
1 INTRODUCTION 
Inspections of existing structures are a fundamental 
aspect of every structural management system. In 
fact, structural deterioration depends on such a wide 
range of factors, that direct observation must be con-
sidered the prime source of accurate and reliable in-
formation on the structure. 

Inspections are not, however, free of errors and 
uncertainty (Phares et al. 2004). In fact, the result of 
an inspection depends on several factors such as the 
experience of the inspector, the deterioration mecha-
nisms present, location of the bridge, and means 
available for the inspection. Moreover, the results of 
inspections alone do not allow a medium or long 
term planning, and any decisions based on the 
results of inspections alone will result in application 
of maintenance to very deteriorated structures, 
resulting in a very high life-cycle maintenance costs 
(Neves, Frangopol and Cruz 2006; Neves, Frangopol 
and Petcherdchoo 2006). 

For these reasons, it is fundamental to integrate 
the results of inspection with a prediction model for 
the deterioration of existing civil infrastructure. In 
this manner, more accurate predictions of future de-
terioration will be possible, and more efficient deci-
sions can be made. 

In this paper, the deterioration of existing struc-
tures is analyzed considering the model developed 
by the authors (Neves and Frangopol 2005). In this 
model, the performance of structures is defined in 
terms of lifetime probabilistic condition, safety, and 
cost profiles. The main advantages of this model are 
the ability to consider the entire performance history 
of the structure, including deterioration and effects 
of maintenance actions as well as the ability to com-
bine common performance indicators, namely the 
condition index, with more consistent indicators, 
such as the safety index. 

The model proposed by the authors (Neves and 
Frangopol 2005) does not include any information 
resulting from inspections or tests in the analysis, as 
it bases the evolution over time of performance on 
expert judgment alone. 

In this paper, a model for combining expert 
judgment in the form of the model proposed by Ne-
ves and Frangopol (2005) with information from in-
spections is proposed. This new approach is based 
on the use of Bayesian updating combined with 
simulation for improving expert judgment. The re-
sults obtained in the examples analyzed show the 
significant impact on performance prediction of the 
inclusion of information obtained from inspections. 
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ABSTRACT: Current bridge management systems base decisions on the results of visual inspections. These 
systems consider visual inspection results as accurate and disregard any further information available. In the 
present study, the result of each inspection is considered as a random variable, dependent of a wide range of 
factors, that can be integrated with other sources of information, including expert judgment and results of 
other inspections. The combination of different sources of information results in reliable posterior information 
and allows more accurate predictions of future deterioration. In the present paper, performance of an existing 
structure is obtained in terms of the condition index, which describes the effects of deterioration as can be 
seen by an inspector, and the safety index, which measures the safety margin of the structure. The reduction 
in uncertainty associated with periodical inspections is considered through updating of performance profiles. 
The updating of the condition index is direct, as new information on this parameter is collected by the inspec-
tor. In terms of safety, however, only indirect information is collected and the uncertainty reduction associ-
ated with an inspection is significantly lower. Several realistic examples show the impact of inspections on 
the predicted life-cycle performance of structures. 



2 CONDITION, SAFETY AND COST 

In the model proposed by Neves and Frangopol 
(2005) life-cycle performance of an existing struc-
ture is characterized by three different time-
dependent probabilistic indicators: condition index, 
safety index, and the cumulative maintenance cost. 
The condition index is an indicator of deterioration 
as recorded by a bridge inspector. It might be asso-
ciated with the severity of cracking in reinforced 
concrete structures, deterioration of painting and 
rusting in steel structures, or any other visually ob-
servable deterioration effect. The safety index is a 
measure of the reliability or the safety margin of a 
structure, and can only result from a structural safety 
evaluation. 

These two indicators are related, in the sense that 
both refer to the effects of deterioration on a certain 
structure. However, full knowledge on one of these 
factors is not enough to determine the value of the 
other. In fact, the condition index is only influenced 
by the observable defects, and only indirectly in-
cludes the effects of corrosion, fatigue or cracking. 
The safety index includes all these aspects directly. 
In short, the safety index would be a much more in-
teresting measure of performance. However, it is ex-
tremely expensive to determine the safety margin of 
a structure, and the network system reliability analy-
sis of all structures in a large network is close to im-
possible. 

