
MARCO VARGAS CORREIA

MODERN TECHNIQUES FOR CONSTRAINT SOLVING
THE CASPER EXPERIENCE

Dissertação apresentada para obtenção do
Grau de Doutor em Engenharia Informática,
pela Universidade Nova de Lisboa, Faculdade
de Ciências e Tecnologia.

UNIÃO EUROPEIA
Fundo Social Europeu

LISBOA
2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157622847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Acknowledgments

First I would like to thank Pedro Barahona, the supervisor of this work. Besides his valuable
scientific advice, his general optimism kept me motivated throughout the long, and some-
times convoluted, years of my PhD. Additionally, he managed to find financial support for my
participation on international conferences, workshops, and summer schools, and even for the
extension of my grant for an extra year and an half. This was essential to keep me focused on
the scientific work, and ultimately responsible for the existence of this dissertation.

Designing, developing, and maintaining a constraint solver requires a lot of effort. I have
been lucky to count on the help and advice of colleagues contributing directly or indirectly to
the design and implementation of CASPER, to whom I am truly indebted:

Francisco Azevedo introduced me to constraint solving over set variables, and was the first
to point out the potential of incremental propagation. The set constraint solver integrating
the work presented in this dissertation is based on his own solver CARDINAL, which he has
thoroughly explained to me.

Jorge Cruz was very helpful for clarifying many issues about real valued arithmetic, and
propagation of constraints over real valued variables in general. The adoption of CaSPER as
an optional development platform for his lectures boosted the development of the module for
real valued constraint solving.

Olivier Perriquet was directly involved in porting the PSICO library to CASPER, an applica-
tion of constraint programming to solve protein folding problems.

Ruben Viegas developed a module for constraint programming over graph variables, which
eventually led to a joint research on new representations for the domains of set domain vari-
ables. Working with Ruben was a pleasure and very rewarding. His work marks an important
milestone in the development of CaSPER - the first contributed domain reasoning module.

Sérgio Silva has contributed a parser for the MINIZINC language that motivated an improved
design of the general solver interface to other programming languages.

Several people have used the presented work for their own research or education. Many
times they had to cope with bugs, lack of documentation, and an ever evolving architecture.
Although this was naturally not easy for them, they were always very patient and helped im-
proving my work in many ways. I’m very grateful to João Borges, Everardo Barcenas, Jean
Christoph Jung, David Buezas, and the students of the “Search and Optimization” and “Con-
straints on Continuous Domains” courses.

I would like to thank to my colleagues at CENTRIA for all the informal discussions and

iii

mostly for being a constant source of encouragement and motivation. I specially thank Ar-
mando Fernandes and Cecilia Gomes for their concern and advice on the time schedule and
contents of this dissertation.

A significant part of the material presented in this dissertation is based on the formalism
developed by Guido Tack. I am very grateful to him for his willingness to answer my questions
on some aspects of his approach, and for his valuable comments on the work presented in
chapters 6 and 7.

Finally I thank my family and friends for all the emotional support and for being a motiva-
tion in the quest for success. This dissertation is dedicated to them.

iv

No idea is so antiquated that it was not
once modern; no idea is so modern that
it will not someday be antiquated.

Ellen Glasgow

v

vi

Sumário

A programação por restrições é um modelo adequado à resolução de problemas combinato-
riais com aplicação a problemas industriais e académicos importantes. Ela é realizada com
recurso a um resolvedor de restrições, um programa de computador que tenta encontrar uma
solução para o problema, i.e. uma atribuição de valores a todas as variáveis que satisfaça todas
as restrições.

Esta dissertação descreve um conjunto de técnicas utilizadas na implementação de um re-
solvedor de restrições. Estas técnicas tornam um resolvedor de restrições mais extensível e
eficiente, duas propriedades que dificilmente são integradas em geral, e em particular em re-
solvedores de restrições. Mais especificamente, esta dissertação debruça-se sobre dois proble-
mas principais: propagação incremental genérica, e propagação de restrições decomponíveis
arbitrárias. Para ambos os problemas apresentamos um conjunto de técnicas que são origi-
nais, correctas, e que se orientam no sentido de tornar a plataforma mais eficiente, extensível,
ou ambos.

A matéria apresentada nesta dissertação surgiu da resolução dos problemas encontrados
no desenho e implementação de um resolvedor de restrições genérico. O resolvedor CASPER
(Constraint Solving Platform for Engineering and Research) não serve apenas de protótipo in-
tegrando todas as técnicas apresentadas, mas é também a plataforma experimental comum
aos vários modelos teóricos discutidos. Para além do trabalho relacionado com o desenho e
implementação de um resolvedor de restrições, esta dissertação apresenta também a primeira
aplicação bem sucedida da plataforma na abordagem de um problema importante em aberto,
nomeadamente a caracterização de heurísticas que direccionem a pesquisa rapidamente para
uma solução.

vii

viii

Abstract

Constraint programming is a well known paradigm for addressing combinatorial problems
which has enjoyed considerable success for solving many relevant industrial and academic
problems. At the heart of constraint programming lies the constraint solver, a computer pro-
gram which attempts to find a solution to the problem, i.e. an assignment of all the variables
in the problem such that all the constraints are satisfied.

This dissertation describes a set of techniques to be used in the implementation of a con-
straint solver. These techniques aim at making a constraint solver more extensible and effi-
cient, two properties which are hard to integrate in general, and in particular within a con-
straint solver. Specifically, this dissertation addresses two major problems: generic incremen-
tal propagation and propagation of arbitrary decomposable constraints. For both problems we
present a set of techniques which are novel, correct, and directly concerned with extensibility
and efficiency.

All the material in this dissertation emerged from our work in designing and implementing
a generic constraint solver. The CASPER (Constraint Solving Platform for Engineering and Re-
search) solver does not only act as a proof-of-concept for the presented techniques, but also
served as the common test platform for the many discussed theoretical models. Besides the
work related to the design and implementation of a constraint solver, this dissertation also
presents the first successful application of the resulting platform for addressing an open re-
search problem, namely finding good heuristics for efficiently directing search towards a solu-
tion.

ix

x

Contents

1. Introduction 1
1.1. Constraint reasoning . 1
1.2. This dissertation . 3

1.2.1. Motivation . 3
1.2.2. Contributions . 4
1.2.3. Overview . 6

2. Constraint Programming 9
2.1. Concepts and notation . 9

2.1.1. Constraint Satisfaction Problems . 9
2.1.2. Tuples and tuple sets . 10
2.1.3. Domain approximations . 11
2.1.4. Domains . 12

2.2. Operational model . 14
2.2.1. Propagation . 14
2.2.2. Search . 19

2.3. Summary . 22

I. Incremental Propagation 23

3. Architecture of a Constraint Solver 25
3.1. Propagation kernel . 25

3.1.1. Propagation loop . 25
3.1.2. Subscribing propagators . 26
3.1.3. Event driven propagation . 27
3.1.4. Signaling fixpoint . 28
3.1.5. Subsumption . 30
3.1.6. Scheduling . 30

3.2. State manager . 31
3.2.1. Algorithms for maintaining state . 32
3.2.2. Reversible data structures . 34
3.2.3. Memory pools . 36

xi

Contents

3.3. Other components . 37

3.3.1. Constraint library . 37

3.3.2. Domain modules . 38

3.3.3. Interfaces . 38

3.4. Summary . 39

4. A Propagation Kernel for Incremental Propagation 41
4.1. Propagator and variable centered propagation . 41

4.1.1. Incremental propagation . 44

4.1.2. Improving propagation with events . 46

4.1.3. Improving propagation with priorities . 47

4.2. The NOTIFY-EXECUTE algorithm . 48

4.3. An object-oriented implementation . 51

4.3.1. Dependency lists . 53

4.3.2. Performance . 53

4.4. Experiments . 54

4.4.1. Models . 54

4.4.2. Benchmarks . 55

4.4.3. Setup . 55

4.5. Discussion . 56

4.6. Summary . 56

5. Incremental Propagation of Set Constraints 59
5.1. Set constraint solving . 59

5.1.1. Set domain variables . 60

5.1.2. Set constraints . 60

5.2. Domain primitives . 61

5.3. Incremental propagation . 63

5.4. Implementation . 65

5.4.1. Propagator-based deltas . 65

5.4.2. Variable-based deltas . 67

5.4.3. Optimizations . 68

5.5. Experiments . 71

5.5.1. Models . 71

5.5.2. Problems . 71

5.5.3. Setup . 73

5.6. Discussion . 73

5.7. Summary . 74

xii

Contents

II. Efficient Propagation of Arbitrary Decomposable Constraints 77

6. Propagation of Decomposable Constraints 79
6.1. Decomposable constraints . 79

6.1.1. Functional composition . 80
6.2. Views . 81
6.3. View-based propagation . 83

6.3.1. Constraint checkers . 83
6.3.2. Propagators . 84

6.4. Views over decomposable constraints . 84
6.4.1. Composition of views . 85
6.4.2. Checking and propagating decomposable constraints 86

6.5. Conclusion . 87

7. Incomplete View-Based Propagation 91
7.1. ΦΨ-complete propagators . 91
7.2. View models . 92

7.2.1. Soundness . 93
7.2.2. Completeness . 93
7.2.3. Idempotency . 95
7.2.4. Efficiency . 96

7.3. Finding stronger models . 97
7.3.1. Trivially stronger models . 97
7.3.2. Relaxing the problem . 99
7.3.3. Computing an upper bound . 99
7.3.4. Rule databases . 100
7.3.5. Multiple views (functional composition) . 102
7.3.6. Multiple views (Cartesian composition) . 103
7.3.7. Idempotency . 104
7.3.8. Complexity and optimizations . 105

7.4. Experiments . 105
7.5. Incomplete constraint checkers . 106
7.6. Summary . 108

8. Type Parametric Compilation of Box View Models 111
8.1. Box view models . 111
8.2. View objects . 114

8.2.1. Typed constraints . 114
8.2.2. Box view objects . 114

8.3. View object stores . 115

xiii

Contents

8.3.1. Subtype polymorphic stores . 115
8.3.2. Parametric polymorphic stores . 116

8.4. Auxiliary variables . 117
8.5. Compilation . 117

8.5.1. Subtype polymorphic views . 118
8.5.2. Parametric polymorphic views . 119
8.5.3. Auxiliary variables . 120

8.6. Model comparison . 121
8.6.1. Memory . 121
8.6.2. Runtime . 122
8.6.3. Propagation . 123

8.7. Beyond arithmetic expressions . 125
8.7.1. Casting operator . 125
8.7.2. Array access operator . 125
8.7.3. Iterated expressions . 126

8.8. Summary . 126

9. Implementation and Experiments 129
9.1. View models in Logic Programming . 129
9.2. View models in strongly typed programming languages 130

9.2.1. Subtype polymorphism . 130
9.2.2. Parametric polymorphism . 131
9.2.3. Advantages of subtype polymorphic views 133

9.3. Experiments . 133
9.3.1. Models . 133
9.3.2. Problems . 134
9.3.3. Setup . 139

9.4. Discussion . 139
9.4.1. Auxiliary variables Vs Type parametric views 139
9.4.2. Type parametric views Vs Subtype polymorphic views 141
9.4.3. Caching type parametric views . 141
9.4.4. Competitiveness . 142

9.5. Summary . 142

III. Applications 147

10.On the Integration of Singleton Consistencies and Look-Ahead Heuristics 149
10.1.Singleton consistencies . 150
10.2.Informed decision making . 151

xiv

Contents

10.3.Experiments . 154
10.3.1. Heuristics . 155
10.3.2. Strategies . 155
10.3.3. Problems . 156

10.4.Discussion . 158
10.5.Summary . 161

11.Overview of the CaSPER* Constraint Solvers 163
11.1.The third international CSP solver competition . 163
11.2.Propagation . 164

11.2.1. Predicates . 164
11.2.2. Global constraints . 164

11.3.Symmetry breaking . 165
11.4.Search . 166

11.4.1. Heuristics . 166
11.4.2. Sampling . 166
11.4.3. SAC . 167
11.4.4. Restarts . 167

11.5.Experimental evaluation . 167
11.6.Conclusion . 168

12.Conclusions 171
12.1.Summary of main contributions . 171
12.2.Future work . 172

Bibliography 173

A. Proofs 187
A.1. Proofs of chapter 6 . 187
A.2. Proofs of chapter 7 . 191
A.3. Proofs of chapter 8 . 198

B. Tables 201
B.1. Tables of chapter 4 . 201
B.2. Tables of chapter 5 . 204

B.2.1. Social golfers . 204
B.2.2. Hamming codes . 205
B.2.3. Balanced partition . 206
B.2.4. Metabolic pathways . 206
B.2.5. Winner determination problem . 207

B.3. Tables of chapter 9 . 208

xv

Contents

B.3.1. Systems of linear equations . 208
B.3.2. Systems of nonlinear equations . 209
B.3.3. Social golfers . 211
B.3.4. Golomb ruler . 212
B.3.5. Low autocorrelation binary sequences . 213
B.3.6. Fixed-length error correcting codes . 214

B.4. Tables of chapter 11 . 216

xvi

List of Figures

1.1. Magic square found in Albrecht Dürer’s engraving Melancholia (1514). 2
1.2. Constraint program (in C++ using CaSPER) for finding a magic square. 2

2.1. Domain taxonomy . 13
2.2. Partially filled magic square of order 4: without any filtering (a); where some in-

consistent values were filtered (b,c); with no inconsistent values (d). 14
2.3. Taxonomy of constraint propagation strength. Each arrow specifies a strictly

stronger than relation between two consistencies (see example 2.39). 18
2.4. Partial search tree obtained by GenerateAndTest on the magic square problem. 20
2.5. Partial search tree obtained by SOLVE on the magic square problem while main-

taining local domain consistency. 22

3.1. A possible search tree for the CSP described in example 3.11. Search decisions
are underlined. 32

3.2. Contents of the stack used by the copying method for handling state. 32
3.3. Contents of the stack used by the trailing method for handling state. 33
3.4. Contents of the queue used by the recomputation method for handling state. . . 34
3.5. Reversible single-linked list. Memory addresses of the values and pointers com-

posing the data structure are shown below each cell. 35

4.1. Example of a CSP with variables x1, x2, x3, and propagators π1, . . . ,π4. 44
4.2. Suspension list . 53

5.1. a) Powerset lattice for {a,b,c}, with set inclusion as partial order. b) Lattice cor-
responding to the set domain [{b} , {a,b,c}]. 60

5.2. ∆GLB
x1

and ∆LUB
x1

delta sets and associated iterators after each propagation during
the computation of fixpoint for the problem described in example 5.14. 69

5.3. Updating the POSS set and storing the corresponding delta using a list splice op-
eration assuming a doubly linked list representation. 70

6.1. Computations involved in the composition of views described in example 6.30. . 86
6.2. Application of the view-based propagator for the composed constraint described

in example 6.34. 87

xvii

List of Figures

7.1. View model lattice. 99

8.1. An unbalanced expression syntax tree. The internal nodes n1 . . .nn−1 represent
operators and leafs l1 . . . ln represent variables. 121

9.1. Number of solutions per second when enumerating all solutions of a CSP with a
given number of variables (in the xx axis), domain of size 8, and no constraints. . 144

10.1.Number of problems solved (yy axis) after a given time period (xx axis). The
graphs show the results obtained for, from left to right, the graph coloring in-
stances, the random instances, and latin square instances. 158

10.2.Difference between the number of problems solved when using the LA heuris-
tic and when using the DOM+MIN heuristic (yy axis) after a given time period
(xx axis). The graphs show the results obtained for, from left to right, the graph
coloring instances, the random instances, and latin square instances. 159

10.3.Number of problems solved when using several strategies (yy axis) after a given
time period (xx axis). The graphs show the results obtained for, from left to right,
the graph coloring instances, the random instances, and latin square instances. . 160

10.4.Search space size during solving of a typical instance in each problem. 160

xviii

List of Tables

4.1. Geometric mean, standard deviation, minimum and maximum of ratios of prop-
agation times when solving the set of benchmarks using implementations of the
models described above. 57

5.1. Worst-case runtime for set domain primitives when performing non-incremental
propagation. 62

5.2. Worst-case runtime for set domain primitives when performing incremental prop-
agation. 70

5.3. Geometric mean, standard deviation, minimum and maximum of ratios of run-
time for solving the first set of benchmarks described above using the presented
implementations of incremental propagation, compared to non-incremental prop-
agation. 74

5.4. Geometric mean, standard deviation, minimum and maximum of ratios of run-
time for solving the second set of benchmarks (graph problems) using the vari-
able delta implementation of incremental propagation, compared to propagator
deltas. 74

7.1. Constraint propagator completeness. 92
7.2. Strength of the view model m for a set of arithmetic constraints. 107

8.1. Cost of accessing and updating an arbitrary expression represented by each of
the described models. 123

9.1. Geometric mean, standard deviation, minimum and maximum of the ratios de-
fined by the runtime of best performing model using views over the runtime of
the best performing model using auxiliary variables, on all benchmarks. 140

9.2. Geometric mean, standard deviation, minimum and maximum of the ratios de-
fined by the number of fails of the best performing solver using views over the
number of fails of the best performing solver using auxiliary variables, on all in-
stances of each problem where the number of fails differ. 141

9.3. Geometric mean, standard deviation, minimum and maximum of the ratios de-
fined by the runtime of the solver implementing the PVIEWS model over the run-
time of the solver implementing the SVIEWS model, on all benchmarks. 141

xix

List of Tables

9.4. Geometric mean, standard deviation, minimum and maximum of the ratios de-
fined by the runtime of the solver implementing the PVIEWS model over the run-
time of the solver implementing the CPVIEWS model, on all benchmarks. 142

9.5. Geometric mean, standard deviation, minimum and maximum of the ratios de-
fined by the runtime of the CaSPER solver implementing the VARS+GLOBAL model
over the runtime of the Gecode solver implementing the VARS+GLOBAL model,
on all benchmarks. 143

9.6. Geometric mean, standard deviation, minimum and maximum of the ratios de-
fined by the runtime of the CaSPER solver implementing the PVIEWS model over
the runtime of the Gecode solver implementing the VARS+GLOBAL model, on all
benchmarks. 143

10.1.Results for finding the first solution to latin-15 with a selected strategy. 161

11.1.Global constraint propagators used in solvers. 164
11.2.Summary of features in each solver. 168

B.1. Number of global constraints of each kind present in each benchmark 201
B.2. Propagation time (seconds) for solving each benchmark using each model (table

1/2) . 202
B.3. Propagation time (seconds) for solving each benchmark using each model (table

2/2) . 203
B.4. Social golfers: 5w-5g-4s (v=25,c/v=11.2,f=25421) 204
B.5. Social golfers: 6w-5g-3s (v=30,c/v=13.6,f=1582670) 204
B.6. Social golfers: 11w-11g-2s (v=121,c/v=55.4,f=10803) 204
B.7. Hamming codes: 20s-15l-8d (v=42,c/v=10,f=7774) 205
B.8. Hamming codes: 10s-20l-9d (v=22,c/v=5,f=59137) 205
B.9. Hamming codes: 40s-15l-6d (v=82,c/v=15.1,f=27002) 205
B.10.Balanced partition: 150v-70s-162m (v=212,c/v=11.7,f=48525) 206
B.11.Balanced partition: 170v-80s-182m (v=242,c/v=13.4,f=54573) 206
B.12.Balanced partition: 190v-90s-202m (v=272,c/v=15,f=57424) 206
B.13.Metabolic pathways: g250_croes_ecoli_glyco (f=916) 206
B.14.Metabolic pathways: g500_croes_ecoli_glyco (f=2865) 207
B.15.Metabolic pathways: g1000_croes_scerev_heme (f=2466) 207
B.16.Metabolic pathways: g1500_croes_ecoli_glyco (f=4056) 207
B.17.Winner determination problem: 200 (f=1550) . 207
B.18.Winner determination problem: 300 (f=2924) . 207
B.19.Winner determination problem: 400 (f=6693) . 208
B.20.Winner determination problem: 500 (f=16213) . 208
B.21.Linear 20var-7vals-7cons-4arity-6s (SAT) (S=56.15) 208

xx

List of Tables

B.22.Linear 20var-30val-6cons-8arity-2s (UNSAT) (S=98.14) 208
B.23.Linear 40var-7val-12cons-20arity-3s (UNSAT) (S=112.29) 209
B.24.Linear 40var-7val-10cons-40arity-3s (UNSAT) (S=112.29) 209
B.25.NonLinear 20var-20val-10cons-4term-2fact-2s (SAT) (S=86.44) 209
B.26.NonLinear 50var-10val-19cons-4term-2fact-1s (SAT) (S=166.1) 210
B.27.NonLinear 50var-10val-28cons-4term-3fact-1s (UNSAT) (S=166.1) 210
B.28.NonLinear 50var-5val-20cons-4term-3fact-1s (UNSAT) (S=116.1) 210
B.29.NonLinear 50var-6val-26cons-4term-4fact-1s (UNSAT) (S=129.25) 211
B.30.NonLinear 60var-4val-24cons-4term-4fact-5s (UNSAT) (S=120) 211
B.31.Social golfers: 5week-5group-4size (S=432.19) . 211
B.32.Social golfers: 6week,5group,3size (S=351.62) . 212
B.33.Social golfers: 4week,7group,7size (S=1100.48) . 212
B.34.Golomb ruler: 10 (S=58.07) . 212
B.35.Golomb ruler: 11 (S=68.09) . 213
B.36.Golomb ruler: 12 (S=76.91) . 213
B.37.Low autocorrelation binary sequences: 22 (S=22) 213
B.38.Low autocorrelation binary sequences: 24 (S=25) 214
B.39.Fixed-length error correcting codes: 2-20-32-10-hamming (S=640) 214
B.40.Fixed-length error correcting codes: 3-15-35-11-hamming (S=525) 214
B.41.Fixed-length error correcting codes: 2-20-32-10-lee (S=640) 215
B.42.Fixed-length error correcting codes: 3-15-35-10-lee (S=525) 215
B.43.CPAI’08 competition results (n-ary intension constraints category) 216
B.44.CPAI’08 competition results (global constraints category) 217

xxi

List of Tables

xxii

List of Algorithms

1. GenerateAndTest(d ,C) . 19
2. Solve(d ,C) . 21

3. Propagate1(d ,C) . 26
4. Propagate2(d ,P) . 27
5. Propagate3(d ,P) . 29

6. PropagatePC(d ,P) . 42
7. PropagateVC(d ,V) . 43
8. PropagatePCEvents(d ,E) . 47
9. PropagateVCEvents(d ,E) . 48
10. Execute(d) . 49
11. Notify(e) . 50
12. Notify(e) . 51
13. Method νi .Call() . 52

14. FindUb(m) . 100

15. SCθ(d ,X ,C) . 151
16. RSCθ(d ,X ,C) . 151
17. SReviseθ(x,d ,C) . 152
18. SReviseInfoθ(x,d ,C ,INFO) . 153
19. Solveθ(d ,C ,INFO) . 154

20. Search strategy sampling . 167

xxiii

List of Algorithms

xxiv

Chapter 1.

Introduction

1.1. Constraint reasoning

Constraint reasoning may be introduced with a simple example. Consider the following well
known combinatorial object:

Definition 1.1 (Magic Square). An order n magic square is a n×n matrix containing the num-
bers 1 to n2, where each row, column, and main diagonal equal the same sum (the magic
constant).

Magic squares were known to Chinese mathematicians as early as 650 BC. They were often
regarded as objects with magical properties connected to diverse fields such as astronomy,
mythology and music [Swaney 2000]. Figure 1.1 shows one of the earliest known squares, part
of Albrecht Dürer’s engraving Melancholia.

Problems involving magic squares range from completing an empty or partially filled magic
square, or counting the number of magic squares with a given order or other mathematical
properties. Solving these problems presents various interesting challenges: while filling an
empty magic square of odd order may be accomplished in polynomial time, completing a par-
tially filled square is NP-complete, and finding the exact number of squares with some dimen-
sion is #P-complete (see e.g. [Spitznagel 2010]).

The combinatorial structure inherent to this puzzle together with its simple declarative de-
scription makes it a good candidate for a constraint programming solving approach. Figure
1.2 shows a constraint program which finds a magic square where the numbers 15 and 14 (the
date of the engraving) are already placed as in Dürer’s original. The program embodies the
following outstanding features of this technology:

Completeness Constraint programs provide completeness guarantees. This contrasts with
other combinatorial solving methods, such as tabu search or genetic algorithms, which do not
explore the solution space exhaustively. Consequently, these methods are not adequate for a
number of problems, e.g. proving that there is no square having a given sequence of numbers,
or counting the number of squares of a given order.

1

Chapter 1. Introduction

Figure 1.1.: Magic square found in Albrecht Dürer’s engraving Melancholia (1514).

1 void magic (Int n) {
2 const Int k = n* (n*n+ 1) / 2 . 0 ;
3 Solver solver ;
4 DomVarArray<Int ,2 > square (solver , n , n, 1 ,n*n) ;
5 solver . post (d i s t i n c t (square)) ;
6 MutVar<Int > i (solver) ;
7 for (Int j = 0 ; j < n ; j ++) {
8 solver . post (sum(a l l (i , range (1 ,n) , square [i] [j])) == k) ;
9 solver . post (sum(a l l (i , range (1 ,n) , square [j] [i])) == k) ;

10 }
11 solver . post (sum(a l l (i , range (1 ,n) , square [i] [i])) == k) ;
12 solver . post (sum(a l l (i , range (1 ,n) , square [i] [n−i −1])) == k) ;
13 solver . post (square [3][1]==15 and square [3] [2] = = 1 4) ;
14 i f (solver . solve (l ab el (square)))
15 cout << square << endl ;
16 }

Figure 1.2.: Constraint program (in C++ using CaSPER) for finding a magic square.

2

1.2. This dissertation

Declarativeness Constraint programs are compact and highly declarative, promoting a clear
separation between modeling the problem (the user’s task: lines 2-13) and solving the problem
(the solver’s task: line 14). Moreover, imposing additional constraints to the problem can be
done incrementally in a declarative fashion.

Efficiency Constraint programs are efficient. The above program solves the puzzle instan-
taneously, and when adapted for counting is able to enumerate all the 7040 possible magic
squares of order 4 in a couple of seconds.

Constraint programs explicitly or implicitly make use of a constraint solver. The constraint
program of fig. 1.2 references a set of objects which are responsible for the constraint solving
process. In this case, the constraint solver is implemented as a C++ library. In contrast, some
constraint programs are written in a language different from the language implementing the
constraint solver, in which case a conversion phase is required. We will use the term constraint
solver to denominate the set of algorithms and data structures that ultimately implement the
constraint programming approach.

Constraint programming embraces a rich set of techniques and modeling protocols target-
ing general combinatorial problem solving. While our puzzle illustrates this class of prob-
lems, the prominence of constraint programming arises from its application to solve real world
problems in diverse areas such as scheduling, planning, computer graphics, circuit design,
language processing, database systems, and biology, among many others.

Related work

Ï The magic square, Latin square, sudoku, and other related problems mostly arise as recre-
ational devices, although Latin squares, a special case of a multipermutation, have found
application in cryptography [Laywine and Mullen 1998].

