The cardinal of various monoids of transformations that preserve a uniform partition

Vítor H. Fernandes¹ and Teresa M. Quinteiro²

July 30, 2010

Abstract

In this paper we give formulas for the number of elements of the monoids $\mathcal{OR}_{m\times n}$ of all full transformations on a finite chain with mn elements that preserve a uniform m-partition and preserve or reverse the orientation and for its submonoids $\mathcal{OD}_{m\times n}$ of all order-preserving or order-reversing elements, $\mathcal{OP}_{m\times n}$ of all orientation-preserving elements, $\mathcal{O}_{m\times n}$ of all order-preserving elements, $\mathcal{O}_{m\times n}^+$ of all extensive order-preserving elements and $\mathcal{O}_{m\times n}^-$ of all co-extensive order-preserving elements.

2000 Mathematics subject classification: 20M20, 05A10.

Keywords: order-preserving/reversing, orientation-preserving/reversing, extensive, equivalence-preserving, transformations.

Introduction and preliminaries

For $n \in \mathbb{N}$, let X_n be a finite chain with n elements, say $X_n = \{1 < 2 < \cdots < n\}$. Following the standard notations, we denote by \mathcal{PT}_n the monoid (under composition) of all partial transformations on X_n and by \mathcal{T}_n and \mathcal{I}_n its submonoids of all full transformations and of all injective partial transformations, respectively.

A transformation $\alpha \in \mathcal{PT}_n$ is said to be *extensive* (resp., *co-extensive*) if $x \leq x\alpha$ (resp., $x\alpha \leq x$), for all $x \in \text{Dom}(\alpha)$. We denote by \mathcal{T}_n^+ (resp., \mathcal{T}_n^-) the submonoid of \mathcal{T}_n of all extensive (resp., co-extensive) transformations.

A transformation $\alpha \in \mathcal{PT}_n$ is said to be order-preserving (resp., order-reversing) if $x \leq y$ implies $x\alpha \leq y\alpha$ (resp., $y\alpha \leq x\alpha$), for all $x, y \in \text{Dom}(\alpha)$. We denote by \mathcal{PO}_n the submonoid of \mathcal{PT}_n of all order-preserving partial transformations. As usual, we denote by \mathcal{O}_n the monoid $\mathcal{PO}_n \cap \mathcal{T}_n$ of all full transformations that preserve the order. This monoid has been extensively studied since the sixties (e.g. see [2, 1, 20, 34, 7, 3, 31, 9]). In particular, in 1971, Howie [21] showed that the cardinal of \mathcal{O}_n is $\binom{2n-1}{n-1}$ and later, jointly with Gomes, in [18] they proved that $|\mathcal{PO}_n| = \sum_{i=1}^n \binom{n}{i} \binom{n+i-1}{i} + 1$. See also Laradji and Umar papers [27] and [28].

[18] they proved that $|\mathcal{PO}_n| = \sum_{i=1}^n \binom{n}{i} \binom{n+i-1}{i} + 1$. See also Laradji and Umar papers [27] and [28]. Next, denote by \mathcal{O}_n^+ (resp., by \mathcal{O}_n^-) the monoid $\mathcal{T}_n^+ \cap \mathcal{O}_n$ (resp., $\mathcal{T}_n^- \cap \mathcal{O}_n$) of all extensive (resp., co-extensive) order-preserving full transformations. The monoids \mathcal{O}_n^+ and \mathcal{O}_n^- are isomorphic and it is well-known that the pseudovariety of \mathcal{J} -trivial monoids, which are the syntactic monoids of piecewise testable languages (see e.g. [30]), is generated by the family $\{\mathcal{O}_n^+ \mid n \in \mathbb{N}\}$. Moreover, the cardinal of \mathcal{O}_n^+ (or \mathcal{O}_n^-) is the n^{th} -Catalan number, i.e. $|\mathcal{O}_n^+| = \frac{1}{n+1} \binom{2n}{n}$ (see [32]).

Regarding the injective counterpart of \mathcal{O}_n , i.e. the inverse monoid $\mathcal{POI}_n = \mathcal{PO}_n \cap \mathcal{I}_n$ of all injective order-preserving partial transformations, we have $|\mathcal{POI}_n| = {2n \choose n}$. This result was first presented by Garba in [17] (see also [7]).

¹The author gratefully acknowledges support of FCT and PIDDAC, within the projects ISFL-1-143 and PTDC/MAT/69514/2006 of CAUL.

²The author gratefully acknowledges support of ISEL and of FCT and PIDDAC, within the projects ISFL-1-143 and PTDC/MAT/69514/2006 of CAUL.

Now, being \mathcal{POD}_n the submonoid of \mathcal{PT}_n of all partial transformations that preserve or reverse the order, $\mathcal{OD}_n = \mathcal{POD}_n \cap \mathcal{T}_n$ and $\mathcal{PODI}_n = \mathcal{POD}_n \cap \mathcal{I}_n$ (the full and partial injective counterparts of \mathcal{POD}_n , respectively), Fernandes et al. [10, 11] proved that $|\mathcal{POD}_n| = \sum_{i=1}^n \binom{n}{i} \left(2\binom{n+i-1}{i} - n\right) + 1$, $|\mathcal{OD}_n| = 2\binom{2n-1}{n-1} - n$ and $|\mathcal{PODI}_n| = 2\binom{2n}{n} - n^2 - 1$.

Wider classes of monoids are obtained when we consider transformations that either preserve or reverse the orientation. Let $a=(a_1,a_2,\ldots,a_t)$ be a sequence of $t,\ t\geq 0$, elements from the chain X_n . We say that a is cyclic (resp., anti-cyclic) if there exists no more than one index $i\in\{1,\ldots,t\}$ such that $a_i>a_{i+1}$ (resp., $a_i< a_{i+1}$), where a_{t+1} denotes a_1 . Let $\alpha\in\mathcal{T}_n$ and suppose that $\mathrm{Dom}(\alpha)=\{a_1,\ldots,a_t\}$, with $t\geq 0$ and $a_1<\cdots< a_t$. We say that α is cyclic (resp., cyclic). This notions were introduced by McAlister in [29] and independently Catarino and Higgins in [6].

