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Sumário  

O ferro é um elemento essencial em diversos processos metabólicos celulares. O desafio que 

se coloca para a maioria dos organismos prende-se com o controlo do ferro absorvido de 

modo a suprir as necessidades destes processos evitando, no entanto, os danos causados 

pelo ferro livre. Na realidade, algumas das doenças humanas mais comuns estão 

relacionadas com a perturbação da homeostase do ferro. Entre estas, encontra-se a 

hemocromatose hereditária que, estando maioritariamente associada a mutações no gene 

HFE, origina a acumulação de ferro em vários órgãos. A proteína HFE actua na homeostase 

do ferro através da regulação da expressão da hepcidina no fígado. O principal transcrito 

HFE apresenta baixos níveis de expressão numa série de tecidos humanos, tendo sido 

descritos diversos transcritos adicionais.  

O trabalho aqui apresentado aborda a caracterização dos transcritos alternativos de HFE, os 

mecanismos envolvidos na sua génese, assim como o seu possível papel fisiológico e 

regulação. A análise de diversos tecidos humanos permitiu identificar vários transcritos HFE 

resultantes de splicing alternativo. O estudo funcional de algumas proteínas 

correspondentes demonstrou que o processo de splicing alternativo pode gerar variantes 

não funcionais ou produzir uma variante HFE solúvel que é secretada pelas células associada 

à beta2-microglobulina. Esta proteína poderá desempenhar um papel crucial na homeostase 

do ferro, actuando como um agonista ou antagonista da HFE full length. Além disso, foi 

demonstrado que a expressão do transcrito HFE principal é fisiologicamente regulada pelo 

mecanismo de nonsense-mediated mRNA decay (NMD), dado que os seus níveis aumentam 

quando este mecanismo é inibido. A pesquisa realizada em tecidos humanos permitiu 

verificar que a expressão do mRNA HFE resulta da utilização de quatro locais de clivagem e 

poliadenilação alternativos. Este padrão de poliadenilação alternativa específico de tecido 

aparenta responder a estímulos de ferro, actuando coordenadamente com o NMD no 

ajustamento dos níveis de expressão de HFE. 

Esta dissertação demonstra que a regulação da expressão do gene HFE é influenciada pós-

transcricionalmente pelos mecanismos de splicing alternativo, poliadenilação alternativa e 

NMD. Este conhecimento poderá conduzir a novas perspectivas de investigação na área do 

metabolismo do ferro e contribuir para o delinear de novas estratégias terapêuticas a aplicar 

em patologias de homeostase do ferro através da regulação da hepcidina.  
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Abstract 

Iron is a key element for numerous metabolic processes in living cells. The challenge for 

most organisms is to acquire the adequate amounts of iron for these processes yet avoiding 

the toxicity associated with free iron. In fact, disruptions of iron homeostasis account for 

some of the most common human diseases. Amongst these, lays hereditary 

hemochromatosis, which is mainly associated with mutations in the HFE gene, leading to 

iron overload in specific organs. HFE protein acts in iron homeostasis by regulating the 

expression of hepcidin in the liver. Besides the major HFE transcript, which is expressed at 

low levels in a wide range of human tissues, several additional alternative HFE transcripts 

have been described.  

The work presented in this dissertation addresses the characterization of HFE alternative 

transcripts, the biological mechanisms involved in their genesis as well as their physiological 

significance and regulation. A variety of human tissues was analysed and shown to express 

several alternatively spliced HFE transcripts. Functional analysis of the corresponding 

proteins revealed that alternative splicing can either generate non-functional HFE protein 

variants or produce a soluble HFE variant that is secreted by cells associated with beta2-

microglobulin. This soluble HFE may have a vital role in iron homeostasis by acting as an 

agonist or antagonist of the full length HFE. Furthermore, HFE transcripts were found to be 

physiologically regulated by the nonsense-mediated mRNA decay (NMD), since its levels are 

significantly increased when depleting human cells from a key NMD effector. Through the 

analysis of several human tissues, it is shown that HFE mRNA expression results from 

alternative cleavage and polyadenylation at four different sites. This tissue-specific 

polyadenylation pattern seems to respond to cellular iron status, acting coordinately with 

NMD to fine-tune HFE’s expression levels. 

The regulation of HFE gene expression is here shown to be post-transcriptionally influenced 

by alternative splicing, alternative polyadenylation and nonsense-mediated mRNA decay 

mechanisms. These findings may hint future directions in the active field of iron biology 

research and provide interesting cues that could be translated into new therapeutics for iron 

homeostasis disorders through the HFE-mediated regulation of hepcidin. 
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I. General overview of  iron metabolism 

Iron is crucial for life, being involved in a diversity of cellular processes such as oxygen 

transport, electron transfer and DNA synthesis. The biological relevance of iron is largely 

attributable to its chemical properties as a transition metal. This capability of readily 

engaging one electron, allows iron to coexist either in an oxidized insoluble (Fe3+) or a 

reduced soluble (Fe2+) form. The dark side of this element is that, in excess, free iron 

catalyzes the production of oxidative radicals that are able to damage the macromolecular 

components of cells. On the other hand, cellular iron deficiency arrests cell growth leading to 

cell death [Halliwell and Gutteridge 1984].  

Iron is the fourth most abundant component in the Earth’s crust, but most of the 

environmental iron exists in the ferric (Fe3+) form, which is almost insoluble in water at 

neutral pH, severely compromising its biological utility. Being an essential trace element 

required by virtually all organisms (except for a few species of bacteria), they have 

developed complex systems of iron transport and management to deal with its poor 

bioavailability [Chua et al. 2007]. Even so, iron balance is tenuous, as both iron deficiency and 

iron overload are deleterious. These disorders of iron homeostasis are amongst the most 

common diseases in humans, affecting up to one-quarter of the world's population [McLean et 

al. 2009]. To get a glimpse of how iron balance is accomplished, the molecular mechanisms 

involved in the regulation of iron homeostasis will be exposed in the course of this 

dissertation. 

 

I.1. Iron distribution, utilization and recycling 

One astonishing feature of iron metabolism is the extent to which body iron is conserved. 

Although the adult human organism contains 3 to 5 g of iron, only 1-2 mg enters and leaves 

the body on a daily basis (Figure 1.1). Iron excretion is a rather unregulated pathway, as it is 

the result of mandatory losses through menstruation, sloughing of epithelial cells from the 

skin and from the mucosal cells of the gastrointestinal, biliary and urinary tracts [Cook et al. 

1973; Andrews 1999]. Conversely, all cells require a small amount of iron but the precursors of 

red blood cells, the erythroblasts, are by far the most demanding. Under normal 

physiological conditions, about 20 mg of iron is daily consumed by the erythroblasts for 
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heme biosynthesis in the bone marrow to fulfill the production of more than 200 billion 

erythrocytes [Hentze et al. 2004; Chua et al. 2007]. In fact, more than two thirds (60-70%) of the 

total body iron content is present as hemoglobin in erythrocytes, whilst another 10% is 

contained in myoglobin, iron-containing enzymes and cytochromes. The remaining 20-30% is 

stored in the liver and macrophages as ferritin and hemosiderin [Cook et al. 1973; Andrews 1999].  

The major source of iron for the erythroid precursors is plasma iron-transferrin (Fe2-Tf). But 

the circulating Fe2-Tf pool is 10 times smaller than the daily iron requirements, so a high 

turnover rate is necessary to ensure the adequate supply of iron to the bone marrow 

[Andrews 1999; Nemeth 2008]. This recycling process is carried out by macrophages of the 

reticuloendothelial system (RES) present in the spleen, liver and bone marrow. Through the 

phagocytosis of senescent erythrocytes, the iron within is recovered, transferred to the bone 

marrow and re-incorporated during the synthesis of new red blood cells [Knutson and Wessling-

Resnick 2003]. 

 

 

 
Figure 1.1. Distribution of iron within the body. In a balanced state, about 1-2 mg of iron is daily absorbed and 
a similar amount is lost. Most of the iron that circulates in the plasma is incorporated into hemoglobin in 
erythroid cells. As only about 0.1% of the total body iron content is found in the plasma, the recycling of the 
iron present in the senescent erythrocytes by the macrophages is crucial to meet the erythropoietic demands. 
The major iron storage compartments are the liver, the macrophages and the muscles. (Adapted from Pietrangelo 
2004).  
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I.2. Iron acquisition, transport and storage 

I.2.1. Iron absorption 

Dietary iron absorption is achieved in the duodenum, where iron must traverse the apical 

and basolateral membranes of the absorptive cells (enterocytes) in order to reach the 

bloodstream (Figure 1.2). Iron is present in two forms in the diet: heme iron (derived from 

hemoglobin and myoglobin) and non-heme iron (present as iron hydroxides, salts and iron-

containing proteins such as ferritin) [Carpenter and Mahoney 1992; Lopez and Martos 2004]. Heme 

and non-heme iron pass from the intestinal lumen to the enterocyte by distinct pathways, 

but once within the cell, iron from each source will be part of a common intracellular pool 

that can either be stored in the form of ferritin or transported into the bloodstream [Hentze et 

al. 2004; Chua et al. 2007]. 

Although heme iron is more efficiently absorbed than non-heme iron, this only accounts for 

about 10 to 15% of daily iron intake [Carpenter and Mahoney 1992]. The mechanism by which 

heme is taken up by duodenal enterocytes remains controversial. A candidate brush border 

heme transporter was described, the heme carrier protein 1 (HCP1), but it was further 

demonstrated that this protein transports folate far more efficiently than heme [Shayeghi et al. 

2005; Qui et al. 2006]. After crossing the apical membrane, iron is excised from the heme 

porphyrin ring, under the action of heme oxygenase 1 (HO1), becoming part of the cytosolic 

iron [Raffin et al. 1974]. 

The majority of non-heme iron enters the gastrointestinal tract in the ferric form that must 

be converted into the ferrous form for bioavailability. Numerous dietary components are 

capable of reducing ferric iron, but the enterocytes have endogenous reducing activity [Lopez 

and Martos 2004]. It is currently accepted that this is achieved by the duodenal cytochrome B 

(DcytB) reductase that is expressed on the apical membrane [McKie et al. 2001]. However, the 

absence of an abnormal phenotype in DcytB knockout mice, suggests the presence of other 

brush border ferrireductases [Gunshin et al. 2005]. Once Fe2+ is formed, it becomes a substrate 

for the divalent metal transporter 1 (DMT1; also known as DCT1 or Nramp2), the intestinal 

iron importer, for transport across the membrane into the cytoplasm [Gunshin et al. 1997; 

Fleming et al. 1997]. The role of this molecule is supported by the animal models, where a 

defective DMT1 gene leads to ineffective iron uptake and microcytic anemia [Fleming et al. 

1997; Fleming et al. 1998].  
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Once within the enterocyte, iron has two possible fates, depending on iron requirements. If 

the iron demand is low, it can be stored as ferritin, being eventually lost by sloughing of the 

villus tip [Geyer 1979]. Conversely, if there is a requirement to replenish the stores or an 

increased metabolic demand, iron will be transported across the basolateral membrane into 

the circulation [Abboud and Haile 2000; Donovan et al. 2000; McKie et al. 2000]. This transport is 

assured by ferroportin (also known as IREG1, MTP1 or SLC40A1). Selective inactivation of the 

murine ferroportin in intestinal cells confirms that ferroportin is the major, and most 

probably, the only iron exporter [Donovan et al. 2005]. As ferroportin is selective for Fe2+, the 

iron export depends on a multicopper oxidase to convert Fe2+ to Fe3+ for incorporation of 

iron into transferrin, the serum iron carrier protein [Schade and Caroline 1946]. Hephaestin is a 

membrane-bound homologue of the serum multicopper oxidase ceruloplasmin and most 

likely the responsible for the release of oxidized iron into the bloodstream [Vulpe et al. 1999]. It 

was also shown that ceruloplasmin may carry out the oxidase function at the basolateral 

membrane of the enterocyte [Cherukuri et al. 2005]. This hypothesis arose from the evidence 

that iron accumulation in enterocytes of the mouse model for sex-linked anemia is resolved 

after the neonatal period, suggesting that hephaestin is needed for iron stores during rapid 

growth, while ceruloplasmin may be required in adult stages [Edwards and Bannerman 1970; 

Cherukuri et al. 2005].  

 

I.2.2. Cellular iron uptake 

I.2.2.1. Transferrin bound iron 

The major iron source for most tissues is transferrin bound iron. Transferrin (Tf) has two 

iron-affinity binding sites, keeping iron non-reactive in circulation and extravascular fluid, 

delivering it to cells bearing specific receptors [Bailey et al. 1988]. The classic transferrin 

receptor 1 (TfR1) is expressed in most cells, presenting a higher expression in rapid 

proliferating cells, activated lymphocytes and erythroid precursors [Ponka and Lok 1999; Ned et 

al. 2003]. The almost ubiquitous expression of this receptor reveals the importance of a 

constitutive pathway for iron acquisition by receptor-mediated endocytosis, the so-called 

transferrin cycle, which has become a paradigm in cell biology. Briefly, to initiate the cycle, 

diferric transferrin (or holo-transferrin; holo-Tf) binds to TfR1 at cell surface that will 

invaginate to form endocytic vesicles (Figure 1.2). Acidification of endosomes will take place 
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promoting iron release from Tf and Fe3+ will be reduced by the ferrireductase Steap3 (Six-

transmembrane epithelial antigen of the prostate 3), allowing transmembrane transport by 

DMT1 [Dautry-Varsat et al. 1983; Fleming et al. 1998; Ohgami et al. 2005]. The iron is then utilized by 

the cell or stored as ferritin. The Tf cycle is completed when the endosome returns and fuses 

with the cell membrane, where the receptor becomes accessible and apo-Tf (iron-free 

transferrin) is released to circulation, allowing both molecules to start the cycle all over 

again.  

 

 

 
Figure 1.2. Iron acquisition, transport and storage. The absorption of dietary iron (heme and non-heme) is 
achieved by the enterocytes of the duodenum (on the left). Once within the enterocyte, iron may be stored or 
transported to the bloodstream. Then, iron is acquired by almost all human cells, so a generic cell is depicted 
on the right. Uptake of transferrin bound iron occurs through the transferrin cycle, whereas non-transferrin 
bound iron is mediated by specific transporters. See text for details.  
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It is currently accepted that there is an important molecule liable to affect the transferrin 

cycle, the HFE (high Fe) protein. The membranar association of HFE with TfR1, as well as its 

ability to compete with transferrin for binding to the receptor, brought new insights to the 

iron metabolism field [Parkkila et al. 1997a; Feder et al. 1998; Lebron et al. 1998]. A second transferrin 

receptor, TfR2, is strongly expressed in liver hepatocytes, but has a lower binding affinity for 

holo-Tf than TfR1 [Kawabata et al. 1999]. TfR2 is capable of mediating the internalization and 

recycling of Tf by a similar mechanism to that described for TfR1 [Kawabata et al. 1999; Graham et 

al. 2008]. Recent evidence suggests that both HFE and TfR2 are involved in a specific pathway 

with strong interactions with the uptake of iron by the TfR1-mediated endocytosis, which 

will be further explored in this thesis. 

 

I.2.2.2. Non-transferrin bound iron 

Iron can also be present in the plasma in a free form, generally designated as non-transferrin 

bound iron (NTBI). It actually consists in iron bound to low affinity molecules, with the major 

component identified as ferric citrate [Grootveld et al. 1989]. The concentration of NTBI is 

normally low but it increases when the binding capacity of transferrin becomes saturated. 

Since it easily penetrates into cells, particularly in the liver and heart, NTBI has great 

pathophysiological importance in iron overload disorders [Breuer et al. 2000; Chua et al. 2004]. 

The uptake of NTBI by the cells is still far from understood (Figure 1.2). It likely involves cell 

surface reduction by an unidentified ferrireductase to dissociate iron from its ligand, possibly 

by Steap3 [Chua et al. 2007]. Then, iron is delivered into the cell by a transporter [Trinder and 

Morgan 1998]. Several plausible candidate transporters for NTBI have emerged, including 

DMT1, Zip14 (Zrt-Irt-like protein 14) and calcium channels [Oudit et al. 2003; Chua et al. 2004; Liuzzi 

et al. 2006; Shindo et al. 2006]. The relative contribution of these transporters to NTBI uptake is 

poorly characterized, but it is likely that more than one of these transporters is involved 

[Chua et al. 2007].  
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I.2.3. Iron storage 

Following delivery to the cells, iron enters an intermediate intracellular labile iron pool, 

where it can be incorporated into ferritin or heme, associated with other non-heme iron 

proteins in the cytosol or exchanged between the intracellular endosomal, lysosomal and 

mitochondrial compartments [Mulligan et al. 1986; Chua et al. 2007].  

In general, the excess of iron will be stored in the form of ferritin, a water soluble molecule 

consisting of 24 subunits, capable of sequestering up to 4,500 atoms of iron (Figure 1.2) 

[Harrison 1977]. As the amount of iron in the cells increases, a larger percentage deposits in 

hemosiderin, an insoluble molecule thought to be a by-product of ferritin degradation [Munro 

and Linder 1978]. This has been suggested as a protective mechanism against oxidative 

damage, since iron stored in hemosiderin is more inaccessible and less effective in producing 

free radicals than iron stored in ferritin *O’Connell et al. 1986+. 

The main sites for body iron storage are the hepatic parenchyma (or hepatocytes) and the 

macrophages of the reticuloendothelial system [Cook et al. 1973; Andrews 1999]. In fact, iron 

accumulation in the reticuloendothelial cells of the liver, spleen and bone marrow, occurs 

when body iron stores are replete. Iron in the RES is a secondary accumulation due to the 

catabolism of the red cell heme acquired via erythrophagocytosis [Knutson and Wessling-Resnick 

2003]. Stored iron in hepatocytes and macrophages can be mobilized to meet erythropoietic 

and cellular demands, when body iron stores are low [Andrews 1999; Hentze et al. 2004; Chua et al. 

2007].  

 

II. Regulation of  iron homeostasis 

Since iron loss is essentially an unregulated process, a tight balance between iron 

absorption, uptake, transport, storage and utilization is essential to maintain iron 

homeostasis. Among these compartments, a constellation of factors directly or indirectly 

related with iron regulation (the so-called iron-related genes) must be extensively controlled 

by a myriad of molecular mechanisms to achieve homeostasis.  
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II.1. Molecular mechanisms involved in the expression of iron-

related genes 

II.1.1. Transcriptional regulation 

The transcriptional regulation of iron-related genes has been shown to respond to several 

stimuli like iron status, erythropoietic activity, inflammation and hypoxia. In fact, the major 

player in the regulation of iron homeostasis is the liver-derived hormone hepcidin, which is 

transcriptionally controlled by all the stimuli above indicated [Nicolas et al. 2002a; Nicolas et al. 

2002b; Nemeth et al. 2003; Pinto et al. 2008]. It is known that the hepcidin promoter contains 

binding motifs for several recognized transcriptional factors [Courselaud et al. 2002; Truksa et al. 

2007; Weizer-Stern et al. 2007; Casanovas et al. 2009; Truksa et al. 2009]. The expression of hepcidin is 

indeed regulated by a range of upstream molecules that culminates in the binding of factors 

to the hepcidin promoter and these pathways will be further exposed in this thesis.  

Cytokines, such as interleukin-6 (IL-6), interleukin-1 (IL-1) and interferon-γ, have been shown 

to affect the messenger RNA (mRNA) expression of several iron-related genes. Such is the 

case of H-ferritin [each ferritin is composed by two chains, heavy (H) and light (L)], 

transferrin receptor 1, hepcidin and ferroportin genes [Wei et al. 1990; Fahmy and Young 1993; Tran 

et al. 1997; Lee et al. 2004; Nemeth et al. 2004a; Lee et al. 2005]. 

Hypoxia is intimately related with erythropoiesis. Under low oxygen tension, the 

transcription factor HIF-1 (hypoxia inducible factor-1) is activated and will interact with 

erythropoietin, increasing the iron required for erythropoiesis [Wang and Semenza 1995; Semenza 

1999]. Consequently, hypoxia has been shown to affect the expression of transferrin, TfR1, 

ceruloplasmin, ferroportin, DcytB and hepcidin genes [Rolfs et al. 1997; Lok and Ponka 1999; 

Tacchini et al. 1999; McKie et al. 2000; Mukhopadhyay et al. 2000; McKie et al. 2001; Nicolas et al. 2002b]. 

As expected, iron levels may control the transcription of some iron-related genes. Indeed, 

McKie et al. [2001] have shown that in iron-deprived mice, the expression of DMT1 mRNA 

(with no iron responsive element) is increased. Interestingly, two reports have recently 

shown that the expression of the hypoxia inducible factor HIF-2 in the intestine altered 

both serum iron and tissue iron stores [Mastrogiannaki et al. 2009; Shah et al. 2009]. This is due to a 

strong effect on the transcription of DMT1, DcytB and ferroportin within the enterocyte. It 

was suggested that this HIF-2-mediated mechanism may override the hepcidin-ferroportin 

regulatory axis on the control of iron absorption. 
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The processes of erythrophagocytosis and the recycling of heme have shown to induce 

changes in the macrophage gene expression, including variations in heme oxygenase 1, 

ferroportin and ferritin. Regarding transcription, it was recently shown that ferroportin 

expression is inhibited by Bach1 (btb and cnc homology 1) and activated by Nrf2 (nuclear 

factor erythroid 2-related factor 2), in a heme-dependent mechanism involving an 

MARE/ARE (Maf recognition elements/antioxidant response elements) sequence located 7 

kb (kilo base pairs) upstream of the ferroportin promoter [Marro et al. 2010]. These authors 

suggest that the iron released from hemoglobin by HO1 activity is unlikely to be involved in 

this process since the transcription of ferroportin is activated by hemoglobin, hemin or the 

protoporphyrin ring alone. 

Heme was also proven to regulate the gene transcription of HO1 and ferritin (both heavy 

and light) chains, through the transcriptional repressor Bach1 [Sun et al. 2002; Hintze and Theil 

2005; Hintze et al. 2007; Marro et al. 2010]. 

 

II.1.2. Post-transcriptional regulation 

II.1.2.1. Iron regulatory proteins 

Iron-related genes display a specific mode of gene expression regulation. It involves the 

interaction of cytosolic iron regulatory proteins (IRPs) with structural elements in mRNA 

transcripts, designated iron responsive elements (IREs). The latter are conserved stem loop 

structures present in either 5’ or 3’ untranslated regions (UTR) of several iron-regulated 

genes [Hentze et al. 1988; Muckenthaler et al. 2008; Hentze et al. 2010]. The IRPs act as sensors of the 

cytoplasmic iron, controlling the expression of many of the proteins involved in iron 

homeostasis, such as ferritin, TfR1, ferroportin and DMT1, among others. Under iron 

depletion conditions, the binding of IRPs to IREs increases, resulting in an augmented mRNA 

stability in transcripts with multiple IREs located at the 3’ UTR, such as TfR1 and DMT1 

[Hentze and Kuhn 1996; Gunshin et al. 2001]. Conversely, the binding to single IREs in the 5’ UTR of 

an mRNA will block translation, as observed in ferritin L and H chains, erythroid 5-

aminolevulinic acid synthase, mitochondrial aconitase and ferroportin mRNAs [Hentze et al. 

1987; Hentze and Kuhn 1996; Muckenthaler et al. 1998; Abboud and Haile 2000; Donovan et al. 2000; McKie et 

al. 2000; Eisenstein and Ross 2003]. On the contrary, when iron is abundant, IRPs are devoid of 

mRNA binding activity and the target transcripts are freely accessible for degradation by 
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nucleases (3’ UTR IREs) or to translation complexes (5’ UTR IREs). This post-transcriptional 

mechanism is of extreme importance since it regulates the iron uptake via TfR1-Tf, a crucial 

process for almost all cells [Theil 1994; Hentze and Kuhn 1996]. There are two recognized IRPs, 1 

and 2, which are structurally and functionally similar. Although both are capable of mRNA 

binding, only IRP1 possesses aconitase activity (ability to convert citrate to isocitrate). A 

recent study provided experimental proof of the cellular iron transport regulation by the IRE-

IRP interaction through generating enterocyte-specific ablation of both IRP1 and 2 in mice. 

The resulting animals developed intestinal iron malabsorption, as consequence of a strong 

reduction in DMT1 expression and upregulation of ferroportin [Galy et al. 2008]. 

 

II.1.2.2. Alternative splicing 

The role of alternative splicing in generating proteomic diversity has been extensively 

studied and considered the fail-safe mechanism by which organisms have survived and 

evolved. This mechanism will be explored latter on in this thesis, but for now, examples of 

how iron-related genes utilize alternative splicing forms to respond to certain stimuli will be 

given. 

The DMT1 gene expresses multiple isoforms with and without 3’ IREs [Gunshin et al. 1997; 

Fleming et al. 1998; Lee et al. 1998; Hubert and Hentze 2002]. These alternative transcripts result from 

the combination of 5’ and 3’ exons (1A or 1B and IRE or non-IRE, respectively). The outcome 

of 4 DMT1 isoforms (1A/+IRE, 1A/-IRE, 1B/+IRE and 1B/-IRE) have implications on iron 

regulation. Potentially, the two mRNA isoforms that are +IRE may be stabilized by an IRP. In 

fact, it was shown by Hubert and Hentze [2002] that the main isoform that increases during 

iron deficiency is the 1A/+IRE. But it was unclear if the transcription of the 1A form is 

upregulated, if the +IRE RNA is stabilized, or both. On one hand, IRP ablation on enterocytes 

was show to diminish +IRE DMT1 mRNA, suggesting that the IRE contributes to the 

stabilization of this mRNA during iron deficiency [Galy et al. 2008]. On the other hand, the 

overall gain in 1A isoforms in iron chelated Caco-2 cells is greater than the net gain in the 

+IRE isoforms, favoring the transcriptional regulation of the 1A promoter during iron 

deficiency [Hubert and Hentze 2002]. 

Ceruloplasmin is a multicopper oxidase present in plasma that promotes iron incorporation 

of ferric iron into transferrin [Holmberg and Laurell 1948; Osaki et al. 1966]. Recognition of an 
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essential role for this protein as a ferroxidase came with the identification of patients with 

aceruloplasminemia, who develop diabetes, neurodegeneration and parenchymal iron 

overload [Harris et al. 1995; Yoshida et al. 1995]. Studies in a murine model of aceruloplasminemia 

reveal a physiologic role for ceruloplasmin in determining the rate of iron efflux from cells 

with mobilizable iron stores [Harris et al. 1999]. There are now two recognized ceruloplasmin 

proteins resulting from alternative splicing events that occur downstream of exon 18. The 

secreted form includes solely the exon 19 to form the five C-terminal amino acids, whereas 

the glycosylphosphatidylinositol (GPI)-anchored form will only include the exon 20, adding 

30 amino acids that encode for GPI-anchor addition [Hellman and Gitlin 2002]. These isoforms 

present distinct patterns of tissue expression. While serum ceruloplasmin is generally 

considered as secreted by the liver (although extra-hepatic expression has also been 

observed), the membrane-bound GPI-anchored ceruloplasmin is the predominant form in 

the brain [Klomp and Gitlin 1996; Patel and David 1997; Hellman and Gitlin 2002; Banha et al. 2008].  

As previously stated, TfR2 is a member of the transferrin receptor family capable of binding 

transferrin, although with lower affinity than TfR1 [Kawabata et al. 1999]. TfR2 is expressed at 

high levels in hepatocytes and at low levels in peripheral blood mononuclear cells (PBMCs), 

spleen and erythroid progenitors [Kawabata et al. 1999; Kawabata et al. 2001; Forejtnikova et al. 2010]. 

Unlike TfR1, TfR2 has no IRE and it is not post-transcriptionally regulated by iron via the IRE-

IRP pathway [Kawabata et al. 1999]. Interestingly, the TfR2 gene encodes for two main 

transcripts, a longer tissue-specific form (alpha) and a shorter one (beta), which utilizes a 

putative start codon in exon 4 and is in frame with the major transcript. The beta isoform 

lacks the intracellular and the transmembrane domains and is predicted to produce an 

intracellular/secreted protein with a still unclarified function [Kawabata et al. 1999]. Indeed, a 

recent work on murine models with a selective inactivation of the beta isoform, suggests a 

specific splenic function for this isoform by targeting ferroportin expression since it may act 

as a sensor of the iron recycled from erythropoiesis [Roetto et al. 2010]. Furthermore, the same 

study reinforces the role of the hepatic alpha-TfR2 in the proposed TfR2-HFE complex, 

whose formation is favored by increased diferric transferrin to activate hepcidin [Gao et al. 

