On the monoids of transformations that preserve the order and a uniform partition

Vítor H. Fernandes ${ }^{1}$ and Teresa M. Quinteiro ${ }^{2}$

July 29, 2009

Abstract

In this paper we consider the monoid $\mathcal{O}_{m \times n}$ of all order-preserving full transformations on a chain with $m n$ elements that preserve a uniform m-partition and its submonoids $\mathcal{O}_{m \times n}^{+}$and $\mathcal{O}_{m \times n}^{-}$of all extensive transformations and of all co-extensive transformations, respectively. We give formulas for the number of elements of these monoids and determine their ranks. Moreover, we construct a bilateral semidirect product decomposition of $\mathcal{O}_{m \times n}$ in terms of $\mathcal{O}_{m \times n}^{-}$and $\mathcal{O}_{m \times n}^{+}$.

2000 Mathematics subject classification: 20M10, 20M20, 20 M 35.
Keywords: order-preserving transformations, equivalence-preserving transformations.

Introduction and preliminaries

Let X be a set and denote by $\mathcal{T}(X)$ the monoid (under composition) of all full transformations on X. Let ρ be an equivalence relation on X. We denote by $\mathcal{T}_{\rho}(X)$ the submonoid of $\mathcal{T}(X)$ of all transformations that preserve the equivalence relation ρ, i.e.

$$
\mathcal{T}_{\rho}(X)=\{\alpha \in \mathcal{T}(X) \mid(a \alpha, b \alpha) \in \rho, \text { for all }(a, b) \in \rho\} .
$$

This monoid was studied by Huisheng in [14] who determined its regular elements and described its Green relations.

For $n \in \mathbb{N}$, let X_{n} be a chain with n elements, say $X_{n}=\{1<2<\cdots<n\}$, and denote the monoid $\mathcal{T}\left(X_{n}\right)$ simply by \mathcal{T}_{n}. Let

$$
\mathcal{T}_{n}^{+}=\left\{\alpha \in \mathcal{T}_{n} \mid x \leq x \alpha, \text { for all } x \in X_{n}\right\} \quad \text { and } \quad \mathcal{T}_{n}^{-}=\left\{\alpha \in \mathcal{T}_{n} \mid x \alpha \leq x, \text { for all } x \in X_{n}\right\},
$$

i.e. the submonoids of \mathcal{T}_{n} of all extensive transformations and of all co-extensive transformations, respectively. Let

$$
\mathcal{O}_{n}=\left\{\alpha \in \mathcal{T}_{n} \mid x \leq y \text { implies } x \alpha \leq y \alpha, \text { for all } x, y \in X_{n}\right\}
$$

be the submonoid of \mathcal{T}_{n} whose elements are the order-preserving transformations and let

$$
\mathcal{O}_{n}^{+}=\mathcal{T}_{n}^{+} \cap \mathcal{O}_{n} \quad \text { and } \quad \mathcal{O}_{n}^{-}=\mathcal{T}_{n}^{-} \cap \mathcal{O}_{n}
$$

be the submonoids of \mathcal{O}_{n} of all extensive transformations and of all co-extensive transformations, respectively.
The monoid \mathcal{O}_{n} has been extensively studied since the sixties. In fact, in 1962, Aǐzenštat [1, 2] showed that the congruences of \mathcal{O}_{n} are exactly the Rees congruences and gave a monoid presentation for \mathcal{O}_{n}, in terms

[^0]of $2 n-2$ idempotent generators, from which it can be deduced that the only non-trivial automorphism of \mathcal{O}_{n} where $n>1$ is that given by conjugation by the permutation $(1 n)(2 n-1) \cdots(\lfloor n / 2\rfloor\lceil n / 2\rceil+1)$. In 1971, Howie [12] calculated the cardinal and the number of idempotents of \mathcal{O}_{n} and later (1992), jointly with Gomes [9], determined its rank and idempotent rank. Recall that the [idempotent] rank of a finite [idempotent generated] monoid is the cardinality of a least-size [idempotent] generating set. More recently, Fernandes et al. [8] described the endomorphisms of the semigroup \mathcal{O}_{n} by showing that there are three types of endomorphism: automorphisms, constants, and a certain type of endomorphism with two idempotents in the image. The monoid \mathcal{O}_{n} also played a main role in several other papers $[11,22,3,5,20,6]$ where the central topic concerns the problem of the decidability of the pseudovariety generated by the family $\left\{\mathcal{O}_{n} \mid n \in \mathbb{N}\right\}$. This question was posed by J.-E. Pin in 1987 in the "Szeged International Semigroup Colloquium" and is still unanswered.

Now, let $m, n \in \mathbb{N}$ and let ρ be the equivalence relation on $X_{m n}$ defined by

$$
\rho=\left(A_{1} \times A_{1}\right) \cup\left(A_{2} \times A_{2}\right) \cup \cdots \cup\left(A_{m} \times A_{m}\right)
$$

where $A_{i}=\{(i-1) n+1,(i-1) n+2, \ldots, i n\}$, for $i \in\{1, \ldots, m\}$. Notice that the ρ-classes A_{i}, with $1 \leq i \leq m$, form a uniform m-partition of $X_{m n}$. Denote by $\mathcal{T}_{m \times n}$ the submonoid $\mathcal{T}_{\rho}\left(X_{m n}\right)$ of $\mathcal{T}_{m n}$ and let

$$
\mathcal{T}_{m \times n}^{+}=\mathcal{T}_{m \times n} \cap \mathcal{T}_{m n}^{+} \quad \text { and } \quad \mathcal{T}_{m \times n}^{-}=\mathcal{T}_{m \times n} \cap \mathcal{T}_{m n}^{-}
$$

be the submonoids of $\mathcal{T}_{m \times n}$ of all extensive transformations and of all co-extensive transformations, respectively.
Regarding the rank of $\mathcal{T}_{m \times n}$, first, Huisheng [13] proved that it is at most 6 and, later, Araújo and Schneider [4] improved this result by showing that, for $\left|X_{m n}\right| \geq 3$, the rank of $\mathcal{T}_{m \times n}$ is precisely 4.

Denote by $\mathcal{O}_{m \times n}$ the submonoid of $\mathcal{T}_{m \times n}$ of all order-preserving transformations that preserve the equivalence ρ, i.e.

$$
\mathcal{O}_{m \times n}=\mathcal{T}_{m \times n} \cap \mathcal{O}_{m n}
$$

and consider its submonoids

$$
\mathcal{O}_{m \times n}^{+}=\mathcal{T}_{m \times n}^{+} \cap \mathcal{O}_{m n} \quad \text { and } \quad \mathcal{O}_{m \times n}^{-}=\mathcal{T}_{m \times n}^{-} \cap \mathcal{O}_{m n}
$$

of all extensive transformations and of all co-extensive transformations, respectively.

Example 0.1 Let

$$
\begin{aligned}
& \alpha_{1}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 3 & 3 & 2 & 9 & 12 & 10 & 10 & 5 & 6 & 6 & 8
\end{array}\right), \alpha_{2}=\left(\begin{array}{cccc|ccc|c|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 5 & 5 & 6 & 6 & 6 & 6 & 7 & 10 & 11 & 11 & 11
\end{array}\right), \\
& \alpha_{3}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 3 & 3 & 4 & 9 & 9 & 10 & 10 & 10 & 11 & 11 & 12
\end{array}\right) \text { and } \alpha_{4}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 2 & 2 & 3 & 3 & 4 & 4 & 5 & 6 & 8 & 8
\end{array}\right) \text {. }
\end{aligned}
$$

Then, we have: $\alpha_{1} \in \mathcal{T}_{3 \times 4}$ but $\alpha_{1} \notin \mathcal{O}_{3 \times 4} ; \alpha_{2} \in \mathcal{O}_{3 \times 4}$ but $\alpha_{2} \notin \mathcal{O}_{3 \times 4}^{+}$and $\alpha_{2} \notin \mathcal{O}_{3 \times 4}^{-} ;$and $\alpha_{3} \in \mathcal{O}_{3 \times 4}^{+}$and $\alpha_{4} \in \mathcal{O}_{3 \times 4}^{-}$.

Notice that, as \mathcal{O}_{n}^{-}and \mathcal{O}_{n}^{+}, the monoids $\mathcal{O}_{m \times n}^{-}$and $\mathcal{O}_{m \times n}^{+}$are isomorphic. In fact, the function which maps each transformation $\alpha \in \mathcal{O}_{m \times n}^{-}$into the transformation $\alpha^{\prime} \in \mathcal{O}_{m \times n}^{+}$defined by $x \alpha^{\prime}=m n+1-(m n+1-x) \alpha$, for all $x \in X_{m n}$, is an isomorphism of monoids. Moreover, for $\alpha \in \mathcal{O}_{m \times n}$, we have $\alpha=\alpha_{1} \alpha_{2}$, for some $\alpha_{1} \in \mathcal{O}_{m \times n}^{-}$ and $\alpha_{2}=\mathcal{O}_{m \times n}^{+}$. For instance, we may take the transformations α_{1} and α_{2} defined by

$$
x \alpha_{1}=\left\{\begin{array}{ll}
x \alpha & \text { if } x \alpha \leq x \\
x & \text { if } x \alpha \geq x
\end{array} \quad \text { and } \quad x \alpha_{2}= \begin{cases}x \alpha & \text { if } x \leq x \alpha \\
x & \text { if } x \geq x \alpha\end{cases}\right.
$$

for all $x \in X_{m n}$. Notice that, in this case, we also have $\alpha=\alpha_{2} \alpha_{1}$.
The monoid $\mathcal{O}_{m \times n}$ was considered by Huisheng and Dingyu in [15] who described its Green relations. In this paper we determine the cardinals and the ranks of the monoids $\mathcal{O}_{m \times n}, \mathcal{O}_{m \times n}^{+}$and $\mathcal{O}_{m \times n}^{-}$.

Next, let S and T be two semigroups. Let $\delta: T \longrightarrow \mathcal{T}(S)$ be an anti-homomorphism of semigroups and let $\varphi: S \longrightarrow \mathcal{T}(T)$ be a homomorphism of semigroups. For $s \in S$ and $u \in T$, denote $(s)(u) \delta$ by $u: s$ and $(u)(s) \varphi$ by u^{s}. We say that δ is a left action of T on S and that φ is a right action of S on T if they verify the following rules:
(SPR) $(u v)^{s}=u^{v \cdot s} v^{s}$, for $s \in S$ and $u, v \in T$ (Sequential Processing Rule); and
$(\mathrm{SCR}) u \cdot(s r)=(u \cdot s)\left(u^{s} \cdot r\right)$, for $s, r \in S$ and $u \in T($ Serial Composition Rule $)$.
In [16] Kunze proved that the set $S \times T$ is a semigroup with respect to the following multiplication:

$$
(s, u)(r, v)=\left(s(u \cdot r), u^{r} v\right)
$$

for $s, r \in S$ and $u, v \in T$. We denote this semigroup by $S_{\delta} \bowtie_{\varphi} T$ (or simply by $S \bowtie T$, if it is not ambiguous) and call it the bilateral semidirect product of S and T associated with δ and φ.

We notice that this concept was strongly motivated by automata theoretic ideas.
If S and T are monoids and the actions δ and φ preserve the identity (i.e. $1 . s=s$, for $s \in S$, and $u^{1}=u$, for $u \in T$) and are monoidal (i.e. $u \cdot 1=1$, for $u \in T$, and $1^{s}=1$, for $s \in S$), then $S \bowtie T$ is a monoid with identity $(1,1)$.

Observe that, if φ is a trivial action (i.e. $(S) \varphi=\left\{\operatorname{id}_{T}\right\}$) then $S \bowtie T=S * T$ is an usual semidirect product, if δ is a trivial action (i.e. $(T) \delta=\left\{\operatorname{id}_{S}\right\}$) then $S \bowtie T$ coincides with a reverse semidirect product $T *_{r} S$ (by interchanging the coordinates) and if both actions are trivial then $S \bowtie T$ is the usual direct product $S \times T$. Observe also that the bilateral semidirect product is quite different from the Rhodes and Tilson [19] double semidirect product, where the second components multiply always as a direct product.

In [17] Kunze proved that the monoid \mathcal{O}_{n} is a quotient of a bilateral semidirect product of its subsemigroups \mathcal{O}_{n}^{-}and \mathcal{O}_{n}^{+}. See also $[18,7]$. We finish this paper by constructing a bilateral semidirect product decomposition of $\mathcal{O}_{m \times n}$ in terms of is submonoids $\mathcal{O}_{m \times n}^{-}$and $\mathcal{O}_{m \times n}^{+}$, thus generalizing Kunze's result.

1 Wreath Products of Transformation Semigroups

In [4] Araújo and Schneider proved that the rank of $\mathcal{T}_{m \times n}$ is 4 , by using the concept of wreath product of transformation semigroups. This approach will be also very useful in this paper.

For simplicity, we define the wreath product $\mathcal{T}_{n} \prec \mathcal{T}_{m}$ of \mathcal{T}_{n} and \mathcal{T}_{m} as being the monoid with underlying set $\mathcal{T}_{n}^{m} \times \mathcal{T}_{m}$ and multiplication defined by

$$
\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right)\left(\alpha_{1}^{\prime}, \ldots, \alpha_{m}^{\prime} ; \beta^{\prime}\right)=\left(\alpha_{1} \alpha_{1 \beta}^{\prime}, \ldots, \alpha_{m} \alpha_{m \beta}^{\prime} ; \beta \beta^{\prime}\right)
$$

for all $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right),\left(\alpha_{1}^{\prime}, \ldots, \alpha_{m}^{\prime} ; \beta^{\prime}\right) \in \mathcal{T}_{n}^{m} \times \mathcal{T}_{m}$.
Let $\alpha \in \mathcal{T}_{m \times n}$ and let $\beta=\alpha / \rho \in \mathcal{T}_{m}$ be the quotient map of α by ρ, i.e. for all $j \in\{1, \ldots, m\}$, we have $A_{j} \alpha \subseteq A_{j \beta}$. For each $j \in\{1, \ldots, m\}$, define $\alpha_{j} \in \mathcal{T}_{n}$ by

$$
k \alpha_{j}=((j-1) n+k) \alpha-(j \beta-1) n
$$

for all $k \in\{1, \ldots, n\}$. Let $\bar{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} ; \beta\right) \in \mathcal{T}_{n}^{m} \times \mathcal{T}_{m}$. With this notation, the function

$$
\psi: \begin{array}{ll}
\mathcal{T}_{m \times n} & \longrightarrow \mathcal{T}_{n} \backslash \mathcal{T}_{m} \\
\alpha & \longmapsto \bar{\alpha}
\end{array}
$$

is an isomorphism (see [4, Lemma 2.1]). From this fact, one can immediately conclude that the cardinality of $\mathcal{T}_{m \times n}$ is $n^{n m} m^{m}$.

