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Abstract

In this paper we consider the monoid O,,«, of all order-preserving full transformations on a chain with

mn elements that preserve a uniform m-partition and its submonoids O}, and O, ., of all extensive

transformations and of all co-extensive transformations, respectively. We give formulas for the number of
elements of these monoids and determine their ranks. Moreover, we construct a bilateral semidirect product
decomposition of O, %, in terms of O, and O/ .
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Introduction and preliminaries

Let X be a set and denote by 7 (X) the monoid (under composition) of all full transformations on X. Let p be
an equivalence relation on X. We denote by 7,(X) the submonoid of 7 (X) of all transformations that preserve
the equivalence relation p, i.e.

7,(X) ={a € T(X) | (aa, ba) € p,for all (a,b) € p}.
This monoid was studied by Huisheng in [14] who determined its regular elements and described its Green
relations.
For n € N, let X,, be a chain with n elements, say X, = {1 <2 < --- < n}, and denote the monoid 7 (X,,)
simply by 7,,. Let
T.. ={a €T, |r<zaforallz € X,,} and 7, ={a€7,|ra<zforalxcX,}

i.e. the submonoids of 7, of all extensive transformations and of all co-extensive transformations, respectively.

Let
O, ={a €7, |z <yimplies za < yay, for all z,y € X}

be the submonoid of 7, whose elements are the order-preserving transformations and let
Of=7,rn0, and O, =7, NO,

be the submonoids of O,, of all extensive transformations and of all co-extensive transformations, respectively.
The monoid O,, has been extensively studied since the sixties. In fact, in 1962, Aizenstat [1, 2] showed
that the congruences of O,, are exactly the Rees congruences and gave a monoid presentation for O, in terms
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of 2n — 2 idempotent generators, from which it can be deduced that the only non-trivial automorphism of
O,, where n > 1 is that given by conjugation by the permutation (1 n)(2 n —1)---(|n/2| [n/2] +1). In
1971, Howie [12] calculated the cardinal and the number of idempotents of O,, and later (1992), jointly with
Gomes [9], determined its rank and idempotent rank. Recall that the [idempotent] rank of a finite [idempotent
generated] monoid is the cardinality of a least-size [idempotent| generating set. More recently, Fernandes et al.
[8] described the endomorphisms of the semigroup O,, by showing that there are three types of endomorphism:
automorphisms, constants, and a certain type of endomorphism with two idempotents in the image. The monoid
O,, also played a main role in several other papers [11, 22, 3, 5, 20, 6] where the central topic concerns the
problem of the decidability of the pseudovariety generated by the family {O,, | n € N}. This question was posed
by J.-E. Pin in 1987 in the “Szeged International Semigroup Colloquium” and is still unanswered.

Now, let m,n € N and let p be the equivalence relation on X,,, defined by
p:(A1 XAl)U(AQXAQ)U--'U(AmXAm),

where A; = {(i —1)n+1,(i—1)n+2,...,in}, for i € {1,...,m}. Notice that the p-classes 4;, with 1 <i < m,
form a uniform m-partition of X,,. Denote by 7y,x, the submonoid 7,(Xmy,) of Z,,, and let

T+

mxXn

= Toxn NT5 and T, = Tonsn N T,

mxn

be the submonoids of 7, x, of all extensive transformations and of all co-extensive transformations, respectively.
Regarding the rank of 7,,«n, first, Huisheng [13] proved that it is at most 6 and, later, Aratjo and Schneider
[4] improved this result by showing that, for | X,,,| > 3, the rank of 7, x,, is precisely 4.
Denote by O, «xn the submonoid of 7., «,, of all order-preserving transformations that preserve the equivalence

p, i.e.
Omxn = Tmxn N Omn)

and consider its submonoids

ot =T, NOpy and O, . =T~ . NOnn,

mXn mXn
of all extensive transformations and of all co-extensive transformations, respectively.
Example 0.1 Let

/123 4[5 6 7 89 10 11 12 (123 4[5 6 7 8|9 10 11 12
“=\11332/912 10 10/5 6 6 8 /)" {555 6l66 6 7[10 11 11 11 )’

5 6 7 8
3 3 4 4

5 6 7 8

13 3 4/9 9 10 10 5 6 8 8

e (1234
3= 10 11 11 12 112 2

9101112> (1234 9101112)
and a4 =

Then, we have: a3 € 7344 but a1 € Osxq; @z € Oszxq but as & (’)E,f><4 and ag & Os,4; and a3 € O;le and
oy € O:;><4-

Notice that, as O, and O;, the monoids O;, ., and O} are isomorphic. In fact, the function which maps
each transformation a € O, ,, into the transformation o’ € Q% defined by zo/ = mn+1— (mn+1—2)a, for

all z € X, is an isomorphism of monoids. Moreover, for o € Oy, %y, we have o = ajavg, for some o € O, ,

and ag = O . For instance, we may take the transformations o and as defined by

za ifz<za
T if x> za,

and zag = {

S za fza<z
1= z if xa > 2

for all z € X,,,,. Notice that, in this case, we also have o = asay.
The monoid O,,x, was considered by Huisheng and Dingyu in [15] who described its Green relations. In

this paper we determine the cardinals and the ranks of the monoids Oy,xn, O, and O, ..



Next, let S and T be two semigroups. Let 6 : T' — 7(S) be an anti-homomorphism of semigroups and let
¢ : S — T(T) be a homomorphism of semigroups. For s € S and u € T, denote (s)(u)d by u.s and (u)(s)p
by u®. We say that 0 is a left action of T on S and that ¢ is a right action of S on T if they verify the following
rules:

(SPR) (uv)® = uv%, for s € S and u,v € T (Sequential Processing Rule); and
(SCR) wu(sr) = (wus)(u®ar), for s,r € S and u € T (Serial Composition Rule).

In [16] Kunze proved that the set S x T is a semigroup with respect to the following multiplication:

(s,u)(r,v) = (s(uar),u"v),

for s,r € S and u,v € T. We denote this semigroup by SsX,T" (or simply by SXT, if it is not ambiguous) and
call it the bilateral semidirect product of S and T associated with § and ¢.

We notice that this concept was strongly motivated by automata theoretic ideas.

If S and T are monoids and the actions § and ¢ preserve the identity (i.e. 1.5 = s, for s € S, and u!' = u,
for u € T') and are monoidal (i.e. u.1 =1, for u € T, and 1° = 1, for s € S), then SXT is a monoid with
identity (1,1).

Observe that, if ¢ is a trivial action (i.e. (S)¢ = {idr}) then SXT = S % T is an usual semidirect product,
if ¢ is a trivial action (i.e. (7)d = {ids}) then SXT coincides with a reverse semidirect product T *, S (by
interchanging the coordinates) and if both actions are trivial then S X 7T is the usual direct product S x T
Observe also that the bilateral semidirect product is quite different from the Rhodes and Tilson [19] double
semidirect product, where the second components multiply always as a direct product.

In [17] Kunze proved that the monoid O,, is a quotient of a bilateral semidirect product of its subsemigroups
O,, and O;F. See also [18, 7]. We finish this paper by constructing a bilateral semidirect product decomposition

of Omxyn in terms of is submonoids O, ., and O, | thus generalizing Kunze’s result.