2009; Roetto et al. 2010]. 

Recently, an isoform of ferroportin lacking the IRE was identified in enterocytes and red 

blood cell precursors. The expression of this isoform revealed the capability of these cells to 

surpass translational repression during low body iron conditions [Zhang et al. 2009a]. Moreover, 
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5’ RACE (rapid amplification of cDNA ends) experiments performed during erythroid 

differentiation revealed multiple ferroportin transcripts, suggesting a tissue-specific 

mechanism of iron export, but this requires further clarification [Cianetti et al. 2005].   

Several other alternative transcripts generated by genes associated with iron metabolism 

have been described, but their particular function and pattern of tissue expression remains 

to be clarified. This is the case of HFE, hemojuvelin, transferrin, among others [Jeffrey et al. 

1999; Rhodes and Trowsdale 1999; de Arriba Zerpa et al. 2000; Thenie et al. 2001; Papanikolaou et al. 2004]. 

 

II.1.3. Post-translational regulation 

Several mechanisms of post-translational regulation have been described in the iron 

metabolism field. Among these, regulation of ferroportin by hepcidin plays a pivotal role in 

controlling iron homeostasis. The hepcidin-ferroportin interaction induces the internalization 

and degradation of ferroportin, resulting in a diminished iron release from cells [Nemeth et al. 

2004b]. Due to its importance, this mechanism and upstream pathways leading to hepcidin 

synthesis will be further developed in this thesis. 

It is currently accepted that in hepatocytes, the membrane bound hemojuvelin acts to 

stimulate the pathway leading to hepcidin expression, whereas its soluble form acts to 

inhibit the same signaling pathway [Lin et al. 2005; Lin et al. 2008]. In fact, hemojuvelin itself has a 

quite complex mode of self-regulation which is far from understood. The production of the 

soluble form from the membrane-bound requires the action of the protease furin, whose 

activity can be increased by iron deficiency and hypoxia [Silvestri et al. 2008a]. On the other 

hand, in an iron loading situation, the inhibition of soluble hemojuvelin requires the 

neogenin protein [Zhang et al. 2007]. Moreover, the serine protease matriptase-2 is able to 

cleave membrane-bound hemojuvelin releasing peptides distinct from the soluble form(s), 

which are thought to be secreted by an intracellular mechanism [Silvestri et al. 2008b].  

Several studies have enlightened the role of glycosylation in HFE protein processing, which 

allows proper intracellular trafficking and functional activity at the cell membrane [Gross et al. 

1998; de Almeida et al. 2007a; Bhat et al. 2010]. 

Transferrin receptor 2 is regulated by transferrin saturation. In fact, diferric-Tf is a strong 

modulator of TfR2 trafficking since it increases TfR2 half life by favoring both recycling and 
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surface stabilization of the receptor and by inhibiting its lysosomal degradation [Johnson and 

Enns 2004; Robb and Wessling-Resnick 2004]. 

A study performed in Belgrade rats shows that the internalization of DMT1 protein in 

duodenal enterocytes may be an acute regulatory mechanism to limit iron uptake [Yeh et al. 

2000]. 

The depicted mechanisms are the outcome of an iron-driven regulation with an essential 

role on systemic iron homeostasis. As stated before, the maintenance of systemic iron is 

only achieved by an integration and coordination of a number of complex regulatory 

pathways in which hepcidin is the central player. 

 

II.2. Systemic regulation of iron homeostasis by hepcidin 

Hepcidin, a hormone synthesized mainly by hepatocytes and secreted to the plasma, has 

been accepted as the key regulator of systemic iron homeostasis [Pigeon et al. 2001; Nicolas et al. 

2001; Park et al. 2001]. Hepcidin production is stimulated by increased plasma iron and tissue 

iron stores [Pigeon et al. 2001; Nicolas et al. 2002a; Nicolas et al. 2002b]. Hepcidin regulation of iron 

occurs through its binding to ferroportin, the iron exporter required for iron efflux, present 

in enterocytes, macrophages as well as in other iron exporting cells, including placental 

syncytiotrophoblasts and hepatocytes [Abboud and Haile 2000; Donovan et al. 2000; McKie et al. 2000; 

Donovan et al. 2005]. Upon reaching its target tissues, hepcidin binds to ferroportin present at 

cell surface. It induces the phosphorylation of amino acids located at an intracellular loop of 

ferroportin, triggering the internalization of the hepcidin-ferroportin complex. Within the 

cell, ubiquitination of ferroportin and lysosomal degradation of both proteins will take place 

[Nemeth et al. 2004b; De Domenico et al. 2007].  Decreased expression of ferroportin at cell surface 

thereby reduces the iron efflux from cells into the plasma. In fact, hepcidin has been shown 

to restrict intestinal iron absorption and macrophage iron release, by these means reducing 

body iron stores and limiting the iron available for erythropoiesis [Laftah et al. 2004; Delaby et al. 

2005]. 

The evidence that the role of hepcidin is fundamental was provided by both human 

disorders and animal models. Mice in which the hepcidin gene was inadvertently inactivated 

developed severe iron overload, whereas transgenic mice overexpressing hepcidin 

presented a severe iron deficiency anemia [Nicolas et al. 2001; Nicolas et al. 2002a].  
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Since its discovery in the beginning of the new millennium, hepcidin has been placed as the 

final target of diverse pathways. These regulatory pathways that control hepcidin gene 

transcription have the common purpose of managing iron availability. Iron storage, 

erythropoiesis, inflammation and hypoxia are the most extensively studied stimuli that 

influence hepcidin expression, but only the coordinated action between these positive and 

negative regulators will determine the net hepcidin level. 

 

II.2.1. Hepcidin regulation by erythropoiesis, hypoxia and 

inflammation 

It has been established for quite some time that the erythropoiesis rate influences iron 

absorption regardless of body iron stores, but only recent studies have disclosed the players 

involved in this communication. A strong candidate for this activity was serum TfR1 (sTfR1) 

levels, since it correlates well with erythropoietic mass and is responsive to iron deficiency 

[Cazzola et al. 1999]. In fact, about 80% of sTfR1 is generated by the maturation of erythroid 

cells [R’Zik et al. 2001]. Arguments against this hypothesis are given by the fact that sTfR1 is 

produced even when erythroid cells no longer require iron for hemoglobin synthesis and by 

the lack of response in iron absorption in mice overexpressing sTfR1 [Flanagan et al. 2006]. 

The hormone erythropoietin has been shown to be essential for erythroid differentiation, 

but the direct relationship between erythropoietin and the suppression of hepcidin in liver 

hepatocytes arose recently [Tan et al. 1992; Eckardt and Kurtz 2005; Fein et al. 2007; Pinto et al. 2008]. 

The erythropoietin receptor (Epo-R) belongs to the cytokine receptor superfamily and, 

among many other tissues, is expressed at the cell surface of hepatocytes (Figure 1.3). Here, 

erythropoietin may interact with Epo-R, triggering a decreased binding of the transcription 

factor C/EBP (CCAAT/enhancer binding protein ) to a cognate site in the hepcidin 

promoter [Courselaud et al. 2002; Pinto et al. 2008]. Alternatively, Huang et al. [2009] proposed that 

erythropoietin can suppress hepcidin expression indirectly by the downregulation of the 

signal transducer and activator of transcription 3 (STAT3) and SMAD4 [the name SMAD is a 

combination of two proteins: the Caenorhabditis elegans protein Sma (designated as 

mutations in this gene causes animals to be small) and the drosophila protein MAD 

(“mothers against decapentaplegic”)]. 
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Recent research has considered the growth differentiation factor 15 (GDF15), a member of 

the transforming growth factor  (TGF-) superfamily, as the erythroid regulator of hepcidin 

(Figure 1.3). This factor has increased expression and secretion during erythroid maturation 

and is highly increased in patients with defective erythroid expansion [Tanno et al. 2007; Tamary 

et al. 2008; Finkenstedt et al. 2009; Ramirez et al. 2009; Theurl et al. 2010]. Moreover, while in vitro 

studies reveal the suppressive effect of GDF15 on hepcidin expression, GDF15 expression 

itself was shown to be regulated by the iron status [Tanno et al. 2007; Lakhal et al. 2009]. Although 

some skepticism may arise from the fact that GDF15 and hepcidin levels do not correlate in 

patients undergoing hematopoietic stem cell transplant recovery (whereas other erythroid 

markers correlate with hepcidin), the recent findings are consistent with previous proposals 

in which erythropoiesis is positively related with iron absorption and mobilization [Kanda et al. 

2008]. Moreover, they also reinforce the idea that erythropoiesis dominantly represses 

hepcidin expression in spite of iron overload [Tanno et al. 2007; Lakhal et al. 2009]. 

 

 

 
Figure 1.3. Transcriptional regulation of hepcidin expression. There are several upstream stimuli that through 
signaling pathways determine the expression levels of hepcidin. Inflammatory status and iron overload act as 
positive regulators, whereas hypoxia and erythropoietic demand operate as repressors of hepcidin expression. 
See text for details. (Adapted from Anderson et al. 2009).  
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The latest factor recognized as a putative erythroid regulator of hepcidin is a cytokine named 

TWSG1 (twisted gastrulation 1) (Figure 1.3). Contrarily to GDF15, TWSG1 is produced during 

the earlier stages of erythropoiesis [Tanno et al. 2009]. This study shows that TWSG1 

suppresses hepcidin indirectly by inhibiting the bone morphogenetic proteins (BMPs) 

signaling pathway. Here, it is proposed that TWSG1 and GDF15 might act together to 

inappropriately inhibit hepcidin expression and deregulate iron homeostasis in thalassemia 

syndromes. 

Hypoxia is another negative regulator of hepcidin expression, independently of body iron 

levels [Nicolas et al. 2002b; Choi et al. 2007; Peyssonnaux et al. 2007]. In fact, the transcriptional 

hypoxia-inducible factor pathway was shown to regulate hepcidin expression in mice 

[Peyssonnaux et al. 2007] (Figure 1.3). The liver-specific disruption of the von Hippel-Lindau 

gene, which encodes for an essential component of the complex that degrades HIF, led to 

decreased hepcidin mRNA levels in these mice. It has also been shown that HIF-1 is able to 

bind the hepcidin promoter, suggesting a direct repression of hepcidin by HIF-1 [Peyssonnaux 

et al. 2007]. Nevertheless, Choi and co-workers [2007] have brought disagreeing data, since 

either HIF-1 overexpression or knockdown fail to alter hepcidin expression in HepG2 cells. 

They have also shown that the increase in reactive oxygen species (ROS) in hypoxic cells 

impaired the binding of C/EBP and STAT3 transcription factors to the hepcidin promoter, 

with a negative effect on its expression [Choi et al. 2007]. Moreover, Volke et al. [2009] also 

failed to find a direct transcriptional suppression of hepcidin by HIFs. So, whether or not HIFs 

directly bind to the hepcidin promoter is currently controversial. 

Inflammation is a robust inducer of hepcidin expression, evoking its function as an 

antimicrobial peptide [Krause et al. 2000; Park et al. 2001; Nicolas et al. 2002b; Peyssonnaux et al. 2006; 

Sow et al. 2007]. Under inflammatory conditions, iron absorption is reduced and iron is 

sequestered in the macrophages, with a consequent hypoferremia in plasma [Nemeth et al. 

2004a; Rivera et al. 2005]. A substantial body of evidence indicates that IL-6 is the predominant 

cytokine involved in the inflammatory regulation of hepcidin, but IL-1 and IL-1 are also 

able to stimulate hepcidin [Lee et al. 2004; Nemeth et al. 2004a; Lee et al. 2005] (Figure 1.3). This 

induction has been shown to occur through the Janus kinase (JAK) 1/2 signal transducer and 

STAT3 transcriptional mechanism [Wrighting and Andrews 2006; Verga Falzacappa et al. 2007; Truksa et 

al. 2007]. It has also become evident that the hepcidin response to IL-6 may require 
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cooperative activity of the BMP signaling pathway, possibly through the TGF-/SMAD4 

induction [Wang et al. 2005; Babbit et al. 2007; Yu et al. 2008].  

Indeed, the BMP signaling pathway has a critical importance in the regulation of hepcidin 

transcription activation and the cohort of proteins involved upstream this response will now 

be exposed.  

 

II.2.2. Hepcidin regulation by iron status 

Dissecting the elegant mechanisms that allow systemic iron homeostasis maintenance 

through the modulation of hepcidin expression has been quite challenging. The study of 

genetic disorders of iron status has brought to light some of the most important players that 

take part of these pathways. This is the case of HFE, TfR2, hepcidin and hemojuvelin, among 

others [Feder et al. 1996; Camaschella et al. 2000; Roetto et al. 2003; Papanikolaou et al. 2004; Finberg et al. 

2008]. Nevertheless, other proteins such as the BMPs, matriptase-2 and transferrin have 

been shown to be involved in the hepatic regulation of hepcidin driven by iron status. 

Although the mechanisms by which TfR2 and HFE act are only recently beginning to be 

untangled, the characterization of hemojuvelin has revealed a complex signal transduction 

pathway that regulates hepcidin expression, the bone morphogenetic protein pathway. 

 

II.2.2.1. Hemojuvelin, BMPs and matriptase-2 

Hemojuvelin’s pivotal role in iron homeostasis has been demonstrated by both clinical and 

animal studies. Whereas homozygosity or compound heterozygosity for mutations in the 

human hemojuvelin gene are responsible for a juvenile form of hereditary 

hemochromatosis, disruption of both hemojuvelin-homologue alleles in mice result in 

marked iron deposition in the liver, heart and pancreas [Papanikolaou et al. 2004; Huang et al. 2005; 

Niederkofler et al. 2005]. The severe downregulation of hepcidin in these cases despite the 

presence of strong iron loading demonstrated that hemojuvelin is an essential upstream 

regulator of hepcidin. 

Hemojuvelin is a member of the repulsive guidance molecule family of proteins that function 

as co-receptors of the bone morphogenetic proteins [Babitt et al. 2006]. Notably, recent studies 

have shown that hemojuvelin is able to bind several BMPs, such as BMP2, 4, 5, 6 and 9, 
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thereby increasing hepcidin synthesis [Babitt et al. 2006; Truksa et al. 2006; Babitt et al. 2007; Yu et al. 

2008] (Figure 1.3). In general, BMPs are a subfamily of cytokines that belong to the TGF- 

superfamily [Heldin et al. 1997; Derynck and Zhang 2003]. Individual members of the BMP subfamily 

are able to interact with type I and II receptors, therefore increasing the complexity of 

hepcidin regulation by the BMP pathway [Derynck and Zhang 2003]. Activated BMP receptors 

phosphorylate the SMAD1/5/8 protein complex which, in turn, will form a heteromeric 

complex with the DNA binding protein SMAD4 [Babitt et al. 2007]. This complex translocates 

into the nucleus and activates the transcription of target genes, such as hepcidin [Heldin et al. 

1997; Derynck and Zhang 2003]. Evidence to support the BMP pathway in the regulation of 

hepcidin expression came out by the study of mice with liver-specific disruption of SMAD4 

gene, which developed severe iron overload with almost no hepcidin expression [Wang et al. 

2005]. Moreover, these mice failed to respond to iron loading or IL-6 injection. Recent studies 

on BMP6 knockout mice show the same iron overload phenotype as SMAD4 and 

hemojuvelin knockout mice [Andriopoulos et al. 2009; Meynard et al. 2009]. This confirms previous 

data according to which BMP6 expression is directly regulated by iron and essential for 

hepcidin upregulation [Kautz et al. 2008; Yu et al. 2008]. 

The task of hemojuvelin in the activation of hepcidin through the BMP-SMAD pathway is far 

from understood. In fact, hemojuvelin exists in at least two distinct forms: a transmembrane 

glycosylphosphatidylinositol (GPI)-linked form, which stimulates hepcidin, and a soluble 

form, which acts as an antagonist of the BMP signaling pathway [Lin et al. 2005; Zhang et al. 2005; 

Kuninger et al. 2006; Babbit et al. 2007]. This soluble form appears to be released from the mature 

hemojuvelin by furin or other pro-protein convertase [Silvestri et al. 2008a; Lin et al. 2008]. 

Evidence of the importance of this soluble hemojuvelin was given when its administration 

lowered hepcidin expression in mice and cultured cells [Lin et al. 2005; Babitt et al. 2007]. This led 

to the current model, in which soluble hemojuvelin can antagonize BMP signaling by binding 

to the BMPs and impair their association with the heteromeric BMP type I/II receptors [Lin et 

al. 2005; Babbit et al. 2007]. Importantly, the generation of soluble hemojuvelin was shown to be 

increased by iron treatment and hypoxia thereby repressing hepcidin, most likely by the 

increased activity of furin [Lin et al. 2005; Zhang et al. 2007; Silvestri et al. 2008a]. In parallel, work by 

Zhang and co-workers [2005] revealed that hemojuvelin interacts with neogenin on the cell 

membrane interfering with cellular iron levels. Recent studies confirm that neogenin may 

have two functions in the regulation of hemojuvelin, one in promoting hemojuvelin shedding 

in response to iron stimulus and another in inducting BMP-mediated hepcidin expression by 
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the neogenin-hemojuvelin interaction [Zhang et al. 2007; Zhang et al. 2009b]. However, conflicting 

data arise from two recent independent studies. Xia et al. [2008] have shown that the 

knockdown or overexpression of neogenin fails to induce changes in the hemojuvelin-

induced BMP signaling and hepcidin expression, whereas Lee et al. [2010] indicate that 

neogenin enhances BMP signaling resulting in hepcidin upregulation but stating that this 

occurs by neogenin inhibition of hemojuvelin secretion.  

The most recent partner shown to be involved in the hemojuvelin/BMP pathway is the 

membrane-bound serine matriptase-2 (Figure 1.3). Its importance in systemic iron regulation 

was firstly suggested by results obtained in two mouse models enclosing a mutated 

matripase-2, in which a marked increase in hepcidin levels was concomitant with iron 

deficiency anemia [Du et al. 2008; Folgueras et al. 2008]. These studies were promptly 

corroborated by the clinical studies in patients with iron-refractory iron deficiency anemia 

that were homozygous or compound heterozygous for mutations in matriptase-2 gene 

[Finberg et al. 2008; Melis et al. 2008]. The proposed role for matriptase-2 is the cleavage of 

membrane hemojuvelin into fragments, therefore inhibiting hepcidin expression activation 

[Silvestri et al. 2008b]. Furthermore, recent findings by Finberg et al. [2010] suggest that the 

involvement of matriptase-2 is required for the downregulation of the BMP/SMAD signaling, 

thus contributing to the regulation of systemic iron homeostasis.  

 

II.2.2.2. HFE and transferrin receptors (TfR1 and TfR2)  

It is now accepted that the iron present in the plasma and in the tissue stores enhances 

hepcidin synthesis which, in turn, inhibits the release of iron from macrophages and 

duodenal enterocytes to the plasma. The molecular details of this homeostatic loop are still 

incompletely understood. In fact, the most likely candidates able to act as iron sensors 

include the transferrin receptors, TfR1 and TfR2 (Figure 1.3). Although the molecular link 

between these receptors was characterized almost fifteen years ago, when the HFE protein 

was associated with hereditary hemochromatosis, the mechanism(s) by which HFE and the 

transferrin receptors affect hepcidin expression have only recently emerged [Feder et al. 1996; 

Schmidt et al. 2008; Gao et al. 2009; Ramey et al. 2009; Wallace et al. 2009; Gao et al. 2010; Poli et al. 2010]. 

Initial studies showed that HFE was associated with TfR1 at the cell membrane and that HFE 

could compete with Tf for binding to TfR1 [Parkkila et al. 1997a; Feder et al. 1998; Lebron et al. 1998]. 
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This lead to the idea that iron-loaded Tf (holo-Tf) would release HFE to interact with other 

proteins. However, only the work of Schmidt et al. [2008] using mouse models with mutations 

that strengthen or weaken the interaction between HFE and TfR1 provided clear evidence of 

this. A TfR1 mutation that reduces Tf binding but maintains HFE affinity led to low hepcidin 

levels and iron overload, whereas mice expressing a mutant TfR1 with reduced HFE affinity 

had inappropriately high hepcidin and iron deficiency [Schmidt et al. 2008]. By this time, it was 

evident that the hepcidin expression is related to the amount of HFE not complexed with 

TfR1 but possibly available for TfR2. In fact, HFE and TfR2 had been previously shown to 

interact in human tissues and other mammalian cells overexpressing both these proteins. 

The binding sites were shown to be quite different from those involved in the HFE-TfR1 

interaction [Griffiths and Cox 2003; Goswani and Andrews 2006; Chen et al. 2007]. Unlike the HFE-TfR1 

interaction, there is no competition for holo-Tf, allowing the formation of the HFE-TfR2-Tf 

complex and giving the basis for hepcidin regulation by this complex [Bennett et al. 2000; 

Goswani and Andrews 2006; Chen et al. 2007]. Both holo-Tf and HFE were shown to stabilize TfR2 

[Johnson and Enns 2004; Robb and Wessling-Resnick 2004]. Furthermore, mutations in the gene 

encoding for TfR2 originate iron loading symptoms very similar to those found in HFE-

associated hemochromatosis [Feder et al. 1996; Camaschella et al. 2000]. Accordingly, TfR2 

mutations lead to the same abnormally low hepcidin levels observed when HFE is disrupted, 

also suggesting that these proteins may be partners in the same regulatory pathway [Nemeth 

et al. 2005]. The direct evidence that an interaction between TfR2 and HFE is required for the 

signal transduction between holo-Tf and hepcidin was provided by Gao et al. [2009]. These 

authors showed that the stimulation of hepcidin transcription by holo-Tf requires both HFE 

and TfR2, in hepatic cell lines and primary hepatocytes. The use of HFE chimeras allowed to 

elegantly demonstrate that the interaction between HFE and TfR2 (but not TfR1) is necessary 

for this signal transduction [Gao et al. 2009]. This study provided strong evidence for the 

current model: under normal iron conditions, HFE is partitioned between TfR1 and TfR2, 

whereas an increase in Tf saturation results in the stabilization of TfR2 protein and 

degradation of TfR1 mRNA [Chen et al. 2007; Chen et al. 2009]. Under these conditions, HFE 

should shift away from TfR1 towards TfR2 and the HFE-TfR2-Tf complex might become part 

of the iron sensing complex leading to hepcidin induction [Schmidt et al. 2008; Fleming 2009; Gao 

et al. 2009; Wallace et al. 2009; Gao et al. 2010]. Recent work performed in mouse knockout models 

by Gao et al. [2010] confirm that both HFE and TfR2 are necessary for hepcidin regulation and 

suggests that HFE is the limiting factor in the formation of the complex. Furthermore, TfR2 
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has been shown to localize in membrane lipid rafts and to activate the ERK1/2 (extracellular 

signal‐regulated kinases 1/2) and the p38 MAPK (mitogen-activated protein kinases) under 

holo-Tf stimulation so it was proposed that this could be the via followed by HFE-TfR2-Tf 

complex to regulate hepcidin synthesis [Calzolari et al. 2006; Gao et al. 2009; Ramey et al. 2009] 

(Figure 1.3). Accordingly, a very recent work by Poli and colleagues [2010] shows that the 

silencing of HFE and TfR2 in HepG2 cells reduces the phosphorylation of ERK1/2 under holo-

Tf stimulus.  

Two parallel studies have recently shown that the HFE regulatory function in the 

hepatocytes most likely traverse the BMP6 signaling pathway in directing hepcidin 

expression [Corradini et al. 2009; Kautz et al. 2009]. These authors have shown that in HFE 

knockout mice the levels of hepatic phosphorylated SMAD1/5/8 were unsuitably low for the 

body iron burden. Also, the BMP6 induction of hepcidin expression was reduced in HFE 

knockout hepatocytes when compared with normal hepatocytes, suggesting the 

involvement of HFE in the downstream signals of BMP6 [Corradini et al. 2009]. In agreement, a 

very recent report in HH patients (C282Y homozygotes) reveals that BMP6 hepatic 

expression is appropriately augmented, likely related to iron overload, but interestingly, 

SMAD6 and SMAD7 proteins, inhibitors of BMP signaling, are also upregulated [Ryan et al. 

2010]. But several other recent reports have disclosed a cross-talk between the SMAD1/5/8 

BMP-mediated pathway and the ERK/MAPK pathway triggered by HFE-TfR2-Tf complex 

[Ramey et al. 2009; Wallace et al. 2009; Poli et al. 2010]. Double null mice for HFE and TfR2 were 

shown to develop more severe iron loading than mice lacking either HFE or TfR2 and the 

results reveal that both molecules regulate hepcidin through parallel pathways involving 

ERK1/2 and SMAD 1/5/8 [Wallace et al. 2009]. Accordingly, Poli et al. [2010] have shown that 

TfR2-null mice have a marked reduction in SMAD1/5/8 and ERK1/2 phosphorylation levels 

similarly what occurs by silencing TfR2 in HepG2 cells, whereas the silencing of HFE only 

affected the ERK1/2 phosphorylation. Interestingly, these authors show that furin activity is 

also reduced in both these situations, strongly suppressing hepcidin mRNA, most likely due 

to the inhibition of BMP maturation [Poli et al. 2010]. Contradicting data are presented in a 

study performed by Truksa et al. [2006], where hepcidin stimulation by BMPs in hepatocytes 

from IL-6 and HFE knockout and TfR2 mutant mice was similar to the wild type, indicating 

that those pathways are not necessary for the BMP signaling down to hepcidin expression. 

Moreover, it was show by Gehrke et al. [2005] that in HFE-mutated hepatic samples from 

human and mice the regulation of hepcidin by iron is not completely abolished, and that the 
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expression levels of hepcidin, TfR2 and hemojuvelin suggest an HFE-independent regulation. 

Hence, the role of HFE and TfR2 in hepcidin activation and its potential relationship with the 

hemojuvelin/BMP pathway is still far from clarified and impels us to the idea that controlling 

hepatocellular iron sensing might be a group effort. 

 

II.2.2.2.1.  HFE biology and function 

In spite of the fact that the role of HFE protein in the regulation of iron homeostasis is now 

accepted as a mandatory liver function with the final target being hepcidin, this was not 

always the case. As stated before, HFE was discovered in 1996 by Feder and co-workers as 

the long-sought protein responsible for hereditary hemochromatosis. Here, it was described 

as a 348 amino acid protein consisting of six distinct domains: the signal peptide (which is 

removed in the mature protein), three extracellular domains (1, 2 and 3 loops), a 

transmembrane region and a short intracellular region [Feder et al. 1996; Lebron et al. 1998] 

(Figure 1.4). 

The amino acid sequence and the requirement of the 2-microglobulin (2M) chaperone for 

proper folding and function, led to the inclusion of HFE in the major histocompatibility 

complex (MHC) class I molecules (Figure 1.4). Therefore, it was firstly named HLA-H while 

presenting a greater resemblance to HLA-A2 and HLA-G (HLA or human leukocyte antigen 

designates the genes that are expressed at the cell surface of human leukocytes). It was 

soon realized that the groove formed by 1 and 2 antiparallel helices of HFE protein was 

too narrow to function as a peptide-binding groove [Feder et al. 1996; Lebron et al. 1998]. HFE 

structure also includes one of the most important conserved structural features in MHC class 

I molecules, which are the four cysteine residues that form the disulphide bridges in 2 and 

3 domains [Feder et al. 1996; Lebron et al. 1998]. The correct conformation of the 3 domain is 

necessary for non-covalent interaction with 2M and proper cell-surface presentation 

[Bjorkman and Parham 1990]. 
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Figure 1.4. Schematic representation of the HFE protein at cell surface. The distinct colors depict HFE protein 

domains: the three extracellular domains (1, 2 and 3), the transmembrane domain (tm) and the 

cytoplasmic tail (cyto). The domains required for 2M, TfR1 and TfR2 binding are indicated. (Adapted from 
Fleming 2009). 