Example 1.1 Consider the transformation

$$
\alpha=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 3 & 3 & 2 & 9 & 12 & 10 & 10 & 5 & 6 & 6 & 8
\end{array}\right) \in \mathcal{T}_{3 \times 4}
$$

Then, we have $\bar{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; \beta\right)$, with $\beta=\left(\begin{array}{ccc}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right), \alpha_{1}=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 1 & 3 & 3 & 2\end{array}\right), \alpha_{2}=\left(\begin{array}{cccc}1 & 2 & 3 & 4 \\ 1 & 4 & 2 & 2\end{array}\right)$ and $\alpha_{3}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 2 & 2 & 4\end{array}\right)$.

Notice that the restriction of ψ to $\mathcal{O}_{m \times n}$ is not, in general, an isomorphism from $\mathcal{O}_{m \times n}$ into the wreath product $\mathcal{O}_{n} 2 \mathcal{O}_{m}$ (that may be defined similarly to $\mathcal{T}_{n}\left\langle\mathcal{I}_{m}\right)$. For instance, for $m=n=2$, take $\alpha=\left(\alpha_{1}, \alpha_{2} ; \beta\right)$, with $\alpha_{1}=\left(\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right), \alpha_{2}=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$ and $\beta=\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right)$. Then $\alpha \in \mathcal{O}_{2} \prec \mathcal{O}_{2}$ and $\alpha \psi^{-1}=\left(\begin{array}{ll|ll}1 & 2 & 3 & 4 \\ 2 & 2 & 1 & 1\end{array}\right) \notin \mathcal{O}_{2 \times 2}$.

In fact, the monoid $\mathcal{O}_{m \times n}$ is not, in general, isomorphic to $\mathcal{O}_{m} \prec \mathcal{O}_{n}$. For example, we have $\left|\mathcal{O}_{2 \times 2}\right|=19<$ $27=\left|\mathcal{O}_{2} \prec \mathcal{O}_{2}\right|$.

Consider

$$
\overline{\mathcal{O}}_{m \times n}=\left\{\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \mathcal{O}_{n}^{m} \times \mathcal{O}_{m} \mid j \beta=(j+1) \beta \text { implies } n \alpha_{j} \leq 1 \alpha_{j+1}, \text { for all } j \in\{1, \ldots, m-1\}\right\}
$$

Notice that, if $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}$ and $1 \leq i<j \leq m$ are such that $i \beta=j \beta$, then $n \alpha_{i} \leq 1 \alpha_{j}$.
Lemma $1.2 \overline{\mathcal{O}}_{m \times n}=\mathcal{O}_{m \times n} \psi$.
Proof. First, let $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}$ and take $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \psi^{-1} \in \mathcal{T}_{m \times n}$. Let $x, y \in\{1, \ldots, m n\}$ be such that $x \leq y$. Then $x \in A_{i}$ and $y \in A_{j}$, for some $1 \leq i \leq j \leq m$. Hence, $x \alpha=(x-(i-1) n) \alpha_{i}+(i \beta-1) n$ and $y \alpha=(y-(j-1) n) \alpha_{j}+(j \beta-1) n$. If $i=j$ then

$$
\begin{aligned}
x \leq y & \Rightarrow x-(j-1) n \leq y-(j-1) n \\
& \Rightarrow(x-(j-1) n) \alpha_{j} \leq(y-(j-1) n) \alpha_{j} \\
& \Rightarrow x \alpha=(x-(j-1) n) \alpha_{j}+(j \beta-1) n \leq(y-(j-1) n) \alpha_{j}+(j \beta-1) n=y \alpha .
\end{aligned}
$$

If $i<j$ and $i \beta<j \beta$ then $x \alpha \leq(i \beta) n \leq(j \beta-1) n<(j \beta-1) n+1 \leq y \alpha$. Finally, if $i<j$ and $i \beta=j \beta$, then $(x-(i-1) n) \alpha_{i} \leq n \alpha_{i} \leq 1 \alpha_{j} \leq(x-(j-1) n) \alpha_{j}$, whence

$$
x \alpha=(x-(i-1) n) \alpha_{i}+(i \beta-1) n \leq(y-(j-1) n) \alpha_{j}+(i \beta-1) n=(y-(j-1) n) \alpha_{j}+(j \beta-1) n=y \alpha .
$$

Hence, α is an order-preserving transformation and so $\overline{\mathcal{O}}_{m \times n} \subseteq \mathcal{O}_{m \times n} \psi$.
Conversely, let $\alpha \in \mathcal{O}_{m \times n}$ and $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right)=\alpha \psi$.
We start by showing that $\beta \in \mathcal{O}_{m}$. Let $i, j \in\{1, \ldots, m\}$ be such that $i \leq j$. As in $\in A_{i}$ and $A_{i} \alpha \subseteq A_{i \beta}$, we have $(i n) \alpha \in A_{i \beta}$. Similarly, $(j n) \alpha \in A_{j \beta}$. On the other hand, $i \leq j$ implies $i n \leq j n$ and so (in) $\alpha \leq(j n) \alpha$. It follows that $i \beta \leq j \beta$.

Next, we prove that $\alpha_{j} \in \mathcal{O}_{n}$, for all $1 \leq j \leq m$. Let $j \in\{1, \ldots, m\}$ and let $x, y \in\{1, \ldots, n\}$ be such that $x \leq y$. Then $(j-1) n+x \leq(j-1) n+y$, whence $((j-1) n+x) \alpha \leq((j-1) n+y) \alpha$ and so $x \alpha_{j}=((j-1) n+x) \alpha-(j \beta-1) n \leq((j-1) n+y) \alpha-(j \beta-1) n=y \alpha_{j}$.

Finally, let $j \in\{1, \ldots, m-1\}$ be such that $j \beta=(j+1) \beta$. Then, as $\alpha \in \mathcal{O}_{m n}$, we have
$n \alpha_{j}=((j-1) n+n) \alpha-(j \beta-1) n=(j n) \alpha-(j \beta-1) n \leq(j n+1) \alpha-(j \beta-1) n=(j n+1) \alpha-((j+1) \beta-1) n=1 \alpha_{j+1}$.
Thus, $\mathcal{O}_{m \times n} \psi \subseteq \overline{\mathcal{O}}_{m \times n}$ and so $\overline{\mathcal{O}}_{m \times n}=\mathcal{O}_{m \times n} \psi$, as required.
It follows immediately that:
Proposition 1.3 The set $\overline{\mathcal{O}}_{m \times n}$ is a submonoid of $\mathcal{T}_{n} \backslash \mathcal{T}_{m}$ (and of $\mathcal{O}_{n} \backslash \mathcal{O}_{m}$) isomorphic to $\mathcal{O}_{m \times n}$.

Next, consider

$$
\overline{\mathcal{T}}_{m \times n}^{+}=\left\{\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \mathcal{T}_{n}^{m} \times \mathcal{T}_{m}^{+} \mid j \beta=j \text { implies } \alpha_{j} \in \mathcal{T}_{n}^{+}, \text {for all } j \in\{1, \ldots, m\}\right\} .
$$

Notice that, as $\beta \in \mathcal{T}_{m}^{+}$implies $m \beta=m$, then $\overline{\mathcal{T}}_{m \times n}^{+} \subseteq \mathcal{T}_{n}^{m-1} \times \mathcal{T}_{n}^{+} \times \mathcal{T}_{m}^{+}$.
Lemma 1.4 $\overline{\mathcal{T}}_{m \times n}^{+}=\mathcal{T}_{m \times n}^{+} \psi$.
Proof. In order to show that $\overline{\mathcal{T}}_{m \times n}^{+} \subseteq \mathcal{T}_{m \times n}^{+} \psi$, let $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{T}}_{m \times n}^{+}$and take $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \psi^{-1}$. We aim to show that $\alpha \in \mathcal{T}_{m n}^{+}$. Let $x \in\{1, \ldots, m n\}$ and take $j \in\{1, \ldots, m\}$ such that $x \in A_{j}$. Then $x \alpha \in A_{j \beta}$ and, as $\beta \in \mathcal{T}_{m}^{+}$, we have $j \leq j \beta$. If $j<j \beta$ then $j \leq j \beta-1$ and so $x \leq j n \leq(j \beta-1) n<(j \beta-1) n+1 \leq x \alpha$. If $j \beta=j$ then $\alpha_{j} \in \mathcal{T}_{m}^{+}$and so $x=(x-(j-1) n)+(j-1) n \leq(x-(j-1) n) \alpha_{j}+(j-1) n=x \alpha$. Hence $\alpha \in \mathcal{T}_{m n}^{+}$.

Conversely, let $\alpha \in \mathcal{T}_{m \times n}^{+}$and $\alpha \psi=\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right)$.
First, observe that, for all $j \in\{1, \ldots, m\}$, as $A_{j} \alpha \subseteq A_{j \beta}$ and $\alpha \in \mathcal{T}_{m \times n}^{+}$, we have $j n \leq(j n) \alpha \leq(j \beta) n$ and so $j \leq j \beta$. Hence $\beta \in \mathcal{T}_{m}^{+}$.

Next, let $j \in\{1, \ldots, m\}$ be such that $j \beta=j$ and take $k \in\{1, \ldots, n\}$. Then

$$
k \alpha_{j}=((j-1) n+k) \alpha-(j \beta-1) n \geq(j-1) n+k-(j \beta-1) n=(j-1) n+k-(j-1) n=k .
$$

Hence, $\alpha_{j} \in \mathcal{T}_{n}^{+}$and so $\mathcal{T}_{m \times n}^{+} \psi \subseteq \overline{\mathcal{T}}_{m \times n}^{+}$, as required.

Thus, we have:
Proposition 1.5 The set $\overline{\mathcal{T}}_{m \times n}^{+}$is a submonoid of $\mathcal{T}_{n} \prec \mathcal{T}_{m}$ isomorphic to $\mathcal{T}_{m \times n}^{+}$.

Now, let

$$
\begin{aligned}
\overline{\mathcal{O}}_{m \times n}^{+}= & \overline{\mathcal{O}}_{m \times n} \cap \overline{\mathcal{T}}_{m \times n}^{+} \\
= & \left\{\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \mathcal{O}_{n}^{m-1} \times \mathcal{O}_{n}^{+} \times \mathcal{O}_{m}^{+} \mid j \beta=(j+1) \beta \text { implies } n \alpha_{j} \leq 1 \alpha_{j+1}\right. \text { and } \\
& \left.j \beta=j \text { implies } \alpha_{j} \in \mathcal{O}_{n}^{+}, \text {for all } j \in\{1, \ldots, m-1\}\right\}
\end{aligned}
$$

As ψ is injective, by propositions 1.3 and 1.5 , we have

$$
\overline{\mathcal{O}}_{m \times n}^{+}=\mathcal{O}_{m \times n} \psi \cap \mathcal{T}_{m \times n}^{+} \psi=\left(\mathcal{O}_{m \times n} \cap \mathcal{T}_{m \times n}^{+}\right) \psi=\mathcal{O}_{m \times n}^{+} \psi
$$

and so:
Corollary 1.6 The set $\overline{\mathcal{O}}_{m \times n}^{+}$is a submonoid of $\mathcal{T}_{n} \imath \mathcal{T}_{m}$ (and of $\mathcal{O}_{n} \prec \mathcal{O}_{m}$) isomorphic to $\mathcal{O}_{m \times n}^{+}$.

Similarly, being

$$
\begin{aligned}
\overline{\mathcal{O}}_{m \times n}^{-} & =\overline{\mathcal{O}}_{m \times n} \cap \overline{\mathcal{T}}_{m \times n}^{-} \\
& =\left\{\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \mathcal{O}_{n}^{-} \times \mathcal{O}_{n}^{m-1} \times \mathcal{O}_{m}^{-} \mid(j-1) \beta=j \beta \text { implies } n \alpha_{j-1} \leq 1 \alpha_{j}\right. \text { and } \\
& \left.j \beta=j \text { implies } \alpha_{j} \in \mathcal{O}_{n}^{-}, \text {for all } j \in\{2, \ldots, m\}\right\},
\end{aligned}
$$

we have:
Proposition 1.7 The set $\overline{\mathcal{O}}_{m \times n}^{-}$is a submonoid of $\mathcal{T}_{n} \prec \mathcal{T}_{m}$ (and of $\mathcal{O}_{n} \backslash \mathcal{O}_{m}$) isomorphic to $\mathcal{O}_{m \times n}^{-}$.

2 Cardinals

In this section we use the previous bijections to obtain formulas for the number of elements of the monoids $\mathcal{O}_{m \times n}, \mathcal{O}_{m \times n}^{+}$and $\mathcal{O}_{m \times n}^{-}$.

In order to count the elements of $\mathcal{O}_{m \times n}$, on one hand, for each transformation $\beta \in \mathcal{O}_{m}$, we determine the number of sequences $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathcal{O}_{n}^{m}$ such that $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}$ and, on the other hand, we notice that this last number just depends of the kernel of β (and not of β itself).