Denote by \mathcal{POP}_n (resp., \mathcal{POR}_n) the submonoid of \mathcal{PT}_n of all orientation-preserving (resp., orientation-preserving or orientation-reversing) transformations. The cardinalities of \mathcal{POP}_n and \mathcal{POR}_n were calculated by Fernandes et al. [12] and are $1 + (2^n - 1)n + \sum_{k=2}^n k \binom{n}{k}^2 2^{n-k}$ and $1 + (2^n - 1)n + 2\binom{n}{2}^2 2^{n-2} + \sum_{k=3}^n 2k \binom{n}{k}^2 2^{n-k}$, respectively. As usual, \mathcal{OP}_n denotes the monoid $\mathcal{POP}_n \cap \mathcal{T}_n$ of all full transformations that preserve the orientation and \mathcal{POPI}_n and \mathcal{PORI}_n denote the submonoids of \mathcal{POP}_n and \mathcal{PORI}_n , respectively, whose elements are the injective transformations. McAlister in [29], and independently Catarino and Higgins in [6], proved that $|\mathcal{OP}_n| = n\binom{2n-1}{n-1} - n(n-1)$ and $|\mathcal{OR}_n| = n\binom{2n}{n} - \frac{n^2}{2}(n^2 - 2n + 5) + n$. The monoids \mathcal{OP}_n and \mathcal{OR}_n were also studied by Arthur and Rušcuk in [5]. Regarding their injective counterparts, in [8], Fernandes established that $|\mathcal{POPI}_n| = 1 + \frac{n}{2}\binom{2n}{n}$ and, in [10], Fernandes et al. showed that $|\mathcal{PORI}_n| = 1 + n\binom{2n}{n} - \frac{n^2}{2}(n^2 - 2n + 3)$.

Now, let X be a set and denote by $\mathcal{T}(X)$ the monoid (under composition) of all full transformations on X. Let ρ be an equivalence relation on X and denote by $\mathcal{T}_{\rho}(X)$ the submonoid of $\mathcal{T}(X)$ of all transformations that preserve the equivalence relation ρ , i.e. $\mathcal{T}_{\rho}(X) = \{\alpha \in \mathcal{T}(X) \mid (a\alpha, b\alpha) \in \rho, \text{ for all } (a, b) \in \rho\}$. This monoid was studied by Huisheng in [23] who determined its regular elements and described its Green's relations.

Let $m, n \in \mathbb{N}$. Of particular interest is the submonoid $\mathcal{T}_{m \times n} = \mathcal{T}_{\rho}(X_{mn})$ of \mathcal{T}_{mn} , with ρ the equivalence relation on X_{mn} defined by $\rho = (A_1 \times A_1) \cup (A_2 \times A_2) \cup \cdots \cup (A_m \times A_m)$, where $A_i = \{(i-1)n+1, \ldots, in\}$, for $i \in \{1, \ldots, m\}$. Notice that the ρ -classes A_i , with $1 \le i \le m$, form a uniform m-partition of X_{mn} .

Regarding the rank of $\mathcal{T}_{m\times n}$, first, Huisheng [22] proved that it is at most 6 and, later on, Araújo and Schneider [4] improved this result by showing that, for $|X_{mn}| \geq 3$, the rank of $\mathcal{T}_{m\times n}$ is precisely 4.

Finally, denote by $\mathcal{OR}_{m\times n}$ the submonoid of $\mathcal{T}_{m\times n}$ of all orientation-preserving or orientation-reversing transformations, i.e. $\mathcal{OR}_{m\times n} = \mathcal{T}_{m\times n} \cap \mathcal{OR}_{mn}$. Similarly, let $\mathcal{OD}_{m\times n} = \mathcal{T}_{m\times n} \cap \mathcal{OD}_{mn}$, $\mathcal{OP}_{m\times n} = \mathcal{T}_{m\times n} \cap \mathcal{OP}_{mn}$ and $\mathcal{O}_{m\times n} = \mathcal{T}_{m\times n} \cap \mathcal{O}_{mn}$. Consider also the submonoids $\mathcal{O}_{m\times n}^+ = \mathcal{O}_{m\times n} \cap \mathcal{T}_{mn}^+$ and $\mathcal{O}_{m\times n}^- = \mathcal{O}_{m\times n} \cap \mathcal{T}_{mn}^-$ of $\mathcal{O}_{m\times n}$ whose elements are the extensive transformations and the co-extensive transformations, respectively.

Example 0.1 Consider the following transformations of \mathcal{T}_{12} :

All these results are summarized in [13].

$$\alpha_{1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 9 & 11 & 10 & 12 & 1 & 3 & 3 & 2 & 5 & 5 & 7 & 8 \end{pmatrix}; \qquad \alpha_{2} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 8 & 8 & 8 & 6 & 6 & 5 & 5 & 5 & 12 & 12 & 11 & 10 \end{pmatrix};$$

$$\alpha_{3} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 11 & 11 & 10 & 10 & 10 & 10 & 9 & 9 & 4 & 3 & 3 & 1 \end{pmatrix}; \qquad \alpha_{4} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 7 & 7 & 7 & 8 & 8 & 8 & 5 & 5 & 5 & 6 & 6 & 6 \end{pmatrix};$$

$$\alpha_{5} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 1 & 1 & 1 & 2 & 3 & 3 & 4 & 4 & 10 & 11 & 11 & 11 \end{pmatrix}; \qquad \alpha_{6} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 5 & 5 & 6 & 6 & 6 & 7 & 7 & 8 & 10 & 11 & 12 \end{pmatrix};$$

$$\alpha_{7} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 1 & 1 & 2 & 3 & 5 & 5 & 6 & 8 & 9 & 9 & 10 & 11 \end{pmatrix}; \qquad \alpha_{8} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 1 & 1 & 2 & 3 & 5 & 5 & 6 & 9 & 9 & 10 & 10 & 11 \end{pmatrix}.$$

Then, we have: $\alpha_1 \in \mathcal{T}_{3\times 4}$, but $\alpha_1 \notin \mathcal{OR}_{3\times 4}$; $\alpha_2 \in \mathcal{OR}_{3\times 4}$, but $\alpha_2 \notin \mathcal{OP}_{3\times 4}$; $\alpha_3 \in \mathcal{OD}_{3\times 4}$, but $\alpha_3 \notin \mathcal{O}_{3\times 4}$; $\alpha_4 \in \mathcal{OP}_{3\times 4}$, but $\alpha_4 \notin \mathcal{O}_{3\times 4}$; $\alpha_5 \in \mathcal{O}_{3\times 4}$, but $\alpha_5 \notin \mathcal{O}_{3\times 4}^+$ and $\alpha_5 \notin \mathcal{O}_{3\times 4}^-$; $\alpha_6 \in \mathcal{O}_{3\times 4}^+$; $\alpha_7 \in \mathcal{O}_{3\times 4}^-$; and, finally, $\alpha_8 \notin \mathcal{T}_{3\times 4}$.

Notice that, as \mathcal{O}_n^- and \mathcal{O}_n^+ , the monoids $\mathcal{O}_{m\times n}^-$ and $\mathcal{O}_{m\times n}^+$ are isomorphic [15]. Recall that in [25] Kunze proved that the monoid \mathcal{O}_n is a quotient of a bilateral semidirect product of its subsemigroups \mathcal{O}_n^- and \mathcal{O}_n^+ . This result was generalized by the authors [15] by showing that $\mathcal{O}_{m\times n}$ also is a quotient of a bilateral semidirect product of its subsemigroups $\mathcal{O}_{m\times n}^-$ and $\mathcal{O}_{m\times n}^+$. See also [26, 14].

In [24] Huisheng and Dingyu described the regular elements and the Green's relations of $\mathcal{O}_{m\times n}$. On the other hand, the ranks of the monoids $\mathcal{O}_{m\times n}$, $\mathcal{O}_{m\times n}^+$ and $\mathcal{O}_{m\times n}^-$ were calculated by the authors in [15].

