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1 Department of Neuropathology, University of Freiburg, Germany

2 Instituto de Tecnologia Quı́mica e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal

3 Department of Medical Biochemistry and Biophysics, Umeå University, Sweden

Introduction

The S100 protein family represents the largest sub-

group within the Ca2+-binding EF-hand superfamily.

The name of the protein family has derived from the

fact that the first identified S100 proteins were

obtained from the soluble (S) bovine brain fraction

upon fractionation with saturated (100%) ammonium

sulfate [1]. The genes encoding the large majority of

human S100 proteins are organized in a gene cluster

located in chromosomal region 1q21 [2,3]. This region

harbours the genes of S100A1 to S100A16, which are

the result of several gene duplication events. The genes

of other S100 proteins, such as S100B, S100P or

S100Z, are located in humans in chromosomes 21, 4

and 5, respectively.
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The S100 proteins are 10–12 kDa EF-hand proteins that act as central reg-

ulators in a multitude of cellular processes including cell survival, prolifera-

tion, differentiation and motility. Consequently, many S100 proteins are

implicated and display marked changes in their expression levels in many

types of cancer, neurodegenerative disorders, inflammatory and autoim-

mune diseases. The structure and function of S100 proteins are modulated

by metal ions via Ca2+ binding through EF-hand motifs and binding of

Zn2+ and Cu2+ at additional sites, usually at the homodimer interfaces.

Ca2+ binding modulates S100 conformational opening and thus promotes

and affects the interaction with p53, the receptor for advanced glycation

endproducts and Toll-like receptor 4, among many others. Structural plas-

ticity also occurs at the quaternary level, where several S100 proteins self-

assemble into multiple oligomeric states, many being functionally relevant.

Recently, we have found that the S100A8 ⁄A9 proteins are involved in amy-

loidogenic processes in corpora amylacea of prostate cancer patients, and

undergo metal-mediated amyloid oligomerization and fibrillation in vitro.

Here we review the unique chemical and structural properties of S100 pro-

teins that underlie the conformational changes resulting in their oligomeri-

zation upon metal ion binding and ultimately in functional control. The

possibility that S100 proteins have intrinsic amyloid-forming capacity is

also addressed, as well as the hypothesis that amyloid self-assemblies may,

under particular physiological conditions, affect the S100 functions within

the cellular milieu.

Abbreviations

RAGE, receptor for advanced glycation endproducts; ThT, thioflavin-T.
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In humans, 21 different S100 proteins have been

identified to date and similar numbers have been found

in other mammalia based on genomic analysis. Further

diverse branches of S100 proteins were found in other

vertebrates. The level of sequence identity among the

S100 proteins within one species varies considerably,

e.g. for human proteins the identity ranges between

22% and 57%. Many S100 proteins exhibit very dis-

tinctive expression patterns in different tissues and cell

types, as well as specific subcellular localization, under-

lining the high degree of specialization among them.

Corresponding to their diversity in primary structure

and localization, the S100 proteins are involved in the

regulation of a multitude of cellular processes, such as

cell cycle control, cell growth, differentiation and

motility. Considering the diverse S100 protein func-

tions, it is no surprise to find that these proteins are

implicated in numerous human diseases, such as differ-

ent types of cancer characterized by altered expression

levels of S100 proteins [4], neurodegenerative disorders

such as Alzheimer’s disease [5,6], inflammatory and

autoimmune diseases [4].

The conformational properties and function of S100

proteins are modulated by metal ion binding. The

binding of Ca2+ to EF-hand type domains triggers

conformational changes allowing interactions with

other proteins. In many S100 proteins, additional bind-

ing of Zn2+ fine tunes protein folding and function

[7,8]. Intracellularly, S100 proteins act as Ca2+ sen-

sors, translating intracellular Ca2+ level increases into

a cellular response. An increasing number of S100 pro-

teins is also reported to occur extracellularly, binding

to the receptor for advanced glycation endproducts

(RAGE) [9–12] or Toll-like receptor 4 [13]. Recently, a

new property among S100 proteins was unveiled: we

have found that the S100A8 ⁄A9 proteins can form

amyloids in a metal ion-mediated fibrillation process

in the ageing prostate [14]. In the following sections

these aspects and the possible functional and biological

implications of physiological amyloid formation by

S100 proteins will be addressed.

Structural properties of S100 proteins

Monomers, dimers and multimers

Most S100 protein family members form homo- and

heterodimers, but with largely different preferences.