 

Hereditary hemochromatosis (HH) is characterized by abnormally high intestinal iron 

absorption, so a disrupted HFE would be responsible for this decontrol. But how do animal 

models help us to understand HFE’s dysfunction in hemochromatosis? Many important 

conclusions were drawn from the study of HFE mutant mice. In fact, independent 

knockdown experiments have shown that HFE null mice absorb more iron than normal mice 

and present hepatic iron overload, fully mimicking the HH phenotype [Zhou et al. 1998; Bahram 

et al. 1999; Levy et al. 1999]. The vast majority of HH patients present the HFE mutation C282Y, 

which was shown to induce a conformational change in the HFE protein resulting in its 

inability to bind to 2M, therefore compromising HFE cell surface presentation [Feder et al. 

1996; Feder et al. 1997; Waheed et al. 1997]. Accordingly, 2M knockout mice were shown to have 

an iron overload phenotype similar to hemochromatosis patients [Rothenberg and Voland 1996; 

Santos et al. 1996]. Comparison of HFE knockout mice with those homozygous for the 

orthologous C282Y mutation reveal that this missense mutation results in less iron loading 

that the null allele [Levy et al. 1999]. Studies in compound-mutant mice suggest that the iron 

loading in hemochromatosis is due to an increased iron flux involving both DMT1 and 

hephaestin [Levy et al. 2000]. 

Only recently the research regarding HFE’s function was directed to the liver, since for quite 

some time it was thought to act in the maturing enterocytes of the duodenum. The initial 

studies on HFE protein localization confirm its intestinal and liver expression. 
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Immunohistochemistry of the gastrointestinal tract revealed a wide expression pattern, but 

the strongest staining was confined to the crypt cells of the small intestine [Parkkila et al. 

1997b]. Here, HFE was found to be associated with TfR1 on the basolateral membrane and on 

the recycling endosomes of the immature enterocytes, confirming previous studies on 

placental tissue [Parkkila et al. 1997a; Waheed et al. 1999]. By comparing HFE and TfR1 expression 

in crypt and villus enterocytes, while measuring the uptake of transferrin-bound iron and 

ionic iron, these authors proposed the first mechanism of action of HFE protein. In the crypt 

enterocytes, HFE could regulate the uptake of Tf-bound iron from plasma, therefore sensing 

the level of body iron stores, triggering the programming mechanism by which the villus 

absorptive cells only take in the necessary dietary iron to maintain iron homeostasis [Waheed 

et al. 1999]. This model was supported by studies performed on HFE knockout mouse models 

and HH patients, in whom the augmented expression of the iron transporter DMT1 

combined with decreased ferritin and higher duodenal IRP activities, reveal an iron deficient 

phenotype in duodenal enterocytes [Francanzani et al. 1989; Pietrangelo et al. 1995; Basclain et al. 

1998; Fleming et al. 1999]. Only recently, the “crypt programming model” was defied. Using 

murine models with specific enterocyte ablation of HFE, Vujic Spasic et al. [2007] showed that 

hepatic iron stores and plasma iron levels were maintained, as well as hepcidin mRNA 

expression, therefore excluding the primary duodenal role of HFE in the pathogenesis of HH. 

In 2008, the same authors showed that only the hepatocyte-specific recombinant mice fully 

recapitulate the phenotype in HFE knockout mice, presenting severe iron accumulation and 

abnormally low hepcidin expression [Vujic Spasic et al. 2008]. 

Even before these recent intriguing discoveries, the mechanisms by which HFE would control 

intracellular iron levels brought conflicting results amongst the several studies that were 

performed. The overexpression of HFE in cells grown in culture was shown to reduce iron 

uptake and to lower intracellular ferritin levels [Gross et al. 1998; Corsi et al. 1999; Riedel et al. 1999; 

Roy et al. 1999]. The means by which HFE affected intracellular iron was a matter of discussion. 

While some authors stated that HFE could compete for Tf for binding to TfR1 or that it could 

affect the recycling of the receptor, others argued that this phenotype was not due to any 

effect on the Tf-mediated iron uptake via its receptor, but that HFE could interfere with 

DMT1-mediated iron influx [Feder et al. 1998; Lebron et al. 1999; Roy et al. 1999; West et al. 2001; 

Waheed et al. 2002; Zhang et al. 2003; Carlson et al. 2005]. The fact that overexpression of HFE leads 

to low intracellular iron are actually in a direct contradiction with the results of HH patients, 

who possess very little functional HFE and present an iron-deficient phenotype in the 
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duodenal enterocytes [Pietrangelo et al. 1995; Feder et al. 1996; Waheed et al. 1997]. Furthermore, 

HFE overexpression was shown to reduce cellular iron status in cell lines that express neither 

TfR1 nor TfR2 [Carlson et al. 2005]. 

On the other hand, HFE expression on macrophage and intestinal cell lines lead to increased 

intracellular iron stores, which was not due to any effect on Tf-mediated iron uptake, but 

related with the inhibition of iron efflux [Drakesmith et al. 2002; Davies and Enns 2004]. These 

authors suggest that the opposite effect of HFE in distinct cells lines may be due to the 

expression of the iron exporter ferroportin. In cells that do not export iron, such as HeLa and 

HEK293, intracellular iron levels decrease with HFE expression while in cells that export iron, 

such as HT-29 and THP-1, intracellular iron levels increase. Similarly, lack of functional HFE in 

humans causes opposite effects on iron levels in different cell types of affected tissues. In HH 

patients, Kupffer cells of the liver and intestinal enterocytes of the duodenum are iron poor, 

while liver hepatocytes are iron overloaded [Francanzani et al. 1989; Pietrangelo et al. 1995; Brunt et 

al. 2000]. The high IRP activity found in monocytes of hemochromatosis patients, and hence a 

low level of iron in the labile iron pool, is concordant with the increased iron content found 

in monocytes overexpressing HFE [Cairo et al. 1997; Drakesmith et al. 2002]. Despite the extensive 

studies, the mechanisms by which HFE modulates iron uptake and efflux from cells are only 

beginning to be understood [Chorney et al. 2003]. A recent work by Gao et al. [2008] show that 

HFE decreases the expression of Zip14, an iron and zinc transporter, inhibiting iron uptake in 

HepG2 cells. But so far, studies have failed to show a direct interaction of HFE with any iron 

transporter. 

Besides providing iron for the erythropoiesis, the macrophages have been shown to work at 

the interface between iron and immunity [Theurl et al. 2005a]. It has been proposed that HFE 

may play an important role in macrophages. The expression of the wild type HFE normalizes 

the transferrin iron accumulation in macrophages from HH patients [Montosi et al. 2000]. 

Accordingly, macrophages derived from C282Y patients monocytes lose the ability to inhibit 

iron release leading to a relative macrophage iron deficiency [Drakesmith et al. 2002]. The 

transplantation of wild-type reticuloendothelial cells into HFE knockout mice was shown to 

increase hepcidin expression and to somehow revert the hepatic iron loading [Makui et al. 

2005]. Accordingly, macrophages from HH patients infected with Mycobacterium tuberculosis 

exhibit a profound defect in their ability to acquire iron from exogenous transferrin and 

lactoferrin relatively to infected macrophages from normal controls, with consequent 
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growth impairment [Olakanmi et al. 2007]. In fact, it has been proposed by several authors that 

the relatively high prevalence of the C282Y mutation is due to a selective advantage given by 

the low RES iron during past endemic or epidemic infection [Moalem et al. 2004]. Similarly, Nef 

(negative factor) protein of HIV-1 was shown to control intracellular iron by impairing HFE 

surface presentation, whereas macrophages from HH patients failed to induce Nef-mediated 

iron and ferritin accumulation upon HIV-1 infection [Drakesmith et al. 2005]. The idea that HFE-

mutated macrophages may confer some protection from HIV-1 infection complies with the 

description of a long-term survival in a patient with AIDS and hereditary hemochromatosis 

[Nielsen et al. 1999]. The first demonstration that HFE could be a target for viral proteins was 

given by the human cytomegalovirus protein US2 (unique short 2) that was shown to trigger 

HFE’s degradation by the proteasome, leading to increased intracellular iron pool in HeLa 

and HEK293 cells [Ben-Arieh et al. 2001; Vahdati-Ben Arieh et al. 2003]. All this body of evidence 

confirms that HFE, not only is able to control the inner iron status of macrophages, but also 

has imperative effects in what regards infection progression.  

Recent findings by Pinto et al. [2010] showing that human lymphocytes express hepcidin and 

control intracellular iron levels by regulating the expression of ferroportin, confirms the 

long-sought link between iron metabolism and the immune system. Regarding HFE, many 

direct data arose from the observation of abnormalities in the T lymphocytes of 

hemochromatosis patients., e. g., high CD4/CD8 (CD stands for “cluster of differentiation” of 

leukocytes) ratio due to low number of CD8+ T cells, decreased CD8-associated p56lck kinase 

activity, T cell receptor repertoire anomalies associated with C282Y mutation and the 

diminished cytotoxic activity of CD8+ cytotoxic T lymphocytes [Reimao et al. 1991; Arosa et al. 

1994; Arosa et al. 1997; Porto et al. 1997; Cardoso et al. 2001]. Also, abnormalities in CD8+ T 

lymphocytes have been shown to be related with a more severe clinical expression of iron 

overload in hemochromatosis patients [Porto et al. 1997; Barton et al. 2005; Cruz et al. 2006]. 

Moreover, it has been shown that peripheral blood mononuclear cells containing the HFE 

C282Y mutation have a decreased presentation of MHC class I molecules at cell surface, 

subsequently proven to be due to the stimulation of an unfolded protein response [de Almeida 

et al. 2005; de Almeida et al. 2007b]. Whether this MHC class I expression defect associated with 

C282Y mutation is linked to the lymphocyte anomalies previously described is a matter for 

future studies. Although an immunologic function for HFE has not been described, all these 

data indicate that HFE may be a crucial player in the cross-talk between iron metabolism and 

immune response. 
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The means by which HFE affects intracellular iron is still unclear and most likely depends on 

the expression of other iron-related molecules. Its role on liver hepcidin expression is now 

undoubtedly accepted, but surely its effect on iron metabolism has broader implications, 

evidenced by the profound changes on intracellular iron levels in cultured cells 

overexpressing HFE, by its involvement in infection and possibly in the immune response. 

  

II.2.2.2.2. HFE molecular genetics and expression 

The HFE gene is located on chromosome region 6p21.3, approximately 4.6 megabases 

telomeric from HLA-A, encompassing approximately 12 kb of DNA [Feder et al. 1996]. The 

genomic structure of HFE is similar to other MHC class I-like molecules (Figure 1.5). Each of 

the first six exons encode one of the six distinct domains of the previously described protein, 

while the seventh exon is completely non-coding. The size of the sixth exon is 1056 base pair 

(bp) long, but only the first 41 bp are translated to amino acids. Therefore, the stop codon is 

located at the 5’ part of this exon and the remaining downstream 1015 bp correspond to the 

HFE 3’ untranslated region (UTR), along with exon 7 [Sanchez et al. 2001]. Many genes 

implicated in intracellular iron homeostasis display a post-transcriptional regulation based 

on the IRE/IRP system. However, the long-sought protein in iron metabolism, HFE, does not 

contain IREs nor is it known as being regulated by iron status.  

 

 

 
Figure 1.5. Schematic representation of the HFE gene. It is composed by seven exons, the first six exons 
encode for the six distinct domains of the immature HFE protein, while the seventh exon is non-coding. The 
size of the exons is given below the boxes in base pairs (bp). 
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In fact, very little is known regarding HFE transcriptional and post-transcriptional regulation. 

The comparison between the sequences of human, mouse and rat HFE promoter regions 

allowed the identification of several conserved transcription elements [Sanchez et al. 1998]. In 

vitro studies evidenced the trans-activation of HFE expression by liver-enriched C/EBP, 

erythropoietic-specific GATA-1 [recognizes a consensus (T/A)GATA(A/G) motif] and 

ubiquitous Sp1 (named according to the original purification scheme that included sephacryl 

and phosphocellulose columns) transcription factors [Mura et al. 2004]. These data is consistent 

with the postulate that HFE acts for signaling iron status at the hepatic levels and discloses a 

coordinated expression to meet erythropoietic demands. Moreover, these authors found 

that the positive cis-regulating elements were characterized within the most proximal region 

of HFE (-1057/-8, relatively to the initiation codon), whereas a negative one extended 

upstream (-1485/-1057). Run off in vitro transcription revealed two major transcription 

initiation sites [Mura et al. 2004]. Intriguingly, in a failed attempt to characterize HFE 

transcription initiation site and promoter region, an HFE antisense mRNA comprising the 5’ 

region of the gene was identified [Thenie et al. 2001]. This was found to be present in several 

human tissues and proven to negatively regulate HFE gene expression by in vitro coupled 

transcription-translation [Thenie et al. 2001]. 

The predominant HFE transcript is about 4.2 kb long. However, additional HFE mRNAs, both 

longer and shorter, have been reported [Jeffrey et al. 1999; Rhodes and Trowsdale 1999; Thenie et al. 

2000; Sanchez et al. 2001]. Most of these transcripts were observed in human tissue mRNA 

Northern blots and further characterization is required [Thenie et al. 2000; Sanchez et al. 2001]. 

Reverse-transcription polymerase chain reaction (RT-PCR) allowed the identification of 

several alternative splicing forms in cell lines [Rhodes and Trowsdale 1999; Thenie et al. 2000; Sanchez 

et al. 2001]. These include the skipping of exon 2 (total or partial), the skipping of exon 3 

(alone or combined with the skipping of exon 2), a partial skipping of exon 4 (alone or 

combined with the skipping of exon 3), among others. A study performed in HH patients 

allowed the identification of a putative soluble HFE variant due to the inclusion of intron 4 

that was found in the Southern blot analysis of HFE RT-PCR products [Jeffrey et al. 1999]. 

Furthermore, a report by Sanchez and colleagues [2001] in which the complete exon 7 of HFE 

was described, also revealed alternative polyadenylation utilization in both intron 6 and 

exon 7 identified by 3’ rapid amplification of cDNA ends (3’ RACE) and expressed sequence 

tag analysis. 
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Human tissue HFE mRNA has a low ubiquitous expression, presenting higher expression 

levels in the liver, small intestine and spleen [Feder et al. 1996; Jeffrey et al. 1999; Thenie et al. 2000; 

Sanchez et al. 2001]. However, results are highly variable between studies. HFE expression 

levels in tissues such as the large intestine, pancreas, testis and lung, among others, are 

inconsistent. Even within the same report, the tissue HFE mRNA varies immensely depending 

for example on the probe used for Northern blot or in the ribonuclease protection assays 

[Feder et al. 1996; Sanchez et al. 2001]. On the other hand, immunohistochemistry studies indicate 

that HFE protein is expressed throughout the gastrointestinal tract (mainly in duodenal crypt 

cells), in the liver (hepatocytes, Kupffer cells, bile duct epithelial cells and sinusoidal lining 

cells), placenta (syncytiotrophoblasts), tissue macrophages, brain (capillary endothelial cells) 

and circulating monocytes and granulocytes [Parkkila et al. 1997a; Parkkila et al. 1997b; Bastin et al. 

1998; Waheed et al. 1999; Parkkila et al. 2000; Zhang et al. 2004]. Once more, many differences can be 

observed among these studies. For instance, while some found no HFE expression in 

hepatocytes, other demonstrated that amongst the liver tissues, hepatocytes present the 

highest HFE protein level [Parkkila et al. 1997b; Bastin et al. 1998; Zhang et al. 2004]. There may be 

several reasons to explain these discrepancies, including factors affecting protein translation, 

stability and access of the antibody to its binding site on the HFE molecule. Also, intracellular 

localization of HFE protein can vary from cell surface to endosomal compartments to 

perinuclear staining and although TfR1 association can account for some explanation of cell-

surface stability, many important questions remain unanswered.  

As stated before, HFE protein has a dramatic impact on cell iron trafficking and on intestinal 

iron absorption, but interestingly, HFE gene expression is only modestly influenced by 

changes in cellular iron status [Ludwiczek et al. 2004; Theurl et al. 2005b]. All this bulk of 

information leads to questions that might be imperative towards understanding HFE post-

transcriptional regulation. Which are the alternative HFE transcripts present in human 

tissues? And how abundant are they? What are the biological mechanisms involved in their 

genesis? How is the cellular distribution of these protein variants and how do they 

contribute to the maintenance of cellular and systemic iron homeostasis? The work 

developed throughout this thesis intends to answer these questions by characterizing the 

physiological significance of HFE variants and hopefully providing new insights towards HFE’s 

function. 
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II.3. Disorders of disrupted iron homeostasis 

The expression “iron metabolism” used worldwide to designate the combination of 

pathways involved in maintaining iron homeostasis is actually not correct, since iron itself is 

not metabolized in a classical sense. Accordingly, human iron disorders are invariably caused 

by imperfect iron balance or iron distribution. The most frequent are iron deficiency anemia, 

hemochromatosis and anemia of chronic disease.  

Iron deficiency anemia results from unmet increased metabolic requirement or inadequate 

supply states, or the combination of the two. The depletion of the iron stores leads to poor 

hemoglobin synthesis in the maturing erythrocytes causing symptoms as pallor, fatigue and 

weakness [Andrews 1999]. Since our body is extremely dependent on the recycling of iron for 

red cell production, excessive blood loss is one of the most common causes of iron 

deficiency, disproportionally affecting young children and menstruating women [Andrews 

1999; McLean et al. 2009]. In fact, iron deficiency anemia is a major public health problem, as the 

recent surveys show that it affects about one-quarter of the world's population [McLean et al. 

2009]. Besides the common acquired condition, there are some rare forms of inherited iron 

deficiency anemia due to impairment of iron absorption or transport, which are caused by 

mutations in DMT1, transferrin or ceruloplasmin genes [Harris et al. 1995; Yoshida et al. 1995; 

Beutler et al. 2000; Priwitzerova et al. 2004; Mims et al. 2005; Aslan et al. 2007; Camaschella et al. 2007]. 

Anemia of chronic disease, also known as anemia of inflammation, has some features in 

common with iron deficiency anemia but is essentially a defect in iron recycling since 

macrophages that normally recycle iron are found to sequester it. Patients are affected with 

a wide variety of inflammatory conditions including arthritis, malignancies and infections. 

But only recently the underlying mechanisms of the iron sequestration have been found. The 

production of cytokines during inflammatory states leads to the overproduction of the iron-

regulatory hormone hepcidin that will result in iron retention in the enterocytes and 

macrophages [Roy et al. 2003; Nemeth et al. 2004a]. 

On the other side of the coin, when the iron storage capacity is exceeded, the deposition of 

iron in the parenchymal tissue of organs will take place causing tissue damaging, a condition 

generally designated as iron overload. The affected patients present fatigue, depression and 

joint pain as complications that might eventually evolve to more severe phenotypes as liver 

cirrhosis, cardiomyopathies and diabetes [Beutler et al. 2003]. These iron overload disorders 

may be of primary (genetic) or secondary (acquired) cause. The latter, also considered 



 

General Introduction 

 
51 

secondary hemochromatosis, are generally caused by problems of ineffective erythropoiesis 

(and worsened when blood transfusion is required), which may be inherited (e.g. 

thalassemia) or acquired (e.g. sideroblastic anemia) disorders [Beutler et al. 2003].  

Amongst the inherited conditions causing primary iron overload, hereditary 

hemochromatosis is the most common. The recent discoveries concerning HH have provided 

new insights on iron homeostasis, so this common hereditary disease will now be discussed 

with some detail.  

 

II.3.1. Hereditary hemochromatosis 

The term hemochromatosis was firstly used in the 19th century to describe massive tissue 

iron deposition associated to diabetes, bronze pigmentation of the skin and cirrhosis 

[Trousseau 1865; von Recklinghausen 1889]. In the beginning of the 20th century the disease was 

considered hereditary and the work by Simon and co-workers in 1976 linked the disease to 

the major histocompatibility complex alleles HLA-A3 and B14 [Sheldon 1935; Simon et al. 1976]. 

Two decades later, through linkage-disequilibrium and full haplotype analysis, the HFE gene 

(originally named HLA-H) was identified and found mutated in the large majority of patients 

with hemochromatosis [Feder et al. 1996]. This autosomal recessive disorder is one of the most 

common genetic diseases in people of northern European descent, affecting about 1 in 300 

individuals [Dadone et al. 1982; Edwards et al. 1988].  As mentioned, iron accumulation in the 

organs causes complications in the liver (cirrhosis and possibly hepatocellular carcinoma), 

heart (cardiomyopathies), joints (arthritis) and endocrine glands (diabetes and 

hypogonadotrophic hypogonadism) [Carthwright et al. 1979]. Therapeutic phlebotomies are 

generally used to reduce the iron burden from both plasma and stores, thereby decreasing 

disease morbidity and mortality if instituted early in the course of the disease [Bomford and 

Williams 1976]. 

The most common mutation associated with the disease is the substitution of cysteine for 

tyrosine at position 282 of the HFE immature protein (C282Y), accounting for about 85% of 

the patients [Feder et al. 1996; Adams et al. 2005]. However, the clinical penetrance of the C282Y 

homozygous individuals has been a topic of great debate, since many patients never develop 

clinical disease, and the proportion of who do remains controversial [Ryan et al. 2002; Ajioka and 

Kushner 2003; Beutler 2003]. In fact, the C282Y mutation is common in northwestern European 

populations, but also in the Portuguese population [Merryweather-Clarke et al. 2000; Cardoso et al. 
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2001]. Another mutation in HFE commonly associated to HH is the substitution of codon 63 

from histidine to aspartic acid (H63D). Nonetheless, the clinical effects of H63D mutation 

appear to be limited [Feder et al. 1996; Gochee et al. 2002]. The risk of iron loading is dramatically 

reduced when comparing H63D homozygosity or H63D/C282Y heterozygosity (nearly 200-

fold lower) to C282Y homozygosity [Risch 1997; Gochee et al. 2002]. Curiously, the mutation 

H63D is quite common in the general population, being present in 15-40% of Caucasians 

[Bacon et al. 1999; Merryweather-Clarke et al. 2000]. The high frequency of these mutations in the 

European population may be explained by selective advantage through the protection 

against anemia [Rochette et al. 1999]. Several other missense, nonsense and frameshift 

mutations have been described in the HFE gene, but, in general, a casual relationship 

between these mutations and the development of iron overload remains to be established 

[Barton et al. 1999; de Villiers et al. 1999; Mura et al. 1999; Piperno et al. 2000; Pointon et al. 2000; Beutler et 

al. 2002; Le Gac et al. 2003; Mendes et al. 2009; Pointon et al. 2009].  

However, as it is often the case, the situation is more complex than originally thought. The 

clinical penetrance of HFE mutations is incomplete and both environmental and genetic 

factors can influence the course of the disease. Moreover, we now know that mutations in 

other genes, although more rarely, can cause hemochromatosis and HFE-associated 

hemochromatosis is frequently named classical or type 1 hemochromatosis [Pietrangelo 2004; 

Pietrangelo 2006]. The Online Mendelian Inheritance in Men (OMIM) data base currently lists 

four types of hemochromatosis, each caused by mutations involving a different gene. Type 3 

hemochromatosis is caused by mutations in TfR2 gene and presents the higher resemblance 

to HFE-associated hemochromatosis in terms of age onset, iron accumulation distribution 

and clinical symptoms [Camaschella et al. 2000]. Type 2 or juvenile hemochromatosis is caused 

by mutations in hemojuvelin or hepcidin, thereby originating an earlier and more severe 

onset of the disease [Roetto et al. 2003; Papanikolau et al. 2004]. The type 4 (or ferroportin disease) 

is the only autosomal dominant and has more distinguishable features from the others, since 

it is not preceded by high transferrin saturation levels, iron accumulation is 

reticuloendothelial instead of parenchymal and there is a weak response to phlebotomy 

[Montosi et al. 2001; Njajou et al. 2001]. In fact, the inclusion of ferroportin as a type of 

hemochromatosis is a matter of discussion for some authors [Pietrangelo 2004; Andrews 2008]. 

But, in reality, all forms of HH result from either inappropriate levels of hepcidin or, in the 

case of mutations in the ferroportin gene, from resistance to hepcidin action [Bridle et al. 2003; 

Muckenthaler et al. 2003; Papanikolau et al. 2004; Kawabata et al. 2005; Porto et al. 2005]. It is now 



 

General Introduction 

 
53 

accepted that the severity of the disease is directly associated with hepcidin levels. This 

hypothesis is favored by the fact that mutations in hepcidin aggravates the phenotype of 

C282Y homozygotes and from mice studies revealing that the overexpression of hepcidin can 

revert the iron overload in HFE knockout mice [Merryweather-Clarke et al. 2003; Nicolas et al. 2003; 

Jacolot et al. 2004; Viatte et al. 2006].  

There are many inherited and environmental factors leading to hemochromatosis 

heterogeneity, but the comprehension of the complex pathways controlling hepcidin 

expression has allowed to consider its deregulation as the common etiology of the disease. 

The role of the genes involved in these pathways and in HH development still requires 

further investigation to allow comprehension of the immense variation in clinical 

presentation and hopefully lead to therapies based on hepcidin levels manipulation. 

 

III. Post-transcriptional regulation of  gene expression 

Gene expression regulation allows genetically identical cells of a multicellular organism to 

produce the adequate proteins in the right cell at the correct time. In fact, each cell type is 

designed to have a specific role that contributes to the overall functioning of the organism 

[Orphanides and Reinberg 2002]. Eukaryotic gene expression begins with transcription, followed 

by multiple post-transcriptional processes that carry out the capping, splicing, 

polyadenylation and export of the mRNA to the cytoplasm for translation [Maniatis and Reed 

2002]. This cascade of events that take place during gene expression, from the transcription 

of genetic information hoarded in the DNA down to the eventual protein production and 

post-translational processing, undoubtedly encloses some of the most significant 

biochemical pathways for the living organisms. As expected, numerous regulatory 

mechanisms have arisen at multiple points to preserve the accuracy of gene expression. 