Regarding $\mathcal{OP}_{m\times n}$, a description of the regular elements and a characterization of the Green's relations were given by Sun et al. in [33]. Its rank was determined by the authors in [16], who also computed in the same paper the ranks of the monoids $\mathcal{OD}_{m\times n}$ and $\mathcal{OR}_{m\times n}$.

In this paper we calculate the cardinals of the monoids $\mathcal{OR}_{m\times n}$, $\mathcal{OP}_{m\times n}$, $\mathcal{OD}_{m\times n}$, $\mathcal{O}_{m\times n}$, $\mathcal{O}_{m\times n}^+$, and $\mathcal{O}_{m\times n}^-$. In order to achieve this objective, we use a wreath product description of $\mathcal{T}_{m\times n}$, due to Araújo and Schneider [4], that we recall in Section 1.

1 Wreath products of transformation semigroups

In [4] Araújo and Schneider proved that the rank of $\mathcal{T}_{m\times n}$ is 4, by using the concept of wreath product of transformation semigroups. This approach will also be very useful in this paper. Next, we recall some facts from [4, 15, 16].

First, we define the wreath product $\mathcal{T}_n \wr \mathcal{T}_m$ of \mathcal{T}_n and \mathcal{T}_m as being the monoid with underlying set $\mathcal{T}_n^m \times \mathcal{T}_m$ and multiplication defined by $(\alpha_1, \ldots, \alpha_m; \beta)(\alpha'_1, \ldots, \alpha'_m; \beta') = (\alpha_1 \alpha'_{1\beta}, \ldots, \alpha_m \alpha'_{m\beta}; \beta\beta')$, for all $(\alpha_1, \ldots, \alpha_m; \beta), (\alpha'_1, \ldots, \alpha'_m; \beta') \in \mathcal{T}_n^m \times \mathcal{T}_m$.

Now, let $\alpha \in \mathcal{T}_{m \times n}$ and let $\beta = \alpha/\rho \in \mathcal{T}_m$ be the *quotient* map of α by ρ , i.e. for all $j \in \{1, \ldots, m\}$, we have $A_j \alpha \subseteq A_{j\beta}$. For each $j \in \{1, \ldots, m\}$, define $\alpha_j \in \mathcal{T}_n$ by $k\alpha_j = ((j-1)n+k)\alpha - (j\beta-1)n$, for all $k \in \{1, \ldots, n\}$. Let $\overline{\alpha} = (\alpha_1, \alpha_2, \ldots, \alpha_m; \beta) \in \mathcal{T}_n^m \times \mathcal{T}_m$. With these notations, the function $\psi : \mathcal{T}_{m \times n} \longrightarrow \mathcal{T}_n \wr \mathcal{T}_m$, $\alpha \longmapsto \overline{\alpha}$, is an isomorphism (see [4, Lemma 2.1]).

Observe that, from this fact, we can immediately conclude that the cardinal of $\mathcal{T}_{m \times n}$ is $n^{nm}m^m$.

Example 1.1 Consider the transformation
$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 5 & 5 & 7 & 6 & 10 & 10 & 9 & 12 & 1 & 1 & 2 & 3 \end{pmatrix} \in \mathcal{T}_{3\times 4}.$$
 Then, being $\beta = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 \end{pmatrix}$, $\alpha_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 2 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 1 & 4 \end{pmatrix}$ and $\alpha_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 2 & 3 \end{pmatrix}$, we have $\overline{\alpha} = (\alpha_1, \alpha_2, \alpha_3; \beta)$.

Next, consider

$$\overline{\mathcal{O}}_{m \times n} = \{(\alpha_1, \dots, \alpha_m; \beta) \in \mathcal{O}_n^m \times \mathcal{O}_m \mid j\beta = (j+1)\beta \text{ implies } n\alpha_j \leq 1\alpha_{j+1}, \text{ for all } j \in \{1, \dots, m-1\}\}.$$

Notice that, if $(\alpha_1, \ldots, \alpha_m; \beta) \in \overline{\mathcal{O}}_{m \times n}$ and $1 \le i < j \le m$ are such that $i\beta = j\beta$, then $n\alpha_i \le 1\alpha_j$.

Proposition 1.2 [15] The set $\overline{\mathcal{O}}_{m \times n}$ is a submonoid of $\mathcal{T}_n \wr \mathcal{T}_m$ (and of $\mathcal{O}_n \wr \mathcal{O}_m$) isomorphic to $\mathcal{O}_{m \times n}$.

On the other hand, being

$$\overline{\mathcal{O}}_{m\times n}^+ = \{(\alpha_1, \dots, \alpha_m; \beta) \in \mathcal{O}_n^{m-1} \times \mathcal{O}_n^+ \times \mathcal{O}_m^+ \mid j\beta = (j+1)\beta \text{ implies } n\alpha_j \leq 1\alpha_{j+1} \text{ and } j\beta = j \text{ implies } \alpha_j \in \mathcal{O}_n^+, \text{ for all } j \in \{1, \dots, m-1\}\}$$

and

$$\overline{\mathcal{O}}_{m\times n}^- = \{(\alpha_1,\dots,\alpha_m;\beta)\in\mathcal{O}_n^-\times\mathcal{O}_n^{m-1}\times\mathcal{O}_m^-\mid (j-1)\beta=j\beta \text{ implies } n\alpha_{j-1}\leq 1\alpha_j \text{ and } j\beta=j \text{ implies } \alpha_j\in\mathcal{O}_n^-, \text{ for all } j\in\{2,\dots,m\}\},$$

we have:

Proposition 1.3 [15] The set $\overline{\mathcal{O}}_{m\times n}^+$ [resp. $\overline{\mathcal{O}}_{m\times n}^-$] is a submonoid of $\mathcal{T}_n \wr \mathcal{T}_m$ (and of $\mathcal{O}_n \wr \mathcal{O}_m$) isomorphic to $\mathcal{O}_{m\times n}^+$ [resp. $\mathcal{O}_{m\times n}^-$].

A description of $\mathcal{OP}_{m\times n}$ in terms of wreath products is more elaborate. In fact, considering addition modulo m (in particular, m+1=1), we have:

Proposition 1.4 [16] A (m+1)-tuple $(\alpha_1, \alpha_2, \ldots, \alpha_m; \beta)$ of $\mathcal{T}_n^m \times \mathcal{T}_m$ belongs to $\mathcal{OP}_{m \times n} \psi$ if and only if it satisfies one of the following conditions:

- 1. β is a non-constant transformation of \mathcal{OP}_m , for all $i \in \{1, ..., m\}$, $\alpha_i \in \mathcal{O}_n$ and, for all $j \in \{1, ..., m\}$, $j\beta = (j+1)\beta$ implies $n\alpha_j \leq 1\alpha_{j+1}$;
- 2. β is a constant transformation, for all $i \in \{1, ..., m\}$, $\alpha_i \in \mathcal{O}_n$ and there exists at most one index $j \in \{1, ..., m\}$ such that $n\alpha_j > 1\alpha_{j+1}$;
- 3. β is a constant transformation, there exists one index $i \in \{1, ..., m\}$ such that $\alpha_i \in \mathcal{OP}_n \setminus \mathcal{O}_n$ and, for all $j \in \{1, ..., m\} \setminus \{i\}$, $\alpha_j \in \mathcal{O}_n$ and, for all $j \in \{1, ..., m\}$, $n\alpha_j \leq 1\alpha_{j+1}$.