In the model proposed by Frangopol (1998) and 
Neves and Frangopol (2005), the condition and 
safety indices under no maintenance are defined as 
bi-linear functions, in terms of 6 random parameters: 
initial condition, C0, initial safety index, S0, time of 
initiation of deterioration of condition and safety, tic 
and ti, respectively, and deterioration rate of condi-
tion and safety, αc and α, respectively. The effect of 
maintenance actions is defined in terms of 8 random 
parameters, as follows: (a) improvement in condition 
index and safety index immediately after applica-
tion, γc and γ, respectively; (b) time during which the 
deterioration processes of condition index and safety 
index are suppressed, tdc and td, respectively; (c) 
time during which the deterioration rate in condition 
index and safety index are suppressed or reduced, 
tpdc and tpd, respectively; and (d) deterioration rate 
reduction of condition index and safety index, δc and 
δ, respectively. The meaning of each of these ran-
dom variables is shown in Figure 1. 

The mean, standard deviation, histograms and 
percentiles of the life-cycle condition index, safety 
index, and cumulative cost are computed using 
Monte-Carlo simulation. A detailed description of 
the computational platform employed can be found 
Neves and Frangopol (2005). 
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Figure 1. Condition index profile 

3 CONDITION AND SAFETY UPDATING 

When an inspection is executed, new information on 
the condition index of the structure at a certain point 
in time becomes available. If the inspection was per-
fect, it would be possible to know, exactly, the con-
dition index at that point in time. Since the inspec-
tion is affected by errors and uncertainty, this new 
information must be regarded as probabilistic, and 
must be used as such. 

At the time of an inspection, the condition index 
can be characterized as a probabilistic variable, with 
a probability density function dependent on the re-
sults obtained by the inspector, but also on the qual-
ity of the inspection. Common practice defines the 
results of an inspection in terms of a set of possible 
outcomes (0, 1,..., n). However, deterioration has, 
for most cases, a continuous or almost continuous 
evolution, and these results are a simplification of 
reality. We can consider that for a given condition 
index at time T, CT, the result of an inspection, Cins, 
is given as a likelihood function 

( ) ( )TTins CLCCP =| . This function can be approxi-
mated by a normal distribution with mean μ and 
standard deviation σ. The mean will be equal to the 
result of inspection Cins, if the results of inspections 
are unbiased, and lower or higher than Cins, if in-
spectors are consistently optimistic or pessimistic, 
respectively. In this paper, it is assumed that inspec-
tions are unbiased and that a lower condition index 
is associated with a lower deterioration. The uncer-
tainty in the results is measured by the standard de-
viation σ, which is related to the quality of inspec-
tion, dependent on the experience of the inspector 
and the conditions for inspection. 

Based on Bayes theorem, the probability density 
function of the condition index, considering the re-
sult of inspection and the information from expert 
judgment can be defined as (Ang and Tang 2007):  

( ) )(')('' TTT CfCLKCf ⋅⋅=  (1)



where ( )TCf ''  is the probability density function of 
the condition index at time T considering both expert 
judgment and results of inspections, also designated 
posterior distribution, )(' TCf  is the probability den-
sity function of the condition index at time T consid-
ering only expert judgment, also designated prior 
distribution ( )TCL is the likelihood function, and K is 
a normalizing constant defined by: 
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(2)

Considering Monte-Carlo simulation was used to 
computed the probabilistic indicators of perform-
ance, the mean and standard deviation of the condi-
tion index at time τ, can be computed as (Chen and 
Ibrahim 2000, Frangopol and Neves 2008): 
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where τμC  and τσC  are the mean and standard devia-
tion of the condition index at time τ considering 
both expert judgment and results of inspections, iCτ  
is the condition index at time τ associated with sam-
ple i, i

TC  is the condition index at time of inspection 
T associated with sample i, and n is the number of 
samples. 