Ï The annual conference of the field, Principles and Practice of Constraint Programming (CP),
uncovers a myriad of applications of constraint programming to solve real world problems.
The proceedings of its 2008’s edition features, among others, examples of CP applied to
planning and scheduling [Moura et al. 2008], packing [Simonis and O’Sullivan 2008], and
biology [Dotu et al. 2008].

Ï A very complete essay on all aspects of constraint programming is [Rossi et al. 2006].

1.2. This dissertation

1.2.1. Motivation

The material in this dissertation emerged from the process of developing a general purpose
constraint solver for use in a research environment. The main motivation that led us to con-

3

Chapter 1. Introduction

sider this endeavor was the lack of a constraint solver which was both competitive, extensible,
open-source, and written in a popular, preferably object-oriented, programming language. We
found these are necessary attributes for a constraint solver aiming to be a general constraint
solving research platform.

Achieving the optimal balance between efficiency and extensibility is challenging for any
large software project in general, and in particular for a constraint solver. Our hypothesis was
that one does not necessarily sacrifices the other if the solver is based on a solid architecture,
specifically designed with these concerns in mind.

1.2.2. Contributions

Committing ourselves to this project presented us with many interesting problems. Many of
them have been solved by others, often in different ways, since practical constraint solvers
have been around since the 80’s. However, until very recently the constraint programming
comunity has partially disregarded implementation aspects. The architecture and design de-
cisions used in most of these solvers is thus many times not fully described, discussed, or jus-
tified. Therefore, for many problems we had to find our own solution given that the solutions
found by others were either (a) not published, (b) jeopardized efficiency or extensibility, or (c)
did not fit well with the rest of our architecture.

Presenting, explaining and evaluating all decisions behind the design of a constraint solver
would be an enormous task, and perhaps not very interesting since many of these decisions
condition each other. Instead, we have deliberately chosen to present what we believe are the
most interesting and original ideas in our solver, hoping that they may be useful to others as
well. Additionally, we also included our work on look-ahead search heuristics, which is the
first application of our solver fulfilling its purpose: to be a research platform on constraint
programming.

The four major contributions of this dissertation may thus be summarized as follows:

Techniques for incremental propagation We introduce a framework for integrating incremen-
tal propagation in a general purpose constraint solver. The contribution is twofold: a gener-
alized propagation algorithm assisting domain agnostic incremental propagation, and its ap-
plication for incremental propagation of finite set constraints, showing how the framework
efficiently supports domain specific models of incremental propagation.

Efficient propagation of decomposable constraints We extend the theoretical model of Tack
[2009] for the case of propagation of arbitrary decomposable constraints involving multiple
variables. We prove that the generalized propagation model is correct, and provide an algo-
rithm for approximating its completeness guarantees. We show how arbitrary decomposable
constraints may be automatically compiled and efficiently propagated using this model for a
special class of propagation algorithms.

4

1.2. This dissertation

Look-ahead heuristics We present a family of variable and value search heuristics based on
look-ahead information, i.e. information collected while performing a limited amount of search
and propagation. In particular, we describe how to integrate these heuristics with propagation
algorithms achieving a specific form of consistency, namely singleton consistency, adding a
negligible performance overhead to the global algorithm. We show that the resulting combi-
nation compares favorably with other popular heuristics in a number of standard benchmarks.

CaSPER We developed a new constraint solver implementing the techniques discussed in this
dissertation. The solver was designed with efficiency, simplicity and extensibility as primary
concerns, aiming to fulfill the need of a flexible platform for research on constraint program-
ming. Its flexibility and competitive performance is attested throughout this dissertation, ei-
ther when used for implementing and evaluating the specific techniques discussed, but also
when compared globally with other state-of-the-art solvers.

Most of the material in this dissertation has appeared on the following publications, although
with a different, less uniform presentation.

Marco Correia, Pedro Barahona, and Francisco Azevedo (2005). CaSPER: A Programming
Environment for Development and Integration of Constraint Solvers. Workshop on Constraint
Programming Beyond Finite Integer Domains, BeyondFD’05 (proceedings).

Marco Correia and Pedro Barahona (2006). Overview of an Open Constraint Library. ERCIM
Workshop on Constraint Solving and Constraint Logic Programming, CSCLP’06 (proceedings),
pp. 159–168.

Marco Correia and Pedro Barahona (2007). On the integration of singleton consistency and
look-ahead heuristics. Recent Advances in Constraints, volume 3010 of Lecture Notes in Artifi-
cial Intelligence, pp 62–75. Springer.

Marco Correia and Pedro Barahona (2008). On the Efficiency of Impact Based Heuristics.
Principles and Practice of Constraint Programming, CP’08 (proceedings), volume 5202 of Lec-
ture Notes in Computer Science, pp. 608–612. Springer.

Ruben Duarte Viegas, Marco Correia, Pedro Barahona, and Francisco Azevedo (2008). Us-
ing Indexed Finite Set Variables for Set Bounds Propagation. Ibero-American Conference on
Artificial Intelligence, IBERAMIA’08, volume 5290 of Lecture Notes in Artificial Intelligence, pp.
73–82. Springer.

Marco Correia and Pedro Barahona (2009). Type parametric compilation of algebraic con-
straints. Progress in Artificial Intelligence, volume 5816 of Lecture Notes in Artificial Intelligence,
pp. 201–212. Springer.

5

Chapter 1. Introduction

1.2.3. Overview

This dissertation is organized as follows.

Chapter 2 Presents the conceptual and operation models behind constraint solving and in-
troduces the formalism used throughout this dissertation.

The first part covers incremental propagation, and is composed of chapters 3-5:

Chapter 3 Summarizes the major design decisions and techniques used in state-of-the-art
constraint solvers, in particular its main constraint propagation algorithm, commonly used
techniques for maintaining state, and other less frequently discussed, nevertheless important
architectural elements. The chapter provides the necessary background for the first part of the
dissertation.

Chapter 4 Describes two standard propagation models, namely variable and propagator cen-
tered and discusses a set of commonly used optimizations. Shows that, when compared to
variable centered algorithms, the use of a propagator centered algorithm is advantageous in a
number of aspects, including performance. Introduces a new generalized propagator centered
model which brings to propagator centered models a feature originally unique to variable cen-
tered models - support for incremental propagation.

Chapter 5 Shows that incremental propagation can be more efficient than non-incremental
propagation, in particular for constraints over set domains. Describes and compares two dis-
tinct models for maintaining the information required by incremental propagators for con-
straints over sets. Provides an efficient implementation of these models that takes advantage
of the generic incremental propagation kernel introduced in the previous chapter.

The second part of the dissertation focuses on propagation of decomposable constraints, and
is composed of chapters 6-9:

Chapter 6 Presents the formal model used for representing propagators over arbitrary decom-
posable constraints, which is used extensively throughout the second part of the dissertation.
Extends the notation introduced in [Tack 2009] to accommodate constraints involving an arbi-
trary number of variables. Additionally, shows how sound and complete propagators may be
obtained for this type of constraints.

Chapter 7 Considers the case of incomplete propagation of decomposable constraints by ex-
tending the material presented in the previous chapter and moving closer to a practical im-
plementation. Formalizes sound and incomplete propagators, and presents an algorithm that
provides an approximation to the problem of deciding the completeness of the propagators
obtained from this model.

6

1.2. This dissertation

Chapter 8 Details a realization of the theoretical model introduced in the previous chapters
for obtaining propagators with specific type of completeness. Shows how these propagators
may be efficiently compiled for arbitrary decomposable constraints. Performs a theoretical
comparison of the compilation and propagation algorithms with other algorithms for prop-
agating arbitrary decomposable constraints, in particular the popular method based on the
introduction of auxiliary variables and propagators.

Chapter 9 Describes the implementation of the compilation and propagation algorithms for
decomposable constraints discussed in the previous chapter. Performs a set of experiments
for evaluating the performance of such implementations.

The third part of the dissertation aims at evaluating the CaSPER solver as a general research
platform and consists of chapters 10-11:

Chapter 10 Describes a set of search heuristics which explore look-ahead information. Shows
how to efficiently integrate these heuristics with strong consistency propagation algorithms.
Evaluates the performance of the solver in a number of benchmarks using these and other
popular search heuristics.

Chapter 11 Compares the performance of CaSPER with other state-of-the-art constraint solvers
that competed on the third international CSP solver competition.

7

Chapter 1. Introduction

8

Chapter 2.

Constraint Programming

This chapter will introduce several important concepts used in constraint programming, and
provide an overview of the two major actors of the constraint solving process, namely con-
straint propagation and search. Simultaneously, it will present the notation and formal model
used throughout this dissertation for describing many aspects of constraint solving.

2.1. Concepts and notation

2.1.1. Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is traditionally defined by a set of variables modeling
the unknowns of the problem, a set of domains which define the possible values the variables
may take, and a set of constraints that express the relations between variables. Before we for-
malize CSPs, let us detail these concepts.

Definition 2.1 (Assignment). An assignment a is a mapping from variables X to values V . A
total assignment maps every variable in X to some value, while a partial assignment involves
only a subset of X . We represent an assignment using a set of expressions of the form x 7−→ v ,
meaning that variable x ∈ X takes value v ∈V .

Definition 2.2 (Constraint). A constraint c describes a set of (partial) assignments specifying
the possible assignments to a set of variables in the problem. We may represent a constraint
by extension by providing the full set of allowed assignments, or by intension in which case
we will write the constraint expression in square brackets. A partial assignment a is consistent
with some constraint c if a belongs to the set of assignments allowed by c.

Example 2.3 (Assignment,Constraint). The assignment a1 = {x1 7−→ 1, x2 7−→ 3} assigns 1 to
variable x1 and 3 to variable x2. The assignment a2 = {x1 7−→ 2, x2 7−→ 3} assigns 2 to variable x1

and 3 to variable x2. The constraint c = {{x1 7−→ 2, x2 7−→ 1} , {x1 7−→ 1}} may also be represented
as c = [(x1 = 2∧x2 = 1)∨x1 = 1]. The assignment a1 is consistent with the constraint c, while
the assignment a2 is not.

9

Chapter 2. Constraint Programming

In theory, variables and constraints are sufficient to model a CSP, since constraints may be
used to specify all the domains of the variables in the problem. However, most textbook defi-
nitions of CSPs explicitly specify an initial set of values for the variables in the problem, which
will be refered to as variable domains.

Definition 2.4 (Variable domain). A variable domain dD ⊆D represents the set of allowed val-
ues for some variable. Common variable domains are dZ for integer variables, d2Z for integer
set variables, and dR for real-valued variables. When D is omitted we assume dZ.

We may now define constraint satisfaction problems.

Definition 2.5 (CSP). A Constraint Satisfaction Problem is a triple 〈X ,D,C〉 where X is a finite
set of variables, D is a finite set of variable domains, and C is a finite set of constraints. We
will denote by D (x) the domain of some variable x ∈ X . Similarly, we will refer to the set of
constraints involving some variable x ∈ X as C (x). The set of variables in some constraint
c ∈C may be selected with X (c).

The task of solving a CSP consists of finding a solution, i.e. one total assignment which is
consistent with all constraints in the problem, or proving that no such assignment exists.

Example 2.6 (Magic square as a CSP). We can easily formalize the problem of filling a n-order
magic square, introduced in the previous section. The CSP consists of n2 integer variables,
one for each cell. Each variable xi , j ∈ X represents the unknown figure corresponding to the
cell at position

(
i , j

)
in the square, where 1 ≤ i ≤ n, 1 ≤ j ≤ n, and have the initial domain

D
(
xi , j

) = {
1, . . . ,n2

}
. This corresponds to line 4 in the program of figure 1.2 on page 2. Let

k = n
(
n2 +1

)
/2 denote the magic constant. The CSP’s constraint set C is composed of the

following constraints:∧
1≤i , j ,k,l≤n:i 6=k∨ j 6=l

[
xi , j 6= xk,l

]
all cells take distinct values (line 5)∧

1≤i≤n

∑
1≤ j≤n

[
xi , j = k

]
the sum of cells in the same row equals k (line 8)∧

1≤i≤n

∑
1≤ j≤n

[
x j ,i = k

]
the sum of cells in the same column equals k (line 9)

∑
1≤i≤n

[
xi ,i = k

]∑
1≤i≤n

[
xi ,n−i = k

] the sum of cells in the main diagonals equals k (lines 11,12)

2.1.2. Tuples and tuple sets

Tuples and sets of tuples are central concepts in constraint programming and in this disser-
tation in particular. They are used to model constraints, and will form the basis for defining
domains (not to be confused with variable domains described earlier). We will use the follow-
ing notation when referring to tuples and tuple sets.

10

2.1. Concepts and notation

Definition 2.7 (Tuple). An n-tuple is a sequence of n elements, denoted by angle brackets. We
make no restriction on the type of elements in a tuple, but tuples of integers will be most often
used. Tuples will be refered by using bold lowercase letters, optionally denoting the number of
elements in superscript.

Definition 2.8 (Element projection). We will write t j to refer to the j -th element of tuple t, in
which case we consider tuples as 1-based arrays. Similarly, we extend the notation to allow
multiple selection, writing t J =

〈
t j

〉
j∈J to specify the tuple of elements at positions given by set

J .

Example 2.9 (Tuple, Element projection). Considering t3 = 〈2,3,1〉, a 3-tuple, we have t2 = 〈3〉
(or simply t2 = 3), and t{1,3} = 〈2,1〉.
Definition 2.10 (Tuple set). A tuple set Sn ⊆ Zn is a set of n-tuples, also referred to as table.
When needed, we will refer to the size of the tuple set, the number of tuples, as |Sn |.
Definition 2.11 (Tuple projection). Let proj j (Sn) = {

t j : t ∈ Sn
}

the projection operator. We

generalize the operator for projections over a set of indexes, projJ (Sn) = {
t J : t ∈ Sn

}
.

Example 2.12 (Tuple set, Tuple projection). S3 = {〈1,2,3〉 ,〈3,1,2〉} is a 3-tuple set, with size∣∣S3
∣∣= 2. Then proj2

(
S3

)= {〈2〉 ,〈1〉} and proj{2,3}

(
S3

)= {〈2,3〉 ,〈1,2〉}.

Definition 2.13 (Assignments as tuples). Throughout this dissertation we will implicitely use
tuples to represent assignments. A given assignment {x1 7→ v1, . . . , xn 7→ vn} may be represented
by an n-tuple tn = 〈v1, . . . , vn〉. If an assignment ti is a partial assignment, i.e. covers only a
subset X ′ of X , then the size i of the tuple equals the number of variables in X ′, that is i = ∣∣X ′∣∣,
in which case the set X ′ will be made explicit.

Definition 2.14 (Constraints as tuple sets). We may also represent constraints as tuple sets.
The notation con(c) specifies the set of tuples corresponding to the partial assignments al-
lowed by the constraint. It is assumed that the set of partial assignments allowed by the con-
straint affects the same set of variables. This does not restrict the expressiveness of the notation
since any partial assignment may be extended to cover more variables by taking the Cartesian
product of the allowed values in the domains of the remaining variables.

Example 2.15. Let D (x1) = {1,2}, and D (x2) = {1,2,3}. The assignment a = {x1 7−→ 1, x2 7−→ 3}
may be represented as a = 〈1,3〉. Let c be a constraint defined as c = {{x1 7−→ 2, x2 7−→ 1} , {x1 7−→ 1}}.
Then con(c) = {〈2,1〉 ,〈1,1〉 ,〈1,2〉 ,〈1,3〉}. The fact that the assignment a is consistent with the
constraint c is equivalent to the expression a ∈ con(c).

2.1.3. Domain approximations

Before we define domains, let us introduce two important tuple set operators, which will be
referred to as domain approximations.

11

Chapter 2. Constraint Programming

Definition 2.16 (Cartesian approximation). The Cartesian approximation VSnWδ of a tuple set
Sn ⊆Zn is the smallest Cartesian product which contains Sn , that is:

VSnWδ = proj1

(
Sn)× . . .×projn

(
Sn)

Definition 2.17 (Box approximation). Given an ordered set S ⊆ D, let conv(S) be the convex
set of S, i.e.

convD (S) = {z ∈D : min(S) ≤ z ≤ max(S)}

The box approximation VSnWβ(D) of a tuple set Sn ⊆ Dn is the smallest n-dimensional box
containing Sn , that is:

VSnWβ(D) = convD

(
proj1

(
Sn))× . . .×convD

(
projn

(
Sn))

We will be referring to integer and real box approximations exclusively, i.e. V·Wβ(Z) or V·Wβ(R).
Whenever D is omitted it will be assumed that D =Z.

We introduce one more operator, the identity operator, which will be used mostly for sim-
plifying notation:

Definition 2.18 (Identity approximation). The identity operator V·Wϕ transforms a tuple set in
itself, i.e. VSnWϕ = Sn .

Let Sn ,Sn
1 ,Sn

2 ⊆Zn be arbitrary n-tuple sets and Φ ∈ {
ϕ,δ,β

}
. We note the following proper-

ties of these operators:

Property 2.19 (Idempotence). The V·WΦ operator is idempotent, i.e. VSnWΦ = VVSnWΦWΦ.

Property 2.20 (Monotonicity). The V·WΦ operator is monotonic, i.e. Sn
1 ⊆ Sn

2 =⇒ VSn
1 WΦ ⊆

VSn
2 WΦ.

Property 2.21. The V·WΦ operator is closed under intersection, i.e. VSn
1 WΦ∩VSn

2 WΦ = VVSn
1 WΦ∩

VSn
2 WΦWΦ.

These domain approximation operators will be used extensively to specify particular types
of tuple sets called domains.

2.1.4. Domains

Definition 2.22 (Φ-domain). Let Sn be an arbitrary n-tuple set and Φ ∈ {
ϕ,δ,β

}
. We call Sn a

Φ-domain if and only if Sn = VSnWΦ.

12

2.1. Concepts and notation

−domains

−domains

−domains

Figure 2.1.: Domain taxonomy

Domains will be used for multiple purposes. First we note that, by definition, any tuple set
is a ϕ-domain. For any CSP 〈X ,D,C〉 we can also observe the following: The set D of variable
domains is a δ-domain capturing the initial set of variable assignments. For any constraint
c ∈ C , con(c) is a domain specifying the possible assignments to X (c), and the conjunction
of all constraints con(

∧
c∈C c) in the problem is also a domain specifying the solutions to the

problem.
The following concepts define a partial order on domains.

Definition 2.23. A domain Sn
1 ⊆ Zn is stronger than a domain Sn

2 ⊆ Zn (or equivalently Sn
2 is

weaker than Sn
1), if and only if Sn

1 ⊆ Sn
2 . Sn

1 is strictly stronger than Sn
2 (or equivalently Sn

2 is
strictly weaker than Sn

1) if and only if Sn
1 ⊂ Sn

2 .

The following lemma shows how the previously defined approximations are ordered for a
given tuple set.

Lemma 2.24. Let Sn ⊆Zn be an arbitrary tuple set. Then,

Sn = VSnWϕ ⊆ VSnWδ ⊆ VSnWβ

Note that this contrasts with the relation between all possible Φ-domains with Φ ∈ {
ϕ,δ,β

}
,

as depicted in figure 2.1.

Related work

Ï The classic view of CSP’s was initially developed by Montanari [1974] and Mackworth [1977a].
The formalization described above extends their work by accommodating intensional con-
straints (initially constraints were exclusively given by extension), and broadening the no-
tion of domain to include not only the traditional Cartesian domains, but also box domains
and any arbitrary tuple set.

13

Chapter 2. Constraint Programming

15 14

Σ=34

1..161..16

1..16 1..16

1..16

1..16

1..16

1..16

1..161..16

1..16

1..16

1..16

1..16

(a)

15 14

Σ=34

1..161..16

1..16 1..16

1..16

1..16

1..16

1..161..16

1..16

1..16

1..16

1..4 1..4

(b)

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

15 141..4 1..4

Σ=34
(c)

5,6,
8..12

5..9,
11,12

5,6,
8..12

5..9,
11,12

15 14

1..4 1..4

Σ=34

1..4

5..12

5..12

5..12

5..12

1..4

13,16 13,16

(d)

Figure 2.2.: Partially filled magic square of order 4: without any filtering (a); where some incon-
sistent values were filtered (b,c); with no inconsistent values (d).

Ï The Cartesian approximation was defined in [Ball et al. 2003], while box approximation is
defined in [Benhamou 1995]. Domain approximations in the context of constraint program-
ming were further refined by Benhamou [1996], and Maher [2002], and reconciled with the
classical notions of consistency in [Tack 2009].

2.2. Operational model

Solving constraint satisfaction problems involves two main ingredients: propagation and search.
Propagation infers sets of assignments which are not solutions to the problem and excludes
them from the current domain. Search finds assignments which are possible within the current
domain. The solving process consists of interleaving the execution of these two procedures,
exploring the problem search space exhaustively until a solution is found.

2.2.1. Propagation

Let us revisit the magic square problem introduced earlier:

Example 2.25 (Magic Square filtering). Imagine Dürer’s task of finding a magic square with
the figures 14 and 15 already placed. He probably began by writing an empty square, where
all values are possible in all cells except in those which are already assigned (similar to the
square of fig. 2.2 a). Soon he must have realized that some values were impossible in some
cells, namely in the two inferior corners, which must add to 5 (fig. 2.2 b), and in all remaining
cells, which cannot take 14 nor 15 since they are already placed (fig. 2.2 c).

The inference process just described is called constraint propagation, or constraint filtering.
By removing figures that cannot be part of a magic square, Dürer was discarding an exponen-
tial number of inconsistent assignments. With some time and patience, he could have gone

14

2.2. Operational model

further and removed all inconsistent values from the initial problem, ending with the partial
magic square shown in fig. 2.2 (d).

The amount of filtering performed on a CSP is related to a property known as consistency.
Before we give the classical definition of consistency regarding CSPs, let us first focus on con-
sistencies of an arbitrary δ-domain with respect to a single constraint, which basically tell us
how well the domain approximates the constraint.

Definition 2.26 (Domain consistency). A δ-domain Sn is domain consistent for a constraint
c ∈C if and only if Sn ⊆ Vcon(c)∩VSnWδWδ.

Definition 2.27 (Bounds(Z) consistency). A δ-domain Sn is bounds(Z) consistent for a con-
straint c ∈C if and only if Sn ⊆ Vcon(c)∩VSnWβWβ.

Definition 2.28 (Bounds(R) consistency). A δ-domain Sn is bounds(R) consistent for a con-
straint c ∈C if and only if Sn ⊆ Vcon(cR)∩VSnWβ(R)Wβ(R).

Definition 2.29 (Bounds(D) consistency). A δ-domain Sn is bounds(D) consistent for a con-
straint c ∈C if and only if Sn ⊆ Vcon(c)∩VSnWδWβ.

Definition 2.30 (Range consistency). A δ-domain Sn is range consistent for a constraint c ∈C
if and only if Sn ⊆ Vcon(c)∩VSnWβWδ.

The above concepts define different consistencies by requiring that all members of the do-
main lie within some neighborhood of the constraint. Intuitively, for a given consistency the
inner approximation operator V·W tell us which solutions to the constraint are taken into con-
sideration, while the outer V·W defines the set of non-solutions which are acceptable.

Example 2.31 (Consistency). Consider the sum constraint c (corresponding to the bottom row
of the magic square in fig. 2.2), and the tuple set S4 = {1,2,4}× {15}× {14}× {1,2,3,4}. The set
of solutions that domain and bounds(D) consistency must approximate is con(c)∩VSnWδ =
{〈1,15,14,4〉 ,〈2,15,14,3〉 ,〈4,15,14,1〉}. Since Vcon(c)∩VSnWδWδ = {1,2,4}×{15}×{14}×{1,3,4} ⊂
S4, then S4 is not domain consistent to constraint c. Similarly, since Vcon(c) ∩ VSnWδWβ =
{1,2,3,4}× {15}× {14}× {1,2,3,4} ⊃ S4, then S4 is bounds(D) consistent to constraint c.

The notion of consistency applies naturally to a given set of constraints and domain of a CSP,
in which case it may be referred to as local consistency or global consistency of the constraint
network as explained below.

Definition 2.32 (Local consistency). A CSP 〈X ,D,C〉 is locally domain consistent (respectively
locally bounds(Z), bounds(R), bounds(D), or range consistent), if and only if D is domain con-
sistent (respectively bounds(Z), bounds(R), bounds(D), or range consistent) for every con-
straint c ∈C .

15

Chapter 2. Constraint Programming

Definition 2.33 (Global consistency). A CSP 〈X ,D,C〉 is globally domain consistent (respec-
tively globally bounds(Z), bounds(R), bounds(D), or range consistent), if and only if D is do-
main consistent (respectively bounds(Z), bounds(R), bounds(D), or range consistent) for the
constraint

∧
c∈C c.

Example 2.34 (Consistency of a CSP). The CSP corresponding to the magic square of figure 2.2
(b) is locally bounds(Z) and bounds(D) consistent, but not domain nor range consistent. The
square shown in (c) is locally domain consistent (and consequently also locally bounds(Z),
bounds(R), bounds(D), and range consistent). The square shown in (d) is globally domain
consistent.

The computational cost of achieving local and global consistency on a given CSP depends on
the constraint network structure, on the semantics of the constraints involved, and on the size
of the domains. Achieving global consistency is usually intractable except for CSPs with a very
specific network structure, but polynomial time algorithms exist that achieve local consistency
for a number of important constraints. Perhaps because it is easier to reason with independent
constraints rather than with their conjunction, constraint propagation has been traditionally
implemented in modular, independent components called propagators, which achieve some
form of local consistency on specific constraints.

Definition 2.35 (Propagator). A propagator (or filter) implementing a constraint c ∈ C is a
function πc :℘ (Zn) →℘ (Zn) which is contracting, i.e. πc (Sn) ⊆ Sn for any tuple set Sn ⊆Zn . A
propagator is sound if and only if it never removes tuples which are allowed by the associated
constraint, i.e. con(c)∩Sn ⊆πc (Sn) for any tuple set Sn ⊆Zn .

Traditionally, propagators were also required to be monotonic, i.e. πc
(
Sn

1

) ⊆ πc
(
Sn

2

)
if Sn

1 ⊆
Sn

2 , and idempotent, i.e. πc (πc (Sn)) = πc (Sn), however these additional restrictions are not
mandatory in modern constraint solvers, as shown in Tack [2009]. Throughout this disserta-
tion we will consider propagators to be monotonic and will not make any assumption about
its idempotency unless explicitely stated. Moreover, we will use the following notation con-
cerning idempotency.

Definition 2.36 (Idempotent propagator). Let πc be a propagator for a constraint c ∈ C . Let
π?c represent the iterated function π?c = πc ◦ . . . ◦πc such that πc

(
π?c (x)

) = π?c (x). Propagator
πc is an idempotent propagator for Sn if and only if πc (Sn) = π?c (Sn). In such case we also say
that πc (Sn) is a fixpoint for πc , or equivalently that πc is at fixpoint for πc (Sn). Propagator πc is
an idempotent propagator if and only if πc (Sn) is a fixpoint for πc for any Sn ⊆Zn . Finally, we
remark that we always have πc (Sn) ⊂ Sn unless Sn is a fixpoint for πc . This is a consequence of
πc being deterministic, and is independent of the idempotency of πc .

