac
to

ry

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

M
e

d
ia

to
r

P
ro

to
ty

p
e

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

Fa
ct

o
ry

 M
e

th
o

d

B
ri

d
ge

V
is

it
o

r

Java

CaesarJ

52

Figure 11. Measurement values of Weighted Operations per Component for Java and CaesarJ

From 51 design patterns:

 47 (92%) Java implementations have a higher value of WOC

 1 (2%) CaesarJ implementations have a higher value of WOC

 3 (6%) cases have the same value of WOC

The Java implementations that have a higher WOC show an average increase of 258% in this

value.

Finally Figure 12 depicts the measurement values for LOO-HS (lower values are better).

0

2

4

6

8

10

12

14

16

A
b

st
ra

ct
 F

ac
to

ry

B
ri

d
ge

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

C
o

m
p

o
si

te

Fa
ca

d
e

In
te

rp
re

te
r

M
e

d
ia

to
r

P
ro

to
ty

p
e

Te
m

p
la

te
 M

et
h

o
d

A
b

st
ra

ct
 F

ac
to

ry

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

C
o

m
p

o
si

te

M
e

d
ia

to
r

P
ro

to
ty

p
e

V
is

it
o

r

B
ri

d
ge

C
o

m
p

o
si

te

O
b

se
rv

er

A
b

st
ra

ct
 F

ac
to

ry

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

M
e

d
ia

to
r

P
ro

to
ty

p
e

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

Fa
ct

o
ry

 M
e

th
o

d

B
ri

d
ge

V
is

it
o

r

Java

CaesarJ

53

Figure 12. Measurement values of LCOO-HS for Java and CaesarJ

From 51 design patterns:

 29 (57%) Java implementations have a higher value of LCOO-HS

 2 (4%) CaesarJ implementations have a higher value of LCOO-HS

 20 (39%) cases have the same value of LCOO-HS

Most of CaesarJ implementations have higher LOC, VS and NOO. This means that the size

of the CaesarJ implementations is consistently bigger than the Java ones.

This can be justified by the usage of the “aspect component” in CaesarJ. CaesarJ classes are

designed to be used via inheritance and CaesarJ promotes the use of CaesarJ classes with

various inner classes. This increases the VS, as many CaesarJ classes do not have any

operations or attributes in them, having the purpose of serving as a container for one or more

inner classes.

The fact that the examples used are of small dimension may bias the results against CaesarJ,

since the “aspect component” is aimed to enhance reuse. Many CaesarJ implementations

generalize the overall pattern behaviour so that the “aspect component” can be reuse and

shared among multiple pattern instances. With larger examples, these differences in size

should decrease or even be reversed.

Interestingly, for the Weighted Operations per Component (WOC) metric, 49

implementations in CaesarJ have a superior value to the ones in Java. This indicates a much

lower complexity in CaesarJ when compared with Java. This makes sense, since crosscutting

concerns became encapsulated in the “aspect component”.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

A
b

st
ra

ct
 F

ac
to

ry

B
ri

d
ge

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

C
o

m
p

o
si

te

Fa
ca

d
e

In
te

rp
re

te
r

M
e

d
ia

to
r

P
ro

to
ty

p
e

Te
m

p
la

te
 M

et
h

o
d

A
b

st
ra

ct
 F

ac
to

ry

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

C
o

m
p

o
si

te

M
e

d
ia

to
r

P
ro

to
ty

p
e

V
is

it
o

r

B
ri

d
ge

C
o

m
p

o
si

te

O
b

se
rv

er

A
b

st
ra

ct
 F

ac
to

ry

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

M
e

d
ia

to
r

P
ro

to
ty

p
e

C
h

ai
n

 o
f

R
e

sp
o

n
si

b
ili

ty

Fa
ct

o
ry

 M
e

th
o

d

B
ri

d
ge

V
is

it
o

r

Java

CaesarJ

54

Lack of cohesion in operations (LCOO-HS) measures the degree to which operations within

a component are related to one another in terms of shared variables. In the 51

implementations of the design patterns, 29 have better cohesion in CaesarJ and 2 have better

cohesion in Java. The remaining 20 implementations remained with the same value. The

statistical tests confirmed a significant difference between the implementations. Since high

cohesion is a desirable feature of a modular design, this could indicate a advantage on the

part of CaesarJ.