Let $\alpha \in \mathcal{OP}_{m \times n}$. We say that α is of *type* i if $\alpha \psi$ satisfies the condition i. of the previous proposition, for $i \in \{1, 2, 3\}$.

2 The cardinals

In this section we use the previous bijections to obtain formulas for the number of elements of the monoids $\mathcal{O}_{m\times n}$, $\mathcal{O}_{m\times n}^+$, $\mathcal{O}_{m\times n}^-$, $\mathcal{O}\mathcal{D}_{m\times n}$, $\mathcal{O}\mathcal{P}_{m\times n}$ and $\mathcal{O}\mathcal{R}_{m\times n}$.

In order to count the elements of $\mathcal{O}_{m\times n}$, on one hand, for each transformation $\beta \in \mathcal{O}_m$, we determine the number of sequences $(\alpha_1, \ldots, \alpha_m) \in \mathcal{O}_n^m$ such that $(\alpha_1, \ldots, \alpha_m; \beta) \in \overline{\mathcal{O}}_{m\times n}$ and, on the other hand, we notice that this last number just depends of the kernel of β (and not of β itself).

With this purpose, let $\beta \in \mathcal{O}_m$. Suppose that $\text{Im}(\beta) = \{b_1 < b_2 < \dots < b_t\}$, for some $1 \le t \le m$, and define $k_i = |b_i\beta^{-1}|$, for $i = 1,\dots,t$. Being β an order-preserving transformation, the sequence (k_1,\dots,k_t) determines the kernel of β : we have $\{k_1 + \dots + k_{i-1} + 1, \dots, k_1 + \dots + k_i\}\beta = \{b_i\}$, for $i = 1,\dots,t$ (considering $k_1 + \dots + k_{i-1} + 1 = 1$, with i = 1). We define the kernel type of β as being the sequence (k_1,\dots,k_t) . Notice that $1 \le k_i \le m$, for $i = 1,\dots,t$, and $k_1 + k_2 + \dots + k_t = m$.

Now, recall that the number of non-decreasing sequences of length k from a chain with n elements (which is the same as the number of k-combinations with repetition from a set with n elements) is $\binom{n+k-1}{k} = \binom{n+k-1}{n-1}$ (see [19], for example). Next, notice that, as a sequence $(\alpha_1, \ldots, \alpha_k) \in \mathcal{O}_n^k$ satisfies the condition $n\alpha_j \leq 1\alpha_{j+1}$, for all $1 \leq j \leq k-1$, if and only if the concatenation sequence of the images of the transformations $\alpha_1, \ldots, \alpha_k$ (by this order) is still a non-decreasing sequence, then we have $\binom{n+kn-1}{n-1}$ such sequences.

Since $(\alpha_1, \ldots, \alpha_m; \beta) \in \mathcal{O}_{m \times n}$ if and only if, for all $1 \leq i \leq t$, $\alpha_{k_1 + \cdots + k_{i-1} + 1}, \ldots, \alpha_{k_1 + \cdots + k_i}$ are k_i order-preserving transformations such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence, then we have $\prod_{i=1}^t \binom{k_i n + n - 1}{n-1}$ elements in $\overline{\mathcal{O}}_{m \times n}$ whose (m+1)-component is β . Finally, now it is also clear that if β and β' are two elements of \mathcal{O}_m with the same kernel type then

Finally, now it is also clear that if β and β' are two elements of \mathcal{O}_m with the same kernel type then $(\alpha_1, \ldots, \alpha_m; \beta) \in \overline{\mathcal{O}}_{m \times n}$ if and only if $(\alpha_1, \ldots, \alpha_m; \beta') \in \overline{\mathcal{O}}_{m \times n}$. Thus, as the number of transformations $\beta \in \mathcal{O}_m$ with kernel type of length t $(1 \le t \le m)$ coincides with the number of t-combinations (without repetition) from a set with m elements, it follows:

Theorem 2.1
$$|\mathcal{O}_{m \times n}| = \sum_{\substack{1 \le k_1, ..., k_t \le m \\ k_1 + \cdots + k_t = m \\ 1 < t < m}} {m \choose t} \prod_{i=1}^t {k_i n + n - 1 \choose n - 1}.$$

The table below gives us an idea of the size of the monoid $\mathcal{O}_{m\times n}$.

$m \setminus n$	1	2	3	4	5	6
1	1	3	10	35	126	462
2	3	19	156	1555	17878	225820
3	10	138	2845	78890	2768760	115865211
4	35	1059	55268	4284451	454664910	61824611940
5	126	8378	1109880	241505530	77543615751	34003513468232
6	462	67582	22752795	13924561150	13556873588212	19134117191404027

In view of Theorem 2.1, finding the cardinal of $\mathcal{OD}_{m\times n}$ is not difficult. Indeed, consider the reflexion permutation $h = \begin{pmatrix} 1 & 2 & \cdots & mn-1 & mn \\ mn & mn-1 & \cdots & 2 & 1 \end{pmatrix}$. Observe that $h \in \mathcal{OD}_{m\times n}$ and, given $\alpha \in \mathcal{T}_{m\times n}$, we have $\alpha \in \mathcal{OD}_{m \times n}$ if and only if $\alpha \in \mathcal{O}_{m \times n}$ or $h\alpha \in \mathcal{O}_{m \times n}$. On the other hand, as clearly $|\mathcal{O}_{m \times n}| = |h\mathcal{O}_{m \times n}|$ and $|\mathcal{O}_{m\times n}\cap h\mathcal{O}_{m\times n}|=|\{\alpha\in\mathcal{O}_{m\times n}\mid |\operatorname{Im}(\alpha)|=1\}|=mn$, it follows immediately that:

Theorem 2.2
$$|\mathcal{OD}_{m \times n}| = 2|\mathcal{O}_{m \times n}| - mn = 2\sum_{\substack{1 \le k_1, \dots, k_t \le m \\ k_1 + \dots + k_t = m \\ 1 \le t \le m}} {m \choose t} \prod_{i=1}^t {k_i n + n - 1 \choose n - 1} - mn.$$