Larger multimeric assemblies, such as tetramers

[11,15,16], hexamers [11,17,18] and octamers [11], also

form spontaneously. The exception is S100G, which

functions as a monomer. Other S100 proteins might

exist as monomers at very low concentrations in the

cell [19]. The monomer–dimer equilibrium may facili-

tate heterodimer formation in the cell [19,20]. Several

heterodimeric S100 proteins have been reported, but

only the S100A8 ⁄A9 heterodimer is well characterized

[13,16,21–23]. The list of S100 heterodimers is steadily

growing: S100B forms heterodimers with S100A1 [24],

S100A6 [25,26] and S100A11 [26]; S100A1 with

S100A4 [27] and S100P [28]; and S100A7 with

S100A10 [29]. Noncovalent multimers were observed

for S100A12 [18], S100A8 ⁄A9 [16,30], S100B [11],

S100A4 [31] and a Zn2+-dependent tetramer for

S100A2 [15]. Comparison of the structure of

S100A8 ⁄A9 with those of the corresponding homodi-

mers revealed that the solvent exposed area is reduced

in the heterodimer, which might represent the driving

force of heterodimer formation [16]. It is proposed that

heterodimer formation apart from homodimeric assem-

bly might lead to further diversification of S100 pro-

tein functions [20,32].

EF-hand Ca2+ binding

All S100 proteins exhibit the same key structural fea-

tures. Each S100 monomer is � 10–12 kDa and com-

posed of two EF-hand helix-loop-helix structural

motifs arranged in a back to back manner and con-

nected by a flexible linker. The C-terminal EF-hand

contains the classical Ca2+-binding motif, common to

all EF-hand proteins. The loop has a typical sequence

signature of 12 amino acids flanked by helices HIII and

HIV (Fig. 1B). The N-terminal EF-hand exhibits a

slightly different architecture and contains a specific 14

amino acid motif flanked by helices HI and HII

(Fig. 1A). This motif is characteristic for S100 pro-

teins and therefore it is often called ‘S100-specific’or

‘pseudo EF-hand’. Generally, the dimeric S100 pro-

teins bind four Ca2+ ions per dimer with micromolar

to hundreds micromolar binding constants and strong

cooperativity. The S100 protein dimer interface is

formed by helices HI and HIV from both monomers,

building a compact four helix bundle (Fig. 1C,D).

Zn2+-binding sites

Many S100 proteins are reported to bind Zn2+ with

high affinity. The Zn2+-binding S100 proteins can be

subdivided into two subgroups: one, where Cys resi-

dues are involved in Zn2+ coordination, and a second

group, where Zn2+ binds exclusively via the side

chains of His, Glu and Asp residues. The first group

has been characterized by spectroscopic analysis in

combination with molecular modelling, showing, for

example for S100A2 that Zn2+ is coordinated by
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residues from different monomers [15]. For the second

group, encompassing S100A7, S100A8 ⁄A9, S100A12

and S100B, detailed structural information mainly by

X-ray crystallography is available. S100A7, S100A12

and S100B bind two Zn2+ ions per homodimer at

the subunit interface that further stabilize the dimer

[17,33,34].

Metal ions as modulators of S100
conformation and stability

The metal-binding properties of S100 proteins have a

pivotal influence as modulators of their conformation,

folding, oligomerization state and, ultimately, function.

As outlined above, S100 proteins are able to bind

different metal ions, including Ca2+, Zn2+ and Cu2+.

In the Ca2+-free state, the helices of both EF-hands in

each monomer adopt an antiparallel conformation

masking the target protein interaction site. Upon Ca2+

binding, the C-terminus undergoes a major conforma-

tional change (Fig. 1B). Helix HIII makes a 90� move-

ment, opening the structure, whereas the N-terminal

EF-hand exhibits only minor structural changes

(Fig. 1A,B). This leads to the exposure of a wide

hydrophobic cleft, which mediates target recognition.

This surface is formed by residues of the hinge region,

helix HIII and the C-terminus, the regions exhibiting

the largest variation in amino acid sequence through-

out the S100 family. Helices HI and HIV barely move

during Ca2+ binding, maintaining the dimeric state of

the S100 proteins. The residue invariability and the

conserved spatial arrangement of the helices at the

dimer interface are the basis for heterodimer forma-

tion. In the absence of Ca2+, the EF-hands can

accommodate Na+ (as in S100A2 [35]) or Mg2+ ions.

The reported affinities for Mg2+ ions are rather low,

having only a minor effect on Ca2+ binding.

