The cardinal of various monoids of transformations that preserve a uniform partition

Vítor H. Fernandes ${ }^{1}$ and Teresa M. Quinteiro ${ }^{2}$

July 30, 2010

Abstract

In this paper we give formulas for the number of elements of the monoids $\mathcal{O} \mathcal{R}_{m \times n}$ of all full transformations on a finite chain with $m n$ elements that preserve a uniform m-partition and preserve or reverse the orientation and for its submonoids $\mathcal{O} \mathcal{D}_{m \times n}$ of all order-preserving or order-reversing elements, $\mathcal{O} \mathcal{P}_{m \times n}$ of all orientationpreserving elements, $\mathcal{O}_{m \times n}$ of all order-preserving elements, $\mathcal{O}_{m \times n}^{+}$of all extensive order-preserving elements and $\mathcal{O}_{m \times n}^{-}$of all co-extensive order-preserving elements.

2000 Mathematics subject classification: 20M20, 05A10.
Keywords: order-preserving/reversing, orientation-preserving/reversing, extensive, equivalence-preserving, transformations.

Introduction and preliminaries

For $n \in \mathbb{N}$, let X_{n} be a finite chain with n elements, say $X_{n}=\{1<2<\cdots<n\}$. Following the standard notations, we denote by $\mathcal{P} \mathcal{T}_{n}$ the monoid (under composition) of all partial transformations on X_{n} and by \mathcal{T}_{n} and \mathcal{I}_{n} its submonoids of all full transformations and of all injective partial transformations, respectively.

A transformation $\alpha \in \mathcal{P} \mathcal{T}_{n}$ is said to be extensive (resp., co-extensive) if $x \leq x \alpha$ (resp., $x \alpha \leq x$), for all $x \in \operatorname{Dom}(\alpha)$. We denote by \mathcal{T}_{n}^{+}(resp., \mathcal{T}_{n}^{-}) the submonoid of \mathcal{T}_{n} of all extensive (resp., co-extensive) transformations.

A transformation $\alpha \in \mathcal{P} \mathcal{T}_{n}$ is said to be order-preserving (resp., order-reversing) if $x \leq y$ implies $x \alpha \leq y \alpha$ (resp., $y \alpha \leq x \alpha$), for all $x, y \in \operatorname{Dom}(\alpha)$. We denote by $\mathcal{P} \mathcal{O}_{n}$ the submonoid of $\mathcal{P} \mathcal{T}_{n}$ of all order-preserving partial transformations. As usual, we denote by \mathcal{O}_{n} the monoid $\mathcal{P} \mathcal{O}_{n} \cap \mathcal{T}_{n}$ of all full transformations that preserve the order. This monoid has been extensively studied since the sixties (e.g. see [2, 1, 20, 34, 7, 3, 31, 9]). In particular, in 1971, Howie [21] showed that the cardinal of \mathcal{O}_{n} is $\binom{2 n-1}{n-1}$ and later, jointly with Gomes, in [18] they proved that $\left|\mathcal{P} \mathcal{O}_{n}\right|=\sum_{i=1}^{n}\binom{n}{i}\binom{n+i-1}{i}+1$. See also Laradji and Umar papers [27] and [28].

Next, denote by \mathcal{O}_{n}^{+}(resp., by \mathcal{O}_{n}^{-}) the monoid $\mathcal{T}_{n}^{+} \cap \mathcal{O}_{n}$ (resp., $\mathcal{T}_{n}^{-} \cap \mathcal{O}_{n}$) of all extensive (resp., co-extensive) order-preserving full transformations. The monoids \mathcal{O}_{n}^{+}and \mathcal{O}_{n}^{-}are isomorphic and it is well-known that the pseudovariety of \mathcal{J}-trivial monoids, which are the syntactic monoids of piecewise testable languages (see e.g. [30]), is generated by the family $\left\{\mathcal{O}_{n}^{+} \mid n \in \mathbb{N}\right\}$. Moreover, the cardinal of \mathcal{O}_{n}^{+}(or \mathcal{O}_{n}^{-}) is the $n^{\text {th }}$-Catalan number, i.e. $\left|\mathcal{O}_{n}^{+}\right|=\frac{1}{n+1}\binom{2 n}{n}$ (see [32]).

Regarding the injective counterpart of \mathcal{O}_{n}, i.e. the inverse monoid $\mathcal{P O} \mathcal{I}_{n}=\mathcal{P} \mathcal{O}_{n} \cap \mathcal{I}_{n}$ of all injective orderpreserving partial transformations, we have $\left|\mathcal{P O} \mathcal{I}_{n}\right|=\binom{2 n}{n}$. This result was first presented by Garba in [17] (see also [7]).

[^0]Now, being $\mathcal{P O \mathcal { D } _ { n }}$ the submonoid of $\mathcal{P} \mathcal{T}_{n}$ of all partial transformations that preserve or reverse the order,
 tively), Fernandes et al. [10, 11] proved that $\left|\mathcal{P O} \mathcal{D}_{n}\right|=\sum_{i=1}^{n}\binom{n}{i}\left(2\binom{n+i-1}{i}-n\right)+1,\left|\mathcal{O} \mathcal{D}_{n}\right|=2\binom{(2 n-1}{n-1}-n$ and $\left|\mathcal{P O D} \mathcal{I}_{n}\right|=2\binom{2 n}{n}-n^{2}-1$.

Wider classes of monoids are obtained when we consider transformations that either preserve or reverse the orientation. Let $a=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ be a sequence of $t, t \geq 0$, elements from the chain X_{n}. We say that a is cyclic (resp., anti-cyclic) if there exists no more than one index $i \in\{1, \ldots, t\}$ such that $a_{i}>a_{i+1}$ (resp., $\left.a_{i}<a_{i+1}\right)$, where a_{t+1} denotes a_{1}. Let $\alpha \in \mathcal{T}_{n}$ and suppose that $\operatorname{Dom}(\alpha)=\left\{a_{1}, \ldots, a_{t}\right\}$, with $t \geq 0$ and $a_{1}<\cdots<a_{t}$. We say that α is orientation-preserving (resp., orientation-reversing) if the sequence of its images $\left(a_{1} \alpha, a_{2} \alpha, \ldots, a_{t} \alpha\right)$ is cyclic (resp., anti-cyclic). This notions were introduced by McAlister in [29] and independently Catarino and Higgins in [6].