6.9.2 Limitations and threats to validity

The limited size and complexity of the examples used in the implementations may restrict the

extrapolation of our results. In addition, this assessment is restricted to the specific pattern

instances at hand. Although this study involves multiple repositories, not all 23 Gang-of-Four

patterns are implemented. Some patterns have more implementations than others, which

could benefit (or impair) the results of one language over another (Table 5).

The cohesion metric also has some limitations. Since LCOO-HS is an extension of LCOM-

HS, it inherits its problems. This metric doesn’t count indirect connections between

operations and attributes (Briand, Daly, & Wust, 1998). For instance, an access method

provides read or write access to an attribute of the class. Access methods generally reference

just the attribute they provide access to. Thus, other operations of the same class that use this

access method also access the attribute. This situation is not covered by the metric and

actually can artificially yield a lower cohesion value. It also doesn’t take into account the

direct connections between methods.

Other limitations in LCOO-HS (and LCOM-HS) are their inability to differentiate the

cohesion degree in some components (Chae, Kwon, & Bae, 2000). For example, Figure 13

represents two components A and B. The rectangle and oval shapes represent an operation

and attribute respectively and an edge symbolizes an interaction between them. Intuitively,

component B should be more cohesive than component A but the LCOO-HS value for both

of them is the same.

55

 Component A Component B

Figure 13. Example of cohesion degree by Chae et al.

6.9.3 Inferences

The analysis performed in this observational study should hold for implementations of

similar characteristics (in particular their complexity). Extrapolating these results to larger

implementations should be performed with caution, as discussed in the previous section.

56

7. Related work

7.1 Quantitative study of Design Patterns in Java and AspectJ by Garcia et al.

Garcia et al. (Garcia A. , Sant’Anna, Figueiredo, Kulesza, Lucena, & von Staa, 2006)

presented a quantitative study that compared aspect-based and OO solutions for the 23 Gang-

of-Four patterns implemented by Hannemann and Kiczales in Java and AspectJ (Hannemann

& Kiczales, 2002).

This study was based on popular attributes used in software engineering: Separation of

Concerns, Coupling (3.1.2), Cohesion (3.2.2) and Size. The metrics used for measuring these

attributes are the same from (Sant’Anna, Garcia, Chavez, Pereira de Lucena, & von Staa,

2003).

Design Patterns usually assign roles to their participants. Hannemann and Kiczales’s study

identified two roles called defining and superimposed. Defining roles are roles in which the

participant class has no functionality outside the pattern. A superimposed role can be

assigned to participant classes that can have functionality outside of the pattern.

The results of the study for each attribute are depicted in Table 12, Table 13 and Table 14.

For each attribute there is a metric result for each implementation and in the rightmost

column, the superior solution according to the authors. The last line of each table also counts

how many patterns in each implementation was superior with respect to each metric (3 first

cells), and in general terms (last cell).

Separation of Concerns: as showed in Table 12, 14 of the 23 patterns implementations

confirmed superior results in the metrics of SoC (lower values are better). 3 patterns showed

similar results in both implementations. To evaluate scalability in this system the authors

changed some functionality in both implementations and used the CDLOC metric as a main

mechanism to assess scalability. If the CDLOC after the change increases, the authors

consider the system not scalable; if it stays the same, the system is scalable.

57

Table 12. Overall Results for Separation of Concerns by Garcia et al.

Coupling and Cohesion: The use of aspects reduced coupling between components and

increased cohesion for most solutions as can be seen in Table 13 (low values are desired in

this table). The only cases where this did not occur with the use of aspects were when the

implemented patterns had roles that were not very interactive.

58

Table 13. Overall Results for Coupling and Cohesion by Garcia et al.

Size: for this attribute the results were much better for the aspect-based solutions. As Table

14 illustrates, 12 patterns had less number of operations and respective parameters that their

OO counterparts. The number of attributes also reduced with the use of aspects in 10

patterns.

59

Table 14. Overall Results for Size Measures by Garcia et al.

Garcia et al. noticed that several patterns with superimposed roles were better modularized in

the AOP solution and had better results with separation of concerns over operations and lines

of code. However, this could not be supported (or refuted) with this empirical study because

the data collected was not conclusive enough. Still, the authors concluded, as can be seen in

the TemplateMethod analysis in Table 12 that the OO solution is better than the AOP, even

though only the CDC is different between them and only by one unit (CDC is 15 for OO and

16 for the AO) and the rest of the metrics have the same values.