In addition to Ca2+, many S100 proteins (S100B,

S100A2, S100A3, S100A6, S100A7, S100A8 ⁄ 9,
S100A12) bind Zn2+ in specific sites, whose metalla-

tion state also influences protein conformation, folding

and presumably function. One of these proteins is

S100A7, which is upregulated in the keratinocytes of

patients suffering from the chronic skin disease psoria-

sis, and which has been hypothesized to account for

the microbial resistance of skin [36]. The structure of

this protein has elicited two identical high-affinity

Zn2+-binding sites formed by His ⁄Asp residues from

different monomers that ‘clip’ together the two subun-

its. A substantial stabilization of the dimer is expected

to arise from Zn2+ binding, as it promotes head-to-tail

interactions between the two monomers, although in

Ca2+

Ca2+

HI

HII

HIII

HIV

S-100
EF-hand

EF-hand

S100B

S100A8/A9

S100A12

90°

A C E

F

G

D
B

Fig. 1. Structure of S100 proteins. (A,B) Calcium-driven conformational changes at the EF-hands in S100 proteins. Structure of the N-termi-

nal, S100-specific EF-hand (A) and the C-terminal, canonical EF-hand (B) in the metal-free (lighter) and Ca2+-bound (darker) form of S100A6.

The EF-hand flanking helices (HI–HIV) are identified. (C,D) Structure of the human S100B homodimer loaded with Ca2+ and Zn2+ (T. Osten-

dorp, J. Diez, C.W. Heizmann, G. Fritz, unpublished results, 3D10). (C) Side view; (D) top view. The monomers are shown in blue and green.

The N-terminal S100-specific EF-hand (EF-hand 1) is shown in a dark colour, the C-terminal canonical EF-hand in a brighter colour (EF-hand

2). The hinges connecting both EF-hands are shown in magenta and orange. The four bound Ca2+ ions are shown as red spheres. The two

Zn2+ bound at the dimer interface of S100B are shown as yellow spheres. (E–G) Multimeric states of S100 proteins. S100B octamer, 2H61

(E), S100A12 hexamer, 1GQM (F) and S100A8 ⁄ A9 tetramer, 1XK4 (G). Each dimer in S100B or S100A12 is shown in an individual colour.

S100A8 is shown in red, S100A9 in blue. Bound Ca2+ ions are shown as spheres; intersubunit Ca2+ ions are shown as magenta spheres.
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this particular case Zn2+ does not seem to be essential

for protein stability [33].

There is evidence for an interesting cross-talk

between Ca2+ and Zn2+ binding to S100 proteins,

illustrating how binding of different metal ions results

in conformational adjustments and modulation of pro-

tein folding and function. In S100B and S100A12,

Zn2+ binding leads to an increase in Ca2+ affinity

[37,38], whereas in S100A2 the opposite effect was

observed, i.e. Zn2+ decreased Ca2+ affinity, pointing

to an interplay of the metal ions in the activation of

S100 proteins [15]. For S100A12 and S100B, the

molecular mechanism of the increase in Ca2+ affinity

by Zn2+ can be deduced from the structural informa-

tion available (T. Ostendorp, J. Diez, C.W. Heizmann,

G. Fritz, unpublished results) [17]. In both proteins

there is one Zn2+ coordinating His residue located in

the Ca2+-binding loop, which might help to stabilize

the Ca2+-bound conformation, thereby increasing

Ca2+ affinity. The structure of S100A12 with only

bound Zn2+ also shows that Zn2+ alone can already

induce structural changes similar to those induced by

Ca2+, which will also lead to an increase in Ca2+

affinity. Other Zn2+ coordinating residues are located

in the C-terminus of the S100 proteins. Zn2+ coordi-

nation leads to a stabilization and extension of the

C-terminal helix, changing the orientation of residues

involved in target binding. As expected from these

structural changes, Zn2+ binding modulates target

binding properties of different S100 proteins. For

example, Zn2+ prevents S100A8 ⁄A9 binding to arachi-

donic acid [39]. On the other hand, Zn2+ and Ca2+

binding to S100A9 are both required for interaction

with receptors such as RAGE or Toll-like receptor 4

[9,13]. Similarly, Zn2+ increased the Ca2+-dependent

interaction of S100A12 with RAGE [40]. In the case of

S100B, Zn2+ alone could trigger binding to tau [41,42]

or IQGAP1 [43]. Moreover, Zn2+ binding enhanced

the Ca2+-dependent interaction with AHNAK [44]

and the target protein-derived peptide TRTK-12 [45].