1 Wreath Products of Transformation Semigroups

In [4] Aradjo and Schneider proved that the rank of 7,,x, is 4, by using the concept of wreath product of
transformation semigroups. This approach will be also very useful in this paper.

For simplicity, we define the wreath product 7,7, of 7, and 7,, as being the monoid with underlying set
T, x T, and multiplication defined by

(0517 sty O‘m;ﬂ)(alla st OL;n, ﬁ,) = (alallﬁa cee 7ama;ﬂ,ﬁ;ﬁﬁ/)>

for all (a1,...,am;0), (&f,...,al;08") € T X Tp,.
Let a € Tpxn and let 8 = a/p € T, be the quotient map of o by p, i.e. for all j € {1,...,m}, we have
Aja C Ajg. For each j € {1,...,m}, define a; € 7,, by
kaj = ((j — Dn+k)a—(j8 - n,
for all k € {1,...,n}. Let @ = (a1, 9, ...,am; ) € T,7* X Tp,. With this notation, the function

'QD: men — thTm
« —

is an isomorphism (see [4, Lemma 2.1]). From this fact, one can immediately conclude that the cardinality of

Trnxn 18 n™"Mm™,



Example 1.1 Consider the transformation

_(123456 7 8]9 10 11 12

133 29 12 10 10(5 6 6 8)6%’”'
Then, we have @ = (a1, a2, a3; ), with § = <

2 3 123 4
3 2)’0‘1:<1 3 3 2)’“2:<
(12 3 4
0‘3_<1 2 2 4>‘

Notice that the restriction of ¥ to O, x, is not, in general, an isomorphism from O,,x, into the wreath
product 0,00y, (that may be defined similarly to 7,,07,,). For instance, for m = n = 2, take a = (a1, ag; 3), with

1 2 1 2 1 2 _ 1 2|3 4
oz1:<2 2),a2:<1 1>andﬁ:(1 1).Thena€(922(’)2anda¢1:<2 5|1 1>§£(92X2.

In fact, the monoid O,y is not, in general, isomorphic to Oy, ! O,. For example, we have |Ozx2| = 19 <
27 = 1021 04].

2
4

—_ =
—_ =

3 4
9 2>and

Consider

Omsxn = {(a1,...,am; 3) € O x Oy, | jB8 = (j + 1) implies na; < layjyq, for all j € {1,...,m —1}}.
Notice that, if (a1, ..., m;B) € Omxn and 1 <4 < j < m are such that i3 = j3, then na; < lay.
Lemma 1.2 O,,xn = Onmxnt.

Proof. First, let (a1,...,am;B) € Omxn and take o = (aq, ..., Qm; )Y € Touxn. Let 2,y € {1,...,mn} be
such that x < y. Then x € A; and y € A;, for some 1 < i < j < m. Hence, za = (x — (i — 1)n)oy + (i — 1)n
and ya = (y — (j — 1)n)a; + (j8 — 1)n. If i = j then

<y = z-(G-Ln<y-(—-1Ln
= (2= -Dn)ay <(y—(—n)oy
= za=(@-(J-Dn)a+(G-1n<(y— G- Dn)a; + (G- n=ya.

If i < jand i < jB then za < (iB)n < (j8 — 1)n < (j8 — 1)n + 1 < ya. Finally, if i < j and i3 = j3, then
(= (1 = 1)n)a; <na; < la; < (x—(j — 1)n)ay, whence

za = (@ — (i~ Dn)ai + (i — Un < (y — (j — Yn)ay + (i — Dn = (y — (j — Yn)ay + (j8 — 1)n = ya.

Hence, a is an order-preserving transformation and so Opxn € Opmxnid.

Conversely, let a € O, xpn and (ai, ..., am; 3) = aw.

We start by showing that 8 € O,,. Let 4,5 € {1,...,m} be such that i < j. Asin € A; and A;a C Az, we
have (in)a € A;g. Similarly, (jn)a € Ajz. On the other hand, i < j implies in < jn and so (in)a < (jn)o. It
follows that ¢3 < j3.

Next, we prove that a; € O, for all 1 < j < m. Let j € {1,...,m} and let 2,y € {1,...,n} be
such that + < y. Then (j = 1)n +2 < (j — I)n + y, whence ((j — I)n + z)a < ((j — 1)n + y)a and so
za; = ((j — Dn+a)a — (jB = hn < (= D+ y)a— (18 — Un = yay.

Finally, let j € {1,...,m — 1} be such that j3 = (j + 1)3. Then, as o € Oy, we have

noy = ((j—1)n+n)a—(jiB—1)n = (jn)a—(jB-1)n < (jn+l)a—(iB—1)n = (jn+1)a—((j+1)8-1)n = layi1.
Thus, Omxnt € Omxn and s0 Opmxn = Opmxntl, as required. [
It follows immediately that:

Proposition 1.3 The set O,,xp is a submonoid of T, ! Tr, (and of Oy 1 Op,) isomorphic to Opxp - m



Next, consider

7+

mxn

={(a1,...,am;B) € T, x T} | jB = j implies aj € 7,7, for all j € {1,...,m}}.
; + impli — 7t m—1 + +

Notice that, as § € 7,7 implies m@8 = m, then 7,,,, C 7, x Tm xTr.

Lemma 1.4 ?:;an =Tt .

Proof. In order to show that 7:,_”” CT .0 et (a1,...,am;3) € T,—;Xn and take a = (aq, ..., am; B)Y L
We aim to show that @ € 7. Let z € {1,...,mn} and take j € {1,...,m} such that z € A;. Then za € Ajg
and, as f € 7,7, we have j < jf3. If j < jBthen j < j8—landsox < jn < (jB—1)n< (JB—1)n+1<za. If
jB=jthena; € T,t andsox =(z—(j—1)n)+ (j— )n < (z—(j —1)n)a;j + (j — 1)n = za. Hence a € T.,,.
Conversely, let o € 7.7 and o) = (aq, . .., am; ).
First, observe that, for all j € {1,...,m}, as Aja C Ajz and o € T s
so j < jfB. Hence 8 € 7,;}.

Next, let j € {1,...,m} be such that j3 = j and take k € {1,...,n}. Then

we have jn < (jn)a < (jB)n and

kaj = (G~ Un+ka— (B~ Dn= (- Dntk—(B-Dn=(-Dn+k— (- n=k

Hence, oj € 7, and so 7,1 C T, .., as required. ]
Thus, we have:
Proposition 1.5 The set ?:,;Xn is a submonoid of T, 1 T, isomorphic to T,F .. m

Now, let
At A -t
Omxn = Omxn N men

= {(a1,...,am;B) € Ot x OF x O | i8 = (j + 1)B implies na; < laji; and
jB =j implies oj € O;f, for all j € {1,...,m —1}} .