Denote by $\mathcal{P O} \mathcal{P}_{n}$ (resp., $\mathcal{P O} \mathcal{R}_{n}$) the submonoid of $\mathcal{P} \mathcal{T}_{n}$ of all orientation-preserving (resp., orientationpreserving or orientation-reversing) transformations. The cardinalities of $\mathcal{\mathcal { O }} \mathcal{P}_{n}$ and $\mathcal{P O} \mathcal{R}_{n}$ were calculated by Fernandes et al. [12] and are $1+\left(2^{n}-1\right) n+\sum_{k=2}^{n} k\binom{n}{k}^{2} 2^{n-k}$ and $1+\left(2^{n}-1\right) n+2\binom{n}{2}^{2} 2^{n-2}+\sum_{k=3}^{n} 2 k\binom{n}{k}^{2} 2^{n-k}$, respectively. As usual, $\mathcal{O} \mathcal{P}_{n}$ denotes the monoid $\mathcal{P O} \mathcal{P}_{n} \cap \mathcal{T}_{n}$ of all full transformations that preserve the orientation, $\mathcal{O} \mathcal{R}_{n}$ denotes the monoid $\mathcal{P O} \mathcal{R}_{n} \cap \mathcal{T}_{n}$ of all full transformations that preserve or reserve the orientation and $\mathcal{P O P} \mathcal{I}_{n}$ and $\mathcal{P O R} \mathcal{I}_{n}$ denote the submonoids of $\mathcal{P O} \mathcal{P}_{n}$ and $\mathcal{P O} \mathcal{R}_{n}$, respectively, whose elements are the injective transformations. McAlister in [29], and independently Catarino and Higgins in [6], proved that $\left|\mathcal{O} \mathcal{P}_{n}\right|=n\binom{2 n-1}{n-1}-n(n-1)$ and $\left|\mathcal{O} \mathcal{R}_{n}\right|=n\binom{2 n}{n}-\frac{n^{2}}{2}\left(n^{2}-2 n+5\right)+n$. The monoids $\mathcal{O} \mathcal{P}_{n}$ and $\mathcal{O} \mathcal{R}_{n}$ were also studied by Arthur and Rušcuk in [5]. Regarding their injective counterparts, in [8], Fernandes established that $\left|\mathcal{P O} \mathcal{P} \mathcal{I}_{n}\right|=1+\frac{n}{2}\binom{2 n}{n}$ and, in [10], Fernandes et al. showed that $\left|\mathcal{P} \mathcal{O} \mathcal{R} \mathcal{I}_{n}\right|=1+n\binom{2 n}{n}-\frac{n^{2}}{2}\left(n^{2}-2 n+3\right)$.

All these results are summarized in [13].
Now, let X be a set and denote by $\mathcal{T}(X)$ the monoid (under composition) of all full transformations on X. Let ρ be an equivalence relation on X and denote by $\mathcal{T}_{\rho}(X)$ the submonoid of $\mathcal{T}(X)$ of all transformations that preserve the equivalence relation ρ, i.e. $\mathcal{T}_{\rho}(X)=\{\alpha \in \mathcal{T}(X) \mid(a \alpha, b \alpha) \in \rho$, for all $(a, b) \in \rho\}$. This monoid was studied by Huisheng in [23] who determined its regular elements and described its Green's relations.

Let $m, n \in \mathbb{N}$. Of particular interest is the submonoid $\mathcal{T}_{m \times n}=\mathcal{T}_{\rho}\left(X_{m n}\right)$ of $\mathcal{T}_{m n}$, with ρ the equivalence relation on $X_{m n}$ defined by $\rho=\left(A_{1} \times A_{1}\right) \cup\left(A_{2} \times A_{2}\right) \cup \cdots \cup\left(A_{m} \times A_{m}\right)$, where $A_{i}=\{(i-1) n+1, \ldots, i n\}$, for $i \in\{1, \ldots, m\}$. Notice that the ρ-classes A_{i}, with $1 \leq i \leq m$, form a uniform m-partition of $X_{m n}$.

Regarding the rank of $\mathcal{T}_{m \times n}$, first, Huisheng [22] proved that it is at most 6 and, later on, Araújo and Schneider [4] improved this result by showing that, for $\left|X_{m n}\right| \geq 3$, the rank of $\mathcal{T}_{m \times n}$ is precisely 4.

Finally, denote by $\mathcal{O} \mathcal{R}_{m \times n}$ the submonoid of $\mathcal{T}_{m \times n}$ of all orientation-preserving or orientation-reversing transformations, i.e. $\mathcal{O} \mathcal{R}_{m \times n}=\mathcal{T}_{m \times n} \cap \mathcal{O} \mathcal{R}_{m n}$. Similarly, let $\mathcal{O} \mathcal{D}_{m \times n}=\mathcal{T}_{m \times n} \cap \mathcal{O} \mathcal{D}_{m n}, \mathcal{O} \mathcal{P}_{m \times n}=\mathcal{T}_{m \times n} \cap \mathcal{O} \mathcal{P}_{m n}$ and $\mathcal{O}_{m \times n}=\mathcal{T}_{m \times n} \cap \mathcal{O}_{m n}$. Consider also the submonoids $\mathcal{O}_{m \times n}^{+}=\mathcal{O}_{m \times n} \cap \mathcal{T}_{m n}^{+}$and $\mathcal{O}_{m \times n}^{-}=\mathcal{O}_{m \times n} \cap \mathcal{T}_{m n}^{-}$of $\mathcal{O}_{m \times n}$ whose elements are the extensive transformations and the co-extensive transformations, respectively.

Example 0.1 Consider the following transformations of \mathcal{T}_{12} :

$$
\begin{aligned}
& \alpha_{1}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
9 & 11 & 10 & 12 & 1 & 3 & 3 & 2 & 5 & 5 & 7 & 8
\end{array}\right) ; \quad \alpha_{2}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
8 & 8 & 8 & 6 & 6 & 5 & 5 & 5 & 12 & 12 & 11 & 10
\end{array}\right) ; \\
& \alpha_{3}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
11 & 11 & 10 & 10 & 10 & 9 & 9 & 9 & 4 & 3 & 3 & 1
\end{array}\right) ; \quad \alpha_{4}=\left(\begin{array}{cccc|ccc|c|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
7 & 7 & 7 & 8 & 8 & 8 & 5 & 5 & 5 & 6 & 6 & 7
\end{array}\right) ; \\
& \alpha_{5}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 1 & 2 & 3 & 3 & 4 & 4 & 10 & 11 & 11 & 11
\end{array}\right) ; \quad \alpha_{6}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
5 & 5 & 6 & 6 & 6 & 7 & 7 & 8 & 10 & 11 & 11 & 12
\end{array}\right) ; \\
& \alpha_{7}=\left(\begin{array}{cccc|cccc|cccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 2 & 3 & 5 & 5 & 6 & 8 & 9 & 9 & 10 & 11
\end{array}\right) ; \quad \alpha_{8}=\left(\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 1 & 2 & 3 & 5 & 5 & 6 & 9 & 9 & 10 & 10 & 11
\end{array}\right) .
\end{aligned}
$$

Then, we have: $\alpha_{1} \in \mathcal{T}_{3 \times 4}$, but $\alpha_{1} \notin \mathcal{O} \mathcal{R}_{3 \times 4} ; \alpha_{2} \in \mathcal{O} \mathcal{R}_{3 \times 4}$, but $\alpha_{2} \notin \mathcal{O} \mathcal{P}_{3 \times 4} ; \alpha_{3} \in \mathcal{O D}_{3 \times 4}$, but $\alpha_{3} \notin \mathcal{O}_{3 \times 4}$; $\alpha_{4} \in \mathcal{O P}_{3 \times 4}$, but $\alpha_{4} \notin \mathcal{O}_{3 \times 4} ; \alpha_{5} \in \mathcal{O}_{3 \times 4}$, but $\alpha_{5} \notin \mathcal{O}_{3 \times 4}^{+}$and $\alpha_{5} \notin \mathcal{O}_{3 \times 4}^{-} ; \alpha_{6} \in \mathcal{O}_{3 \times 4}^{+} ; \alpha_{7} \in \mathcal{O}_{3 \times 4}^{-} ;$and, finally, $\alpha_{8} \notin \mathcal{T}_{3 \times 4}$.