With this purpose, let $\beta \in \mathcal{O}_{m}$. Suppose that $\operatorname{Im} \beta=\left\{b_{1}<b_{2}<\cdots<b_{t}\right\}$, for some $1 \leq t \leq m$, and define $k_{i}=\left|b_{i} \beta^{-1}\right|$, for $i=1, \ldots, t$. Being β an order-preserving transformation, the sequence $\left(k_{1}, \ldots, k_{t}\right)$ determines the kernel of β : we have $\left\{k_{1}+\cdots+k_{i-1}+1, \ldots, k_{1}+\cdots+k_{i}\right\} \beta=\left\{b_{i}\right\}$, for $i=1, \ldots, t$ (considering $k_{1}+\cdots+k_{i-1}+1=1$, with $i=1$). We define the kernel type of β as being the sequence $\left(k_{1}, \ldots, k_{t}\right)$. Notice that $1 \leq k_{i} \leq m$, for $i=1, \ldots, t$, and $k_{1}+k_{2}+\cdots+k_{t}=m$.

Now, recall that the number of non-decreasing sequences of length k from a chain with n elements (which is the same as the number of k-combinations with repetition from a set with n elements) is $\binom{n+k-1}{k}=\binom{n+k-1}{n-1}$ (see [10], for example). Next, notice that, as a sequence $\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathcal{O}_{n}^{k}$ satisfies the condition $n \alpha_{j} \leq 1 \alpha_{j+1}$, for all $1 \leq j \leq k-1$, if and only if the concatenation sequence of the images of the transformations $\alpha_{1}, \ldots, \alpha_{k}$ (by this order) is still a non-decreasing sequence, then we have $\binom{n+k n-1}{n-1}$ such sequences.

Since $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}$ if and only if, for all $1 \leq i \leq t, \alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}}$ are k_{i} orderpreserving transformations such that the concatenation sequence of their images (by this order) is still a nondecreasing sequence, then we have $\prod_{i=1}^{t}\binom{k_{i} n+n-1}{n-1}$ elements in $\overline{\mathcal{O}}_{m \times n}$ whose $(m+1)$-component is β.

Finally, now it is also clear that if β and β^{\prime} are two elements of \mathcal{O}_{m} with the same kernel type then $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}$ if and only if $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta^{\prime}\right) \in \overline{\mathcal{O}}_{m \times n}$. Thus, as the number of transformations $\beta \in \mathcal{O}_{m}$ with kernel type of length $t(1 \leq t \leq m)$ coincides with the number of t-combinations (without repetition) from a set with m elements, it follows:

Theorem $2.1\left|\mathcal{O}_{m \times n}\right|=\sum_{\substack{1 \leq k_{1}, \ldots, k_{t} \leq m \\ k_{1}+\cdots+t=m \\ 1 \leq t \leq m}}\binom{m}{t} \prod_{i=1}^{t}\binom{k_{i} n+n-1}{n-1}$.

The table below gives us an idea of the size of the monoid $\mathcal{O}_{m \times n}$.

$m \backslash n$	1	2	3	4	5	6
1	1	3	10	35	126	462
2	3	19	156	1555	17878	225820
3	10	138	2845	78890	2768760	115865211
4	35	1059	55268	4284451	454664910	61824611940
5	126	8378	1109880	241505530	77543615751	34003513468232
6	462	67582	22752795	13924561150	13556873588212	19134117191404027

Next, we describe a process to count the number of elements of $\mathcal{O}_{m \times n}^{+}$.
First, recall that the cardinal of \mathcal{O}_{n}^{+}is the $n^{\text {th }}$-Catalan number, i.e. $\left|\mathcal{O}_{n}^{+}\right|=\frac{1}{n+1}\binom{2 n}{n}$. See [21].
It is also useful to consider the following numbers:

$$
\theta(n, i)=\left|\left\{\alpha \in \mathcal{O}_{n}^{+} \mid \quad 1 \alpha=i\right\}\right|,
$$

for $1 \leq i \leq n$. Clearly, we have $\left|\mathcal{O}_{n}^{+}\right|=\sum_{i=1}^{n} \theta(n, i)$. Moreover, for $2 \leq i \leq n-1$, we have

$$
\theta(n, i)=\theta(n, i+1)+\theta(n-1, i-1) .
$$

In fact, $\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=i\right\}=\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=i<2 \alpha\right\} \dot{\cup}\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=2 \alpha=i\right\}$ and it is easy to show that the function which maps each transformation $\beta \in\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=i<2 \alpha\right\}$ into the transformation

$$
\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
i+1 & 2 \beta & \ldots & n \beta
\end{array}\right) \in\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=i+1\right\}
$$

and the function which maps each transformation $\beta \in\left\{\alpha \in \mathcal{O}_{n-1}^{+} \mid 1 \alpha=i-1\right\}$ into the transformation

$$
\left(\begin{array}{cccccc}
1 & 2 & 3 & \ldots & n-1 & n \\
i & i & 2 \beta+1 & \ldots & (n-2) \beta+1 & (n-1) \beta+1
\end{array}\right) \in\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=2 \alpha=i\right\}
$$

are bijections. Thus

$$
\begin{aligned}
\theta(n, i) & =\left|\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=i<2 \alpha\right\}\right|+\left|\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=2 \alpha=i\right\}\right| \\
& =\left|\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=i+1\right\}\right|+\left|\left\{\alpha \in \mathcal{O}_{n-1}^{+} \mid 1 \alpha=i-1\right\}\right| \\
& =\theta(n, i+1)+\theta(n-1, i-1) .
\end{aligned}
$$

Also, it is not hard to prove that $\theta(n, 2)=\theta(n, 1)=\sum_{i=1}^{n-1} \theta(n-1, i)=\left|\mathcal{O}_{n-1}^{+}\right|$.
Now, we can prove:
Lemma 2.2 For all $1 \leq i \leq n, \theta(n, i)=\frac{i}{n}\binom{2 n-i-1}{n-i}=\frac{i}{n}\binom{2 n-i-1}{n-1}$.
Proof. We prove the lemma by induction on n.
For $n=1$, it is clear that $\theta(1,1)=1=\frac{1}{1}\binom{(2-1-1}{1-1}$.
Let $n \geq 2$ and suppose that the formula is valid for $n-1$.
Next, we prove the formula for n by induction on i.
For $i=1$, as observed above, we have $\theta(n, 1)=\left|\mathcal{O}_{n-1}^{+}\right|=\frac{1}{n}\binom{2 n-2}{n-1}$.
For $i=2$, we have $\theta(n, 2)=\theta(n, 1)=\frac{1}{n}\binom{2 n-2}{n-1}=\frac{2}{n} \frac{(2 n-2)!}{(n-1)!(n-1)!} \frac{n-1}{2 n-2}=\frac{2}{n} \frac{(2 n-3)!}{(n-1)!(n-2)!}=\frac{2}{n}\binom{2 n-3}{n-1}$.
Now, suppose that the formula is valid for $i-1$, with $3 \leq i \leq n$. Then, using both induction hypothesis on i and on n in the second equality, we have $\theta(n, i)=\theta(n, i-1)-\theta(n-1, i-2)=\frac{i-1}{n}\binom{2 n-i}{n-1}-\frac{i-2}{n-1}\binom{2 n-i-1}{n-2}=$ $\frac{i-1}{n} \frac{(2 n-i)!}{(n-1)!(n-i+1)!}-\frac{i-2}{n-1} \frac{(2 n-i-1)!}{(n-2)!(n-i+1)!}=\frac{i(n-i+1)}{n(2 n-i)} \frac{(2 n-i)!}{(n-1)!(n-i+1)!}=\frac{i}{n}\binom{2 n-i-1}{n-1}$, as required.

Recall that $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}^{+}$if and only if $\beta \in \mathcal{O}_{m}^{+}, \alpha_{m} \in \mathcal{O}_{n}^{+}, \alpha_{1}, \ldots, \alpha_{m-1} \in \mathcal{O}_{n}$ and, for all $j \in\{1, \ldots, m-1\}, j \beta=(j+1) \beta$ implies $n \alpha_{j} \leq 1 \alpha_{j+1}$ and $j \beta=j$ implies $\alpha_{j} \in \mathcal{O}_{n}^{+}$.

Let $\beta \in \mathcal{O}_{m}^{+}$. As for the monoid $\mathcal{O}_{m \times n}$, we aim to count the number of sequences $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathcal{O}_{n}^{m}$ such that $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}^{+}$.

Let $\left(k_{1}, \ldots, k_{t}\right)$ be the kernel type of β. Let $K_{i}=\left\{k_{1}+\cdots+k_{i-1}+1, \ldots, k_{1}+\cdots+k_{i}\right\}$, for $i=1, \ldots, t$. Then, β fixes a point in K_{i} if and only if it fixes $k_{1}+\cdots+k_{i}$, for $i=1, \ldots, t$. It follows that $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}^{+}$ if and only if, for all $1 \leq i \leq t$:

1. If β does not fix a point in K_{i}, then $\alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}}$ are k_{i} order-preserving transformations such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence (in this case, we have $\binom{k_{i} n+n-1}{n-1}$ subsequences $\left(\alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}}\right)$ allowed);
2. If β fixes a point in K_{i}, then $\alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}-1}$ are $k_{i}-1$ order-preserving transformations such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence, $n \alpha_{k_{1}+\cdots+k_{i}-1} \leq 1 \alpha_{k_{1}+\cdots+k_{i}}$ and $\alpha_{k_{1}+\cdots+k_{i}} \in \mathcal{O}_{n}^{+}$(in this case, we have $\sum_{j=1}^{n}\binom{\left(k_{i}-1\right) n+j-1}{j-1} \theta(n, j)$ subsequences $\left(\alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}}\right)$ allowed).
Define

$$
\mathfrak{d}(\beta, i)= \begin{cases}\left(\begin{array}{c}
k_{i} n+n-1
\end{array}\right), & \text { if }\left(k_{1}+\cdots+k_{i}\right) \beta \neq k_{1}+\cdots+k_{i} \\
\sum_{j=1}^{n-1} \frac{j}{n}\binom{2 n-j-1}{n-1}\binom{\left(k_{i}-1\right) n+j-1}{j-1}, & \text { if }\left(k_{1}+\cdots+k_{i}\right) \beta=k_{1}+\cdots+k_{i},\end{cases}
$$

for all $1 \leq i \leq t$.
Thus, we have:

Proposition $2.3\left|\mathcal{O}_{m \times n}^{+}\right|=\sum_{\beta \in \mathcal{O}_{m}^{+}} \prod_{i=1}^{t} \mathfrak{d}(\beta, i)$.
Next, we obtain a formula for $\left|\mathcal{O}_{m \times n}^{+}\right|$which does not depend of $\beta \in \mathcal{O}_{m}^{+}$.
Let β be an element of \mathcal{O}_{m}^{+}with kernel type $\left(k_{1}, \ldots, k_{t}\right)$. Define $s_{\beta}=\left(s_{1}, \ldots, s_{t}\right) \in\{0,1\}^{t-1} \times\{1\}$ by $s_{i}=1$ if and only if $\left(k_{1}+\cdots+k_{i}\right) \beta=k_{1}+\cdots+k_{i}$, for all $1 \leq i \leq t-1$.

Let $1 \leq t, k_{1}, \ldots, k_{t} \leq m$ be such that $k_{1}+\cdots+k_{t}=m$ and let $\left(s_{1}, \ldots, s_{t}\right) \in\{0,1\}^{t-1} \times\{1\}$. Let $k=\left(k_{1}, \ldots, k_{t}\right)$ and $s=\left(s_{1}, \ldots, s_{t}\right)$. Define

$$
\Delta(k, s)=\mid\left\{\beta \in \mathcal{O}_{m}^{+} \mid \beta \text { has kernel type } k \text { and } s_{\beta}=s\right\} \mid .
$$

In order to get a formula for $\Delta(k, s)$, we count the number of distinct restrictions to unions of partition classes of the kernel of transformations β of \mathcal{O}_{m}^{+}with kernel type k and $s_{\beta}=s$ corresponding to maximal subsequences of consecutive zeros of s.

Let β be an element of \mathcal{O}_{m}^{+}with kernel type k and $s_{\beta}=s$.
First, notice that, given $i \in\{1, \ldots, t\}$, if $s_{i}=1$ then $K_{i} \beta=\left\{k_{1}+\cdots+k_{i}\right\}$ and if $s_{i}=0$ then the (unique) element of $K_{i} \beta$ belongs to K_{j}, for some $i<j \leq t$.

Next, let $i \in\{1, \ldots, t\}$ and $r \in\{1, \ldots, t-i\}$ be such that $s_{j}=0$, for all $j \in\{i, \ldots, i+r-1\}, s_{i+r}=1$ and, if $i>1, s_{i-1}=1$ (i.e. $\left(s_{i}, \ldots, s_{i+r-1}\right)$ is a maximal subsequence of consecutive zeros of s). Then

$$
\left(K_{i} \cup \cdots \cup K_{i+r-2} \cup K_{i+r-1}\right) \beta \subseteq K_{i+1} \cup \cdots \cup K_{i+r-1} \cup\left(K_{i+r} \backslash\left\{k_{1}+\cdots+k_{i+r}\right\}\right) .
$$

Let $\ell_{j}=\left|K_{i+j} \cap\left(K_{i} \cup \cdots \cup K_{i+r-1}\right) \beta\right|$, for $1 \leq j \leq r$. Hence, we have $\ell_{1}, \ldots, \ell_{r-1} \geq 0, \ell_{r} \geq 1, \ell_{1}+\cdots+\ell_{r}=r$ and $0 \leq \ell_{1}+\cdots+\ell_{j} \leq j$, for all $1 \leq j \leq r-1$.