Recent work on the S100A2 protein, a cell cycle reg-

ulator that binds and activates p53 in a Ca2+-depen-

dent manner, has shown that metal ion binding

influences protein conformation and stability [7].

S100A2 binds two Ca2+ and two Zn2+ ions per sub-

unit, known to be associated with activation (Ca2+) or

inhibition (Zn2+) of downstream signalling. Zn2+

binds at distinct sites that have different metal-binding

affinities, and physiologically relevant Zn2+ concentra-

tions decrease the affinity for Ca2+ binding, resulting

in a blockage of p53 activation. It has been recently

elicited that the S100A2 conformation is sensitive to

the metallation state, although rearrangements result-

ing from metal binding preserve the overall fold of the

protein: S100A2 is destabilized by Zn2+ and stabilized

by Ca2+, suggesting a synergistic effect between the

binding of different metals. Thus, the decrease in Ca2+

affinity through Zn2+ is presumably a result of the

general destabilization of the protein. Further contri-

butions might come from the exposure of a hydropho-

bic surface upon Zn2+ binding, making additional

exposure of the hydrophobic surface induced by Ca2+

less favourable. The antagonistic effect of Zn2+ and

Ca2+ in the control of S100A2 stability provides a

molecular rationale for the action of both metal ions:

hypothetically, in tissues expressing S100A2, the Zn2+

imbalance, which may arise in some types of cancer as

a result of the upregulation of Zn2+ transporters

[46,47], may contribute to enhanced cell proliferation

through destabilization of S100A2. This would impair

the interaction with p53 and disrupt subsequent down-

stream cell cycle regulation. This further illustrates how

the binding of different metal ions to S100 proteins has

the potential to result in conformational adjustments

and modulation of protein folding and functions.

A number of S100 proteins also bind Cu2+ (S100B

[48], S100A5 [49], S100A12 [50] and S100A13 [51]) and

this frequently occurs at the same sites to which Zn2+

binds. That is, for example, the case in S100A12, an

important protein in the inflammatory response and a

factor in host ⁄parasite defences, which binds Cu2+

and Zn2+ at the same site and corresponds to the

Zn2+-binding site in S100A7, evoking a possibly simi-

lar structural and functional role. S100B, one of the

most abundant proteins in the human brain, also binds

Cu2+, and in this case a putative neuroprotective role

was suggested.

S100 functional oligomers

Metal ions also play a crucial role in the formation of

larger oligomeric species of S100 proteins, namely tet-

ramers, hexamers and octamers. These are, in many

cases, essential for biological function and signalling:

tetrameric S100B [11] and hexameric S100A12 [52]

bind RAGE with higher affinity than the dimeric

counterparts, only multimeric S100A4 promotes neu-

rite outgrowth [53], and microtubule formation is only

promoted by the Ca2+-induced S100A8 ⁄A9 tetramer

[16]. Ca2+-loaded S100A12 forms a functional hex-

amer whose quaternary structure is maintained by

additional interdimer bridging Ca2+ ions, which are

coordinated by residues from the C-terminal EF-hand

and helix HIII from two adjacent dimers. This arrange-

ment of ligands for the interdimer Ca2+ ‘cross-linker’

is only possible when the C-terminal EF-hand is in the
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Ca2+-bound state [50]. Similarly, two S100A8 ⁄A9

heterodimers can assemble into a heterotetramer in a

strictly Ca2+-dependent manner [16]. However, the ini-

tial S100A8 ⁄A9 heterodimer can be formed in the pres-

ence or absence of Ca2+. By contrast, the formation

of S100B tetramers is not dependent on Ca2+ and the

tetramer remains stable in the absence of the metal ion

[11]. This difference may result from the additional

hydrophobic moieties found in interfaces of S100B,

which are essentially polar in S100A12 and

S100A8 ⁄A9 [11]. Nevertheless, the presence of Ca2+

enhances the oligomerization of S100B into hexamers

and octamers, and the octameric crystal structure

reveals intersubunit Ca2+ ions. The oligomerization

role is not restricted to Ca2+, as in S100A2 binding

of Zn2+ to the low affinity site triggers the forma-

tion of a tetramer via the assembly of two S100A2

dimers [15]. Together, these results point to a very

clear role of metal ions in the formation of func-

tional S100 oligomers. However, novel roles for non-

functional S100 oligomers are emerging with the

recent finding of metal-dependent amyloid formation

by S100A8 ⁄A9, which will be addressed further.