Notice that, as \mathcal{O}_{n}^{-}and \mathcal{O}_{n}^{+}, the monoids $\mathcal{O}_{m \times n}^{-}$and $\mathcal{O}_{m \times n}^{+}$are isomorphic [15]. Recall that in [25] Kunze proved that the monoid \mathcal{O}_{n} is a quotient of a bilateral semidirect product of its subsemigroups \mathcal{O}_{n}^{-}and \mathcal{O}_{n}^{+}. This result was generalized by the authors [15] by showing that $\mathcal{O}_{m \times n}$ also is a quotient of a bilateral semidirect product of its subsemigroups $\mathcal{O}_{m \times n}^{-}$and $\mathcal{O}_{m \times n}^{+}$. See also [26, 14].

In [24] Huisheng and Dingyu described the regular elements and the Green's relations of $\mathcal{O}_{m \times n}$. On the other hand, the ranks of the monoids $\mathcal{O}_{m \times n}, \mathcal{O}_{m \times n}^{+}$and $\mathcal{O}_{m \times n}^{-}$were calculated by the authors in [15].

Regarding $\mathcal{O} \mathcal{P}_{m \times n}$, a description of the regular elements and a characterization of the Green's relations were given by Sun et al. in [33]. Its rank was determined by the authors in [16], who also computed in the same paper the ranks of the monoids $\mathcal{O} \mathcal{D}_{m \times n}$ and $\mathcal{O} \mathcal{R}_{m \times n}$.

In this paper we calculate the cardinals of the monoids $\mathcal{O} \mathcal{R}_{m \times n}, \mathcal{O} \mathcal{P}_{m \times n}, \mathcal{O} \mathcal{D}_{m \times n}, \mathcal{O}_{m \times n}, \mathcal{O}_{m \times n}^{+}$and $\mathcal{O}_{m \times n}^{-}$. In order to achieve this objective, we use a wreath product description of $\mathcal{T}_{m \times n}$, due to Araújo and Schneider [4], that we recall in Section 1.

1 Wreath products of transformation semigroups

In [4] Araújo and Schneider proved that the rank of $\mathcal{T}_{m \times n}$ is 4 , by using the concept of wreath product of transformation semigroups. This approach will also be very useful in this paper. Next, we recall some facts from $[4,15,16]$.

First, we define the wreath product $\mathcal{T}_{n} \backslash \mathcal{T}_{m}$ of \mathcal{T}_{n} and \mathcal{T}_{m} as being the monoid with underlying set $\mathcal{T}_{n}^{m} \times \mathcal{T}_{m}$ and multiplication defined by $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right)\left(\alpha_{1}^{\prime}, \ldots, \alpha_{m}^{\prime} ; \beta^{\prime}\right)=\left(\alpha_{1} \alpha_{1 \beta}^{\prime}, \ldots, \alpha_{m} \alpha_{m \beta}^{\prime} ; \beta \beta^{\prime}\right)$, for all $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right),\left(\alpha_{1}^{\prime}, \ldots, \alpha_{m}^{\prime} ; \beta^{\prime}\right) \in \mathcal{T}_{n}^{m} \times \mathcal{T}_{m}$.

Now, let $\alpha \in \mathcal{T}_{m \times n}$ and let $\beta=\alpha / \rho \in \mathcal{T}_{m}$ be the quotient map of α by ρ, i.e. for all $j \in\{1, \ldots, m\}$, we have $A_{j} \alpha \subseteq A_{j \beta}$. For each $j \in\{1, \ldots, m\}$, define $\alpha_{j} \in \mathcal{T}_{n}$ by $k \alpha_{j}=((j-1) n+k) \alpha-(j \beta-1) n$, for all $k \in\{1, \ldots, n\}$. Let $\bar{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} ; \beta\right) \in \mathcal{T}_{n}^{m} \times \mathcal{T}_{m}$. With these notations, the function $\psi: \mathcal{T}_{m \times n} \longrightarrow \mathcal{T}_{n} \imath \mathcal{T}_{m}, \alpha \longmapsto \bar{\alpha}$, is an isomorphism (see [4, Lemma 2.1]).

Observe that, from this fact, we can immediately conclude that the cardinal of $\mathcal{T}_{m \times n}$ is $n^{n m} m^{m}$.
Example 1.1 Consider the transformation $\alpha=\left(\begin{array}{cccc|cccc|cccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 5 & 5 & 7 & 6 & 10 & 10 & 9 & 12 & 1 & 1 & 2 & 3\end{array}\right) \in \mathcal{T}_{3 \times 4}$. Then, being $\beta=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right), \alpha_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 2\end{array}\right), \alpha_{2}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 2 & 1 & 4\end{array}\right)$ and $\alpha_{3}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3\end{array}\right)$, we have $\bar{\alpha}=\left(\alpha_{1}, \alpha_{2}, \alpha_{3} ; \beta\right)$.

Next, consider

$$
\overline{\mathcal{O}}_{m \times n}=\left\{\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \mathcal{O}_{n}^{m} \times \mathcal{O}_{m} \mid j \beta=(j+1) \beta \text { implies } n \alpha_{j} \leq 1 \alpha_{j+1}, \text { for all } j \in\{1, \ldots, m-1\}\right\}
$$

Notice that, if $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}$ and $1 \leq i<j \leq m$ are such that $i \beta=j \beta$, then $n \alpha_{i} \leq 1 \alpha_{j}$.
Proposition 1.2 [15] The set $\overline{\mathcal{O}}_{m \times n}$ is a submonoid of $\mathcal{T}_{n} \imath \mathcal{T}_{m}$ (and of $\mathcal{O}_{n} \imath \mathcal{O}_{m}$) isomorphic to $\mathcal{O}_{m \times n}$.
On the other hand, being

$$
\begin{aligned}
\overline{\mathcal{O}}_{m \times n}^{+}=\left\{\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \mathcal{O}_{n}^{m-1} \times \mathcal{O}_{n}^{+} \times \mathcal{O}_{m}^{+} \mid\right. & j \beta=(j+1) \beta \text { implies } n \alpha_{j} \leq 1 \alpha_{j+1} \text { and } \\
& \left.j \beta=j \text { implies } \alpha_{j} \in \mathcal{O}_{n}^{+}, \text {for all } j \in\{1, \ldots, m-1\}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\overline{\mathcal{O}}_{m \times n}^{-}=\left\{\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \mathcal{O}_{n}^{-} \times \mathcal{O}_{n}^{m-1} \times \mathcal{O}_{m}^{-} \mid\right. & (j-1) \beta=j \beta \text { implies } n \alpha_{j-1} \leq 1 \alpha_{j} \text { and } \\
& \left.j \beta=j \text { implies } \alpha_{j} \in \mathcal{O}_{n}^{-}, \text {for all } j \in\{2, \ldots, m\}\right\},
\end{aligned}
$$

we have:
Proposition 1.3 [15] The set $\overline{\mathcal{O}}_{m \times n}^{+}\left[\right.$resp. $\overline{\mathcal{O}}_{m \times n}^{-}$] is a submonoid of $\mathcal{T}_{n} \imath \mathcal{T}_{m}$ (and of $\mathcal{O}_{n} \imath \mathcal{O}_{m}$) isomorphic to $\mathcal{O}_{m \times n}^{+}\left[\right.$resp. $\left.\mathcal{O}_{m \times n}^{-}\right]$.