On the other hand, given $\ell_{1}, \ldots, \ell_{r}$ such that $\ell_{1}, \ldots, \ell_{r-1} \geq 0, \ell_{r} \geq 1, \ell_{1}+\cdots+\ell_{r}=r$ and $0 \leq \ell_{1}+\cdots+\ell_{j} \leq j$, for all $1 \leq j \leq r-1$, we have precisely

$$
\binom{k_{i+1}}{\ell_{1}}\binom{k_{i+2}}{\ell_{2}} \cdots\binom{k_{i+r-1}}{\ell_{r-1}}\binom{k_{i+r}-1}{\ell_{r}}=\binom{k_{i+r}-1}{\ell_{r}} \prod_{j=1}^{r-1}\binom{k_{i+j}}{\ell_{j}}
$$

distinct restrictions to $K_{i} \cup \cdots \cup K_{i+r-1}$ of transformations β of \mathcal{O}_{m}^{+}, with kernel type k and $s_{\beta}=s$, such that $\ell_{j}=\left|K_{i+j} \cap\left(K_{i} \cup \cdots \cup K_{i+r-1}\right) \beta\right|$, for $1 \leq j \leq r$. It follow that the number of distinct restrictions to $K_{i} \cup \cdots \cup K_{i+r-1}$ of transformations β of \mathcal{O}_{m}^{+}with kernel type k and $s_{\beta}=s$ is

$$
\sum_{\substack{\ell_{1}+\cdots+\ell_{r}=r \\ \ell_{1}+\cdots+\ell_{j} \leq j, 1 \leq j \leq r-1 \\ l_{1}, \ldots, \ell_{r-1} \geq 0, \ell_{r} \geq 1}}\binom{k_{i+r}-1}{\ell_{r}} \prod_{j=1}^{r-1}\binom{k_{i+j}}{\ell_{j}} .
$$

Now, let p be the number of distinct maximal subsequences of consecutive zeros of s. Clearly, if $p=0$ then $\Delta(k, s)=1$. Hence, suppose that $p \geq 1$ and let $1 \leq u_{1}<v_{1}<u_{2}<v_{2}<\cdots<u_{p}<v_{p} \leq t$ be such that

$$
\left\{j \in\{1, \ldots, t\} \mid s_{j}=0\right\}=\bigcup_{i=1}^{p}\left\{u_{i}, \ldots, v_{i}-1\right\}
$$

(i.e. $\left(s_{u_{i}}, \ldots, s_{v_{i}-1}\right)$, with $1 \leq i \leq p$, are the p distinct maximal subsequences of consecutive zeros of s). Then, being $r_{i}=v_{i}-u_{i}$, for $1 \leq i \leq p$, we have

$$
\Delta(k, s)=\prod_{i=1}^{p} \sum_{\substack{\ell_{1}+\cdots+\ell_{r_{i}}=r_{i} \\ 0 \leq \ell_{1}+\cdots+\ell_{j} \leq j 1 \leq j \leq r_{i}-1 \\ \ell_{1}, \ldots, \ell_{r_{i}-1} \geq 0, \ell_{r_{i}} \geq 1}}\binom{k_{u_{i}+r_{i}}-1}{\ell_{r_{i}}} \prod_{j=1}^{r_{i}-1}\binom{k_{u_{i}+j}}{\ell_{j}}
$$

Finally, notice that, if β and β^{\prime} two elements of \mathcal{O}_{m}^{+}with kernel type $k=\left(k_{1}, \ldots, k_{t}\right)$ such that $s_{\beta^{\prime}}=s_{\beta}$, then $\mathfrak{d}(\beta, i)=\mathfrak{d}\left(\beta^{\prime}, i\right)$, for all $1 \leq i \leq t$. Thus, defining

$$
\Lambda(k, s)=\prod_{i=1}^{t} \mathfrak{d}(\beta, i),
$$

where β is any transformation of \mathcal{O}_{m}^{+}with kernel type k and $s_{\beta}=s$, we have:
Theorem $2.4\left|\mathcal{O}_{m \times n}^{+}\right|=\sum_{\substack{k=\left(k_{1}, \ldots, k_{t}\right) \\ 1 \leq k_{1}, \ldots, k_{t} \leq m \\ k_{1}+\ldots+k_{t}=m \\ 1 \leq t \leq m}} \sum_{s \in\{0,1\}^{t-1} \times\{1\}} \Delta(k, s) \Lambda(k, s)$.

We finish this section with a table that gives us an idea of the size of the monoid $\mathcal{O}_{m \times n}^{+}$.

$m \backslash n$	1	2	3	4	5	6
1	1	2	5	14	42	132
2	2	8	35	306	2401	21232
3	5	42	569	10024	210765	5089370
4	14	252	8482	410994	25366480	1847511492
5	42	1636	138348	18795636	3547275837	839181666224
6	132	11188	2388624	913768388	531098927994	415847258403464

Despite the unpleasant appearance, the previous formula allows us to calculate the cardinal of $\mathcal{O}_{m \times n}^{+}$, even for larger m and n. For instance, we have $\left|\mathcal{O}_{10 \times 10}^{+}\right|=47016758951069862896388976221392645550606752244$ and $\left|\mathcal{O}_{10 \times 10}\right|=50120434239662576358898758426196210942315027691269$.

3 Ranks

Our aim in this section is to determine the ranks of the monoids $\mathcal{O}_{m \times n}, \mathcal{O}_{m \times n}^{+}$and $\mathcal{O}_{m \times n}^{-}$.
First, we recall some well known facts on the monoids $\mathcal{O}_{n}, \mathcal{O}_{n}^{+}$and \mathcal{O}_{n}^{-}(see $[1,9,21]$).
Let

$$
a_{j}=\left(\begin{array}{ccccccc}
1 & \cdots & j & j+1 & j+2 & \cdots & n \\
1 & \cdots & j & j & j+2 & \cdots & n
\end{array}\right) \quad \text { and } \quad b_{j}=\left(\begin{array}{ccccccc}
1 & \cdots & j-1 & j & j+1 & \cdots & n \\
1 & \cdots & j-1 & j+1 & j+1 & \cdots & n
\end{array}\right),
$$

for $1 \leq j \leq n-1$. Then $\left\{a_{j} \mid 1 \leq j \leq n-1\right\},\left\{b_{j} \mid 1 \leq j \leq n-1\right\}$ and $\left\{a_{j}, b_{j} \mid 1 \leq j \leq n-1\right\}$ are idempotent generating sets of $\mathcal{O}_{n}^{-}, \mathcal{O}_{n}^{+}$and \mathcal{O}_{n}, respectively. Moreover, it was proved by Gomes and Howie [9] that $\left\{a_{j}, b_{j} \mid 1 \leq j \leq n-1\right\}$ is a least-size idempotent generating set of \mathcal{O}_{n}, from which it follows that the idempotent rank of \mathcal{O}_{n} is $2 n-2$. On the other hand, it is easy to show that the transformations a_{j}, $1 \leq j \leq n-1$, and $b_{j}, 1 \leq j \leq n-1$, are indecomposable elements (i.e. which are not product of elements distinct of themselves) of \mathcal{O}_{n}^{-}and \mathcal{O}_{n}^{+}, respectively. It follows immediately that the rank and the idempotent rank of \mathcal{O}_{n}^{-}and of \mathcal{O}_{n}^{+}are equal to $n-1$. Next, consider the transformation

$$
c=\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
1 & 1 & 2 & \cdots & n-1
\end{array}\right) \in \mathcal{O}_{n}^{-} .
$$

Also in [9], Gomes and Howie proved that $\left\{b_{1}, \ldots, b_{n-1}, c\right\}$ is a least-size generating set of \mathcal{O}_{n}, from which it follows that the rank of \mathcal{O}_{n} is n.

Now, for $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n-1\}$, let
$b_{i, j}=\left(\begin{array}{c|ccccc|c}\cdots & (i-1) n+1 & \cdots & (i-1) n+j-1 & (i-1) n+j & (i-1) n+j+1 & \cdots \\ i n & \cdots \\ \cdots & (i-1) n+1 & \cdots & (i-1) n+j-1 & (i-1) n+j+1 & (i-1) n+j+1 & \cdots \\ i n & \cdots\end{array}\right) \in \mathcal{O}_{m \times n}^{+}$.
We are considering the non-represented elements of $X_{m n}$ fixed by the transformation, i.e. $(x) b_{i, j}=x$, for all $x \in A_{\ell}$, with $1 \leq \ell \leq m, \ell \neq i, 1 \leq i \leq m$ and $1 \leq j \leq n-1$. We use this convention in other definitions below.

Notice that, for $1 \leq i \leq m$ and $1 \leq j \leq n-1$,

$$
\bar{b}_{i, j}=b_{i, j} \psi=\left(1, \ldots, 1, b_{j}, 1, \ldots, 1 ; 1\right) \in \overline{\mathcal{O}}_{m \times n}^{+}
$$

with $b_{j} \in \mathcal{O}_{n}^{+}$in the $i^{\text {th }}$ component and 1 representing the identity map (of \mathcal{T}_{n} or of \mathcal{T}_{m}).
Next, for $i \in\{1, \ldots, m-1\}$ and $j \in\{1, \ldots, n\}$, let

$$
\begin{aligned}
& t_{i, j}=\left(\left.\begin{array}{c|cccccc|}
\cdots & (i-1) n+1 & \cdots & \text { in }-j+1 & \text { in }-j+2 & \cdots & \text { in } \\
\cdots & i n+1 & \cdots & i n+1 & \text { in }+2 & \cdots & i n+j
\end{array} \right\rvert\,\right. \\
&\left.\left\lvert\, \begin{array}{cccccc}
i n+1 & \cdots & i n+j & \text { in }+j+1 & \cdots & (i+1) n \\
i n+j & \cdots & \text { in }+j & \text { in }+j+1 & \cdots & (i+1) n \\
\cdots
\end{array}\right.\right) \in \mathcal{O}_{m \times n}^{+} .
\end{aligned}
$$

For $1 \leq j \leq n$, being
(notice that $s_{n}=1$ and t_{n} is the constant map with value n), we have

$$
\bar{t}_{i, j}=t_{i, j} \psi=\left(1, \ldots, 1, s_{j}, t_{j}, 1, \cdots, 1 ; b_{i}\right) \in \overline{\mathcal{O}}_{m \times n}^{+},
$$

with $b_{i} \in \mathcal{O}_{m}^{+}$(notice that we may unambiguously use the same notation for the generators of \mathcal{O}_{m}^{+}and \mathcal{O}_{n}^{+}) and s_{j} in the $i^{\text {th }}$ component.

Example 3.1 Regarding the monoid $\mathcal{O}_{3 \times 4}^{+}$, we have:

$$
\begin{aligned}
& b_{1,1}=\left(\begin{array}{llll|llll|llll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}\right) \quad t_{1,1}=\left(\begin{array}{llll|llll|lllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 5 & 5 & 5 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}\right) \\
& b_{1,2}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 3 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}\right) \quad t_{1,2}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 5 & 5 & 6 & 6 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}\right) \\
& b_{1,3}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 2 & 4 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}\right) \quad t_{1,3}=\left(\begin{array}{llll|llll|llll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 5 & 6 & 7 & 7 & 7 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}\right) \\
& b_{2,1}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 2 & 3 & 4 & 6 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}\right) \quad t_{1,4}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 6 & 7 & 8 & 8 & 8 & 8 & 8 & 9 & 10 & 11 & 12
\end{array}\right) \\
& b_{2,2}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 2 & 3 & 4 & 5 & 7 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}\right) \quad t_{2,1}=\left(\begin{array}{llll|llll|llll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 2 & 3 & 4 & 9 & 9 & 9 & 9 & 9 & 10 & 11 & 12
\end{array}\right) \\
& b_{2,3}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 2 & 3 & 4 & 5 & 6 & 8 & 8 & 9 & 10 & 11 & 12
\end{array}\right) \quad t_{2,2}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 2 & 3 & 4 & 9 & 9 & 9 & 10 & 10 & 10 & 11 & 12
\end{array}\right) \\
& b_{3,1}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 10 & 10 & 11 & 12
\end{array}\right) \quad t_{2,3}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 2 & 3 & 4 & 9 & 9 & 10 & 11 & 11 & 11 & 11 & 12
\end{array}\right) \\
& b_{3,2}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 11 & 11 & 12
\end{array}\right) \quad t_{2,4}=\left(\begin{array}{cccc|cccc|ccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 2 & 3 & 4 & 9 & 10 & 11 & 12 & 12 & 12 & 12 & 12
\end{array}\right) \\
& b_{3,3}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 12 & 12
\end{array}\right)
\end{aligned}
$$

Let $M=\left\{\alpha \in \mathcal{O}_{m \times n}^{+} \mid A_{i} \alpha \subseteq A_{i}\right.$, for all $\left.1 \leq i \leq m\right\}$. Then $M \psi=\left\{\left(\alpha_{1}, \ldots, \alpha_{m} ; 1\right) \mid \alpha_{1}, \ldots, \alpha_{m} \in \mathcal{O}_{n}^{+}\right\}$, which is clearly a monoid isomorphic to $\left(\mathcal{O}_{n}^{+}\right)^{m}$. As the set $\left\{b_{j} \mid 1 \leq j \leq n-1\right\}$ generates \mathcal{O}_{n}^{+}, then the set $\left\{\bar{b}_{i, j} \mid 1 \leq i \leq m, 1 \leq j \leq n-1\right\}$ generates $M \psi$ and so $\left\{b_{i, j} \mid 1 \leq i \leq m, 1 \leq j \leq n-1\right\}$ is a generating set of the submonoid M of $\mathcal{O}_{m \times n}^{+}$.

Lemma 3.2 The monoid $\mathcal{O}_{2 \times n}^{+}$is generated by $\left\{b_{1, j}, b_{2, j}, t_{1, \ell} \mid 1 \leq j \leq n-1,1 \leq \ell \leq n\right\}$.
Proof. Let N be the submonoid of $\overline{\mathcal{O}}_{2 \times n}^{+}$generated by $\left\{\bar{b}_{1, j}, \bar{b}_{2, j}, \bar{t}_{1, \ell} \mid 1 \leq j \leq n-1,1 \leq \ell \leq n\right\}$. In order to prove the lemma, we show that $N=\overline{\mathcal{O}}_{2 \times n}^{+}$.