Next, we describe a process to count the number of elements of $\mathcal{O}_{m\times n}^+$. First, recall that the cardinal of \mathcal{O}_n^+ is the n^{th} -Catalan number, i.e. $|\mathcal{O}_n^+| = \frac{1}{n+1} {2n \choose n}$. See [32]. It is also useful to consider the following numbers: $\theta(n,i) = |\{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = i\}|$, for $1 \le i \le n$. Clearly, we have $|\mathcal{O}_n^+| = \sum_{i=1}^n \theta(n,i)$. Moreover, for $2 \le i \le n-1$, we have $\theta(n,i) = \theta(n,i+1) + \theta(n-1,i-1)$. In fact, $\{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = i\} = \{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = i < 2\alpha\} \cup \{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = 2\alpha = i\}$ and it is easy to show that the function which maps each transformation $\beta \in \{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = i < 2\alpha\}$ into the transformation

$$\begin{pmatrix} 1 & 2 & \dots & n \\ i+1 & 2\beta & \dots & n\beta \end{pmatrix} \in \{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = i+1\}$$

and the function which maps each transformation $\beta \in \{\alpha \in \mathcal{O}_{n-1}^+ \mid 1\alpha = i-1\}$ into the transformation

$$\begin{pmatrix} 1 & 2 & 3 & \dots & n-1 & n \\ i & i & 2\beta+1 & \dots & (n-2)\beta+1 & (n-1)\beta+1 \end{pmatrix} \in \{\alpha \in \mathcal{O}_n^+ \mid 1\alpha = 2\alpha = i\}$$

are bijections. Thus

$$\begin{array}{lcl} \theta(n,i) & = & |\{\alpha \in \mathcal{O}_n^+ \mid \ 1\alpha = i < 2\alpha\}| + |\{\alpha \in \mathcal{O}_n^+ \mid \ 1\alpha = 2\alpha = i\}| \\ & = & |\{\alpha \in \mathcal{O}_n^+ \mid \ 1\alpha = i+1\}| + |\{\alpha \in \mathcal{O}_{n-1}^+ \mid \ 1\alpha = i-1\}| \\ & = & \theta(n,i+1) + \theta(n-1,i-1). \end{array}$$

Also, it is not hard to prove that $\theta(n,2) = \theta(n,1) = \sum_{i=1}^{n-1} \theta(n-1,i) = |\mathcal{O}_{n-1}^+|$ Now, we can prove:

Lemma 2.3 For all
$$1 \le i \le n$$
, $\theta(n,i) = \frac{i}{n} \binom{2n-i-1}{n-i} = \frac{i}{n} \binom{2n-i-1}{n-1}$.

Proof. We prove the lemma by induction on n.

For n = 1, it is clear that $\theta(1, 1) = 1 = \frac{1}{1} {2-1-1 \choose 1-1}$.

Let $n \geq 2$ and suppose that the formula is valid for n-1.

Next, we prove the formula for n by induction on i. For i=1, as observed above, we have $\theta(n,1)=|\mathcal{O}_{n-1}^+|=1$ $\frac{1}{n}\binom{2n-2}{n-1}$. For i=2, we have $\theta(n,2)=\theta(n,1)=\frac{1}{n}\binom{2n-2}{n-1}=\frac{2}{n}\frac{(2n-2)!}{(n-1)!(n-1)!}\frac{n-1}{2n-2}=\frac{2}{n}\frac{(2n-3)!}{(n-1)!(n-2)!}=\frac{2}{n}\binom{2n-3}{n-1}$. Now, suppose that the formula is valid for i-1, with $3\leq i\leq n$. Then, using both induction hypothesis on

i and on n in the second equality, we have $\theta(n,i) = \theta(n,i-1) - \theta(n-1,i-2) = \frac{i-1}{n} {2n-i \choose n-1} - \frac{i-2}{n-1} {2n-i-1 \choose n-2} = \frac{i-1}{n} {2n-i-1 \choose$

Recall that $(\alpha_1, \ldots, \alpha_m; \beta) \in \overline{\mathcal{O}}_{m \times n}^+$ if and only if $\beta \in \mathcal{O}_m^+$, $\alpha_m \in \mathcal{O}_n^+$, $\alpha_1, \ldots, \alpha_{m-1} \in \mathcal{O}_n$ and, for all $j \in \{1, \ldots, m-1\}$, $j\beta = (j+1)\beta$ implies $n\alpha_j \leq 1\alpha_{j+1}$ and $j\beta = j$ implies $\alpha_j \in \mathcal{O}_n^+$.

Let $\beta \in \mathcal{O}_m^+$. As for the monoid $\mathcal{O}_{m \times n}$, we aim to count the number of sequences $(\alpha_1, \ldots, \alpha_m) \in \mathcal{O}_n^m$ such that $(\alpha_1, \ldots, \alpha_m; \beta) \in \overline{\mathcal{O}}_{m \times n}^+$.

Let (k_1, \ldots, k_t) be the kernel type of β . Let $K_i = \{k_1 + \cdots + k_{i-1} + 1, \ldots, k_1 + \cdots + k_i\}$, for $i = 1, \ldots, t$. Then, β fixes a point in K_i if and only if it fixes $k_1 + \cdots + k_i$, for $i = 1, \ldots, t$. It follows that $(\alpha_1, \ldots, \alpha_m; \beta) \in \overline{\mathcal{O}}_{m \times n}^+$ if and only if, for all $1 \le i \le t$:

- 1. If β does not fix a point in K_i , then $\alpha_{k_1+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_1+\cdots+k_i}$ are k_i order-preserving transformations such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence (in this case, we have $\binom{k_in+n-1}{n-1}$ subsequences $(\alpha_{k_1+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_1+\cdots+k_i})$ allowed);
- 2. If β fixes a point in K_i , then $\alpha_{k_1+\cdots+k_{i-1}+1}, \ldots, \alpha_{k_1+\cdots+k_i-1}$ are k_i-1 order-preserving transformations such that the concatenation sequence of their images (by this order) is still a non-decreasing sequence, $n\alpha_{k_1+\cdots+k_i-1} \leq 1\alpha_{k_1+\cdots+k_i}$ and $\alpha_{k_1+\cdots+k_i} \in \mathcal{O}_n^+$ (in this case, we have $\sum_{j=1}^n \binom{(k_i-1)n+j-1}{j-1}\theta(n,j)$ subsequences $(\alpha_{k_1+\cdots+k_{i-1}+1},\ldots,\alpha_{k_1+\cdots+k_i})$ allowed).

Define

$$\mathfrak{d}(\beta,i) = \begin{cases} \binom{k_i n + n - 1}{n - 1}, & \text{if } (k_1 + \dots + k_i) \beta \neq k_1 + \dots + k_i \\ \sum_{j=1}^n \frac{j}{n} \binom{2n - j - 1}{n - 1} \binom{(k_i - 1)n + j - 1}{j - 1}, & \text{if } (k_1 + \dots + k_i) \beta = k_1 + \dots + k_i, \end{cases}$$

for all $1 \le i \le t$.

Thus, we have:

Proposition 2.4
$$|\mathcal{O}_{m\times n}^+| = \sum_{\beta\in\mathcal{O}_m^+} \prod_{i=1}^t \mathfrak{d}(\beta,i).$$

Next, we obtain a formula for $|\mathcal{O}_{m\times n}^+|$ which does not depend of $\beta\in\mathcal{O}_m^+$.