The contracting condition alone sets a very loose upper bound on the output of a propa-
gator. Many functions meet these requirements without performing any useful filtering, as

16

2.2. Operational model

for example the identity function. Useful propagators are complete with respect to some do-
main, which translates in achieving some consistency on the constraint associated with the
propagator. According with our previous definitions of consistency, we now enumerate the
corresponding completeness guarantees provided by propagators.

Definition 2.37 (Domain completeness). A propagator πc implementing constraint c ∈ C is
domain complete if and only if π?c (Sn) is domain consistent for the constraint c, for any δ-
domain Sn . In such case we say the propagator achieves domain consistency for the constraint
c.

Definition 2.38 (Bounds completeness). A propagator πc implementing constraint c ∈ C is
bounds(Z) (respectively bounds(R), bounds(D), or range) complete if and only if π?c (Sn) is
bounds(Z) (respectively bounds(R), bounds(D), or range) consistent for the constraint c, for
any δ-domain Sn .

Example 2.39 (Propagator completeness taxonomy). Domain completeness and the different
types of bounds completeness described above are ordered as shown in figure 2.3. Each arrow
reflects a strictly stronger than relation between two completeness classes.

Additionally, we labeled arrows with a tuple set S for which the propagator at the start of the
arrow is able to prune more values (marked as striked out) than the propagator at the end of
the arrow. For this, we considered a propagator πc for the constraint c = [

2x +3y = z
]

and a
tuple set S = Sx × Sy × Sz . For example, when applied to a domain S = {〈0,1〉 ,〈0〉 ,〈0,1,2〉}, a
domain complete propagator is able to prune tuples 〈0,0,1〉 and 〈1,0,1〉 whereas a bounds(D)
cannot. Note that bounds(D) complete and range complete propagators are incomparable.

Related work

Ï Historically, the notion of consistency was associated with CSPs involving extensional con-
straints. Mackworth [1977a] presented an algorithm for achieving domain consistency on
CSPs involving binary extensional constraints, and later generalized for non-binary con-
straints [Mackworth 1977b]. The algorithm was referred to as arc consistency in the case
of binary relations, and generalized arc consistency for n-ary relations. Although the term
is still commonly used, we will use domain consistency throughout this dissertation. The
presented bounds consistency definitions are described in more detail in chapter 3 of [Rossi
et al. 2006]. The formalization of domain and bounds consistency and completeness using
domain approximations is due to Tack [2009], which is in turn based on [Maher 2002] and
[Benhamou 1996].

Ï The definition of propagator given above (def. 2.35 on the preceding page) considers arbi-
trary tuple sets while traditionally propagators are defined over Cartesian products. This

17

Chapter 2. Constraint Programming

domain

bounds(D)

bounds(Z)

bounds(R)

range

Sx = {0,1}
Sy = {0}

Sz = {0,1/,2}

Sx = {0,1/}

Sy = {0,1}
Sz = {0,3}

Sx = {0,1/}

Sy = {0,1}
Sz = {0,3}

Sx = {0}
Sy = {0,1}

Sz = {0,2/,3}

Sx = {0,1}
Sy = {0,1}

Sz = {1/,2,3}

Sx = {0}
Sy = {0,1}

Sz = {0,1/,3}

Sx = {0,1/}

Sy = {0,1}
Sz = {0,3}

Figure 2.3.: Taxonomy of constraint propagation strength. Each arrow specifies a strictly
stronger than relation between two consistencies (see example 2.39).

18

2.2. Operational model

Function GenerateAndTest(d ,C)
Input: A domain d and a set of constraints C
Output: A subset S ⊆ d satisfying all constraints in C , i.e. S ⊆ con(c) : ∀c ∈C
if d =; then1

return ;2

if |d | = 1∧∀c ∈C ,d ⊆ con(c) then3

return {d}4

〈d1,d2〉← Branch(d)5

return GenerateAndTest(d1,C) ∪ GenerateAndTest(d2,C)6

generalization is intentional, since it will be used in part II. However, we kept the classi-
cal notions of consistency and propagation completeness associated to Cartesian products.
Applying the same generalization there would make comparing to existing propagation al-
gorithms more complex.

Ï A line of research in constraint programming is devoted to identifying tractable constraint
network structures, where global consistency may be achieved in polynomial time. See for
example chapter 7 of [Rossi et al. 2006]. For a complete characterization of tractable CSPs
for 2-element and 3-element domains see [Schaefer 1978; Bulatov 2006].

Ï A number of polynomial algorithms have been identified that achieve domain or bounds
consistency in a number of useful constraints. A notable example is the constraint that
enforces all variables to take distinct values (used in the magic square example) for which an
algorithm exists that achieves domain consistency in time O

(
n2.5

)
by Régin [1994], another

achieving bounds(Z) on time O
(
n logn

)
by Puget [1998], and a range complete propagator

which runs in time O
(
n2

)
by Leconte [1996]. Algorithms achieving bounds(D) consistency

are rarely found in practice.

Ï Consistencies stronger than domain consistency have been proposed, namely path consis-
tency [Montanari 1974], and k-consistency [Freuder 1978]. These consistencies approxi-
mate constraints using domains stronger than δ-domains, whose representation requires
exponential space, and are disregarded in most constraint solvers.

2.2.2. Search

Generate and test is a brute force method that generates all possible combinations of values
and then selects those that satisfy all constraints in the problem. The method is easily imple-
mented using recursion (function GenerateAndTest).

Line 1 tests for the case where an empty domain is passed to the function, which trivially has
no solutions. Line 3 tests if the current domain is singleton, i.e. all variables are instantiated,

19

Chapter 2. Constraint Programming

15 14

1..16 1..16 1..16

1..16

1..16

1..16

1..16

1..161..16

1..161..16

1..16

1..16

1..16

15 14

2..16 1..16 1..16

1..16

1..16

1..16

1..16

1..161..16

1..161..16

1..16

1..16

1..16

14

1..16 1..16

1..16

1..16

1..16

1..16

1..161..16

1..161..16

1..16

1..16

1..16

15

1

14

1..16

1..16

1..16

1..16

1..16

1..161..16

1..161..16

1..16

1..16

1..16

15

1 1

15 14

1..16 1..16

1..16

1..16

1..16

1..16

1..161..16

1..161..16

1..16

1..16

1..162

x1,3 = 1

x1,3 6= 1

x1,2 = 1

x1,2 6= 1

...

...

...

...

x1,2 6= 1

x1,1 6= 2

x1,1 = 2

x1,2 = 1

...

...
x1,1 6= 1

x1,1 = 1

Figure 2.4.: Partial search tree obtained by GenerateAndTest on the magic square problem.

and satisfy all constraints in the problem. Otherwise, line 5 calls a function Branch that splits
the domain d in two smaller domains d1, d2, such that d = d1 ∪d2 and d1 ∩d2 =; , and line 6
calls the function recursively on each of these domains.

Figure 2.4 shows a trace, or search tree, of the algorithm applied to the magic square prob-
lem. The leftmost square represents the initial domain, and the direct children of each square
are the domains resulting from the Branch function.

The GenerateAndTest algorithm may generate an exponential number of domains that do
not contain any solution. An example is the topmost square in fig. 2.4 that corresponds to a
non-singleton domain which does not contain any solutions since the same value is used in
the first two cells of the first row. An improved version of this algorithm is given by function
Solve.

The difference is the inclusion of a call to the Propagate function, which filters inconsis-
tent values from the input domain, as discussed in the previous section. The search tree of the
Solve algorithm now depends on the consistency achieved by constraint propagation. For ex-
ample, if Propagate enforces local domain consistency on this problem, we obtain the partial
search tree shown in figure 2.5, where each square corresponds to the domain obtained after
propagation (line 1). Note that all the upper children which cannot lead to any solution are
immediately rejected, hence the algorithm avoids exploring an exponential number of nodes.

The Solve algorithm is complete for any CSP where all variables have finite domains - given

20

2.2. Operational model

Function Solve(d ,C)
Input: A domain d and a set of constraints C
Output: A subset S ⊆ d satisfying all constraints in C , i.e. S ⊆ con(c) : ∀c ∈C
d ← Propagate(d ,C)1

if d =; then2

return ;3

if |d | = 1∧∀c ∈C ,d ⊆ con(c) then4

return {d}5

〈d1,d2〉← Branch(d)6

return Solve(d1,C) ∪ Solve(d2,C)7

enough time it will find a solution or prove that no solution exists, which is in fact one of the
most appealing aspects of the constraint programming approach. Additionally, it is also space
efficient since only one child of each node must be in memory at all times, and the depth of the
search tree is bounded by the number of variables and values in their domains. Unfortunately,
the time efficiency of this algorithm greatly depends on the way the search tree is explored, i.e.
on the order in which the child nodes of a given node are visited (line 7). A number of heuristics
have been proposed that try to direct search towards the solution, with some success for many
combinatorial problems. However, the algorithm will, in the worst case, explore the full search
tree before finding the solution or proving that it does not exist.

Although other complete search algorithms exist, they are essentially variations of the Solve
algorithm. Therefore, in this dissertation we will assume that search is performed using this
algorithm.

Related work

Ï The Solve algorithm is also known as backtracking. Other popular complete algorithms
that may be used with constraint propagation are backmarking, forward checking, back-
jumping, among others [Dechter 2003].

Ï Most search heuristics are correlated with either a first-fail or a best-promise policy [Har-
alick and Elliott 1980]. First-fail consists in trying first the domains which are more likely
to contain no solutions. While it seems contradictory, this will make the search algoritm
visit smaller search paths first, which increases the number of search paths visited for a
given amount of time. Best-promise does the opposite, it visits first the domains that are
more likely to contain solutions. First-fail heuristics are usually connected with the selec-
tion of the next variable to enumerate: the variable with smaller domain, more constraints
attached [Bessière and Régin 1996], more constraints to instantiated variables, and varia-
tions [Brélaz 1979; Boussemart et al. 2004]. Best-promise is usually connected to the choice

21

Chapter 2. Constraint Programming

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

14151..4 1..4

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

1..13,
16

2..13,
16

14151..4 1..4

1..12,
16

1..12,
16

1..12,
16

1..12,
16

1..12,
16

1..12,
16

1..12,
16

1..12,
16

1..12,
16

1..12,
16

1..12,
16

14151..4 1..4

13

14151..4 1..4

16 1..13 1..13 4..13

1..13 1..13 4..13 4..13

1..13 4..13 1..13 4..13

x1,1 6= 1

x1,1 = 1

x1,1 = 13

x1,1 6= 13

x1,1 6= 2

x1,1 = 3

x1,1 6= 3

x1,1 = 2

...

...

...

Figure 2.5.: Partial search tree obtained by SOLVE on the magic square problem while main-
taining local domain consistency.

of value to enumerate, and is often obtained by integrating some knowledge about the struc-
ture of the problem [Geelen 1992].

2.3. Summary

This chapter presented the necessary notation for formalizing constraint satisfaction problems
and the constraint solving process. We have seen that constraint propagation operates on
tuple sets, and how their approximations may be used to characterize the completeness of
propagation algorithms. Finally, we introduced the main algorithm of a constraint solver that
integrates constraint propagation with a general brute-force search algorithm.

22

Part I.

Incremental Propagation

23

Chapter 3.

Architecture of a Constraint Solver

This chapter will describe a number of important techniques and decisions behind the design
and implementation of a modern constraint solver. It will focus on two main components:
a propagation kernel implementing generalized constraint propagation (§3.1), and the state
manager, responsible for maintaining the state of all elements of a constraint solver synchro-
nized with the search procedure (§3.2). Additionally, this chapter will present other important
structural resources of constraint solvers, such as the support for domain specific reasoning,
global constraints, and language interfaces (§3.3). Whenever possible, we will provide point-
ers to state-of-the-art constraint solvers which advertise the use of a particular method. In this
same spirit, this chapter will also perform a global overview of CaSPER, the constraint solver
used for implementing and evaluating all the techniques described in this dissertation.

3.1. Propagation kernel

The propagation kernel forms the core of a constraint solver. Because propagation takes the
largest share of time spent on solving a given problem, designing a propagation kernel involves
decisions that affect the global performance of a constraint solver.

3.1.1. Propagation loop

Most constraint solvers do not maintain a specific type of consistency in particular, but in-
stead achieve an hybrid form of local consistency. They associate one or more propagators
with specific strengths with each constraint of the problem, and combine their propagation
by repeatedly executing propagators until a fixpoint is achieved. The existence of a fixpoint,
hence the termination of the algorithm, is guaranteed since propagators are contracting and
domains are finite, as we have observed in the previous chapter. A very simple implementation
of this algorithm is given by function Propagate1.

This algorithm and its variants will be thoroughly revised in the next chapter.

25

Chapter 3. Architecture of a Constraint Solver

Function Propagate1(d ,C)
Input: A domain d and a set of constraints C
Output: A subset of d consistent with C
while ¬ fixpoint do1

fixpoint ← true2

foreach c ∈C do3

t ← d4

d ←πc (d)5

if d ⊂ t then6

fixpoint ← false7

8

9

return d10

3.1.2. Subscribing propagators

Most constraints typically involve a small subset of variables in the problem. For a given con-
straint c ∈ C , its associated propagator πc reasons exclusively with X (c) instead of the full set
of variables X . Consequently, changes to the domains of the variables in X \ X (c) are always
ignored by πc - the propagator πc needs to be executed only when the domains of variables
in X (c) are updated. Algorithm Propagate1 does not take this observation into account, and
simply executes all propagators associated with all constraints in the problem, and that is, of
course, very inefficient.

Example 3.1. Consider a CSP with variables x1, . . . , xn , domains D (xi) = {1, . . . ,b}, 1 ≤ i ≤ n,
and a set of constraints C = c1, . . . ,cn where x1, x2 ∉ X (ci), 1 ≤ i ≤ n −2, and cn−1 = [x1 > x2],
cn = [x1 < x2]. Note that this CSP does not have any solutions. Calling Propagate1 on this CSP
detects inconsistency after O (nb) propagator executions (line 5), but only O (2b) propagator
executions are effective, i.e. not idempotent.

To mitigate this problem, constraint solvers maintain a queue of pending propagators, that
is, a set of propagators that can effectively prune the current domain. This is implemented
by subscribing propagators to their relevant variables, so that updating a variable’s domain
can trigger the addition of all subscribed propagators to the pending queue, or in other words,
schedule the propagators for execution. Let us formalize the set of propagators subscribed to
variable x:

Definition 3.2. For a given variable x ∈ X let PROPS (x) =⋃
c∈C (x)πc .

Selecting which propagators must be scheduled requires a mechanism for identifying the
set of variables whose domain changes from a given fixpoint to another.

26

3.1. Propagation kernel

Function Propagate2(d ,P)
Input: A domain d and a set of propagators P implementing constraints C
Output: A subset of d consistent with the constraints in C
while P 6= ; do1

πc ← SelectPropagator(P)2

P ← P \ {πc }3

d ′ ←πc (d)4

P ← P ∪⋃
x∈VARS(d ,d ′) PROPS (x)5

d ← d ′6

return d7

Definition 3.3 (Pruned variables). Let d n
1 , d n

2 , where d n
2 ⊆ d n

1 denote two different domains of
a given CSP involving n variables. Let VARS

(
d n

1 ,d n
2

)⊆ X be defined as follows

VARS
(
d n

1 ,d n
2

)= {
xi ∈ X : d n

2 (xi) ⊂ d n
1 (xi)

}
The optimization is integrated in the Propagate1 function by modifying the inner loop

(lines 3-8) to iterate over the queue of pending propagators instead of the full set of propa-
gators, as shown by function Propagate2. Line 2 selects one propagator from the queue of
pending propagators P , line 3 removes the propagator from the queue, and line 4 executes the
propagator. Line 5 adds to the queue P all propagators subscribed to the domains which were
updated. The mutual fixpoint of all propagators is implied by an empty queue P .

3.1.3. Event driven propagation

Determining the exact set of propagators whose execution will prune a given domain is not
straightforward. Variable subscription, described above, is often too conservative in the sense
that it may still schedule propagators that are at fixpoint for the current domain.

Example 3.4. Consider again the previous example, but where the set of constraints is now C =
c1, . . . ,cn where ci = [x1 +x2 6= xi+2], 1 ≤ i ≤ n −2, and cn−1 = [x1 > x2], cn = [x1 < x2]. Note that
executing propagators πci , 1 ≤ i ≤ n −2, does not prune any domain whenever |D (xi)| > 1 for
all i . Consequently, calling Propagate2 still requires O (nb) propagator executions to detect
inconsistency on this CSP, even if only O (2b) propagator executions are effective.

In fact, determining if a propagator can prune a given domain is co-NP-complete in gen-
eral. Fortunately, an approximation that is less conservative than variable subscription but
still efficient to implement can be devised using events.

In an event driven solver, propagators are subscribed to events representing propagation

27

Chapter 3. Architecture of a Constraint Solver

conditions. For example, propagators reasoning with integer domain variables usually sub-
scribe to one of the following events:

¦ DOM (xi) : the domain of variable xi has been updated

¦ BND (xi) : the bounds of the domain of variable xi have been updated

¦ VAL (xi) : variable xi has become instantiated

Updating the domain of a variable triggers the corresponding events, adding subscribed prop-
agators to the pending queue.

Example 3.5. In an event driven solver, a propagator for a constraint ci = [x1 +x2 6= xi+2] would
subscribe to VAL (x1), VAL (x2), and VAL (xi+2), since propagation of this constraint requires that
either xi+2 or both x1 and x2 are instantiated. Likewise, propagators for cn−1 = [x1 > x2], and
cn = [x1 < x2] would subscribe to BND (x1) and BND (x2), since propagation for this constraint
reasons exclusively with the bounds of the domains.

Note that even event driven solvers may still schedule propagators which are at fixpoint for
the current domain. An example is the propagator for a constraint ci , described above. In this
case, the propagator may be executed needlessly because the exact propagation condition, i.e.
(VAL (x1)∧ VAL (x2))∨VAL (xi+2), cannot be expressed as a disjunction of events. In chapter 4 we
propose an alternative propagation model that may be used to circumvent this problem.

Finally, we remark that during search, propagators may cancel or alter the set of events
which they are subscribed to. An example is the propagator for an n-ary boolean disjunction.

Example 3.6. Consider a propagator for the constraint c = [
∨

i∈1...n xi], where n is an integer
greater than two. This constraint is usually propagated using the watched literal scheme origi-
nally introduced for SAT solving [Gent et al. 2006b]. The propagator initially subscribes to two
arbitrary non-ground variables xi , x j , more specifically to VAL (xi), and VAL

(
x j

)
. When any of

these events occur, the algorithm cancels the subscription to the event, searches for another
non-ground variable xk where k 6= i and k 6= j , and subscribes to VAL (xk). It repeats this pro-
cedure until there are no more non-ground variables to replace the last instantiated variable,
say xi , which mean that x j must be set to true.

Most modern constraint solvers use events to optimize propagation, as will be detailed in
the next chapter.

3.1.4. Signaling fixpoint

Another inefficiency of both versions of the Propagate function given above arises from the
way fixpoint is detected. The presented approach assumes that a propagator is not at fix-
point if its last execution was able to prune the current domain. While this is a safe way to

28

3.1. Propagation kernel

Function Propagate3(d ,P)
Input: A domain d and a set of propagators P implementing constraints C
Output: A subset of d consistent with the constraints in C
while P 6= ; do1

πc ← SelectPropagator(P)2 〈
d ′, fixpoint 〉←πc (d)3

P ← P ∪⋃
x∈VARS(d ,d ′) PROPS (x) \ {πc }4

if ¬ fixpoint then5

P ← P ∪ {πc }6

d ← d ′7

return d8

detect fixpoint, it implies that a propagator that updates the domains of its own set of sub-
scribed variables is always scheduled one additional time after achieving its fixpoint. A solu-
tion to this problem is to force propagators to report whether they are currently at fixpoint. The
pseudocode for the algorithm integrating this optimization is given by function Propagate3.
This function assumes that when the execution of πc does not change any domain it returns
fixpoint= true.

A constraint solver may have to handle propagators that are idempotent for any domain,
and propagators that are idempotent for some domains.

Example 3.7. Consider a propagator for the constraint a = [x1 ≥ x2], where x1, x2, are integer
domain variables, defined as follows,

πa (d) =
{

d (x1) ← d (x1) \ {−∞ . . .bd (x2)c−1}

d (x2) ← d (x2) \ {dd (x1)e+1. . .+∞}

It easy to see that πa (d) is sound and a fixpoint for πa for any domain d , i.e. the propagator
is an idempotent propagator (def. 2.36 on page 16). Now, consider a similar propagator πb for
the constraint b = [x2 ≥ x1], and a propagator for c = [x1 = x2] defined as,

πc (d) = πb (πa (d))

Although πc is sound, it is no longer an idempotent propagator, as witnessed when setting
d1 = {v : v is odd}, and d2 = {v : v is even}.

The above example shows propagators which are idempotent for any domain, πa , πb , and a
propagator πc which may or may not be at fixpoint after execution. An optimized constraint
solver could schedule πa and πb to a dedicated queue of idempotent propagators, but for πc

it has no other option than to query its idempotency status after every execution and proceed

29

Chapter 3. Architecture of a Constraint Solver

accordingly.
Since the time spent on redundant propagator executions seems not to be significantly

larger than the time spent in computing the idempotency status (see [Schulte and Stuckey
2004]), this optimization is not used in most constraint solvers. As far as we know, Gecode
[Gecode 2010] is the only constraint solver implementing fixpoint signaling [Tack 2009].

3.1.5. Subsumption

Another common optimization used by most constraint solvers explores a relation between
constraints and domains called entailment. The goal is the same as before: to avoid scheduling
propagators unnecessarily.

Definition 3.8 (Entailnment,Subsumption). A constraint c is said to be entailed for a domain
d if and only if d ⊆ con(c). A propagator πc for a constraint c is said to be subsumed for a
domain d if and only if πc

(
d ′)= d ′ for any d ′ ⊆ d .

A propagator which is subsumed for d cannot contribute to any further pruning and there-
fore should never be scheduled again. Subsumed propagators can therefore be canceled. Can-
celing does the opposite of subscribing - it unsubscribes the propagators of all previously sub-
scribed events, so that they may not be scheduled again.

Example 3.9. Consider a constraint c = [
x < y

]
and a domain d = {1,2}× {3,4}. Then c is en-

tailed for d , and a bounds(Z) complete propagator πc is subsumed for d .

Modern constraint solvers typically cancel subsumed propagators. In CaSPER, cancellation
is optional, i.e. is not integrated in the propagation kernel, but instead is left to the specific
propagator implementation. This allows each propagator to choose to cancel itself if the effort
spent in checking subsumption compensates the extra redundant executions.

3.1.6. Scheduling

We have not discussed so far the order in which propagators are executed. The Propagate3
function is non-deterministic assuming that SelectPropagator selects an arbitrary propaga-
tor from the propagation queue. However, the order in which propagators are executed affects
the number of executions and consequently the runtime required until the mutual fixpoint is
achieved.

Example 3.10. Consider a CSP with variables x, y , and z, and domains D (x) = {−n . . .1}, D
(
y
)=

D (z) = {1 . . .n}, where n is an arbitrary large number, and the constraints c1 = [
x ≥ y

]
and

c2 = [
x + y = z

]
. Consider also domain complete propagators for both constraints. Propagat-

ing πc1 only requires updating the bounds of the domains of x and y , which may be done in
O (1) time. Propagating πc2 costs O

(
n3

)
since all values in the domains of x, y , and z must

30

3.2. State manager

be considered. Therefore, executing πc2 and then πc1 takes O
(
n3

)
. However, if πc1 is executed

first, the domains of x and y are pruned to D (x) = D
(
y
)= {1} in O (1), which can lower the cost

of executing πc2 to O (1) since variables x and y are instantiated. Hence, in this case the total
cost of executing both propagators is O (1).

The above example suggests an heuristic for scheduling propagators: those with a lower cost
should be executed first than those with higher cost. The rationale is that executing cheaper
propagators first may prune the current domain thus simplifying the task of costly propaga-
tors.

Most modern constraint solvers employ priority based filter scheduling policies for schedul-
ing their propagators. SICStus Prolog [Carlsson et al. 1997] uses two priority levels where in-
dexicals have higher priority and global constraints have lower priority. Gecode and CaSPER
uses respectively seven and ten priority levels based on estimated cost of execution. Eclipse
Prolog [ECLiPSe 2010] supports twelve priority levels, but its finite domains solver uses only
two. Choco [Laburthe and the OCRE project team 2008] uses cost and event based scheduling
with seven priority levels.

Ï Entailment information may be obtained for special cases of indexical constraints, as shown
in [Carlson et al. 1994].

Ï Cost based filter scheduling and an experimental comparison of different filter scheduling
policies is detailed in [Schulte and Stuckey 2004].

3.2. State manager

Propagation eliminates inconsistent values from the domains. However, since propagation
must be complemented by some form of non-deterministic search, any update to the current
domain is tentative and thus may have to be undone. In fact, not only variable domains, but
the state of propagators, their internal data structures and subsumption status, may have to be
restored later due to a wrong guess in the search procedure. In practice, even good heuristics
imply a large number of wrong decisions, which makes state handling a central element in a
constraint solver.

Example 3.11. Consider a CSP with variables x, y , and z, domains D (x) = D
(
y
)= {0,1}, D (z) =

{0 . . .3}, and constraints c1 =
[
2x + y = z

]
, c2 = [x 6= z], and c3 =

[
y 6= z

]
. Figure 3.1 shows a pos-

sible search tree for this problem. Each numbered node represents a state while arcs denote
search decisions. Arcs are labeled with a tentative assignment, inside boxes, and the result of
propagating the assignment. The two leftmost leaves are not solutions to the problem since z
cannot be equal to x or y (constraints c2 and c3). Both children of node 3 satisfy all the con-
straints and therefore are solutions to the problem.

31

Chapter 3. Architecture of a Constraint Solver

1

2

× ×

3

p p

x = 0
⇒ D(z) = {0,1}

y = 0
⇒ D(z) = {}

y = 1
⇒ D(z) = {}

x = 1
⇒ D(z) = {2,3}

y = 0
⇒ z = 2

y = 1
⇒ z = 3

Figure 3.1.: A possible search tree for the CSP described in example 3.11. Search decisions are
underlined.

D(x) = {0,1}
D(y) = {0,1}

D(z) = {0 . . .3}

(a) at state 1

D(x) = {0,1}
D(y) = {0,1}

D(z) = {0 . . .3}

D(x) = {0}
D(y) = {0,1}
D(z) = {0,1}

(b) at state 2

D(x) = {0,1}
D(y) = {0,1}

D(z) = {0 . . .3}

D(x) = {1}
D(y) = {0,1}
D(z) = {2,3}

(c) at state 3

Figure 3.2.: Contents of the stack used by the copying method for handling state.

3.2.1. Algorithms for maintaining state

There are three popular methods for handling state of a constraint solver: copying, trailing,
and recomputation. Copying saves the current state before each search decision, by pushing
all stateful data to a stack. In case the search decision leads to a dead end, the current state
may be restored by copying back all data from the top of the stack. Search then proceeds by
committing to a different decision.