Notice that, an element of $\overline{\mathcal{O}}_{2 \times n}^{+}$has the form $\left(\alpha_{1}, \alpha_{2} ; 1\right)$, with $\alpha_{1}, \alpha_{2} \in \mathcal{O}_{n}^{+}$, or the form $\left(\alpha_{1}, \alpha_{2} ; \beta\right)$, with $\beta=\left(\begin{array}{ll}1 & 2 \\ 2 & 2\end{array}\right), n \alpha_{1} \leq 1 \alpha_{2}, \alpha_{1} \in \mathcal{O}_{n}$ and $\alpha_{2} \in \mathcal{O}_{n}^{+}$. By the above observation, the elements of the first form belong to N, whence it remains to show that the elements of the second form also belong to N. We perform this task by considering first two particular cases. Observe that $\bar{t}_{1, \ell}=\left(s_{\ell}, t_{\ell} ; \beta\right)$, for $1 \leq \ell \leq n$.
CASE 1. Let $\alpha=\left(\alpha_{1}, t_{j} ; \beta\right)$, with $1 \leq j \leq n$ and $\alpha_{1} \in \mathcal{O}_{n}$ such that $\operatorname{Im} \alpha_{1}=\{1, \ldots, j\}$.
Then, it is easy to show that $n \alpha_{1}=j$ and, for $1 \leq i \leq n-1, i \alpha_{1} \leq(i+1) \alpha_{1} \leq i \alpha_{1}+1$.
Take $s_{j}^{\prime}=\left(\begin{array}{ccccccc}1 & 2 & \cdots & j & j+1 & \cdots & n \\ n-j+1 & n-j+2 & \cdots & n & n & \cdots & n\end{array}\right) \in \mathcal{O}_{n}^{+}$and let $\theta=\alpha_{1} s_{j}^{\prime}$. Clearly, $\theta \in \mathcal{O}_{n}$. Moreover, $\theta \in \mathcal{O}_{n}^{+}$. In fact, for $1 \leq i \leq n$, as $i \alpha_{1} \leq j$, then $i \theta=i \alpha_{1} s_{j}^{\prime}=n-j+i \alpha_{1}$. As $n \theta=n$, if $\theta \notin \mathcal{O}_{n}^{+}$, then we may find $i \in\{1, \ldots, n-1\}$ such that $i \theta<i<(i+1) \theta$, whence $n-j+i \alpha_{1}<i<n-j+(i+1) \alpha_{1}$ and so $i \alpha_{1}+1<(i+1) \alpha_{1}$, a contradiction. Hence $\theta \in \mathcal{O}_{n}^{+}$. Then, we have $(\theta, 1 ; 1) \in N$ and, as $\alpha_{1} s_{j}^{\prime} s_{j}=\alpha_{1}$, it follows that

$$
\alpha=\left(\alpha_{1}, t_{j} ; \beta\right)=\left(\theta s_{j}, t_{j} ; \beta\right)=(\theta, 1 ; 1)\left(s_{j}, t_{j} ; \beta\right)=(\theta, 1 ; 1) \bar{t}_{1, j} \in N .
$$

CASE 2. Let $\alpha=\left(\alpha_{1}, t_{n \alpha_{1}} ; \beta\right)$, with $\alpha_{1} \in \mathcal{O}_{n}$.
Suppose that $\operatorname{Im} \alpha_{1}=\left\{i_{1}<i_{2}<\cdots<i_{j}=n \alpha_{1}\right\}$, with $1 \leq j \leq n$. Take θ as being the unique element of \mathcal{O}_{n} such that $\operatorname{Im} \theta=\{1, \ldots, j\}$ and $\operatorname{Ker} \theta=\operatorname{Ker} \alpha_{1}$ (i.e. $\left(i_{k} \alpha_{1}^{-1}\right) \theta=\{k\}$, for $1 \leq k \leq j$). As $k \leq i_{k}$, for $1 \leq k \leq j$, the transformation

$$
\theta^{\prime}=\left(\begin{array}{ccccccccc}
1 & 2 & \cdots & j & \cdots & i_{j} & i_{j}+1 & \cdots & n \\
i_{1} & i_{2} & \cdots & i_{j} & \cdots & i_{j} & i_{j}+1 & \cdots & n
\end{array}\right)
$$

belongs to \mathcal{O}_{n}^{+}. Now, let $x \in\{1, \ldots, n\}$ and $k \in\{1, \ldots, j\}$. As $x \in i_{k} \alpha_{1}^{-1}$ if and only if $x \theta=k$, we deduce that $\theta \theta^{\prime}=\alpha_{1}$. Moreover, clearly $t_{j} \theta^{\prime}=t_{n \alpha_{1}}$. Hence, as $\left(\theta^{\prime}, \theta^{\prime} ; 1\right) \in N$ and, by the Case $1,\left(\theta, t_{j} ; \beta\right) \in N$, we have

$$
\alpha=\left(\alpha_{1}, t_{n \alpha_{1}} ; \beta\right)=\left(\theta \theta^{\prime}, t_{j} \theta^{\prime} ; \beta\right)=\left(\theta, t_{j} ; \beta\right)\left(\theta^{\prime}, \theta^{\prime} ; 1\right) \in N
$$

GENERAL CASE. Let $\alpha=\left(\alpha_{1}, \alpha_{2} ; \beta\right)$, with $n \alpha_{1} \leq 1 \alpha_{2}, \alpha_{1} \in \mathcal{O}_{n}$ and $\alpha_{2} \in \mathcal{O}_{n}^{+}$.
Consider the canonical decomposition (mentioned in the introductory section) $\alpha_{1}=\theta_{1} \varepsilon_{1}$, with $\theta_{1} \in \mathcal{O}_{n}^{+}$and $\varepsilon_{1} \in \mathcal{O}_{n}^{-}$being the transformations defined by

$$
i \theta_{1}=\left\{\begin{array}{cl}
i & \text { if } i \alpha_{1} \leq i \\
i \alpha_{1} & \text { if } i \alpha_{1} \geq i
\end{array} \quad \text { and } \quad i \varepsilon_{1}=\left\{\begin{array}{cl}
i \alpha_{1} & \text { if } i \alpha_{1} \leq i \\
i & \text { if } i \alpha_{1} \geq i
\end{array}\right.\right.
$$

for $1 \leq i \leq n$. As $n \varepsilon_{1}=n \alpha_{1} \leq 1 \alpha_{2}$, then we have $\alpha_{2} t_{n \varepsilon_{1}}=\alpha_{2}$. Hence, since $\left(\theta_{1}, \alpha_{2} ; 1\right) \in N$ and, by the CASE $2,\left(\varepsilon_{1}, t_{n \varepsilon_{1}} ; \beta\right) \in N$, it follows

$$
\alpha=\left(\alpha_{1}, \alpha_{2} ; \beta\right)=\left(\theta_{1} \varepsilon_{1}, \alpha_{2} t_{n \varepsilon_{1}} ; \beta\right)=\left(\theta_{1}, \alpha_{2} ; 1\right)\left(\varepsilon_{1}, t_{n \varepsilon_{1}} ; \beta\right) \in N,
$$

as required.

Next, let $k \in\{1, \ldots, m-1\}$ and consider the submonoid

$$
S_{k}=\left\{\alpha \in \mathcal{O}_{m \times n}^{+} \mid\left(A_{k} \cup A_{k+1}\right) \alpha \subseteq A_{k} \cup A_{k+1} \text { and } x \alpha=x, \text { for all } x \in X_{m n} \backslash\left(A_{k} \cup A_{k+1}\right)\right\}
$$

of $\mathcal{O}_{m \times n}^{+}$. Clearly, S_{k} is isomorphic to $\mathcal{O}_{2 \times n}^{+}$and so, in view of Lemma 3.2, it is generated by

$$
\left\{b_{k, j}, b_{k+1, j}, t_{k, \ell} \mid 1 \leq j \leq n-1,1 \leq \ell \leq n\right\} .
$$

Now, we can prove:
Proposition 3.3 The set $B=\left\{b_{i, j}, t_{k, \ell} \mid 1 \leq i \leq m, 1 \leq j \leq n-1,1 \leq k \leq m-1,1 \leq \ell \leq n\right\}$ is a generating set, with $2 m n-m-n$ elements, of the monoid $\mathcal{O}_{m \times n}^{+}$.

Proof. Denote by N the submonoid of $\mathcal{O}_{m \times n}^{+}$generated by B. Then, we already proved that the submonoids $S_{1}, \ldots, S_{m-1}, M$ of $\mathcal{O}_{m \times n}^{+}$are contained in N. For each $\alpha \in \mathcal{O}_{m \times n}^{+}$, let d $(\alpha)=\left|\left\{i \in\{1, \ldots, m\} \mid A_{i} \alpha \nsubseteq A_{i}\right\}\right|$. In order to prove the result, we show that $\alpha \in N$, for all $\alpha \in \mathcal{O}_{m \times n}^{+}$, by induction on $\mathrm{d}(\alpha)$.

Let $\alpha \in \mathcal{O}_{m \times n}^{+}$be such that $\mathrm{d}(\alpha)=0$. Then $\alpha \in M$ and so $\alpha \in N$.
Hence, let $p \geq 0$ and suppose, by induction hypothesis, that $\alpha \in N$, for all $\alpha \in \mathcal{O}_{m \times n}^{+}$with $\mathrm{d}(\alpha)=p$. Let $\alpha \in \mathcal{O}_{m \times n}^{+}$be such that $\mathrm{d}(\alpha)=p+1$. Let $i \in\{1, \ldots, m-1\}$ be the least index such that $A_{i} \alpha \nsubseteq A_{i}$ and let $k \in\{i+1, \ldots, m\}$ be such that $A_{i} \alpha \subseteq A_{k}$. Take

$$
\begin{aligned}
& \alpha_{1}=\left(\left.\begin{array}{ccc|c|ccc|cc|}
1 & \cdots & n & \cdots & (i-2) n+1 & \cdots & (i-1) n & (i-1) n+1 & \cdots \\
1 \alpha & \cdots & n \alpha & \cdots & ((i-2) n+1) \alpha & \cdots & ((i-1) n) \alpha & i n \\
(i-1) n+1 & \cdots & i n
\end{array} \right\rvert\,\right. \\
& \left.\begin{array}{ccc|c|ccc}
i n+1 & \cdots & (i+1) n & \cdots & (m-1) n+1 & \cdots & m n \\
(i n+1) \alpha & \cdots & ((i+1) n) \alpha & \cdots & ((m-1) n+1) \alpha & \cdots & (m n) \alpha
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \alpha_{2}=\left(\left.\begin{array}{c|ccc|ccc}
\cdots & (k-3) n+1 & \cdots & (k-2) n & (k-2) n+1 & \cdots & (k-1) n \\
\cdots & (k-3) n+1 & \cdots & (k-2) n & ((i-1) n+1) \alpha & \cdots & (i n) \alpha
\end{array} \right\rvert\,\right. \\
& \left.\begin{array}{|cccccc|ccc|c}
(k-1) n+1 & \cdots & \text { (in) } \alpha & (\text { in }) \alpha+1 & \cdots & k n & k n+1 & \cdots & (k+1) n & \cdots \\
(\text { in }) \alpha & \cdots & \text { (in) } \alpha & (\text { in }) \alpha+1 & \cdots & k n & k n+1 & \cdots & (k+1) n & \cdots
\end{array}\right) .
\end{aligned}
$$

Then $\alpha_{1} \in \mathcal{O}_{m \times n}^{+}$and $\mathrm{d}\left(\alpha_{1}\right)=p$, whence $\alpha_{1} \in N$, by induction hypothesis. Moreover, we also have $\alpha_{2} \in N$, since $\alpha_{2} \in S_{k-1}$. Finally, it is routine to show that $\alpha=\alpha_{1} t_{i, n} \cdots t_{k-2, n} \alpha_{2}$ and so $\alpha \in N$, as required.

Next, we prove that B is a least-size generating set of $\mathcal{O}_{m \times n}^{+}$.
Theorem 3.4 The rank of $\mathcal{O}_{m \times n}^{+}$is $2 m n-m-n$.
Proof. It suffices to show that all the elements of $B \psi$ are indecomposable in $\overline{\mathcal{O}}_{m \times n}^{+}$.
Let $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n-1\}$. Recall that $\bar{b}_{i, j}=\left(1, \ldots, 1, b_{j}, 1, \ldots, 1 ; 1\right)$, with $b_{j} \in \mathcal{O}_{n}^{+}$in the $i^{\text {th }}$ component. As the identity is indecomposable (in \mathcal{O}_{n}^{+}and in \mathcal{O}_{m}^{+}) and b_{j} is indecomposable in \mathcal{O}_{n}^{+}, it follows immediately that $\bar{b}_{i, j}$ is indecomposable in $\overline{\mathcal{O}}_{m \times n}^{+}$.