In terms of the safety index, a similar approach 
can be employed, resulting in a mean and standard 
deviation given, respectively, as: 
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(6) 

where τμS  and τσ S  are the mean and standard devia-
tion of the safety index at time τ considering both 
expert judgment and results of inspections and iSτ  is 
the safety index at time τ associated with sample i. 
In this manner, it is possible to obtain new updated 
condition and safety profiles. It must be noted that 

the inspection only provides direct information on 
the condition index. If the safety index is considered 
independent of the condition index, then the prior 
and posterior safety profiles will coincide. Neverthe-
less, since both the condition index and safety index 
depend on the deterioration, some correlation is to 
be expected, and some information on the safety of 
the structure can be extracted from an inspection. 

4 EXAMPLES 

As an example, the life-cycle condition and safety 
profiles of existing reinforced concrete bridge ele-
ments are analyzed considering data provided in 
Denton (2002). This data is thoroughly analyzed in 
Neves and Frangopol (2005), considering the life-
cycle performance under no maintenance and under 
different maintenance strategies. The condition and 
safety profiles under no maintenance obtained are 
presented in Figure 2. 

As can be observed from these results, under no 
maintenance the performance presents very signifi-
cant dispersion, as denoted by the difference be-
tween the values of the 5 and 95 percentiles (C0.05 
and C0.95, respectively). 
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Figure 2. Condition and safety index under no maintenance 

 
Let's now consider that an inspection is carried 

out at year 20. It is considered that the inspector 
classifies the bridge element as having a condition 
index equal to 2, 3, or 4. Considering the experience 
of the inspector, different levels of quality are de-
fined, each associated with a probability of misclas-
sification. Assuming a normal distribution for the 
likelihood function, the probability of misclassifica-
tion is associated with the different standard devia-
tions, as follows (Frangopol and Neves 2008): 



Quality  Probability of mis-
classification 

Standard 
deviation 

High 5% 0.255 
Medium 10% 0.304 
Low 20% 0.390 
Very Low 40% 0.595 
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Figure 3. Comparison of the mean and standard deviation of 
condition index considering only prior knowledge and prior 
knowledge and inspection  

 

Considering no correlation between the condition 
index and the safety index, this inspection does not 
affect the safety index. However, in terms of condi-
tion, the updated condition index is significantly dif-
ferent from the profile predicted based on expert 
judgment as shown in Figure 3, considering a high 
quality inspection. 

These results show that an inspection has a sig-
nificant impact of the predicted condition index. In 
fact, for different results of inspection, a significant 
reduction in the standard deviation of the condition 
index occurs. Moreover, an important change in the 
predicted mean condition is also observable. The lat-
ter is more dramatic if the observed condition is 2.0, 
as this is significantly different from the mean pre-
dicted value. 

In Figures 4 and 5 the PDFs of the condition in-
dex considering an inspection with an observed con-
dition index equal to 2 and equal to 3, respectively, 
are shown. 
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Figure 4. Comparison of the PDFs of the condition index at 10 
years time intervals considering only prior knowledge and 
prior knowledge and inspection, C = 2 
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Figure 5. Comparison of the PDFs of the condition index at 10 
years time intervals considering only prior knowledge and 
prior knowledge and inspection, C = 3 

 
These PDFs show the effect of maintenance on 

the degree of knowledge on the condition of a struc-
ture. In fact, for both inspection results, the updated 
condition PDFs show a reduction in dispersion but 
also a large shift in the mode. In all cases, there is an 
important change in the distribution of the initial pa-
rameters, namely the initial condition index and the 
deterioration rate.  

4.1 Effect of quality of inspection 
 

An inspection should yield a condition index very 
close to the real condition of the bridge. This is not 
the case for two major reasons. Firstly, it is very dif-
ficult to the inspector to give a precise indication of 
the condition, and usual systems use only a limited 
number of condition classes (e.g., five different 
classes). As a consequence, even for a perfect in-
spection a result of 3 means the condition is close to 
3.0 (i.e., between 2.5 and 3.5). Moreover, limited 
experience, difficult accessibility to the structure, or 
human error also result in errors in the classification 
of the condition of structures. In the present work, as 
previously stated, four different types of inspections 
were considered. A high quality inspection will pro-
vide a good indication on the condition of a structure 
and can be extremely informative. However, the 
amount of information provided is reduced when the 
quality of the inspection decreases. Let's consider an 
example similar to the previous one, but assuming 
different inspection qualities. The results obtained, 
assuming that all inspections resulted in a classifica-
tion of condition index C = 2 are shown in Figure 6. 
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Figure 6. Comparison of the mean and standard deviation of 
the condition index considering only prior knowledge and prior 
knowledge and inspection with different quality levels  