Example 3.12. Figure 3.2 shows the contents of the stack used by the copying method while
solving the CSP of the previous example. The contents of all domains are pushed to the stack
at the initial state (fig. 3.2 a), and again after the first search decision and propagation (fig. 3.2
b). After assigning y = 0 and propagating the solver finds an inconsistency, and restores state
2 from the top of the stack. Then it assigns y = 1, propagates, again finds an inconsistency and
backtracks to state 1. This is done by poping state 2 from the stack and restoring state 1 from
the top of the stack (fig. 3.2 a). It then assigns x = 1, propagates, and pushes state 3 to the stack
(fig. 3.2 c). Finally, it assigns y = 0, propagates, and finds a solution.

32

3.2. State manager

1 ∉ D(x)
2,3 ∉ D(z)

(a) at state 2

1 ∉ D(x)
2,3 ∉ D(z)

1 ∉ D(y)
0,1 ∉ D(z)

(b) at first failed state

0 ∉ D(x)
0,1 ∉ D(z)

(c) at state 3

Figure 3.3.: Contents of the stack used by the trailing method for handling state.

While copying backups all stateful data before any modifications, trailing stores only the
data that is going to be modified. Since most of the times is hard to know beforehand which
data is going to be updated, trailing must be embedded in any procedure that changes stateful
data. Any update operation must therefore check whether the data that is going to change is
already saved to the stack, and if not it must push it. On backtrack the solver transverses the
list of saved data (the trail) on the top of the stack and restores it.

Example 3.13. The stack used by trailing on the CSP of example 3.11 is shown in figure 3.3.
Unlike the stack used in copying, the trailing stack is initially empty. All the domain updates
that are a consequence of the first search decision and propagation, leading state 1 to state 2,
are then pushed to stack (fig. 3.3 a). When the solver finds the first inconsistency, the contents
of the stack are as shown in fig. 3.3 b). It then restores state 2 by undoing the updates on the
top of the stack and poping the top trail, leaving the stack as shown in (fig. 3.3 a). When the
second inconsistency is found, the solver restores state 1 by undoing the contents of both trails
in the stack, and emptying it. The contents of the stack at state 3 are shown in (fig. 3.3 c).

Unlike copying or trailing, recomputation does not store the full current state to memory,
but instead only keeps track of the search decisions that lead to the current state. For restoring
a given state, recomputation resets the original domains and other stateful data and repeats
all operations since the root of the search tree leading to the state to be restored.

Example 3.14. Recomputation uses a queue for recording the original domains, and the search
decisions leading to the current state. Figure 3.4 a) shows the initial state of the queue holding
the original domains. At state 2 the search decision x = 0 is at the end of the queue (fig. 3.4
b). Then, y = 0 is added and the solver finds the first inconsistency (fig. 3.4 c). For restoring
state 2, the solver first resets the domains from the backup stored in the first position of the
queue, and then propagates all the assignments in the queue except the last (y = 0). The solver
is now on state 2 again, with the queue as shown in (fig. 3.4 b), and thus search may proceed to
explore the right branch.

The above methods for handling state may be categorized by expectation. Copying and
trailing always backup the current state anticipating that it will be proven inconsistent and will

33

Chapter 3. Architecture of a Constraint Solver

D(x) = {0,1}
D(y) = {0,1}

D(z) = {0 . . .3}

(a) at state 1

D(x) = {0,1}
D(y) = {0,1}

D(z) = {0 . . .3}

x = 0

(b) at state 2

D(x) = {0,1}
D(y) = {0,1}

D(z) = {0 . . .3}

x = 0

y = 0

(c) at first failed state

Figure 3.4.: Contents of the queue used by the recomputation method for handling state.

have to be restored: both are pessimistic. Copying is still more pessimistic than trailing since it
assumes that everything will change before finding an inconsistency, hence it is more efficient
to push the full state to memory beforehand. Unlike copying or trailing, recomputation never
stores the current state hoping that it contains a solution and thus will not have to be restored
- it is optimistic.

Trailing sacrifices modularity due to the fact that all operations and data structures must
be reversible, i.e. must be synchronized with the trail. On the other hand, both copying and
recomputation are non-intrusive - an existing data structure or algorithm does not need to
be modified for integration in a constraint solver handling state using any of these methods.
We will detail a simple framework for efficient and correct implementations of reversible data
structures maintained with trailing in the next section.

Trailing has been widely adopted by most constraint solvers, namely CaSPER, ILOG Solver
[ILOG 2003a], Choco, Minion [Gent et al. 2006a], and Prolog based solvers in detriment of
copying or recomputation, showing a robust expectation balance in different kinds of search
trees. One notable exception is Gecode which uses an hybrid approach combining copying
and recomputation. Choco allows the user to select whether to use copying or trailing for
maintaining state.

3.2.2. Reversible data structures

Solvers that use trailing for managing state typically provide a library of reversible data struc-
tures, i.e. data structures which automatically record all updates on the trail and thus are able
to restore their previous state when required. A common framework for a clean implementa-
tion of these data structures builds on the concept of a backtrackable or reversible pointer.
From the client’s point of view, a reversible pointer is essentially a standard pointer which
keeps a record of the addresses it was pointing to in any previous choice point, so that they
can be restored on demand.

34

3.2. State manager

1

@1 @2

6

@3 @4

(a) At state 0

1

@1 @2

5

@5 @6

6

@3 @4

(b) At state 1

1

@1 @2

6

@3 @4

(c) At state 2

Figure 3.5.: Reversible single-linked list. Memory addresses of the values and pointers com-
posing the data structure are shown below each cell.

Implementing a reversible pointer is straightforward - for any update of the reversible pointer
a tuple composed of two standard pointers is stored in the trail: the address of the pointer
variable, and the address of the location the pointer was pointing to before the update. Re-
versible pointers allows a complex reversible data structure to be implemented just like the
corresponding non-reversible data structure, the only difference is that reversible pointers are
used instead of standard pointers.

Example 3.15. Figure 3.5 shows a reversible single linked list, initially in state 0. Consider that
the solver creates a choice point and inserts value 5 in the list, leaving the structure at state 1.
For trailing this operation, the tuple t1 = 〈2,3〉 is pushed in the trail, representing the update of
a pointer at memory address 2 previously pointing to a memory location with address 3. Then,
assume it creates another choice point and removes value 5 from the list, leading to state 2.
This last operation triggers the insertion of a tuple t2 = 〈2,5〉 in the trail reflecting the update
of the same pointer (at memory address 2) previously pointing to a location with address 5.
If the solver later backtracks one step and needs to undo the last operation then knowing t2 is
enough to restore the list back to state 1, just by copying the old value 5 to the memory location
at address 2.

Using reversible pointers is also an efficient method of implementing most reversible data
structures. For example, each element insertion or removal in the above list requires four con-
stant time copy operations, two for saving and two when restoring. In fact, in the particular
case of lists, inserting or removing a contiguous range of elements also takes a constant num-
ber of trail operations, since only the pointers connecting the first and last cells in the range
have to be trailed. Additionally, this trailing method works very well with lists that must be
kept sorted, as those used for maintaining variable domains, since the same cells are restored
to the same positions.

The technique just described may be optimized to make the number of save and restore
operations depend only on the number of choicepoints, and not on the number of updates to
the data structure (see related work below). However, even the basic version described above is
much more efficient than, for example, a method that keeps track of which elements have been
inserted or removed, which would take linear time for restoring a single update to a sorted list.

Most Prolog engines provide a library of reversible structures. Eclipse Prolog for example
provides reversible lists, trees, ordered sets, hash tables, among others. Reversible structures

35

Chapter 3. Architecture of a Constraint Solver

are also available in Choco, referred to as backtrackable structures. In CaSPER the concept of
reversible pointer is generalized to any type, providing the user with a myriad of truly transpar-
ent reversible data types, of which reversible pointers are a special case. The implementation
explores parametric polymorphism so that the type of the basic data type is not abstracted,
which is useful for the compiler, and in particular the optimizer. CaSPER additionally provides
a library of several reversible structures, such as stacks, lists, arrays, matrices, sets, maps, and
tuples among others. ILOG Solver also provides reversible pointers and some plain reversible
data types such as reversible integers or booleans whose implementation seems to be based
on subtype polymorphism.

3.2.3. Memory pools

The speculative nature of depth search algorithms makes memory management a crucial ele-
ment in a constraint solver. Most constraints solvers implement an elaborated memory man-
ager that essentially provides fast allocation and deallocation of free memory with a confined
scope of existence. There are at least two good reasons to explicitly limit the lifetime of allo-
cated memory. Firstly, it frees the programmer from the difficult task of keeping track of all
allocated memory - memory will be automatically reclaimed by the memory manager when
its period of existence is over. Secondly, it allows optimizing the number of calls required to re-
quest and release memory to the operating system since in many cases the provided memory
will be used for data structures which share the same scope of existence. Memory with specific
lifetime is usually associated with a dedicated memory pool.

A memory manager of a constraint solver may implement several memory pools, but it cer-
tainly provides a pool of backtrackable memory, i.e. memory which is available from the cur-
rent choice point node to the leaf of the current search path. This kind of memory is useful for
storing variables and propagators added during search, maintaining the incremental state of
a propagator, and in general for any data which only exists below the current choice point. We
will not detail an implementation of a backtrackable memory pool, but we note that it typically
allows constant time allocation of new memory, and constant time deallocation of all memory
allocated on the same choice point.

Example 3.16. In the previous example we implicitly assumed that the described single-linked
list is allocated on backatrable memory. This means that erasing value 5 does not frees the
memory locations at addresses 3 and 4, which would be the natural thing to do with a standard
list. Storing the cell holding value 5 in backtrackable memory is essential to allow it to be safely
restored just by resetting the values of the pointers, as explained above. The memory is only
effectively freed when the solver backtracks to state 0, i.e. before the choice point where cell
holding value 5 was created.

Other memory pools may exist in a constraint solver, all with the same goal: simplified and
efficient deallocation of memory. Gecode additionally maintains a pool for storing equally-

36

3.3. Other components

sized blocks of memory, and a pool for temporary storage. Minion has backtrackable and non-
backtrackable memory pools, and even stores some data structures across different memory
pools. For example, the storage of domain of binary domain variables or contiguous inter-
val variables is split in two: one part stored in backtrackable memory and another in non-
backtrackable memory [Gent et al. 2006a]. CaSPER additionally provides a pool for memory
which is a available exclusively for the current choice point, which is useful for storing tempo-
rary data used for computing the current fixpoint.

Related work

Ï For a detailed comparison of trailing methods versus copying and recomputation see [Reis-
chuk et al. 2009].

Ï The Warren’s Abstract Machine [Aït-Kaci 1991] pioneered the presented techniques for main-
taining state on a trailing based system, namely reversible pointers and memory pools.

Ï Memory pools described above may be seen as dedicated garbage collectors (see e.g. [Jones
and Lins 1996]). However, they are much simpler than general purpose garbage collectors
and also much more efficient for the task since they are tightly coupled with the solver’s
execution model.

3.3. Other components

In the previous sections we have described the elements that form the core of a constraint
solver. In this section we will discuss the remaining aspects of a constraint solver, which are
orthogonal to the core architecture, and usually integrated in a modular, extensible way.

3.3.1. Constraint library

One of the most appealing aspects of a constraint solver is the span of supported constraints
since it reflects its ability to deal with specific applications efficiently. The global constraint
catalog [Beldiceanu et al. 2010] currently lists 348 global constraints, for which several practical
propagation algorithms often exist. Creating, debugging and maintaining propagators for such
a large number of constraints is a daunting task, considering that implementing an efficient
propagator for many global constraints is not straightforward. This makes the set of supported
constraints one of the most valuable resources of a constraint solver.

Most, if not all constraint solvers either allow adding propagators for existing constraints, or
for new constraints, or more frequently both. The propagation algorithm given in section 3.1
promotes this extensibility by establishing a clear separation between the propagation loop,
and the propagator task - the propagation kernel is blind with respect to the specific constraint
being propagated or the algorithm used for the propagation. However, the constraint kernel

37

Chapter 3. Architecture of a Constraint Solver

may provide services for simplifying the task of designing new propagators. Reversible struc-
tures and dedicated memory pools, introduced above, are one example. In the next chapter we
will detail a kernel service that reports the set of changes in the domain of variables between
two consecutive executions of a given propagator, which can be very useful for designing prop-
agators.

All constraint solvers mentioned above provide propagators for a large number of constraints.
Compared with the remaining solvers, Choco and CaSPER offer a smaller set of specialized do-
main consistent propagators. In these solvers, constraints for which no specialized propagator
exist are compiled to an extensional representation and propagated using a more general but
less efficient algorithm. CaSPER additionally implements a technique for achieving bounds
consistency on arbitrary constraints, behaving as if specialized propagators were available,
described in the second part of this dissertation.

3.3.2. Domain modules

Constraint solving has historically addressed integer domain problems, and more recently, set
domain problems. A number of representations and algorithms for reasoning with other do-
mains have also been proposed, namely for addressing multiset problems [Walsh 2003], graph
problems [Viegas 2008], real-valued problems [Benhamou 1995], or for specific applications
such as protein folding [Krippahl and Barahona 2002]. Support for integrating domain-specific
reasoning is therefore an imperative design condition for a general purpose constraint solver,
perhaps as important as the ability to integrate new constraint propagators. General purpose
constraint solvers are Choco and ILOG Solver, supporting integer, set, and real-valued domain
variables, Gecode, handling integer and set domain variables, and Prolog based solvers such
as SICStus, Eclipse, and B-Prolog which additionally provide support for graph, tree, and ratio-
nal domain variables. CaSPER fully supports integer and set domain variables, and provides
experimental support for real-valued, graph and coordinate domain variables.

There are also a number of constraint solvers designed for addressing specific domains
or special kind of constraints. These solvers are often significantly different than the afore-
mentioned general purpose solvers. Examples are SAT solvers that address problems involv-
ing boolean variables, or solvers which work exclusively with finite domain variables, such
as MDDC-Solv [Zhou 2009], Abscon [Merchez et al. 2001], CSP4J [Julien Vion 2007], or Sugar
[Tamura et al. 2009], among others. These solvers often apply specialized techniques such as
compilation of constraints to extensional representation or SAT.

3.3.3. Interfaces

Constraint programs are conceptually highly declarative - the user declares the constraints and
variables of the problem, and the solver finds a satisfiable assignment. In practice, however,
the user often has to provide specific instructions to the solving process for obtaining a so-

38

3.4. Summary

lution in reasonable time. A common solver interface gives the user control over the model,
the propagation and search algorithms used for solving the problem. This is the case of Pro-
log based constraint solvers, Choco, Gecode and CaSPER. Notable exceptions are Minion, and
recent versions of ILOG Solver, which provide self-parametrized propagation and search algo-
rithms, thus following the black-box approach [Puget 2004].

Recent efforts have been made to establish interfaces for constraint solvers. The JAVA Con-
straint API is a JAVA interface for constraint solving [ACP 2010]. Numberjack interfaces con-
straint solvers from the Python language [Hebrard et al. 2010]. XCSP defines a XML based prob-
lem specification format, useful for interchanging problems between different solvers [Roussel
and Lecoutre 2009]. Minizinc is also a problem specification language, but additionally allows
parametrizing the propagation and search algorithms, although currently only in a limited
form [Nethercote et al. 2007]. Many constraint solvers are now able to solve constraint prob-
lems written in XCSP and Minizinc. CaSPER currently fully supports the former, and offers
partial support for the latter, as described in [Silva 2010].

3.4. Summary

This chapter presented an overview of the architecture and techniques used in state-of-the-
art constraint solvers. The first part covered a generalized propagation kernel, optimized using
variable and event subscription, fixpoint reasoning, subsumption checking, and filter schedul-
ing. Then we have introduced the most popular algorithms for maintaining the state of a con-
straint solver, namely trailing, copying, and recomputation. We have also described the use
of reversible data structures and memory pools, two important techniques for making state
managing efficient and transparent. Finally, we have mentioned other important components
of a constraint solver, in particular extensible support for new propagators, specific domain
reasoning, and standard interfaces.

39

Chapter 3. Architecture of a Constraint Solver

40

Chapter 4.

A Propagation Kernel for Incremental
Propagation

This chapter will discuss a central component of a constraint solver - the propagation engine.
It will describe two models for scheduling propagators, namely variable and propagator cen-
tered architectures, highlight their inherent advantages and disadvantages, and show how to
integrate standard optimizations such as events or priorities on both models (§4.1). It will be
shown that the propagator centered model is theoretically more efficient than the variable cen-
tered model. Then we will present a modified propagation centered algorithm that integrates
a feature originally exclusive of the variable centered model - support for incremental prop-
agation (§4.2). The implementation of this algorithm in an object-oriented environment will
be discussed in §4.3. Finally, we will present a set of experiments performed for comparing
several propagator and event scheduling policies using the new propagator-centered model
and the variable-centered model (§4.4), and discuss the results obtained providing empirical
evidence of the superiority of the former (§4.5).

4.1. Propagator and variable centered propagation

The following concept allows us to analyze and compare fixpoint computations.

Definition 4.1 (Propagation sequence). A propagation sequence describes the domains and
propagator executions involved in the computation of a fixpoint. The sequence consists on a
series of nodes d1, . . . ,dn representing domains, and labeled arrows representing propagator
executions. There is a labeled arrow from a domain di to domain d j , denoted di →

π
d j , if and

only if the execution of propagator π filtered domain di to domain d j during the computation
of the fixpoint. Although propagation is non-deterministic, we will assume a deterministic
implementation on one processor, which consequently allow us to represent propagation se-
quences of the form

d1 →
π1

. . . →
πt

dn

41

Chapter 4. A Propagation Kernel for Incremental Propagation

Function PropagatePC(d ,P)
Input: A domain d and a set of propagators P implementing constraints C
Output: A subset of d consistent with the constraints in C
while P 6= ; do1

πc ← SelectPropagator(P)2

P ← P \ {πc }3

d ′ ←πc (d)4

P ← P ∪⋃
x∈VARS(d ,d ′) PROPS (x)5

d ← d ′6

return d7

Function PropagatePC, introduced in the last chapter, implements what is commonly re-
ferred to as propagator centered propagation, due to its main data structure: a set of propaga-
tors.

Example 4.2. Consider a CSP with variables x1, x2, x3, with domains D (x1) = D (x2) = D (x3) =
{1,2,3}, and the constraints a = [x2 6= 3], b = [x1 ≤ x2], and c = [DISTINCT (x1, x2, x3)]. Invok-
ing the function PropagatePC with P = {πa}, assuming that SelectPropagator follows a
FIFO policy, and all propagators are domain complete, produces the following propagation
sequence,

d1 →
πa

d2 →
πb

d3 →
πc

d4

(
→
πb

d4 →
πc

d4

)
A trace of the execution of algorithm PropagatePC for this example is shown below, where
each row shows the state of the contents of the data structures at line 1,

0 d1 (x1) = {1,2,3} d1 (x2) = {1,2,3} d1 (x3) = {1,2,3} P = {πa}
1 d2 (x1) = {1,2,3} d2 (x2) = {1,2} d2 (x3) = {1,2,3} P = {πb ,πc }
2 d3 (x1) = {1,2} d3 (x2) = {1,2} d3 (x3) = {1,2,3} P = {πc ,πb}
3 d4 (x1) = {1,2} d4 (x2) = {1,2} d4 (x3) = {3} P = {πb ,πc }
4 P = {πc }
5 P = {}

Note that the second execution of πb and πc (iterations 4 and 5) is redundant and could be
avoided using the techniques for signaling fixpoint discussed in the previous chapter.

Some constraint solvers take a distinct approach, denoted variable centered propagation.
This algorithm maintains a queue V of variables whose domain has changed and executes all
propagators subscribed for each variable x ∈ V in turn until there are no more changes in the
domains (function PropagateVC).

Example 4.3. Consider again the CSP of the previous example. Invoking function PropagateVC

42

4.1. Propagator and variable centered propagation

Function PropagateVC(d ,V)
Input: A domain d and a set of variables V ⊆ X
Output: A subset of d consistent with all constraints in C
while V 6= ; do1

x ← SelectVariable(V)2

V ←V \ {x}3

P ← PROPS (x)4

while P 6= ; do5

πc ← SelectPropagator(P)6

P ← P \ {πc }7

d ′ ←πc (d)8

V ←V ∪ VARS
(
d ,d ′)9

d ← d ′10

11

return d12

with V = {x2}, assuming that both SelectVariable and SelectPropagator follow a FIFO pol-
icy is described by the following propagation sequence,

d1 →
πa

d2 →
πb

d3 →
πc

d4

(
→
πa

d4 →
πb

d4 →
πc

d4 →
πb

d4 →
πc

d4 →
πc

d4

)
A trace of the execution of algorithm PropagateVC for this example is shown below, where
each row shows the contents of the data structures at line 5,

0 d1 (x1) = {1,2,3} d1 (x2) = {1,2,3} d1 (x3) = {1,2,3} x = x2,V =;,P = {πa ,πb ,πc }
1 d2 (x1) = {1,2,3} d2 (x2) = {1,2} d2 (x3) = {1,2,3} x = x2,V = {x2} ,P = {πb ,πc }
2 d3 (x1) = {1,2} d3 (x2) = {1,2} d3 (x3) = {1,2,3} x = x2,V = {x2, x1} ,P = {πc }
3 d4 (x1) = {1,2} d4 (x2) = {1,2} d4 (x3) = {3} x = x2,V = {x2, x1, x3} ,P =;
4 x = x2,V = {x1, x3} ,P = {πa ,πb ,πc }
5 x = x2,V = {x1, x3} ,P = {πb ,πc }
6 x = x2,V = {x1, x3} ,P = {πc }
7 x = x2,V = {x1, x3} ,P =;
8 x = x1,V = {x3} ,P = {πb ,πc }
9 x = x1,V = {x3} ,P = {πc }
10 x = x1,V = {x3} ,P =;
11 x = x3,V =;,P = {πc }
12 x = x3,V =;,P =;

43

Chapter 4. A Propagation Kernel for Incremental Propagation

x1

x2

x3

π1 π2

π3 π4

Figure 4.1.: Example of a CSP with variables x1, x2, x3, and propagators π1, . . . ,π4.

As seen in the above example, variable centered propagation may lead to more propagator
executions compared to propagator centered propagation. This is due to the fact that prop-
agator centered propagation will never schedule a propagator if the propagator is already in
the queue, which might not be true for variable centered propagation. The problem can per-
haps be best explained using the graph of figure 4.1, which shows a possible structure for
propagating a CSP. Each variable is represented as a node in the graph, and an arc between
two nodes represents a propagator implementing some constraint between the corresponding
variables. Assume that each propagator can modify the domains of both associated variables
and is awaken each time the domain of any of its variables changes.

Consider applying variable centered propagation to propagate this CSP. If the domain of
variable x2 is updated, all propagators π1 . . .π4 are added to the queue P . Now, imagine that
π1 is executed and changes variable x1. Then propagator π2 will be scheduled for execution
when variable x1 is processed even if it is already on the current propagation queue. The order
in which propagators are scheduled does not solve this problem - if π2 was executed first, π1

would then be executed twice. The number of extra executions of variable centered propaga-
tion compared with propagator centered propagation could be estimated based on the num-
ber of loops in the constraint graph of the problem: in the example CSP, there are always two
propagators which are executed twice each time variable x2 changes.

We note that signaling fixpoint would allow both methods to achieve fixpoint using the same
number of propagator executions. As discussed previously, this method is untractable in gen-
eral, but for some constraints it is straightforward to determine fixpoint. For example, itera-
tions 4-7 of the previous example could be easily avoided since the propagator for the con-
straint a = [x2 6= 3] is idempotent.

4.1.1. Incremental propagation

A popular algorithm for achieving domain consistency on the DISTINCT constraint of the pre-
vious example is given in [Régin 1994]. The algorithm incrementally maintains a data structure
which is a function of the domains of the variables involved in the constraint. For every exe-
cution of the propagator, this data structure must be updated to reflect the current domain,
which may have changed since the last execution due to the execution of other propagators.

44

4.1. Propagator and variable centered propagation

There are two options for performing this update, either the current data structure is discarded
and rebuilt from the current domain, or the current data structure is updated by integrating the
changes occurred on the domains since the last execution of the propagator, referred through-
out this dissertation as domain delta. Apparently the best method to apply is constraint spe-
cific or perhaps domain specific, but for some situations using domain deltas may improve
propagation significantly, as we will see in the next chapter.

An approximation for providing the domain delta to incremental propagators is simply to
inform the propagator which variable has triggered propagation. The propagator for the DIS-
TINCT constraint, for example, may use this information to optimize the update of its internal
data structure since it knows which variable domain changed. Variable centered propagation
naturally integrates this kind of incremental propagation simply by changing line 8 of function
PropagateVC to d ′ ←πc (d , x), where x is the variable that triggered propagation (line 2). Since
the propagator is executed once for every variable domain that has changed, its internal data
structure will eventually reflect the current domain.

Example 4.4. Consider again the previous example, where πb is designed to perform incre-
mental propagation as explained above. The propagation sequence when applying incremen-
tal variable centered propagation is as follows,

d1 →
πa

d2 →
πb

d3

(
→
πc

d3 →
πa

d3 →
πb

d3 →
πc

d3 →
πb

d3

)
→
πc

d4

(
→
πc

d4

)

0 d1 (x1) = {1,2,3} d1 (x2) = {1,2,3} d1 (x3) = {1,2,3} x = x2,V =;,P = {πa ,πb ,πc }
1 d2 (x1) = {1,2,3} d2 (x2) = {1,2} d2 (x3) = {1,2,3} x = x2,V = {x2} ,P = {πb ,πc }
2 d3 (x1) = {1,2} d3 (x2) = {1,2} d3 (x3) = {1,2,3} x = x2,V = {x2, x1} ,P = {πc }
3 x = x2,V = {x2, x1} ,P =;
4 x = x2,V = {x1} ,P = {πa ,πb ,πc }
5 x = x2,V = {x1} ,P = {πb ,πc }
6 x = x2,V = {x1} ,P = {πc }
7 x = x2,V = {x1} ,P =;
8 x = x1,V =;,P = {πb ,πc }
9 x = x1,V =;,P = {πc }
10 d4 (x1) = {1,2} d4 (x2) = {1,2} d4 (x3) = {3} x = x1,V = {x3} ,P =;
11 x = x3,V =;,P = {πc }
12 x = x3,V =;,P =;

Note that the first and second executions of πc (iterations 3 and 7) do not prune the domain.
This is because the algorithm for propagating πc is not fully aware of the current domain - it
only knows that x2 has changed, but not x1. Only on its third execution (iteration 10), πc is
informed about the update of the domain of x1, and is finally able to prune the domain of x3.

45

Chapter 4. A Propagation Kernel for Incremental Propagation

This shows that using variable centered propagation for incremental propagation may lead to
a different propagation sequence compared to non-incremental variable centered propaga-
tion. While the fact that an extra number of propagations may be required to synchronize the
internal state of the incremental propagators with the current domain may suggest that adding
incrementality to variable centered propagation leads to more propagator executions, we can-
not confirm that this is always the case due to the complex nature of fixpoint computations (in
our example they take the same number of executions).

We also remark that integrating incremental propagation with propagator centered prop-
agation is not as simple as with variable centered propagation, since the information about
which variable triggered the propagator execution is not directly available. Later on, we will
see how to address this problem. Before that, let us show how the two approaches may be
improved using events and priority queues.