Also, the authors of this study evaluated the columns without regard of the weight they have

(some metrics can have a bigger weight than others) and considering that these metrics are

completely independent from each other, which has not been proved.

60

7.2 Analysis of modularity in aspect oriented design by Lopes et al.

Another study of aspects that has a markedly different approach from the previous one was

made by Lopes et al. (Lopes & Bajracharya, 2005). This study analysed the modularity of an

aspect-oriented design in comparison to an object-oriented one. The subject of the study was

a web application called WineryLocator that uses mostly web services to locate wineries in

California, given a street addresses or a city or zip code. It also takes preferences for the

wineries and calculates a route for a tour that matches the user’s criteria.

The Design Structure Matrix (DSM) was used as the analysis and modelling tool that

represents the design structures of the system. This matrix takes the design parameters of the

system and represents the interdependences between them. Design parameters are the

attributes of the artefact that govern the variation in design (in this case classes, and

interfaces).

Then, six modular operations were used to make design changes. These operations are

Splitting, Substitution, Augmentation, Exclusion, Inversion, and Porting.

After the new matrix is completed, the authors defined Net Option Values (NOV)

expressions to evaluate and compare them. The NOV model is a mathematical model that

quantifies the value of a modular design. The NOV had a high increase after the aspect-

oriented modularization.

Lopes et al. observed that the use of aspects increased the modularity of the system, even if

this system already has a modularized design. They concluded that DSMs were capable of

modelling dependencies in an aspect-based system’s design without any change of the

DSM’s basic model. The authors also concluded that design changes can be expressed in

terms of the modular operators and the NOV analysis can be used to compare the system’s

design with other alternatives.

One important limitation of this study is that some of the assumptions the authors did with

the NOV expressions lack empirical validation. The NOV gives a quantitative dimension to

the study

7.3 TAO – A Testbed for Aspect Oriented Software Development Project

The TAO
7
 project, a testbed for Aspect Oriented Software Development, is research project

funded by the Lancaster University for the assessment and comparison of AOSD techniques

with existing ones in terms of rigorous qualities, such as modularity, reusability, and

maintainability. The specific aims of this project are:

1) Design of the testbed by identifying assessment issues to be explored in the software

development phases, such as requirements engineering, architecture design,

implementation, and quality assurance.

7 http://www.comp.lancs.ac.uk/research/projects/project.php?pid=215

61

2) End-to-end realization of a major case study, such as a context-sensitive tourist guide

system, to form part of the testbed suite of studies.

3) Exploitation of the case study to identify candidate points of integration between our

AOSD techniques.

4) Evaluation of the testbed using the AOSD techniques developed at Lancaster and

gathering of empirical data based on the end-to-end case study.

The case study for this project is the HealthWatcher, a real-life system aimed at improving

the quality of health care services. The system allows members of the public to register

complaints against restaurants or pets, these complaints can then be investigated by health

care personnel and appropriate action taken. The complaints are registered via a web-based

front-end and Remote Method Invocation is then used to allow the web-server to interact

with the application server.

The HealthWatcher is a non-trivial, real-life system that has been initially implemented in

Java and AspectJ and then, re-implemented in CaesarJ. Each of these implementations have

been evolved nine times, so the various changes that occurred in each of the of the versions

of HealthWatcher could be assessed. These changes were designed so to represent common

activities performed during software maintenance, refactoring, introduction of design

patterns, introducing new behaviour etc.

Modularity metrics have been collected in all implemented versions (Greenwood, et al.,

2007). The collected metrics are depicted in Table 15.

Results of the study showed that:

 Concerns aspectized upfront tend to show superior modularity stability in the AO

designs.

 AOP solutions required less intrusive modification.

 AO modifications tended to propagate to seemingly unrelated modules.

 Invasive modification is more frequent in OO solutions but AO modifications tend to

propagate to seemingly unrelated modules.

Software Attribute Metric

SoC

CDC

CDO

CDLOC

Coupling
CBC

NOC

Cohesion LCOO

Size

LOC

NOA

WOC

Table 15. Metrics collected in the TAO study

62

Results also showed better coupling and cohesion in AOP as shown in Figure 14 and Figure

15 respectively. Lower values are better.