Amongst them, lay two extremely important mechanisms that can act alone or combined to 

ensure the proper levels of transcripts and the profuse gene expression diversity [Black 2003; 

Green et al. 2003; Lewis et al. 2003; Maquat 2004]. These are the alternative splicing and nonsense-

mediated mRNA decay (NMD), which will be further enlightened in this thesis due to their 

role in HFE’s gene expression regulation. 
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III.1. General aspects of the gene expression pathway 

The level of the gene expression is primarily regulated by transcriptional factors that bind to 

DNA regulatory sequences upstream the transcription start site. Following a determined 

cellular or environmental stimulus, transcription factors are activated and interact not only 

with the gene regulatory elements, but also with components of the transcription machinery 

to promote access to DNA and the recruitment of RNA polymerase II (RNAP II) to the 

transcription start site [Proudfoot et al. 2002]. Soon after the beginning of transcription 

(initiation), a cap structure is added to the 5’ end of the nascent RNA that protects it from 

nuclease degradation, promotes its later export to the cytoplasm and also stimulates 

translation [Lewis and Izaurralde 1997]. Then, RNAP II moves 5’ to 3’ of the gene sequence to 

extend the transcript (elongation) and the non-coding sequences (introns) are removed by 

pre-mRNA splicing [Padgett et al. 1986; Uptain et al. 1997]. When reaching the end of the gene, 

RNAP II stops transcription (termination). The newly synthesized RNA is cleaved and a 

polyadenosine *poly(A)+ tail is added to the 3’ end of the transcript (polyadenylation) [Wahle 

1995]. Since all these processes occur within the nucleus, the mature transcript must be 

transported to the cytoplasm for translation. This export is mediated by factors that bind 

mRNA molecules and interact with the proteins that line the nuclear pore [Zenklusen and Stutz 

2001]. Once in the cytoplasm, the translation of the mRNA into protein takes place on large 

ribonucleoprotein complexes, the ribosomes. The translation process is mechanistically 

similar to transcription, commencing with the location of the start codon by translation 

initiation factors together with ribosome subunits, further evolving to elongation and 

termination phases [Moldave 1985; Gebauer and Hentze 2004]. The nascent polypeptide chain 

undergoes proper folding and frequently post-translational modifications to generate the 

final active protein [Han and Martinage 1992]. Although appearing as a quite straightforward 

multistep process, the underlying events from RNA transcription to post-translational 

protein modifications are highly complex and regulated processes, with frequent coupling 

among steps previously thought to be distinct in place and time [Maniatis and Reed 2002; 

Orphanides and Reinberg 2002; Kornblihtt et al. 2004]. We will now focus on those processes that can 

have a significant effect on gene expression regulation, specifically on the expression of the 

HFE gene. 
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III.2. Constitutive and alternative splicing 

Pre-mRNA splicing is an essential step for the expression of eukaryotic genes, since the 

exons that will make up the mRNA product are interrupted by non-coding sequences 

(introns) present in the DNA and in the nascent pre-mRNA transcript. To generate correct 

mature mRNAs, intron removal and the concomitant joining of the exons is precisely and 

efficiently carried out by the spliceosome, a macromolecular ribonucleoprotein complex that 

assembles on the pre-mRNA [Padgett et al. 1986; Jurica and Moore 2003]. This complex assembly is 

guided by weakly conserved consensus sequences present at the ends of the introns: the 5’ 

splice site, 3’ splice site and the branch point site [Hertel 2008]. Briefly, the general mechanism 

of splicing is carried out by the spliceosome, an assembly of five small nuclear 

ribonucleoprotein (snRNP) particles (U1, U2, U4, U5 and U6) that are associated with a large 

number of additional structural proteins [Black 2003; Jurica and Moore 2003]. The stepwise 

initiation of splicing and coalition of the spliceosome begins with the recognition of the 

transcript 5’ and 3’ intronic splice site by the spliceosome components snRNP U1 and U2AF 

(U2 auxiliary factor) factors respectively, whereas the splicing factor 1 binds the branch 

point. This protein-RNA structure is designated the early (E) complex. Subsequently, the E 

complex recruits the branch point-bound U2 snRNP, being converted to the A complex. The 

B complex is formed when the tri-snRNP particle containing U4, U5 and U6 joins the 

spliceosome, which then undergoes a structural transformation and becomes the C complex 

[Black 2003; Jurica and Moore 2003; House and Lynch 2008]. This extensive remodelling of the C 

complex enables the production of an active site that is capable of catalyzing the 

transesterification reaction required for exon ligation and lariat release [Graveley 2000]. 

The specificity and activity of the spliceosome much relies on the recognition of the above 

mentioned motifs to define exon-intron boundaries. Nevertheless, it is not fully understood 

how splice sites (ss) are selected, essentially due to the degeneracy of the splicing regulatory 

regions such as the 5’ and 3’ ss, branch point and exonic/intronic adjacent sequence 

elements [Hertel 2008]. There are four additionally important classes of splicing motifs 

necessary for proper splice-site identification: ESEs (exonic splicing enhancers), ESSs (exonic 

splicing silencers), ISEs (intronic splicing enhancers) and ISSs (intronic splicing silencers). So, 

the inclusion of a given exon is under a combinatorial control of multiple regulatory RNA 

elements as well as the inherent strength or weakness of the flanking splice sites [Matlin et al. 

2005; Hertel 2008]. The ESEs and ISEs provide binding sites for a handful of trans-acting factors 
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that promote exon inclusion, predominantly of the SR family of proteins, named due to their 

high serine-arginine content [Graveley 2000; Long and Caceres 2009]. ESSs and ISSs are recognized 

by splicing suppressors, generally members of the heterogeneous nuclear RNP (hnRNP) 

family of proteins, a structurally set of RNA-binding proteins [Black 2003]. Importantly, these 

trans-acting factors may have an ubiquitous or a tissue-specific expression and therefore 

encompass an especially important role in the regulation of alternative splicing. Although SR 

proteins and hnRNPs do not always correlate with enhancers and silencers, respectively, this 

simplification helps to illustrate the emergent concept of a “splicing code”, in which the 

splicing pattern of a gene could be determined by the interplay of proteins along a nascent 

transcript [Matlin et al. 2005]. In fact, very recent work by Barash and colleagues [2010] intended 

to decipher the splicing code and revealed extremely important new data regarding 

widespread regulatory strategies for alternative splicing events, sustained by the 

combinations of hundreds of RNA features.  

 

III.2.1. Alternative splicing and gene expression diversity 

Alternative splicing greatly expands the genetic information content, since the versatility of 

the transcriptome allows that multiple different mRNAs arise from one individual gene, in 

many cases encoding for functionally distinct proteins [Modrek and Lee 2002; Stamm et al. 2005]. 

The progressive generation of larger sequence datasets has revealed that it is more the rule 

than the exception, indicating that 92-94% of human genes undergo alternative splicing [Pan 

et al. 2008; Wang et al. 2008]. Moreover, about 86% of these alternatively spliced genes have a 

minor isoform content of at least 15%, indicating a possible significant impact of these 

isoforms in gene expression diversity. Several alternative splicing events may occur starting 

from a single primary transcript (Figure 1.6). Most alternative splicing events may be 

classified into five basic splicing patterns: exon skipping, alternative 5’ splice sites, 

alternative 3’ splice sites, mutually exclusive cassette exons and intron inclusion. Other 

mechanisms may occur, changing the transcription initiation site or 3’ end 

processing/termination sites. All of these are simplified patterns of alternative splicing and 

these events may be combined (and influence each other), generating more complex splicing 

patterns [Zavolan et al. 2003; Kornblihtt 2005]. Most of these alternative splicing events occur 

within the open reading frame, greatly expanding the human proteome [Kan et al. 2001; Modrek 

and Lee 2002]. When the sequence of the encoded proteins is affected, it may influence their 
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function and properties, such as stability, intracellular localization, binding properties, 

enzymatic activity and post-translational modifications [Wang and Cooper 2007]. On the other 

hand, when untranslated regions are involved, alternative splicing may affect mRNA stability, 

translation efficiency and mRNA localization [Wang and Cooper 2007]. The levels of gene 

expression may also be altered when the alternative splice variant gives rise to a premature 

translation termination codon (PTC), leading to the degradation of the transcript by the 

nonsense-mediated mRNA decay (NMD). There is growing evidence that the mechanistic 

coupling of alternative splicing and NMD provides an often-used means of regulating gene 

expression [Lewis et al. 2003]. Indeed, one third of the alternative splicing events generate PTCs 

[Green et al. 2003; Lewis et al. 2003]. The NMD mechanism and its role in regulating gene 

expression will now be discussed. 

 

 

 
Figure 1.6. Elementary alternative splicing events. The depicted alternative splicing events generate 
functionally distinct transcripts. Dashed lines represent different possibilities for splice site joining. Constitutive 
exons are shown in beige and alternative ones in blue. (Adapted from Blencowe 2006). 
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III.3. Nonsense-mediated messenger RNA decay 

Nonsense-mediated mRNA decay is a post-transcriptional eukaryotic mRNA surveillance 

mechanism responsible for the rapid degradation of transcripts harboring a PTC. Therefore, 

NMD limits the production of C-terminally truncated polypeptides and protects the cell from 

their possible deleterious dominant-negative or gain-of-function effects [Wagner and Lykke-

Andersen 2002; Holbrook et al. 2004; Maquat 2004; Chang et al. 2007]. 

PTCs may be generated by various types of germline/somatic alterations in the DNA, as 

nonsense or frameshift mutations (leading to PTCs downstream of the shift) but also 

mutations occurring within either exons or introns that result in inaccurate pre-mRNA 

splicing (resulting in a shift of the open reading frame). Actually, it is estimated that about 

30% of all known disease-associated mutations generates a PTC-containing mRNA. Errors 

during transcription or mRNA processing may also originate PTCs [Mendell and Dietz 2001; 

Holbrook et al. 2004; Rehwinkel et al. 2005]. 

Interestingly, PTCs can arise from regulated mRNA processes as well. The presence of an 

upstream open reading frame (uORF), the inability of incorporating a selenocysteine at a 

UGA codon, alternative splicing events or the presence of an intron in the 3’ UTR, can all lead 

to PTCs recognized as such by NMD. So, on top of its role in clearing the cell of aberrant 

transcripts, recent evidence has disclosed an important function for NMD in controlling the 

expression levels of wild type genes, which are implicated in several essential biological 

processes [Holbrook et al. 2004; Mendell et al. 2004; Neu-Yilik and Kulozik 2008]. 

 

III.3.1. NMD rule and activation 

One pivotal feature for NMD is to distinguish the termination codons that specify the end of 

an open reading frame from those that interrupt it. To achieve this, mammalian NMD relies 

on two pivotal spatially separated processes of gene expression, pre-mRNA splicing and 

translation. Although the mechanism to discriminate between premature and normal stop 

codons is only partially understood, the ability of a PTC to elicit rapid degradation of the 

mRNA depends upon a positional effect [Nagy and Maquat 1998; Conti and Izaurralde 2005; Silva et al. 

2006; Muhlemann et al. 2008]. 

The fact that translation was shown to be mandatory for NMD triggering arose the 

possibility that a “mark” had been previously set on the mRNA. Studies in mammalian 
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systems led to the observation that stop codons are generally recognized as premature if 

they are located at more than 50-54 nucleotides (nt) upstream to the 3’ most exon-exon 

junction [Nagy and Maquat 1998] (Figure 1.7). Consistent with the “50-54 nt boundary rule” is 

the fact that normal termination codons usually lay within the last exon of a gene or that 

naturally intronless genes are insensitive to NMD [Nagy and Maquat 1998; Maquat and Li 2001; 

Brocke et al. 2002]. Since PTC recognition is intrinsically dependent on exon-exon junctions in 

mammals, the splicing mechanism was associated to NMD. It is now accepted that the exon 

junctions are marked on the mRNA by a multiprotein exon-junction complex (EJC) deposited 

by the spliceosome at a position of 20-24 nt upstream of each exon-exon junction [Le Hir et al. 

2000]. 

It is currently acknowledged that NMD activation depends on the EJC maintenance on the 

mRNA. As mentioned, during pre-mRNA splicing, the EJC is deposited 5’ to the exon-exon 

junctions. While the mRNA is transported to the cytoplasm the up-frameshift (UPF) proteins 

3 and 2 are recruited to the EJC. In a pioneer round of translation, the translating ribosome 

dislodges the EJCs when reaching the physiological termination codon and so the mRNA 

remains stable for multiple subsequent translational rounds [Dostie and Dreyfuss 2002; Lejeune et 

al. 2002; Alkalaeva et al. 2006]. However, when the translating ribosome encounters a PTC and at 

least one EJC is still bound downstream, the eukaryotic release factors 1 and 3 will bind to 

the ribosome and recruit the UPF1 protein, which promotes the binding of SMG1 

(suppressor with morphogenetic effects on genitalia 1) factor [Czaplinski et al. 1998; Wang et al. 

2001; Kashima et al. 2006]. UPF1 and SMG1 will interact with EJC-bound UPF2, triggering UPF1 

phosphorylation by SMG1, event that promotes the recruitment of SMG5-SMG7 and (or) 

SMG6 [Anders et al. 2003; Chiu et al. 2003; Ohnishi et al. 2003; Fukuhara et al. 2005; Kashima et al. 2006]. 

These factors will promote UPF1 dephosphorylation by protein phosphatase 2A, enabling 

the recycling of NMD factors for another round of surveillance [Chiu et al. 2003; Ohnishi et al. 

2003]. The rapid decay of the transcript is achieved by SMG7 alone or associated with SMG6 

possibly through the recruitment of the decay machinery [Unterholzner and Izaurralde 2004; 

Glavan et al. 2006; Huntzinger et al. 2008; Eberle et al. 2009]. 
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The degradation pathways of PTC-containing mRNAs are not fully understood in mammals. It 

is thought to involve both decapping with subsequent 5’ to 3’ exonucleolytic activity and 

deadenylation followed by 3’ to 5’ exonucleolytic degradation [Lykke-Anderson 2002; Chen and 

Shyu 2003; Lejeune et al. 2003; Couttet and Grange 2004]. But an additional decay mechanism has 

been brought to light, the endonucleolytic cleavage, very likely mediated by SMG6 [Stevens et 

al. 2002; Huntzinger et al. 2008; Eberle et al. 2009].  

 

 

 
Figure 1.7. Premature stop codon recognition in mammals. When pre-mRNA splicing occurs, a multiprotein 
exon-junction complex (EJC) assembles 20-24 nt upstream to each exon-exon junction. During the pioneer 
round of translation, the ribosome will displace the EJCs as it proceeds with elongation of the polypeptide. In 
normal transcripts, the ribosome encounters the stop codon and all EJC have been displaced from the mRNA, 
so normal termination will take place. Conversely, if any EJC(s) is still bound to the mRNA when the ribosome 
reaches a PTC (located 50-54 nt upstream to the 3’ most exon-exon junction), NMD will be triggered and the 
transcripts committed to rapid decay. CBP, cap-binding protein; PABPC1, cytoplasmic poly(A)-binding protein 1. 
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III.3.2. Gene expression regulation by NMD 

As previously mentioned, NMD is an important contributor to the fidelity of gene expression, 

preventing translation of potentially harmful truncated proteins. Furthermore, in addition to 

disposing the cell of unintended aberrant transcripts, NMD also has a potential role to play 

in the normal regulation of gene expression [Rehwinkel et al. 2006].  

Gene expression profiling in yeast, fruitfly and human cells have shown that NMD is able to 

regulate about 3-10% of the transcriptome [Lelivelt and Culbertson 1999; He et al. 2003; Mendell et al. 

2004; Rehwinkel et al. 2005; Wittmann et al. 2006]. These studies have revealed a diverse repertoire 

of transcripts controlled by NMD, which are involved in a myriad of cellular processes such 

as cell cycle, transcription, intracellular transport, DNA repair, cytoskeleton organization and 

biogenesis, telomere maintenance, signal transduction, among others [He et al. 2003; Mendell et 

al. 2004; Rehwinkel et al. 2005; Rehwinkel et al. 2006; Wittmann et al. 2006]. So, it has become accepted 

that NMD can be applied to adapt protein expression to the physiological needs of cells and 

organisms. Under these circumstances, it is not clear if NMD is solely limiting protein 

expression or if, upon certain physiological stimuli, NMD itself can be regulated to allow the 

expression of functional truncated proteins [Bamber et al. 1999; Donnadieu et al. 2003; Neu-Yilik and 

Kulozik 2008]. 

It was proposed that about one-third of the alternatively spliced mRNAs contain a PTC, 

implying a widespread coupling of alternative splicing and NMD [Lewis et al. 2003]. This 

discloses a major effect of alternative splicing in the generation of an mRNA isoform that is 

targeted for degradation rather than translated into protein. Splicing factors can regulate 

gene expression by generating productive or unproductive splicing isoforms [Lewis et al. 2003]. 

In fact, it was shown that the splicing factors SC35 (so-called since it was firstly identified by 

the anti-spliceosome antibody alpha SC-35) and PTB (polypyrimidine tract binding) protein 

can downregulate their own expression by activating an alternative splice pattern that result 

in mRNA isoforms with PTCs [Sureau et al. 2001; Lewis et al. 2003; Wollerton et al. 2004]. Curiously, 

NMD factors themselves can exert an inhibition of their own expression, illustrated by the 

NMD regulation of SMG5 factor [Mendell et al. 2004; Rehwinkel et al. 2005; Chan et al. 2007]. 
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A broader role for NMD has been unraveled through the studies that show that physiological 

mRNA transcripts that encode for functional full length proteins can be NMD substrates. 

Indeed, it was demonstrated that in mammalian cells depleted of the NMD factor UPF1 

about 5% of the analyzed transcripts become upregulated [Mendell et al. 2004].  A similar result 

was observed by knocking down UPF2 since the microarray data revealed that about 1.5% of 

the mRNAs were consistently upregulated at least two-fold [Witmman et al. 2006]. In general, 

the upregulated transcripts shared similar features that enable them to be recognized as 

NMD substrates, such as uORFs in the 5’ untranslated region, introns in the 3’ untranslated 

regions, selenocysteine codons and, as expected, alternative splicing events that introduce 

nonsense codons or frameshifts. So, the context of a spliced intron at least 50 nucleotides 

downstream the initiation codon, required to trigger NMD, was obeyed in all these 

transcripts.  

Considering NMD regulation of transcripts encoding for selenocysteine-containing proteins, 

it was shown in a few studies that mRNAs containing in-frame UGA triplets that encode for 

selenocysteine when selenium is abundant but are interpreted as PTCs under selenium 

deprivation [Moriarty et al. 1998; Sun et al. 2001]. 

The implication of NMD in the regulation of genes with uORFs has been addressed for quite 

some time now, mainly from studies in yeast [Pinto et al. 1992; Oliveira et al. 1993]. These mRNAs 

appear consistently as NMD targets, with NMD being triggered or impaired according to the 

cellular needs [Gaba et al. 2005; Neu-Yilik and Kulozik 2008]. Not surprisingly, uORF-containing 

transcripts have surfaced in gene expression profiling analyses after NMD silencing in yeast, 

fruitfly and human cells [Messenguy et al. 2002; Mendell et al. 2004; Wittmann et al. 2006; Hansen et al. 

2009]. 

The presence of an intron in the 3’ UTR of a pre-mRNA also potentially targets the mature 

mRNA to NMD. This was shown to be the case of some human genes, either by expression of 

the normal transcript or due to alternative splicing events [Mendell et al. 2004; Banihashemi et al. 

2006; Wittmann et al. 2006]. All these mRNAs are unified by the presence of a spliced intron at 

least 50 nucleotides downstream of a termination codon, a context sufficient to initiate 

NMD. Actually, this specific architecture is present in HFE mRNA, since the native stop codon 

present in the major HFE transcript is located 1015 nt from the downstream non-coding 

exon-exon boundary [Sanchez et al. 2001]. We therefore hypothesize that the HFE gene can be 

included in this group of NMD-regulated genes. The work developed in this thesis addresses 
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this hypothesis by analyzing the expression levels of HFE transcripts when NMD is impaired, 

providing novel perspectives in what regards HFE’s gene expression regulation.  
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I. Abstract  

The pathophysiology of HFE-derived hereditary hemochromatosis and the function of HFE 

protein in iron homeostasis remain uncertain. Also, the role of alternative splicing in HFE 

gene expression regulation and the possible function of the corresponding proteins are still 

unknown. The aim of this study was to gain insights into the physiological significance of 

these alternative HFE variants. 

Alternatively spliced HFE transcripts in diverse human tissues were identified by RT-PCR, 

cloning and sequencing. Total HFE transcripts, as well as two alternative splicing transcripts 

were quantified using a real-time PCR methodology.  Intracellular localization, trafficking and 

protein association of GFP-tagged HFE protein variants were analyzed in transiently 

transfected HepG2 cells by immunoprecipitation and immunofluorescence assays. 

Both level- and tissue-specificity are presented by the alternatively spliced HFE transcripts. 

Concerning the exon 2 skipping and intron 4 inclusion transcripts, the liver has the lowest 

relative level, while the duodenum presents one of the highest amounts of these isoforms. 

The protein resulting from exon 2 skipping transcript is unable to associate with 2M and 

TfR1 revealing a retention at the endoplasmic reticulum. On the other hand, the intron 4 

inclusion transcript gives rise to a truncated soluble protein HFE that is mostly secreted by 

cells to the medium in association with 2M.   

HFE gene post-transcriptional regulation is clearly affected by a tissue-dependent alternative 

splicing mechanism. Among the corresponding proteins, a soluble HFE isoform stands out, 

that, upon being secreted into the bloodstream, may act in remote tissues. It could be either 

an agonist or antagonist of the full length HFE, through hepcidin expression regulation in the 

liver or by controlling dietary iron absorption in the duodenum.  
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II. Introduction 

 Maintaining iron homeostasis is essential, as both iron deficiency and iron excess are 

associated with cellular and organismal dysfunction. This homeostasis is dependent upon a 

tight link between body iron requirements, iron recycling from macrophages and intestinal 

iron absorption. However, how this complex mechanism is controlled remains largely to be 

understood.   

HFE is a major histocompatibility complex class I-like protein that is mutated in Hereditary 

Hemochromatosis (OMIM 235200), a common autosomal recessive disorder of iron 

metabolism [Feder et al. 1996]. The disease is characterized by excessive intestinal iron 

absorption and iron deposition in organs such as liver, heart and pancreas, potentially 

leading to cirrhosis, hepatocellular carcinoma, diabetes, cardiac failure and arthritis 

[Cartwright et al. 1979]. HFE is a transmembrane protein formed by six distinct domains: a signal 

peptide, three extracellular domains (1, 2 and 3), a transmembrane region and a short 

cytoplasmic tail [Feder et al. 1996; Lebron et al. 1998]. It assembles with 2M to form a 

heterodimer expressed at the cell surface. The most common HH-associated HFE mutation, 

C282Y, abrogates the disulfide bond in the protein 3 domain and prevents its binding to 

2M and cell surface presentation [Feder et al. 1997]. 

HFE is therefore a key component of human iron homeostasis but its precise role is still 

undefined. In fact, HFE protein has been detected in various cell types. It is expressed 

throughout the gastrointestinal tract as well as in macrophages and monocytes [Parkkila et al. 

1997b; Parkkila et al. 2000]. In the liver, HFE was shown to be present on Kupffer cells, 

endothelium and hepatocytes [Bastin et al. 1998; Zhang et al. 2004]. In a variety of transfected 

cells, HFE co-localizes with transferrin receptor 1 at the cell surface and in a perinuclear 

compartment, namely the endosomal compartment [Gross et al. 1998; Griffiths et al. 2000; 

Ramalingam et al. 2000]. At cell surface, HFE can interact with TfR1 that binds diferric-iron-

loaded transferrin (Fe2-Tf) [Bennett et al. 2000]. These complexes are endocytosed within 

vesicles, releasing iron into the cell. HFE also interacts with the liver-specific TfR1 

homologue, TfR2 [Chen et al. 2007]. Recently, it was proposed that, in the hepatocyte, HFE is 

partitioned between TfR1 and TfR2, whereas an increase in Fe2-Tf saturation results in 

stabilization of TfR2 protein and degradation of TfR1 mRNA [Chen et al. 2009]. Under these 

conditions, HFE should shift away from TfR1 towards TfR2, so the TfR2-HFE complex is likely 
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to be part of the iron sensing complex involved in the induction of the iron regulatory 

hormone hepcidin [Schmidt et al. 2008; Fleming 2009; Gao et al. 2009; Gao et al. 2010]. 

The HFE gene (formerly known as HLA-H) is located at 6p21.3 and its genomic structure 

resembles other MHC class I molecules [Feder et al. 1996]. It is known that alternative splicing 

mechanism is a widespread mean for producing polypeptide diversity from a single gene 

[Modrek and Lee 2002; Johnson et al. 2003]. Accordingly, alternative splicing is a common process 

of producing MHC class I protein isoforms. For instance, HLA-G, which is a non-typical MHC 

class I protein that presents significant structural homology to HFE, shows alternative 

splicing expression regulation and some of the isoforms produced have specific biological 

functions [Riteau et al. 2001; Hviid 2006; Sangrouber et al. 2007]. Also, alternative splicing is 

frequently observed in the expression of iron metabolism-related genes, e.g. the IRE and 

non-IRE mRNA isoforms of the DMT1 gene which are differentially expressed in the 

duodenum and other tissues. It was postulated that the switching between these two 

mRNAs allows the regulation of iron uptake by this transporter into the enterocyte [Lee et al. 

1998]. 

Previous studies have shown that HFE gene expression is subjected to alternative splicing 

[Jeffrey et al. 1999; Rhodes and Trowsdale 1999; Thenie et al. 2000; Sanchez et al. 2001]. The predominant 

HFE transcript has about 4.2 kb, but additional transcripts have also been reported, which 

seem to differ in both level- and the tissue- or cellular-specificity. However, the identification 

of HFE alternative transcripts, their tissue-specificity and abundance, as well as the biological 

significance of the corresponding isoforms, remains to be clarified. 

As a consequence of alternative splicing soluble protein isoforms can be originated 

assuming, in some cases, an important regulatory role in physiological processes. Actually, a 

splice isoform of HFE mRNA was described and, although not studied at protein level, it was 

suggested that the corresponding soluble peptide might regulate cellular iron transport 

[Jeffrey et al. 1999]. Additionally, functional analysis with an artificially created 2M-HFE 

monochain [mimicking a soluble HFE (sHFE)], was shown to effectively reduce Tf uptake into 

cells [Laham et al. 2004]. However, this did not correlate to any changes in TfR1 or ferritin 

synthesis, in contrast to the normal HFE-induction. These findings suggest that a soluble 

2M-HFE monochain acts differently that the full length protein. Nevertheless, the existence 

and the biological function of a putative sHFE isoform remained elusive. 
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In this study, we have characterized several HFE alternatively spliced transcripts in a variety 

of human tissues, their relative abundance and tissue-specificity. Raising the hypothesis that 

some of the corresponding protein variants might have a biological role, we analyzed those 

resulting from exon 2 skipping and intron 4 inclusion. By studying their intracellular 

localization, trafficking and assembly, we gained insights about their physiological 

significance. Therefore, we demonstrated that a sHFE isoform is secreted into the medium, 

maintaining its association to the chaperone 2M. So, we suggest that a sHFE produced in a 

variety of human tissues may be secreted into the bloodstream and thus act by association 

with cell surface expressed transferrin receptors in remote tissues. There, playing a role as 

an agonist or antagonist of the wild type HFE, it might modulate hepcidin expression in the 

liver or regulate dietary iron absorption in the duodenum.  

 

III. Materials and Methods  

III.1. First strand cDNA synthesis and polymerase chain reaction  

First strand cDNA synthesis was performed using 3 g of total RNA from eight human tissues 

[small intestine, spleen, liver, testis, ovary, duodenum, heart and kidney (BD Clontech or 

Ambion)] and HepG2 cell line with the SuperScript® II Reverse Transcriptase (Invitrogen), 

according to the manufacturer’s instructions. A 1:1 mixture of random hexamers (Invitrogen) 

and oligo (dT) were used as primers.  

A PCR covering the entire HFE coding region was performed to synthesize cDNAs using 

primers #1 and #2. All primers used in this chapter are listed in Table 2.1. A specific PCR to 

amplify the region between HFE’s exon 4 to 5 was done using primers #3 and #4.  

All products obtained in both PCRs were cloned into the pCR®-TOPO-XL® vector (Invitrogen), 

sequenced with BigDye® Terminator v1.1 Sequencing Standard kit using M13 reverse and T7 

promoter primers and analyzed with the ABI Prism 3100 automatic sequencer (Applied 

Biosystems). 
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III.2. Quantitative real-time PCR 

The quantification of the alternative splicing HFE transcripts was conducted using real-time 

PCR performed on an ABI Prism 7000 Sequence Detection System. Primers were designed 

using the ABI Primer Express software to amplify specific amplicons for the total HFE (exon 6, 

primers #5 and #6), for the exon 2 skipping (exon 1-3 boundary, primers #1 and #7) and for 

the inclusion of intron 4 (intron 4 - exon 5 boundary, primers #8 and #9). 

Synthesis of cDNA from each tissue was carried out as before. Each cDNA sample was diluted 

5-fold to guarantee accurate pipetting and 5 L added to 5 mol primers and SYBR Green 

Master Mix (Applied Biosystems). The cycling parameters used in all transcripts tested were: 

10 min at 95ºC, followed by 40 cycles of 15 sec at 95ºC and 1 min at 65ºC. Quantification of 

gene expression was performed by the absolute standard curve method using serial dilutions 

of plasmids carrying the corresponding cDNA. 

 

Table 2.1. DNA oligonucleotides used in the current work. 