4.1.2. Improving propagation with events

Both propagator and variable centered propagation may be improved using events to signal
specific propagator conditions. Events have been informally introduced in the previous chap-
ter. Let us now formalize them.

Definition 4.5. Let d1 (x), and d2 (x) be two domains of a variable x ∈ X , such that d2 (x) ⊆
d1 (x). The set of events produced by the update of d1 (x) to d2 (x) is defined by

events(d1 (x) ,d2 (x)) = dom(d1 (x) ,d2 (x))∪bnd(d1 (x) ,d2 (x))∪val(d1 (x) ,d2 (x))

where

dom(d1 (x) ,d2 (x)) =
{

{DOM(x)} ⇐ d1 (x) ⊃ d2 (x)

{} otherwise

bnd(d1 (x) ,d2 (x)) =
{

{BND(x)} ⇐dd1 (x)e > dd2 (x)e∨bd1 (x)c < bd2 (x)c
{} otherwise

val(d1 (x) ,d2 (x)) =
{

{VAL(x)} ⇐|d1 (x)| > 1∧|d2 (x)| = 1

{} otherwise

Similar to the VARS
(
d ,d ′) function which captures the set of variables whose domain has

changed from d to domain d ′, we introduce the EVENTS
(
d ,d ′) function used for obtaining the

set of events that describe the update of domain d to domain d ′.

Definition 4.6. Let d1, d2 be two domains of the same CSP such that d1 ⊆ d2. Then

EVENTS (d1,d2) = ⋃
x∈X

events(d1 (x) ,d2 (x))

46

4.1. Propagator and variable centered propagation

Function PropagatePCEvents(d ,E)
Input: A domain d and a set of events E
Output: A subset of d consistent with the constraints in C
P ←⋃

e∈E PROPS (e)1

while P 6= ; do2

πc ← SelectPropagator(P)3

P ← P \ {πc }4

d ′ ←πc (d)5

P ← P ∪⋃
e∈EVENTS(d ,d ′) PROPS (e)6

d ← d ′7

return d8

Since propagators are now associated with events instead of variables, we naturally extend
the function PROPS (e) to provide us the set of propagators associated with event e.

Function PropagatePCEvents corresponds to an event based implementation of propaga-
tor centered propagation. The algorithm now accepts a set E of events signaling domain mod-
ifications since its last execution and uses the EVENTS function (line 6) which always inserts a
set of propagators in the P queue which is a subset of those that would be inserted with the
previous version.

Function PropagateVCEvents applies the same optimization to variable centered propa-
gation. Compared with the basic version described earlier (function PropagateVC) there are
some changes to note. First the algorithm now traverses a queue E of events, instead of a
queue of variables - the algorithm is now performing event centered propagation. Again the
optimization comes from the selection of propagators to execute (line 5) which will be more
accurate than with the basic version. Compared with event based propagator centered prop-
agation (function PropagatePCEvents), this algorithm may perform even more redundant
executions, since the probability that a propagator may be scheduled twice is increased. Fi-
nally, we remark that incremental propagation may still be integrated easily, since the event
that triggered propagation is available, describes an update of a single domain, and may be
provided to the propagator to execute as before.

4.1.3. Improving propagation with priorities

As mentioned earlier, a propagator may be scheduled for execution using distinct policies. For
the above algorithms, propagator scheduling may be controlled by modifying the semantics
of SelectPropagator in functions PropagatePC and PropagatePCEvents, SelectVariable
and SelectPropagator in function PropagateVC, and SelectEvent and SelectPropagator
in function PropagateVCEvents. As mentioned earlier, popular propagator scheduling poli-
cies are FIFO or cost based scheduling, but these are mainly suited for propagator centered

47

Chapter 4. A Propagation Kernel for Incremental Propagation

Function PropagateVCEvents(d ,E)
Input: A domain d and a set of events E
Output: A subset of d consistent with all constraints in C
P ←;1

while E 6= ; do2

e ← SelectEvent(E)3

E ← E \ {e}4

P ← PROPS (e)5

while P 6= ; do6

πc ← SelectPropagator(P)7

P ← P \ {πc }8

d ′ ←πc (d)9

E ← E ∪ EVENTS
(
d ,d ′)10

d ← d ′11

12

return d13

propagation since scheduling propagators for variable or event centered propagation is af-
fected also by the order in which variables or events are processed. Cost based scheduling for
event centered propagation, for example, only affects the queue of propagators of the event be-
ing processed (line 7 of function PropagateVCEvents) which may potentially compromise its
performance compared with propagator based scheduling which always maintains all pend-
ing propagators ordered by its cost. On the other hand, variable and event centered propaga-
tion offer other opportunities for scheduling - we may choose to first process variables which
are more constrained or events which correspond to stronger propagation conditions. We will
perform an empirical comparison of propagator scheduling using the presented algorithms in
section 4.5.

4.2. The NOTIFY-EXECUTE algorithm

We have seen that propagator centered propagation does not directly allow incremental prop-
agation. To specifically address this problem we designed a new propagation algorithm sup-
porting incremental propagation which is still propagator centered, thus avoiding all the prob-
lems inherent to variable or event centered propagation pointed out previously.

The algorithm assumes a global queue P and is composed of two interleaved tasks, EXE-
CUTE and NOTIFY, which break propagator execution from propagator scheduling. The exe-
cute phase (function Execute) processes all pending propagators, thus emptying the queue P .
It is very similar to the basic propagator-centered algorithm given by function PropagatePC,

48

4.2. The NOTIFY-EXECUTE algorithm

Function Execute(d)
Data: P and ’failed’ are global variables
Input: A domain d
Output: A subset of d consistent with the constraints in C
while P 6= ;∧¬failed do1

πc ← SelectPropagator(P)2

P ← P \ {πc }3

d ←πc (d)4

return d5

except in that it does not insert propagators into the queue. This is done in the notify phase
(procedure Notify) which basically processes an event corresponding to a domain update
and informs all propagators attached to that event that they should update their internal state.
Additionally, this phase is responsible for inserting pending propagators into the queue P .

For this model to work, a call to the Notify procedure must be made after every atomic
domain update. What consists an atomic domain update is domain specific - for integer and
set domains we have chosen to consider the removal of contiguous subset of values as a do-
main update1. This allows propagators to obtain exact information about the current domain
and update their internal state incrementally. It also allows delta domains to be maintained in
constant space since only the description of the last atomic update is required at any moment.
Further details about delta domains will be given in the next chapter.

The NotifyPropagator function called from line 2 of the Notify procedure is therefore
propagator specific, and returns one of fail, schedule, or ignore. The fail condition is re-
turned when the propagator discovers inconsistency while updating its internal state, which
is not uncommon, and allows the solver to backtrack immediately. The ignore condition is
signaled if the propagator finds that it is idempotent for the current domain, which may also
occur when updating its state. This avoids redundant executions of the propagator which can-
not be captured by events. Otherwise, the schedule condition is returned to specify that the
propagator must be executed. Note that idempotent propagators may still return schedule
implying one redundant execution but otherwise not compromising the integrity of the system
- this is required since finding if a propagator is idempotent may be costly as already discussed.

Priority scheduling may be integrated in this algorithm in two different ways. Propagators
may be scheduled by modifying the SelectPropagator function called from line 2 of func-
tion Execute. For example, FIFO based scheduling would always return the first propagator
in the queue, and cost based filter scheduling would always return the propagator with lowest
cost. Although this simple modification would work for both cases, it would be too costly for

1By contiguous subset of values we mean values which are contiguous in the set, e.g. {1,3} is a contiguous subset
of {1,3,5}.

49

Chapter 4. A Propagation Kernel for Incremental Propagation

Procedure Notify(e)
Data: P and ’failed’ are global variables
Input: An event e
foreach πc ∈ PROPS (e) do1

n ← NotifyPropagator(πc)2

switch n do3

case n = fail4

failed ← true5

case n = schedule6

P ← P ∪ {πc }7

otherwise8

continue9

10

11

12

the latter case, since the SelectPropagator function would potentially need to traverse the
entire queue of propagators for finding the propagator with highest priority, thus requiring ad-
ditional O (|P |) time for each propagator execution. For cost based filter scheduling, it is better
to maintain a queue of propagators associated with each cost, which requires the following
modification to the above algorithms.

Definition 4.7. Let w be the number of possible costs, COST (πc) ∈ 1. . . w be the cost associated
with propagator πc , and P denote an array of w propagation queues.

Then, consider replacing line 7 of function Notify by

PCOST(πc) ← PCOST(πc) ∪ {πc }

Now the SelectPropagator function, called from line 2 of function Execute, must first find
the non-empty queue with highest priority, which can be done in O (w), and then return any
propagator from such queue, which can be accomplished in O (1). We note that it is possible to
decrease the average time complexity by maintaining P as a queue of non-empty queues. This
architecture is similar to the bucket-queue described in [Tack 2009; Schulte and Tack 2010].

Additionally, we remark that this model allows nesting several filter scheduling policies. In
fact, each queue Pi , where i ∈ 1. . . w may be itself a priority queue such as FIFO, LIFO, or
even cost-based. This would allow a finer grain of priority levels with a logarithmic worst case
complexity of access time. Our implementation supports selecting the type of queue for each
level, which already found application for speeding up fixpoint computation in problems with

50

4.3. An object-oriented implementation

Procedure Notify(e)
Data: ’failed’ is a global variable
Input: An event e
foreach ν ∈ NOTIFIABLES (e) do1

n ← ν.Call2

if n = fail then3

failed ← true4

return5

6

7

a particular constraint structure [Jung 2008]. However, we have not yet performed a detailed
analysis on the effect of changing priorities at this level in general.

The NOTIFY-EXECUTE algorithm also provides opportunity for event scheduling. This may
be accomplished by ordering the events and corresponding calls to the Notify function for
each domain update.

4.3. An object-oriented implementation

Our implementation of the NOTIFY-EXECUTE algorithm does not follow the model presented
above literally, but instead takes advantage of the object-oriented paradigm for achieving more
flexibility. The most important concept in this setting is the notifiable object, which generalizes
and extends the function NotifyPropagator presented above by additionally maintaining a
state, which is not possible using a simple function.

Definition 4.8 (Notifiable). A notifiableν is a function object (see e.g. [Kühne 1997]) exposing a
single method called Call. The method takes no arguments, and returns either ok, or failed,
to signal if the solver should proceed or backtrack, respectively.

In practice, constructors for notifiable objects are given a set of objects required by the spe-
cific notifiable, in particular but not necessarily, an associated propagator. Once notifiable ob-
jects become part of the architecture, some modifications to procedure Notify are required,
as shown on the current page.

The first visible modification is that now notifiables are associated with events, in the same
way propagators were associated with events in the previous version - the NOTIFIABLES(e)
function in the code returns the set of notifiables associated with event e. This allows sev-
eral notifiables to be associated with a single propagator, which is very useful as will be shown
shortly. The main Notify function is now blind with respect to propagators, it only calls noti-
fiable objects, and therefore it is no longer responsible for adding propagators to the queue P .

51

Chapter 4. A Propagation Kernel for Incremental Propagation

Method νi .Call()
Preconditions: xi is instantiated
Input: An event e
πc .S.PUSH (i)1

P ← P ∪ {πc }2

return ok3

The task of scheduling propagators is now delegated to the notifiable objects, which therefore
must have access to P . Let us illustrate with a practical example.

Example 4.9. Consider the global constraint c = [DISTINCT(x)]. Designing a propagator for
achieving node consistency for c is trivial for the case |x| = 2 - the propagator waits until one
of the variables is instantiated and then removes its corresponding value from the domain of
the other variable. When |x| = n and n is an arbitrary number greater than 2, then naively
a set of n (n −1)/2 binary DISTINCT propagators are posted between each pair of variables to
enforce the constraint. Achieving the fixpoint of this set of propagators takes O

(
n2

)
propagator

executions, thus the overall time complexity is O
(
n2

)
assuming each execution takes constant

time.
Another solution is to design a global node-consistent propagator for c which, although hav-

ing the same overall complexity and achieving the same pruning than the previous decompo-
sition, may decrease the number of executions to O (n), one for each variable that gets instan-
tiated. This may be significant since operations in the propagation queue have an associated,
albeit small cost. Note that for maintaining the overall complexity we need that each execution
of the global propagator takes at most O (n).

A naïve, non-incremental, implementation of this propagator would, on each execution,
search for the variables that became ground since the last execution and then prune their
values from the domains of the remaining variables. Since each execution of the propaga-
tor would take O

(
n2

)
time, this solution is not admissible. A more efficient version of this

propagator requires an internal state that is updated incrementally. It works as follows.
In the propagator πc we maintain a stack S of the indexes of the variables that became

ground since the last execution of the propagator. An execution of this propagator simply pops
each index i from S and removes value xi from the domains of the remaining variables. Since
each variable can become instantiated only once, the number of executions of this propagator
is bounded by O (n), and thus the overall time complexity will be O

(
n2

)
. In order to maintain

the stack S we need a set N of n notifiable objects, one for each variable, where each notifiable
object νi ∈ N is subscribed to VAL(xi), and has local variables P , πc , and i , passed as arguments
to its constructor. Then, the Call method of each notifiable νi is as shown on this page.

Note that there are other subtleties for maintaining state in the previous example, such as
the effect of a possible backtrack before the propagator is executed, but after its internal state is

52

4.3. An object-oriented implementation

d(xi)

VAL

BND

DOM

ν1 ν2 ν3

ν4 ν5

ν6 ν7 ν8 ν9

Figure 4.2.: Suspension list

updated. In practice this can be handled straightforwardly by using reversible data structures,
as explained in the previous chapter.

4.3.1. Dependency lists

We did not yet address how to implement function NOTIFIABLES(e), which returns the set of
notifiables subscribed to a specific event e. The common solution to this problem is to use
dependency lists, also called suspension lists. This data structure essentially associates a queue
of notifiables with each variable and event type, as shown in fig. 4.2. The object representing
the domain of each variable xi maintains three lists of notifiables (in case of a finite integer
domain), one for each event type. Any method performing an update on the domain may
therefore directly access the list of relevant notifiables in constant time. The implementation
of the suspension lists may be more complex depending on the type of events allowed by the
system, and on the kind of operations allowed. A doubly linked queue, as shown in the figure,
makes it possible to insert and remove notifiables in constant time, which is mandatory for
systems with support for subscribing and canceling propagators, as described in the previous
chapter.

Note that the figure presents a simplified representation of a finite domain object - in prac-
tice it also maintains other data structures, e.g. for storing the current domain.

An interesting feature of this architecture is that it allows propagators to be subscribed to
complex propagation conditions, which are otherwise not captured by basic event subscrip-
tion, as illustrated in example 3.5 on page 28. With this propagation model, notifiables have
the last word for avoiding the scheduling of idempotent propagators. This means that prop-
agation conditions are no longer restricted to disjunctions of events, but may be expressed
using an arbitrarily complex function.

4.3.2. Performance

An important feature of the NOTIFY-EXECUTE algorithm is that it only adds a negligible time
and memory overhead to the standard propagator-centered model when there are no incre-
mental propagators involved. In the non-incremental propagation-centered algorithm (func-
tion PropagatePCEvents), for each raised event it is necessary to add the set of relevant prop-

53

Chapter 4. A Propagation Kernel for Incremental Propagation

agators to the queue, which takes linear time on the number of propagators subscribed to that
event. Likewise, in the NOTIFY-EXECUTE algorithm, for each event it is necessary to call all
relevant notifiables. When no incremental propagators are involved, then the suspension list
holds exactly one notifiable for each propagator subscribed to that event, whose task is simply
to add the corresponding propagator to the queue. Therefore, for each notifiable the incre-
mental model only performs one extra virtual call, and stores one extra pointer, compared
with the non-incremental model.

When incremental propagators are involved, then the incremental propagation algorithm
may be significantly more costly since a call for each notifiable may not only schedule the as-
sociated propagator, but also perform extra operations for updating the propagator’s internal
state, as seen in the previous example. This means that incremental propagators must be used
wisely - a good balance must be achieved between the effort spent to maintain the propagator’s
internal state and the effort saved by exploring that state. The good news is that the NOTIFY-
EXECUTE algorithm itself does not favour any of these methods in particular and allows mixing
both incremental and non-incremental propagators. The choice of which propagation model
to use is ultimately left to the designer of each propagator.

4.4. Experiments

In this section we perform an empirical evaluation of the previous described models. Since
we are interested in propagation algorithms with support for incremental propagation, we will
consider only the algorithm for event-centered propagation (function PropagateVCEvents)
and the NOTIFY-EXECUTE algorithm introduced in the previous section. Recall that the former
is essentially an improved version of the variable centered propagation algorithm, while the
latter is a propagator centered propagation algorithm modified to support incremental prop-
agation.

Besides directly comparing these two algorithms, the selected set of experiments also as-
sesses the impact that different priority scheduling policies have on the global algorithm. More
specifically, we will compare the following models.

4.4.1. Models

EC,EV:COST,PR:COST This model implements the event centered propagation algorithm
(function PropagateVCEvents) using a cost based policy for scheduling both events
and propagators. The cost of each event is associated with the event type: VAL events
were given the highest priority, 0, BND events, 1, and DOM events the lowest priority, 2.
The hypothesis is that events which signal stronger propagation conditions should be
processed first since it should lead to more effective pruning. In this model propagators
are scheduled also using their cost, which is associated with its worst-case performance
time.

54

4.4. Experiments

NE,EV:COST,PR:COST This model represents the notify-execute propagation algorithm given
in the previous section. Propagators and events were scheduled based on their cost, as in
the previous model. Note that in this particular model the impact of scheduling events
affects only the order of execution of filters having the same cost.

EC,EV:COST,PR:FIFO Same as EC,EV:COST,PR:COST but scheduling filters using a simple
FIFO policy, which means that the impact of scheduling events (using their cost) is in-
creased.

NE,EV:COST,PR:FIFO Like the previous model, but implemented with the notify-execute
algorithm.

EC,EV:ANTICOST,PR:COST Same as EC,EV:COST,PR:COST but scheduling events using the
inverse cost function, i.e. DOM events are given the highest priority and VAL events the
lowest.

NE,EV:ANTICOST,PR:COST Like the previous model, but implemented with the notify-execute
algorithm.

EC,EV:ANTICOST,PR:FIFO Same as EC,EV:COST,PR:FIFO but with inverse cost event schedul-
ing.

NE,EV:ANTICOST,PR:FIFO Like the previous model, but implemented with the notify-execute
algorithm.

4.4.2. Benchmarks

For testing the above models we used the XCSP benchmark database, used for the CSP solver
competitions, and available from [Lecoutre 2010]. From the full set of benchmarks we se-
lected the subset of benchmarks involving global constraints, since this is the kind of problems
where scheduling propagators plays an important role. Then, we further restricted this subset
to those that were solved in more than 0.2 seconds and less than 120 seconds by the fastest
algorithm, resulting in a benchmark set involving a total of 72 benchmarks. The set of global
constraints expressible in XCSP is currently limited to the WEIGHTEDSUM, DISTINCT, ELEMENT,
and CUMULATIVE constraints. Table B.1 in the appendix enumerates these benchmarks and
specifies the number of global constraints of each kind present in each benchmark.

4.4.3. Setup

The code for all experiments was compiled with the gcc-4.4.3 C++ compiler and executed on
an Intel Core 2 Duo @ 2.20GHz, using Linux-2.6.32.9. All algorithms were implemented in

55

Chapter 4. A Propagation Kernel for Incremental Propagation

CaSPER, revision 583. Each benchmark was repeated until the standard deviation of the prop-
agation time was below 2% of the average propagation time, and then the minimum prop-
agation time was used. Propagation time accumulates the CPU time used while executing
propagators.

4.5. Discussion

The results of the experiments described above, shown in tables B.2 and B.3 in the appendix,
and summarized in table 4.1, provide the ground for the following conclusions.

Scheduling filters based on cost is more efficient than using a simple FIFO policy when prop-
agating with the notify-execute algorithm. In this case, propagation time using cost based
scheduling takes 86% on average of the propagation time if using FIFO scheduling, and for
some benchmarks it can be as low as 31% (see first row of table 4.1). On the other hand, event-
centered propagation does not benefit from this optimization in general - the average propa-
gation time using cost based scheduling takes 99% of the average propagation time using FIFO
(second row of the same table).

The second conclusion is that scheduling events plays an important role for event-centered
propagation - scheduling events using their cost reduces propagation time to 80% of the prop-
agation time spent when scheduling events using the inverse of their cost, and is not sensible to
the order filters are scheduled (third and fourth row). Symmetrically, scheduling events does
not affect performance of the notify-execute algorithm, since the average propagation time
when solving using cost based event scheduling is approximately the same propagation time
when solving using the anticost based event scheduling, independently of the filter scheduling
policy used (fifth and sixth rows).

Therefore, we may conclude that filter scheduling policies only affect the performance of the
notify-execute algorithm, and event scheduling policies only affect the performance of event-
centered propagation.

Finally, when comparing NE,EV:COST,PR:COST and EC,EV:COST,PR:COST, which are the best
models using the notify-execute or the event-centered algorithm respectively, we observe that
the notify-execute is much more efficient, which was expected due to the limitations of event-
centered propagation described previously. On average, the solver implementing the notify-
execute algorithm performs propagation in 15% of the time used by the solver implementing
event-centered propagation, and was consistently better across all benchmarks, sometimes
two orders of magnitude faster (see last row of the table).

4.6. Summary

In this chapter we have introduced a propagator-centered algorithm supporting incremen-
tal propagation. We have seen that this algorithm compares favorably, both theoretically and

56

4.6. Summary

mean stddev min max

NE,EV:COST,PR:COST / NE,EV:COST,PR:FIFO 0.86 1.28 0.31 1.17
EC,EV:COST,PR:COST / EC,EV:COST,PR:FIFO 0.99 1.06 0.83 1.17

EC,EV:COST,PR:FIFO / EC,EV:ANTICOST,PR:FIFO 0.81 1.42 0.2 1.29
EC,EV:COST,PR:COST / EC,EV:ANTICOST,PR:COST 0.8 1.42 0.2 1.04
NE,EV:COST,PR:FIFO / NE,EV:ANTICOST,PR:FIFO 0.99 1.03 0.91 1.03
NE,EV:COST,PR:COST / NE,EV:ANTICOST,PR:COST 1 1.02 0.95 1.04

NE,EV:COST,PR:COST / EC,EV:COST,PR:COST 0.15 3.06 0.01 0.86

Table 4.1.: Geometric mean, standard deviation, minimum and maximum of ratios of prop-
agation times when solving the set of benchmarks using implementations of the
models described above.

experimentally, with variable-centered propagation algorithms, which are the traditional ap-
proach for incremental propagation. We have also shown how event and filter cost based prior-
ities interact with both models, in particular that scheduling events does not affect propagator
centered algorithms.

Related work

Ï The distinction between variable and propagator centered propagation is made several times
in the literature, see for example [Schulte and Tack 2010; Tack 2009; Lagerkvist 2008], but we
could not find an experimental comparison of these models.

Ï We are not sure about the propagation model used in ILOG Solver. Puget and Leconte
[1995] mention it is based on AC-5 [Deville and Hentenryck 1991], which would suggest an
event-centered propagation algorithm. We know it allows incremental propagation through
demons, which are similar to notifiables described above.

Ï The Choco solver [Laburthe and the OCRE project team 2008] allows both event-centered,
propagator-centered and the hybridization of both types of propagation. For each domain
update, the solver inserts the triggered events in a cost-based priority queue. Later the event
queue is processed and propagators associated with that event are added to the propaga-
tion priority queue. Events with higher priority are raised immediately, adding the cor-
responding propagators to the propagation queue, and thus making the solver behave as
propagator-centered. Otherwise the events are sorted according to their cost, much like as
discussed above for event-centered propagation, but using a different cost map - VAL<DOM<BND,
where VAL has the highest priority. We could not find if this solver supports incremental
propagation.

57

Chapter 4. A Propagation Kernel for Incremental Propagation

Ï Schulte and Stuckey [2008] perform an extensive analysis of a constraint propagation en-
gine. In particular, they discuss propagator-centered propagation, with all the optimiza-
tions described above, namely events, priorities, and other mentioned in the previous chap-
ter, such as checking for subsumption and fixpoint. They do not compare with variable-
centered nor event-centered propagation, and do not show how their algorithm may be
adapted for incremental propagation. Additionally, they also do not consider event schedul-
ing policies.

Ï Tack [2009] presents a formal analysis of the Gecode constraint programming system, a
propagator-centered solver. His work describes an efficient implementation of the opti-
mizations mentioned in [Schulte and Stuckey 2008]. It discusses variable-centered sys-
tems and highlights some of its advantages and disadvantages compared with propagation-
centered systems. It does not perform an empirical comparison of these systems, does not
consider event scheduling policies, and does not discuss support for incremental propaga-
tion.

Ï Incremental propagation for the Gecode propagator-centered solver is described in [Lagerkvist
and Schulte 2007]. The presented algorithm is similar to the NOTIFY-EXECUTE algorithm,
where the execution of a notifiable is replaced by the execution of an advisor, which essen-
tially performs the same task. However, there are significant differences between the two
algorithms. Firstly, in our case notifiables are associated with events, whether advisors are
associated with variables. Additionally, advisors require a log of the update, that is, infor-
mation of which variable changed and how it changed. In our case, the information about
which variable has changed may be retrieved by subscribing several specific notifiables to
each variable, as shown in section 4.3. Perhaps the most important difference is that the
contract between domain updates and notifiables is different from the contract between
domain updates and advisors. In our case, notifiables are executed for each atomic update,
and have access to exact delta information. In contrast, advisors are executed less often, for
complex kind of updates for which the corresponding deltas are often too costly to repre-
sent, and thus are approximated.

58

Chapter 5.

Incremental Propagation of Set Constraints

In this chapter we will analyze incremental propagation of constraints involving set domain
variables. It will be shown that exploring incrementality in such constraints can lead to more
efficient propagators (§5.3), and presents two distinct solutions for maintaining the informa-
tion essential to an incremental propagator - the list of what has changed since last propaga-
tion, i.e. the domain deltas (§5.4). The first solution stores the domain deltas in each propaga-
tor, while the second maintains them in a shared data structure associated with each variable
domain. We will show both theoretically and experimentally that the second solution is more
efficient and more robust (§5.5-5.6).

5.1. Set constraint solving

Many interesting combinatorial problems involve finding sets of elements satisfying a number
of set relations.

Example 5.1 (Steiner triples). Let n, t be two positive integers such that t = n (n −1)/6. The
Steiner triples problem consists in finding t triples of elements chosen from 1.. .n such that
any pair of triples share at most one element. A solution for n = 7, t = 7, is for example
{{1,2,3} , {1,4,5} , {1,6,7} , {2,4,6} , {2,5,7} , {3,4,7} , {3,5,6}}.

Set problems may be naturally modeled using set variables and set constraints.