As 1 is injective, by propositions 1.3 and 1.5, we have

6:7_1><n = Omxn N TJXW = (Omxn N TT:Xn)w = O:r_zxnw
and so:
Corollary 1.6 The set 6;Xn is a submonoid of Ty, 1 Ty, (and of O, 1 Op,) isomorphic to O . n
Similarly, being
6;n><n = 6m><n m?;nxn

= {(a1,...,am;B) € O, x O™~ x O, | (j — 1) = jB implies naj_1 < laj and
jB = j implies a;j € Oy, for all j € {2,...,m}},

we have:

Proposition 1.7 The set O,),,, is a submonoid of T, 1 T, (and of Oyt Op,) isomorphic to O, .. [

n



2 Cardinals

In this section we use the previous bijections to obtain formulas for the number of elements of the monoids
Omxns O, and O

mXxXmn-*

In order to count the elements of O,,x,, on one hand, for each transformation 3 € O,,, we determine the
number of sequences (a, ..., q,) € O™ such that (aq,...,&m;3) € Omxn and, on the other hand, we notice
that this last number just depends of the kernel of 3 (and not of 3 itself).

With this purpose, let 8 € O,,. Suppose that Im3 = {b1 < by < --- < by}, for some 1 < ¢t < m, and
define k; = |b;87!], for i = 1,...,t. Being 8 an order-preserving transformation, the sequence (ki,...,k;)
determines the kernel of §: we have {k1+---+ki—1+1,..., k1 +---+k;i}8={b;i}, fori =1,...,t (considering
ki +---+ki—1+1=1, with i = 1). We define the kernel type of 3 as being the sequence (ki, ..., k). Notice
that 1 <k; <m,fori=1,...,t,and k1 + ko +--- + ky = m.

Now, recall that the number of non-decreasing sequences of length k from a chain with n elements (which
is the same as the number of k-combinations with repetition from a set with n elements) is (”+£_1) = (":ﬁ;l)
(see [10], for example). Next, notice that, as a sequence (ar, ..., a) € OF satisfies the condition naj < lajy,
for all 1 < j <k —1, if and only if the concatenation sequence of the images of the transformations aq, ..., ag
(by this order) is still a non-decreasing sequence, then we have ("J;kaf 1) such sequences.

Since (a1, ...,am;B) € Omxyn if and only if, for all 1 < i < ¢, Qgygoihy;y 415« Qg toik, are k; order-
preserving transformations such that the concatenation sequence of their images (by this order) is still a non-
decreasing sequence, then we have Hle (klfr_ﬁ_l) elements in O,,x, whose (m + 1)-component is 3.

Finally, now it is also clear that if 8 and (' are two elements of O,, with the same kernel type then
(a1, yam; B) € Omxn if and only if (aq,...,am;0) € Omxn. Thus, as the number of transformations
B € Oy, with kernel type of length ¢ (1 < ¢ < m) coincides with the number of ¢-combinations (without

repetition) from a set with m elements, it follows:

m\ 1o (kin+n—1
Theorem 2.1 |Op,xp| = Z <t>H<Zn_1 ) -
=1

1<k1,....ke<m =
k1+4-+ki=m
1<t<m

The table below gives us an idea of the size of the monoid O, x,.

m\n| 1 2 3 4 5 6
1 1 3 10 35 126 462
2 3 19 156 1555 17878 225820
3 10 138 2845 78890 2768760 115865211
4 35 | 1059 55268 4284451 454664910 61824611940
5 126 | 8378 | 1109880 241505530 77543615751 34003513468232
6 462 | 67582 | 22752795 | 13924561150 | 13556873588212 | 19134117191404027

Next, we describe a process to count the number of elements of O:ﬁm-

First, recall that the cardinal of O is the n''-Catalan number, i.e. |O;}| = n%rl (21?) See [21].
It is also useful to consider the following numbers:

O(n,i) = {a € OF | 1la =1},
for 1 <i < n. Clearly, we have |O;f| =37 | 6(n,i). Moreover, for 2 <4 <n — 1, we have

O(n,i) =0(n,i+1)+0(n—1,i—1).



In fact, {a € O} | la=i}={a e O} | la=i<2a}U{a € O} | la=2a =i} and it is easy to show that
the function which maps each transformation 8 € {a € O | la =i < 2a} into the transformation

(i+1 2% ... nﬁ>€{a€(’)n| lao =i+ 1}

and the function which maps each transformation 8 € {a € O ;| la =i — 1} into the transformation

1 2 3 n—1 n
i 1 2641 ... n—=2)+1 (n—-1)pB+1

are bijections. Thus

)e{ae@,ﬂ la =20 =i}

O(n,i) = HaeOf| la=i<2a}|+[{ae O} | la=2a=i}
= facOt | la=i+1}+{acOf || la=i-1}
= O(n,i+1)+60(n—1,i—1).

Also, it is not hard to prove that 6(n,2) = 6(n,1) = S" " 0(n — 1,47) = |O}_,|.
Now, we can prove:

Lemma 2.2 Foralll1 <i<mn, 0(n,i) = %(271—2‘—1) = %(271—1’—1).

n—i n—1

Proof. We prove the lemma by induction on n.
For n =1, it is clear that (1,1) =1 = %(%if)
Let n > 2 and suppose that the formula is valid for n — 1.

Next, we prove the formula for n by induction on 4.

For i = 1, as observed above, we have §(n,1) = |0} || = %(277__12).
. 1(2n—2 2 2n—2)! n—1 2 2n—23)! 2 (2n—3
For i = 2, we have 0(n,2) = 0(n,1) = 3 (5') = ﬁ(nfl)!(n)—l)! m—2 E(n£1)!(n)—2)! =250

Now, suppose that the formula is valid for ¢ — 1, with 3 <4 < n. Then, using both induction hypothesis on
. . . . : . i—1 (2n—i i— 9 2n—i—1
i and on n in the second equality, we have 6(n,i) = 0(n,i —1) —O(n — 1,i — 2) = =L (7)) — == (1700 =
i—1 (2n—1)! i—2  (2n—i—-1)! _ i(n—i+1) (2n—1)! _ l’(?n—i—l

n n—DIin—it1)!  n—1 (n-2)(n—i+1)! — n@n—i) n-D)(n—i+1)! — n\ n—1 ), as required. u

Recall that (aq,...,am;0) € @;m if and only if 3 € O, am € OF, a1,...,am—1 € O, and, for all
je{l,...,m—1}, j8 = (j + 1)8 implies noj < lajyq and j3 = j implies a; € O;F.

Let 8 € O . As for the monoid O,,x,, we aim to count the number of sequences (o, ..., ) € O™ such
that (aq,...,am;0) € @;Xn.