A description of $\mathcal{O} \mathcal{P}_{m \times n}$ in terms of wreath products is more elaborate. In fact, considering addition modulo m (in particular, $m+1=1$), we have:

Proposition 1.4 [16] $A(m+1)$-tuple $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} ; \beta\right)$ of $\mathcal{T}_{n}^{m} \times \mathcal{T}_{m}$ belongs to $\mathcal{O} \mathcal{P}_{m \times n} \psi$ if and only if it satisfies one of the following conditions:

1. β is a non-constant transformation of $\mathcal{O} \mathcal{P}_{m}$,
for all $i \in\{1, \ldots, m\}, \alpha_{i} \in \mathcal{O}_{n}$ and,
for all $j \in\{1, \ldots, m\}, j \beta=(j+1) \beta$ implies $n \alpha_{j} \leq 1 \alpha_{j+1}$;
2. β is a constant transformation,
for all $i \in\{1, \ldots, m\}, \alpha_{i} \in \mathcal{O}_{n}$ and
there exists at most one index $j \in\{1, \ldots, m\}$ such that $n \alpha_{j}>1 \alpha_{j+1}$;
3. β is a constant transformation,
there exists one index $i \in\{1, \ldots, m\}$ such that $\alpha_{i} \in \mathcal{O} \mathcal{P}_{n} \backslash \mathcal{O}_{n}$ and, for all $j \in\{1, \ldots, m\} \backslash\{i\}, \alpha_{j} \in \mathcal{O}_{n}$ and, for all $j \in\{1, \ldots, m\}, n \alpha_{j} \leq 1 \alpha_{j+1}$.

Let $\alpha \in \mathcal{O} \mathcal{P}_{m \times n}$. We say that α is of type i if $\alpha \psi$ satisfies the condition i. of the previous proposition, for $i \in\{1,2,3\}$.

2 The cardinals

In this section we use the previous bijections to obtain formulas for the number of elements of the monoids $\mathcal{O}_{m \times n}, \mathcal{O}_{m \times n}^{+}, \mathcal{O}_{m \times n}^{-}, \mathcal{O} \mathcal{D}_{m \times n}, \mathcal{O} \mathcal{P}_{m \times n}$ and $\mathcal{O} \mathcal{R}_{m \times n}$.

In order to count the elements of $\mathcal{O}_{m \times n}$, on one hand, for each transformation $\beta \in \mathcal{O}_{m}$, we determine the number of sequences $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathcal{O}_{n}^{m}$ such that $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}$ and, on the other hand, we notice that this last number just depends of the kernel of β (and not of β itself).

With this purpose, let $\beta \in \mathcal{O}_{m}$. Suppose that $\operatorname{Im}(\beta)=\left\{b_{1}<b_{2}<\cdots<b_{t}\right\}$, for some $1 \leq t \leq m$, and define $k_{i}=\left|b_{i} \beta^{-1}\right|$, for $i=1, \ldots, t$. Being β an order-preserving transformation, the sequence $\left(k_{1}, \ldots, k_{t}\right)$ determines the kernel of β : we have $\left\{k_{1}+\cdots+k_{i-1}+1, \ldots, k_{1}+\cdots+k_{i}\right\} \beta=\left\{b_{i}\right\}$, for $i=1, \ldots, t$ (considering $k_{1}+\cdots+k_{i-1}+1=1$, with $i=1$). We define the kernel type of β as being the sequence $\left(k_{1}, \ldots, k_{t}\right)$. Notice that $1 \leq k_{i} \leq m$, for $i=1, \ldots, t$, and $k_{1}+k_{2}+\cdots+k_{t}=m$.

Now, recall that the number of non-decreasing sequences of length k from a chain with n elements (which is the same as the number of k-combinations with repetition from a set with n elements) is $\binom{n+k-1}{k}=\binom{n+k-1}{n-1}$ (see [19], for example). Next, notice that, as a sequence $\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathcal{O}_{n}^{k}$ satisfies the condition $n \alpha_{j} \leq 1 \alpha_{j+1}$, for all $1 \leq j \leq k-1$, if and only if the concatenation sequence of the images of the transformations $\alpha_{1}, \ldots, \alpha_{k}$ (by this order) is still a non-decreasing sequence, then we have $\binom{n+k n-1}{n-1}$ such sequences.

Since $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}$ if and only if, for all $1 \leq i \leq t, \alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}}$ are k_{i} orderpreserving transformations such that the concatenation sequence of their images (by this order) is still a nondecreasing sequence, then we have $\prod_{i=1}^{t}\binom{k_{i} n+n-1}{n-1}$ elements in $\overline{\mathcal{O}}_{m \times n}$ whose $(m+1)$-component is β.

Finally, now it is also clear that if β and β^{\prime} are two elements of \mathcal{O}_{m} with the same kernel type then $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}$ if and only if $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta^{\prime}\right) \in \overline{\mathcal{O}}_{m \times n}$. Thus, as the number of transformations $\beta \in \mathcal{O}_{m}$ with kernel type of length $t(1 \leq t \leq m)$ coincides with the number of t-combinations (without repetition) from a set with m elements, it follows:

Theorem $2.1\left|\mathcal{O}_{m \times n}\right|=\sum_{\substack{1 \leq k_{1}, \ldots, k_{t} \leq m \\ k_{1}+\ldots+k=m \\ 1 \leq t \leq m}}\binom{m}{t} \prod_{i=1}^{t}\binom{k_{i} n+n-1}{n-1}$.

The table below gives us an idea of the size of the monoid $\mathcal{O}_{m \times n}$.

$m \backslash n$	1	2	3	4	5	6
1	1	3	10	35	126	462
2	3	19	156	1555	17878	225820
3	10	138	2845	78890	2768760	115865211
4	35	1059	55268	4284451	454664910	61824611940
5	126	8378	1109880	241505530	77543615751	34003513468232
6	462	67582	22752795	13924561150	13556873588212	19134117191404027

In view of Theorem 2.1, finding the cardinal of $\mathcal{O} \mathcal{D}_{m \times n}$ is not difficult. Indeed, consider the reflexion permutation $h=\left(\begin{array}{ccccc}1 & 2 & \cdots & m n-1 & m n \\ m n & m n-1 & \cdots & 2 & 1\end{array}\right)$. Observe that $h \in \mathcal{O} \mathcal{D}_{m \times n}$ and, given $\alpha \in \mathcal{T}_{m \times n}$, we have $\alpha \in \mathcal{O}_{m \times n}$ if and only if $\alpha \in \mathcal{O}_{m \times n}$ or $h \alpha \in \mathcal{O}_{m \times n}$. On the other hand, as clearly $\left|\mathcal{O}_{m \times n}\right|=\left|h \mathcal{O}_{m \times n}\right|$ and $\left|\mathcal{O}_{m \times n} \cap h \mathcal{O}_{m \times n}\right|=\left|\left\{\alpha \in \mathcal{O}_{m \times n}| | \operatorname{Im}(\alpha) \mid=1\right\}\right|=m n$, it follows immediately that:

Theorem $2.2\left|\mathcal{O} \mathcal{D}_{m \times n}\right|=2\left|\mathcal{O}_{m \times n}\right|-m n=2 \sum_{\substack{1 \leq k_{1}, \ldots, k_{t} \leq m \\ k_{1}+\cdots+k_{t}=m \\ 1 \leq t \leq m}}\binom{m}{t} \prod_{i=1}^{t}\binom{k_{i} n+n-1}{n-1}-m n$.