Example 5.2 (Steiner triples as a CSP). Let x1 . . . xt be set variables with domain 21...n , i.e. the
powerset of the set 1. . .n. The following constraints model the Steiner triples problem:

[#xi = 3] ,∀i ∈ 1. . . t (each set is a triple)[
#
(
xi ∩x j

)≤ 1
]

,∀i , j : 1 ≤ i < j ≤ t (any pair of triples share at most one element)

Constraint solvers with set abstraction facilities have been developed to address these prob-
lems using search and propagation, fully integrated within the constraint programming paradigm
[Puget 1992; Gervet 1994; Azevedo 2007].

59

Chapter 5. Incremental Propagation of Set Constraints

{a,b,c}

{a,b}

{a}

{}

{a,c} {b,c}

{b} {c}

(a)

{a,b,c}

{a,b} {b,c}

{b}

(b)

Figure 5.1.: a) Powerset lattice for {a,b,c}, with set inclusion as partial order. b) Lattice corre-
sponding to the set domain [{b} , {a,b,c}].

5.1.1. Set domain variables

Most set constraint solvers maintain the domain of set domain variables as an interval d = [l ,u]
where l , u, are known sets ordered by set inclusion, representing the greatest lower bound,
GLB, and least upper bound, LUB, of d , respectively. Set intervals define a lattice of sets. Figure
5.1 a) illustrates the powerset lattice for the set domain {a,b,c}, where a line connecting set S1

to underneath set S2 means S2 ⊂ S1.

The two bounds (GLB and LUB) define a set interval (e.g.[{b} , {a,b,c}]) which is the domain
of a set variable x, meaning that x is one of the sets defined by its interval (lattice); all other
sets are excluded from its domain. Thus, b is definitely an element of x, while a and c are the
only other possible elements. Hence x may be instantiated to one of the sets in the lattice of
fig. 5.1 b).

Some set solvers, notably CARDINAL [Azevedo 2007], also explicitly maintain the cardinality
of the set variable. This allows for extra inference when propagating set constraints, which has
proven very efficient in a number of benchmarks. A set domain therefore consists of a set in-
terval and an integer domain representing the cardinality allowed for the set. For example the
set domain [{b} , {a,b,c}] : [1 . . .2] may be instantiated to {b}, {a,b}, or {b,c}, but not to {a,b,c}
since its cardinality must be at most 2.

5.1.2. Set constraints

Set constraint solvers have specialized propagators for a number of useful constraints and op-
erations over set variables. Examples of common relations are set membership (i ∈ x), set
inclusion (x1 ⊆ x2), equality (x1 = x2), distinctness (x1 6= x2), and disjointness (x1 ∩ x2 = ;).
Set operations includes set intersection (x1 ∩ x2), set union (x1 ∪ x2), set difference (x1 \ x2),
and symmetric difference (x1

a
x2). Additionally, a number of constraints involving sets of

set variables, commonly referred to as global constraints, are usually available in a set solver.

60

5.2. Domain primitives

These include the alldisjoint, alldistinct, or partition constraints, among others. Finally, some
set solvers also implement propagators for a number of constraints over integer set variables
which occur often in practice, such as minimum or maximum element in a set (resp. min(x),
max(x)), or the sum of all elements in a set (

∑
i : i ∈ x).

Propagators typically explore a small set of primitives for updating the domain of the vari-
ables involved in the constraint. In the case of set domain variables there are three main op-
erations: insert elements in the domain, remove elements from the domain, and update the
cardinality of the domain.

Example 5.3 (Propagator for set inclusion). Let GLB(x), and LUB(x), denote respectively the
greatest lower bound and least upper bound of the domain of the set variable x. The following
set of operations propagates the constraint x1 ⊆ x2 where x1 and x2 are set variables:

GLB (x2) ← GLB (x2)∪GLB (x1)

LUB (x1) ← LUB (x1)∩ LUB (x2)

d#x1e ← min(d#x1e ,d#x2e)

b#x2c ← max(b#x1c ,b#x2c)

The last two operations update the cardinalities of the sets and correspond to propagating
an inequality constraint over the pair of integer domain variables representing the cardinalities
of the sets: #x1 ≤ #x2. Inference on the cardinality of the sets will always be accomplished
through propagation of integer constraints, and thus will not be described in this chapter.

Example 5.4. Let x1, x2, be two set domain variables with domains D (x1) = [{a,b} , {a,b,c}] :
[2 . . .3], D (x2) = [{b} , {a,b}] : [1 . . .2]. Enforcing the constraint x1 ⊆ x2 by applying the opera-
tions described above instantiates the variables to x1 = x2 = {a,b}.

5.2. Domain primitives

The operations required for propagating the set inclusion constraint are rather straightfor-
ward. Other constraints such as set intersection or set union often require a larger set of opera-
tions, see [Azevedo 2007] for a comprehensive description. Nevertheless, for all set constraints,
propagation is performed by a set of updates to the GLB, LUB, and cardinalities of the involved
variables, as shown above for the set inclusion constraint. Let us formalize these operations.

Definition 5.5 (Set domain primitives). Let x be a set variable, and R denote a set of values,
possibly with just one element. We will consider two atomic operations for updating the do-
main of set domain variables, defined as follows

INSERTINGLB (x,R) = {GLB (x) ← GLB (x)∪R}

REMOVEFROMLUB (x,R) = {LUB (x) ← LUB (x) \ R}

61

Chapter 5. Incremental Propagation of Set Constraints

primitive cost

INSERTINGLB (x,R) O (|GLB (x)|+ |R|)
REMOVEFROMLUB (x,R) O (|POSS (x)|+ |R|)

INSERTINGLB? (x,R) O (|LUB (x)|)
REMOVEFROMLUB? (x,R) O (|LUB (x)|)

Table 5.1.: Worst-case runtime for set domain primitives when performing non-incremental
propagation.

We note that the above operations are not safe. There is an implicit relation between a set’s
GLB and LUB due to the lattice structure of the domain described above: GLB (x) ⊆ LUB (x). All
updates on the domain GLB or LUB must fail if this constraint is not satisfied. For making this
explicit we redefine the above set of primitives which return a boolean indicating the success
status of the operation.

Definition 5.6 (Safe set domain primitives). Let x and R be defined as above and r be a boolean
value indicating the return status of the operation, and

INSERTINGLB? (x,R) = {r ← R ⊆ LUB (x) ; INSERTINGLB (x,R)}

REMOVEFROMLUB? (x,R) = {r ← (R ∩GLB (x) = 0) ; REMOVEFROMLUB (x,R)}

Example 5.7. The propagator for the set inclusion constraint c = [x1 ⊆ x2] given in example 5.3
may be expressed using the above primitives,

πc =INSERTINGLB? (x2, GLB (x1))

∧REMOVEFROMLUB? (x1, LUB (x1) \ LUB (x2))

There are a number of important optimizations that we should remark. Firstly, we note that
πc does not always call both primitives, but instead only calls those for which R has changed
since last execution. Most set solvers use events, as discussed in chapter 3, that implement
this optimization. Secondly, for efficiency reasons, set solvers do not explicitly maintain both
the GLB and LUB sets of a set domain variable. Instead, they maintain the GLB and the POSS set,
where for a given set variable x, POSS (x) = LUB(x) \ GLB (x), representing the set of values that
can be possibly added to GLB(x).

Assuming this representation, that both the GLB and POSS sets of a set domain variable,
which are totally ordered, are maintained in a sorted data structure, and that R is a sorted
set, then the runtime cost of the set domain primitives is given by table 5.1.

62

5.3. Incremental propagation

5.3. Incremental propagation

Constraint propagation is accomplished by executing propagators until a fixpoint is reached.
Recall that a specific propagator may therefore be executed multiple times during the same
fixpoint computation. For helping us in the detailed analysis of incremental propagation over
set constraints, let us refine the previously introduced notation.

Definition 5.8 (Propagation sequence). A propagation sequence describes the domains and
propagator executions involved in the computation of a fixpoint. The sequence consists on a
series of nodes d1, . . . ,dn representing domains, and labeled arrows representing propagator
executions. There is a labeled arrow from a domain di to domain d j , denoted di →

πt
d j , if and

only if the t ’th execution of propagator π filtered domain di to domain d j during the compu-
tation of the fixpoint. Although propagation is non-deterministic, we will assume a determin-
istic implementation on one processor, which consequently allow us to represent propagation
sequences of the form

d1 →
π1

. . . →
πt

dn

Example 5.9. Consider set variables x1, x2, with domains D (x1) = D (x2) = [1 . . .n,1 . . .m],
where m > n +1. Consider also the constraints a = [x1 ⊆ x2], b = [n +1 ∈ x1] and c = [m ∉ x2].
Let us assume the following sequence of propagations until a fixpoint is reached:

d1 →
π1

a

d2 →
π1

b

d3 →
π2

a

d4 →
π1

c

d5 →
π3

a

d6

d1 (x1) = [1 . . .n,1 . . .m] d1 (x2) = [1 . . .n,1 . . .m]
d2 (x1) = d1 (x1) d2 (x2) = d1 (x2)
d3 (x1) = [1 . . .n +1,1. . .m] d3 (x2) = d2 (x2)
d4 (x1) = d3 (x1) d4 (x2) = [1 . . .n +1,1. . .m]
d5 (x1) = d4 (x1) d5 (x2) = [1 . . .n +1,1. . .m −1]
d6 (x1) = [1 . . .n +1,1. . .m −1] d6 (x2) = d5 (x2)

Definition 5.10. Let GLB<πt (x) (resp. LUB<πt (x)) denote the GLB (resp. LUB) of x immediately
before the t ’th execution of π. Similarly, let GLB>πt (x) (resp. LUB>πt (x)) denote the GLB (resp.
LUB) of x immediately after the t ’th execution of π. For instance, in the example above we have
GLB<π2

a
(x1) = 1. . .n +1 and LUB>π3

a
(x2) = 1. . .m −1.

According to the propagation rules for the constraint a = [x1 ⊆ x2] given in the previous sec-
tion, the set of primitives involved in the several executions of πa in the propagation sequence

63

Chapter 5. Incremental Propagation of Set Constraints

of the above example are

πi
a = INSERTINGLB?

(
x2, GLB<πi

a
(x1)

)
∧ REMOVEFROMLUB?

(
x1, LUB<πi

a
(x1) \ LUB<πi

a
(x2)

)
Although the above propagation is correct, the involved operations are somewhat redundant.
For example all elements in GLB<π2

a
(x1) except one have already been inserted in GLB (x2) by

π1
a when π2

a is executed. Similarly, all elements in LUB<π3
a

(x1) \ LUB<π3
a

(x2) except one were
already removed from LUB (x1) by π1

a when π3
a is executed. In fact, π2

a and π3
a could have been

simplified to

π2
a = INSERTINGLB? (x2, {n +1}) (5.1)

π3
a = REMOVEFROMLUB? (x1, {m}) (5.2)

In this case, the set R to insert or remove from the domain is computed from the set of domain
updates since the last execution of the propagator, hence the term incremental propagation.
Let us formalize this concept.

Definition 5.11 (Set domain deltas). The GLB delta for a variable x with respect to the i ’th
execution of a propagator π, written ∆GLB

x

(
πi

)
, is the set of values inserted in GLB(x) since the

execution πi−1. Similarly, the LUB delta for a variable x with respect to the i ’th execution of a
propagator π, written ∆LUB

x

(
πi

)
, is the set of values removed from LUB(x) since the execution

πi−1. Formally,

∆GLB
x

(
πi

)
= GLB<πi (x) \ GLB>πi−1 (x)

∆LUB
x

(
πi

)
= LUB>πi−1 (x) \ LUB<πi (x)

Example 5.12. An incremental propagator for the set inclusion constraint a = [x1 ⊆ x2] may
be defined as

πi
a =INSERTINGLB?

(
x2,∆GLB

x1

(
πi

a

))
∧REMOVEFROMLUB?

(
x1,∆LUB

x2

(
πi

a

))
Using this propagator for computing the fixpoint of example 5.9 would perform exactly the
incremental operations shown in eq. 5.1 and 5.2,

π2
a = INSERTINGLB?

(
x2,∆GLB

x1

(
π2

a

))= INSERTINGLB? (x2, {n +1})

π3
a = REMOVEFROMLUB?

(
x1,∆LUB

x2

(
π3

a

))= REMOVEFROMLUB? (x1, {m})

64

5.4. Implementation

Note that these operations are still linear in the worst case (see table 5.1), which makes in-
cremental propagation advantageous only if

∣∣∆GLB
x

∣∣ and
∣∣∆LUB

x

∣∣ are small on average. It turns
out that this occurs frequently in practice, as we will see later.

5.4. Implementation

Incremental propagators require access to the set of updates to the domains of the associated
variables since their last execution - the domain deltas. In this section we investigate two so-
lutions for making this information available to propagators, with distinct efficiency tradeoffs.

5.4.1. Propagator-based deltas

For each incremental propagatorπc and variable x in their associated constraint c we explicitly
maintain the delta sets ∆GLB

x

(
πi+1

c

)
and ∆LUB

x

(
πi+1

c

)
, where i corresponds to the last execution

of propagator πc .

Definition 5.13. Let G (x) and L (x) denote the set of delta sets associated with variable x, and
G (πc) and L (πc) denote the set of delta sets associated with propagator πc , i.e.

G (x) = {
∆GLB

x

(
πi+1

c

)
: ∀πc

}
G (πc) = {

∆GLB
x

(
πi

c

)
: ∀x ∈ X

}
L (x) = {

∆LUB
x

(
πi+1

c

)
: ∀πc

}
L (πc) = {

∆LUB
x

(
πi

c

)
: ∀x ∈ X

}
During search and propagation the solver maintains all delta sets by implementing the fol-

lowing operations:

• Each domain update of a variable x is stored in all relevant delta sets:

INSERTINGLB(x,R) ⇒ ∆←∆∪ (R ∩ POSS(x)) ,∀∆ ∈G (x) (5.3)

REMOVEFROMLUB(x,R) ⇒ ∆←∆∪ (R ∩ POSS(x)) ,∀∆ ∈ L (x) (5.4)

• All delta sets associated with a propagator are cleared after its execution or when the
solver backtracks:

∆←; ,∀∆ ∈G (πc) (5.5)

∆←; ,∀∆ ∈ L (πc) (5.6)

Example 5.14. Consider set variables x1, x2, x3, with domains D (x1) = D (x2) = D (x3) = [{} , {1,2}].
Consider also the constraints a = [1 ∈ x1], b = [2 ∉ x1], and the relation x1 = x2 = x3 enforced
with a set of binary constraints c = [x1 ⊆ x2], d = [x2 ⊆ x1], e = [x1 ⊆ x3], and f = [x3 ⊆ x1]. Let
us assume that the propagators for the constraint x1 = x2 = x3 have been executed once and

65

Chapter 5. Incremental Propagation of Set Constraints

thus are at fixpoint. Then, consider that constraints a, and b, are added to constraint store,
triggering the following sequence of propagations until the fixpoint is reached:

d1 →
π1

a

d2 →
π1

b

d3 →
π2

c

d4 →
π2

d

d5 →
π2

e

d6 →
π2

f

d7

d1 (x1) = [{} , {1,2}] d1 (x2) = [{} , {1,2}] d1 (x3) = [{} , {1,2}]
π1

a : d2 (x1) = [{1} , {1,2}] d2 (x2) = d1 (x2) d2 (x3) = d1 (x3)
π1

b : d3 (x1) = {1} d3 (x2) = d2 (x2) d3 (x3) = d2 (x3)
π2

c : d4 (x1) = d3 (x1) d4 (x2) = [{1} , {1,2}] d4 (x3) = d3 (x3)
π2

d : d5 (x1) = d4 (x1) d5 (x2) = {1} d5 (x3) = d4 (x3)
π2

e : d6 (x1) = d5 (x1) d6 (x2) = d5 (x2) d6 (x3) = [{1} , {1,2}]
π2

f : d7 (x1) = d6 (x1) d7 (x2) = d6 (x2) d7 (x3) = {1}

There are 12 delta sets involved in the incremental propagation of the previous example: ∆GLB
xi

(
π j

)
and ∆LUB

xi

(
π j

)
for all i ∈ 1. . .3 and j ∈ {

c,d ,e, f
}
. They are maintained according to the rules

given above as follows:

π1
a : ∆GLB

x1
(πc) =∆GLB

x1
(πe) = {1} (rule 5.3)

π1
b : ∆LUB

x1
(πd) =∆LUB

x1

(
π f

)= {2} (rule 5.4)
π2

c : ∆GLB
x2

(πd) = {1} (rule 5.3)
∆GLB

x1
(πc) =∆LUB

x2
(πc) =; (rule 5.5)

π2
d : ∆LUB

x2
(πc) = {2} (rule 5.4)

∆GLB
x2

(πd) =∆LUB
x1

(πd) =; (rules 5.5,5.6)
π2

e : ∆GLB
x3

(
π f

)= {1} (rule 5.3)
∆GLB

x1
(πe) =∆LUB

x3
(πe) =; (rule 5.5)

π2
f : ∆LUB

x3
(πe) = {2} (rule 5.4)

∆GLB
x3

(
π f

)=∆LUB
x1

(
π f

)=; (rules 5.5,5.6)

In our implementation we represent each delta set with a stack. This allows the operations
described by eqs. 5.3 and 5.4, to be performed in O (R) and those described by eqs. 5.5 and
5.6 in O (1). However, since propagation may update domains in an arbitrary order, a stack
associated with a specific delta set is not necessarily sorted. Unfortunately, sorted delta sets
are required for a linear runtime cost of the insert and remove operations, as we have seen in
the previous section. This means that, in our implementation, incremental propagation for set
solving has a higher worst-case runtime cost compared to non-incremental propagation. We
will return to this matter later.

66

5.4. Implementation

5.4.2. Variable-based deltas

An incremental propagator must access the set of changes on the domains of their associated
variables since its own last execution. The propagator-based solution described above solves
this problem by storing a copy of each domain update in all relevant propagators. This means
that for each update R of a domain of a variable x participating in n constraints, there are
potentially n copies of R stored in n delta sets. The variable-based solution avoids this prob-
lem by storing only one copy of the domain update in a shared location (the variable’s domain).
Propagators are then given access to their own relevant set of updates by a sophisticated mech-
anism based on iterators.

Definition 5.15 (Shared FIFO data structure). A shared FIFO data structure Q is any FIFO data
structure with additional support for the following primitives: BEGIN (Q) which returns an it-
erator, i.e. a pointer, to a special element called BEGIN, END (Q) which returns a pointer to the
last element in the queue, and TAIL (Q, i) which returns the queue of elements of Q starting
after the element pointed by i , and ending in END (Q) .

For every variable x in the problem we have a pair of shared FIFO data structures: ∆GLB
x ,

associated with the set of updates to GLB (x), and ∆LUB
x , associated with the set of updates to

LUB (x). For any incremental propagatorπc and relevant variable x, we define a pair of iterators
to ∆GLB

x , ∆LUB
x , denoted I GLB

x (πc) and I LUB
x (πc) respectively. The delta sets and the iterators are

maintained during search and propagation by applying the following operations:

• Each domain update of a variable x is stored in all relevant delta sets:

INSERTINGLB(x,R) ⇒ PUSHBACK
(
∆GLB

x ,R ∩ POSS(x)
)

(5.7)

REMOVEFROMLUB(x,R) ⇒ PUSHBACK
(
∆LUB

x ,R ∩ POSS(x)
)

(5.8)

• All delta sets are cleared after each fixpoint computation, or when the solver backtracks:

∆GLB
x ← {BEGIN} ,∀x ∈ X (5.9)

∆LUB
x ← {BEGIN} ,∀x ∈ X (5.10)

• All iterators associated with a propagator πc are assigned to the BEGIN position when the
solver backtracks, and before the initial propagation:

I GLB
x (πc) ← BEGIN

(
∆GLB

x

)
,∀x ∈ X (c) (5.11)

I LUB
x (πc) ← BEGIN

(
∆LUB

x

)
,∀x ∈ X (c) (5.12)

A propagator πc may obtain the delta set of a variable x at any moment during propagation
using TAIL

(
∆GLB

x , I GLB
x (πc)

)
or TAIL

(
∆LUB

x , I LUB
x (πc)

)
. In practice the delta set is obtained by iter-

ating Ix (πc) throughout the queue - it defines the set of deltas of x already processed by the

67

Chapter 5. Incremental Propagation of Set Constraints

propagator πc . Usually, when the propagator exits Ix (πc) is pointing to the last element in the
queue, but this not required by the model.

Computing the fixpoint of example 5.14 involving the set of operations described above is
shown in figure 5.2.

All the above operations may be performed in time O (1). Compared to the previous ap-
proach, the variable-based solution is more efficient in memory and runtime: the propagator-
based approach takes runtime and memory O (n |R|) for each domain update, where R is the
set of elements inserted or removed from the domain and n is the number of propagators
involving the variable being updated, while the variable-based approach takes runtime and
memory O (|R|). However, accessing the (sorted) delta set is still O

(|R| log(|R|)) since the queue
obtained by the TAIL primitive is not sorted, similarly to what happens with the previous ap-
proach.

Finally, we remark that the propagator-based solution still has an advantage over the present
approach. If no incremental propagators are used for solving a given problem then no time is
spent in saving deltas: it follows a pay-per-use philosophy. On the other hand, the variable-
based solution always stores one copy of any domain update, regardless of the existence or
absence of propagators which will effectively make use of this information. Particularly for set
solving there is no real disadvantage on the present solution since the vast majority of propa-
gators are (or can be made) incremental, however for integer domains, the propagator based
solution is perhaps preferable.

5.4.3. Optimizations

Both approaches can be made more efficient by exploring the fact that a domain update in-
volving a contiguous subset may be performed in constant time.

Definition 5.16 (Contiguous subset). Let S = {e1, . . . ,en} be a totally ordered set, e1 < e2 < . . . <
en . A contiguous subset C of S is a totally ordered set such that for any element e in min(C) ≤
e ≤ max(C), e is in S if and only if e is in C . For example {2,5} is a contiguous subset of {1,2,5,7},
while {2,7} is not.

Let C be a contiguous subset of POSS (x). One should recall that both INSERTINGLB(x,C) and
REMOVEFROMLUB(x,C) must remove C from POSS (x). If the POSS set of set domain variables
is stored in a data structure for which list splicing takes constant time, e.g. a doubly linked list,
storing the domain delta corresponding to the update can be achieved in constant time (see
fig. 5.3).

Instead of storing the individual elements being removed, both approaches may store lists
of contiguous subsets. Consider a domain update involving a non-contiguous subset R of
POSS (x), and let c denote the minimum number of contiguous subsets of POSS (x) that cover R.
Then, this optimization allow us to decrease the runtime and memory cost involved in storing

68

5.4. Implementation

∆GLB
x1

∆LUB
x1

π1
a

{1}BEGIN

I GLB
x1

(πc)
I GLB

x1
(πe)

BEGIN

I LUB
x1

(πd)
I LUB

x1

(
π f

)

π1
b

{1}BEGIN

I GLB
x1

(πc)
I GLB

x1
(πe)

{2}BEGIN

I LUB
x1

(πd)
I LUB

x1

(
π f

)

π2
c

{1}BEGIN

I GLB
x1

(πe) I GLB
x1

(πc)

{2}BEGIN

I LUB
x1

(πd)
I LUB

x1

(
π f

)

π2
d

{1}BEGIN

I GLB
x1

(πe) I GLB
x1

(πc)

{2}BEGIN

I LUB
x1

(
π f

)
I LUB

x1
(πd)

π2
e

{1}BEGIN

I GLB
x1

(πc)
I GLB

x1
(πe)

{2}BEGIN

I LUB
x1

(
π f

)
I LUB

x1
(πd)

π2
f

{1}BEGIN

I GLB
x1

(πc)
I GLB

x1
(πe)

{2}BEGIN

I LUB
x1

(πd)
I LUB

x1

(
π f

)
Figure 5.2.: ∆GLB

x1
and∆LUB

x1
delta sets and associated iterators after each propagation during the

computation of fixpoint for the problem described in example 5.14.

69

Chapter 5. Incremental Propagation of Set Constraints

Initial POSS (x):

1 2 5 7 end

POSS (x) after INSERTINGLB (x,C) or REMOVEFROMLUB (x,C) with C = {2,5}:

1 7 end

∆GLB
x or ∆LUB

x :

2 5 end

Figure 5.3.: Updating the POSS set and storing the corresponding delta using a list splice oper-
ation assuming a doubly linked list representation.

primitive cost incremental pre-sorting cost incremental contiguous

INSERTINGLB (x,R) O
(|GLB (x)|+ |R| log(|R|)) O (c |GLB (x)|)

REMOVEFROMLUB (x,R) O
(|POSS (x)|+ |R| log(|R|)) O (c |POSS (x)|)

INSERTINGLB? (x,R) O
(|LUB (x)|+ |R| log(|R|)) O (c |LUB (x)|)

REMOVEFROMLUB? (x,R) O
(|LUB (x)|+ |R| log(|R|)) O (c |LUB (x)|)

Table 5.2.: Worst-case runtime for set domain primitives when performing incremental prop-
agation.

deltas to O (cn) and O (c) when using the propagator and variable based approach respectively,
where n is the number of propagators involving x.

Since any contiguous subset of a totally ordered set is also totally ordered, we may use this
optimization for mitigating the problem of the unsorted delta set already mentioned. For
this, we replace any call to INSERTINGLB(x,R) or REMOVEFROMLUB(x,R) where R is a non-
contiguous subset of POSS (x) to a set of c calls to INSERTINGLB(x,Ci) or REMOVEFROMLUB(x,Ci)
where Ci is the i ’th contiguous subset of POSS (x) covering R. The cost of the primitive update
operations becomes as shown in table 5.2.

Note that this table cannot be directly compared with table 5.1 since domain update prim-
itives are called with different parameter R in both cases. However, the cost of incremental
propagation using these optimizations is asymptotically worst than the cost of non-incremental
propagation since it depends on c while non-incremental propagation does not. However, in
practice c is very small, typically 1, as we will see in the next section.

70

5.5. Experiments

5.5. Experiments

In this section we evaluate the benefits of using incremental propagation compared with non-
incremental propagation. Additionally, we test the presented implementations for incremen-
tal propagation, namely propagator and variable deltas, and a third hybrid approach explained
below.

The experiments consist on solving a set of known benchmarks using different solvers, where
each solver implements a different propagation model. The search tree visited by each solver
is the same for a given experiment since the search heuristics and the applied propagation are
the same.

5.5.1. Models

NON-INCREMENTAL This model uses a non-incremental propagator for each constraint of
the problem.

INCREMENTAL-PROPAGATOR This model uses incremental propagators implemented using
propagator deltas, as described in section 5.4.1, for most constraints in the problem.

INCREMENTAL-VARIABLE This model uses incremental propagators implemented using prop-
agator deltas, as described in section 5.4.2, for most constraints in the problem.

INCREMENTAL-HYBRID This model uses an hybrid propagator combining the above two
models for each constraint. When the propagator is executed we test whether c = 1, and
if so it is propagated incrementally. Otherwise, we simply ignore the delta set and prop-
agate it non-incrementally. This assures that the propagator has the same asymptotic
runtime cost of the non-incremental variant.

GECODE The above models were implemented in CaSPER. In order to assess their competi-
tiveness, we also implemented all the problems in the Gecode solver[Gecode 2010] (see
also the related work section below).