Let (kq,..., k) be the kernel type of 5. Let K; = {ki+---+ki—1+1,...,k1+---+k;},fori =1,...,¢. Then,
3 fixes a point in K; if and only if it fixes k1 + -+ + k;, for t = 1,... . It follows that (ay,...,am; ) € 6:1><n
if and only if, for all 1 <4 < ¢:

1. If 8 does not fix a point in K;, then ag,+...qp; 41, ., Xk +...+k, are k; order-preserving transformations
such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence (in

- kin+n—1 ,
this case, we have ( o ) subsequences (O +tk; 141« - s Oky+tk;) allowed);
2. If B fixes a point in Kj;, then o 4oqty 141, -+ Qky+-tky—1 are k; — 1 order-preserving transformations

such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence,
Ny 4othy—1 < L0y gk, and ok, oqp, € OF (in this case, we have 377 ((ki_l)”ﬂ_l)ﬂ(n,j) subse-

j—1
quences (g4 +k;_y+1y-- - Oky++k;) allowed).
Define
2(B,1) = (kifr_nfl), if (k4 +k)B#ki+-+k
7 S I (BTN A (ke R)B =R+ Ry

forall 1 <i<t{.
Thus, we have:



t
Proposition 2.3 |0} | = Z HD(B,Z’). n
560;2 i=1

Next, we obtain a formula for O} ,,| which does not depend of 3 € O}.
Let 3 be an element of O}, with kernel type (ki, ..., k). Define sg = (s1,...,8:) € {0,1} "1 x {1} by s; = 1
if and only if (k1 +---+k;))B=ki+---+ ki, forall 1 <i<t—1.
Let 1 < t,k1,...,k < m be such that ky + --- + k = m and let (s1,...,s;) € {0,1}71 x {1}. Let

k= (ki,...,k) and s = (s1,...,s). Define
A(k,s) = |{B € O, | 8 has kernel type k and sz = s}|.

In order to get a formula for A(k,s), we count the number of distinct restrictions to unions of partition
classes of the kernel of transformations 8 of O}, with kernel type k and sg = s corresponding to maximal
subsequences of consecutive zeros of s.

Let 8 be an element of O, with kernel type k and sg = s.

First, notice that, given i € {1,...,t}, if s; = 1 then K;8 = {k1 +--- + k;} and if s; = 0 then the (unique)
element of K;( belongs to K, for some i < j <'t.

Next,let i € {1,...,t} and r € {1,...,t —i} be such that s; =0, forall j € {i,...,i+r —1}, s;y, =1 and,
ifi>1,s_1=1(@Ge (S,...,8+r—1) is a maximal subsequence of consecutive zeros of s). Then

(KU UKjp o UK 1)BC Kip1 U UK 1 U (Kigr \ {b1 + - + Kigr }).

Let [j = |Ki+j Q(KiU--'UKZ’+r,1),8’, for 1 < j <r. Hence, we have ¢1,...,6,_1>0,0,>1, 01+ ---4+4. =7
and 0 </l +---+ /4 <j,forall1 <j<r—1

On the other hand, given ¢y, ..., ¢, such that ¢1,...,0,_1 > 0,0, > 1, {1+-- -+, =rand 0 < {1+ --+{; < g,
for all 1 < j <r —1, we have precisely

kivr) (Fiv2\  (Fier1) (Fier =1\ _ (Figr =1 ﬁ kit
AW by 0 0 0

Jj=1

distinct restrictions to K; U -+ U Kjj,—1 of transformations § of O, with kernel type k and sg = s, such

that ¢; = |Kip; N (KU - U K1), for 1 < j < r. It follow that the number of distinct restrictions to
K;U---UK; i, of transformations 3 of O;f with kernel type k and sg=sis

r—1
> fer =D T (e
lr LI\ v, )
Zl"l‘“"‘l‘zr:r j:1

0<y 4445 <j, 1<j<r—1

£y, 8r 120, £r21

Now, let p be the number of distinct maximal subsequences of consecutive zeros of s. Clearly, if p = 0 then
A(k,s) = 1. Hence, suppose that p > 1 and let 1 <wuj < v <ug <wvy < -+ < up < vp <t be such that

{je{l,... . t}| sjzo}:U{ul-,...,vi—u

(i.e. (Suys---»Sv;—1), with 1 <4 < p, are the p distinct maximal subsequences of consecutive zeros of s). Then,
being r; = v; — u;, for 1 <4 < p, we have

Fur, — 1\ 1 (urts
swa=11 ¥ (") (%)
i=1 Ol =1 " j=1 J

0<by+++4;<j 1<j<r;—1
Ol 2120, £ >1
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Finally, notice that, if 8 and ' two elements of O, with kernel type k = (k1,..., k) such that sg = sg,
then 9(3,i) = 0(4, 1), for all 1 <4 <t. Thus, defining

t

Ak, s) = [T2(8,9),

i=1

where 3 is any transformation of O, with kernel type k and sz = s, we have:

Theorem 2.4 |0 | = Z Z Ak, s)A(k,s). [

mXn
k=(k1,....kt) se{0,1}"1x{1
1<k1,....ks<m O {1)
k1+4-+kt=m
1<t<m

We finish this section with a table that gives us an idea of the size of the monoid O} ..
m\n| 1 2 3 4 5 6
1 1 2 5 14 42 132
2 2 8 35 306 2401 21232
3 5 42 569 10024 210765 5089370
4 14 | 252 8482 410994 25366480 1847511492
5 42 | 1636 | 138348 | 18795636 | 3547275837 839181666224
6 132 | 11188 | 2388624 | 913768388 | 531098927994 | 415847258403464

Despite the unpleasant appearance, the previous formula allows us to calculate the cardinal of O, even

for larger m and n. For instance, we have |(’)f0x10| = 47016758951069862896388976221392645550606752244
and |O10x10| = 50120434239662576358898758426196210942315027691269.

3 Ranks

«n and O

Our aim in this section is to determine the ranks of the monoids Opxn, O X

m

First, we recall some well known facts on the monoids O,,, O, and O, (see [1, 9, 21]).
Let

o 1 -+ j j+1 j+2 -+ n o 1 - j—1 j j+1 - n
aﬂ_(l | j j+2 - n and  b; = 1 -+ j—-1 541 541 -+ n )’

for 1 <j<n-1 Then{a; |1 <j<n-1},{b; |1 <j<n-1}and {a;,b; | 1 < j < n—1} are
idempotent generating sets of O, , O and O,, respectively. Moreover, it was proved by Gomes and Howie
9] that {a;,b; | 1 < j < n — 1} is a least-size idempotent generating set of O,, from which it follows that
the idempotent rank of O, is 2n — 2. On the other hand, it is easy to show that the transformations a;,
1<j<n-1,and b;, 1 < j < n—1, are indecomposable elements (i.e. which are not product of elements
distinct of themselves) of O, and O, respectively. It follows immediately that the rank and the idempotent
rank of O, and of O, are equal to n — 1. Next, consider the transformation

12 3 .- n _
C<1 12 n—1>eon'
Also in [9], Gomes and Howie proved that {b1,...,b,_1,c} is a least-size generating set of O,,, from which it
follows that the rank of O, is n.



Now, for i € {1,...,m} and j € {1,...,n — 1}, let

oo t—-1)n+1 -+ (@i—-n+j5j—-1 (G—-1n+j (—-1)n+j+1 -+ in
B t—n+1 -+ (i—1)n+j5j-1 (i—-1)n+j5j+1 (@i—1)n+j+1 -+ in

“Yeon.