Let β be an element of \mathcal{O}_m^+ with kernel type (k_1, \ldots, k_t) . Define $s_{\beta} = (s_1, \ldots, s_t) \in \{0, 1\}^{t-1} \times \{1\}$ by $s_i = 1$ if and only if $(k_1 + \cdots + k_i)\beta = k_1 + \cdots + k_i$, for all $1 \leq i \leq t-1$.

Let $1 \le t, k_1, ..., k_t \le m$ be such that $k_1 + \cdots + k_t = m$ and let $(s_1, ..., s_t) \in \{0, 1\}^{t-1} \times \{1\}$. Let $k = (k_1, ..., k_t)$ and $s = (s_1, ..., s_t)$. Define $\Delta(k, s) = |\{\beta \in \mathcal{O}_m^+ \mid \beta \text{ has kernel type } k \text{ and } s_\beta = s\}|$.

In order to get a formula for $\Delta(k, s)$, we count the number of distinct restrictions to unions of partition classes of the kernel of transformations β of \mathcal{O}_m^+ with kernel type k and $s_{\beta} = s$ corresponding to maximal subsequences of consecutive zeros of s.

Let β be an element of \mathcal{O}_m^+ with kernel type k and $s_{\beta} = s$.

First, notice that, given $i \in \{1, ..., t\}$, if $s_i = 1$ then $K_i\beta = \{k_1 + \cdots + k_i\}$ and if $s_i = 0$ then the (unique) element of $K_i\beta$ belongs to K_j , for some $i < j \le t$.

Next, let $i \in \{1, ..., t\}$ and $r \in \{1, ..., t-i\}$ be such that $s_j = 0$, for all $j \in \{i, ..., i+r-1\}$, $s_{i+r} = 1$ and, if i > 1, $s_{i-1} = 1$ (i.e. $(s_i, ..., s_{i+r-1})$ is a maximal subsequence of consecutive zeros of s). Then

$$(K_i \cup \cdots \cup K_{i+r-2} \cup K_{i+r-1})\beta \subseteq K_{i+1} \cup \cdots \cup K_{i+r-1} \cup (K_{i+r} \setminus \{k_1 + \cdots + k_{i+r}\}).$$

Let $\ell_j = |K_{i+j} \cap (K_i \cup \cdots \cup K_{i+r-1})\beta|$, for $1 \leq j \leq r$. Hence, we have $\ell_1, \ldots, \ell_{r-1} \geq 0, \ell_r \geq 1, \ell_1 + \cdots + \ell_r = r$ and $0 \leq \ell_1 + \cdots + \ell_j \leq j$, for all $1 \leq j \leq r-1$.

On the other hand, given ℓ_1, \ldots, ℓ_r such that $\ell_1, \ldots, \ell_{r-1} \geq 0$, $\ell_r \geq 1$, $\ell_1 + \cdots + \ell_r = r$ and $0 \leq \ell_1 + \cdots + \ell_j \leq j$, for all $1 \leq j \leq r-1$, we have precisely $\binom{k_{i+1}}{\ell_1}\binom{k_{i+2}}{\ell_2}\cdots\binom{k_{i+r-1}}{\ell_{r-1}}\binom{k_{i+r-1}}{\ell_r} = \binom{k_{i+r}-1}{\ell_r}\prod_{j=1}^{r-1}\binom{k_{i+j}}{\ell_j}$ distinct restrictions to $K_i \cup \cdots \cup K_{i+r-1}$ of transformations β of \mathcal{O}_m^+ , with kernel type k and $s_\beta = s$, such that

 $\ell_j = |K_{i+j} \cap (K_i \cup \cdots \cup K_{i+r-1})\beta|$, for $1 \leq j \leq r$. It follow that the number of distinct restrictions to $K_i \cup \cdots \cup K_{i+r-1}$ of transformations β of \mathcal{O}_m^+ with kernel type k and $s_{\beta} = s$ is

$$\sum_{\substack{\ell_1 + \dots + \ell_r = r \\ 0 \le \ell_1 + \dots + \ell_j \le j, \ 1 \le j \le r - 1 \\ \ell_1, \dots, \ell_{r-1} > 0, \ \ell_r > 1}} {\binom{k_{i+r} - 1}{\ell_r}} \prod_{j=1}^{r-1} {\binom{k_{i+j}}{\ell_j}}.$$

Now, let p be the number of distinct maximal subsequences of consecutive zeros of s. Clearly, if p=0 then $\Delta(k,s)=1$. Hence, suppose that $p\geq 1$ and let $1\leq u_1< v_1< u_2< v_2< \cdots < u_p< v_p\leq t$ be such that

$${j \in {1, \dots, t} \mid s_j = 0} = \bigcup_{i=1}^p {u_i, \dots, v_i - 1}$$

(i.e. $(s_{u_i}, \ldots, s_{v_i-1})$, with $1 \le i \le p$, are the p distinct maximal subsequences of consecutive zeros of s). Then, being $r_i = v_i - u_i$, for $1 \le i \le p$, we have

$$\Delta(k,s) = \prod_{i=1}^{p} \sum_{\substack{\ell_1 + \dots + \ell_{r_i} = r_i \\ 0 \le \ell_1 + \dots + \ell_j \le j}} \binom{k_{u_i + r_i} - 1}{\ell_{r_i}} \prod_{j=1}^{r_i - 1} \binom{k_{u_i + j}}{\ell_j}.$$

Finally, notice that, if β and β' two elements of \mathcal{O}_m^+ with kernel type $k = (k_1, \ldots, k_t)$ such that $s_{\beta'} = s_{\beta}$, then $\mathfrak{d}(\beta, i) = \mathfrak{d}(\beta', i)$, for all $1 \leq i \leq t$. Thus, defining $\Lambda(k, s) = \prod_{i=1}^t \mathfrak{d}(\beta, i)$, where β is any transformation of \mathcal{O}_m^+ with kernel type k and $s_{\beta} = s$, we have:

Theorem 2.5
$$|\mathcal{O}_{m \times n}^{+}| = |\mathcal{O}_{m \times n}^{-}| = \sum_{\substack{k = (k_1, \dots, k_t) \\ 1 \le k_1, \dots, k_t \le m \\ k_1 + \dots + k_t = m \\ 1 \le t \le m}} \sum_{s \in \{0,1\}^{t-1} \times \{1\}} \Delta(k, s) \Lambda(k, s).$$

The next table gives us an idea of the size of the monoid $\mathcal{O}_{m\times n}^+$ (or $\mathcal{O}_{m\times n}^-$).

$m \setminus n$	1	2	3	4	5	6
1	1	2	5	14	42	132
2	2	8	35	306	2401	21232
3	5	42	569	10024	210765	5089370
4	14	252	8482	410994	25366480	1847511492
5	42	1636	138348	18795636	3547275837	839181666224
6	132	11188	2388624	913768388	531098927994	415847258403464

Despite the unpleasant appearance, the previous formula allows us to calculate the cardinal of $\mathcal{O}_{m\times n}^+$, even for larger m and n. For instance, we have $|\mathcal{O}_{10\times 10}^+| = 47016758951069862896388976221392645550606752244$.