Figure 14. Coupling chart from TAO study

Figure 15. Lack of Cohesion chart from TAO study

By having two implementations from different aspect oriented languages, most conclusions

drawn refer to AOP in general.

Unfortunately the CaesarJ implementation of the study is very similar to the AspectJ

implementation as they share the same class diagram and do not take into account the

particular features of CaesarJ.

63

8. Conclusions and future work

This chapter presents the final conclusions of this dissertation (8.1) and points some research

directions for the future (8.2).

8.1 Conclusions

Building high quality systems is a driving goal in software engineering. Since AOP is a

recent programming paradigm, it is still subject to research and maturation. The lack of

design and implementation guidance can lead to the misuse of the new abstractions present in

AOP, worsening the overall quality of the system. In this way, as AOSD moves forward, a

significant research effort is required to define the quality measures that affect important

quality requirements, such as modularity and complexity. Measuring the structural design

properties of software artifacts, such as cohesion, and size, is a promising approach towards

quality assessments. Some empirical studies have been undertaken in the context of AOSD.

However, the assessment in these studies generally only applicable to AspectJ.

In this dissertation, various AOP size metrics have been formalized to support CaesarJ and a

new cohesion metric was proposed. The novel cohesion metric is based on a well-known

OOP metric. The LCOO-HS extends LCOM-HS to support the new features and language

mechanisms of CaesarJ. Also, this metric is formalized in and fully operational manner

unambiguous manner so that it no additional interpretation from the user is required, a

problem that is frequent with the current metrics.

The NIC and LCOO-BDW metrics were also implemented in the MuLATo tool but were not

used in the quantitative study. NIC did not fit in the context of this study. LCOO-BDW

measures the same cohesion relations as LCOO-HS, so it was not included.

The size and cohesion metrics formed the basis for a comparative study between Java and

CaesarJ with a focus on modularity and complexity.

Analysis of the metrics derived via the MuLATo tool lead to a few interesting insights:

Firstly, the CaesarJ implementations tend to have a significantly better cohesion than Java.

This leads to better understanding of its modules as well as easier maintenance of the system.

Better cohesion also increases the likelihood of reuse, while complexity is kept manageable.

Secondly, CaesarJ modules displayed an increase in size, even if its constituent parts tend to

be simpler. This increase in size is possibly explained by the small size of the subjects of this

study (the design patterns). CaesarJ components aim to offer better reuse and having as case

study individual examples of design patters (that do not take into account reuse) can bias the

64

results. With bigger examples, these differences in size should decline or even be reversed,

but to confirm this further studying is needed.

While the results may not be directly generalized to professional developers and real-life

applications, these representative examples allow us to make useful initial assessments of the

use of CaesarJ or CaesarJ-like programming languages for the modularization of classical

design patterns and we consider that this subject is worth of being studied further. In spite of

its limitations, the study constitutes an important initial empirical work as it proves.

8.2 Future work

Some design pattern examples are missing from the repositories used in this study so, in the

immediate future it is planned to finish the development of the remaining implementations

and complete the study.

In this study, experimental case studies are of small/medium size projects. It is very difficult

to get large industrial projects of this domain for experiment. However, results obtained from

the present study are quite instructive. Additional research is needed to repeat this study with

larger, more complex, systems and assess whether some of the conclusions are specific to the

examples or whether they are generalizable.

Some metrics were implemented in MuLATo but were not used. It is planned in the

immediate future to do a study that compares the design patterns examples with both

cohesion metrics that are already developed in MuLATo.

To fully access modularity, one has to take into account coupling, also. Coupling metrics,

like Coupling between Components and Depth of Inheritance Tree for instance, should be

formalized for CaesarJ and implemented in MuLATo. The frontiers between cohesion and

coupling should be studied further, specifically within top-level components and the relations

between its inner components. A metric Number of Inner Components was already developed

in MuLATo and can be a good start for this study.

The new metrics implemented in MuLATo also pave the way for new opportunities of future

work. The TAO project was initially dismissed as the case study for this dissertation because

its CaesarJ implementation was “AspectJ-like” but it is interesting to know if this style has an

impact "statistically distinct" in the metrics supported by MuLATo, compared with examples

of patterns. Another front is to do a comparative study between LCOO-HS and LCOO-BDW

using Java system of realistic size.

This work had only in focus Java and CaesarJ. In the future it could also be extended to other

AOP languages such as AspectJ, HyperJ or Object Teams.