 
Figure 6 shows that, even very low quality in-

spections have a large impact on the condition index 
profiles, resulting in a reduction in the standard de-
viation and an increase in mean condition. This is 
mostly a consequence of the initial data available. In 
fact, the data presented in Denton (2002) refers to a 
large set of bridges with very different ages, and not 
to a single bridge. As the inspection is conducted on 
a single bridge, the information gathered reduces 
significantly the uncertainty over present, past and 
future condition. 

4.2 Effect of inspection on the safety index 
Although an inspection yields no direct information 
on the safety index of a structure, this information 
can be obtained in an indirect manner. In fact, 
changes in the condition index and the safety index 
are both the result of deterioration, and, as a conse-
quence, worst condition index is often associated 
with lower safety. 

The probabilistic relation between the condition 
index and the safety index can be measured by the 
correlation between these two indicators at any point 
in time. If no maintenance is considered and the pa-
rameters defining the profiles under no maintenance 
(i.e., the initial condition, initial safety, deterioration 
rate of condition index and deterioration rate of 
safety index) are assumed independent, the resulting 
condition index and safety index will be independ-
ent. 

If, on the other hand, the parameters defining the 
condition index and the safety index are correlated, 
the resulting profiles will also be correlated, and an 
inspection will improve the knowledge on the condi-
tion index, but also on the safety index.  

In general, no information on the correlation be-
tween parameters defining the condition index and 
the safety index exists. Let's assume the correlations 
between these parameters as denoted in Table 1.  

In this table, the correlation coefficient between 
parameters, ρ, is taken as 0, 0.2, 0.6, and 0.9. 

 

Table 1. Correlation coefficient between parameters defining 
the condition index and the safety index under no maintenance 
          αc  α C0 S0 
αc 1 ρ 0  0  
 α ρ 1 0 0 
C0 0 0 1 ρ 
S0 0 0 ρ 1 

 
In Figure 7 the safety index profiles are obtained 

considering that an inspection is performed at year 
20 and a condition index equal to 2.0 is observed. 
These results show that, even for relatively low cor-
relation coefficients, there is a significant improve-
ment in mean safety, as a consequence of the ob-
served condition index being better than the initial 
prediction. Moreover, a reduction in the dispersion 
of the safety index over the entire lifetime is also ob-
served. 
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Figure 7. Comparison of the mean and standard deviation of 
the safety index considering (a) only prior knowledge and (b) 
prior knowledge and inspection with different correlations  

5 UPDATE OF INITIAL PARAMETERS 

The condition index and safety index profiles are de-
fined in terms of a set of random parameters. When 
updating is carried out, new information on these pa-
rameters becomes available. This information can be 
used to make more accurate predictions for other 
structures. 

As an example, in Figure 8, the distribution of the 
deterioration rate of condition considering only ex-
pert judgment is compared to the updated distribu-
tion. Inspection causes a reduction in uncertainty, 
but also a reduction in the deterioration rate, as the 
observed condition is better (i.e., less deteriorated) 
than initially predicted. 

 



 
Figure 8. Comparison of the deterioration rate of condition 
considering only prior knowledge and prior knowledge and in-
spection  

6 CONCLUSIONS 

In the present study, a methodology to combine ex-
pert judgment and results of inspection on the life-
cycle prediction of deteriorating structures is pro-
posed. The methodology uses the probabilistic dete-
rioration model proposed by the authors. The effects 
on this prediction of inspections are defined in a 
Bayesian framework. The obtained results show that 
an inspection, even of low quality, results in a sig-
nificant reduction in uncertainty. 

The results obtained show the importance of in-
corporating the outcome of inspections in the dete-
rioration models in a consistent manner. As a result, 
more accurate predictions of performance can be ob-
tained, and more sound decisions can be made.  
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