In order to count the number of elements of the monoid $\mathcal{OP}_{m\times n}$, we begin by recalling that, for $k\in\mathbb{N}$, being g_k the k-cycle $\begin{pmatrix} 1 & 2 & \cdots & k-1 & k \\ 2 & 3 & \cdots & k & 1 \end{pmatrix}\in\mathcal{OP}_k$, each element $\alpha\in\mathcal{OP}_k$ admits a factorization $\alpha=g_k^j\gamma$, with $0\leq j\leq k-1$ and $\gamma\in\mathcal{O}_k$, which is unique unless α is constant [6].

Next, consider the permutations (of $\{1, \ldots, mn\}$)

$$g = g_{mn} = \begin{pmatrix} 1 & 2 & \cdots & mn-1 & mn \\ 2 & 3 & \cdots & mn & 1 \end{pmatrix} \in \mathcal{OP}_{mn}$$

and

$$f = g^n = \begin{pmatrix} 1 & \cdots & n & n+1 & \cdots & mn-n & mn-n+1 & \cdots & mn \\ n+1 & \cdots & 2n & 2n+1 & \cdots & mn & 1 & \cdots & n \end{pmatrix} \in \mathcal{OP}_{m \times n}.$$

Being α an element of $\mathcal{OP}_{m\times n}\setminus \mathcal{O}_{m\times n}$ of type 1 or 2 (see Proposition 1.4) and $j\in\{1,\ldots,m-1\}$ such that $(jn)\alpha>(jn+1)\alpha$, as $(jn+1)\alpha\leq\cdots\leq(mn)\alpha\leq 1\alpha\leq\cdots\leq(jn)\alpha$, it is clear that $f^j\alpha\in\mathcal{O}_{m\times n}$. Thus, each element α of $\mathcal{OP}_{m\times n}$ of type 1 or 2 admits a factorization $\alpha=f^j\gamma$, with $0\leq j\leq m-1$ and $\gamma\in\mathcal{O}_{m\times n}$, which is unique unless α is constant. Notice that, this uniqueness follows immediately from Catarino and Higgins's result mentioned above. Therefore we have precisely $m(|\mathcal{O}_{m\times n}|-mn)$ non-constant transformations of $\mathcal{OP}_{m\times n}$ of types 1 and 2 and mn constant transformations (which are elements of type 2 of $\mathcal{OP}_{m\times n}$).

Now, let α be a transformation of $\mathcal{OP}_{m\times n}$ of type 3. As α is not constant, it can be factorized in a unique way as $g^r\gamma$, for some $r\in\{0,\ldots,mn-1\}\setminus\{jn\mid 0\leq j\leq m-1\}$ and some non-constant order-preserving transformation γ from $\{1,\ldots,mn\}$ to A_i , for some $1\leq i\leq m$. Since only elements of $\mathcal{OP}_{m\times n}$ of type 3 have factorizations of this form and the number of non-constant and non-decreasing sequences of length mn from a chain with n elements is equal to $\binom{mn+n-1}{n-1}-n$, we have precisely $m(mn-m)\left(\binom{mn+n-1}{n-1}-n\right)$ elements of type 3 in $\mathcal{OP}_{m\times n}$. Thus $|\mathcal{OP}_{m\times n}|=m|\mathcal{O}_{m\times n}|+m^2(n-1)\binom{mn+n-1}{n-1}-mn(mn-1)$ and so we obtain:

Theorem 2.6
$$|\mathcal{OP}_{m \times n}| = m \sum_{\substack{1 \le k_1, \dots, k_t \le m \\ k_1 + \dots + k_t = m \\ 1 \le t \le m}} {m \choose t} \prod_{i=1}^t {k_i n + n - 1 \choose n - 1} + m^2 (n - 1) {mn + n - 1 \choose n - 1} - mn (mn - 1).$$

It follows a table that gives us an idea of the size of the monoid $\mathcal{OP}_{m\times n}$.

	$m \setminus n$	1	2	3	4	5	6
	1	1	4	24	128	610	2742
ĺ	2	4	46	506	5034	51682	575268
ĺ	3	24	447	9453	248823	8445606	349109532
ĺ	4	128	4324	223852	17184076	1819339324	247307947608
ĺ	5	610	42075	5555990	1207660095	387720453255	170017607919290
Ì	6	2742	405828	136530144	83547682248	81341248206546	114804703283314542

We finish this paper computing the cardinal of the monoid $\mathcal{OR}_{m\times n}$. Notice that, as for $\mathcal{OD}_{m\times n}$ and $\mathcal{O}_{m\times n}$, we have a similar relationship between $\mathcal{OR}_{m\times n}$ and $\mathcal{OP}_{m\times n}$. In fact, $\alpha\in\mathcal{OR}_{m\times n}$ if and only if $\alpha\in\mathcal{OP}_{m\times n}$ or $h\alpha\in\mathcal{OP}_{m\times n}$. Hence, since $|\mathcal{OP}_{m\times n}|=|h\mathcal{OP}_{m\times n}|$ and $\mathcal{OP}_{m\times n}\cap h\mathcal{OP}_{m\times n}=\{\alpha\in\mathcal{OP}_{m\times n}\mid |\operatorname{Im}(\alpha)|\leq 2\}$, we obtain $|\mathcal{OR}_{m\times n}|=2|\mathcal{OP}_{m\times n}|-|\{\alpha\in\mathcal{OP}_{m\times n}\mid |\operatorname{Im}(\alpha)|=2\}|-mn$.

It remains to calculate the number of elements of $A = \{\alpha \in \mathcal{OP}_{m \times n} \mid |\operatorname{Im}(\alpha)| = 2\}.$

First, we count the number of elements of A of types 2 and 3. Let α be such a transformation. Then, there exists $k \in \{1, \ldots, m\}$ such that $|\operatorname{Im}(\alpha)| \subseteq A_k$. Clearly, in this case, the number of distinct kernels allowed for α coincides with the number of distinct kernels allowed for transformations of \mathcal{OP}_{mn} of rank 2, which is $\binom{mn}{2}$ (see [6]). On the hand, it is easy to check that we have $m\binom{n}{2}$ distinct images for α . Furthermore, for each such possible kernel and image, we have two distinct transformations of A. Hence, the total number of elements of A of types 2 and 3 is precisely $2m\binom{n}{2}\binom{mn}{2}$.

Finally, we determine the number of elements of A of type 1. Let $\alpha \in A$ be of type 1 and suppose that $\alpha \psi = (\alpha_1, \ldots, \alpha_m; \beta)$. Then β must have rank 2 and so, as $\beta \in \mathcal{OP}_m$, we have $2\binom{m}{2}^2$ distinct possibilities for β (see [6]). Moreover, for each $1 \leq i \leq m$, α_i must be a constant transformation of \mathcal{O}_n and, for $1 \leq i, j \leq m$, if $i\beta = j\beta$ then $\alpha_i = \alpha_j$. Thus, for a fixed β , since β as rank 2, we have precisely n^2 sequences $(\alpha_1, \ldots, \alpha_m; \beta)$ allowed. Hence, A has $2n^2\binom{m}{2}^2$ distinct elements of type 1.