Functional diversity of S100 proteins

To date a great number of distinct functions have been

attributed to S100 proteins in both the intra- and

extracellular milieu. Although S100 proteins appear to

lack enzymatic activity themselves, they play biological

roles through binding to other proteins and changing

the activity of their targets. As discussed above, the

conformation and even oligomerization state of S100s

are responsive to Ca2+ and consequently they mediate

Ca2+ signals by binding to other intracellular target

proteins and modulating their conformation and activ-

ity in a Ca2+- and possibly also in a Zn2+- and Cu2+-

dependent manner. Indeed, the assembly into multiple

complexes is considered in general as a significant gen-

eric mechanism of protein functional diversification via

varying their conformational states and associated

ligands [54]. Several S100 proteins exhibit Ca2+-depen-

dent interactions with metabolic enzymes (S100A1 and

S100B with aldolase C) [55], with kinases (S100B with

Ndr or Src kinases) [56,57], with cytoskeletal proteins

(S100A1 with tubulin, S100B with CapZ and S100P

with ezrin) [58–63] or with DNA-binding proteins

(S100A2, S100A4 and S100B interact with p53) [64–

66]. As a result, intracellularly S100 proteins are

involved in the regulation of the cell cycle, cell growth

and differentiation, apoptosis, migration, calcium

homeostasis, protein phosphorylation, cellular motility

and other important processes.

Some S100 proteins, including S100A4, S100A7,

S100A8 ⁄A9, S100A11, S100A12, S100B and others,

can be secreted, exhibiting cytokine-like and chemotac-

tic activity. When S100A7, S100A8, S100A9, S100A12

or S100B are secreted in response to cell damage or

activation, they become danger signals, activating

other immune and endothelial cells. Accordingly, they

were defined as damage-associated molecular pattern

molecules in innate immunity [67,68]. The S100A8 ⁄A9

complex accounts for up to 40% of total cytosolic pro-

teins in neutrophils and secreted S100A8 ⁄A9 as well as

S100A12 are found at high concentrations in inflamed

tissues, producing strong proinflammatory effects.

S100A8 and S100A9 activate Toll-like receptor 4, act-

ing as innate amplifiers of inflammation and cancer

[69,70], with direct implication in metastasization [70].

Recently it was demonstrated in a mouse model that

via activation of Toll-like receptor 4, S100A8 and

S100A9 induce the development of systemic autoim-

munity [69].

S100B is highly expressed in the human brain and

actively secreted by astrocytes, neurons, microglia,

glioblastoma or Schwann cells [71]. Its extracellular

concentration reaches micromolar levels after trau-

matic brain injury and in neurodegenerative disorders

such as Alzheimer’s disease or Down’s syndrome. The

action of S100B is strongly dependent on its concen-

tration: at nanomolar levels it is neuroprotective,

whereas in the micromolar concentration range it pro-

motes apoptosis [72]. Both trophic and toxic effects

of extracellular S100B are mediated by RAGE [23]. A

large number of S100 proteins have been shown to

interact with RAGE, including S100A1, S100A2,

S100A4, S100A5, S100A6, 100A7, S100A8 ⁄A9,

S100A11, S100A12 and S100B [22]. However, S100-

associated cell signalling may be promiscuous. This

can be best exemplified through S100A8 ⁄A9, which

promotes RAGE-dependent cell survival [73] as well

as multiple RAGE-independent cell death pathways

[74–76].

Because of their deregulated expression, response to

stress and association with neoplastic, degenerative

and autoimmune disorders, S100 proteins gain signifi-

cant interest as potential therapeutic targets. In view

of the large number of tertiary and quaternary struc-

tures adopted by S100s and the complex structure–

functional relationship affecting their interactions with

target proteins, it is tempting to speculate that this

variability may account for the promiscuity of S100

proteins. Therefore, systematic studies of the confor-

mational changes and oligomerization of S100 proteins

will be of critical importance in the development of

potential therapeutics.
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Amyloid formation by S100A8 ⁄A9
proteins

Recently, we have found a new amyloidogenic prop-

erty of S100A8 ⁄A9 proteins, implicating them in

another degenerative process in the ageing prostate,

specifically in amyloid deposition and tissue remodel-

ling [14]. The conversion of functional proteins and

peptides into insoluble amyloid structures and their

deposition in a variety of tissues and organs is a hall-

mark of a growing number of age-related degenerative

disorders, including Alzheimer’s and Parkinson’s dis-

eases, type II diabetes and systemic amyloidoses. Pros-

tate amyloid deposits known as corpora amylacea

belong to a type of localized amyloidoses, they are

associated with age-related prostate tissue remodelling

and occur frequently in middle-aged and elderly men.