Next, we describe a process to count the number of elements of $\mathcal{O}_{m \times n}^{+}$.
First, recall that the cardinal of \mathcal{O}_{n}^{+}is the $n^{\text {th }}$-Catalan number, i.e. $\left|\mathcal{O}_{n}^{+}\right|=\frac{1}{n+1}\binom{2 n}{n}$. See [32].
It is also useful to consider the following numbers: $\theta(n, i)=\left|\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=i\right\}\right|$, for $1 \leq i \leq n$. Clearly, we have $\left|\mathcal{O}_{n}^{+}\right|=\sum_{i=1}^{n} \theta(n, i)$. Moreover, for $2 \leq i \leq n-1$, we have $\theta(n, i)=\theta(n, i+1)+\theta(n-1, i-1)$. In fact, $\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=i\right\}=\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=i<2 \alpha\right\} \dot{\cup}\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=2 \alpha=i\right\}$ and it is easy to show that the function which maps each transformation $\beta \in\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=i<2 \alpha\right\}$ into the transformation

$$
\left(\begin{array}{cccc}
1 & 2 & \ldots & n \\
i+1 & 2 \beta & \ldots & n \beta
\end{array}\right) \in\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=i+1\right\}
$$

and the function which maps each transformation $\beta \in\left\{\alpha \in \mathcal{O}_{n-1}^{+} \mid 1 \alpha=i-1\right\}$ into the transformation

$$
\left(\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n-1 \\
i & i & 2 \beta+1 & \ldots & (n-2) \beta+1
\end{array}(n-1) \beta+1\right) \in\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=2 \alpha=i\right\}
$$

are bijections. Thus

$$
\begin{aligned}
\theta(n, i) & =\left|\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=i<2 \alpha\right\}\right|+\left|\left\{\alpha \in \mathcal{O}_{n}^{+} \mid \quad 1 \alpha=2 \alpha=i\right\}\right| \\
& =\left|\left\{\alpha \in \mathcal{O}_{n}^{+} \mid 1 \alpha=i+1\right\}\right|+\left|\left\{\alpha \in \mathcal{O}_{n-1}^{+} \mid 1 \alpha=i-1\right\}\right| \\
& =\theta(n, i+1)+\theta(n-1, i-1) .
\end{aligned}
$$

Also, it is not hard to prove that $\theta(n, 2)=\theta(n, 1)=\sum_{i=1}^{n-1} \theta(n-1, i)=\left|\mathcal{O}_{n-1}^{+}\right|$.
Now, we can prove:
Lemma 2.3 For all $1 \leq i \leq n, \theta(n, i)=\frac{i}{n}\binom{2 n-i-1}{n-i}=\frac{i}{n}\binom{2 n-i-1}{n-1}$.
Proof. We prove the lemma by induction on n.
For $n=1$, it is clear that $\theta(1,1)=1=\frac{1}{1}\binom{2-1-1}{1-1}$.
Let $n \geq 2$ and suppose that the formula is valid for $n-1$.
Next, we prove the formula for n by induction on i. For $i=1$, as observed above, we have $\theta(n, 1)=\left|\mathcal{O}_{n-1}^{+}\right|=$ $\frac{1}{n}\binom{2 n-2}{n-1}$. For $i=2$, we have $\theta(n, 2)=\theta(n, 1)=\frac{1}{n}\binom{2 n-2}{n-1}=\frac{2}{n} \frac{(2 n-2)!}{(n-1)!(n-1)!} \frac{n-1}{2 n-2}=\frac{2}{n} \frac{(2 n-3)!}{(n-1)!(n-2)!}=\frac{2}{n}\binom{2 n-3}{n-1}$.

Now, suppose that the formula is valid for $i-1$, with $3 \leq i \leq n$. Then, using both induction hypothesis on i and on n in the second equality, we have $\theta(n, i)=\theta(n, i-1)-\theta(n-1, i-2)=\frac{i-1}{n}\binom{2 n-i}{n-1}-\frac{i-2}{n-1}\binom{2 n-i-1}{n-2}=$ $\frac{i-1}{n} \frac{(2 n-i)!}{(n-1)!(n-i+1)!}-\frac{i-2}{n-1} \frac{(2 n-i-1)!}{(n-2)!(n-i+1)!}=\frac{i(n-i+1)}{n(2 n-i)} \frac{(2 n-i)!}{(n-1)!(n-i+1)!}=\frac{i}{n}\binom{2 n-i-1}{n-1}$, as required.

Recall that $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}^{+}$if and only if $\beta \in \mathcal{O}_{m}^{+}, \alpha_{m} \in \mathcal{O}_{n}^{+}, \alpha_{1}, \ldots, \alpha_{m-1} \in \mathcal{O}_{n}$ and, for all $j \in\{1, \ldots, m-1\}, j \beta=(j+1) \beta$ implies $n \alpha_{j} \leq 1 \alpha_{j+1}$ and $j \beta=j$ implies $\alpha_{j} \in \mathcal{O}_{n}^{+}$.

Let $\beta \in \mathcal{O}_{m}^{+}$. As for the monoid $\mathcal{O}_{m \times n}$, we aim to count the number of sequences $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \mathcal{O}_{n}^{m}$ such that $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}^{+}$.

Let $\left(k_{1}, \ldots, k_{t}\right)$ be the kernel type of β. Let $K_{i}=\left\{k_{1}+\cdots+k_{i-1}+1, \ldots, k_{1}+\cdots+k_{i}\right\}$, for $i=1, \ldots, t$. Then, β fixes a point in K_{i} if and only if it fixes $k_{1}+\cdots+k_{i}$, for $i=1, \ldots, t$. It follows that $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right) \in \overline{\mathcal{O}}_{m \times n}^{+}$ if and only if, for all $1 \leq i \leq t$:

1. If β does not fix a point in K_{i}, then $\alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}}$ are k_{i} order-preserving transformations such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence (in this case, we have $\binom{k_{i} n+n-1}{n-1}$ subsequences $\left(\alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}}\right)$ allowed);
2. If β fixes a point in K_{i}, then $\alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}-1}$ are $k_{i}-1$ order-preserving transformations such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence, $n \alpha_{k_{1}+\cdots+k_{i}-1} \leq 1 \alpha_{k_{1}+\cdots+k_{i}}$ and $\alpha_{k_{1}+\cdots+k_{i}} \in \mathcal{O}_{n}^{+}$(in this case, we have $\sum_{j=1}^{n}\binom{\left(k_{i}-1\right) n+j-1}{j-1} \theta(n, j)$ subsequences $\left(\alpha_{k_{1}+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_{1}+\cdots+k_{i}}\right)$ allowed).

Define

$$
\mathfrak{d}(\beta, i)= \begin{cases}\left(k_{i} n+n-1\right), & \text { if }\left(k_{1}+\cdots+k_{i}\right) \beta \neq k_{1}+\cdots+k_{i} \\ \sum_{j=1}^{n-1} \frac{j}{n}\binom{2 n-j-1}{n-1}\binom{\left(k_{i}-1\right) n+j-1}{j-1}, & \text { if }\left(k_{1}+\cdots+k_{i}\right) \beta=k_{1}+\cdots+k_{i},\end{cases}
$$

for all $1 \leq i \leq t$.
Thus, we have:
Proposition $2.4\left|\mathcal{O}_{m \times n}^{+}\right|=\sum_{\beta \in \mathcal{O}_{m}^{+}} \prod_{i=1}^{t} \mathfrak{d}(\beta, i)$.
Next, we obtain a formula for $\left|\mathcal{O}_{m \times n}^{+}\right|$which does not depend of $\beta \in \mathcal{O}_{m}^{+}$.
Let β be an element of \mathcal{O}_{m}^{+}with kernel type $\left(k_{1}, \ldots, k_{t}\right)$. Define $s_{\beta}=\left(s_{1}, \ldots, s_{t}\right) \in\{0,1\}^{t-1} \times\{1\}$ by $s_{i}=1$ if and only if $\left(k_{1}+\cdots+k_{i}\right) \beta=k_{1}+\cdots+k_{i}$, for all $1 \leq i \leq t-1$.