Now, let $i \in\{1, \ldots, m-1\}$ and $j \in\{1, \ldots, n\}$. We prove that $\bar{t}_{i, j}=\left(1, \ldots, 1, s_{j}, t_{j}, 1, \ldots, 1 ; b_{i}\right)$ also is indecomposable in $\overline{\mathcal{O}}_{m \times n}^{+}$(notice that s_{j} is the $i^{\text {th }}$ component of $\bar{t}_{i, j}$). Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{i}, \alpha_{i+1}, \ldots, \alpha_{m} ; \beta\right), \alpha^{\prime}=$ $\left(\alpha_{1}^{\prime}, \ldots, \alpha_{i}^{\prime}, \alpha_{i+1}^{\prime}, \ldots, \alpha_{m}^{\prime} ; \beta^{\prime}\right) \in \overline{\mathcal{O}}_{m \times n}^{+}$be such that $\bar{t}_{i, j}=\alpha \alpha^{\prime}=\left(\alpha_{1} \alpha_{1 \beta}^{\prime}, \ldots, \alpha_{i} \alpha_{i \beta}^{\prime}, \alpha_{i+1} \alpha_{(i+1) \beta}^{\prime}, \ldots, \alpha_{m} \alpha_{m \beta}^{\prime} ; \beta \beta^{\prime}\right)$. As $\beta, \beta^{\prime} \in \mathcal{O}_{m}^{+}$and $\beta \beta^{\prime}=b_{i}$, we have $\beta, \beta^{\prime} \in\left\{1, b_{i}\right\}$. Hence, $\bar{t}_{i, j}=\left(\alpha_{1} \alpha_{1}^{\prime}, \ldots, \alpha_{i} \alpha_{i \beta}^{\prime}, \alpha_{i+1} \alpha_{i+1}^{\prime}, \ldots, \alpha_{m} \alpha_{m}^{\prime} ; b_{i}\right)$ and so $\alpha_{k}=\alpha_{k}^{\prime}=1$, for $k \in\{1, \ldots, m\} \backslash\{i, i+1\}, \alpha_{i+1} \alpha_{i+1}^{\prime}=t_{j}$ and $\alpha_{i+1}, \alpha_{i+1}^{\prime} \in \mathcal{O}_{n}^{+}$. Notice that, from the equality $\alpha_{i+1} \alpha_{i+1}^{\prime}=t_{j}$ we deduce that $\{j, \ldots, n\}=\operatorname{Im} t_{j} \subseteq \operatorname{Im} \alpha_{i+1}^{\prime}$.

Suppose that $\beta=b_{i}$. Then $i \beta=i+1$, whence $\alpha_{i} \alpha_{i+1}^{\prime}=s_{j}$ and so $\{1, \ldots, j\}=\operatorname{Im} s_{j} \subseteq \operatorname{Im} \alpha_{i+1}^{\prime}$. Hence $\operatorname{Im} \alpha_{i+1}^{\prime}=\{1, \ldots, n\}$, which implies that $\alpha_{i+1}^{\prime}=1$. Thus, $\alpha_{i}=s_{j}$ and $\alpha_{i+1}=t_{j}$ and so $\alpha=\bar{t}_{i, j}$.

On the other hand, admit that $\beta=1$. Then $\beta^{\prime}=b_{i}, \alpha_{i} \in \mathcal{O}_{n}^{+}$and $\alpha_{i} \alpha_{i}^{\prime}=s_{j}$.
First, we prove that $\alpha_{i}^{\prime}=s_{j}$. As $\alpha_{i} \in \mathcal{O}_{n}^{+}$, we have $1=(n-j+1) s_{j}=(n-j+1) \alpha_{i} \alpha_{i}^{\prime} \geq(n-j+1) \alpha_{i}^{\prime}$, whence $(n-j+1) \alpha_{i}^{\prime}=1$. Moreover, from the equality $\alpha_{i} \alpha_{i}^{\prime}=s_{j}$ we deduce that $\{1, \ldots, j\}=\operatorname{Im} s_{j} \subseteq \operatorname{Im} \alpha_{i}^{\prime}$ and so we have $\alpha_{i}^{\prime}=s_{j}$.

Finally, we prove that $\alpha_{i+1}^{\prime}=t_{j}$. As $\alpha_{i} \in \mathcal{O}_{n}^{+}$, we have $n \alpha_{i}=n$ and so $j=n s_{j}=n \alpha_{i} \alpha_{i}^{\prime}=n \alpha_{i}^{\prime} \leq 1 \alpha_{i+1}^{\prime}$, from which we deduce that $\operatorname{Im} \alpha_{i+1}^{\prime} \subseteq\{j, \ldots, n\}$. Thus $\operatorname{Im} \alpha_{i+1}^{\prime}=\{j, \ldots, n\}$. Moreover, as $\alpha_{i+1}, \alpha_{i+1}^{\prime} \in \mathcal{O}_{n}^{+}$, we have $j \leq j \alpha_{i+1} \leq j \alpha_{i+1} \alpha_{i+1}^{\prime}=j t_{j}=j$, whence $j=j \alpha_{i+1}$ and so $j \alpha_{i+1}^{\prime}=j \alpha_{i+1} \alpha_{i+1}^{\prime}=j t_{j}=j$. Thus, we have $\alpha_{i+1}^{\prime}=t_{j}$.

Hence, we also proved that, if $\beta=1$ then $\alpha^{\prime}=\bar{t}_{i, j}$. Thus $\bar{t}_{i, j}$ is indecomposable in $\overline{\mathcal{O}}_{m \times n}^{+}$, as required.
Now, recall that the monoid $\mathcal{O}_{m \times n}^{-}$is isomorphic to $\mathcal{O}_{m \times n}^{+}$. Therefore, $\mathcal{O}_{m \times n}^{-}$as rank equal to $2 m n-m-n$ and a least-size generating set of $\mathcal{O}_{m \times n}^{-}$can be obtained from B by isomorphism. Next, we describe explicitly such generating set of $\mathcal{O}_{m \times n}^{-}$.

For $i \in\{1, \ldots, m\}$ and $j \in\{1, \ldots, n-1\}$, let

$$
a_{i, j}=\left(\begin{array}{c|cccccc}
\cdots & (i-1) n+1 & \cdots & (i-1) n+j & (i-1) n+j+1 & (i-1) n+j+2 & \cdots \\
\text { in } & \cdots & \cdots \\
\cdots & (i-1) n+1 & \cdots & (i-1) n+j & (i-1) n+j & (i-1) n+j+2 & \cdots \\
\text { in } & \cdots
\end{array}\right) .
$$

For $i \in\{1, \ldots, m-1\}$ and $j \in\{1, \ldots, n\}$, let

$$
\begin{aligned}
& s_{i, j}=\left(\begin{array}{c|ccccc|c}
\cdots & (i-1) n+1 & \cdots & \text { in }-j+1 & \text { in }-j+2 & \cdots & \text { in } \\
\cdots & (i-1) n+1 & \cdots & \text { in }-j+1 & \text { in }-j+1 & \cdots & \text { in }-j+1
\end{array}\right. \\
&\left.\left\lvert\, \begin{array}{cccccc}
i n+1 & \text { in }+2 & \cdots & \text { in }+j & \cdots & (i+1) n \mid \cdots \\
i n-j+1 & \text { in }-j+2 & \cdots & \text { in } & \cdots & \text { in } \\
\cdots
\end{array}\right.\right) .
\end{aligned}
$$

Then, we have that $A=\left\{a_{i, j}, s_{k, \ell} \mid 1 \leq i \leq m, 1 \leq j \leq n-1,1 \leq k \leq m-1,1 \leq \ell \leq n\right\}$ is a least-size generating set of $\mathcal{O}_{m \times n}^{-}$.

Next, for $i \in\{1, \ldots, m\}$, consider

$$
\left.c_{i}=\left(\begin{array}{l|llll|l}
\cdots & (i-1) n+1 & (i-1) n+2 & (i-1) n+3 & \cdots & \text { in } \\
\cdots & (i-1) n+1 & (i-1) n+1 & (i-1) n+2 & \cdots & \text { in }-1
\end{array}\right) \cdots\right) \in \mathcal{O}_{m \times n}^{-}
$$

For instance, in $\mathcal{O}_{2 \times 4}^{-}$, we have

$$
c_{1}=\left(\begin{array}{llll|llll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 1 & 2 & 3 & 5 & 6 & 7 & 8
\end{array}\right) \quad \text { and } \quad c_{2}=\left(\begin{array}{llll|llll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 2 & 3 & 4 & 5 & 5 & 6 & 7
\end{array}\right)
$$

We now focus our attention on the monoid $\mathcal{O}_{m \times n}$.
As observed in the introductory section, we have $\mathcal{O}_{m \times n}=\mathcal{O}_{m \times n}^{-} \mathcal{O}_{m \times n}^{+}$, whence $A \cup B$ is a generating set of $\mathcal{O}_{m \times n}$.

Let $i \in\{1, \ldots, m\}$. It is easy to show that $T_{i}=\left\{\alpha \in \mathcal{O}_{m \times n} \mid A_{i} \alpha \subseteq A_{i}\right.$ and $x \alpha=x$, for all $\left.x \in X_{m n} \backslash A_{i}\right\}$ is a submonoid of $\mathcal{O}_{m \times n}$ isomorphic to \mathcal{O}_{n}. As $\left\{a_{j}, b_{j} \mid 1 \leq j \leq n-1\right\}$ and $\left\{c, b_{1}, \ldots, b_{n-1}\right\}$ are generating sets of $\mathcal{O}_{n}[9]$, then $\left\{a_{i, j}, b_{i, j} \mid 1 \leq j \leq n-1\right\}$ and $\left\{c_{i}, b_{i, j} \mid 1 \leq j \leq n-1\right\}$ are generating sets of T_{i}. Hence

$$
\left\{c_{i}, s_{k, \ell} \mid 1 \leq i \leq m, 1 \leq k \leq m-1,1 \leq \ell \leq n\right\} \cup B
$$

generates $\mathcal{O}_{m \times n}$.
On the other hand, it is a routine matter to show that $t_{k, 1}=s_{k, n} t_{k, n}, s_{k, 1}=t_{k, n} s_{k, n}$ and

$$
\begin{gathered}
s_{k, \ell}=\left(b_{k, n-\ell+1} \cdots b_{k, 2}\right)\left(b_{k, n-\ell+2} \cdots b_{k, 3}\right) \cdots\left(b_{k, n-1} \cdots b_{k, \ell}\right)\left(b_{k+1, \ell} \cdots b_{k+1,2}\right)\left(b_{k+1, \ell+1} \cdots b_{k+1,3}\right) \cdots \\
\cdots\left(b_{k+1, n-1} \cdots b_{k+1, n-\ell+1}\right) t_{k, n-\ell+1} s_{k, n}
\end{gathered}
$$

for $1 \leq k \leq m-1$ and $2 \leq \ell \leq n-1$.
Therefore, we have:

Proposition 3.5 The set $C=\left\{c_{i}, b_{i, j}, s_{k, n}, t_{k, \ell} \mid 1 \leq i \leq m, 1 \leq j \leq n-1,1 \leq k \leq m-1,2 \leq \ell \leq n\right\}$ is a generating set, with $2 m n-n$ elements, of the monoid $\mathcal{O}_{m \times n}$.

We finish this section by proving that C is a least-size generating set of $\mathcal{O}_{m \times n}$.
Theorem 3.6 The rank of $\mathcal{O}_{m \times n}$ is $2 m n-n$.
Proof. For $i \in\{1, \ldots, m-1\}$ and $j \in\{1, \ldots, n\}$, let

$$
\begin{aligned}
\alpha=\alpha_{i, j}=\left(\begin{array}{l|l|l|l|l|l}
\cdots & (i-1) n+1 & \cdots & (i-1) n+j-1 & (i-1) n+j & \cdots \\
\cdots & (i-1) n+1 & \cdots & (i-1) n+j-1 & (i-1) n+j & \cdots \\
(i-1) n+j & (i-1) & \\
\left(\begin{array}{cccccc}
i n+1 & \cdots & i n+j & i n+j+1 & \cdots & (i+1) n \\
(i-1) n+j & \cdots & (i-1) n+j & (i-1) n+j+1 & \cdots & \text { in }
\end{array}\right. & \cdots
\end{array}\right) .
\end{aligned}
$$

Notice that α fixes all elements of A_{k}, for all $k \in\{1, \ldots, m\} \backslash\{i, i+1\}$, and $\operatorname{Im} \alpha=X_{m n} \backslash A_{i+1}$.
Take $\alpha_{1}, \alpha_{2} \in \mathcal{O}_{m \times n}$ such that $\alpha=\alpha_{1} \alpha_{2}$. As $|\operatorname{Im} \alpha|=(m-1) n$, then $\left|\operatorname{Im} \alpha_{1}\right| \geq(m-1) n$ and $\operatorname{Im} \alpha \subseteq \operatorname{Im} \alpha_{2}$. CASE 1. Suppose that $\operatorname{Im} \alpha_{2} \cap A_{i+1} \neq \emptyset$. Then $A_{k} \alpha_{2} \subseteq A_{i+1}$, for some $k \in\{1, \ldots, m\}$. As $X_{m n} \backslash A_{i+1} \subseteq \operatorname{Im} \alpha_{2}$, we must have $A_{1} \cup \cdots \cup A_{i} \subseteq\left(A_{1} \cup \cdots \cup A_{k-1}\right) \alpha_{2}$ and $A_{i+2} \cup \cdots \cup A_{m} \subseteq\left(A_{k+1} \cup \cdots \cup A_{m}\right) \alpha_{2}$. Then $i \leq k-1$ and $i+2 \geq k+1$, whence $k=i+1$. Moreover, α_{2} maps $X_{m n} \backslash A_{i+1}$ onto $X_{m n} \backslash A_{i+1}$ and so it fixes all elements of $X_{m n} \backslash A_{i+1}$. Now, let $x \in X_{m n}$. If $x \alpha_{1} \in A_{i+1}$ then $x \alpha=x \alpha_{1} \alpha_{2} \in A_{i+1}$, a contradiction. Hence $x \alpha_{1} \in X_{m n} \backslash A_{i+1}$ and so $x \alpha=x \alpha_{1} \alpha_{2}=x \alpha_{1}$. Thus $\alpha=\alpha_{1}$.
CASE 2. On the other hand, suppose that $\operatorname{Im} \alpha_{2} \cap A_{i+1}=\emptyset$. Then $\operatorname{Im} \alpha_{2} \subseteq X_{m n} \backslash A_{i+1}$ and so $\operatorname{Im} \alpha_{2}=X_{m n} \backslash A_{i+1}$.
Let $Y=A_{1} \cup \cdots \cup A_{i-1} \cup\{(i-1) n+1, \ldots,(i-1) n+j\} \cup\{i n+j+1, \ldots,(i+1) n\} \cup A_{i+2} \cup \cdots \cup A_{m}$. Notice that $|Y|=(m-1) n$. As α is injective in Y, then α_{1} must also be injective in Y. It follows that $A_{i} \alpha_{1} \subseteq A_{k}$ and $A_{i+1} \alpha_{1} \subseteq A_{\ell}$, for some $i \leq k \leq \ell \leq i+1$ (observe that $(i-1) n+1 \in A_{i} \cap Y$ and $\left.(i+1) n \in A_{i+1} \cap Y\right)$.