These inclusions can vary in size from submillimetre

to a few millimetres in diameter (Fig. 2A) and can, in

some instances, constitute up to a third of the prostate

gland bulk weight. Despite their high prevalence in

later life [77], their role in prostate benign and malig-

nant changes is still disputed. The fact that proinflam-

matory S100 proteins contribute to corpora amylacea

formation elevates their role as potential cancer risk

factors. There is a growing body of evidence indicating

that inflammation is a crucial prerequisite in prostate

pathogenesis, as it is found to be associated with

40)90% of benign prostatic hyperplasia and with 20%

of all human cancers [78]. Prostate cancer is the most

common noncutaneous malignant neoplasm in men in

Western countries, affecting several million men in the

Western world, and its incidence is rising rapidly with

population ageing. Therefore, cancer risk assessment is

of critical significance in its preventing strategies.

By using mass spectrometry, gel electrophoresis and

western blot analyses, we have found that proinflam-

matory S100A8 ⁄A9 proteins are persistently present in

all specimens obtained as a result of prostatectomy in

prostate cancer patients [14]. Immunohistochemical

A B C

D E F

Fig. 2. Amyloid formation by S100A8 ⁄ A9 proteins in the ageing prostate. (A) Corpora amylacea deposits extracted as a result of prostatecto-

my (ruler is shown in centimetres). (B) Co-immunostaining of corpora amylacea with anti-S100A8 (shown in purple) and anti-S100A9 IgG

(shown in brown). (C) Immunostaining of corpora amylacea by antibodies towards amyloid fibrils (shown in purple). Atomic force microscopy

images of (D) ex vivo amyloid oligomers; (E) ex vivo amyloid fibrillar network and (F) amyloid fibrils produced in vitro at pH 7.4, 37 �C with

agitation. The fibril height analysis corresponds to the cross-section marked as a red line. Scale bars represent 250 nm.
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analysis of corpora amylacea revealed that they are

stained positively with both anti-S100A8 and anti-

S100A9 IgGs (Fig. 2B). Positive foci of S100A8 and

S100A9, including glandular epithelial cells and tissue

macrophages, were observed in the tissues adjacent to

corpora amylacea inclusions, indicating that the latter

infiltrate inflamed glands and ultimately lead to raising

local concentrations of S100A8 ⁄A9. Proteinaceous

compounds constitute up to 30–40% of corpora amyl-

acea deposits, as revealed by X-ray photoelectron spec-

troscopy and FTIR, whereas the rest correspond to

inorganic components consisting of hydroxylapatite

[Ca5(PO4)3OH] and whitlockite [Ca2(PO4)3], contain-

ing high concentrations of Zn2+ ions. The calcification

of protein deposits leads effectively to their further sta-

bilization in the protease-rich prostate fluid. The min-

eral content of corpora amylacea was rather uniform

in all seven studied patients, indicating that calcifica-

tion can be a regulated process. A recently reported

function of S100A9 is associated with promoting calci-

fication [79], suggesting that dystrophic calcification of

corpora amylacea deposits could be influenced by the

activities of S100A8 ⁄A9.

Remarkably, all corpora amylacea specimens were

also stained with anti-amyloid fibril IgGs [80] (Fig. 2C)

and Congo Red dye, used as a marker for the presence

of the amyloid form of proteins, demonstrating that

the amyloid material constitutes a significant mass of

these specimens. Indeed, atomic force and transmission

electron microscopy analyses revealed a variety of

highly heterogeneous aggregates in the corpora amyla-

cea extracts (Fig. 2D, E), ranging from oligomeric spe-

cies to extensive networks of mature fibrils, which is

typical for the amyloid assemblies [81], as well as

larger-scale supramolecular assemblies, reaching a

few microns in length. Similar amyloid forms of

S100A8 ⁄A9 were produced in vitro, providing further

insight into their amyloidogenic properties. The

S100A8 ⁄A9 complexes, extracted from granulocytes

and produced recombinantly from Escherichia coli,

were each incubated under the native conditions of pH

7.4 and 37 �C with agitation and at pH 2.0 and 57 �C
without agitation. Under both conditions, the proteins

were assembled into heterogeneous fibrillar species. At

pH 7.4, species resembling ex vivo oligomers and short

protofilaments were formed after 2 weeks and thick

bundles of fibrils with heights of 15)20 nm and a few

microns in length constituted the major population of

fibrillar aggregates after 8 weeks of incubation

(Fig. 2F). In the S100A8 ⁄A9 samples incubated at pH

2.0, oligomeric species and protofilaments also

emerged in 2 weeks, while after 4 weeks of incubation

flexible fibrils with a height of � 4)5 nm and microns

in length together with straight and rigid fibrillar struc-

tures a few hundred nanometres long were observed,

all closely resembling the ex vivo species.