Let $1 \leq t, k_{1}, \ldots, k_{t} \leq m$ be such that $k_{1}+\cdots+k_{t}=m$ and let $\left(s_{1}, \ldots, s_{t}\right) \in\{0,1\}^{t-1} \times\{1\}$. Let $k=\left(k_{1}, \ldots, k_{t}\right)$ and $s=\left(s_{1}, \ldots, s_{t}\right)$. Define $\Delta(k, s)=\mid\left\{\beta \in \mathcal{O}_{m}^{+} \mid \beta\right.$ has kernel type k and $\left.s_{\beta}=s\right\} \mid$.

In order to get a formula for $\Delta(k, s)$, we count the number of distinct restrictions to unions of partition classes of the kernel of transformations β of \mathcal{O}_{m}^{+}with kernel type k and $s_{\beta}=s$ corresponding to maximal subsequences of consecutive zeros of s.

Let β be an element of \mathcal{O}_{m}^{+}with kernel type k and $s_{\beta}=s$.
First, notice that, given $i \in\{1, \ldots, t\}$, if $s_{i}=1$ then $K_{i} \beta=\left\{k_{1}+\cdots+k_{i}\right\}$ and if $s_{i}=0$ then the (unique) element of $K_{i} \beta$ belongs to K_{j}, for some $i<j \leq t$.

Next, let $i \in\{1, \ldots, t\}$ and $r \in\{1, \ldots, t-i\}$ be such that $s_{j}=0$, for all $j \in\{i, \ldots, i+r-1\}, s_{i+r}=1$ and, if $i>1, s_{i-1}=1$ (i.e. $\left(s_{i}, \ldots, s_{i+r-1}\right)$ is a maximal subsequence of consecutive zeros of s). Then

$$
\left(K_{i} \cup \cdots \cup K_{i+r-2} \cup K_{i+r-1}\right) \beta \subseteq K_{i+1} \cup \cdots \cup K_{i+r-1} \cup\left(K_{i+r} \backslash\left\{k_{1}+\cdots+k_{i+r}\right\}\right) .
$$

Let $\ell_{j}=\left|K_{i+j} \cap\left(K_{i} \cup \cdots \cup K_{i+r-1}\right) \beta\right|$, for $1 \leq j \leq r$. Hence, we have $\ell_{1}, \ldots, \ell_{r-1} \geq 0, \ell_{r} \geq 1, \ell_{1}+\cdots+\ell_{r}=r$ and $0 \leq \ell_{1}+\cdots+\ell_{j} \leq j$, for all $1 \leq j \leq r-1$.

On the other hand, given $\ell_{1}, \ldots, \ell_{r}$ such that $\ell_{1}, \ldots, \ell_{r-1} \geq 0, \ell_{r} \geq 1, \ell_{1}+\cdots+\ell_{r}=r$ and $0 \leq \ell_{1}+\cdots+\ell_{j} \leq$ j, for all $1 \leq j \leq r-1$, we have precisely $\binom{k_{i+1}}{\ell_{1}}\binom{k_{i+2}}{\ell_{2}} \cdots\binom{k_{i+r-1}}{\ell_{r-1}}\binom{k_{i+r}-1}{\ell_{r}}=\binom{k_{i+r}-1}{\ell_{r}} \prod_{j=1}^{r-1}\binom{k_{i+j}}{\ell_{j}}$ distinct restrictions to $K_{i} \cup \cdots \cup K_{i+r-1}$ of transformations β of \mathcal{O}_{m}^{+}, with kernel type k and $s_{\beta}=s$, such that
$\ell_{j}=\left|K_{i+j} \cap\left(K_{i} \cup \cdots \cup K_{i+r-1}\right) \beta\right|$, for $1 \leq j \leq r$. It follow that the number of distinct restrictions to $K_{i} \cup \cdots \cup K_{i+r-1}$ of transformations β of \mathcal{O}_{m}^{+}with kernel type k and $s_{\beta}=s$ is

$$
\sum_{\substack{\ell_{1}, \ldots+\ell_{r}=r \\ 0 \leq \ell_{1}+\cdots+\ell_{j} \leq j, 1 \leq j \leq r-1 \\ \ell_{1}, \ldots, \ell_{r}-1 \geq 0, \ell_{r} \geq 1}}\binom{k_{i+r}-1}{\ell_{r}} \prod_{j=1}^{r-1}\binom{k_{i+j}}{\ell_{j}} .
$$

Now, let p be the number of distinct maximal subsequences of consecutive zeros of s. Clearly, if $p=0$ then $\Delta(k, s)=1$. Hence, suppose that $p \geq 1$ and let $1 \leq u_{1}<v_{1}<u_{2}<v_{2}<\cdots<u_{p}<v_{p} \leq t$ be such that

$$
\left\{j \in\{1, \ldots, t\} \mid s_{j}=0\right\}=\bigcup_{i=1}^{p}\left\{u_{i}, \ldots, v_{i}-1\right\}
$$

(i.e. $\left(s_{u_{i}}, \ldots, s_{v_{i}-1}\right)$, with $1 \leq i \leq p$, are the p distinct maximal subsequences of consecutive zeros of s). Then, being $r_{i}=v_{i}-u_{i}$, for $1 \leq i \leq p$, we have

$$
\Delta(k, s)=\prod_{i=1}^{p} \sum_{\substack{\ell_{1}+\cdots+\ell_{r_{i}}=r_{i} \\ 0 \leq \ell_{1}+\cdots+\ell_{j} \leq j \\ \ell_{1}, \ldots, \ell_{r_{i}}-1 \geq 0, \ell_{r_{i}} \geq 1}}\binom{k_{u_{i}+r_{i}}-1}{\ell_{r_{i}}} \prod_{j=1}^{r_{i}-1}\binom{k_{u_{i}+j}}{\ell_{j}} .
$$

Finally, notice that, if β and β^{\prime} two elements of \mathcal{O}_{m}^{+}with kernel type $k=\left(k_{1}, \ldots, k_{t}\right)$ such that $s_{\beta^{\prime}}=s_{\beta}$, then $\mathfrak{d}(\beta, i)=\mathfrak{d}\left(\beta^{\prime}, i\right)$, for all $1 \leq i \leq t$. Thus, defining $\Lambda(k, s)=\prod_{i=1}^{t} \mathfrak{d}(\beta, i)$, where β is any transformation of \mathcal{O}_{m}^{+}with kernel type k and $s_{\beta}=s$, we have:

Theorem 2.5 $\left|\mathcal{O}_{m \times n}^{+}\right|=\left|\mathcal{O}_{m \times n}^{-}\right|=\sum_{\substack{k=\left(k_{1}, \ldots, k_{t}\right) \\ 1 \leq k_{1}, \ldots, k_{t} \leq m \\ k_{1}+\ldots+k_{t}=m \\ 1 \leq t \leq m}} \sum_{s \in\{0,1\}^{t-1} \times\{1\}} \Delta(k, s) \Lambda(k, s)$.

The next table gives us an idea of the size of the monoid $\mathcal{O}_{m \times n}^{+}\left(\right.$or $\left.\mathcal{O}_{m \times n}^{-}\right)$.

$m \backslash n$	1	2	3	4	5	6
1	1	2	5	14	42	132
2	2	8	35	306	2401	21232
3	5	42	569	10024	210765	5089370
4	14	252	8482	410994	25366480	1847511492
5	42	1636	138348	18795636	3547275837	839181666224
6	132	11188	2388624	913768388	531098927994	415847258403464

Despite the unpleasant appearance, the previous formula allows us to calculate the cardinal of $\mathcal{O}_{m \times n}^{+}$, even for larger m and n. For instance, we have $\left|\mathcal{O}_{10 \times 10}^{+}\right|=47016758951069862896388976221392645550606752244$.