We are considering the non-represented elements of X, fixed by the transformation, i.e. (x)b;; = z, for all
re A, withl <fl<m,l#i,1<i<mand1<j<n-—1. We use this convention in other definitions below.
Notice that, for 1 <i<mand 1 <j <n—1,

At
b@j = bi’jl/) = (1, ceey 1,bj, 1,...,1; 1) € Oan,

with b; € O;F in the ith component and 1 representing the identity map (of 7y, or of 7,,).
Next, for i € {1,...,m — 1} and j € {1,...,n}, let

P ¢—Dn+1 -+ in—j+1 in—j+2 - in
“ in+1 e in+1 in+2 - in+j
in+1 -+ din+j in+j+1 -+ (i+1l)n|--- c ot
in+j -+ din+j in+j+1 - (G4+1)n|--- mxmn
For 1 < j < n, being
(1 - n—jg+1 n—3+2 -+ n _ (1 g g+l o n
SJ_(l 1 2 j)eon and ti_(j e j oG4+ o € On,

(notice that s, =1 and ¢, is the constant map with value n), we have
- A+
ti,j = tiJI/J = (1, ceey 1, Sj,tj, 1, cee 1; bl) (S Omxm

with b; € O}, (notice that we may unambiguously use the same notation for the generators of O;f and O;) and
sj in the ith component.

Example 3.1 Regarding the monoid O;X 4, We have:

. 1 2 3 4|5 6 7 8|9 10 11 12 poo_ (123 4]56 7 8[9 10 11 12
L=Vl 2 2 3 4|5 6 7 8|9 10 11 12 =15 5 5 5|5 6 7 89 10 11 12
poo— (123 4[5 6 7 8|9 10 11 12 po_ (123 4]56 7 8[9 10 11 12
12781 3 3 4|5 6 7 89 10 11 12 12275 5 5 6[6 6 7 &8[9 10 11 12
poo— (1 23 456 7 8|9 10 11 12 co_ (123 4[5 6 7 8[9 10 11 12
W=\ 1 2 4 4|5 6 7 89 10 11 12 W=\s5 5 6 7|7 7 7 8|9 10 11 12

b (123 4[5 6 7 8/9 10 11 12 (123 4]56 7 8[9 10 11 12
2171 2 3 4/6 6 7 8[9 10 11 12 4=\ 5 6 7 8/8 8 8 89 10 11 12
poo— (123 456 7 8|9 10 11 12 oo (123 4]56 7 8[9 10 11 12
227\ 1 2 3 4|5 7 7 8|9 10 11 12 217V 1 2 3 4/9 9 9 9|9 10 11 12
po.—(1 23 4[5 6 7 8|9 10 11 12 o (1234567 8|9 10 11 12
23741 2 3 4|5 6 8 8/9 10 11 12 227\ 1 2 3 4/9 9 9 10[10 10 11 12
oo (123 456 7 89 10 11 12 oo (123456 7 8[9 10 11 12
317\ 1 2 3 4|5 6 7 8|10 10 11 12 23741 2 3 49 9 10 11|11 11 11 12
poo— (123 4[5 6 7 8|9 10 11 12 o (12345 6 7 8|9 10 11 12
327\ 1 2 3 4|5 6 7 8|9 11 11 12 2471401 2 3 49 10 11 12|12 12 12 12
oo (123 456 7 8|9 10 11 12

337\ 1 2 3 4|5 6 7 8|9 10 12 12
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Let M = {a € O}, | Aija C Aj,forall 1 <i<m}. Then My = {(ay,...,am;1) | a1,...,am € OF},
which is clearly a monoid isomorphic to (OF)™. As the set {b; | 1 < j < n — 1} generates O,, then the set
{bi;j |1 <i<m,1<j<n-—1} generates M1 and so {b;; | 1 <i<m,1 <j <n—1}is a generating set of

the submonoid M of OF

mxXn-*

Lemma 3.2 The monoid OF

oxn s generated by {b1;,b2j,t10|1<j<n—1,1<¢<n}.

Proof. Let N be the submonoid of 6;” generated by {El,j,glj,fl’g |1<j<n-1,1</¢<n}. Inorder to
prove the lemma, we show that N = @;Xn.

Notice that, an element of @;Xn has the form (a1, ag;1), with aq, a0 € O;F, or the form (aq, ag; 3), with
6= (é g), nay < lag, ag € O, and as € O;F. By the above observation, the elements of the first form belong
to N, whence it remains to show that the elements of the second form also belong to N. We perform this task
by considering first two particular cases. Observe that t1 ¢ = (s¢,t;3), for 1 < ¢ <n.

CASE 1. Let oo = (o, tj;08), with 1 < j <n and oy € Oy, such that Imaq = {1,...,j}.

Then, it is easy to show that na; = j and, for 1 <i<n—1,ia; < (i+ 1)y <iag + 1.

Take s = < n—;’—l—l n—§'+2 ;71 ]‘721 Z > € OF and let 6 = a1s;. Clearly, 0 € Oy.
Moreover, 6 € O} In fact, for 1 < i < n, as ia; < j, then i = i sy =n—j+ia;. Asnb =n,if 0 ¢ o,
then we may find ¢ € {1,...,n — 1} such that i0 < i < (i +1)f, whence n — j +ia; <i<n—j+ (i+ 1)
and so ia; + 1 < (i + 1)ag, a contradiction. Hence § € O,F. Then, we have (6,1;1) € N and, as alsgsj =, it
follows that

o = (Ozl,tj;ﬂ) = (QSj,tj; ﬂ) = (0, 1; 1)(Sj,tj;,8) = (9, 1; 1)%173‘ € N.

CASE 2. Let a = (a1, tpay; ), with ag € O,,.

Suppose that Ima; = {i; < iy < -+ < iy = nay}, with 1 < j < n. Take 0 as being the unique element
of O, such that Tm@ = {1,...,5} and Kerf = Kera; (i.e. (ira;")0 = {k}, for 1 < k < j). As k < iy, for
1 < k < j, the transformation

o — 1 2 -+ j - 4 ij+1l - on
- i1 iy - ij z'j ij+1 e m

belongs to O;f. Now, let x € {1,...,n} and k € {1,...,j}. Asz € ikal_l if and only if 26 = k, we deduce that
06" = a. Moreover, clearly t;6' = t,q,. Hence, as (¢',60;1) € N and, by the CASE 1, (6,t;;5) € N, we have

a = (a1, tnay; B) = (00',4;60';8) = (0,t;; 8)(¢',6';1) € N.

GENERAL CASE. Let a = (aq,as; 8), with nay < lasg, ay € O, and as € O
Consider the canonical decomposition (mentioned in the introductory section) a = 61¢1, with 6; € O and
€1 € O, being the transformations defined by

. ) if iOél S 7 . iOq if iOél S 7
0 =<2 . o . and ig) = . o .
o if tog >4 1 if o > 17,

for 1 <i <n. As ne; = nag < lag, then we have ast,., = ay. Hence, since (01, a2;1) € N and, by the CASE
2, (€1,tne,; B) € N, it follows

o = (Oél,OéQ;,B) = (91617a2tn61;/8) = (017052; 1)(617tn€1;/8) S Nv

as required. [
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Next, let k € {1,...,m — 1} and consider the submonoid

S = {Oz cOf | (Ak U Ak+1)a C AL U Ak+1 and za =z, for all x € X,,,,, \ (Ak U Ak+1)}

mXxn

_l’_
2Xn

of OF

X and so, in view of Lemma 3.2, it is generated by

Clearly, Sy, is isomorphic to O
{brjs brg1jotee |1 <j<n—1,1<0<n}
Now, we can prove:

Proposition 3.3 The set B = {bjj, tyy | 1<i<m, 1 <j<n—-1,1<k<m-1,1<{<n}isa
+

generating set, with 2mn — m — n elements, of the monoid O, ,,.