Primer Location Sequence (5’  3’) 

#1  Exon 1 ATGGGCCCGCGAGCCAGGCCG 

#2 Exon 6 GTCTCCTTCCCACAGTGAGTCTGCAGGCTG 

#3 Exon 4 GAACATCACCATGAAGTGGCTGAAGG 

#4 Exon 5 GAACAAAATTCCAATGAACAAGATGACG 

#5 Exon 6 CTACGTCTTAGCTGAACGTGAGTGA 

#6 Exon 6 TGTCTCCTTCCCACAGTGAGTCT 

#7 Exon 1 / 3 TGCAGGGTGTGGGACTGCAGCAAGCG 

#8 Intron 4 GGCAATCAAAGGCTTTAACTTGCTTTT 

#9 Intron 4 / Exon 5 CCAGACGGTGAGGGCTCTAA 

#10 Exon 1 TTTTGGTACCATGGGCCCGCGAGCC 

#11 Exon 6 TTTTGGATCCCACTCACGTTCAGCTAAGACGTAGTGCCC 

#12 Exon 4 GGGAAGAGCAGAGATATACGTACCAGGTGGAGCACCC 

#13 Exon 4 GGGTGCTCCACCTGGTACGTATATCTCTGCTCTTCCC 

#14 Intron 4 TTTTGGATCCCACATACCCCAGATCACAATGAGG 

 

III.3. Plasmid constructs 

The cloning of HFE cDNA into the pEGFP-N1 (Clontech) took advantage of the RT-PCR 

products previously cloned into pCR®-TOPO-XL vector. Therefore, we used a construct 

already containing the total HFE cDNA and performed an amplification of the entire HFE 

coding sequence with primers #10 and #11, containing the KpnI and BamHI linkers inserted 

immediately next to the translational start and stop codons (that was modified in order to 

allow fusion to GFP open reading frame), respectively. Both pEGFP-N1 vector and PCR 

product were digested with the KpnI and BamHI endonucleases to clone the full length HFE 
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cDNA fused to GFP (pEGFP_HFE_full length). The same method was performed to create 

pEGFP_HFE_skip2 construct, to mimic the exon 2 skipping splicing transcript. To clone the 

C282Y mutant control, the pEGFP_HFE_full length was amplified using mutagenic primers 

#12 and #13, along with QuickChange® Site-Directed Mutagenesis Kit (Stratagene), as 

indicated by the manufacturer. In order to clone the splice variant in which the intron 4 is 

included, an antisense primer containing a BamHI linker (primer #14), along with primer #10 

were used to amplify this exon 1 - intron 4 fragment using cDNA from small intestine as a 

template for the PCR. Once more, the KpnI and BamHI endonucleases were used to clone 

this cDNA fragment fused to GFP, creating the pEGFP_HFE_ivs4 construct. Final sequence 

analysis was performed to confirm that all constructs contained the correct sequence. 

 

III.4. Cell culture and transient transfections 

HepG2 cells were maintained in RPMI 1640 medium supplemented with 10% (v/v) fetal 

bovine serum (FBS) in a 37ºC/5% CO2 atmosphere. For transient transfections, cells were 

seeded in 35 mm plates at a confluence of 5x105 or 8x105 cells per well, for 

immunofluorescence or immunoprecipitation assays, respectively. Twenty-four hours after 

seeding, 2 µg of the pEGFP_HFE constructs were used together with Lipofectamine™ 2000 

Transfection Reagent (Invitrogen) or Lipofectamine™ LTX and PLUS™ Reagents (Invitrogen), 

for immunofluorescence and immunoprecipitation assays, respectively. Transfections were 

performed following the manufacturer’s instructions. For immunoprecipitation and Western 

blot analyses, cells and supernatant were harvested 48 hours post-transfection, whereas for 

immunofluorescence assays, cells were analyzed 24 hours after transfection.  

 

III.5. Immunofluorescence assays  

Twenty-four hours after transfection, cells were washed in PBS, fixed in methanol at -20ºC 

and then washed again. Subsequently, cells were permeabilized and blocked simultaneously 

in a PBS solution containing FBS 10% and Triton X-100 0.5% for 30 min at room temperature. 

Incubation with the selected primary antibodies [rabbit anti-2M (Abcam) at 1:200 dilution; 

mouse anti-TfR1 (Zymed) at 1:100 dilution and rabbit anti-calnexin (Santa Cruz 

Biotechnology) at 1:50 dilution] was performed for one hour at room temperature. 
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Afterwards, another incubation was made using cyanine3-conjugated secondary antibodies, 

anti-mouse or anti-rabbit (Jackson ImmunoResearch Laboratories), both at 1:100 dilution. 

Cells were washed again in PBS and nuclei stained with 10 g/mL DAPI (Sigma). Coverslips 

were then mounted in VectaShield (Vector Laboratories) and sealed. Images were acquired 

with the 405-nm, 488-nm and 532-nm laser lines using a Leica DMI 4000B confocal 

microscope and processed with Leica Analysis Software. 

 

III.6. Immunoprecipitation assays 

Forty-eight hours after transfection, both cell media (≈2 mL) and platted cells were 

harvested. Firstly, cell media were centrifuged for 5 min at 2000 rpm. To their supernatant 

and cells, 150 µL of lysis buffer [50 mM Tris-HCl at pH 7.5, 1% (v/v) Nonidet P40 (Roche), 100 

mM NaCl, 10% (v/v) glycerol, 10 mM MgCl2 and a protease inhibitor cocktail (Sigma)] was 

added on ice. The media and cell lysates were cleared by centrifugation at 5000 rpm for 10 

min and an aliquot of 20 µL (pre-IP) transferred to 2X Laemmli buffer. To the remaining 

supernatant, 5 µL of mouse GFP monoclonal antibody (Roche) was added. After one hour of 

incubation at 4°C, 60 µL of G-agarose beads slurry (1:1 in lysis buffer; Roche) was added and 

incubated overnight. Beads were spun down and a 20 µL aliquot of the supernatant (post-IP) 

was added to 2X Laemmli buffer. Beads were washed three times with 500 µL of lysis buffer 

and protein resuspended in 2X Laemmli buffer. These lysates, together with pre- and post-IP 

aliquots were analyzed by Western blot. 

 

III.7. Western blot analysis 

Proteins from cell lysates or from cell culture supernatants were resolved in a 12% SDS-PAGE 

according to standard protocols and transferred to PVDF membranes (Bio-Rad), which were 

blocked using a 15% (m/v) TBST-Milk solution. Membranes were probed using mouse anti-

GFP (Abcam) at 1:10000 dilution, rabbit anti-2M (Abcam) at 1:500 dilution or mouse anti-

TfR1 (Zymed) at 1:500 dilution. For pre-IP lysates, a mouse anti-PCNA antibody (Calbiochem) 

was used as a loading control. Detection was carried out using secondary peroxidase-

conjugated anti-mouse IgG (Bio-Rad) at 1:4000 dilution or anti-rabbit IgG (Bio-Rad) at 1:3000 

dilution antibodies, followed by chemiluminescence assays.   



 

Chapter 2 

 
76 

IV. Results  

IV.1. HFE mRNA is alternatively spliced in different human tissues 

Total RNA from eight human tissues (heart, duodenum, small intestine, liver, spleen, kidney, 

ovary and testis) and from a HepG2 cell line were retrotranscribed to cDNA. A PCR using 

primers encompassing the previously predicted coding region of HFE gene (Figure 2.1A and 

B) was carried out to amplify HFE transcripts. At least eight bands could be observed in some 

lanes of the representative gel photograph (Figure 2.1B). To identify the corresponding HFE 

transcripts, the RT-PCR products from all samples were cloned and sequenced. As expected, 

we found the full length HFE transcript represented by the 1081 base pair (bp) fragment. 

Additionally, we identified two transcripts resulting from the skipping of a single exon: one 

corresponds to the HFE exon 2 skipping (817 bp fragment) and the other to the exon 3 

skipping (805 bp fragment). Three other transcripts were found as a result of multiple exon 

skipping: exon 2-3 (541 bp fragment), exon 2-4 (265 bp fragment) and exon 2-5 (151 bp 

fragment).  

 

 
Figure 2.1. Splicing forms of HFE gene in several human tissues. (A) Schematic representation of the full length 
HFE transcript. The size of exons is presented in base pairs (bp). (B) An RT-PCR using total RNA from eight 
human tissues and HepG2 cell line was performed using primers #1 and #2 (their relative position is indicated 
with arrows) and results are shown on the right. The products obtained for each tissue were cloned into the 
pCR®-TOPO-XL® vector and sequenced. On the left are schematic representations of the alternative splicing 
forms identified as well as their length in bp. The asterisks (*) identify bands corresponding to PCR artifacts as a 
result from DNA hybrid chains.  
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Moreover, three other bands (indicated with an asterisk) could be seen in most of the lanes 

of the gel (Figure 2.1B). However, they were proved by direct sequencing to be artifact 

fragments of DNA hybrid chains formed during PCR assays. 

The full length as well as most of the alternatively spliced HFE transcripts, were found in all 

the analyzed tissues (Figure 2.1B). As exon 2 and exon 3 skipping transcripts were not 

distinguished in the gel due to their similar molecular weight, their presences in all tissues 

were confirmed by additional RT-PCRs (data not shown). Only the exon 2-5 skipping seems 

to be tissue-specific, since it is only present in the gonads, small intestine, duodenum and 

heart (Figure 2.1B).  Most of the alternative isoforms were also found in HepG2 cells, with 

the exception of the exon 2-4 and exon 2-5 skipping transcripts. All alternative transcripts 

that were identified present exons totally skipped without generating any frameshifts. 

However, in some of them, a single amino acid change occurs in the new exon-exon 

junction. As an example, the alternative transcript with a complete deletion of exon 2 results 

in a 260-aa protein variant where the arginine 26 changes to glutamine. 

In order to improve the screening of alternatively spliced HFE transcripts, we performed a 

search for a previously described isoform resulting from the inclusion of intron 4 [Jeffrey et al. 

1999]. So, a specific RT-PCR using primers located at exons 4 and 5 was performed in all 

tissues and HepG2 cells (Figure 2.2). The amplified products were cloned and sequenced. 

Besides the normally spliced, two additional HFE transcripts were identified, one resulting 

from the total intron 4 inclusion (438 bp fragment) and other, not previously published, 

resulting from the inclusion of the first 66 bp of intron 4 (346 bp fragment) (Figure 2.2). 

These alternative transcripts were observed in all analyzed tissues as well as in HepG2 cells. 

On the other hand, an additional band was present in the gel (indicated with an asterisk) 

that was once again proved to be a PCR artifact by direct sequencing. 

Interestingly, these transcripts containing partial or total intron 4 inclusion both present a 

TGA sequence six nucleotides 3’ from the exon 4 boundary (coding for a premature stop 

codon). A RT-PCR encompassing exon 1- intron 4 was also performed in all tissues to confirm 

the correct splicing of their upstream coding region (data not shown). So, potentially both 

transcripts encode the same and putatively soluble HFE peptide since it would not have the 

transmembrane domain (encoded by exon 5) and the cytoplasmatic tail (encoded by exon 

6). Therefore, after 3 domain it would have two extra C-terminal amino acids, glycine and 

methionine, encoded by the 5’ sequence of intron 4. 
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Figure 2.2. Expression of the intron 4 inclusion HFE splice transcript in several human tissues. A specific RT-
PCR to amplify the region between HFE exon 4 to 5 using total RNA from eight tissues and HepG2 cell line was 
performed. These amplified products were cloned into the pCR®-TOPO-XL® vector for automated sequencing 
and further identification. A schematic representation of the HFE gene exon 4 to 5 is presented on the left. The 
intron 4 (IVS4) contains a stop codon (TGA) six nucleotides from the exon 4 boundary. The position of the 
primers (#3 and #4) used in the PCR and the schematic representations of the identified alternative splicing 
forms are revealed. Correspondence between these splicing forms and the PCR amplification products is 
shown, along with their length in base pairs (bp). The asterisks (*) identify bands corresponding to PCR artifacts 
as a result from DNA hybrid chains. 
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cloning the RT-PCR fragments into the pCR®-TOPO-XL vector. Each reaction was done in 

triplicate. Linear regression analysis of each standard curve from all plates was used to 

quantify transcript levels. The correlation coefficients ranged from 0.986 to 0.999, indicating 

low intra-assay variation. Quantification of total and alternative transcripts was also done in 

triplicate for each cDNA, whereas all standard deviations were less than 0.38 Ct. 

The qPCR methodology performed allowed the quantification of total HFE mRNA as well as 

the two alternative HFE transcripts in all the tissues analyzed (Figure 2.3). Absolute 

quantification (presented as HFE copy number/g total RNA) showed that ovary and liver 

have the highest level of total HFE mRNA while, on the contrary, the smallest amount is 

present in duodenum (Figure 2.3A). When comparing the two tissues thought to be targets 

for HFE’s function, the liver presents an amount of total HFE mRNA approximately 4.3-fold 

higher than the duodenum.  

Similarly, the relative quantification of the exon 2 skipping and intron 4 inclusion transcripts 

also revealed a differential expression in the tissues studied. For instance, the liver presents 

the lowest amount of both transcripts (3 and 6%, respectively), whereas the testis (26 and 

35%, respectively) and the duodenum (20 and 25%, respectively) are the tissues where these 

variants are more prevalent (Figure 2.3B). Furthermore, the spleen, which may also be a 

potential site of action for HFE, shows a total of 31% of relative abundance for these splice 

variants (Figure 2.3B).  
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Figure 2.3. Absolute and relative quantification of the exon 2 skipping and intron 4 inclusion HFE splice 
transcripts. Total RNA from each tissue was used to synthesize cDNA and each cDNA sample was utilized as 
template for qPCR, which was performed using the SYBR Green Master Mix (Applied Biosystems) along with 
primers that specifically amplify the total HFE (exon 6), the exon 2 skipping (exon 1-3 boundary) and the 
inclusion of intron 4 (intron 4-exon 5 boundary). (A) Absolute quantification of total HFE and of two alternative 
splicing transcripts was performed by the absolute quantification method using serial dilutions of plasmids as 
standards. The histogram shows the mean and standard deviations from four independent experiments. (B) 
Relative quantification of splice transcripts resulting from exon 2 skipping and intron 4 inclusion using the 
absolute quantification data. The histogram represents each variant as a percentage of the total HFE 
designated as 100%.  

 

IV.3. HFE variants present distinct subcellular localization   

In an attempt to characterize the cellular localization of the corresponding HFE protein splice 

variants, HFE cDNAs (corresponding to the full length HFE mRNA, exon 2 skipping and intron 

4 inclusion transcripts) were tagged to the GFP gene in the pEGFP-N1 vector (Clontech). In 

addition, a construct containing the full length HFE C282Y mutant was made to be used as a 

dysfunctional control. 

Since we previously have shown that HepG2 cells endogenously express the HFE exon 2 

skipping and intron 4 inclusion transcripts, they provide a suitable model to further 

characterize the corresponding transgenic proteins. Therefore, these cells were transiently 

transfected with the mentioned constructs. Confocal microscopy analysis of the subcellular 

localization of (i) the HFE_full length protein, (ii) proteins related to the two splice transcripts 

and (iii) the mutated HFE_C282Y was performed using antibodies against 2M, calnexin [an 

endoplasmic reticulum (ER) marker] and TfR1 (Figure 2.4). Nuclei were stained with DAPI.  
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Figure 2.4. Cellular localization of HFE splice variants by immunofluorescence analysis. HepG2 cells were 

transfected with 2 g of pEGFP_HFE_full length, pEGFP_HFE_C282Y, pEGFP_HFE_skip2 and pEGFP_HFE_ivs4 
constructs. Twenty-four hours later, cells were submitted to an immunofluorescence assay. HFE protein 
variants distribution was compared with the location for (A) β2-Microglobulin (rabbit anti-β2M polyclonal 
antibody), (B) Transferrin Receptor 1 (mouse anti-human TfR1 monoclonal antibody) and (C) Endoplasmic 
Reticulum (rabbit anti-calnexin polyclonal antibody). Images were acquired using a 488-nm laser for GFP 
(green) and a 532-nm laser for the previously described antibodies (red). Nuclei were stained with DAPI (blue). 
White bars represent 10 µm. 
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HFE_full length protein presents mostly a perinuclear and cell membrane distribution. As 

expected, it co-localizes with 2M and TfR1 proteins. On the contrary, also as expected, 

HFE_C282Y is not present at the cell surface and has a diffuse cytoplasmic localization. It 

does not co-localize with either 2M or TfR1, being retained in the ER, as revealed by the 

calnexin co-localization (Figure 2.4). As well, the intracellular distribution of the HFE_skip2 

variant is similar to the one obtained for the HFE_C282Y variant, since it co-localizes with 

calnexin, but not with 2M and TfR1. Concerning the HFE_ivs4 variant, it presents a 

scattered intracellular distribution and is apparently absent from the cell membrane. It 

seems not to co-localize with either 2M or TfR1 and to be present in the ER (Figure 2.4). To 

further clarify these results, immunoprecipitation assays were performed to all the HFE 

variants. 

 

IV.4. Immunoprecipitation assays reveal a soluble and secreted 

HFE protein isoform 

To confirm our protein co-localization data observed in immunofluorescence assays, HepG2 

cells were transfected with 2 g of pEGFP_HFE_full length, pEGFP_HFE_C282Y, 

pEGFP_HFE_skip2 or pEGFP_HFE_ivs4 constructs. Proteins obtained from cell lysates as well 

as from cell culture supernatants were subjected to immunoprecipitation assays using a 

mouse anti-GFP antibody (Figure 2.5). In cell lysate experiments, the HFE_full length protein 

is bound to 2M and TfR1, while HFE_C282Y does not co-immunoprecipitate with either one 

of these proteins. Similarly, the HFE_skip2 variant is not able to bind either 2M or TfR1 

(Figure 2.5B). In addition, it can be observed that HFE_ivs4 variant seems to be present at 

low level in cell lysates in association with 2M but not with TfR1 (Figure 2.5B). These results 

are in agreement with those obtained by immunofluorescence experiments (Figure 2.4). The 

same procedures carried out in the corresponding cell culture supernatants reveal that 

HFE_full length, HFE_C282Y and HFE_skip2 are absent from the culture media (Figure 2.5C). 

Conversely and interestingly, the HFE_ivs4 variant is clearly shown in the culture 

supernatant in association with its chaperone 2M. This result reveals for the first time a 

soluble form of HFE protein (sHFE) which is secreted to the cell medium, since it lacks the 

transmembrane and cytoplasmic domains. This observation was confirmed in HuH7, HeLa 

and HEK293 cell lines (data not shown). In all cases, this isoform is largely secreted to cell 

medium remaining linked to the 2M, as shown by immunoprecipitation experiments. 
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Figure 2.5. Immunoprecipitation assays of transfected HFE splice variants. HepG2 cells were transfected with 

2 g of pEGFP_HFE_full length, pEGFP_HFE_C282Y, pEGFP_HFE_skip2 or pEGFP_HFE_ivs4 constructs. Forty-
eight hours later, cells and media were harvested for immunoprecipitation assays. (A) One aliquot (pre-
immunoprecipitation) was collected for Western blot analysis using the indicated antibodies. Anti-PCNA was 
used as a specific antibody to control for protein loading. The predicted molecular mass of the proteins is 
indicated in kDa (kilodalton). (B) Immunoprecipitation of HFE transfected variants was done using mouse GFP 

monoclonal antibody and G-agarose beads. TfR1 and 2M were tested for co-immunoprecipitation with 
HFE_GFP variants by Western blot analysis. (C) The cell media were also subjected to immunoprecipitation as 
described. Western blot analysis was done to check for possible secretion of the HFE_GFP variants, together 
with putative binding partners. 
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V. Discussion  

Alternative mRNA splicing is a complex post-transcriptional mechanism that enables the 

generation of multiple mRNA products from a single gene, increasing transcriptome and 

proteome complexity. By this way, a single gene can produce proteins with different 

properties and functions, which might differ in a tissue- or developmental stage-specific 

manner [Modrek and Lee 2002; Johnson et al. 2003; Stamm et al. 2005]. Here we report that, in 

addition to full length HFE, at least seven alternatively spliced HFE transcripts are expressed 

in several human tissues, differing in its level- and the tissue-specificity. Some studies had 

already shown that HFE gene is subjected to alternative splicing processes [Jeffrey et al. 1999; 

Rhodes and Trowsdale 1999; Thenie et al. 2000; Sanchez et al. 2001]. However, the precise 

characterization of the alternative transcripts, their tissue-specificity and abundance, as well 

as the intracellular localization and biological significance of the corresponding protein 

isoforms remained largely to be clarified.  

In order to obtain an absolute and a relative quantification of total HFE transcripts and of 

two alternatively spliced transcripts in diverse tissues, we took advantage of a RT-qPCR 

strategy as it is the most sensitive method to ascertain gene expression levels. It offers a 

substantially higher sensitivity than other conventional methodologies previously used for 

HFE transcripts quantification, as Southern blot of RT-PCR products, RT-PCR and Northern 

blot [Jeffrey et al. 1999; Rhodes and Trowsdale 1999; Thenie et al. 2000; Sanchez et al. 2001]. Using this 

approach, we observed that total HFE mRNA expression varies amongst tissues. Apart from 

the gonads, we found that the liver has the highest total HFE expression. On the contrary, 

duodenum presents the lowest expression of the tissues tested. The liver, although 

presenting a high quantity of total HFE mRNA, has the lowest level of the studied HFE 

alternative transcripts. It is expected that, in the liver, the full length HFE is playing an 

important role in iron metabolism. On the contrary, in the duodenum, the tissue where the 

total HFE expression is the lowest, the studied alternative transcripts present a high relative 

level (approximately 45% of the total). One may speculate that these alternative transcripts 

may have a significant function in this tissue. Having in mind two models of HFE possible 

action, the crypt model and the hepcidin regulation model, we attempted to further 

understand the different tissue-level of HFE transcripts by studying the cellular localization 

of the corresponding proteins [Fleming and Britton 2006; Schimdt et al. 2008; Fleming 2009; Gao et al. 

2009; Wallace et al. 2009]. 
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Concerning the HFE exon 2 skipping transcript, which was already described in hepatic, colon 

and ovary cell lines [Rhodes and Trowsdale 1999], here we demonstrate its presence at different 

levels in several human tissues. Regarding its corresponding protein, the extracellular 1 

domain encoded by exon 2 is lacking, and therefore it is unable to bind to TfR1 [Feder et al. 

1998]. Our immunofluorescence and immunoprecipitation results, besides confirming that 

HFE_skip2 is not associated with TfR1, also revealed no interaction with 2M chaperone and 

consequent ER retention. We therefore conclude that this HFE variant apparently does not 

have any cellular function, being probably degraded by the cell proteolytic system. Possibly, 

the fact that the level of its corresponding mRNA is elevated in different tissues reveals part 

of the complex post-transcriptional HFE gene expression regulation.  

It is known that, as a consequence of the alternative splicing mechanisms, soluble protein 

isoforms can be originated, assuming in some cases, an important regulatory role in 

physiological processes. In fact, some years ago, an alternatively spliced HFE transcript due 

to the intron 4 inclusion was described [Jeffrey et al. 1999]. It was detected at relatively high 

level in duodenal biopsies of normal individuals or with secondary iron overload. On the 

contrary, absence or low presence was observed in duodenal biopsies of HH-C282Y patients 

[Jeffrey et al. 1999]. Although not studied at protein level, it was suggested that the 

corresponding soluble peptide might regulate cellular iron transport. Here, we positively 

show for the first time, a soluble HFE protein isoform lacking the transmembrane domain 

and the cytoplasmic tail, due to the in frame premature stop codon present at intron 4 

(Figure 2.2). Since it has an intact 3 domain (encoded by exon 4), it can bind its chaperone 

2M, be correctly folded, conducted to the cell surface and secreted to the cell medium 

(Figure 2.5). Curiously, other non-typical MHC class I protein encoding gene (HLA-G) that 

presents significant structural homology to HFE, shows precisely the same structural 

alternative splicing pattern. This soluble HLA-G protein has an important biological function, 

which is distinct from that of the full length protein [Sangrouber et al. 2007]. 

Tissue-specific regulation of this HFE alternative splicing form is demonstrated here, since a 

relatively more abundant level of intron 4 inclusion transcript is found in the testis and the 

duodenum than in other tissues. Conversely, the lowest level is found in the liver. Also, a 

previous study showed apparently similar levels of this transcript in these two HFE target 

tissues [Jeffrey et al. 1999]. Altogether, the results allow us hypothesize that sHFE plays a role in 

the regulation of iron metabolism. For instance, a sHFE produced at a high level in duodenal 
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enterocytes may be secreted into the bloodstream and thus act in remote tissues, binding to 

the cell surface expressed transferrin receptors (TfR1 or TfR2). There, it might act as an 

agonist or an antagonist of the wild type HFE on hepcidin expression activation in the liver, 

by controlling the dietary iron absorption in the duodenum (modulating the expression of 

iron-related transporters) or by exerting a role on iron recycling by macrophages.  

The physiological effects of a sHFE require further investigation to test these hypotheses. 

Also, it is important to investigate if sHFE serum levels vary with changes in body iron stores, 

as in iron overload disorders (such as HH) or in iron deficiency disorders. In this context, a 

preliminary study has already reported that a sHFE was reduced in the serum of iron loaded 

rats when compared to normal control rats [Li et al. 1998]. Additionally, intron 4 inclusion 

transcript tissue levels were found differentially expressed in duodenal and liver biopsies of 

control and iron overload patients [Jeffrey et al. 1999].  

So, we propose that the sHFE is playing a crucial role in systemic iron metabolism regulation, 

establishing a communication bridge between duodenum and liver, and possibly other 

tissues. If so, the sHFE isoform might be developed as a useful therapeutic agent in the 

treatment of iron-related disorders. 
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I. Abstract 

Nonsense-mediated decay is an mRNA surveillance pathway that selectively recognizes and 

degrades defective mRNAs carrying premature translation termination codons. However, 

several studies have shown that NMD also targets physiological transcripts that encode full 

length proteins, modulating their expression. Indeed, some features of physiological mRNAs 

can render them NMD-sensitive. 

Human HFE is an MHC class I protein mainly expressed in the liver that, when mutated, is 

associated to hereditary hemochromatosis, a common genetic disorder of iron metabolism. 

The HFE gene structure comprises seven exons; although the sixth exon is 1056 base pairs 

long, only the first 41 bp encode for amino acids. Thus, the remaining downstream 1015 bp 

sequence corresponds to the HFE 3’ untranslated region, along with exon 7. Therefore, this 

3’ UTR encompasses an exon-exon junction, a feature that can make the corresponding 

physiological transcript NMD-sensitive. 

Here, we demonstrate that in UPF1-depleted HeLa and HepG2 cells the HFE transcripts are 

significantly upregulated, meaning that, in fact, the physiological HFE mRNA is an NMD-

target. Besides, it is shown, by 3’ RACE analysis in several human tissues, that HFE mRNA 

expression results from alternative cleavage and polyadenylation at four different sites – one 

located at exon 6 and three located at exon 7. Remarkably, our data further reveal that 

treatment of HepG2 cells with holo-transferrin increases the amount of NMD-resistant HFE 

transcripts, which appears to be due to the shortening of their 3’ UTRs by 

preferential/alternative cleavage and polyadenylation at exon 6. These results reveal that 

NMD and alternative polyadenylation can coordinately be used to adapt levels of human 

hepatocellular HFE mRNA to the needs of the cell in response to the iron status. 
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II. Introduction 

It has been estimated that one third of hereditary genetic diseases, as well as many forms of 

cancer, are caused by mutations that lead to the generation of transcripts bearing a 

premature translation termination codon. Most of these PTC-containing mRNAs are targets 

for the nonsense-mediated mRNA decay pathway [Isken and Maquat 2007; Muhlemann et al. 2008; 

Silva and Romao 2009]. NMD is an evolutionarily-conserved post-transcriptional surveillance 

mechanism that selectively detects and degrades transcripts bearing PTCs. PTCs or nonsense 

codons can either be generated by various types of germline/somatic alterations in the DNA 

or be originated as a result of routine errors in gene expression. In mammalian cells, NMD 

depends on the interaction of the translation termination complex with a dynamic 

multiprotein assembly, the so-called exon junction complex [Lejeune and Maquat 2005; Chang et 

al. 2007]. These protein complexes can assist to discriminate a premature translation 

termination event from a normal one. According to the classical model for mammalian NMD, 

the EJC, or a critical subset of EJC components, is deposited 20-24 nucleotides upstream of 

the exon-exon junction(s) during splicing and remains associated with the mRNA during its 

transport to the cytoplasm [Le Hir et al. 2000]. Translating ribosomes subsequently displace 

EJCs from the open reading frame during the initial (‘pioneer’) round of translation [Ishigaki et 

al. 2001; Lejeune et al. 2002]. However, if an mRNA contains a PTC located more than 50-54 nt 

upstream of at least one exon-exon junction, the ribosome will fail to displace these distal 

EJC(s). In this case, when the ribosome reaches the PTC, the translation eukaryotic release 

factors eRF1 and eRF3 at the PTC interact in cis with the retained EJC(s) via a multiprotein 

bridge [Kashima et al. 2006]. Of central importance in this reaction is the interaction of UPF1 

with the terminating complex and with the UPF2/UPF3 components of the retained EJC(s) 

[Kashima et al. 2006]. This interaction marks the mRNA for rapid decay. Nevertheless, 

identification of a stop codon as a PTC depends on the physical distance between the PTC 

and the cytoplasmic poly(A)-binding protein 1. Since PABPC1 and UPF1 both compete for the 

interaction with the eRF3 at the terminating ribosome, if PABPC1 is in close proximity to the 

PTC, it seems to function as an NMD repressor; on the other hand, when the interaction 

between PABPC1 and the termination complex is not favorable, then UPF1 can interact with 

eRF3 in the termination complex to induce NMD [Eberle et al. 2008; Ivanov et al. 2008; Silva et al. 