In order to count the number of elements of the monoid $\mathcal{O} \mathcal{P}_{m \times n}$, we begin by recalling that, for $k \in \mathbb{N}$, being g_{k} the k-cycle $\left(\begin{array}{ccccc}1 & 2 & \cdots & k-1 & k \\ 2 & 3 & \cdots & k & 1\end{array}\right) \in \mathcal{O} \mathcal{P}_{k}$, each element $\alpha \in \mathcal{O} \mathcal{P}_{k}$ admits a factorization $\alpha=g_{k}^{j} \gamma$, with $0 \leq j \leq k-1$ and $\gamma \in \mathcal{O}_{k}$, which is unique unless α is constant [6].

Next, consider the permutations (of $\{1, \ldots, m n\}$)

$$
g=g_{m n}=\left(\begin{array}{cclcc}
1 & 2 & \cdots & m n-1 & m n \\
2 & 3 & \cdots & m n & 1
\end{array}\right) \in \mathcal{O} \mathcal{P}_{m n}
$$

and

$$
f=g^{n}=\left(\begin{array}{ccc|ccc|ccc}
1 & \cdots & n & n+1 & \cdots & m n-n & m n-n+1 & \cdots & m n \\
n+1 & \cdots & 2 n & 2 n+1 & \cdots & m n & 1 & \cdots & n
\end{array}\right) \in \mathcal{O} \mathcal{P}_{m \times n}
$$

Being α an element of $\mathcal{O} \mathcal{P}_{m \times n} \backslash \mathcal{O}_{m \times n}$ of type 1 or 2 (see Proposition 1.4) and $j \in\{1, \ldots, m-1\}$ such that $(j n) \alpha>(j n+1) \alpha$, as $(j n+1) \alpha \leq \cdots \leq(m n) \alpha \leq 1 \alpha \leq \cdots \leq(j n) \alpha$, it is clear that $f^{j} \alpha \in \mathcal{O}_{m \times n}$. Thus, each element α of $\mathcal{O} \mathcal{P}_{m \times n}$ of type 1 or 2 admits a factorization $\alpha=f^{j} \gamma$, with $0 \leq j \leq m-1$ and $\gamma \in \mathcal{O}_{m \times n}$, which is unique unless α is constant. Notice that, this uniqueness follows immediately from Catarino and Higgins's result mentioned above. Therefore we have precisely $m\left(\left|\mathcal{O}_{m \times n}\right|-m n\right)$ non-constant transformations of $\mathcal{O} \mathcal{P}_{m \times n}$ of types 1 and 2 and $m n$ constant transformations (which are elements of type 2 of $\mathcal{O} \mathcal{P}_{m \times n}$).

Now, let α be a transformation of $\mathcal{O} \mathcal{P}_{m \times n}$ of type 3 . As α is not constant, it can be factorized in a unique way as $g^{r} \gamma$, for some $r \in\{0, \ldots, m n-1\} \backslash\{j n \mid 0 \leq j \leq m-1\}$ and some non-constant order-preserving transformation γ from $\{1, \ldots, m n\}$ to A_{i}, for some $1 \leq i \leq m$. Since only elements of $\mathcal{O} \mathcal{P}_{m \times n}$ of type 3 have factorizations of this form and the number of non-constant and non-decreasing sequences of length $m n$ from a chain with n elements is equal to $\binom{m n+n-1}{n-1}-n$, we have precisely $\left.m(m n-m)\binom{m n+n-1}{n-1}-n\right)$ elements of type 3 in $\mathcal{O} \mathcal{P}_{m \times n}$. Thus $\left|\mathcal{O} \mathcal{P}_{m \times n}\right|=m\left|\mathcal{O}_{m \times n}\right|+m^{2}(n-1)\binom{m n+n-1}{n-1}-m n(m n-1)$ and so we obtain:

Theorem $2.6\left|\mathcal{O} \mathcal{P}_{m \times n}\right|=m \sum_{\substack{1 \leq k_{1}, \ldots, k_{t} \leq m \\ k_{1}+\cdots+k_{t}=m \\ 1 \leq t \leq m}}\binom{m}{t} \prod_{i=1}^{t}\binom{k_{i} n+n-1}{n-1}+m^{2}(n-1)\binom{m n+n-1}{n-1}-m n(m n-1)$.
It follows a table that gives us an idea of the size of the monoid $\mathcal{O} \mathcal{P}_{m \times n}$.

$m \backslash n$	1	2	3	4	5	6
1	1	4	24	128	610	2742
2	4	46	506	5034	51682	575268
3	24	447	9453	248823	8445606	349109532
4	128	4324	223852	17184076	1819339324	247307947608
5	610	42075	5555990	1207660095	387720453255	170017607919290
6	2742	405828	136530144	83547682248	81341248206546	114804703283314542

We finish this paper computing the cardinal of the monoid $\mathcal{O} \mathcal{R}_{m \times n}$. Notice that, as for $\mathcal{O} \mathcal{D}_{m \times n}$ and $\mathcal{O}_{m \times n}$, we have a similar relationship between $\mathcal{O} \mathcal{R}_{m \times n}$ and $\mathcal{O} \mathcal{P}_{m \times n}$. In fact, $\alpha \in \mathcal{O} \mathcal{R}_{m \times n}$ if and only if $\alpha \in \mathcal{O} \mathcal{P}_{m \times n}$ or $h \alpha \in \mathcal{O} \mathcal{P}_{m \times n}$. Hence, since $\left|\mathcal{O} \mathcal{P}_{m \times n}\right|=\left|h \mathcal{O} \mathcal{P}_{m \times n}\right|$ and $\mathcal{O} \mathcal{P}_{m \times n} \cap h \mathcal{O} \mathcal{P}_{m \times n}=\left\{\alpha \in \mathcal{O P}_{m \times n}| | \operatorname{Im}(\alpha) \mid \leq 2\right\}$, we obtain $\left|\mathcal{O} \mathcal{R}_{m \times n}\right|=2\left|\mathcal{O} \mathcal{P}_{m \times n}\right|-\left|\left\{\alpha \in \mathcal{O} \mathcal{P}_{m \times n}| | \operatorname{Im}(\alpha) \mid=2\right\}\right|-m n$.

It remains to calculate the number of elements of $A=\left\{\alpha \in \mathcal{O} \mathcal{P}_{m \times n}| | \operatorname{Im}(\alpha) \mid=2\right\}$.
First, we count the number of elements of A of types 2 and 3 . Let α be such a transformation. Then, there exists $k \in\{1, \ldots, m\}$ such that $|\operatorname{Im}(\alpha)| \subseteq A_{k}$. Clearly, in this case, the number of distinct kernels allowed for α coincides with the number of distinct kernels allowed for transformations of $\mathcal{O} \mathcal{P}_{m n}$ of rank 2 , which is $\binom{m n}{2}$ (see [6]). On the hand, it is easy to check that we have $m\binom{n}{2}$ distinct images for α. Furthermore, for each such possible kernel and image, we have two distinct transformations of A. Hence, the total number of elements of A of types 2 and 3 is precisely $2 m\binom{n}{2}\binom{m n}{2}$.