5.5.2. Problems

Social golfers (prob10 in CSPLib)

The Social golfers problem consists in scheduling a golf tournament. The golf tournament
lasts for a specified number of weeks w , organizing g games each week, each game involving
s players. There is therefore a total of g × s players participating in the tournament. The goal is
to come up with a schedule where each pair of golfers plays in the same group at most once.

This problem may be modeled using a 2-dimensional matrix x of w × g integer set domain
variables, where each variable describes the g ’th group playing in week w . For more informa-
tion see [Gent and Walsh 1999].

71

Chapter 5. Incremental Propagation of Set Constraints

Hamming codes

This is a particular case of the Fixed-length error correcting codes (problem 36 in CSPLib). The
problem involves generating a set of binary strings which satisfy a pairwise minimum distance.
Each instance is defined by a tuple 〈n, l ,d〉 where n is the number of strings, l is the string
length, and d is the minimum distance allowed between any two strings. For measuring the
distance between two strings the Hamming distance is used.

This problem may be implemented using two arrays a, b, of n integer set variables each.
Each integer set variable ai denotes the set of positions set to 0 in the string i . Conversely, the
set variable bi denotes the set of positions set to 1 in the string i . They are related through the
following set of constraints:

∀1≤i≤n PARTITION(ai ,bi)

Then, the following constraint ensures that each string is at least d bits apart from any other
string:

∀1≤i< j≤n
∣∣ai ∩b j

∣∣+ ∣∣bi ∩a j
∣∣≥ d

Balanced partition

The balanced partition problem consists in finding a partition of the set of values 1. . . v through
the sets S1, . . . ,Sn which minimizes m, where

m = max
1≤i≤n

(∑
j∈Si

j

)

For the decision version of this problem the value m is given and the goal is to find the corre-
sponding partition. This problem has a direct model using n set domain variables correspond-
ing to S1, . . . ,Sn constrained by a PARTITION constraint.

Metabolic pathways

The metabolic pathways problem consists in searching for a particular path in a graph repre-
senting a metabolic network. Metabolic networks are biochemical networks which encode in-
formation about molecular compounds and reactions which transform these molecules into
substrates and products. This problem was modeled in GRASPER, a graph-based constraint
solver built on top of the set solver available in CASPER. Both the problem, the model, and the
graph-based solver are detailed in [Viegas 2008; Viegas and Azevedo 2007].

Winner determination problem

In a combinatorial auction, the auctioneer makes available a set M = 1. . .m of items and there
is a set K = 1. . .k of bidders participating in the auction. A set of bids B = 1. . .b is submitted

72

5.6. Discussion

by the bidders, where each bid corresponds to a subset of M . Let pi be the price agreed to pay
for the items of bid i , and G j the set of bids contemplating item j . The winner determination
problem consists in labeling each bid as winning (xi = 1) or losing (xi = 0) so as to maximize
the auctioneer’s revenue given that no item can belong to more than one winning bid:

max
∑
i∈B

pi xi s.t.∀ j∈M
∑

i∈G j

xi ≤ 1

Like the previous benchmark, this problem was modeled in GRASPER. The specific model and
further details are given in [Viegas 2008].

5.5.3. Setup

The code for all experiments was compiled with the gcc-4.4.3 C++ compiler and executed on
an Intel Core 2 Duo @ 2.20GHz, using Linux-2.6.32.9. The versions of the CaSPER and Gecode
solvers were the most recently available at the moment, respectively revision 583 and version
3.3.1. Each benchmark was repeated until the standard deviation of the runtime was below 2%
of the average time, and then the minimum runtime was used.

5.6. Discussion

The runtimes obtained for all the experiments are detailed in section B.2 (in the appendix).
Each table shows the number of domain updates, average size of domain update, the time and
number of propagations for solving the benchmark. Additionally, for each instance we show
the number of variables involved in the problem (v), the ratio constraints/variable (c/v) and
number of fails (f).

The runtimes for solving the first three benchmarks are summarized in table 5.3. The table
provides some statistical measures concerning the ratio of the runtime using the correspond-
ing implementation over the runtime using an implementation with non-incremental propa-
gation. For example, solving a problem performing incremental propagation using propagator
deltas takes on (geometric) average 88% of the time spent solving the same problem with non-
incremental propagation.

The table shows that incremental propagation using variable deltas is better on average than
any other method, although only slightly better than incremental propagation using propaga-
tor deltas. Additionally, it is always better than non-incremental propagation, and also the
most robust alternative. The hybrid approach does not pay off in practice probably due to the
overhead involved in selecting the best approach at every propagation. Finally, the last row
shows that all tested solvers implemented in CaSPER slightly outperform the Gecode solver.

The results concerning the last two benchmarks are summarized in table 5.4. The table
provides a statistical analysis on the ratio of the solver runtime using incremental propaga-

73

Chapter 5. Incremental Propagation of Set Constraints

mean stddev min max

INCREMENTAL-PROPAGATOR 0.88 1.14 0.67 1.07
INCREMENTAL-VARIABLE 0.83 1.12 0.66 0.96
INCREMENTAL-HYBRID 0.93 1.14 0.73 1.15

GECODE 1.14 1.13 0.91 1.33

Table 5.3.: Geometric mean, standard deviation, minimum and maximum of ratios of run-
time for solving the first set of benchmarks described above using the presented
implementations of incremental propagation, compared to non-incremental prop-
agation.

mean stddev min max

INCREMENTAL-VARIABLE 0.7 1.27 0.46 0.91

Table 5.4.: Geometric mean, standard deviation, minimum and maximum of ratios of runtime
for solving the second set of benchmarks (graph problems) using the variable delta
implementation of incremental propagation, compared to propagator deltas.

tion based on variable deltas over the solver runtime using incremental propagation based on
propagator deltas. In these benchmarks using variable deltas instead of propagator deltas for
implementing incremental propagation has a greater impact on runtime compared with the
first three benchmarks (about 13% better on average). This discrepancy is probably due to
the fact that some graph constraints used involve an exponential number of set propagators,
which is the case where using variable deltas is more efficient.

5.7. Summary

We have seen that incremental propagation can make constraints involving set domain vari-
ables significantly more efficient. Incremental propagation requires knowing the set of changes
between propagator executions, for which we have introduced two distinct techniques: prop-
agator and variable based deltas. We have shown that the latter is theoretically more efficient
in both time and memory, and that it performs slightly better in practice on problems involv-
ing set domain variables. Additionally, on problems involving graph domain variables it can
achieve an improvement on runtime of about 30% on average compared to propagator based
deltas.

74

5.7. Summary

Related work

Ï The set solver used in the experiments is based on and extends the Cardinal set solver
[Azevedo 2007]. This set solver is implemented in Eclipse prolog [ECLiPSe 2010] and does
not support incremental propagation.

Ï We have focused exclusively on propagators achieving bounds consistency for set constraints.
Domain consistent propagators for set constraints have been introduced in [Lagoon and
Stuckey 2004]. These propagators maintain a compacted extensional representation of the
set of possible values (which are themselves sets) for each set domain variable. An incre-
mental domain consistent propagator for a constraint involving set variables would require
access to a number of domain updates which is exponential on the set cardinality, instead
of linear as in the case of incremental bounds consistent propagators. Therefore, we believe
that our method would not be easily adapted for domain complete propagators.

Ï In this chapter we presented incremental propagation for constraints involving set domain
variables. CaSPER also provides incremental propagators for constraints over integer do-
main variables, but they are implemented differently due to the following two facts. Firstly,
most propagators involving integer domain variables have a very efficient non-incremental
implementation, specifically those for arithmetic constraints achieving bounds consistency.
Secondly, incremental domain consistent propagators such as the alldifferent, extensional
or regular constraint propagators, achieve their incrementality by querying and modify-
ing its internal state according to the specific domain update, as illustrated in the previous
chapter. Therefore, the information about most domain updates is not used and maintain-
ing it in delta sets would often be a waste of time. The current implementation associates
a demon to each propagator which is able to access and update the internal state of incre-
mental propagators. For those propagators which require the full delta information, the
specific demon may store it in a data structure which is local to the propagator, similar to
what is done with propagator based deltas. This technique is not new, it is used for example
in Choco [Choco 2010], ILOG Solver [ILOG 2003b], and Minion [Gent et al. 2006b].

Ï Incremental propagation in Gecode solver is implemented through an abstraction called
Advisor [Lagerkvist and Schulte 2007; Lagerkvist 2008]. Advisors are associated with prop-
agators and besides providing delta information can be used to alter the internal state of
each propagator, similar to the incremental propagators involving integer domain variables
available in CaSPER explained above. We did not find a detailed description of the advi-
sors used on propagators for simple set constraints but their implementation should map
to propagator based deltas.

Ï Throughout this chapter we assumed a set domain representation based on a doubly linked
list. This is indeed the most common implementation, but others are possible. For exam-
ple in [Viegas et al. 2008] we introduced an hash set representation of the domain of a set

75

Chapter 5. Incremental Propagation of Set Constraints

domain variable. This representation has interesting advantages, namely O (1) inserts and
updates, but disallows the optimization which explores updates of contiguous sets of values
described in section 5.4.3.

76

Part II.

Efficient Propagation of Arbitrary
Decomposable Constraints

77

Chapter 6.

Propagation of Decomposable Constraints

This chapter formalizes propagation of decomposable constraints. More specifically, it de-
scribes propagation of decomposable constraints as a function of views, an abstraction rep-
resenting the pointwise evaluation of a function over a given (tuple) set. It is organized as
follows: First we characterize a decomposable constraint as a functional composition (§6.1).
Then, we introduce views (§6.2), and show that they may be used to express sound and com-
plete propagators for arbitrary constraints (§6.3). Finally, we detail how views may be obtained
from composition of other views, and that this property can be used to model complete prop-
agators for complex decomposable constraints (§6.4).

6.1. Decomposable constraints

Most constraints used in practice are decomposable. Below are some examples of constraints
which may be decomposed, as will be detailed later.

Example 6.1 (Arithmetic constraints). This is probably the most common type of decompos-
able constraints. Examples are constraints involving a sum of variables, e.g.

[∑
i xi = 0

]
, a lin-

ear combination, e.g.
[∑

i ai xi ≥ 0
]
, or a product, e.g.

[∏
i xi = 0

]
. Arithmetic constraints may

include an arbitrary combination of arithmetic operators, such as for example [|x1 −x2| = 2x3].

Example 6.2 (Boolean constraints). Boolean constraints involve Boolean domain variables or
expressions, for example a disjunction of variables [

∨
i xi], or more complex expressions on

Boolean constraints such as disjunctions [
∨

i (xi > 0)], logical implications
[
x > 0 ⇒ y < 0

]
or

equivalences
[
x > 0 ⇔ y

]
.

Example 6.3 (Counting constraints). Counting constraints restrict the number of occurrences
of some values within a collection of variables, for example the EXACTLY(x, v,c) constraint[∑

i (xi = v) = c
]
, or the AMONG(x,V ,c) constraint

[∑
i (xi ∈V) = c

]
.

Example 6.4 (Data constraints). Also known as ad-hoc constraints, they represent an access to
an element of a data structure (a table, a matrix, a relation) [Beldiceanu et al. 2010]. The most
common constraint in this class is the ELEMENT

(
x, i , y

)
constraint enforcing

[
xi = y

]
where i

79

Chapter 6. Propagation of Decomposable Constraints

is a variable. Decomposable constraints involving this constraint are for example
[
xi ≥ y

]
or[

xi −x j ≥ 0
]
.

6.1.1. Functional composition

We propose to express decomposable constraints as a composition of functions. For this pur-
pose we will make extensive use of functions that evaluate to tuples, i.e. f : Zn → Zk where
k ≥ 1, together with the operations (and conventions):

Definition 6.5 (Functional composition). Functional composition is denoted by operator ◦ as
usual:

(
f ◦ g

)
(x) = f

(
g (x)

)
.

Definition 6.6 (Cartesian product of functions). Cartesian product of functions is denoted by
operator × as follows:

(
f × g

)
(x) = 〈

f (x) , g (x)
〉

. If x is a tuple we may write(
f × g

)
(x1, . . . , xn) = 〈

f (x1, . . . , xn) , g (x1, . . . , xn)
〉

These operators may of course be combined thus providing a very effective way to repre-
sent decomposable constraints. To exercise this terminology, we will exemplify with a possible
decomposition of some of the constraints given above. In the following examples let x, y rep-
resent variables, a a constant, and pi (x) = xi the projection operator.

Example 6.7 (Equality constraint). Let constraint ceq (x) = [x1 = x2] be the binary constraint
stating that variable x1 and x2 must take the same value. A unary equality constraint ceqc (x, a) =
[x = a] may be obtained by ceqc =

[
ceq ◦

(
p1 × fa

)]
, where fa (x) = a.

Example 6.8 (Sum constraint). Let f (x) = x1 + x2. A sum of three variables is represented by
f ◦ (

f ×p3
)
. The generalization to a sum of n variables is defined as

g = f ◦ (
f ×p3

)◦ (
f ×p3 ×p4

)◦ . . .◦ (
f ×p3 ×p4 × . . .×pn

)
Therefore we may decompose a constraint for a sum of n variables csum0 (xn) = [∑n

i xi = 0
]

as
csum0 =

[
ceq0 ◦ g

]
, where ceq0 (x) = ceqc (x,0) defined in the previous example.

Example 6.9 (Linear constraint). A linear constraint clin0 (an ,xn) = [∑n
i=1 ai xi = 0

]
may be com-

posed as follows. Let f1, . . . , fn :Zn →Z, where fi (xn) = ai xi . Then, clin0 =
[
csum0 ◦

(
f1 × . . .× fn

)]
,

where csum0 is defined in the previous example.

Example 6.10 (Arbitrary arithmetic constraint). Let f (x) = x1 − x2, g (x) = |x|, h (x) = 2x. The
arithmetic constraint c

(
x3

)= [|x1 −x2| = 2x3] may be represented as

c = [
ceq ◦

((
g ◦ f ◦ (

p1 ×p2
))× (

h ◦p3
))]

80

6.2. Views

Example 6.11 (EXACTLY constraint). This constraint, represented by
[∑

i (xi = v) = c
]
, may be

obtained similarly to example 6.9 but where fi (xn) = [xi = v] and the constraint ceqc is used
instead of ceq0.

Example 6.12 (Data constraints). The constraints introduced in example 6.4 may be decom-
posed into [

xi ≥ y
] = [

ELEMENT (x, i , ai)∧ai ≥ y
][

xi −x j ≥ 0
] = [

ELEMENT (x, i , ai)∧ ELEMENT
(
x, j , a j

)∧ai −a j ≥ 0
]

6.2. Views

This section presents an informal introduction to views as a tool for analyzing the propagation
of decomposable constraints.

Example 6.13. Consider a CSP defined by variables x1, x2, x3, domains D (x1) = D (x2) = D (x3) =
{1,2,3}, and constraints c1 = [x1 = x2], and c2 = [x1 +x2 = x3]. A propagator for constraint c1

performs the following operations:

D (x1) ← D (x1)∩D (x2)

D (x2) ← D (x2)∩D (x1)

Similarly, a propagator for the constraint c2 may be described by the following operations:

D (x1 +x2) ← D (x1 +x2)∩D (x3)

D (x3) ← D (x3)∩D (x1 +x2)

where D (x1 +x2) = [2 . . .6] represents the possible values (i.e. the domain) of the subexpression
x1 +x2.

In most constraint solvers, domains of subexpressions occurring in constraints are not di-
rectly available to propagators, which are designed to work exclusively with variable domains.
In these solvers, an offline modeling phase is responsible for obtaining an equivalent CSP
where all constraints are flattened, that is where each subexpression appearing in a constraint
is replaced by an auxiliary variable whose domain is the domain of the subexpression. Nev-
ertheless, we may develop a conceptual model that considers explicit subexpression domains
while abstracting on how they are computed and maintained. This will allow a theoretical
analysis of the propagation on the constraint decomposition, regardless of the method used
for representing the subexpression domains. In chapter 8 we evaluate some practical instanti-
ations of the model, namely when performing the transformation detailed above.

We begin by defining an abstraction which captures the domain of a subexpression in a
constraint: a view.

81

Chapter 6. Propagation of Decomposable Constraints

Definition 6.14 (View). A view over a function f :Zn →Zk is a pair ϕ=
〈
ϕ+

f ,ϕ−
f

〉
of two func-

tions, the image function ϕ+
f : ℘ (Zn) → ℘

(
Zk

)
, and the object function ϕ−

f : ℘
(
Zk

) → ℘ (Zn),
defined as

ϕ+
f

(
Sn) =

{
f
(
xn) ∈Zk : xn ∈ Sn

}
,∀Sn ⊆Zn

ϕ−
f

(
Sk

)
=

{
xn ∈Zn : f

(
xn) ∈ Sk

}
,∀Sk ⊆Zk

A viewϕ f is therefore defined by considering the pointwise application of f over a given set.
The image function computes a set of images of f , that is the set resulting from applying f to
all the points in the given set. The object function does the inverse transformation, it computes
the set of objects of f for which its image is in the given set.

Example 6.15. Applying a view over function f (x) = x +1 to a random set:

ϕ+
f ({1,2,3}) = {2,3,4}

ϕ−
f ({2,3,4}) = {1,2,3}

As discussed earlier, propagating a constraint may require consulting and updating the do-
main of a subexpression. A view over the subexpression defines these operations:

Example 6.16. Consider a view ϕg over function g
(
x, y

)= x + y , and the CSP of example 6.13
on the preceding page. Function ϕ+

g may be used to compute the subexpression domain
D (x1 +x2) from the variable domains D (x1) and D (x2), while function ϕ−

g may be used to
specify the set of values for the variables x1, x2 that satisfy constraint c2.

ϕ+
g (D (x1)×D (x2)) = [2 . . .6]

ϕ−
g (D (x3)) = {〈

x, y
〉 ∈Z2 : x + y ∈ {1,2,3}

}
Propagation consists in removing inconsistent values from the domain of the variables. In

this sense, the computation of ϕ−
f , i.e. the set of consistent assignments, will always precede

an intersection with the original domain to guarantee that the propagation is contracting. The
following definition captures exactly that.

Definition 6.17 (Contracting object function). Let Sn ∈Zn , Sk ∈Zk , be two arbitrary tuple sets
and f :Zn →Zk an arbitrary function. Then,

ϕ̂ f

(
Sk ,Sn

)
=ϕ−

f

(
Sk

)
∩Sn

Example 6.18. The result of evaluating and updating the domain D (x1 +x2), as defined in the

82

6.3. View-based propagation

previous example, may be formalized using views as follows:

ϕ+
g (D (x1)×D (x2)) = [2 . . .6]

ϕ̂g (D (x3) ,D (x1)×D (x2)) = {〈1,1〉 ,〈1,2〉 ,〈2,1〉}

6.3. View-based propagation

A constraint may be seen as a Boolean function c : Zn → {0,1}, mapping allowed tuples (i.e.
tuples satisfying the constraint) to 1 and forbidden tuples to 0. In this sense, views may repre-
sent not only subexpression domains, but the domains of the constraints as well. Let us then
formally explore the relation among views, constraint domains, and the most common opera-
tions occurring in the process of constraint solving: checking and propagating constraints.

6.3.1. Constraint checkers

A constraint checker decides if the constraint c is satisfied (or entailed), or unsatisfied (resp.
disentailed) for some tuple set. Constraint checkers are used in practice for many purposes,
such as implementing reification [Hentenryck and Deville 1993], optimizing constraint prop-
agation by detecting subsumed propagators [Schulte and Stuckey 2004], or as part of weaker
search algorithms which do not require propagation, e.g. pure backtracking.

Definition 6.19 (Constraint checker). A constraint checker is a monotonic functionχc :℘ (Zn) →
℘ ({0,1}). The constraint checker is sound if and only if

con(c)∩Sn 6= ;⇒ 1 ∈χc
(
Sn)∧

con(c)∩Sn 6= Sn ⇒ 0 ∈χc
(
Sn)

and complete if and only if

con(c)∩Sn 6= ;⇐ 1 ∈χc
(
Sn)∧

con(c)∩Sn 6= Sn ⇐ 0 ∈χc
(
Sn)

Example 6.20 (Constraint checker). Consider set S = {〈2,2〉 ,〈3,3〉} and constraints c1 =
[
x = y

]
,

c2 =
[
x 6= y

]
. Thenχc1 is sound iff 1 ∈χc1 (S) and complete iffχc1 (S) = {1}. Similarly, χc2 is sound

iff 0 ∈χc2 (S) and complete iff χc2 (S) = {0}.

Constraint checkers may be obtained directly using the image view function.

Definition 6.21 (View-based constraint checker). A view-based constraint checker for a con-
straint c ∈C is a function χ̌c :℘ (Zn) →℘ ({0,1}) such that χ̌c (Sn) =ϕ+

c (Sn).

83

Chapter 6. Propagation of Decomposable Constraints

The following proposition states that view based constraint checkers are sound and com-
plete constraint checkers.

Proposition 6.22. A view-based constraint checker χ̌c is a sound and complete constraint checker.

6.3.2. Propagators

We have previously defined propagators (def. 2.35 on page 16) implementing a constraint c ∈C
as a function πc :℘ (Zn) →℘ (Zn) having the following properties:

• con(c)∩Sn ⊆πc (Sn) (soundness)

• πc (Sn) ⊆ Sn (contraction)

A propagator πc which satisfies these conditions and also π?c (Sn) = con(c)∩Sn corresponds to
the strongest propagator for the constraint c - the propagator that, at fixpoint, is able to remove
all tuples not satisfying the constraint. Let us represent such propagator using views.

Definition 6.23 (View-based propagator). A view-based complete propagator (or filter) imple-
menting a constraint c ∈C is a function π̌c :℘ (Zn) →℘ (Zn) such that

π̌?c
(
Sn)=ϕ−

c ({1})∩Sn = ϕ̂c
(
{1} ,Sn)

This definition supports the following proposition.

Proposition 6.24. A view-based complete propagator for a constraint c is a sound and complete
propagator for c.

6.4. Views over decomposable constraints

In the previous section we have shown how constraint checkers and propagators map to their
view-based counterparts when the constraint is represented as a single view. This does not yet
bring any practical advantages in terms of modularity or code reuse - an arbitrary constraint
would still require a specific view for that constraint, as it requires a specific propagator. How-
ever, when the constraint is decomposable, a view over the constraint may be obtained from
composition of other views. First we present some properties of views:

Property 6.25 (Distributivity). Views distribute over set union and with set intersection. Let
Sn

1 , Sn
2 be two arbitrary sets and ⊕∈ {∪,∩},

ϕ+
f

(
Sn

1 ⊕Sn
2

) = ϕ+
f

(
Sn

1

)⊕ϕ+
f

(
Sn

2

)
ϕ−

f

(
Sn

1 ⊕Sn
2

) = ϕ−
f

(
Sn

1

)⊕ϕ−
f

(
Sn

2

)

84

6.4. Views over decomposable constraints

Property 6.26 (Monotonicity). ϕ+
f and ϕ−

f are monotonic for any arbitrary function f .

Property 6.27 (Identity). Let Sn ⊆ Zn , Sk ⊆ Zk , and f : Zn → Zk an arbitrary function. The
following equivalences are true,

Sn ⊆ ϕ−
f ◦ϕ+

f

(
Sn)

Sn = ϕ̂ f

(
ϕ+

f

(
Sn)

,Sn
)
=ϕ−

f ◦ϕ+
f

(
Sn)∩Sn

Sk = ϕ+
f ◦ϕ−

f

(
Sk

)

6.4.1. Composition of views

Views may be composed either vertically using functional composition, or horizontally using
the Cartesian product of functions. A view over a composition of functions is equivalent to the
composition of views over the individual functions:

Proposition 6.28. Let Si ⊆ Zi , Sk ⊆ Zk denote arbitrary tuple sets, f : Z j → Zk , g : Zi → Z j

arbitrary functions (possibly composition of functions). Then,

ϕ+
f ◦g

(
Si

)
= ϕ+

f ◦ϕ+
g

(
Si

)
ϕ−

f ◦g

(
Sk

)
= ϕ−

g ◦ϕ−
f

(
Sk

)
Corollary 6.29. Let Si ⊆ Zi , Sk ⊆ Zk denote arbitrary tuple sets, f : Z j → Zk , g : Zi → Z j arbi-
trary functions (possibly Cartesian product of functions). Then,

ϕ̂ f ◦g

(
Sk ,Si

)
= ϕ̂g

(
ϕ̂ f

(
Sk ,ϕ+

g

(
Si

))
,Si

)
Example 6.30 (Composition of views). Consider expression

∣∣x − y
∣∣ expressed as a functional

composition f ◦g , where g (x1, x2) = x1−x2, and f (x) = |x|. Let S2 = {〈2,2〉 ,〈1,3〉}, and S1 = {2}.
Thenϕ+

f ◦g (Sn) may be obtained byϕ+
f ◦ϕ+

g

(
Si

)=ϕ+
f ({0,−2}) = {0,2}. The above corollary allow

us to compute ϕ̂ f ◦g
(
S1,S2

)
as

ϕ̂ f ◦g
(
S1,S2) = ϕ̂g

(
ϕ̂ f

(
S1,ϕ+

g

(
S2)) ,S2

)
= ϕ̂g

(
ϕ̂ f

(
S1, {0,−2}

)
,S2)

= ϕ̂g
(
{−2} ,S2)

= {〈1,3〉}

Figure 6.1 illustrates these operations.

85

Chapter 6. Propagation of Decomposable Constraints

fg

S2 ϕ+
g (S2)

ϕ−
f ◦g (S1) ⊆Z2

S1

0

2

ϕ−
f (S1)

−2
2

〈2,2〉
〈1,3〉

. . .

0

ϕ f ◦g (S2)ϕ̂ f (S1,ϕ+
g (S2))

ϕ̂ f ◦g (S1,S2)

Figure 6.1.: Computations involved in the composition of views described in example 6.30.

A view over a Cartesian product of functions is not generally equivalent to the Cartesian
product of views, although it is under some circunstances as we will see later. For now we will
only stress that applying a view over a Cartesian product of functions is well defined:

Example 6.31 (View over Cartesian product of functions). Consider set S2 = {〈1,1〉 ,〈1,2〉} and
functions f (x1, x2) = x1+x2, g (x1, x2) = x1−x2. The view image functionϕ+

f ×g may be obtained
by

ϕ+
f ×g

(
S2)= {(

f × g
)

(x) ∈Z2 : x ∈ S2} (def. 6.14)

= {〈
f (x) , g (x)

〉 ∈Z2 : x ∈ S2} (def. 6.6)

= {〈2,0〉 ,〈3,−1〉}

6.4.2. Checking and propagating decomposable constraints

Constraint checkers and propagators for composed constraints may be obtained by exploring
composition of views introduced in the previous section and the fact that constraint checkers
and propagators may be defined using views over their associated constraints.

Proposition 6.32. A view-based constraint checker for the constraint c ◦ f may be obtained by

χ̌c◦ f
(
Sn)=ϕ+

c ◦ϕ+
f

(
Sn)

Proposition 6.33. A complete view-based propagator for the constraint c ◦ f may be obtained
by

π̌c◦ f
(
Sn)= ϕ̂ f

(
π?c

(
ϕ+

f

(
Sn))

,Sn
)

In this case π̌c◦ f (Sn) is also idempotent, i.e. π̌c◦ f (Sn) = π̌?c◦ f (Sn).