Therefore, $|\mathcal{OR}_{m\times n}| = 2|\mathcal{OP}_{m\times n}| - 2m\binom{n}{2}\binom{mn}{2} - 2n^2\binom{m}{2}^2 - mn = 2m|\mathcal{O}_{m\times n}| + 2m^2(n-1)\binom{mn+n-1}{n-1} - 2m\binom{n}{2}\binom{mn}{2} - 2n^2\binom{m}{2}^2 - mn(2mn-1)$ and so we get:

Theorem 2.7
$$|\mathcal{OR}_{m \times n}| = 2m \sum_{\substack{1 \le k_1, \dots, k_t \le m \\ k_1 + \dots + k_t = m \\ 1 \le t \le m}} {m \choose t} \prod_{i=1}^t {k_i n + n - 1 \choose n - 1} + \frac{1}{n-1} +$$

References

- [1] A.Ya. Aĭzenštat, Homomorphisms of semigroups of endomorphisms of ordered sets, Uch. Zap. Leningr. Gos. Pedagog. Inst. 238 (1962), 38–48 (Russian).
- [2] A.Ya. Aĭzenštat, The defining relations of the endomorphism semigroup of a finite linearly ordered set, Sb. Math. 3 (1962), 161–169 (Russian).
- [3] J. Almeida and M.V. Volkov, *The gap between partial and full*, Internat. J. Algebra Comput. 8 (1998), 399–430.
- [4] J. Araújo and C. Schneider, The rank of the endomorphism monoid of a uniform partition, Semigroup Forum 78 (2009), 498–510.
- [5] R.E. Arthur and N. Ruškuc, Presentations for two extensions of the monoid of order-preserving mappings on a finite chain, Southeast Asian Bull. Math. 24 (2000), 1–7.
- [6] P.M. Catarino and P.M. Higgins, *The monoid of orientation-preserving mappings on a chain*, Semigroup Forum **58** (1999), 190–206.
- [7] V.H. Fernandes, Semigroups of order-preserving mappings on a finite chain: a new class of divisors, Semigroup Forum 54 (1997), 230–236.
- [8] V.H. Fernandes, The monoid of all injective orientation-preserving partial transformations on a finite chain, Comm. Algebra 28 (2000), 3401–3426.
- [9] V.H. Fernandes, Semigroups of order-preserving mappings on a finite chain: another class of divisors, Izv. Vyssh. Uchebn. Zaved. Mat. 3 (478) (2002), 51–59 (Russian).
- [10] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Presentations for some monoids of injective partial transformations on a finite chain, Southeast Asian Bull. Math. 28 (2004), 903–918.
- [11] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Congruences on monoids of order-preserving or order-reversing transformations on a finite chain, Glasgow Math. J. 47 (2005), 413–424.
- [12] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, Congruences on monoids of transformation preserving the orientation on a finite chain, J. Algebra **321** (2009), 743–757.
- [13] V.H. Fernandes, G.M.S. Gomes and M.M. Jesus, *The cardinal and the idempotent number of various monoids of transformations on a finite chain*, Bull. Malays. Math. Sci. Soc., to appear.
- [14] V.H. Fernandes and T.M. Quinteiro, Bilateral semidirect product decompositions of transformation monoids, DM-FCTUNL pre-print series 10/2009.
- [15] V.H. Fernandes and T.M. Quinteiro, On the monoids of transformation that preserve the order and a uniform partition, Comm. Algebra, to appear.
- [16] V.H. Fernandes and T.M. Quinteiro, On the ranks of certain monoids of transformation that preserve a uniform partition.

- [17] G.U. Garba, Nilpotents in semigroups of partial one-to-one order-preserving mappings, Semigroup Forum 48 (1994), 37–49.
- [18] G.M.S. Gomes and J.M. Howie, On the ranks of certain semigroups of order-preserving transformations, Semigroup Forum 45 (1992), 272–282.
- [19] J.M. Harris et al., Combinatorics and Graph Theory, Springer-Verlag New York, 2000.
- [20] P.M. Higgins, Divisors of semigroups of order-preserving mappings on a finite chain, Internat. J. Algebra Comput. 5 (1995), 725–742.
- [21] J.M. Howie, Product of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. 17 (1971), 223–236.
- [22] P. Huisheng, On the rank of the semigroup $\mathcal{T}_E(X)$, Semigroup Forum 70 (2005), 107–117.
- [23] P. Huisheng, Regularity and Green's relations for semigroups of transformations that preserve an equivalence, Comm. Algebra 33 (2005), 109–118.
- [24] P. Huisheng and Z. Dingyu, Green's Equivalences on Semigroups of Transformations Preserving Order and an Equivalence Relation, Semigroup Forum 71 (2005), 241–251.
- [25] M. Kunze, Bilateral semidirect products of transformation semigroups, Semigroup Forum 45 (1992), 166–182.
- [26] M. Kunze, Standard automata and semidirect products of transformation semigroups, Theoret. Comput. Sci. 108 (1993), 151–171.
- [27] A. Larandji and A. Umar, Combinatorial results for semigroups of order-preserving partial transformations, J. Algebra 278 (2004), 342–359.
- [28] A. Larandji and A. Umar, Combinatorial results for semigroups of order-preserving full transformations, Semigroup Forum 72 (2006), 51–62.
- [29] D.B. McAlister, Semigroups generated by a group and an idempotent, Comm. Algebra 26 (1998), 515–547.
- [30] J.-E. Pin, Varieties of Formal Languages, Plenum, London, 1986.
- [31] V.B. Repnitskiĭ and M.V. Volkov, *The finite basis problem for the pseudovariety O*, Proc. Roy. Soc. Edinburgh Sect. A **128** (1998), 661–669.
- [32] A. Solomon, Catalan monoids, monoids of local endomorphisms, and their presentations, Semigroup Forum 53 (1996), 351–368.
- [33] L. Sun, P. Huisheng and Z.X. Cheng, Regularity and Green's relations for semigroups of transformations preserving orientation and an equivalence, Semigroup Forum 74 (2007), 473–486.
- [34] A. Vernitskii and M.V. Volkov, A proof and generalisation of Higgins' division theorem for semigroups of order-preserving mappings, Izv. Vyssh. Uchebn. Zaved. Mat., No.1 (1995), 38–44 (Russian).
- VÍTOR H. FERNANDES, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, 2829-516 Caparica, Portugal; also: Centro de Álgebra da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa, Portugal; e-mail: vhf@fct.unl.pt
- TERESA M. QUINTEIRO, Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro 1, 1950-062 Lisboa, Portugal; e-mail: tmelo@dec.isel.ipl.pt