Finally, we determine the number of elements of A of type 1 . Let $\alpha \in A$ be of type 1 and suppose that $\alpha \psi=\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right)$. Then β must have rank 2 and so, as $\beta \in \mathcal{O} \mathcal{P}_{m}$, we have $2\binom{m}{2}^{2}$ distinct possibilities for β (see [6]). Moreover, for each $1 \leq i \leq m, \alpha_{i}$ must be a constant transformation of \mathcal{O}_{n} and, for $1 \leq i, j \leq m$, if $i \beta=j \beta$ then $\alpha_{i}=\alpha_{j}$. Thus, for a fixed β, since β as rank 2 , we have precisely n^{2} sequences $\left(\alpha_{1}, \ldots, \alpha_{m} ; \beta\right)$ allowed. Hence, A has $2 n^{2}\binom{m}{2}^{2}$ distinct elements of type 1 .

Therefore, $\left|\mathcal{O} \mathcal{R}_{m \times n}\right|=2\left|\mathcal{O} \mathcal{P}_{m \times n}\right|-2 m\binom{n}{2}\binom{m n}{2}-2 n^{2}\binom{m}{2}^{2}-m n=2 m\left|\mathcal{O}_{m \times n}\right|+2 m^{2}(n-1)\binom{m n+n-1}{n-1}-$ $2 m\binom{n}{2}\binom{m n}{2}-2 n^{2}\binom{m}{2}^{2}-m n(2 m n-1)$ and so we get:

Theorem $2.7\left|\mathcal{O} \mathcal{R}_{m \times n}\right|=2 m \sum_{\substack{1 \leq k_{1}, \ldots, k_{t} \leq m \\ k_{1}+\ldots+k_{t}=m \\ 1 \leq t \leq m}}\binom{m}{t} \prod_{i=1}^{t}\binom{k_{i} n+n-1}{n-1}+$

$$
+2 m^{2}(n-1)\binom{m n+n-1}{n-1}-2 m\binom{n}{2}\binom{m n}{2}-2 n^{2}\binom{m}{2}^{2}-m n(2 m n-1) .
$$

References

[1] A.Ya. Aı̆zenštat, Homomorphisms of semigroups of endomorphisms of ordered sets, Uch. Zap. Leningr. Gos. Pedagog. Inst. 238 (1962), 38-48 (Russian).
[2] A.Ya. Aı̌zenštat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, Sb . Math. 3 (1962), 161-169 (Russian).
[3] J. Almeida and M.V. Volkov, The gap between partial and full, Internat. J. Algebra Comput. 8 (1998), 399-430.
[4] J. Araújo and C. Schneider, The rank of the endomorphism monoid of a uniform partition, Semigroup Forum 78 (2009), 498-510.
[5] R.E. Arthur and N. Ruškuc, Presentations for two extensions of the monoid of order-preserving mappings on a finite chain, Southeast Asian Bull. Math. 24 (2000), 1-7.
[6] P.M. Catarino and P.M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum 58 (1999), 190-206.
[7] V.H. Fernandes, Semigroups of order-preserving mappings on a finite chain: a new class of divisors, Semigroup Forum 54 (1997), 230-236.
[8] V.H. Fernandes, The monoid of all injective orientation-preserving partial transformations on a finite chain, Comm. Algebra 28 (2000), 3401-3426.
[9] V.H. Fernandes, Semigroups of order-preserving mappings on a finite chain: another class of divisors, Izv. Vyssh. Uchebn. Zaved. Mat. 3 (478) (2002), 51-59 (Russian).
[10] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Presentations for some monoids of injective partial transformations on a finite chain, Southeast Asian Bull. Math. 28 (2004), 903-918.
[11] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Congruences on monoids of order-preserving or orderreversing transformations on a finite chain, Glasgow Math. J. 47 (2005), 413-424.
[12] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Congruences on monoids of transformation preserving the orientation on a finite chain, J. Algebra 321 (2009), 743-757.
[13] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, The cardinal and the idempotent number of various monoids of transformations on a finite chain, Bull. Malays. Math. Sci. Soc., to appear.
[14] V.H. Fernandes and T.M. Quinteiro, Bilateral semidirect product decompositions of transformation monoids, DM-FCTUNL pre-print series 10/2009.
[15] V.H. Fernandes and T.M. Quinteiro, On the monoids of transformation that preserve the order and a uniform partition, Comm. Algebra, to appear.
[16] V.H. Fernandes and T.M. Quinteiro, On the ranks of certain monoids of transformation that preserve a uniform partition.
[17] G.U. Garba, Nilpotents in semigroups of partial one-to-one order-preserving mappings, Semigroup Forum 48 (1994), 37-49.
[18] G.M.S. Gomes and J.M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45 (1992), 272-282.
[19] J.M. Harris et al., Combinatorics and Graph Theory, Springer-Verlag New York, 2000.
[20] P.M. Higgins, Divisors of semigroups of order-preserving mappings on a finite chain, Internat. J. Algebra Comput. 5 (1995), 725-742.
[21] J.M. Howie, Product of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. 17 (1971), 223-236.
[22] P. Huisheng, On the rank of the semigroup $\mathcal{T}_{E}(X)$, Semigroup Forum 70 (2005), 107-117.
[23] P. Huisheng, Regularity and Green's relations for semigroups of transformations that preserve an equivalence, Comm. Algebra 33 (2005), 109-118.
[24] P. Huisheng and Z. Dingyu, Green's Equivalences on Semigroups of Transformations Preserving Order and an Equivalence Relation, Semigroup Forum 71 (2005), 241-251.
[25] M. Kunze, Bilateral semidirect products of transformation semigroups, Semigroup Forum 45 (1992), 166182.
[26] M. Kunze, Standard automata and semidirect products of transformation semigroups, Theoret. Comput. Sci. 108 (1993), 151-171.
[27] A. Larandji and A. Umar, Combinatorial results for semigroups of order-preserving partial transformations, J. Algebra 278 (2004), 342-359.
[28] A. Larandji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51-62.
[29] D.B. McAlister, Semigroups generated by a group and an idempotent, Comm. Algebra 26 (1998), 515-547.
[30] J.-E. Pin, Varieties of Formal Languages, Plenum, London, 1986.
[31] V.B. Repnitskiĭ and M.V. Volkov, The finite basis problem for the pseudovariety \mathcal{O}, Proc. Roy. Soc. Edinburgh Sect. A 128 (1998), 661-669.
[32] A. Solomon, Catalan monoids, monoids of local endomorphisms, and their presentations, Semigroup Forum 53 (1996), 351-368.
[33] L. Sun, P. Huisheng and Z.X. Cheng, Regularity and Green's relations for semigroups of transformations preserving orientation and an equivalence, Semigroup Forum 74 (2007), 473-486.
[34] A. Vernitskii and M.V. Volkov, A proof and generalisation of Higgins’ division theorem for semigroups of order-preserving mappings, Izv. Vyssh. Uchebn. Zaved. Mat., No. 1 (1995), 38-44 (Russian).

Vítor H. Fernandes, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal; also: Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal; e-mail: vhf@fct.unl.pt
Teresa M. Quinteiro, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro 1, 1950-062 Lisboa, Portugal; e-mail: tmelo@dec.isel.ipl.pt

[^0]: ${ }^{1}$ The author gratefully acknowledges support of FCT and PIDDAC, within the projects ISFL-1-143 and PTDC/MAT/69514/2006 of CAUL.
 ${ }^{2}$ The author gratefully acknowledges support of ISEL and of FCT and PIDDAC, within the projects ISFL-1-143 and PTDC/MAT/69514/2006 of CAUL.