Proof. Denote by N the submonoid of O, generated by B. Then, we already proved that the submonoids
S1,...ySm_1, M of O are contained in N. For each o € O let d(a) = |[{i € {1,...,m} | Aja € A;}|. In

mxXn mxn?
order to prove the result, we show that o € N, for all « € O, ., by induction on d(«).
Let o € O . be such that d(a) = 0. Then a € M and so a € N.

Hence, let p > 0 and suppose, by induction hypothesis, that o € N, for all a € O} . with d(a) = p. Let
a € OF .. be such that d(a) = p+ 1. Let i € {1,...,m — 1} be the least index such that A;a € A; and let

ke{i+1,...,m} besuch that A;a C Ay. Take

N :< 1 - n (Gi—2n+1 - (i—=1n |[@GE—1n+1 --- in
! la -+ na|--- | (G=2n+Da -+ (t—1n)a|(i—-1n+1 --- in
in+1 - (i+1)n (m—1n+1 - mn )
(in+Da -+ (G+n)a|--- [ (m—1)n+Da -+ (mn)a
and
_( (k—3)n+1 - (k—=2n| k—2n+1l - (k—Dn
CE o k=-3n+1 o (k=2n|((-Dn+Da -~ (in)a
(k—1)n+1 -+ (in)a (in)a+1 -+ kn|kn+1 --- (kE+1)n )
(in)a <o (in)a (in)a+1 -+ kn|kn+1 -~ (k+Dn|--- )’

Then oy € O;;M and d(ay) = p, whence a3 € N, by induction hypothesis. Moreover, we also have ay € N,
since ag € Si—1. Finally, it is routine to show that o = a1t; - - - tp—2 a2 and so a € N, as required. [

Next, we prove that B is a least-size generating set of O} .

Theorem 3.4 The rank of O, is 2mn —m — n.

Proof. It suffices to show that all the elements of By are indecomposable in @;Xn.

Let i € {1,...,m} and j € {1,...,n—1}. Recall that b;; = (1,...,1,b;,1,...,1;1), with b; € O, in the ith
component. As the identity is indecomposable (in O;f and in O};) and b; is indecomposable in O}, it follows
immediately that b; ; is indecomposable in 6:””.

Now, let ¢ € {1,...,m — 1} and j € {1,...,n}. We prove that ¢;; = (1,...,1,s5,t;,1,...,1;b;) also is

indecomposable in 5:rnm (notice that s; is the i component of 7; ;). Let o = (a1, ..., @, i1, .-, 3 B), @ =
7+ p—

(.. 05,05, q,...,a0;8") € Oy, besuch that t; ; = aa’ = (fylo/w, cel aiagﬁ, ai+1o/(i+1)ﬁ, . OémOé;ng; Ba").
As 38,4 € O, and B3 = b;, we have 8,8 € {1,b;}. Hence, t;; = (ozlo/l,...,aia;ﬁ,aHla;Jrl,...,ama;n;bi)
and so ap = o, =1, for k € {1,...,m}\ {i,i+ 1}, ajp10),; = t; and oiy1,0), € O;f. Notice that, from the
equality a;y10;, = t; we deduce that {j,...,n} =Imt; C Imaj, ;.

Suppose that § = b;. Then i3 = i + 1, whence o;a;,; = sj and so {1,...,j} = Ims; C Ima;,,. Hence
Imoj,, ={1,...,n}, which implies that o; ; = 1. Thus, a; = s; and ;41 = t; and so a = #; ;.

12



On the other hand, admit that 5 = 1. Then 3’ = b;, a; € O;f and ;0 = s;.

First, we prove that o = s;. As a; € O, we have 1 = (n — j + 1)s; = (n — j + D)oy, > (n — j + 1)a,
whence (n — j + 1)a), = 1. Moreover, from the equality a;o) = s; we deduce that {1,...,j} = Ims; C Imo/
and so we have o} = s;.

Finally, we prove that o}, = t;. As oy € O, we have na; = n and so j = ns; = noya = naj < laj,
from which we deduce that Imo/},; C {7,...,n}. Thus Im o}, = {j,...,n}. Moreover, as a;y1,0a},; € O, we

have j < jair1 < jaipiaf | = jtj = j, whence j = jo;y1 and so joj | = jai1af | = jt; = j. Thus, we have

iy = t. B
Hence, we also proved that, if 5 =1 then o/ =¢; ;. Thus ¢; ; is indecomposable in (’);Xn, as required. ]
Now, recall that the monoid O, is isomorphic to O .. Therefore, O, ., as rank equal to 2mn —m —n

and a least-size generating set of O,,,, can be obtained from B by isomorphism. Next, we describe explicitly
such generating set of O, ,,.
Forie {l,...,m}and j€{1,...,n—1}, let

oo =DnFl e =Dt G—DntiHl (—Un+i+2 e in e
b (i—n+1 -+ (i—=n+j (G—-1n+5 @G—-Dn+j+2 - in|--- )’
Forie{l,....m—1}and j € {1,...,n}, let
s —( t—1)n+1 -+ in—j5+1 in—j+2 --- mn
b (i—Ln+1 -+ in—j+1 in—j+1 -+ in—j+1
in+1 in+2 - din4+j - (@+1)n|---
m—j+1 in—j5+2 - mn e in S

Then, we have that A = {a; j, 550 |1 <1 <m,1 <j<n—-1,1<k <m—1,1<{ < n}is aleast-size generating
set of O

mxXn-*

Next, for i € {1,...,m}, consider

Ci:<~-(i—1)n+1 (i—1)n+2 (i—)n+3 - in :::>

(—Dn+1 (i—)n+1 (i—Dn+2 - in—1 € O

mXxXn*

For instance, in O, 4, we have

(123 4[56 78 ond e (123 4[56 78
=\ 112 3|56 738 271 2 3 4|5 56 7)°

We now focus our attention on the monoid O, xp.