65

9. References

Alexander, R. (2003). The Real Costs of Aspect-Oriented Programming. IEE Software, 20(6),

92-93.

Aracic, I., Gasiunas, V., Mezini, M., & Ostermann, K. (2006). An Overview of CaesarJ.

Transactions on Aspect-Oriented Software Development I. LNCS. 3880, pp. 135-173.

Darmstadt: Springer.

Baldwin, C. Y., & Clark, K. B. (1999). Design Rules. Vol. 1, The Power of Modularity. London:

MIT Press.

Barnes, Jr., N., Hale, J., Hale, D., & Smith, R. (2006). The Cohesion-Based Requirements Set

Model for Improved Information System Maintainability. AMCIS 2006 Proceedings.

Baroni, A. L., Braz, S., & Brito e Abreu, F. (2002). Using OCL to Formalize Object-Oriented

Design Metrics Definitions. Proceedings of ECOOP Workshop on Quantative

Approaches in Object-Oriented Software Engineering. Málaga.

Bartolomei, T. T. (2007, 04 24). MuLATo - Multi-Language Assessment Tool. Retrieved 2010,

from SourceForge: http://sourceforge.net/projects/mulato/

Bartolomei, T. T., Garcia, A., Sant'Anna, C., & Figueiredo, C. (2006). Towards a Unified

Framework for Measuring Aspect-Oriented Programs. Third International Workshop on

Software Quality Assurance (SOQUA'06), (pp. 46-53).

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994 йил September). The Goal Question Metric

Approach. Encyclopedia of Soft. Eng., 2, 528-532.

Bergmans, L., & Aksits, M. (2001, October). Composing crosscutting Concerns Using

Composition Filters. Communications of the ACM, 44(10), 51-57.

Bracha, G., & Cook, W. (1990). Mixin-based inheritance. Proceedings of the European

conference on object-oriented programming on Object-oriented programming systems,

languages, and applications (pp. 303-311). Ottawa,: ACM.

Braz, S. (2009). A Qualitative Assessment of Modularity in CaesarJ components based on

Implementations of Design Patterns. MsC Thesis, Faculdade de Ciências e Tecnologia,

Departamento de Informática.

66

Briand, L. C., Daly, W. J., & Wust, J. (1998). A Unified Framework for Cohesion Measurement

in Object-Oriented Systems. Empirical Software Engineering, 25(1), 65-117.

Brito e Abreu, F., & Carapuça, R. (1994). Object-Oriented Software Engineering: Measuring and

Controlling the Development Process. 4th Int. Conf. on Software Quality. McLean.

Bryton, S., & Brito e Abreu, F. (2007). Towards Paradigm-Independent Software Assessment.

6th International Conference on the Quality of Information and Communications

Technology (QUATIC) (pp. 40-54). Lisboa: IEEE Computer Society.

Cacho, N., Sant’Anna, C., Figueiredo, E., Garcia, A., Batista, T., & Lucena, C. (2006).

Composing Design Patterns: A Scalability Study of Aspect-Oriented Programming.

Proceedings of the 5th international conference on Aspect-oriented software development

(pp. 109-121). Bonn: ACM.

Chae, H. S., Kwon, Y. R., & Bae, D. H. (2000). A cohesion measure for object-oriented classes.

Journal Software—Practice & Experience, 30(12).

Chidamber, ,. S., & Kemerer, C. F. (1994 йил June). A Metrics Suite for Object Oriented

Design. IEEE Transactions on Software Engineering, 20(6), 476-493.

Cooper, J. W. (1998). The Design Patterns Java Companion. Addison-Wesley.

Dijkstra, E. W. (1976). A Discipline of Programming. Prentice-Hall.

Eckel, B. (2003). Thinking in Patterns (Revision 0.9 ed.).

Ernst, E. (2001). Family polymorphism. Proceedings of the 15th European Conference on

Object-Oriented Programming (ECOOP’01). 2072, pp. 303–326. Springer.

Ernst, E., Ostermann, K., & Cook, W. R. (2006). A Virtual Class Calculus. 33rd ACM

Symposium on Principles of Programming Languages (POPL’06). ACM SIGPLAN-

SIGACT.

Fenton, N. (1994, March). Software Measurement: A Necessary Scientific Basis. IEEE

Transactions on Software Engineering, 20(3), 199-206.