If $k=i$ and $\ell=i+1$ then $(i n) \alpha_{1} \leq i n$ and $(i n+1) \alpha_{1} \geq i n+1$, whence

$$
(i-1) n+j=(i n) \alpha=(i n) \alpha_{1} \alpha_{2} \leq(i n) \alpha_{2} \leq(i n+1) \alpha_{2} \leq(i n+1) \alpha_{1} \alpha_{2}=(i n+1) \alpha=(i-1) n+j
$$

and so $($ in $) \alpha_{2}=(i n+1) \alpha_{2}=(i-1) n+j$.
On the other hand, if $k=\ell$ then $\left|\operatorname{Im} \alpha_{1}\right|=(m-1) m=|Y|$, which implies that

$$
\begin{gathered}
((i-1) n+1) \alpha_{1}<\cdots<((i-1) n+j-1) \alpha_{1}<((i-1) n+j) \alpha_{1}=\cdots=(i n) \alpha_{1}= \\
\quad=(i n+1) \alpha_{1}=\cdots=(i n+j) \alpha_{1}<(i n+j+1) \alpha_{1}<\cdots<((i+1) n) \alpha_{1} .
\end{gathered}
$$

Then $($ in $) \alpha_{1}=($ in +1$) \alpha_{1}=(i-1) n+j$, if $k=i=\ell$, and $(i n) \alpha_{1}=(i n+1) \alpha_{1}=i n+j$, if $k=i+1=\ell$.
Therefore, we proved that, in order to write $\alpha_{i, j}$ as a product of elements of $\mathcal{O}_{m \times n}$, we must have a factor $\alpha_{i, j}^{\prime}$ with $\left|\operatorname{Im} \alpha_{i, j}^{\prime}\right|=(m-1) n$ such that $(i n) \alpha_{i, j}^{\prime}=(i n+1) \alpha_{i, j}^{\prime}=(i-1) n+j$ or $(i n) \alpha_{i, j}^{\prime}=(i n+1) \alpha_{i, j}^{\prime}=i n+j$.

Observe that, given $i, k \in\{1, \ldots, m-1\}$ and $j, \ell \in\{1, \ldots, n\}$ such that $(i, j) \neq(k, \ell)$, then $\alpha_{i, j}^{\prime} \neq \alpha_{k, \ell}^{\prime}$. In fact, it is clear that, if $i=k$ and $j \neq \ell$ then $\alpha_{i, j}^{\prime} \neq \alpha_{i, \ell}^{\prime}$. On the other hand, if $i \neq k$ then $\alpha_{i, j}^{\prime}=\alpha_{k, \ell}^{\prime}$ implies that $\left|\operatorname{Im} \alpha_{i, j}^{\prime}\right|<(m-1) n$, a contradiction.

Thus, each generating set of $\mathcal{O}_{m \times n}$ must have $(m-1) n$ distinct elements with image size equal to $(m-1) n$.
Next, observe that, for $i \in\{1, \ldots, m\}$, the elements of $T_{i} \psi$ are of the form $\left(1, \ldots, 1, \alpha_{i}, 1, \ldots, 1 ; 1\right)$, with $\alpha_{i} \in \mathcal{O}_{n}$ in the $i^{\text {th }}$ component. Then, as the identity is indecomposable (in \mathcal{O}_{n} and in \mathcal{O}_{m}), given $\alpha \in T_{i}$ and $\alpha^{\prime}, \alpha^{\prime \prime} \in \mathcal{O}_{m \times n}$, it is clear that $\alpha=\alpha^{\prime} \alpha^{\prime \prime}$ implies $\alpha^{\prime}, \alpha^{\prime \prime} \in T_{i}$. On the other hand, since \mathcal{O}_{n} has rank n and T_{i} is isomorphic to \mathcal{O}_{n}, in order to generate in $\mathcal{O}_{m \times n}$ all the elements of T_{i}, we need at least n distinct (non-identity) elements of T_{i}, for $i \in\{1, \ldots, m\}$. Hence, each generating set of $\mathcal{O}_{m \times n}$ must have $m n$ distinct elements with image size greater than or equal to $(m-1) n+1$.

Therefore, we proved that each generating set of $\mathcal{O}_{m \times n}$ must have ($m-1$) $n+m n$ distinct elements and so, in view of Proposition 3.5, we conclude that $\mathcal{O}_{m \times n}$ has rank $2 m n-n$, as required.

4 A bilateral semidirect product decomposition of $\mathcal{O}_{m \times n}$

In this section, we present a bilateral semidirect product decomposition of $\mathcal{O}_{m \times n}$ in terms of is submonoids $\mathcal{O}_{m \times n}^{-}$and $\mathcal{O}_{m \times n}^{+}$. This result generalizes the Kunze's bilateral semidirect product decomposition [17] of the monoid \mathcal{O}_{n} in terms of \mathcal{O}_{n}^{-}and \mathcal{O}_{n}^{+}. Our strategy is to use Kunze's actions on $\mathcal{O}_{m n}^{-}$and $\mathcal{O}_{m n}^{+}$to induce a left action of $\mathcal{O}_{m \times n}^{+}$on $\mathcal{O}_{m \times n}^{-}$and a right action of $\mathcal{O}_{m \times n}^{-}$on $\mathcal{O}_{m \times n}^{+}$.

Let S be a monoid and let S^{-}and S^{+}be two submonoids of S. Let us consider a left action δ of S^{+}on S^{-} and a right action φ of S^{-}on S^{+}such that the function

$$
\begin{array}{ccc}
S^{-} \bowtie S^{+} & \longrightarrow & S \\
(s, u) & \mapsto & s u
\end{array}
$$

is a homomorphism. For $s \in S^{-}$and $u \in S^{+}$, denote $(s)(u) \delta$ by $u \cdot s$ and $(u)(s) \varphi$ by u^{s}.
Now, let T be a submonoid of S, T^{-}a submonoid of S^{-}and T^{+}a submonoid of S^{+}. It is a routine matter to check that, if $u \cdot s \in T^{-}$and $u^{s} \in T^{+}$, for all $s \in T^{-}$and $u \in T^{+}$, then δ induces a left action of T^{+}on T^{-} and φ induces a right action of T^{-}on T^{+}. If, in addition, $T=T^{-} T^{+}$then

$$
\begin{array}{ccc}
T_{-}^{-} \bowtie T^{+} & \longrightarrow & T \\
(s, u) & \mapsto & s u
\end{array}
$$

is a surjective homomorphism.
Next, we recall, in slightly different way, some aspects of the original construction made by Kunze in [17], in order to prove that the monoid \mathcal{O}_{n} is a quotient of a bilateral semidirect product of \mathcal{O}_{n}^{-}and \mathcal{O}_{n}^{+}. The reader will also benefit from reading the authors's paper [7], where a more sophisticated and transparent construction is presented.

Let $i \in\{1, \ldots, n-1\}$ and $j \in\{2, \ldots, n\}$. We define the transformations $\sigma_{i, j} \in \mathcal{O}_{n}^{-}$and $\varepsilon_{i, j} \in \mathcal{O}_{n}^{+}$by

$$
x \sigma_{i, j}=\left\{\begin{array}{ll}
i & \text { if } i \leq x \leq j \\
x & \text { otherwise }
\end{array} \quad \text { and } \quad x \varepsilon_{i, j}=\left\{\begin{array}{ll}
j & \text { if } i \leq x \leq j \\
x & \text { otherwise }
\end{array},\right.\right.
$$

for all $x \in\{1, \ldots, n\}$.
Observe that, for $i \neq j$ and $k \neq \ell$, we have $\sigma_{i, j}=\sigma_{k, \ell}$ if and only if $i=k$ e $j=\ell$. The same holds for $\varepsilon_{i, j}$.
These transformations allow us to represent in a canonical form the elements of \mathcal{O}_{n}^{-}and \mathcal{O}_{n}^{+}: given $\sigma \in \mathcal{O}_{n}^{-}$ and $\varepsilon \in \mathcal{O}_{n}^{+}$, we have

$$
\sigma=\sigma_{1, a_{1}} \cdots \sigma_{n-1, a_{n-1}}
$$

with $a_{i}=\max \left(\{1, \ldots, i\} \alpha^{-1}\right)$, for $i \in\{1, \ldots, n-1\}$, and

$$
\varepsilon=\varepsilon_{b_{n}, n} \cdots \varepsilon_{b_{2}, 2}
$$

with $b_{j}=\min \left(\{j, \ldots, n\} \alpha^{-1}\right)$, for $j \in\{2, \ldots, n\}$.
For instance, given $\sigma=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 1 & 2 & 2 & 3 & 5 & 7\end{array}\right) \in \mathcal{O}_{7}^{-}$and $\varepsilon=\left(\begin{array}{ccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 3 & 5 & 6 & 6 & 7 & 7\end{array}\right) \in \mathcal{O}_{7}^{-}$, we have $\sigma=\sigma_{1,2} \sigma_{2,4} \sigma_{3,5} \sigma_{4,5} \sigma_{5,6} \sigma_{6,6}$ and $\varepsilon=\varepsilon_{6,7} \varepsilon_{4,6} \varepsilon_{3,5} \varepsilon_{3,4} \varepsilon_{1,3} \varepsilon_{1,2}$.

Now, we may define a left action of \mathcal{O}_{n}^{+}on \mathcal{O}_{n}^{-}and a right action of \mathcal{O}_{n}^{-}on \mathcal{O}_{n}^{+}as follows: given $\sigma=$ $\sigma_{1, a_{1}} \cdots \sigma_{n-1, a_{n-1}} \in \mathcal{O}_{n}^{-}$and $\varepsilon=\varepsilon_{b_{n}, n} \cdots \varepsilon_{b_{2}, 2} \in \mathcal{O}_{n}^{-}$(canonically represented), we let

$$
\varepsilon \cdot \sigma=\sigma_{1, a_{1}^{\prime}} \cdots \sigma_{n-1, a_{n-1}^{\prime}},
$$

with $a_{i}^{\prime}=\max \left\{i, \min \left\{a_{i}, b_{a_{i}+1}-1\right\}\right\}$ (where $b_{n+1}=n+1$ is assumed for the case $a_{i}=n$), for $1 \leq i \leq n-1$, and

$$
\varepsilon^{\sigma}=\varepsilon_{b_{n}^{\prime}, n} \cdots \varepsilon_{b_{2}^{\prime}, 2},
$$

with

$$
b_{n}^{\prime}=\left\{\begin{array}{ll}
b_{n} & \text { if } a_{n-1}=n-1 \\
n & \text { otherwise }
\end{array} \quad \text { and } \quad b_{j}^{\prime}= \begin{cases}b_{j} & \text { if } a_{j-1}=j-1 \\
\min \left\{j, b_{a_{j-1}+1}\right\} & \text { if } j \leq a_{j-1}<a_{j} \\
\min \left\{j, b_{j+1}^{\prime}\right\} & \text { if } a_{j}=a_{j-1}\end{cases}\right.
$$

(recursively defined) for $2 \leq j \leq n-1$. Notice that both expressions are canonical forms.

Example 4.1 Let

$$
\sigma=\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 1 & 1 & 1 & 6 & 6 & 6 & 6 & 6 & 9 & 12
\end{array}\right)=\sigma_{1,5} \sigma_{2,5} \sigma_{3,5} \sigma_{4,5} \sigma_{5,5} \sigma_{6,10} \sigma_{7,10} \sigma_{8,10} \sigma_{9,11} \sigma_{10,11} \sigma_{11,11} \in \mathcal{O}_{12}^{-}
$$

(notice that $\sigma \notin \mathcal{O}_{3 \times 4}^{-}$) and

$$
\varepsilon=\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 5 & 8 & 8 & 8 & 8 & 8 & 8 & 12 & 12 & 12 & 12
\end{array}\right)=\varepsilon_{9,12} \varepsilon_{9,11} \varepsilon_{9,10} \varepsilon_{9,9} \varepsilon_{3,8} \varepsilon_{3,7} \varepsilon_{3,6} \varepsilon_{1,5} \varepsilon_{1,4} \varepsilon_{1,3} \varepsilon_{1,2} \in \mathcal{O}_{12}^{+}
$$

(notice that $\varepsilon \in \mathcal{O}_{3 \times 4}^{+}$). Then

$$
\varepsilon \cdot \sigma=\sigma_{1,2} \sigma_{2,2} \sigma_{3,3} \sigma_{4,4} \sigma_{5,5} \sigma_{6,8} \sigma_{7,8} \sigma_{8,8} \sigma_{9,9} \sigma_{10,10} \sigma_{11,11}=\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 3 & 4 & 5 & 6 & 6 & 6 & 9 & 10 & 11 & 12
\end{array}\right) \in \mathcal{O}_{12}^{-}
$$

(notice that $\varepsilon \cdot \sigma \in \mathcal{O}_{3 \times 4}^{-}$) and

$$
\varepsilon^{\sigma}=\varepsilon_{9,12} \varepsilon_{9,11} \varepsilon_{9,10} \varepsilon_{9,9} \varepsilon_{8,8} \varepsilon_{7,7} \varepsilon_{3,6} \varepsilon_{3,5} \varepsilon_{3,4} \varepsilon_{3,3} \varepsilon_{2,2}=\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 2 & 6 & 6 & 6 & 6 & 7 & 8 & 12 & 12 & 12 & 12
\end{array}\right) \in \mathcal{O}_{12}^{+}
$$

(notice that $\varepsilon^{\sigma} \notin \mathcal{O}_{3 \times 4}^{+}$).
Regarding these actions, Kunze [17] proved that the function

$$
\begin{array}{rll}
\mathcal{O}_{n}^{-} \bowtie \mathcal{O}_{n}^{+} & \longrightarrow & \mathcal{O}_{n} \\
(\sigma, \varepsilon) & \mapsto & \sigma \varepsilon
\end{array}
$$

is a surjective homomorphism. See [7] for a more clear and explicit presentation.
Next, we focus our attention on the monoids $\mathcal{O}_{m \times n}, \mathcal{O}_{m \times n}^{-}$and $\mathcal{O}_{m \times n}^{+}$.
First, we characterize the canonical forms of the elements of $\mathcal{O}_{m \times n}^{-}$and $\mathcal{O}_{m \times n}^{+}$.
Proposition 4.2 Let $\sigma=\sigma_{1, a_{1}} \cdots \sigma_{m n-1, a_{m n-1}}^{\circ} \in \mathcal{O}_{m n}^{-}$and $\varepsilon=\varepsilon_{b_{m n}, m n} \cdots \varepsilon_{b_{2}, 2} \in \mathcal{O}_{m n}^{+}$canonically represented. Then:

1. $\sigma \in \mathcal{O}_{m \times n}^{-}$if and only if $i \equiv 0(\bmod n)$ implies $a_{i} \equiv 0(\bmod n)$, for $i \in\{1, \ldots, m n-1\}$;
2. $\varepsilon \in \mathcal{O}_{m \times n}^{+}$if and only if $j \equiv 1(\bmod n)$ implies $b_{j} \equiv 1(\bmod n)$, for $j \in\{2, \ldots, m n\}$.