It is important to note that Ca2+ and Zn2+ play a

critical role in promoting amyloid assembly of

S100A8 ⁄A9 proteins. As ex vivo corpora amylacea

deposits are calcified and contain zinc salts, these ions

can play a critical role in S100A8 ⁄A9 amyloid forma-

tion in vivo. Indeed, after 2 weeks of incubation, the

S100A8 ⁄A9 amyloid protofilaments of � 2 nm height

were assembled in the presence of 10 mm ZnCl2 and in

a suspension of Ca3(PO4)2 [14], but not when EDTA

was added in solution. These species were converted

into the fibrillar assemblies after 4 weeks of incuba-

tion, and again no filamentous structures developed in

the presence of EDTA.

The bundles of amyloid fibrils of S100A8 ⁄A9 pro-

teins, formed both in vivo and in vitro (Fig. 2F), are

among the largest reported amyloid supramolecular

species. The lateral association and thickening of the

fibrils is probably a contributing factor to their stabil-

ity in the prostate gland. It has been suggested that the

various functions of the S100A8 ⁄A9 hetero- and

homo-oligomers may be regulated by their differential

protease sensitivity [22]. The hetero-oligomeric com-

plexes of S100A8 ⁄A9 are characterized by significant

stability and protease resistance comparable with that

of prions. In the protease-rich environment of the

prostate gland, and especially at sites of inflammation,

where proteases are present at even higher levels, pro-

tease resistance of the S100A8 ⁄A9 proteins could

favour their accumulation and conversion into amyloid

structures. If so, the amyloid structures formed by

S100A8 ⁄A9 can be at the extreme end of the scale of

resistance to proteolysis.

As prostatic fluid is very rich in protein content,

small quantities of other proteins were also found in

the corpora amylacea inclusions, presumably being

trapped in the aggregating and growing deposits.

Among them, the finding of E. coli DNA and E. coli

proteins indicates that corpora amylacea formation

may be associated with bacterial infection, conse-

quently causing inflammation in surrounding tissues

during the course of corpora amylacea establishment

and growth. The identification of the highly amyloido-

genic bacterial co-chaperonin GroES can be related

not only to the fact that bacterial infection is a con-

tributory factor to inflammation, but also suggests the

potential role of bacterial infection in the initiating of

the amyloid depositions via seeding [82].

As a result, a self-perpetuating cycle can be triggered

in the ageing prostate, leading ultimately to amyloid

growth. The increasing concentration of aggregation-prone
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proteins in the sites of inflammation would favour

their amyloid assembly and deposition, as amyloid

formation is a concentration-dependent process. This

can be further promoted by the presence of calcium

and zinc salts abundant in corpora amylacea and

S100A8 ⁄A9 in turn can themselves regulate their own

calcification. In the course of corpora amylacea

growth, neighbouring acini are obstructed, exacerbat-

ing inflammation and enhancing the risk of neoplastic

transformation. Thus, the direct involvement of proin-

flammatory S100A8 ⁄A9 proteins in corpora amylacea

biogenesis emphasizes their role in the age-dependent

prostate remodelling and accompanied ailments.

Amyloidogenic potential of S100
proteins

The amyloidogenic potential of a protein can be esti-

mated using different algorithms that compute the

aggregation and fibrillation propensity of a particular

sequence. This approach was carried out using the

zyggregator algorithm to calculate the intrinsic

aggregation propensity scores of monomeric S100A8

and S100A9 at pH 7.0 and 2.0, the conditions of their

in vitro amyloid formation [14] (for a recent review, see

[83]). The results evidenced a rather high propensity,

comparable with that of Ab peptides, forming amyloid

deposits in Alzheimer’s disease. The overall aggrega-

tion scores for S100A8 are 0.76 at pH 7.0 and 0.77 at

pH 2.0; for S100A9, 1.04 and 0.65, and for Ab(1–40)

and Ab(1–42) peptides at pH 7.0, 0.97 and 0.94, respec-

tively. In both proteins, the Ca2+-binding sites with

low affinity (amino acid residues 20–33 for S100A8

and 23–36 for S100A9) and high affinity (amino acid

residues 59–70 for S100A8 and 67–78 for S100A9) are

located in close proximity to the segments that are

highly aggregation prone. In the S100A8 ⁄A9 oligo-

meric complex, however, the amyloid scores for

S100A8 and S100A9 are significantly reduced and

equal to 0.18 and 0.32, respectively, indicating that

most of the aggregation-prone sequences are involved

in native complex formation. Therefore, we surmise

that calcium-dependent native complex formation can

effectively compete under physiological conditions with

the calcium-dependent amyloid assembly, the latter

possibly being prevalent in a destabilizing environ-

ment, leading to protein partial unfolding and native

complex dissociation.