Fenton, N. E., & Pfleeger, S. L. (1998). Software Metrics: A Rigorous and Practical Approach

2nd Edition. PWS Publishing Co.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns – Elements of

Reusable Object-Oriented Software. Addison–Wesley.

Garcia, A. F., Sant’Anna, C. N., Chavez, C. v., Torres da Silva, V., Pereira de Lucena, C. J., &

Staa, A. v. (2003). Agents and Objects: An Empirical Study on Software Engineering.

Technical Report 06-03, Computer Science Department, PUC-Rio.

67

Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., & von Staa, A. (2006).

Modularizing Design Patterns with Aspects: A Quantitative Study. Transactions on

Aspect-Oriented Software Development I. 3880, pp. 36-74. Springer.

Gasiunas, V., Mezini, M., & Ostermann, K. (2007). Depedent classes. Proceedings of the 22nd

annual ACM SIGPLAN conference on Object-oriented programming systems and

applications. ACM.

Gélinas, J.-F., Badri, M., & Badri, L. (2006). A Cohesion Measure for Aspects. Journal of object

technology, 5(7), 97-114.

Gogolla, M., Büttner, F., & Richters, M. (2007). USE: A UML-Based Specification Environment

for Validating UML and OCL. Science of Computer Programming(69), 27-34.

Greenwood, P., Bartolomei, T., Figueiredo, E., Dosea, M., Garcia, A., Cacho, N., et al. (2007).

On the Impact of Aspectual Decompositions on Design Stability: An Empirical Study.

Proceedings of the 21st European Conference on Object-Oriented Programming

(ECOOP). Berlin: Springer.

Hannemann, J., & Kiczales, G. (2002). Design Pattern Implementation in Java and AspectJ.

Proceedings of the 17th ACM SIGPLAN conference on Object-oriented Programming,

Systems, Languages, and Applications (OOPSLA'02). 37, pp. 161-173. Seattle: ACM.

Henderson-Sellers, B. (1996). Object-Oriented Metrics: Measures of Complexity. Prentice-Hall.

Hitz, M., & Montazeri, B. (1995). Measuring Coupling and Cohesion in Object-Oriented

systems. Int. Symposium on Applied Corporate Computing. Monterrey.

Huston, V. (2007, January 07). Retrieved 2010, from Design Patterns:

http://www.vincehuston.org/dp

IEE Computer Society. (2000). IEEE Standard 1471 . IEEE Recommended Practice for

Architectural Description of Software-Intensive Systems.

Jedlitschka, A., Ciolkowski, M., & Pfahl, D. (2008). Reporting Experiments in Software

Engineering. In Guide to Advanced Empirical Software Engineering (pp. 201-228).

Springer London.

Kaner, C., & Bond, W. P. (2004). Software Engineering Metrics: What do they Measure and

how do we know? Proceedings of 10th International Software Metrics Symposium

(METRICS '04). Chicago.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., & Griswold, W. G. (2001). An

Overview of AspectJ. European Conference on Object-oriented Programming. 2072, pp.

327–353. Springer.

68

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., et al. (1997).

Aspect-Oriented Programming. Proceedings of the 11th European Conference on Object-

Oriented Programming (ECOOP '97). 1241, pp. 220-242. Jyväskylä: Springer-Verlag.

Kumar, A., Kumar, R., & Grover, P. (2008). Towards a Unified Framework for Complexity

Measurement in Aspect- Oriented Systems. International Conference on Computer

Science and Software Engineering, 2, pp. 98-103.

Lancaster University. (2007). TAO Project. Retrieved 2010, from A Testbed for Aspect Oriented

Software Development:

http://www.comp.lancs.ac.uk/research/projects/project.php?pid=215

Lincke, R., Lundberg, J., & Löwe, W. (2008). Comparing Software Metrics Tools. Proceedings

of the 2008 international symposium on Software testing and analysis (pp. 131-142).

Seattle: ACM.

Lopes, C. V., & Bajracharya, S. K. (2005). An Analysis Of Modularity In Aspect Oriented

Design. Proceedings of the 4th international conference on Aspect-oriented software

development (pp. 15-26). Chicago: ACM.

Madsen, O. L., & Møller-Pedersen, B. (1989). Virtual Classes: A powerful mechanism in object-

oriented programming. Proceedings of the Object-Oriented Programming Systems,

Languages and Applications 1989 (OOPSLA'89) (pp. 397–406). New Orleans: ACM.