2008; Singh et al. 2008].  
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NMD is an important contributor to the fidelity of gene expression as it prevents translation 

of potentially harmful truncated proteins from faulty mRNAs. However, it has become clear 

during recent years that many physiological mRNAs are also NMD substrates, indicating a 

role for NMD beyond mRNA quality control, as a translation-dependent post-transcriptional 

regulator of gene expression. In effect, a group of NMD substrates includes physiological 

transcripts that encode functional full length proteins, as shown in several microarray 

studies [He et al. 2003; Mendell et al. 2004; Rehwinkel et al. 2005; Wittmann et al. 2006]. The comparison 

of mRNA levels of normal with NMD-deficient cells, by genome-wide RNA microarray 

expression profile studies, revealed that the expression of approximately 10% of the human 

transcriptome is regulated by NMD [Mendell et al. 2004; Wittmann et al. 2006]. These physiological 

substrates have one feature in common with their pathological counterparts: they possess a 

translation termination codon that is, by NMD standards, conceived as premature. This 

applies, for example, to the termination codons of upstream ORFs, to termination codons 

that are introduced into an ORF as the result of somatic DNA rearrangements, alternative 

splicing, ribosomal frameshifting, mRNA editing or to termination codons that are followed 

by splice events in the 3’ untranslated region [Mendell and Dietz 2001; Holbrook et al. 2004; 

Rehwinkel et al. 2005]. In some cases, these features are exploited for self-regulatory 

mechanisms. For example, when a gene product induces the alternative splicing of its own 

transcript, a PTC may be introduced into its ORF or a splice junction may be generated 3’ to 

the termination codon, thus directing the resulting alternative transcript to NMD. Moreover, 

it is suspected that potentially NMD-sensitive physiological transcripts can stand at crossing 

points of pathways or networks and thus modulate such pathways as a whole. A common 

feature of all these processes is that NMD can potentially be used to adapt protein 

expression to the physiological needs of the cell. The large and diverse repertoire of 

transcripts controlled by NMD reflects the significant influence of NMD on the metabolism 

of the cell and consequently in many human diseases [Neu-Yilik and Kulozik 2008]. 

When mutated, the human HFE gene may be involved in hereditary hemochromatosis, a 

common genetic disorder of iron metabolism characterized by excessive intestinal iron 

absorption that leads to iron deposition in cells and subsequent dysfunction of several 

organs [Cartwright et al. 1979; Feder et al. 1996]. HFE protein has been recognized as a key 

component of human iron homeostasis machinery but its precise role is still unknown. HFE is 

capable of forming protein complexes with both transferrin receptors 1 and 2 in the 

hepatocyte membrane [Parkkila et al. 1997b; Chen et al. 2007]. It was recently proposed that HFE 
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is partitioned between TfR1 and TfR2, and under increasing iron concentrations, HFE should 

shift away from TfR1 towards TfR2, triggering the signaling transduction pathway that leads 

to induction of the iron regulatory hormone hepcidin [Schmidt et al. 2008; Gao et al. 2009].  

The HFE genomic structure is similar to other human MHC class I-like molecules. Each of the 

first six exons of the corresponding mRNA encode for one of the six distinct domains of the 

protein: a signal sequence, three extracellular domains, a transmembrane region and a short 

cytoplasmatic tail [Feder et al. 1996]. Although the sixth exon is 1056 base pairs long, only the 

first 41 bp are translated to amino acids. In fact, the native translation termination codon is 

located at the 5’ part of this exon and the remaining downstream 1015 bp correspond to the 

HFE 3’ UTR, along with exon 7, which is 1943 bp long [Feder et al. 1996; Sanchez et al. 2001]. The 

HFE transcript has about 4.2 kb long, being essentially expressed in the liver, duodenum, 

small intestine, spleen or heart. Furthermore, several additional alternative HFE transcripts 

are also present in a wide variety of human tissues [Feder et al. 1996; Jeffrey et al. 1999; Rhodes and 

Trowsdale 1999; Thenie et al. 2000; Sanchez et al. 2001]. All mRNA isoforms are expressed at low 

levels and HFE gene expression seems to be modestly influenced by changes in cellular iron 

status. In fact, experimental iron loading or deficiency has been associated with minor 

changes in HFE expression in the small intestine [Frazer et al. 2001; Ludwiczek et al. 2004]. It was 

also reported that mouse hepatic HFE mRNA increases approximately 2-fold in response to 

iron loading [Theurl et al. 2005b]. The above mentioned alternative HFE transcript species have 

been attributed to alternative splicing events or alternative usage of two polyadenylation 

[poly(A)] signals located within exon 7, at 1455 and 2958 nt downstream of the stop codon 

[Thenie et al. 2000; Sanchez et al. 2001]. Nonetheless, the identification of HFE alternative 

transcripts, their tissue-specificity and abundance, as well as the biological significance of the 

corresponding isoforms, remain to be clarified. 

As indicated above, previously published data regarding the specific architecture of the 

human HFE mRNA have shown that it comprises seven exons, and the native translation 

termination codon is located at exon 6 at more than 50-54 nt upstream of the exon 6/exon 7 

junction [Thenie et al. 2000; Sanchez et al. 2001], which is a feature that could make this transcript 

a physiological target for NMD. In addition, the fact that it presents a long 3’ UTR might also 

result in mRNA destabilization due to NMD, as it was already shown for other transcripts 

[Eberle et al. 2008; Singh et al. 2008]. To explore this hypothesis, we first analyzed the HFE mRNA 

3’ end processing in several tissues to characterize the potential alternative polyadenylation 
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isoforms. This analysis revealed the usage of two novel alternative polyadenylation sites, 

located at exons 6 and 7. Then, we demonstrated that those HFE isoforms specifically using 

poly(A) signals at exon 7 are in fact physiological NMD-targets. To understand how the NMD 

mechanism could play a role in the regulation of the HFE mRNA levels in response to iron 

challenge, we next examined whether human HFE transcripts could be physiological 

substrates for the UPF1-dependent NMD pathway after treatment of hepatic HepG2 cells 

with human holo-transferrin, the circulating form of physiological iron. Our results have 

shown that after cellular holo-transferrin treatment, the amount of NMD-resistant 

transcripts increases, which seems to be due to the shortening of the HFE 3’ UTR by 

activation of the poly(A) signal located at exon 6. Our data support the conclusion that both 

post-transcriptional mechanisms of alternative polyadenylation and NMD coordinately fine-

tune hepatocellular HFE mRNA levels in response to the cellular iron status. 

 

III. Materials and Methods 

III.1. 3’ Rapid amplification of cDNA ends 

3’ RACE experiments were performed using the BD SMART™ RACE cDNA Amplification Kit 

(BD Biosciences Clontech) according to the manufacturer’s instructions. Briefly, 1 g of total 

RNA from each tissue [small intestine, spleen, liver, testis, ovary, duodenum, heart, kidney 

and PBMCs (BD Clontech or Ambion)] was retrotranscribed using 3’ RACE CDS primer as well 

as the kit specific components for cDNA synthesis (90 min at 42ºC). To cover the entire 

human HFE 3’ UTR, four parallel PCR reactions were performed with an HFE specific forward 

primer (primer #1, #2, #3, or #4) and the universal primer of the 3’ RACE amplification kit as 

reverse primer. All primers used in this chapter are listed in Table 3.1. A touchdown PCR 

program was done as indicated in the user manual. Then, a nested PCR was performed by 

using one forward internal primer (primer #5: EX6F; primer #6: EX6G; primer #7: EX7G; 

primer #8: EX7H; Figure 3.1A) and the nested universal primer from the kit. The PCR 

products from the nested PCR were separated on agarose gels, cloned into the pCR®2.1-

TOPO (Invitrogen) and sequenced with BigDye® Terminator v1.1 Sequencing Standard kit 

(Applied Biosystems), using M13 forward and reverse primers and analyzed with the ABI 

Prism 3100 automatic sequencer (Applied Biosystems).  
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Table 3.1. DNA oligonucleotides used in the current work. 

Primer Sequence (5’  3’) 

#1  AGT GAC ACG CAG CCT GCA GAC TCA C 

#2 TGG TGC CTT CAT TTG GGA TGC TAC TC 

#3 TTC AAC TGT GGT AGC CGA ATT AAT CGT G 

#4 GAA TCA CAG GCC ATT GCT GAG CTG CC 

#5 TTT CTG AGT TCC TGC ATG CCG GTG ATC C 

#6 AGT GAA GTA GGC CGG GCA CGG TGG C  

#7 GGC TTC ACT TAC TCT TCT ACC TCA TAA GG 

#8 GAT TGA GGA CTG CTG AGA GGT ACA GGC C 

#9 TTT TGC GGC CGC ATG GGC CCG CGA GCC AGG CCG 

#10 TTT TAT CGA TAG GTC CCA TCC CCA TTG GGC 

#11 GAA CAT CAC CAT GAA GTG GCT GAA GG 

#12 GGG GTG TTT CTT GAA ATC TCA GCC C 

#13 GAA GGG CAG GTG CTT CAG GAT ACC 

#14 TTT TTC CGG AAC ATG GTA ACT GTT GCC 

#15 GGG CGC TCT TCC GCT TCC TTC CGG ACG CTC ACT GAC GAC TCG 

#16 GCG AGT CAG TGA GCG TCC GGA AGG AAG CGG AAG AGC GCC C 

#17 CCG AGG GCT ACT GGA AGT AGG GGT ATG ATG GGC AGG 

#18 CCT GCC CAT CAT ACC CCT ACT TCC AGT AGC CCT CGG 

#19 GGG CTC TAG GGG GTA TCC TCC GGA CCA CGC GCC CTG TAG C 

#20 GCT ACA GGG CGC GTG GTC CGG AGG ATA CCC CCT AGA GCC C 

#21 CTA CGT CTT AGC TGAACG TGA GTG A 

#22 TGT CTC CTT CCC ACA GTG AGT CT 

#23 AAG CAT TCT GTC TTG AAG GGC A 

#24 CTG AGC TGT ATA TGG TAT CCT GAA GC 

#25 GGA GAA ACT GGA CAG CAC AGA CTT 

#26 TCA TTC AGC AGC TTG ATG GTG 

#27 CGA GTC CAA GTA CGC CTC ATG 

#28 GGT TGT CCT TCA TCT CGT CCA 

#29 CCA CTG CTT ACT GGC TTA TCG A 

#30 GGG TCT CCC TAT AGT GAG TCG TAT TA 

#31 CGA CCA CCA AGC GAA ACA T 

#32 GCT TCC ATC CGA GTA CGT GC 

 

III.2. Plasmid constructs       

The HFE minigenes used in this work comprise all human HFE exons and introns 4, 5 and 6. 

The normal HFE minigene (WT) was obtained by sequentially cloning and ligating three 

distinct human HFE fragments. The first fragment, encompassing exon one (from AUG 

codon) to exon four, was PCR amplified from HFE cDNA by using primers #9 (with a NotI 

restriction site linker) and #10 (with a ClaI restriction site linker). An 812 bp fragment was 

isolated on an agarose gel and cloned into the pCR®2.1-TOPO vector (Invitrogen). Then, this 

fragment was inserted into pTRE2pur (Clontech) using the NotI and ClaI restriction enzymes. 

The second fragment of the HFE minigene encompasses exon 4 to the 5’ end of exon 7 of the 

human HFE gene. It was PCR amplified with the Expand Long Template PCR System (Roche) 

and primers #11 and #12 using human genomic DNA as template. The corresponding 4455 

bp fragment was purified and cloned into pCR®2.1-TOPO vector and subsequently inserted 

into the pTRE2pur already containing the first HFE fragment, by using BstBI (restriction site 

located in HFE exon four) and EcoRV (restriction site present in HFE exon 7) enzymes. The 
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third HFE fragment encompasses the entire exon 7 plus a 401 bp downstream fragment. It 

was PCR amplified by using the Expand Long Template PCR System with primers #13 and #14 

(with a Kpn2I restriction site linker) and human genomic DNA as template. The resulting 

2210 bp fragment was isolated in an agarose gel and purified, cloned into the pCR®2.1-TOPO 

vector and subsequently subcloned into the pTRE2pur carrying the two previously cloned 

HFE fragments, by using EcoRV and Kpn2I restriction enzymes (the Kpn2I site was previously 

inserted into the pTRE2pur vector at position 1770, by directed mutagenesis using primers 

#15 and #16). All cloned fragments were confirmed through automated sequencing with 

several human HFE specific primers. The nonsense-mutated minigene (Y138X) carrying the 

naturally-occurring nonsense mutation TAC→TAG at codon 138 [Mendes et al. 2009] was 

obtained by site-directed mutagenesis using primers #17 and #18 and the QuickChange® 

Site-Directed Mutagenesis Kit (Stratagene). The NMD-resistant minigene (Del_IVS6) was 

obtained from the WT minigene, by replacing the BsgI and BsmI fragment containing intron 

6 with the corresponding BsgI/BsmI cDNA fragment. All the HFE minigenes where finally 

removed from the pTRE2pur vector and subcloned into the pcDNA3 (Invitrogen) using NotI 

and Kpn2I restriction enzymes. The Kpn2I site was previously introduced into pcDNA3 vector 

at position 1310 by site-directed mutagenesis using primers #19 and #20, therefore 

removing the poly(A) site of the bovine growth hormone gene present in the vector.  

 

III.3. Cell culture and transfections 

HepG2 cells were grown in RPMI 1640 medium supplemented with 10% (v/v) FBS. HeLa cells 

were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% (v/v) 

FBS. Transient transfections were performed in HeLa cells using Lipofectamine™ 2000 

Transfection Reagent (Invitrogen), following the manufacturer’s instructions, in 35 mm 

plates, using 1 g of the test construct DNA and 1 g of pEGFP vector (BD Biosciences) to 

control for transfection efficiency. Cells were harvested for RNA and protein lysates 24 hours 

later.  
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III.4. Transient transfections of siRNAs  

Transfections of HeLa cells with short interfering RNAs (siRNAs) were carried out using 

Lipofectamine™ 2000 Transfection Reagent (Invitrogen) according to the manufacturer’s 

instructions, in 60 mm plates, using 200 pmol of siRNA oligonucleotides and 10 μL of 

transfection reagent. Cells were harvested for RNA and protein extracts at 24, 48 and 72 

hours post-transfection. When HeLa cells were also transiently transfected with plasmid 

constructs, siRNAs transfections were performed with 100 pmol of siRNAs and, 24 hours 

later, with 50 pmol of siRNAs concomitantly with the plasmids transfections. The siRNA 

oligonucleotides used for transfections [luciferase (5’-CGUACGCGGAAUACUUCGA-3’) and 

UPF1 (5’-UUACCGCGUUCUGUGUGAA-3’)+ were purchased as annealed, ready-to-use 

duplexes from MWG. HepG2 cells were transfected with the same siRNAs using 200 pmol of 

each oligonucleotide and 10 μL of Lipofectamine™ RNAiMAX Transfection Reagent 

(Invitrogen), following the reverse-transfection protocol indicated by the manufacturer. For 

the iron challenging assays, 24 hours after siRNAs transfection, the cell media was replaced 

by fresh RPMI 1640 medium supplemented with 10% (v/v) FBS or RPMI supplemented with 

10% (v/v) FBS and 30 M of holo-transferrin (Sigma). Cells were incubated for additional 24 

hours and then collected for RNA and protein extracts. 

 

III.5. RNA isolation 

Total RNA from small intestine, spleen, liver, testis, ovary, duodenum, heart and kidney was 

purchased (BD Clontech or Ambion). To isolate total RNA from peripheral blood 

mononuclear cells (PBMCs), cells were separated using LymphoprepTM (Axis-Shield PoC AS) 

and RNA extraction was performed using the RNeasy Mini Kit (Qiagen). RNA from 

transfected cells was prepared using the RNeasy Mini Kit (Qiagen) following the 

manufacturer’s indications. RNA samples were treated with RNase-free DNase I (Ambion) 

and purified by phenol/chloroform extraction. Before further analyses, mRNA samples 

isolated from cultured cells transfected with test plasmids were assessed by RT-PCR to reject 

the hypothesis of activation of cryptic splicing pathway(s) that might affect the human HFE 

mRNA sequence. From all the studied transcripts, a single full length product was amplified 

(data not shown), demonstrating a normal splicing pattern.  

 



 

HFE mRNA regulation by NMD and alternative poly(A) 

 
99 

III.6. First strand cDNA synthesis and quantitative real-time PCR  

Synthesis of cDNA was carried out using 3 μg of total RNA and SuperScript® III Reverse 

Transcriptase (Invitrogen), according to the manufacturer’s instructions. Real-time PCR was 

performed in an ABI Prism 7000 Sequence Detection System using SYBR Green Master Mix 

(Applied Biosystems). Primers were designed using the ABI Primer Express software. Primers 

were specific for the following transcripts: HFE (exon 6: primers #21 and #22; exon 7: 

primers #23 and #24); transferrin receptor 1 (primers #25 and #26); G protein pathway 

suppressor 1 (normalization control; primers #27 and #28); heterogeneous 5’ UTR common 

to all transfected HFE minigenes (primers #29 and #30) and neomycin resistance gene 

(primers #31 and #32). The following cycling parameters were used in all transcripts tested: 

10 min at 95ºC, and 40 cycles of 15 sec at 95ºC and 1 min at 65ºC. Quantification of each 

transcript was performed by the absolute quantification method using serial dilutions of 

plasmids carrying the corresponding cDNA. These plasmids were generated by introducing 

PCR fragments into pCR®2.1-TOPO vector. For the quantification of the transferrin receptor 

1 the relative standard curve method was used (CT method; Applied Biosystems). 

 

III.7. Western blot analysis  

Protein lysates were resolved in 10% SDS-PAGE according to standard protocols and 

transferred to PVDF membranes (Bio-Rad). Membranes were probed using goat polyclonal 

anti-UPF1 (Bethyl Labs) at 1:250 dilution, mouse monoclonal anti--tubulin (as loading 

control; Sigma) at 1:10000 dilution, or with mouse monoclonal anti-transferrin receptor 2 

(Santa Cruz Biotechnology) at 1:250 dilution. Detection was carried out using secondary 

peroxidase-conjugated anti-mouse IgG (Bio-Rad) or anti-goat IgG (Sigma) antibodies 

followed by chemiluminescence assays. For densitometric analysis, films from at least three 

independent experiments were digitalized and analyzed using ImageJ software. 

 

III.8. Statistical analysis 

Results in histograms are expressed in means and standard deviations from three 

independent experiments, corresponding to three independent transfections. Student’s t 
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test was used for estimation of statistical significance (unpaired, two tailed). Significance for 

statistical analysis was defined as p<0.05. 

 

IV. Results 

IV.1. Usage of two novel alternative polyadenylation sites in the 

human HFE transcripts located at exons 6 and 7 

Besides the two alternative polyadenylation signals, previously identified as being 

recognized for 3’ end cleavage and polyadenylation of the human HFE mRNA [Sanchez et al. 

2001], this transcript contains several potential polyadenylation signals downstream of the 

native translation termination codon. To determine which poly(A) signals are in fact active in 

the human HFE transcript 3’ end processing, we carried out 3’ rapid amplification of cDNA 

ends experiments (Figure 3.1) using nested forward primers located at HFE exons 6 and 7 

(Figure 3.1A). This analysis was conducted in several human tissues, using total RNA from 

small intestine, spleen, liver, testis, ovary, duodenum, heart, kidney and peripheral blood 

mononuclear cells. After cloning and sequencing the obtained fragments, we were able to 

confirm that all primers generated 3’ RACE products containing poly(A) tracts that begin 4-23 

bp downstream of a polyadenylation signal (Figure 3.1C) that are not present in genomic 

DNA. More specifically, a primer located at the 5’ part of exon 6 (primer EX6F; Figure 3.1A) 

generated two HFE specific 3’ RACE products with a size of 679 and 1277 bp, respectively 

(Figure 3.1B). These correspond to transcripts where the poly(A) signals GAUAAA and 

AAUAAA are recognized, respectively inducing polyadenylation at 857 and 1455 nt 

downstream of the stop codon [poly(A) signals 1 and 2; Figure 3.1C]. The usage of the first 

polyadenylation signal was observed in transcripts isolated from duodenum, liver, testis, 

spleen and small intestine, whereas the usage of the second polyadenylation signal was 

observed in mRNA extracted from all tissues, except from PBMCs (Figure 3.1C). The primer 

located at the 3’ part of exon 6 (primer EX6G; Figure 3.1A) allowed the detection of only one 

specific 3’ RACE product with a size of 483 bp (Figure 3.1B). This product corresponds to 

transcripts in which the second poly(A) signal is recognized to induce 3’ end cleavage and 

polyadenylation at 1455 nt downstream of the stop codon (Figure 3.1C). These results 

confirm those obtained with primer EX6F in what concerns the usage of the second 

polyadenylation signal located at 1455 nt downstream of the stop codon. 
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Figure 3.1. Usage of four alternative poly(A) sites for 3’ end cleavage and polyadenylation of human HFE 
transcripts. (A) The diagram shows the human HFE 3’ untranslated region comprising exons (Ex) 6 and 7. The 
length of the exons is shown in base pairs (bp). The relative position of the four different forward primers 
(EX6F; EX6G; EX7G and EX7H) used in 3’ RACE experiments is shown. The vertical dark pink bars represent the 
polyadenylation [poly(A)] signals (numbered from 1 to 4) that were found to be used in the HFE mRNA 3’ end 
processing. Their sequence is also shown. Bellow, the thin lines represent the 3’ RACE products obtained by 
each primer (on the left). The correspondence between each 3’ RACE product, its poly(A) site and its length in 
bp is also represented. (B) Representative agarose gel electrophoresis showing 3’ RACE products from human 
liver total RNA. (C) Schematic representation of the four human HFE 3’ untranslated regions identified and 
characterized by 3’ RACE products obtained from total RNA, isolated from duodenum, liver, heart, peripheral 
blood mononuclear cells (PBMCs), kidney, testis, spleen, small intestine and ovary. Again, vertical black bars 
represent the poly(A) signal that is used in each isoform, with the corresponding sequence depicted and the 
distance from the poly(A) signal to the cleavage site given in nucleotides (nt). The size of each 3’ untranslated 
region is shown below in nt. The table on the right shows the presence () or absence (-) of the HFE alternative 
poly(A) isoform in each tissue analyzed. 
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The primer located at the 5’ part of exon 7 (primer EX7G; Figure 3.1A) generated a 3’ RACE 

product of 1231 bp (Figure 3.1B) which corresponds to an HFE transcript where the poly(A) 

signal 4 (AUUAAA) is recognized, inducing 3’ end cleavage and polyadenylation at 2958 nt 

downstream of the stop codon (Figure 3.1A and C). This poly(A) signal recognition was 

confirmed in the 3’ RACE analysis performed with primer EX7H (Figure 3.1 A). Here, we 

found two specific products with 255 and 593 bp in length (Figure 3.1 B): the longest 

fragment corresponds to the recognition of poly(A) signal 4; the smallest product 

corresponds to the recognition of an additional AUUAAA poly(A) signal [poly(A) signal 3; 

Figure 1A], which allows processing of HFE mRNAs with 3’ end cleavage and polyadenylation 

at 2620 nt downstream of the stop codon (Figure 3.1B and C). Besides, we observed that 

poly(A) signal 3 is recognized in HFE transcripts expressed in duodenum, liver, kidney, 

spleen, small intestine and ovary (Figure 3.1C). On the other hand, poly(A) signal 4 is 

recognized in mRNAs isolated from all tissues studied, which might confirm previous results 

showing that this signal is the main HFE poly(A) signal [Feder et al. 1996; Sanchez et al. 2001]. In 

addition to the four identified and characterized 3’ RACE products, some other fragments 

were also obtained when using primers EX6F, EX6G and EX7H (Figure 3.1B). However, the 

corresponding sequencing analysis has shown that they are not HFE-specific fragments. 

These non-specific amplifications might reflect the presence of many A + T-rich sequences in 

exon 7 [Sanchez et al. 2001]. Comparing our results with previously described data [Feder et al. 

1996; Sanchez et al. 2001], showing the usage of two poly(A) signals at 1455 and 2958 nt 

downstream of the stop codon of the human HFE transcript, we can conclude that its 3’ end 

processing machinery also recognizes two novel poly(A) signals – poly(A) signals 1 and 3 – 

which allow 3’ end cleavage and polyadenylation at 857 and 620 nt downstream of the stop 

codon (Figure 3.1). These two novel polyadenylation signals are recognized in mRNA from 

several tissues, including liver, duodenum, spleen and small intestine. 

 

IV.2. The physiological human HFE mRNA is a natural NMD-

target  

NMD is an mRNA surveillance mechanism that rapidly degrades mRNAs carrying PTCs 

[Muhlemann et al. 2008; Neu-Yilik and Kulozik 2008; Silva and Romao 2009; Nicholson et al. 2010]. Albeit its 

important role in mRNA quality control, it has become clear that the NMD mechanism also 

plays a role in regulating the steady-state level of a set of wild-type transcripts [He et al. 2003; 
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Mendell et al. 2004; Rehwinkel et al. 2005; Wittmann et al. 2006]. These physiological NMD substrates 

structurally mimic nonsense transcripts as they possess a translation termination codon that 

is recognized as premature. In face of this knowledge, and considering the position of the 

human HFE poly(A) signals that are used for its 3’ end processing (Figure 3.1), it seems 

evident that a percentage of the alternatively polyadenylated human HFE mRNA species – 

those using the poly(A) signals 2, 3 or 4 (Figure 3.1) – will comprise an exon-exon junction 

located more than 55 nt downstream of the natural stop codon, a context that can be 

sufficient to define the natural stop codon as a “premature stop codon” and to induce NMD. 

On the other hand, those transcripts resulting from cleavage and polyadenylation by usage 

of the poly(A) signal 1 must be NMD-resistant as no splicing event occurs downstream of the 

stop codon. To examine whether HFE transcripts could be physiological substrates for the 

UPF1-dependent NMD pathway, we quantified the endogenous HFE mRNA levels after 

siRNA-mediated depletion of UPF1 in HeLa and HepG2 cells and results were compared to 

those obtained in NMD-competent cells transfected with non-specific control (luciferase) 

siRNAs (Figure 3.2). At three different time points (24, 48 and 72 hours) after siRNAs 

transfection, the Western blot analysis demonstrated a decrease in UPF1 protein levels 

induced by siRNA of about 80-85% or 60-65%, in HeLa or HepG2 cells respectively, when 

compared with results obtained after treatment with luciferase siRNAs (Figure 3.2A). Under 

these conditions, the HFE mRNA levels were quantified by RT-qPCR assays, relatively to the 

HFE mRNA levels obtained in cells treated with the control siRNA (luciferase siRNA). To 

exclusively measure the abundance of mRNA that could be a natural NMD-target, we used 

oligonucleotides for qPCR that specifically hybridize the 5’ end of HFE exon 7 (Figure 3.2B). 