Building on these initial observations, and consider-

ing the fact that S100 proteins share a rather high

chemical and structural identity, we further addressed

the hypothesis that amyloid formation could be a gen-

eralized property among the members of the S100 pro-

tein family. For this purpose, we have carried out a

series of preliminary experiments in conditions identi-

cal to those assayed for S100A8 ⁄A9 (pH 2 and 57 �C
[14]), to test if other S100 proteins (S100A3, S100A6,

S100A12 and S100B) would form thioflavin-T (ThT)-

reactive amyloid species (H.M. Botelho, K. Yanaman-

dra, G. Fritz, L.A. Morozova-Roche, C.M. Gomes,

manuscript in preparation). Upon incubation for 50 h,

three of the tested S100 proteins formed ThT-binding

amyloid structures that resulted in an increase in fluo-

rescence intensity of ThT, comparable with that

observed upon dye interaction with the lysozyme amy-

loids used as a positive control (Fig. 3A). Only

S100A12 did not yield ThT-reactive species under the

tested conditions. The presence of amyloid and other

precursor structures (fibres, protofibrils and disordered

aggregates) was indentified using atomic force micros-
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copy (data not shown). A complementary in silico

analysis of the aggregation propensities and amyloid-

forming sequences at pH 7 was also carried out using

zyggregator [83,84] and waltz [85] prediction tools,

respectively. The results obtained with waltz (Fig. 3B,

top) indicate that S100 proteins always contain amyloi-

dogenic segments within helices HI or HIV, or in both

helices. The aggregation propensity analysis using the

zyggregator algorithm allowed the propensity for

the formation of b-rich oligomers (Ztox) to be discrimi-

nated from the formation of fibrillar aggregates (Zagg).

The results of this analysis applied to the assayed S100

proteins revealed a similar high propensity clustering

at helices HI and HIV, although with somewhat lower

absolute values.

Together, these findings suggest that amyloid-like

conformations (b-rich oligomers, protofibrils and

fibres) might be accessible to S100 proteins under par-

ticular physiological conditions, and clearly metal ions

play a determinant role in the process (Fig. 4). It is

already established that Ca2+, Zn2+ and Cu2+ pro-

mote conformational changes within the S100 fold that

have an impact on protein stability (as in S100A2), on

the formation of functional oligomers (as in S100B)

and on the formation of amyloid fibres (as in

S100A8 ⁄A9). Considering the latent propensity

encoded in the primary sequence of S100 proteins to

form b-rich oligomers and fibres, it is reasonable to

envisage that factors such as an imbalance in metal

homeostasis and anomalous protein–metal interactions,

inflammation, oxidative stress or ⁄ and genetic muta-

tions may provide conditions in the cellular milieu that

affect any of the functional states of S100 pro-

teins (Fig. 4) and result in the formation of amyloid

structures or of its precursor oligomers in a physiologi-

cal context. One interesting aspect that remains to be

addressed and may even suggest a toxic gain of func-

tion characteristic to amyloid oligomers in general [86],

is if S100 amyloids exacerbate the apoptoptic activity

of the S100A8 ⁄A9 complex [74–76] or interact with the

RAGE receptors, further contributing or abrogating

the toxic effects. The latter are already known to be

involved in Ab peptide amyloid transport and recogni-

tion processes in the context of Alzheimer’s disease. A

contrasting perspective can also be hypothesized:

considering that most of the S100 proteins have upregu-

lated expression patterns in inflammatory, neurodegen-

erative and malignant proliferation processes, could

amyloid formation serve as a sink for dangerous or

somehow harmful proteins promoting inflammation or

involved in cancer? Now that even Ab plaques are

viewed from a positive side [87], is it possible that the

amyloid formation of S100 proteins may potentially

play some ‘positive’ role? Future research in the com-

ing years will certainly contribute to clarify some of

these and other questions and will ultimately bring us

to a higher level of understanding the biology of

tumour and degeneration and enable to use our

acquired knowledge of S100 structure and functions in

developing strategies to modulate their activity for

therapeutic purposes.
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