Proof. We only prove the first property, as the second one can be proved similarly.
Suppose that there exists $i \in\{1, \ldots, m n-1\}$ such that $i \equiv 0(\bmod n)$ and $a_{i} \not \equiv 0(\bmod n)$. Regarding the canonical form of σ, we have $\left(a_{i}\right) \sigma \leq i$ and $\left(a_{i}+1\right) \sigma>i$. As $i \equiv 0(\bmod n)$, then $\left(a_{i}\right) \sigma,\left(a_{i}+1\right) \sigma \notin A_{k}$, for all $k \in\{1, \ldots, m\}$. On the other hand, as $a_{i} \not \equiv 0(\bmod n)$, then $a_{i}, a_{i}+1 \in A_{k}$, for some $k \in\{1, \ldots, m\}$. Hence $\sigma \notin \mathcal{O}_{m \times n}^{-}$.

Conversely, suppose that $i \equiv 0(\bmod n)$ implies $a_{i} \equiv 0(\bmod n)$, for all $i \in\{1, \ldots, m n-1\}$. Let $x, y \in X_{m n}$ be such that $x \leq y$. Suppose that $x \sigma, y \sigma \notin A_{k}$, for all $k \in\{1, \ldots, m\}$. Then $x \sigma<y \sigma$ and there exists $i \in\{x \sigma, \ldots, y \sigma-1\}$ such that $i \equiv 0(\bmod n)$. It follows that $x \leq a_{x \sigma} \leq a_{i}<y$ and, by the hypothesis, $a_{i} \equiv 0(\bmod n)$, whence $x, y \notin A_{k}$, for all $k \in\{1, \ldots, m\}$. Thus $\sigma \in \mathcal{O}_{m \times n}^{-}$, as required.

Lemma 4.3 Let $\sigma=\sigma_{1, a_{1}} \cdots \sigma_{m n-1, a_{m n-1}} \in \mathcal{O}_{m \times n}^{-}$and $\varepsilon=\varepsilon_{b_{m n}, m n} \cdots \varepsilon_{b_{2}, 2} \in \mathcal{O}_{m \times n}^{+}$. Then $\varepsilon \cdot \sigma \in \mathcal{O}_{m \times n}^{-}$and $\varepsilon^{\sigma} \in \mathcal{O}_{m \times n}^{+}$.

Proof. We begin by proving that $\varepsilon \cdot \sigma \in \mathcal{O}_{m \times n}^{-}$. Consider $\varepsilon \cdot \sigma=\sigma_{1, a_{1}^{\prime}} \cdots \sigma_{m n-1, a_{m n-1}^{\prime}}$, as defined above. Let $i \in\{1, \ldots, m n-1\}$ and suppose that $i \equiv 0(\bmod n)$. Then, as $\sigma \in \mathcal{O}_{m \times n}^{-}$, we have $a_{i} \equiv 0(\bmod n)$. If $a_{i}^{\prime}=a_{i}$ or $a_{i}^{\prime}=i$, then trivially $a_{i}^{\prime} \equiv 0(\bmod n)$. So, admit that $a_{i}^{\prime}=b_{a_{i}+1}-1$. As $a_{i} \equiv 0(\bmod n)$, then $a_{i}+1 \equiv 1(\bmod n)$. Now, as $\varepsilon \in \mathcal{O}_{m \times n}^{+}$, it follows that $b_{a_{i}+1} \equiv 1(\bmod n)$ and so $a_{i}^{\prime}=b_{a_{i}+1}-1 \equiv 0(\bmod n)$. Hence $\varepsilon \cdot \sigma \in \mathcal{O}_{m \times n}^{-}$.

Next, we prove that $\varepsilon^{\sigma} \in \mathcal{O}_{m \times n}^{+}$. Take $\varepsilon^{\sigma}=\varepsilon_{b_{m n}^{\prime}, m n} \cdots \varepsilon_{b_{2}^{\prime}, 2}$, as defined above. Let $j \in\{2, \ldots, m n\}$ and suppose that $j \equiv 1(\bmod n)$. Then, as $\varepsilon \in \mathcal{O}_{m \times n}^{+}$, we have $b_{j} \equiv 1(\bmod n)$. Observe that $j<m n$.

If $a_{j-1}=j-1$ then $b_{j}^{\prime}=b_{j} \equiv 1(\bmod n)$.
If $j \leq a_{j-1}<a_{j}$ then $b_{j}^{\prime}=\min \left\{j, b_{a_{j-1}+1}\right\}$. If $b_{j}^{\prime}=j$ then trivially $b_{j}^{\prime} \equiv 1(\bmod n)$. So, admit that $b_{j}^{\prime}=b_{a_{j-1}+1}$. As $j-1 \equiv 0(\bmod n)$ and $\sigma \in \mathcal{O}_{m \times n}^{-}$, then $a_{j-1} \equiv 0(\bmod n)$, whence $a_{j-1}+1 \equiv 1(\bmod n)$ and so $b_{j}^{\prime}=b_{a_{j-1}+1} \equiv 1(\bmod n)$.

It remains to consider $a_{j}=a_{j-1}$. In this case, $b_{j}^{\prime}=\min \left\{j, b_{j+1}^{\prime}\right\}$. If $j \leq b_{j+1}^{\prime}$ then $b_{j}^{\prime}=j \equiv 1(\bmod n)$. Therefore, admit that $j>b_{j+1}^{\prime}$. Hence, $b_{j}^{\prime}=b_{j+1}^{\prime}<j$.

Let $k \in\{j, \ldots, m n-1\}$ be the greater index such that $a_{k}=a_{k-1}=\cdots=a_{j}=a_{j-1}$.
First, we prove that $b_{k+1}^{\prime}=b_{k}^{\prime}=\cdots=b_{j+1}^{\prime}=b_{j}^{\prime}$. In order to obtain a contradiction, suppose there exists $t \in\{j+1, \ldots, k+1\}$ such that $b_{t}^{\prime}>b_{t-1}^{\prime}=\cdots=b_{j}^{\prime}$. Then, as $a_{t-1}=a_{t-2}$, we have $b_{t}^{\prime}>b_{t-1}^{\prime}=\min \left\{t-1, b_{t}^{\prime}\right\}$ (notice that $t-1 \leq k<m n$), whence $j \leq t-1=b_{t-1}^{\prime}=b_{j}^{\prime}<j$, a contradiction.

Next, recall that $a_{j-1} \equiv 0(\bmod n)$. Hence, $a_{k} \equiv 0(\bmod n)$. If $k=m n-1$ then, as $a_{m n-1} \geq m n-1$ and $a_{m n-1} \equiv 0(\bmod n)$, we must have $a_{m n-1}=m n$ and so $j>b_{j}^{\prime}=b_{m n}^{\prime}=m n$, a contradiction. Hence $k<m n-1$. Moreover, we have $a_{k+1}>a_{k}=a_{k-1}=\cdots=a_{j}=a_{j-1}$.

Now, if $a_{k}=k$ then $b_{j}^{\prime}=b_{k+1}^{\prime}=b_{k+1} \equiv 1(\bmod n)$, since $k+1=a_{k}+1 \equiv 1(\bmod n)$ and $\varepsilon \in \mathcal{O}_{m \times n}^{+}$.
Finally, suppose that $a_{k+1}>a_{k} \geq k+1$. Then $b_{j}^{\prime}=b_{k+1}^{\prime}=\min \left\{k+1, b_{a_{k}+1}\right\}$. If $k+1 \leq b_{a_{k}+1}$ then $j>b_{j}^{\prime}=k+1 \geq j+1$, a contradiction. Thus, $k+1>b_{a_{k}+1}$ and so $b_{j}^{\prime}=b_{a_{k}+1}$. From $a_{k}+1 \equiv 1(\bmod n)$, it follows that $b_{j}^{\prime}=b_{a_{k}+1} \equiv 1(\bmod n)$, as required.

The previous lemma allow us to consider the bilateral semidirect product $\mathcal{O}_{m \times n}^{-} \bowtie \mathcal{O}_{m \times n}^{+}$induced by the bilateral semidirect product $\mathcal{O}_{m n}^{-} \bowtie \mathcal{O}_{m n}^{+}$. Furthermore, as $\mathcal{O}_{m \times n}=\mathcal{O}_{m \times n}^{-} \mathcal{O}_{m \times n}^{+}$, by the general observations made in the beginning of this section, we obtain:

Theorem 4.4 The monoid $\mathcal{O}_{m \times n}$ is a homomorphic image of $\mathcal{O}_{m \times n}^{-} \bowtie \mathcal{O}_{m \times n}^{+}$.

References

[1] A.Ya. Aŭzenštat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, Sibirsk. Mat. 3 (1962), 161-169 (Russian).
[2] A.Ya. Aĭzenštat, Homomorphisms of semigroups of endomorphisms of ordered sets, Uch. Zap., Leningr. Gos. Pedagog. Inst. 238 (1962), 38-48 (Russian).
[3] J. Almeida and M.V. Volkov, The gap between partial and full, Int. J. Algebra Comput. 8 (1998), 399-430.
[4] J. Araújo and C. Schneider, The rank of the endomorphism monoid of a uniform partition, Semigroup Forum 78 (2009), 498-510.
[5] V.H. Fernandes, Semigroups of order-preserving mappings on a finite chain: a new class of divisors, Semigroup Forum 54 (1997), 230-236.
[6] V.H. Fernandes, Semigroups of order-preserving mappings on a finite chain: another class of divisors, Izvestiya VUZ. Matematika 3 (478) (2002), 51-59 (Russian).
[7] V.H. Fernandes and T.M. Quinteiro, Bilateral semidirect product decompositions of transformation monoids I, submitted.
[8] V.H. Fernandes, M.M. Jesus, V. Maltcev and J.D. Mitchell, Endomorphisms of the semigroup of orderpreserving mappings, submitted.
[9] G.M.S. Gomes and J.M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45 (1992), 272-282.
[10] J.M. Harris et al., Combinatorics and Graph Theory Springer-Verlag New York, 2000.
[11] P.M. Higgins, Divisors of semigroups of order-preserving mappings on a finite chain, Int. J. Algebra Comput. 5 (1995), 725-742.
[12] John M. Howie, Product of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. 17 (1971), 223-236.
[13] P. Huisheng, On the rank of the semigroup $\mathcal{T}_{E}(X)$, Semigroup Forum 70 (2005), 107-117.
[14] P. Huisheng, Regularity and Green's relations for semigroups of transformations that preserve an equivalence, Communications in Algebra 33 (2005), 109-118.
[15] P. Huisheng and Z. Dingyu, Green's Equivalences on Semigroups of Transformations Preserving Order and an Equivalence Relation, Semigroup Forum 71 (2005), 241-251.
[16] M. Kunze, Zappa products, Acta Math. Hungar. 41 (1983), 225-239.
[17] M. Kunze, Bilateral semidirect products of transformation semigroups, Semigroup Forum 45 (1992), 166182.
[18] M. Kunze, Standard automata and semidirect products of transformation semigroups, Theoret. Comput. Sci. 108 (1993), 151-171.
[19] J. Rhodes and B. Tilson, The kernel of monoid morphisms, J. Pure Appl. Algebra 62 (1989), 277-268.
[20] V.B. Repnitskiĭ and M.V. Volkov, The finite basis problem for the pseudovariety \mathcal{O}, Proc. R. Soc. Edinb., Sect. A, Math. 128 (1998), 661-669.
[21] A. Solomon, Catalan monoids, monoids of local endomorphisms, and their presentations, Semigroup Forum 53 (1996), 351-368.
[22] A. Vernitskii and M.V. Volkov, A proof and generalisation of Higgins' division theorem for semigroups of order-preserving mappings, Izv.vuzov. Matematika, No. 1 (1995), 38-44 (Russian).

Vítor H. Fernandes
Departamento de Matemática
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
Monte da Caparica
2829-516 Caparica
Portugal
\&
CAUL
Av. Prof. Gama Pinto 2
1649-003 Lisboa
Portugal
e-mail: vhf@fct.unl.pt

Teresa M. Quinteiro
Instituto Superior de Engenharia de Lisboa
Rua Conselheiro Emídio Navarro, 1
1950-062 Lisboa
Portugal
e-mail: tmelo@dec.isel.ipl.pt

[^0]: ${ }^{1}$ The author gratefully acknowledges support of FCT and PIDDAC, within the project PTDC/MAT/69514/2006 of CAUL.
 ${ }^{2}$ The author gratefully acknowledges support of ISEL and of FCT and PIDDAC, within the project PTDC/MAT/69514/2006 of CAUL.