Our data have shown that depletion of UPF1 for 72 hours in HeLa cells, results in a 1.6-fold 

increase of the abundance of those HFE mRNAs using poly(A) signals 2, 3 or 4. The same 

analysis in HepG2 cells resulted in a 2.6-fold increase of the abundance of the same HFE 

mRNAs. These results are consistent with the mRNAs using poly(A) signals 2, 3 or 4 being 

natural substrates for NMD in both cell lines. However, it is interesting to note that in 

hepatic HepG2 cells, there is a higher amount of HFE NMD-targets, relatively to what occurs 

in HeLa cells, which might indicate that regulation of physiological levels of HFE mRNA by 

NMD is fine-tuned in a tissue-specific manner. 
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Figure 3.2. Downregulating UPF1 from HeLa or HepG2 cells results in an upregulation of the endogenous HFE 
transcripts indicating that the physiological HFE mRNA is a natural NMD-target. HeLa and HepG2 cells were 
transiently transfected with siRNA duplexes directed to human UPF1 or to a non-endogenous control (Luc). 
Cells were harvested for protein and RNA at three time points (24, 48 and 72 hours) after siRNA treatment. (A) 

Western blot analysis of the HeLa and HepG2 cells extracts using UPF1 and -tubulin (loading control) specific 
antibodies. The percentage (%) of UPF1 protein expressed in the cells after siRNA treatment is indicated below 
each lane. (B) Relative changes in HFE mRNA levels were analyzed by RT-qPCR, normalized to the levels of 
endogenous GPS1 mRNA. cDNAs were synthesized from total RNA and each cDNA sample was used as 
template for qPCR, which was performed using primers that specifically hybridize to the 5’ end of HFE exon 7. 
Levels of HFE mRNA with UPF1 siRNA treatment were compared to those obtained after Luc siRNA treatment. 
Below there is a schematic representation of the human HFE mRNA structure showing the position of the 
poly(A) signals used in its 3’ end processing, while the double arrow represents the localization of the amplicon 
obtained in the qPCR. (C) Relative changes in HFE mRNA levels were quantified by RT-qPCR as in B but using 
primers that specifically hybridize to the 5’ end of the HFE exon 6. Levels of HFE mRNA with UPF1 siRNA 
treatment were compared to those obtained after Luc siRNA treatment. Below there is a schematic 
representation of the human HFE mRNA structure showing the position of the poly(A) signals used in its 3’ end 
processing as well as the localization of the amplicon obtained in the qPCR.  
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To examine if the effect of the UPF1-dependent mechanism that modulates levels of HFE 

mRNA species using poly(A) signals 2, 3 or 4, is important in the context of the total amount 

of HFE mRNAs, we have also measured levels of HFE mRNA by RT-qPCR, using specific 

primers located at exon 6 upstream of the poly(A) signal 1 (Figure 3.2C). This approach 

allowed quantification of all mRNAs polyadenylated at any one of the four signals. As in the 

previous experiment, the increase in HFE mRNA levels was more noticeable after 72 hours of 

UPF1 siRNAs treatment. Under these conditions and in agreement with the preceding 

experiment, the expression of endogenous HFE mRNA, in both cell lines treated with UPF1 

siRNAs, was significantly increased to about 1.3- and 1.6-fold in HeLa and HepG2 cells, 

respectively (Figure 3.2C). Although the amount of the total HFE mRNA species increased 

upon UPF1 siRNAs treatment (Figure 3.2C), they did not reach the high abundance of those 

HFE mRNAs specifically using poly(A) signal 2, 3 or 4, found to be upregulated in the previous 

experiment (Figure 3.2B). These data confirm the presence of the NMD-resistant HFE mRNA 

isoforms resulting from 3’-end cleavage and polyadenylation at exon 6.  

The results of this full set of studies demonstrate that human HFE mRNAs with 

polyadenylation at exon 6 are in fact expressed in HeLa and HepG2 cells and their levels 

contribute for the total amount of the cellular HFE mRNA. On the other hand, it seems that 

the amount of HFE mRNA isoforms resulting from cleavage and polyadenylation at exon 7, 

although present in both cell lines, is more representative in HepG2 cells. Nevertheless, it is 

noteworthy that the physiological HFE mRNA isoforms resulting from 3’ end cleavage and 

polyadenylation at exon 7 behave as natural targets for the UPF1-dependent NMD 

mechanism in both HeLa and HepG2 cells.  

 

IV.3. The HFE transcripts carrying a nonsense mutation are also 

committed to NMD 

The preceding study has revealed that the expression of physiological human HFE 

transcripts, most specifically of those species with 3’ end cleavage and polyadenylation at 

exon 7, are downregulated by the UPF1-dependent NMD mechanism. To determine whether 

human HFE mRNAs carrying a nonsense mutation show a parallel NMD profile, we 

investigated the effect of the TAC→TAG nonsense mutation at codon 138 (Y138X) of the 

human HFE gene, which was previously described in association with an iron overload 

phenotype in Portuguese individuals [Mendes et al. 2009]. With that aim, we first cloned, into 
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the mammalian expression pcDNA3 vector, a normal (WT) HFE minigene that encompasses 

all exons and introns 4, 5 and 6 of the human HFE gene (Figure 3.3A). Then, by using the 

normal HFE minigene as template for site-directed mutagenesis, we cloned the Y138X 

minigene (see Materials and Methods). In view of the higher transfection efficiency 

observed in HeLa cells, as compared with that obtained in HepG2 cells, the former cell line 

was chosen for these studies. Thus, plasmids harboring the WT or Y138X minigenes above 

described were transiently transfected into HeLa cells, previously treated with luciferase 

siRNAs (Figure 3.3B). Levels of the encoded mRNAs were determined by RT-qPCR, with 

specific primers for the 5’ UTR that is transcribed by the cytomegalovirus promoter of the 

pcDNA3 vector and is specific for all mRNAs encoded from transfected HFE minigenes. 

Expression of these genes was normalized to the expression of the neomycin resistance gene 

and compared to those levels of mRNA encoded by a minigene similar to the normal HFE 

construct in which intron 6 was deleted by site-directed mutagenesis (see Materials and 

Methods; Del_IVS6 minigene; Figure 3.3A). This construct was used as a negative control for 

NMD-commitment since, in the corresponding transcript, splicing is abrogated downstream 

of the native translation termination codon, and thus it becomes NMD-resistant. Results 

from three independent experiments showed that expression of the normal transcript is at 

about 15% of the Del_IVS6 NMD-resistant mRNA (Figure 3.3C). On the other hand, 

quantification of the Y138X steady-state mRNA levels showed that this transcript 

accumulates at lower level than those of the wild-type mRNA, at about 10% of the Del_IVS6 

mRNA (Figure 3.3C). These results indicate that both mRNAs seem to be degraded by the 

NMD pathway, although the Y138X mRNA seems to be induced to decay with a slightly 

higher efficiency. To unequivocally prove that WT and Y138X mRNAs are committed to the 

NMD mechanism, and knowing that NMD is a UPF1-dependent pathway, the effect of 

inhibiting NMD on both mRNAs was examined by treating the transfected cells with UPF1 

siRNAs during 48 hours. Western blot analysis demonstrated a decrease in UPF1 protein 

level induced by siRNA of about 70-80%, when compared with results obtained after 

treatment with luciferase siRNA (Figure 3.3B). At this level of UPF1 downregulation, mRNA 

was quantified by RT-qPCR, relatively to Del_IVS6 mRNA expression, as before.  
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Figure 3.3. Normal and nonsense-mutated human HFE transcripts show low levels of expression when 
compared to those obtained for an NMD-resistant HFE transcript. (A) Schematic representation of the studied 
HFE minigenes designed to mimic human HFE genes that respectively encode normal (WT), nonsense-mutated 
(Y138X), and NMD-resistant (Del_IVS6) human HFE mRNAs. The position of the initiation (ATG) and termination 
(STOP) codons is represented. (B) Western blot analysis of HeLa cells extracts transfected with human UPF1 
siRNA or a control siRNA target (luciferase). Twenty-four hours after siRNA treatment, cells were co-transfected 
with the plasmids encoding the normal, nonsense-mutated, or NMD-resistant mRNAs and with a second dose 
of siRNAs (UPF1 or luciferase). Twenty-four hours later, cells were harvested for protein and RNA. 

Immunoblotting was performed using a human UPF1 and -tubulin (control for variations in protein loading) 
specific antibodies. The percentage (%) of UPF1 protein remaining expressed in the cells after siRNA treatment 
is indicated below each lane and was achieved by densitometric analysis using ImageJ software. (C) HFE mRNA 
quantification was performed by RT-qPCR as in Figure 3.2B but using primers specific for the heterologous 5’ 
UTR common to all transfected genes. Neomycin resistance transcript was used as a normalization control.  
Quantification of the transcript levels was performed by the absolute quantification method. Levels of HFE 
mRNA obtained after cellular UPF1 siRNA treatment were compared to those obtained after luciferase siRNA 
treatment at the same conditions. The histogram shows the mean and standard deviations from three 
independent experiments, corresponding to three independent transfections. Statistical analysis was 
performed using Student’s t test (unpaired, two tailed). 
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As shown in Figure 3.3C, depletion of UPF1 resulted in a 2-fold increase in the WT mRNA 

(p=0.018), while the increase in the Y138X transcripts was at about 6.7-fold (p<0.001), 

reaching values similar to those observed for the NMD-resistant Del_IVS6 transcripts 

expressed in the same conditions. These data confirm that WT and Y138X transcripts are 

both regulated by the NMD mechanism, although Y138X mRNA seems to be at some extent 

more efficiently degraded than the normal transcript (p=0.061). The fact that WT transcripts 

expressed in UPF1-depleted cells did not reach high levels comparable to those observed for 

Y138X and Del_IVS6 mRNAs expressed in UPF1-depleted cells, may reflect the presence of a 

proportion of WT HFE transcripts that use a poly(A) signal at exon 6 for 3’ end processing 

and consequently, their NMD-resistance. Taken together, our data show that all alternatively 

polyadenylated mRNA isoforms encoded from a HFE gene that carries a PTC are regulated by 

the NMD mechanism; however, in what concerns the WT HFE transcripts, only those 

resulting from 3’ end cleavage and polyadenylation at exon 7 behave as NMD-targets. Yet, 

our results indicate that the NMD mechanism might play an important role in regulating the 

levels of the HFE translated protein.  

 

IV.4. Holo-transferrin seems to induce preferential recognition of a 

poly(A) signal at exon 6, shortening the 3’ UTR, and thus it mitigates 

the effect of NMD on HFE gene expression regulation 

To understand how the NMD mechanism could play a role in the regulation of HFE gene 

expression in response to iron challenge, we next decided to investigate whether human HFE 

transcripts could be physiological substrates for the UPF1-dependent NMD pathway after 

cell treatment with human holo-transferrin. For that, we quantified the endogenous HFE 

mRNA levels after siRNA-mediated depletion of UPF1 in HepG2 cells untreated or treated 

with 30 M human holo-Tf. Results were compared to those obtained in NMD-competent 

cells transfected with luciferase siRNAs, also treated or untreated with 30 M human holo-Tf 

during the same time (Figure 3.4). After 48 hours of siRNAs transfection and 24 hours of 

holo-Tf treatment, the Western blot analysis demonstrated a decrease in UPF1 protein levels 

induced by siRNA of 80-90%, when compared with results obtained after treatment with 

luciferase siRNA (Figure 3.4A). The Western blot analysis also demonstrated an increase in 

TfR2 protein levels induced by the holo-Tf treatment (Figure 3.4A), which ensures that the 

iron sensing is being activated by this treatment in our experimental system. To confirm that 
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the cellular holo-Tf treatment can also affect the mRNA levels through the iron regulatory 

system, we quantified the TfR1 mRNA levels by RT-qPCR. Its levels were significantly 

decreased (p<0.001) with holo-Tf addition (Figure 3.4B), which is in accordance with 

previously published data [Rao et al. 1985]. Under these conditions, the endogenous HFE 

mRNA levels were quantified by RT-qPCR assays, relative to the HFE mRNA levels obtained in 

cells treated with the control (luciferase) siRNA. To exclusively measure the effect of holo-Tf 

on the abundance of mRNAs that could be natural NMD-targets, we first used 

oligonucleotides for qPCR that specifically hybridize to the HFE exon 7 (Figure 3.4C). Our 

data have shown that depletion of UPF1 in HepG2 cells results in a significant 1.8-fold 

increase (p=0.003) of the abundance of those HFE mRNAs using a poly(A) signal at exon 7. 

This result is in accordance with the data presented in Figure 3.2B. On the other hand, the 

cellular UPF1-depletion carried out simultaneously with holo-Tf treatment, resulted in a 

much weaker 1.3-fold increase of the HFE mRNA levels. Also, it must be noted that in UPF1-

depleted cells, addition of holo-transferrin induces a significant decrease in HFE mRNA levels 

(from 1.8-fold to 1.3-fold decrease; p=0.025), while the same treatment in luciferase siRNA-

treated cells does not significantly affect HFE mRNA levels (p=0.314) (Figure 3.4C). Together, 

these results indicate that the addition of holo-Tf to the cell culture medium might induce 

preferential polyadenylation at exon 6 of the human HFE mRNA, which makes these 

transcripts NMD-resistant. To further confirm these results, we also measured, by RT-qPCR, 

the levels of HFE mRNA using specific primers for HFE exon 6 upstream of the poly(A) signal 

1 (Figure 3.4D), which allowed quantification of the total amount of HFE mRNA isoforms 

alternatively polyadenylated at any one of the four signals. As in Figure 3.2C, levels of HFE 

mRNA, in cells treated with UPF1 siRNAs, increased about 1.4-fold (p=0.007) relative to the 

corresponding levels observed in cells treated with luciferase siRNA (Figure 3.4D). However, 

it must be referred that this increase is not as high as that observed when transcripts with 

polyadenylation at exon 7 are specifically quantified (Figure 3.4D versus Figure 3.4C). These 

results point out the presence of NMD-resistant HFE transcripts with 3’ end cleavage and 

polyadenylation at exon 6. 
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Figure 3.4. Holo-transferrin treatment of HepG2 cells increases endogenous HFE mRNA levels by inducing a 
preferential recognition of a poly(A) signal at exon 6, which makes the transcripts NMD-resistant. HepG2 
cells were reverse-transfected siRNA (siRNA) duplexes directed to human UPF1 or to a non-endogenous target 
(luciferase) used as control. Twenty-four hours later, the cell media was replaced by fresh medium 

supplemented with 10% serum with or without 30 M of holo-Tf. Cells were harvested for RNA and protein 
extracts 24 hours after holo-Tf treatment. (A) Western blot analysis was performed with specific antibodies for 

UPF1 and TfR2 proteins, using an -tubulin antibody to control for protein loading. (B) HepG2 cells previously 
transfected with luciferase (Luc) siRNAs were treated with holo-Tf and relative changes TfR1 mRNA levels were 
assessed by RT-qPCR, normalized to GPS1 mRNA. (C) Relative levels of HFE mRNAs with 3’ end cleavage and 
polyadenylation at exon 7, were specifically assessed by RT-qPCR, using primers that specifically hybridize to 
the 5’ end of the HFE exon 7, as in Figure 3.2B. Levels of HFE mRNA obtained after cellular UPF1 siRNA 
treatment were compared to those obtained after luciferase (Luc) siRNA treatment, with or without holo-
transferrin (holo-Tf) treatment. Below the histogram, there is a schematic representation of the human HFE 
mRNA, as in Figure 3.2B. (D) Relative levels of HFE mRNAs with 3’ end cleavage and polyadenylation at exon 6 
or 7, were assessed by RT-qPCR, using primers that specifically hybridize to the 5’ end of the HFE exon 6, as in 
Figure 3.2C. Levels of HFE mRNA obtained after cellular UPF1 siRNA treatment were compared to those 
obtained after luciferase (Luc) siRNA treatment, with or without holo-Tf treatment. Below the histogram, there 
is a schematic representation of the human HFE mRNA, as in Figure 3.2C. 
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In addition, the total amount of HFE transcripts that includes those NMD-resistant isoforms 

due to polyadenylation at exon 6, increases 1.2-fold (p<0.001) in response to holo-Tf, which 

might reflect their higher stability. These data are in accordance with the fact that in cells 

treated with holo-Tf, the inhibition of NMD by UPF1 depletion does not significantly affect 

levels of the general pool of HFE transcripts (p=0.312; Figure 3.4D). Taken together, the 

results of this full set of experiments demonstrate that physiological human HFE mRNAs 

expressed in the hepatic HepG2 cell line and resulting from 3’ end cleavage and 

polyadenylation at exon 7 are a natural target for the UPF1-dependent NMD mechanism, as 

above shown in Figure 3.2. On the other hand, in response to holo-Tf, it seems that 

polyadenylation at exon 6 becomes preferentially active which negatively impacts on the 

proportion of HFE transcripts that are NMD-targets, resulting in increased levels of total HFE 

mRNA in the cell. Therefore, our data show that both post-transcriptional mechanisms of 

alternative 3’ end cleavage and polyadenylation and NMD might play an important task in 

fine-tuning HFE mRNA and protein levels, in response to iron challenge. 

 

V. Discussion 

The human HFE gene reference structure comprises 7 exons [Sanchez et al. 2001]. Although the 

sixth exon is 1056 bp long, only the first 41 bp encode for amino acids, so the remaining 

downstream 1015 bp sequence corresponds to the HFE 3’ UTR, along with exon 7. The data 

presented in this study show that the splicing event occurring in the 3’ UTR of the HFE 

transcript is in fact an attribute that makes the physiological transcript NMD-sensitive. In 

addition, we also show that besides the usage of the two polyadenylation signals for 3’ end 

cleavage and polyadenylation previously described [Sanchez et al. 2001], HFE mRNA expression 

can also result from cleavage and polyadenylation at two other alternative sites – one 

located at exon 6 and the other one located at exon 7. Nevertheless, under cellular iron 

challenge, we observe an increase in the amount of NMD-resistant HFE transcripts, which 

appears to be due to shortening of the 3’ UTRs resulting from alternative cleavage and 

polyadenylation at exon 6. These results show that alternative polyadenylation has 

functional consequences, with the shorter mRNA isoforms exhibiting increased stability, as 

they lose the feature that could make them physiological NMD-targets. Our results show 

how alternative polyadenylation and nonsense-mediated mRNA decay coordinately play a 

role in the fine-tuning the human HFE mRNA levels in response to the cellular iron status. 
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HFE protein has a well-recognized role in the regulation of iron homeostasis. HFE is capable 

of forming protein complexes with both TfR1 and TfR2 in the cellular membrane [Parkkila et al. 

1997b; Chen et al. 2007]. It was recently proposed that HFE is partitioned between TfR1 and 

TfR2, and under increasing iron concentrations, HFE should shift away from TfR1 towards 

TfR2, triggering the signaling transduction pathway that leads to induction of the iron 

regulatory hormone hepcidin [Schmidt et al. 2008; Fleming 2009; Gao et al. 2009]. Here, we clearly 

show that under physiological conditions, human HFE transcript expression is regulated by 

the NMD mechanism, which can explain its relative low levels of expression observed in all 

tissues studied, including the liver cells [Feder et al. 1996; Fleming and Britton 2006]. Although there 

are inconsistent results on the effect of changes in cellular iron status on the gene 

expression of HFE [Feder 1999; Han et al. 1999; Theurl et al. 2005b], our results show that 

alternative polyadenylation and nonsense-mediated mRNA decay mechanisms coordinately 

act to fine-tune levels of HFE mRNA in response to changes in the cellular iron status. To 

further corroborate the importance of these post-transcriptional mechanisms in the 

regulation of HFE mRNA in response to iron challenge, there is the fact that the TfR2 mRNA, 

which is thought to be the principal partner of HFE protein in the regulation of the iron 

metabolism in the liver, is also a natural target for NMD [Wittmann et al. 2006]. As a result, 

NMD might be potentially used in a concerted way to adapt HFE and TfR2 protein expression 

to the physiological needs of the hepatocyte.  

To our knowledge, there are a few nonsense mutations reported in the human HFE gene 

[Piperno et al. 2000; Beutler et al. 2002; Mendes et al. 2009; Pointon et al. 2009]. Yet, only one of these 

mutations has been studied in what concerns its ability to commit the transcript to NMD 

[Pointon et al. 2009]. This mutation consists in a single nucleotide deletion (c.del478) causing a 

frameshift that introduces a PTC in exon 4. The authors have demonstrated that the mutant 

transcript is degraded by NMD [Pointon et al. 2009].  Although these results seem to be in some 

extent in discordance with those presented here, as the c.del478 allele seems to account for 

only 2% of the total cytoplasmic HFE mRNA [Pointon et al. 2009], which indicates that this 

transcript is efficiently degraded by NMD, this might reflect the fact that the condition of 

iron overload observed in the patient can induce alternative polyadenylation in exon 6. Thus, 

these transcripts do not behave as physiological NMD-targets and, when carrying a PTC, they 

are all committed to NMD. 
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HFE mRNA metabolism has been poorly studied. Even the description of the specific 

structure of its 3’ UTR has been disputed. The first reported Northern blot analysis showed 

that the human HFE gene is expressed as a 4.2 kb mRNA [Feder et al. 1996]. Nevertheless, the 

corresponding reported cDNA was only 2.7 kb long (GenBank U60319); in fact, the remaining 

1.5 kb were more recently described by Sanchez et al. [2001] as being part of the HFE exon 7. 

Also, these authors have demonstrated by 3’ RACE experiments that human HFE mRNA can 

result from the usage of two alternative polyadenylation signals located at exon 7, at 1455 

and 2958 nts downstream of the stop codon [poly(A) signals 2 and 4, Figure 3.1] [Sanchez et al. 

2001]. The observation that this 3’ UTR structure presents additional putative 

polyadenylation signals downstream of the native translation termination codon, led us to 

further investigate their possible usage for 3’ end processing. In fact, our results have shown 

that two novel poly(A) signals are also recognized in several human tissues. These poly(A) 

signals allow 3’ end cleavage and polyadenylation at exon 6 or 7, respectively at 857 or 2620 

nt downstream of the stop codon. These poly(A) signals are recognized in mRNAs from 

several tissues, including liver, duodenum, spleen and small intestine, which are tissues 

where HFE mRNA is mainly expressed and where HFE protein is expected to have a key role 

in the regulation of the iron metabolism. This observation might reflect their involvement in 

modulating HFE mRNA levels in the tissues were it is specifically expressed. 

Cleavage and polyadenylation is required for the maturation of most mRNA transcripts 

[Proudfoot 1991; Colgan and Manley 1997]. Usually, the formation of mature mRNAs in vertebrates 

involves the cleavage and polyadenylation of the pre-mRNA at about 10-30 nt downstream 

of an AAUAAA or AUUAAA signal sequence. Although a strong polyadenylation signal is 

usually located within the 3’ UTR, nearly in all transcripts there are single-base variants of 

the AAUAAA sequence that can also be recognized as polyadenylation signals [Beaudoing et al. 

2000; Proudfoot 2004; Nunes et al. 2010]. A large scale analysis has shown that at least ten single-

base variants of the AAUAAA sequence can also be found with a highly significant occurrence 

rate, potentially representing about 15% of all polyadenylation signals [Beaudoing et al. 2000]. In 

addition, Beaudoing and colleagues have revealed that about 29% of the mRNAs display two 

or more polyadenylation sites. In these mRNAs, the poly(A) signals proximal to the coding 

sequence tend to use variant signals more often, while the 3’ most sites tend to use a 

canonical signal. Also, it has been suggested that variant signals (including the common 

AUUAAA) are processed less efficiently than the canonical signal and could therefore be 

selected for regulatory purposes [Beaudoing et al. 2000]. In the present work, we show that the 
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human HFE mRNA constitutes an example of a transcript where four poly(A) signals (one 

AAUAAA hexamer, two AUUAAA hexamers, and one GAUAAA hexamer) can be recognized 

for its 3’ end cleavage and polyadenylation. These results confirm those obtained when we 

used the polyadq program [http://rulai.cshl.org/tools/polyadq/polyadq_form.html; Tabaska 

and Zhang 1999] to evaluate potential poly(A) signals in the human HFE 3’ UTR – this program 

predicted that the AAUAAA and AUUAAA sites here described in the HFE exon 7 [poly(A) 

signals 2, 3 and 4; Figure 3.1] would be the active signals. It is interesting to note that 

according to the published data [Beaudoing et al. 2000], also in the HFE 3’ UTR there is the 

recognition of more non-canonical than canonical AAUAAA poly(A) signals, the 5’ most 

upstream poly(A) signal being, among the four poly(A) signals that are alternatively 

recognized, the hexamer less frequently recognized in mammalian cells [Beaudoing et al. 2000]. 

The data presented here is in fact in accordance with the usage of the four described 

alternative poly(A) signals to control the HFE mRNA levels. 

The recognition of the non-canonical poly(A) signals by the 3’ end processing machinery is 

not completely understood. It is currently believed that auxiliary sequences located either 

upstream or downstream (DSEs) of the non-canonical poly(A) sites may be able to 

compensate for a degenerated hexamer. Such sequences may serve to stabilize the poly(A) 

complex assembly by providing alternative binding for components of the 3’ end processing 

machinery [Venkataraman et al. 2005]. A wide scale analysis of human poly(A) signals has in fact 

shown that many non-canonical poly(A) signals contain upstream A-rich sequences and tend 

to have a higher frequency of U and GU nucleotides in their DSEs with canonical poly(A) 

signals [Nunes et al. 2010]. Knowing that the human HFE 3’ UTR has a very high A + U content, 

probably the recognition of its non-canonical poly(A) signals might indeed take advantage of 

potential A-, U- and/or GU-rich elements [Sanchez et al. 2001]. 

As indicated above, it is known that mRNAs with multiple poly(A) signals tend to use non-

canonical poly(A) signals (including the common AUUAAA) more often than mRNAs with a 

single poly(A) hexamer. It has been also shown that the occurrence of non-canonical poly(A) 

signals mediates variation in poly(A) efficiency, thus enabling developmental, physiological 

and pathological regulation of gene expression [Edwalds-Gilbert et al. 1997; Graber et al. 1999; 

Beaudoing et al. 2000; Hughes 2006]. The occurrence of alternative poly(A) can also enable 

regulation of the ability of genes to respond to physiological stimuli [Sellers et al. 2004; Hughes 

2006]. Recently, it has been shown that alternative polyadenylation can be a mechanism by 
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which transcripts can lose repressive 3’ UTR elements which are associated to promotion of 

oncogenic transformation or immune cell activation [Sandberg et al. 2008; Mayr and Bartel 2009]. 

These authors have shown that cell proliferation conditions are associated with widespread 

reductions in the 3’ UTRs by alternative poly(A), in which shorter mRNA isoforms exhibit 

increased stability resulting in augmented protein production, in part through the loss of 

microRNA-mediated repression [Sandberg et al. 2008; Mayr and Bartel 2009]. Our data show that 

the human HFE mRNA expression results from alternative poly(A) at a GAUAAA non-

canonical poly(A) signal at exon 6, or at two AUUAAA sites or one AAUAAA site located at 

exon 7 of the HFE 3’ UTR. On the other hand, we have observed that the extended HFE 3’ 

UTR isoforms also encompass an intron located more than 54 nt downstream of the native 

stop codon, which is a feature that induces mRNA destabilization by the NMD mechanism. It 

is remarkable that in cells under iron challenge, our results show that the amount of NMD-

resistant HFE transcripts increases, which appears to be due to shortening of the 3’ UTR by 

alternative poly(A) at exon 6. The present work provides another example of how the 

shortening of the 3’ UTR by alternative cleavage and polyadenylation can have the functional 

consequence of increasing mRNA levels through the loss of the feature that can make this 

transcript an NMD-target, in response to the cellular iron status. Which mechanism 

underlies the recognition and increased utilization of the proximal poly(A) signal located in 

exon 6 of the human HFE mRNA in response to iron challenge will be the purpose of further 

studies. 
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I. General discussion and concluding remarks 

The maintenance of iron homeostasis in the human body is a tightly regulated process only 

achieved by the feedback regulation between the sites of iron absorption, utilization and 

storage. Among these compartments, the proteins involved directly or indirectly with iron 

regulation must be coordinately controlled by signals and regulatory mechanisms that 

orchestrate their expression to achieve iron homeostasis [Muckenthaler et al. 2008; Hentze et al. 