As observed in the introductory section, we have O« = O, .., O)F . whence AU B is a generating set of

OmXTL-
Let i € {1,...,m}. It is easy to show that T; = {a € Opxn | Aia € A; and za = z, for all x € X, \ A}
is a submonoid of Oy, isomorphic to O,. As {a;,b; | 1 <j <n—1} and {c,b1,...,b,_1} are generating sets

of Oy [9], then {a;;,b;; | 1 <j<n—1}and {¢;,b;; | 1<j<mn—1} are generating sets of T;. Hence
{ciyspe|1<i<m,1<k<m-1,1</<n}UB

generates O, xn.
On the other hand, it is a routine matter to show that t; 1 = si ntkn, Sk,1 = tk,nSkn and

Skt = (Dkn—r1 - bk2) (bt br3) - (be—1- i) brg1,e -+ bpg1,2) (brgie41 - bug1,3) -

o (Ok1,n—1 7 Okt n—041) thn—e4+15k,n »

forl<k<m-land2</¢<n-1.
Therefore, we have:

13



Proposition 3.5 The set C' = {c¢;,bij, Skm toe | 1 <i<m,1<j<n—-11<k<m-12<{<n}isa
generating set, with 2mn — n elements, of the monoid Opxn - [

We finish this section by proving that C' is a least-size generating set of O, xp.
Theorem 3.6 The rank of Opxp is 2mn — n.

Proof. Forie {l,...,m—1} and j € {1,...,n}, let

a0 i—n+1 -+ @G—1n+j—-1 (i—Dn+j - in
A (i—1)n+1 - ((—n+j—1 (i—Dn+j - (i—Dn+j
in+1 in+3j in+j+1 e i+ Dn| -
i—-n+j -+ (i—1)n+j5 (i—n+j5+1 --- in S

Notice that « fixes all elements of Ay, for all k € {1,...,m} \ {7, + 1}, and Ima = X, \ Ai11.

Take a1, a9 € Opxn such that « = ajae. As |[Ima| = (m—1)n, then |[Ima;| > (m—1)n and Im o C Im .
CASE 1. Suppose that Imagy N A;11 # (. Then Agay C Ajtq, for some k € {1,...,m}. As Xy \ Air1 C Imag,
we must have A;U---UA; C (AU - UAg_1)agand AjpoU---UA,, C(Ag1U---UAp)ag. Theni <k —1
and i + 2 > k + 1, whence k = i + 1. Moreover, aps maps Xy, \ Air1 onto Xy \ Ai+1 and so it fixes all
elements of X, \ Air1. Now, let © € Xy, If zag € Ajpq then za = zajas € A;4q, a contradiction. Hence
xay € Xon \ Aiy1 and so za = zajay = zag. Thus a = ay.

CASE 2. On the other hand, suppose that Im aoNA;11 = 0. Then Im ag C X\ Air1 and so Imag = X \ Aiy1-

Let Y = AU U4, U{(i—Dn+1,....,0—Dn+jtU{in+j+1,...,(i+1)n}UA;;2U---UA,,. Notice
that |Y| = (m —1)n. As a is injective in Y, then o7 must also be injective in Y. It follows that A;a; C Ay and
Ajr10q C Ay, for some i < k < /¢ <i+1 (observe that (i —1)n+1€ A;NY and (i +1)n € A;1NY).

If k=iand £ =i+ 1 then (in)ay < in and (in + 1)ag > in + 1, whence

(t—1)n+j=(n)a=(in)oqaz < (in)ag < (in+ 1)az < (in+ Najae = (in+ 1)a=(i—1)n+j

and so (in)ag = (in+ 1)ag = (i — 1)n + .
On the other hand, if k¥ = ¢ then |Im ;| = (m — 1)m = |Y'|, which implies that

(t—1n+lar<---<((i—-1)n+j—1Dar < (i —1)n+j)ag=---= (in)ay =
=(n+lDag=--=(n+jloa<(in+j+1la <---<((i+1)n)a.

Then (in)a; = (in+ 1)a; = (i —)n+j,if k=i=¢ and (in)a; = (in+ 1)a; =in+j,if k =i+ 1=~
Therefore, we proved that, in order to write «; ; as a product of elements of Op,x,, we must have a factor
a; ; with [Im oy ;| = (m — 1)n such that (in)a; ; = (in+1)aj ; = (i —)n+j or (in)a; ; = (in+ 1)aj ; = in+ j.
Observe that, given i,k € {1,...,m — 1} and j,£ € {1,...,n} such that (i, ) # (k,£), then o] ; # O‘Z,z- In
fact, it is clear that, if i = k and j # £ then «j ; # a;,. On the other hand, if i # k then o] ; = aj , implies
that [Ima; ;| < (m — 1)n, a contradiction.
Thus, each generating set of O, x, must have (m — 1)n distinct elements with image size equal to (m — 1)n.
Next, observe that, for ¢ € {1,...,m}, the elements of Tji) are of the form (1,...,1,a;,1,...,1;1), with
a; € O, in the i*" component. Then, as the identity is indecomposable (in O,, and in O,,), given « € T; and
o, " € Opxn, it is clear that o = o/a” implies o/, o¢” € T;. On the other hand, since O,, has rank n and T} is
isomorphic to Oy, in order to generate in O,,x,, all the elements of T;, we need at least n distinct (non-identity)
elements of Tj, for i € {1,...,m}. Hence, each generating set of O, must have mn distinct elements with
image size greater than or equal to (m — 1)n + 1.

Therefore, we proved that each generating set of Oy, x, must have (m — 1)n + mn distinct elements and so,
in view of Proposition 3.5, we conclude that O,,x, has rank 2mn — n, as required. [
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4 A bilateral semidirect product decomposition of O,,.,

In this section, we present a bilateral semidirect product decomposition of O,,x, in terms of is submonoids
O, and O . This result generalizes the Kunze’s bilateral semidirect product decomposition [17] of the
monoid O, in terms of O, and O,f. Our strategy is to use Kunze’s actions on O,,,, and O, to induce a left

action of O, on O, and a right action of O, ., on O .

Let S be a monoid and let S~ and ST be two submonoids of S. Let us consider a left action § of S* on S~
and a right action ¢ of S~ on ST such that the function

S™MSt — 8
(s,u) —  su

is a homomorphism. For s € S~ and u € ST, denote (s)(u)d by u.s and (u)(s)p by u®.

Now, let T be a submonoid of S, T~ a submonoid of S~ and T a submonoid of ST. It is a routine matter
to check that, if u.s € T~ and u®* € T+, for all s € T~ and u € T, then § induces a left action of 7T on T~
and ¢ induces a right action of T~ on T'". If, in addition, T'=T"T7 then

T-XTT — T
(s,u) = su

is a surjective homomorphism.

Next, we recall, in slightly different way, some aspects of the original construction made by Kunze in [17],
in order to prove that the monoid O,, is a quotient of a bilateral semidirect product of O, and O;'. The reader
will also benefit from reading the authors’s paper [7], where a more sophisticated and transparent construction
is presented.

Let i€ {1,...,n—1} and j € {2,...,n}. We define the transformations o; ; € O,, and &, ; € O} by

o fidtiges<y [ ifi<e<]
Bz otherwise Y71z otherwise ’

for all z € {1,...,n}.
Observe that, for i # j and k # £, we have o0; j = oy ¢ if and only if i = k e j = {. The same holds for ¢; ;.
These transformations allow us to represent in a canonical form the elements of O,, and O;: given o € O,
and € € O;, we have

0 =014, " " On—1l,an_1>
with a; = max({1,...,i}a"1), fori € {1,...,n — 1}, and
€ =Epy,n" " E€by,2s

with b; = min({j,...,n}a™t), for j € {2,...,n}.