Mezini, M., & Ostermann, K. (2002). Integrating independent components with on-demand

remodularization. Proceedings of Object-oriented programming, systems, languages, and

applications 2002 (OOPSLA '02) (pp. 52-67). Seattle: ACM.

Mezini, M., & Ostermann, K. (2003). Conquering Aspects with Caesar. Proceedings of the 2nd

international conference on Aspect-oriented software development (AOSD '03). Boston.

Mezini, M., & Ostermann, K. (2004). Untangling Crosscutting Models with Caesar. In R. E.

Filman, T. Elrad, S. Clarke, & M. Aksit, Aspect- Oriented Software Development (pp.

165-199). Boston: Addison- Wesley.

Myers, G. J. (1978). Composite Structured Design. New York, USA: John Wiley & Sons, Inc.

Norvig, P. (1996). Design Patterns in Dynamic Programming. Object World 96. Boston.

Nystrom, N., Clarkson, M. R., & Myers, A. C. (2003). Polyglot: an extensible compiler

framework for Java. Proceeding CC'03 Proceedings of the 12th international conference

on Compiler construction. Berlin: Springer-Verlag.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules.

Communications of the ACM, 15(12), 1053-1058.

69

Polanco, G. (2002). GoF’s Design Patterns in Java. Politecnico di Torino.

Polya, G. (1957). How to solve it. Princeton University Press.

Pressman, R. S. (2000). Software Engineering. Mcgraw-Hill.

Rajan, H., & Sullivan, K. J. (2005). Classpects: Unifying Aspect- and Object-Oriented Language

Design. 27th international conference on Software engineering (ICSE '05) (pp. 59-68).

St. Louis: ACM.

Ramnivas, L. (2003). AspectJ in Action. Greenwich: Manning.

Rashid, A., & Moreira, A. (2006). Domain Models are NOT Aspect Free. MoDELS 2006. 4199,

pp. 155-169. Genoa: Springer LNCS .

Rosenberg, L., & Hyatt, L. (1997). Software Quality Metrics for Object-Oriented Environments.

Crosstalk Journal.

Sant’Anna, C. N., Garcia, A. F., Chavez, C. v., Pereira de Lucena, C. J., & von Staa, A. (2003).

On the Reuse and Maintenance of Aspect-Oriented Software: An Assessment

Framework. Proceedings of Brazilian Symposium on Software Engineering (SBES'03),

(pp. 19-34). Manaus.

Shull, F., Singer, J., & Sjøberg, D. I. (2008). Guide to Advanced Empirical Software

Engineering. London: Springer-Verlag.

Sjoeberg, D. I., Hannay, J., & Hansen, O. (2005). A survey of controlled experiments in software

engineering. Transactions on Software Engineering, IEEE, 31(9), 733-753.

Sousa, E., & Monteiro, M. P. (2008). An Exploratory Study of CaesarJ Based on

Implementations of the Gang-of-Four patterns. Faculdade de Ciências e Tecnologia,

Departamento de Informática.

Truett, L. (n.d.). Java Design Patterns Reference and Examples. Retrieved 2010, from FluffyCat:

http://www.fluffycat.com/Java-Design-Patterns/

Tsang, S. L., Clarke, S., & Baniassad, E. (2004). Object Metrics for Aspect Systems: Limiting

Empirical Inference Based on Modularity. Technical Report, Trinity College Dublin,

Dublin.

Zakaria, A. A., & Hosny, H. (2003). Metrics for Aspect-Oriented Software Design. Proceedings

of the Third International Workshop on Aspect-Oriented Modeling (AOSD'03).

Zhao, J. (2002). Towards A Metrics Suite for Aspect-Oriented Software. Information Processing

Society of Japan (IPSJ).

70

Zhao, J. (2004). Measuring Coupling in Aspect-Oriented Systems. Proceedings of

METRICS'2004.

Zakaria, A. A., & Hosny, H. (2003). Metrics for Aspect-Oriented Software Design.

Proceedings of the Third International Workshop on Aspect-Oriented Modeling (AOSD'03).

Zhao, J. (2004). Measuring Coupling in Aspect-Oriented Systems. Proceedings of

METRICS'2004.

Zhao, J. (2002). Towards A Metrics Suite for Aspect-Oriented Software. Information

Processing Society of Japan (IPSJ).