2010]. There are several molecular mechanisms of gene expression regulation that may take 

place at transcriptional, post-transcriptional and post-translational levels [Maniatis and Reed 

2002; Orphanides and Reinberg 2002; Chua et al. 2007]. In fact, many of these processes affect the 

expression of the so-called iron-related genes and there are two that have a great deal of 

relevance in the expression control of their respective proteins [Chua et al. 2007; Hentze et al. 

2010]. One of these mechanisms is the IRE/IRP system, a cellular pathway specific of the iron 

metabolism sphere, in which the presence of hairpin structures (IREs) found in 5’ or 3’ 

untranslated portions of mRNAs may, respectively, block translation or stabilize these 

mRNAs upon IRP binding [Hentze and Kuhn 1996; Muckenthaler et al. 1998; Hentze et al. 2010]. 

Another thoroughly exploited mechanism since the discovery of the hepatic hormone 

hepcidin in the beginning of the 21st century is its transcriptional control [Courselaud et al. 2002; 

Truksa et al. 2007; Weizer-Stern et al. 2007; Casanovas et al. 2009; Truksa et al. 2009]. Hepcidin in 

circulation negatively regulates the iron egress from cells by binding to ferroportin and 

inducing its degradation, consequently leading to iron retention in the intestinal epithelium 

and in macrophages of the reticuloendothelial system [Laftah et al. 2004; Nemeth et al. 2004b; 

Delaby et al. 2005; De Domenico et al. 2007]. Why is the transcription of hepcidin so important? 

Essentially because the rapid excretion of this hormone and lack of a regulated proteolytic 

processing implies that its regulation occurs at the transcription modulation level [Andrews 

2008; Kemna et al. 2008]. It has been shown that hepcidin controls iron availability in response 

to iron levels, erythropoiesis, hypoxia and inflammation, and that all these upstream stimuli 

ultimately act on hepcidin transcription activation or repression at the hepatic level (Figure 

1.3) [Nicolas et al. 2002a; Nicolas et al. 2002b; Nemeth et al. 2003; Pinto et al. 2008]. 

Regarding the hepcidin transcriptional control mediated directly by iron status, two very 

important mechanisms have been proposed, one mediated by BMP-signaling and another 

driven by the HFE-TfR2 complex (for details see Chapter 1). In fact, the identification of most 

of the participants in both these mechanisms that affect the expression of hepcidin, and 
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therefore the regulation of iron homeostasis, arose from genetic analyses of patients 

presenting primary iron overload. By far, the most common of the heritable forms of iron 

overload is the autosomal recessive disorder caused by mutations in the HFE gene, 

designated HFE-associated hemochromatosis or type 1 hemochromatosis [Feder et al. 1996; 

Pietrangelo 2004; Andrews 2008]. Nevertheless, several other effectors of the iron regulatory 

pathway have been identified associated with a determined form of the HH disease, namely 

TfR2, hemojuvelin, ferroportin and hepcidin (see Chapter 1 for details) [Camaschella et al. 2000; 

Montosi et al. 2001; Njajou et al. 2001; Roetto et al. 2003; Papanikolau et al. 2004]. All these forms of 

hemochromatosis have in common the abrogation of hepcidin function in modulating 

ferroportin activity due to hepcidin inappropriate expression (in the case of HFE, TfR2, 

hemojuvelin and hepcidin mutations) or to ferroportin mislocalization or insensitivity to 

hepcidin regulation (in the case of ferroportin mutations) [Bridle et al. 2003; Muckenthaler et al. 

2003; Papanikolau et al. 2004; Kawabata et al. 2005; Porto et al. 2005].  

Patients with mutations in HFE and TfR2 generally have a midlife presentation of elevated 

transferrin saturation, parenchymal iron loading and macrophage iron deficiency [Carthwright 

et al. 1979; Feder et al. 1996; Camaschella et al. 2000]. All these features may be attributable to the 

modest hepcidin production in these individuals. The inadequate regulation of ferroportin at 

the basolateral membrane of enterocytes impels the increased dietary iron uptake, whereas 

ferroportin maintenance at the macrophage renders their relative iron deficiency. The 

increasing knowledge of how HFE and TfR2 mutations affect hepcidin inappropriate 

expression has provided little insights into the specific functions of these molecules. 

Concerning HFE’s mode of action, it has been proposed by several studies that HFE’s 

function possibly varies from tissue to tissue, since a strong effect is observed on the 

intracellular iron levels, but often opposite effects arise according to the analyzed tissues or 

cell line [Gross et al. 1998; Corsi et al. 1999; Riedel et al. 1999; Roy et al. 1999; Drakesmith et al. 2002; Davies 

and Enns 2004; Enns 2006]. Moreover, very little is known about the transcriptional and post-

transcriptional control of HFE gene expression, but several HFE alternative transcripts have 

been formerly described [Jeffrey et al. 1999; Rhodes and Trowsdale 1999; Thenie et al. 2000; Sanchez et 

al. 2001]. Nevertheless, since their specific structure, abundance and physiological function in 

human tissues remain to be characterized, these were the objectives pursued in the second 

chapter of this thesis.  
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Given the low level of HFE transcripts and consequently of its corresponding protein(s), a 

strategy of RT-PCR combined with cloning and sequencing of the obtained fragments were 

the methods utilized to identify the alternatively spliced HFE transcripts present in different 

human tissues. Most of them were in-frame exon skippings (alone or combined) that will 

potentially generate different arrangements of the translated protein. In fact, survey 

estimations reveal that approximately 75% of alternative splicing events take place within 

the translated regions of mRNAs that will affect protein-coding region [Okazaki et al. 2002; 

Zavolan et al. 2003]. Modifications in the primary structure of proteins may alter their binding 

properties, influence their intracellular localization, modify their enzymatic activity and/or 

affect their stability by diverse mechanisms [Kriventseva et al. 2003; Stamm et al. 2005; Blencowe 

2006]. The scale of changes evoked by alternative splicing can range from very subtle 

modulations in the function of a given protein to a complete loss of function [Kriventseva et al. 

2003; Stamm et al. 2005; Blencowe 2006]. In our study, we found singular exon skippings that, by 

eliminating the correspondent domain of the HFE full length protein (such as the skipping of 

exon 2 or exon 3), have the potential of altering HFE’s protein binding capacity to its known 

ligands such as 2M, TfR1 or TfR2. Since the skipping of exon 2 transcript had been 

previously described as being present in hepatic, colon carcinoma and ovary cell lines, and 

due to the inability to observe the native protein owed to its low expression, we decided to 

further investigate this variant by fusing its cDNA to GFP [Rhodes and Trowsdale 1999; Sanchez et 

al. 2001]. The initial suspicion was that, by lacking the 1 domain of the protein, its 

interaction to TfR1 would be impaired. However, it was found that this modification affected 

an even upstream process, its binding to 2M and consequently, the TfR1 interaction was 

also affected. This was observed by both immunofluorescence and immunoprecipitation 

assays. The co-localization of HFE_skip2 protein with calnexin discloses a possible 

endoplasmic reticulum retention and eventual triggering of the unfolded protein response 

mechanism, as it has been described for the C282Y mutant [de Almeida et al. 2005; de Almeida et 

al. 2007b]. Curiously, studies performed in the human genome have shown that exon skipping 

is more likely to occur when exons are flanked by long introns, while experimental and 

computational analyses have revealed that the length of the upstream intron is more 

important in inducing alternative splicing than the length of the downstream intron [Fox-

Walsh et al. 2005]. This is in accordance with the relatively high abundance levels of the HFE 

exon 2 skipping variant observed in human tissues, since the upstream intron one has about 

3 kb long, whereas the intron two encompasses about 200 bp. 
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In parallel, we also found alternative transcripts containing partial and total inclusion of 

HFE’s intron 4 that, by including an in-frame stop codon, could preclude the presence of the 

transmembrane and cytoplasmic domains of the full length protein. Again, as this HFE 

splicing isoform had been previously reported and regarding its potential feature as a soluble 

protein, we further investigated this variant as indicated before [Jeffrey et al. 1999]. The study 

of the intron 4 inclusion splice variant, lead us to interesting new data by revealing that this 

GFP tagged-soluble HFE is somehow able to maintain its conformational structure and be 

secreted by the cells, properly bound to 2M, on the contrary to the exon 2 skipping variant. 

Actually, several studies have underscored the significance of proteins that are affected by 

alternative splicing through the regulation of membrane binding [Blum et al. 1996; Tomida 1997; 

Diez et al. 2001; Kuramoto et al. 2001; Riteau et al. 2001; Meshorer et al. 2004; Stamm et al. 2005; Hviid 2006; 

Sangrouber et al. 2007]. In the majority of these cases, the membrane localization is an obvious 

property of the protein and non-membrane bound variants are generated by alternative 

splicing that may delete or interrupt transmembrane or membrane-association domains. 

These soluble proteins can be released from the cell, e.g. to the bloodstream or extracellular 

space, or otherwise, translocate into to a different cellular compartment. Moreover, they 

may acquire new functions, exerting dominant negative effects over the membrane bound 

forms or modulate the function of the latter [Stamm et al. 2005]. In this study, we propose that 

this soluble HFE can be released from some tissues such as the duodenum or the spleen, 

since those are the tissues presenting the highest relative amount of this isoform by qPCR 

(apart from the gonads), possibly by exerting an agonist or antagonist function of the 

membrane-bound HFE. This may happen immediately at the extracellular space of these 

cells (in the duodenal enterocytes or splenic macrophages), thereby possibly controlling iron 

export through ferroportin. This theory is to some extent supported by previous studies in 

which HFE overexpression has a particular effect in impairing iron export in cells where 

ferroportin is expressed, such as HT-29 (a cell line that mimics duodenal characteristics) or 

THP1 (a monocyte/macrophage-derived cell line) [Drakesmith et al. 2002; Davies and Enns 2004]. On 

the other hand, this soluble HFE variant may have a faraway effect, possibly acting on the 

liver hepatocytes by wielding an effect on the signaling transduction pathway conducted by 

the HFE-TfR2 complex in the expression of hepcidin. Again, any hint whether this soluble HFE 

may act as an agonist or antagonist of the membrane-bound HFE requires further studies. 

Although in numerous cases the exact function of the soluble variants has not been 

determined, various reports have indicated that some of these proteins may affect the 
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signaling transduction ability, as is the case of IL-6 or CD40 molecules [Kestler et al. 1995; Tone et 

al. 2001; Alberti et al. 2005]. 

Besides the role here emphasized for the alternative splicing mechanism, one should take 

into account the possibility of the use of alternative transcription or poly(A) sites in 

increasing the diversity of HFE transcripts reported. In what concerns HFE’s transcriptional 

regulation, a study performed by Mura et al. [2004], where the mapping of the initiation sites 

indicated by both run off in vitro transcription and 5’ RACE experiments, revealed a window 

of initiation within the -265 to -10 nt upstream of the first coding nucleotide. So, this 

relatively small distance between the putative initiation sites encourages the theory that the 

wide variety of HFE transcripts observed in reported Northern blots, ranging from 0.9 to 6.1 

kb, may be attributable to either alternative splicing or alternative polyadenylation [Thenie et 

al. 2000; Sanchez et al. 2001]. In agreement, the discrepancies began when the HFE gene was first 

discovered and expression analysis by the Northern blot indicated a 4.2 kb transcript, 

whereas the cDNA report was only 2.7 kb long [Feder et al. 1996]. Only the studies by Sanchez 

et al. [2001] brought light to this problem, proving that the missing 1.5 kb of mRNA is in fact 

part of exon 7, which presents two polyadenylation signals, giving rise to both 2.7 and 4.2 kb 

transcripts. This report also identifies two additional polyadenylation sites in intron 6 [Sanchez 

et al. 2001].  

Thus, in chapter 3, we began by confirming the structure of HFE’s 3’ UTR and, in addition to 

the alternatively polyadenylated transcripts found by Sanchez et al. [2001], we found two 

novel poly(A) signals for 3’ end cleavage and polyadenylation affecting the post-

transcriptional regulation of HFE, one in exon 6 and another in exon 7. The corroboration of 

the HFE’s 3’ UTR structure was mandatory to follow the investigation in what concerns HFE’s 

regulation by NMD. NMD is a post-transcriptional eukaryotic mRNA surveillance mechanism 

responsible for the rapid degradation of transcripts harboring a PTC [Isken and Maquat 2007; 

Muhlemann et al. 2008; Silva and Romao 2009; Nicholson et al. 2010]. These stop or nonsense codons 

are generally recognized as premature if they are located at more than 50-54 nt upstream to 

the final exon-exon junction (Figure 1.7) [Nagy and Maquat 1998]. In this way, NMD limits the 

production of truncated polypeptides and protects the cell from their possible deleterious 

effects [Wagner and Lykke-Andersen 2002; Holbrook et al. 2004; Maquat 2004; Chang et al. 2007]. Besides 

shielding the cells from these truncated proteins generated by nonsense mutations, very 

significant since about one third of hereditary genetic diseases are caused by mutations 
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generating PTC-bearing transcripts, a wider role has been attributed for NMD as a 

contributor to the fidelity of gene expression [Mendell et al. 2004; Wittmann et al. 2006]. In effect, 

a group of NMD substrates includes physiological transcripts that encode functional full 

length proteins, produced generally as a consequence of alternative splicing, presence of an 

upstream ORF or an intron in the 3’ UTR [Lelivelt and Culbertson 1999; He et al. 2003; Lewis et al. 2003; 

Mendell et al. 2004; Rehwinkel et al. 2005; Wittmann et al. 2006]. In fact, this latter specific 

architecture is also present in the HFE mRNA, since the native stop codon present in the 

major HFE transcript is located in exon 6, 1015 nt from the downstream non-coding exon-

exon boundary [Sanchez et al. 2001]. We therefore hypothesized that the HFE gene can be 

included in the group of these NMD-regulated genes. As we have shown in chapter 3, there 

is a very significant effect of NMD in downregulating HFE physiological transcripts both in 

HeLa and HepG2 cells. As expected, this occurs more evidently when measuring those 

transcripts that include exon 7. As this increase in HFE mRNA levels was measured by the 

knockdown of UPF1, one should consider that, somehow due to technical difficulties, the 

abrogation of UPF1 expression level is incomplete, with an average of 70% reduction in all 

experiments performed. So, most likely the decay mechanism acting on HFE mRNA 

physiological levels is much stronger than the approximately 2.5-fold increase revealed at 

the 72 hours of UPF1 knockdown in HepG2 cells. Next, we were interested in analyzing the 

effect of NMD in nonsense mutations found in the HFE gene. 

Homozygosity for the HFE C282Y mutation accounts for about 85% of patients with typical 

hemochromatosis [Feder et al. 1996; Adams et al. 2005]. However, other very rare or private HFE 

mutations have been reported, specially on southern Europe where C282Y is less frequent, 

contributing to the HH genetic heterogeneity [Barton et al. 1999; de Villiers et al. 1999; Mura et al. 

1999; Merryweather-Clarke et al. 2000; Piperno et al. 2000; Pointon et al. 2000; Beutler et al. 2002; Le Gac et 

al. 2003; Mendes et al. 2009; Pointon et al. 2009]. In fact, the great majority of these novel HFE 

mutations that are associated with a strong iron burden are generally in trans with C282Y, 

and therefore fully explaining this HH phenotype. In agreement with this, we analyzed the 

Y138X nonsense mutation that we had previously found in a Portuguese hemochromatosis 

patient who presented a C282Y/Y138X genotype [Mendes et al. 2009]. As shown in chapter 3, 

NMD can also exert its role in diminishing the stability of transcripts with nonsense 

mutations, as we proven for the Y138X-containing transcript. On a recent preceding study 

where the effect of a frameshift mutation leading to a PTC was analyzed, it was also proved 

that this mutation leads to the destabilization of the HFE nonsense-mutated mRNA [Pointon et 
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al. 2009]. As NMD plays an evident role in controlling the levels of the nonsense mutated 

transcripts, one may speculate whether its action has a positive or negative effect in the 

development of the hemochromatosis disease. If NMD was to be absent, could those 

truncated polypeptides have some function in controlling hepcidin expression, as it is the 

case of the full length protein? Probably not, as those nonsense mutations (or frameshift 

generating PTCs) described in patients are usually located in exons 2, 3 or 4, which may lead 

to obvious conformational changes in the proteins’ structure, possibly exerting a negative 

effect on the residual cell surface presentation of the HFE C282Y molecule [Levy et al. 1999]. Of 

course, these theories require further investigation. 

So, NMD has a double task in what concerns controlling the levels of HFE transcripts both 

physiological and nonsense-mutated. When combining both studies performed on chapters 

2 and 3, some interesting questions remain to be addressed. Do all the HFE transcripts with 

alternative poly(A) usage maintain the 5’ coding region enabling the production of the full 

length HFE production? It has been proposed that alternative splicing and alternative 

polyadenylation may be combined in order to produce mRNAs with distinct stabilities 

(altering the 3’ UTR enables the action of micro-RNAs or NMD), to influence rates of 

translation synthesis or affect the transport of the processed mRNA from the nucleus to the 

cytoplasm [Colgan and Manley 1997; Zhao et al. 1999; Maniatis and Reed 2002; Sandberg et al. 2008; Mayr 

and Bartel 2009]. Moreover, once the polypeptide is produced, many questions remain in what 

regards its cellular localization, binding capacity, protein stability or post-translation 

modification sensivity. So, it would be of great significance to try to merge the 5’ and 3’ 

structures of the alternative splicing and polyadenylation transcripts to further understand 

their function and possibly disclose novel regulatory mechanisms acting on HFE post-

transcriptional expression. Regarding the alternative polyadenylation transcripts 2 and 4 

described of chapter 3, since these isoforms were previously described by others as cDNA 

clones or Northern blot transcripts, one may assumed that they encompass HFE’s total 

coding sequence. So, these transcripts’ structure is probably post-transcriptionally regulated 

merely by the influence of their 3’ end processing. But in what concerns the novel 

alternative polyadenylated transcripts (signals 1 and 3), further experiments are necessary to 

confirm their upstream structure. 

The presence of a soluble HFE also poses a curious intersection at the production of this 

alternative splicing variant and the now known HFE’s expression regulation by NMD. In 
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chapter 2, we have shown that this soluble protein variant may arise from two distinct 

splicing isoforms (by the total or partial inclusion of intron 4), that were observed in all the 

tissues tested. Interestingly, in both cases, a premature stop codon will be generated six 

nucleotides 3’ from the exon four boundary. Proposing a parallel situation to what occurs 

with HLA-G splicing isoform, we assumed the production of a soluble HFE peptide, since it 

would not have the transmembrane domain and the cytoplasmatic tail. However, it is 

unknown whether the levels of this peptide can be regulated by NMD. Since an NMD 

expression control has been shown for both HFE physiological and nonsense transcripts, at 

first, there is no reason to believe that these isoforms containing intron 4 may escape the 

NMD mechanism. Still, it cannot be disregarded that these transcripts could be specifically 

cleaved and polyadenylated at exon 6 and therefore behave as NMD-resistant transcripts. 

Nevertheless, if that is the case, its expression levels should be highly increased when 

compared to the total HFE, which is not in accordance with the obtained results. Hence, 

most likely, this variant uses a polyadenylation signal at exon 7, and suffers a similar NMD-

induced regulation as the normal transcript.   

Since both alternative polyadenylation and NMD were shown to control the levels of normal 

HFE transcripts, we were interested in testing whether the cellular iron conditions could 

affect this regulation. The iron challenging assays carried out in HepG2 cells expose that the 

amount of NMD-resistant HFE transcripts is increased, which appears to be due to the 

shortening of their 3’ UTRs by preferential/alternative cleavage and polyadenylation at exon 

6. This is in agreement with other reports where it was shown that the occurrence of 

alternative polyadenylation can also enable regulation of the ability of genes to respond to 

physiological stimuli [Sellers et al. 2004; Hughes 2006]. Moreover, the use of non-canonical 

polyadenylation signals mediates variation in polyadenylation efficiency, thus enabling 

developmental, physiological and pathological regulation of gene expression [Edwalds-Gilbert 

et al. 1997; Graber et al. 1999; Beaudoing et al. 2000; Hughes 2006]. These results hint the relevance of 

iron stimulation on the production of alternative mRNA species, and it would be extremely 

interesting to observe an effect of the iron status on the relative abundance of the HFE 

alternative splice transcripts here analyzed. In fact, reports regarding other iron-related 

genes disclose a physiological adaptation in the production of their splicing isoforms to 

respond to cellular demands, as it has been proposed for DMT1 and ferroportin transcripts 

[Hubert and Hentze 2002; Cianetti et al. 2005; Zhang et al. 2009a]. 
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Mechanisms of gene expression regulation are essential for the correct functionality of a 

multicellular organism as the complex human body. In particular, the myriad of processes 

involved in post-transcriptional regulation have been regarded as extremely important 

throughout the recent decades of research. In this thesis, we propose that alternative 

splicing, alternative polyadenylation and nonsense-mediated mRNA decay act together in 

controlling HFE’s expression in a variety of human tissues. Moreover, tissue-specific patterns 

have been disclosed and a coordinated action of these mechanisms with iron stimulation 

may be foreseen. The body of knowledge arising from the role that post-transcriptional 

mechanisms exert in HFE’s expression may hint future directions in the active field of iron 

biology and provide interesting cues that may translate into new therapeutics of iron 

homeostasis disorders.  

 

II. Future perspectives 

At this point, one may underscore that there are several post-transcriptional mechanisms 

acting on the control of HFE gene expression. Moreover, this may be of particular 

importance to elucidate HFE’s role in the iron metabolism but they also have broader 

implications, evidenced by its involvement in infection and in the immune response. 

As stated before, it would be of great interest to analyze the coding region associated with 

the novel alternative polyadenylated mRNA species found in this study. Ideally, due to the 

low abundance of these transcripts, deep-sequencing would be a more reliable approach. 

This would provide novel insight towards the post-transcriptional mechanism in the genesis 

of these mRNAs and the possible function of the produced peptides. Given their potential 

biological activity, it would be of particular interest to investigate the 3’ structure of the 

splicing variant including intron 4 that gives rise to a soluble HFE. On the other hand, as the 

iron intake by the cell seems to induce preferential polyadenylation at exon 6, it would be 

interesting to explore the effect of environmental iron scarcity in the production of the 

polyadenylated species. These iron challenging assays would allow studying the structural 

and abundance variations on the HFE mRNA species. This might be achieved by measuring 

the specific levels of the alternative polyadenylation HFE transcripts by means of specific 

Northern blot probes using mRNA from distinct cell lines. To understand the tissue-specific 

3’ end cleavage and polyadenylation, the identification of the auxiliary sequences located 

either upstream or downstream of the poly(A) sites would be of crucial interest. It is 
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accepted that such sequences may serve to stabilize the poly(A) complex assembly by 

providing alternative binding for components of the 3’ end processing machinery 

[Venkataraman et al. 2005]. So, it is possible that the endogenous expression of putative binding 

factors could somehow untangle this tissue-specific regulation.  

In this thesis, relevance was mainly given to two HFE alternative splice transcripts, but others 

(e.g. the skipping of exon 3) may have an important physiological role as well. As for future 

experiments, the modulation of iron levels in different cells and measurement of the relative 

abundance of the HFE alternative splice transcripts could provide pertinent insights about 

their possible function. Moreover, the biological elements that have given the basis for the 

tissue-specificity of the HFE splice isoforms remain to be recognized, as the exon selection is 

known to be influenced by a number of activating and regulatory elements. The variation in 

splice site, exon/intron architecture, number of silencers and enhancers and secondary 

structures are all crucial for efficient exon definition and have a profound effect on the 

splicing pattern of a gene [Hertel 2008; House and Lynch 2008]. So, the analysis of these 

combinatorial actions should be addressed towards understanding the tissue-specificity of 

HFE splicing pattern, especially in what concerns spliceosomal components and splicing 

activators/repressors. For that, the expression of HFE minigenes with specific deletions of 

the putative binding sites of these splicing factors could provide a productive approach to 

unveil the origin and abundance of the HFE splicing isoforms. 

It has been proposed in a study by Floreani et al. [2005] that the HFE exon 2 skipping may be 

caused by a presence of a polymorphism in intron two (IVS2+4 C→T) when in frame with the 

S65C mutation (a mutation that has been found in HH patients), and associated to an iron 

overload phenotype. However, others have defied that hypothesis since the above described 

polymorphism has a high frequency in the normal population or by showing that it is a 

neutral polymorphism in what regards the risk of developing iron overload [de Lucas et al. 2005; 

Curcio et al. 2008]. Curiously, among the several haplotypes where the H63D mutation (which 

has a very controversial role in causing iron overload) has arisen, the most frequent is, in 

fact, in linkage disequilibrium with the IVS2+4 polymorphism [de Lucas et al. 2005; Rochette et al. 

1999]. Hence, we are currently testing whether this polymorphism, associated with H63D or 

not, may trigger the skipping of exon 2. If this is the case, interesting new data may arise in 

what regards the functional consequences of H63D in the HFE protein. 
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The identification of a soluble HFE associated to 2M, which we proved to be secreted to cell 

media in a variety of transfected cell lines, actually provides an enormous deal of interest.  

As previously stated, it may act at the nearby extracellular space of the cells where it is 

produced. Here, it can be an agonist or antagonist of the membrane-bound HFE. To test this 

hypothesis, transfection of both full length HFE and soluble HFE and evaluation of the 

intracellular iron status in various cell lines would disclose whether these molecules act in 

accordance or in conflict. By performing parallel assessments of the levels of the iron 

transporters (e.g. TfR1, DMT1 and ferroportin), we could have a hint of the action mode of 

each HFE variant. This would provide novel insights towards the role of both full length and 

soluble HFE in a variety of tissues, particularly in intestinal enterocytes or splenic 

macrophages.  

On the other hand, the soluble HFE may have the ability of travelling through the 

bloodstream operating in remote tissues. Again, it may act as a positive or negative regulator 

of membrane-bound HFE. One may hypothesize that soluble HFE may interact with cell 

surface expressed receptors (TfR1/TfR2) in hepatic cells and, thus, regulate the systemic net 

iron levels by controlling hepcidin expression. To elucidate the physiological role of this HFE 

variant on hepcidin expression, stable transfections of the full length and soluble HFE 

proteins should be done under iron stimulus, whereas immunoprecipitation experiments 

would allow to identify its putative binding partner(s) (e.g. TfR1 or TfR2). The evaluation of 

phosphorylation status of ERK1/2 and p38 MAPK molecules concomitantly with hepcidin 

mRNA levels of expression should indicate if this is the via implicated in hepcidin regulation 

by the soluble HFE, as it has been recently proposed for the membrane-bound form [Calzolari 

et al. 2006; Gao et al. 2009; Poli et al. 2010]. 

The results obtained in previously suggested experiments may unveil new insights into the 

devise of new therapeutic strategies for iron-related disorders, based on manipulation of 

hepcidin levels or on the use of the soluble HFE isoform as a therapeutic agent. To 

understand the physiological effects of a circulating soluble HFE, it should be very 

enlightening to investigate if its serum levels are altered in individuals with changes in body 

iron stores. By analyzing patients with primary or secondary iron overload and comparing 

them with normal or iron deficiency individuals, the quantification results of the soluble 

form could indicate the therapeutical approach to follow. The phlebotomy treatment 

performed on hemochromatosis patients is difficult to supplant since it is inexpensive, easy, 
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safe and effective. Even so, a soluble HFE therapy may be successful in the C282Y 

homozygote HH patients, where there is very little HFE at the cell surface and the soluble 

HFE could somehow substitute its deficiency. Likewise, novel treatment strategies may be 

pursued in patients in the secondary iron overload disorders or iron deficiency patients, 

according to the function of the soluble HFE and its expression in these patients with iron 

deregulation. 
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