: . 1 234567 _
Formstance,glvena—(1 1 2 9 3 5 7)6(’)7 and6—<

0 = 01,202403504505606,6 and € = €6,7€4,6€3,5€3,4€1,3€1,2-

2 3 45 6 7 _
35 6 6 7 7)607,wehave

w =

Now, we may define a left action of O} on O; and a right action of O, on O as follows: given o =
Olar"  On—lan, € O, and € =€y, p - €py 2 € O, (canonically represented), we let

€«0 =01,4) """ On-1,a

n—1
with a} = max{i, min{a;, bs;+1 —1}} (where b, 41 = n+1 is assumed for the case a; = n), for 1 <i <n—1, and

o) f— ..
€ =&y .n 617’2,2 )
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with
bj if aj_l = ] -1

b, ifa,.1=n-—1 . o
b = { nn ochrwise and b = m%n{]‘, bflj’lﬂ} ?f] = Gj-1 < 4
min{j, 0}, }  ifaj=aj-1,

(recursively defined) for 2 < j < n — 1. Notice that both expressions are canonical forms.

Example 4.1 Let

. 1 2 3 45 6 7 8 9 10 11 12 . cO-
o = 111116666 6 9 12 = 01,502,503,504505506,1007,1008,1009,11010,11011,11 19
(notice that o ¢ O3, ,) and
B 1 23 45 6 78 9 10 11 12 B c O+
€= 5 58 8 8 8 8 8 12 12 12 12 = €9,12€9,11€9,10€9,9€3,8€3,7€3,6€1,5€1,4€1,3€1,2 12

(notice that ¢ € O3 ). Then

123 45 6 7 8 9 10 11 12 _
€0 = 01202203304405506807,80880990101001,1={ | | 3 4 5 6 6 6 9 10 11 12 ) € P
(notice that e.0 € Oy, ,) and
- 12 3 45 6 78 9 10 11 12 +
€7 = £0,1269,11€9,10€0,068 867,7€3,6635634833€22 = | | o9 6 6 6 6 7 8 12 12 12 12 | € )

(notice that €7 ¢ OF, ).

Regarding these actions, Kunze [17] proved that the function

O MOF — 0,

(0,¢) —  0c

is a surjective homomorphism. See [7] for a more clear and explicit presentation.

Next, we focus our attention on the monoids Opyxn, Oy, and O .

First, we characterize the canonical forms of the elements of O ,, and O} ..

Proposition 4.2 Let 0 = 01,4, *** Opmn—1,amn_1 € Ompn A € = €p, mn *** Eby2 € O canonically represented.
Then:

1. 0 € O,,, if and only if i = 0 (modn) implies a; = 0 (modn), fori e {1,...,mn—1};
2. e € OF . if and only if j = 1 (modn) implies bj = 1 (modn), for j € {2,...,mn}.

Proof. We only prove the first property, as the second one can be proved similarly.

Suppose that there exists i € {1,...,mn — 1} such that i = 0 (modn) and a; Z 0 (modn). Regarding the
canonical form of o, we have (a;)o0 < i and (a; + 1)o > i. As i = 0 (modn), then (a;)o, (a; + 1)o & Ay, for all
k € {1,...,m}. On the other hand, as a; Z 0 (modn), then a;,a; + 1 € A, for some k € {1,...,m}. Hence
0 ¢ Orsn-

Conversely, suppose that ¢ = 0 (mod n) implies a; = 0 (modn), for all i € {1,...,mn — 1}. Let x,y € Xy,
be such that x < y. Suppose that zo,yo &€ A, for all k£ € {1,...,m}. Then zo < yo and there exists
i € {zo,...,yo — 1} such that i = 0(modn). It follows that * < a,, < a; < y and, by the hypothesis,

a; = 0 (modn), whence x,y € Ay, for all k € {1,...,m}. Thus o € O, ,,, as required. n
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Lemma 4.3 Let 0 = 014, Omn—t.amn_1 € Opsen, ANA € = € mn***Ebg2 € Opf
e? € Of

mxn*

Thene.o € O, and

n-

mxn as defined above. Let
i€{1,...,mn— 1} and suppose that i = 0 (modn). Then, as o € O,,,,, we have a; = 0 (modn). If a; = a; or
a; =1, then trivially a; = 0 (modn). So, admit that a} = bg,4+1 — 1. As a; = 0 (modn), then a; +1 = 1 (modn).

Now, as ¢ € O ., it follows that by, 11 = 1 (modn) and so a} = by, 41 — 1 =0 (modn). Hence e.0 € O, ..

Proof. We begin by proving that .0 € O Consider .0 =014, ** Omn—1,a/, >

Next, we prove that €7 € O;;Xn. Take €7 = ey - “-Epl 2, 8S defined above. Let j € {2,...,mn} and
suppose that j = 1 (modn). Then, ase € O
If aj_1 = j — 1 then b} = b; = 1 (mod n).

If j < aj1 < aj then b; = min{j,by; ,+1}. If b; = j then trivially b, = 1(modn). So, admit that
by =ba; ,+1. As j—1=0(modn) and o € O,
by =ba; ,+1 =1(modn).

It remains to consider a; = a;j—1. In this case, b, = min{j, 0}, ,}. If j < b, then V) = j = 1 (modn).
Therefore, admit that j > b’ . Hence, b, = b, < j.

we have b; = 1 (modn). Observe that j < mn.

then aj—1 = 0 (modn), whence aj_1 +1 =1 (modn) and so

Let k € {j,...,mn — 1} be the greater index such that ay = a_; =--- = a; = a;_1.
First, we prove that b) ; = b, = --- =0, = b,. In order to obtain a contradiction, suppose there exists
te{j+1,....,k+1} such that b > b;_; = --- =b’. Then, as a;—1 = a;—2, we have by > b;,_; = min{t — 1,0}

(notice that t — 1 < k < mn), whence j <t —1=10b;_; =} < j, a contradiction.

Next, recall that a;—; = 0(modn). Hence, ar = 0(modn). If k= mn — 1 then, as ayp—1 > mn — 1 and
amn—1 = 0 (modn), we must have a,,—1 = mn and so j > b;- =1,, = mn, a contradiction. Hence k < mn — 1.
Moreover, we have ayi1 > ap = ap—1 = -+ = a; = a;j_1.

Now, if aj, = k then b’ = b}, | = b1 = 1(modn), since k +1 =a; +1=1(modn) and ¢ € O on-

Finally, suppose that ax11 > ap > k + 1. Then b, = by, = min{k + 1,bg, 41} If &k +1 < bgy 11 then
j >V =k+12>j+1, acontradiction. Thus, k + 1 > by, 41 and so b = bg, 1. From ay + 1 = 1 (modn), it
follows that b = by, +1 = 1 (modn), as required. [

The previous lemma allow us to consider the bilateral semidirect product O, ... X O induced by the
bilateral semidirect product O, X O . Furthermore, as Opxn = O, O, by the general observations
made in the beginning of this section, we obtain:

Theorem 4.4 The monoid Opxy, is a homomorphic image of O, ., MO . u
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