Example 6.34. Consider the view-based propagator for the constraint c◦(f ×p3
)= [x1 +x2 = x3]

obtained by the above formula, where c = [x1 = x2], f (x) = x1 + x2. Let S3 = {〈1,2,3〉 ,〈4,5,6〉}.

86

6.5. Conclusion

... ...

〈9,6〉

cf ×p3

〈3,3〉

S3 πc (ϕ+
f ×p3

(S3)) ϕ+
f ×p3

(S3)

ϕ−
c ({1})

〈4,5,6〉
〈1,2,3〉

0

1

ϕ−
c◦(f ×p3)({1}) ⊆Z3

Figure 6.2.: Application of the view-based propagator for the composed constraint described
in example 6.34.

Function ϕ+
f ×p3

applies the addition and identity operations to the original set, ϕ+
f ×p3

(
S3

) =
{〈3,3〉 ,〈9,6〉}. The resulting set is filtered by propagator πc ({〈3,3〉 ,〈9,6〉}) = {〈3,3〉}, and trans-
formed back into ϕ̂ f ×p3 ({〈3,3〉} , {〈1,2,3〉 ,〈4,5,6〉}) = {〈1,2,3〉}. Figure 6.2 illustrates these oper-
ations.

The above proposition defines a complete idempotent view-based propagator πc◦ f from
a composition of views with an idempotent propagator πc . It turns out that if we relax the
condition of idempotency of πc we may still obtain a complete view-based propagator.

Proposition 6.35. A complete constraint propagator (not necessarily idempotent) for the con-
straint c ◦ f may be obtained by

π̌c◦ f
(
Sn)= ϕ̂ f

(
πc

(
ϕ+

f

(
Sn))

,Sn
)

6.5. Conclusion

We have seen how views may be used to obtain sound and complete propagators and con-
straint checkers for decomposable constraints. Moreover, we have shown that a view over a
decomposable constraint may be modeled by a composition of views. In chapter 8 we explore
this property to define a repository of views over primitive expressions and a method that in-
stantiates a view-based propagator for any decomposable constraint. In the next chapter we
will focus on an important issue not yet addressed: the efficiency of view-based propagation.

Related work

Ï Hentenryck et al. [1992]; Carlson [1995] introduced indexicals as a tool for creating propaga-
tors for arithmetic constraints. An indexical roughly correspond to the image functionϕ+ in
the sense that it computes the domain of an expression. However, unlike views, indexicals

87

Chapter 6. Propagation of Decomposable Constraints

do not define the inverse transformation ϕ− and therefore are less powerful - representing
a decomposable constraint using indexicals requires the additional definition of the projec-
tion of the object function for each variable in the constraint.

Ï Constrained expressions [ILOG 2003a] are apparently similar to views. We are not aware of a
formalization of these, but the implementation of propagators using constraint expressions
share some similarities to the implementation of view-based propagators, as we will see
later.

Ï The idea of defining view-based propagators for arbitrary constraints is incipient in [Cor-
reia et al. 2005] and [Schulte and Tack 2005]. The former presents a general overview of a
constraint solver incorporating type polymorphism and its application for creating propa-
gators from arbitrary expressions. The latter coins the term view (we originally called them
polymorphic constraints), and describes how it can be used for creating generic propagator
implementations, that is, propagators which can be reused for different constraints.

Ï Rina Dechter [Rossi et al. 2006] approaches decomposition of constraints from a different
perspective. There, the full constraint network is taken into consideration in order to obtain
generic global propagation algorithms with theoretical performance guarantees. The prop-
agation is still time or space exponential but depends exclusively on specific graph-based
parameters of the graph describing the constraint network. In contrast, we focus on the de-
composition of a single constraint into simpler constraints for which specific propagation
algorithms are applied independently. Our decomposition does not provide performance
guarantees for the global search algorithm.

Ï The problem of creating propagators for arbitrary expressions has been approached in a
different way using knowledge compilation techniques [Gent et al. 2007; Cheng and Yap
2008]. These methods create a compact extensional representation of the set of solutions
to the constraint and apply a general propagation algorithm which filters tuples not found
in this set. The propagation algorithm completely discards the semantics of the expression,
contrasting to our approach that exploits them. It is therefore most used for constraints
without any particular semantics, such as databases. Applying these algorithms for arith-
metic expressions is possible, and not so inefficient in practice concerning runtime when
expressions have small domains. However even the most compact extensional represen-
tation is exponential in the number of variables, which makes the method unpractical for
most arithmetic constraints.

Ï The formalization presented above is due to Tack [2009], but has been adapted and ex-
tended in several ways to accommodate views over functions involving multiple variables.
Firstly, we associate views with (sub)expressions, while in its original formalization views
are associated with variables. Secondly, views were originally required to be over injective

88

6.5. Conclusion

functions, a condition we found too restrictive (in particular it excludes most multiple vari-
able functions) and consequently discarded in our formalization. We have also introduced
the Cartesian product of functions to express multiple variable views, the contracting object
function ϕ̂ f to guarantee that view-based propagators are contracting (which is always the
case if f is injective), and view-based constraint checkers which were not contemplated in
the original formalization.

89

Chapter 6. Propagation of Decomposable Constraints

90

Chapter 7.

Incomplete View-Based Propagation

In the previous chapter we have seen how to obtain complete view-based propagators for ar-
bitrary constraints. Unfortunately, complete propagation algorithms for most constraints are
intractable, and therefore such propagators have limited, or no practical application. Most
practical propagators are incomplete, in the sense that they only filter a subset of the inconsis-
tent values for a given constraint and domain. In this chapter we will see how sound incom-
plete propagators may be obtained from a composition of views with the domain approxima-
tion operators introduced in chapter 2 (§7.1). Then, it will be shown that the strength of the
resulting propagator is a function of these approximations and consequently that propagators
with various completeness guarantees may be obtained from views (§7.2). Furthermore, we
will present an algorithm for comparing the strength of two (incomplete) view-based propa-
gators (§7.3). For this we use a rewriting system that maps any view-based propagator into a
lattice of consistencies that includes the well-known cases of domain consistency as well as
the different forms of bounds consistency. This algorithm allows us to select the most efficient
view-based propagator for a certain consistency type. We evaluate its adequacy on section 7.4.

7.1. ΦΨ-complete propagators

As seen in chapter 2, filtering algorithms are categorized by the consistency they are able to
enforce on a constraint network - propagators which find and remove more inconsistent val-
ues are usually more expensive in terms of memory, time, or both. Practical propagators are
incomplete to some degree, that is, they only guarantee that their output is stronger than some
upper bound. Let us recall the definition of propagator completeness.

Definition 7.1 (ΦΨ-completeness). Let Sn be an arbitrary δ-domain, c ∈ C an arbitrary con-
straint, and Φ,Ψ ∈ {

ϕ,δ,β
}
. A propagator πc is ΦΨ-complete, denoted as πΦΨc , if and only if

π?c
(
Sn)⊆ Vcon(c)∩VSnWΦWΨ∩Sn

We have already introduced some common completeness classes, namely domain, range,
bounds(D), bounds(Z), and bounds(R). All these classes except the latter map to instantiations
of the above parametrized expression as summarized in table 7.1.

91

Chapter 7. Incomplete View-Based Propagation

Upper bound Propagator strength ΦΨ-completeness
Vcon(c)∩VSnWδWδ∩Sn domain complete δδ-complete
Vcon(c)∩VSnWδWβ∩Sn bounds(D) complete δβ-complete
Vcon(c)∩VSnWβWδ∩Sn range complete βδ-complete
Vcon(c)∩VSnWβWβ∩Sn bounds(Z) complete ββ-complete

Table 7.1.: Constraint propagator completeness.

7.2. View models

View models provide an approximation to complete view based propagation as introduced in
the previous chapter.

Definition 7.2 (View approximations). Let f :Zn →Zk be an arbitrary function, Sn an arbitrary
tuple set, and Φ,Ψ ∈ {

ϕ,δ,β
}
. We define view functions that are always input a given domain

type, and that are always relaxed to a certain domain type, and denote them as follows:

Φ+
f →
Ψ

= Vϕ+
f

(
VSnWΦ

)
WΨ

→
Φ
Ψ−

f = Vϕ−
f

(
VSnWΦ

)
WΨ

→
Φ
Ψ̂ f = Vϕ̂ f

(
VSkWΦ,Sn

)
WΨ

We define an arbitrary approximation for a view-based propagator π̌c◦ f , called a view model
for c ◦ f , by applying domain approximations to the result of every operation involved in a
complete view-based propagator defined in the previous chapter,

π̌c◦ f
(
Sn) = ϕ̂ f

(
π?c ◦ϕ+

f

(
Sn)

,Sn
)

Specifically, since both the input and output of the view functions ϕ+
f and ϕ̂ f may be approx-

imated, and we may use a ΦΨ-complete propagator for c instead of a complete propagator, a
view model has at least six approximation operators involved,

〈Φ1, . . . ,Φ6〉c◦ f = Vϕ̂ f

(
VπΦ3Φ4?

c

(
Vϕ+

f

(
VSnWΦ1

)
WΦ2

)
WΦ5 ,VSnWΦ1

)
WΦ6 ∩Sn

which is more conveniently represented using the notation introduced by definition 7.2:

〈Φ1, . . . ,Φ6〉c◦ f = Φ+
1 f →Φ2

π
Φ3Φ4?
c →

Φ5

Φ̂6 f

Additionally, a view model is parametrized by two extra approximation operators guaran-
teeing that the input and output tuple sets of the full propagator have a known domain type.

92

7.2. View models

This takes into account the fact that common propagators work with specific domain types
(e.g. δ-domains) and not arbitrary tuple sets. Let us then formalize view models.

Definition 7.3 (View model). LetΦ0, . . . ,Φ7 ∈
{
ϕ,δ,β

}
be a set of approximation operators. Any

instance of the following functional composition is called a view model for the constraint c ◦ f ,

〈Φ0, . . . ,Φ7〉c◦ f = →
Φ0

Φ+
1 f →Φ2

π
Φ3Φ4?
c →

Φ5

Φ̂6 f →
Φ7

The operational semantics of a view model should be clear: given aΦ0-domain Sn , the prop-
agator first applies the approximated image function Φ+

1 f →
Φ2

, then the idempotent propagator

π
Φ3Φ4?
c for the constraint c and finally function →

Φ5

Φ̂6 f whose result is intersected with Sn and

relaxed to a Φ7-domain.

Example 7.4. Consider the constraint c ◦ f = [
2x +3y = z

]
composed from constraint c =[

x = y
]

and function f
(
x, y, z

)= 〈
2x +3y, z

〉
. Let S = {0,1}×{0,1}×{0,3}, and m be a view model

for c ◦ f defined as follows,

m = →
δ
δ+f →

ϕ
π
ββ?
c →

ϕ
β̂ f →

δ

Propagating m involves the following computations,

Vϕ+
f

(
VSWδ

)
Wϕ = {0,2,3,5}× {0,3}

π
ββ?
c ({0,2,3,5}× {0,3}) = {0,2,3}× {0,3}

Vϕ̂ f
(
V{0,2,3}× {0,3}Wϕ,S

)
Wβ∩S = {0,1}× {0,1}× {0,3}

leading to no filtering.

7.2.1. Soundness

A view model is a relaxation of a complete view-based propagator. Since complete view-based
propagators are sound propagators then view models must also be sound propagators.

Proposition 7.5. Let Φ0, . . . ,Φ7 ∈
{
ϕ,δ,β

}
be a set of approximation operators. Any view model

〈Φ0, . . . ,Φ7〉c◦ f is a sound propagator for c ◦ f .

7.2.2. Completeness

Deciding completeness of an arbitrary view model is not trivial. However, the completeness of
a specific set of view models can be easily mapped to one of the completeness classes intro-
duced in section 7.1. Let us first focus on view models belonging to this set, called ΦΨ view
models.

93

Chapter 7. Incomplete View-Based Propagation

Definition 7.6 (ΦΨ view model). Let Φ,Ψ ∈ {
ϕ,δ,β

}
. A ΦΨ view model for a constraint c ◦ f is

any view model m such that

m = Vϕ̂ f

(
π?c ◦ϕ+

f

(
VSnWΦ

)
,VSnWΦ

)
WΨ∩Sn

= →
δ
Φ+

f →
ϕ
π
ϕϕ?
c →

ϕ
Ψ̂ f →

δ

In other words, aΦΨ view model is a model for propagating δ-domains which only approx-
imates the input of the image view function and the output of the object view function. When
a view model is aΦΨ view model, then its completeness is given by the following proposition.

Proposition 7.7. A ΦΨ view model for a constraint c ◦ f is a ΦΨ-complete propagator for c ◦ f .
Moreover, it is also an idempotent propagator, i.e.

→
δ
Φ+

f →
ϕ
π
ϕϕ?
c →

ϕ
Ψ̂ f →

δ
= π̌ΦΨc◦ f = π̌ΦΨ?c◦ f

Example 7.8. Consider the constraint and tuple set S from the previous example and the fol-
lowing view model,

n = →
δ
δ+f →

ϕ
π
ϕϕ?
c →

ϕ
β̂ f →

δ

Propagating n involves the following computations,

Vϕ+
f

(
VSWδ

)
Wϕ = {0,2,3,5}× {0,3}

π
ϕϕ?
c ({0,2,3,5}× {0,3}) = {0,3}× {0,3}

Vϕ̂ f
(
V{0,3}× {0,3}Wϕ,S

)
Wβ∩S = {0}× {0,1}× {0,3}

This view model is δβ-complete (it is one of the examples illustrating the propagator strength
taxonomy given in fig. 2.3 on page 18), unlike the view model of the previous example since
n (S) ⊂ m (S).

By definition, a ΦΨ view model for a constraint c ◦ f uses an idempotent propagator for
c. The idempotency of the propagator for c is a sufficient condition for guaranteeing ΦΨ-
completeness of a ΦΨ view model for c ◦ f . The following definition relaxes the idempotency
condition.

Definition 7.9 (ΦΨ relaxed view model). Let Φ,Ψ ∈ {
ϕ,δ,β

}
. A ΦΨ relaxed view model for a

constraint c ◦ f is any view model m such that

m = Vϕ̂ f

(
πc ◦ϕ+

f

(
VSnWΦ

)
,VSnWΦ

)
WΨ∩Sn

= →
δ
Φ+

f →
ϕ
π
ϕϕ
c →

ϕ
Ψ̂ f →

δ

94

7.2. View models

AΦΨ relaxed view model for c ◦ f may or may not beΦΨ-complete, according to the follow-
ing proposition.

Proposition 7.10. Let S be an arbitrary tuple set and m aΦΨ relaxed view model for c◦ f . Then
m isΦΨ-complete if and only if any pruning achieved by the propagator for c is preserved by all
involved view functions and approximations, formally

πc

(
ϕ+

f

(
VSWΦ

)) ⊇ ϕ+
f

(
Vm? (S)WΦ

)
Example 7.11. Consider the constraint c ◦ f = [x ≥ 4] where c = [x ≥ 4] and f (x) = x. Addition-
ally, let πc be a non-idempotent propagator defined as follows:

πc (S) = {x ∈ S : x ≥ 4∨x < max(S \ [4. . .∞])}

To see that propagator πc is sound and complete consider for example S = [1 . . .4]. Then
πc (S) = {1,2,4}, πc ◦πc (S) = {1,4} and πc ◦πc ◦πc (S) =π?c (S) = {4}.

Let p be a ββ view model and q a ββ relaxed view model for the constraint c ◦ f obtained
respectively from π?c and πc :

p (S) = Vϕ̂ f

(
π?c ◦ϕ+

f

(
VSWβ

)
,VSWβ

)
Wβ∩S

q (S) = Vϕ̂ f

(
πc ◦ϕ+

f

(
VSWβ

)
,VSWβ

)
Wβ∩S

Propagator p is bounds(Z) complete by proposition 7.7, and infers p (S) = {4}. Propagator q is
not bounds(Z) complete by proposition 7.10:

πc

(
ϕ+

f

(
VSWβ

))
+ ϕ+

f

(
Vπ̌ββ?c◦ f (S)Wβ

)
{1,2,4} + [1 . . .4]

In particular it does not do any filtering for S, i.e. q (S) = S.

Finally we remark that soundness of ΦΨ view models is not affected by idempotency since
for any Sn ⊆Zn ,

Vϕ̂ f

(
π?c ◦ϕ+

f

(
VSnWΦ

)
,VSnWΦ

)
WΨ∩Sn ⊆ Vϕ̂ f

(
πc ◦ϕ+

f

(
VSnWΦ

)
,VSnWΦ

)
WΨ∩Sn

7.2.3. Idempotency

Let us go back to non-relaxed view models, that is view models which use an idempotent prop-
agator for c. Proposition 7.7 tells us that any ΦΨ view model for c ◦ f that uses an idempotent
propagator πc is also idempotent. Unfortunately, this is not true for a general view model for
c ◦ f .

95

Chapter 7. Incomplete View-Based Propagation

Proposition 7.12. Let m = 〈Φ0, . . . ,Φ7〉 be a (non-relaxed) view model for an arbitrary constraint
c ◦ f , and S an arbitrary Φ0-domain. Then m may be not idempotent for S.

This can be shown by the following example.

Example 7.13. Let c ◦ f = [2x1 = 2x2 +1], where f (x1, x2) = 〈2x1,2x2 +1〉, and c = [x1 = x2].
Consider the δ-domain S = [1 . . .4]×[1 . . .4] and the following view model for propagating c ◦ f ,

m = →
δ
β+

f →
β
π
ββ?
c →

β
β̂ f →

δ

Applying m once gives us m (S) = [2 . . .4]× [1 . . .3] which is not a fixpoint for m (the constraint
is unsatisfiable and m is able to prove it at fixpoint).

Knowing whether a propagator is idempotent for a given domain is used on some systems
for optimizing propagator execution scheduling, as seen in chapter 3. We note that a propa-
gator scheduler that takes into account idempotency of a view model for a constraint c ◦ f by
querying the idempotency of the propagator for c is safe but may loose propagation - it could
possibly fail to reexecute a non-idempotent view model.

7.2.4. Efficiency

We have not yet addressed the efficiency of view-based propagation. In general, computing
and representing views over many interesting functions is intractable in time and space. How-
ever, when the input or output (or both) sets of a view have some special structure, computing
and representing views is polynomial, as is the case for many useful views.

Example 7.14 (Tractable view functions). Let f (xn) = Σn
i=1xi . The runtime cost of comput-

ing ϕ+
f (Sn) for an arbitrary tuple set Sn ⊆Zn , and the space cost for representing ϕ̂ f (c,Sn) for

some constant are exponential in n. However, the cost of computing ϕ+
f

(
VSnWβ

)
and repre-

senting Vϕ̂ f
(
c,VSnWβ

)
Wβ is linear in n.

The fact that some view-based propagators are more efficient than others is not surprising
since the same is true for ordinary (i.e. non-view-based) propagators. Given that the set of
view models is a superset of ΦΨ-complete propagators, view models indeed provide an extra
degree of freedom for achieving a tradeoff between completeness and efficiency. Additionally,
the declarative definition of a view model may expose a performance bottleneck which may
be avoided by using an alternative view approximation.

Example 7.15. A bounds(Z) complete propagator for the constraint x1+x2 = x3 may be repre-
sented by the following view model,

→
δ
β+

f →
ϕ
π
ϕϕ?
c →

ϕ
β−

f →
δ

96

7.3. Finding stronger models

where c (x) = [x1 = x2], f (x) = 〈x1 +x2, x3〉. It turns out that it may also be obtained by an
alternative view model, which makes use of a much more efficient propagator for c,

→
δ
β+

f →
β
π
ββ?
c →

β
β−

f →
δ

The fact that both models are equivalent is easy to see in this case. Although propagator πββc

is not equivalent to πϕϕc in general, the equivalence stands when the input domain is already a
β-domain. This is the case here since the output of β+

f →
ϕ

is always a β-domain, that is,

β+
f →
ϕ

= β+
f →
β

The above example shows a view model which happens to be aΦΨ view model, henceΦΨ-
complete. However, example 7.4 has shown us that view models are not ΦΨ-complete in gen-
eral. The problem of quantifying the strength of a view model, or deciding if a given model
is stronger than another is not trivial for many view models. The next section addresses this
problem.

7.3. Finding stronger models

Both the problem of comparing view models and the problem of quantifying the strength of
a given view model m may be addressed by a procedure which finds the sets Lm , Um , of view
models stronger and weaker than m:

Lm = {b : b ¹ m}

Um = {b : m ¹ b}

Then, comparing two view models m1, m2, may be accomplished by testing m1 ∈ Lm2 , m1 ∈
Um2 or vice-versa. The problem of quantifying the strength of a view model m may be re-
duced to this problem by comparing m with a ΦΨ view model, which as we have seen are
ΦΨ-complete propagators. While finding stronger view models is not straightforward in gen-
eral, a large number of models stronger than a given view model may be easily found.

7.3.1. Trivially stronger models

Definition 7.16. Given two arbitrary functions f , g :℘ (Zn) →℘
(
Zk

)
, f is stronger than g , writ-

ten f ¹ g , if and only if f (Sn) ⊆ g (Sn) for any domain Sn ⊆Zn .

Proposition 7.17. Let f1, . . . , fk , g :℘ (Zn) →℘ (Zn) be arbitrary monotonic functions. Then for

97

Chapter 7. Incomplete View-Based Propagation

any 1 ≤ i ≤ j ≤ k,

fi ◦ . . .◦ f j ¹ g ⇒ f1 ◦ . . .◦ fk ¹ f1 ◦ . . .◦ fi−1 ◦ g ◦ f j+1 ◦ . . .◦ fk

A view model is by definition a functional composition involving only monotonic functions
and operators: ϕ+, ϕ−, π, V·WΦ, and ∩. A consequence of the above proposition is that we will
obtain a stronger view model if we replace any subset of these functions by a stronger subset.
We will use this result in two ways. Firstly, to establish a natural partial ordering among view
models.

Corollary 7.18. For any constraint c, function f , and approximation operators Φ1, . . . ,Φk , and
Θ,

Φi ¹Θ⇒〈Φ1, . . . ,Φn〉 ¹ 〈Φ1, . . . ,Φi−1,Θ,Φi+1, . . . ,Φn〉
Recall that approximation operators are totally ordered: ϕ¹ δ¹β (see lemma 2.24). There-

fore for a given view model we may obtain a set of trivially stronger (resp. weaker) models just
by replacing approximation operators by stronger (resp. weaker) approximation operators.

Definition 7.19. Let m1 = 〈Φ1, . . . ,Φ8〉, m2 = 〈Θ1, . . . ,Θ8〉 be two view models. m1 is trivially
stronger than m2, written m1 ¹T m2, if and only if Φi ¹Θi , 1 ≤ i ≤ 8. Additionally, we will de-
note the set of trivially stronger (resp. weaker) models of a given model m by bmcT = {

b : b ¹T m
}

(resp. dmeT = {
b : m ¹T b

}
).

The trivially stronger relation orders all possible view models for a constraint in a lattice,
shown in figure 7.1.

Proposition 7.20. The set of view models for a constraint ordered by the trivially stronger rela-
tion is a bounded lattice where >= 〈

β,β, . . . ,β
〉

and ⊥= 〈
ϕ,ϕ, . . . ,ϕ

〉
.

Example 7.21. The ββ-complete propagator for the constraint [x1 +x2 = x3] of example 7.15
is trivially stronger than the presented alternative view model but the converse is not true, that
is

→
δ
β+

f →
ϕ
π
ϕϕ?
c →

ϕ
β−

f →
δ

¹T →
δ
β+

f →
β
π
ββ?
c →

β
β−

f →
δ

→
δ
β+

f →
ϕ
π
ϕϕ?
c →

ϕ
β−

f →
δ

�T →
δ
β+

f →
β
π
ββ?
c →

β
β−

f →
δ

This means that the model in the left hand side of the equation may be reached in the lattice
from the node corresponding to the model in the right hand side by moving downwards into
the trivially stronger lattice (or vice-versa). However, for this specific constraint we have

→
δ
β+

f →
ϕ
π
ϕϕ?
c →

ϕ
β−

f →
δ

º →
δ
β+

f →
β
π
ββ?
c →

β
β−

f →
δ

which is not captured in the lattice since it is not a trivially stronger relation.

98

7.3. Finding stronger models

〈β,β,β,β, . . . ,β〉 =>

〈δ,β,β,β, . . . ,β〉

〈δ,δ,β,β, . . . ,β〉

〈β,δ,β,β, . . . ,β〉

〈ϕ,ϕ,ϕ,ϕ, . . . ,ϕ〉 =⊥

〈δ,ϕ,ϕ,ϕ, . . . ,ϕ〉

〈δ,δ,ϕ,ϕ, . . . ,ϕ〉

〈ϕ,δ,ϕ,ϕ, . . . ,ϕ〉

Weaker

Stronger

Figure 7.1.: View model lattice.

7.3.2. Relaxing the problem

For a given view model m we are interested in the sets of view models stronger and weaker than
m. We will present a procedure that does not compute Lm , Um exactly, but instead provides an
approximation.

Definition 7.22 (Approximation bound). Let m be an arbitrary view model. Then the approxi-
mated lower bound of m, L̃m , is a set of view models where b ∈ L̃m ⇒ b ¹ m. The approximated
upper bound of m, Ũm is similarly defined as b ∈ Ũm ⇒ b º m.

The sets L̃m = {⊥} and Ũm = {>} are trivial bounds for any view model, but are of course
too loose. A procedure which finds tighter upper bounds for view models of many useful con-
straints is detailed in the following section. The algorithm for computing the lower bound is
analogous.

7.3.3. Computing an upper bound

Function FindUb takes as input a view model m for a constraint c◦ f and returns a set of models
Ũm . The method makes use of a rule database Rc◦ f .

Definition 7.23 (Rule database). A rule database Rc◦ f for a constraint c◦ f is a set of rules where
each rule 〈m1,m2〉 ∈ Rc◦ f is a tuple representing a non-trivial order relation between two view
models, that is m1 ¹ m2 although m1�T m2. The rule database is sound iff 〈m1,m2〉 ∈ Rc◦ f ⇒
m1 ¹ m2. It is complete iff m1 ¹ m2 ⇒ HASPATH

(
Rc◦ f ,m1,m2

)
for any non-trivial order relation

99

Chapter 7. Incomplete View-Based Propagation

Function FindUb(m)
Data: Rc◦ f is a rule database for the constraint c ◦ f
Input: A view model m for the constraint c ◦ f
Output: A set of view models Ũm for the constraint c ◦ f
U ←dmeT1

repeat2

changed ← false3

foreach 〈m1,m2〉 ∈ Rc◦ f do4

if m1 ∈U then5

U ←U ∪dm2eT6

changed ← true7

8

9

until ¬changed10

return U11

m1 ¹ m2, where HASPATH is defined as

HASPATH
(
Rc◦ f ,m1,m2

) ⇔ m1 = m2

∨ ∃mi : m1 ¹T mi ∧HASPATH
(
Rc◦ f ,mi ,m2

)
∨ ∃mi : 〈m1,mi 〉 ∈ Rc◦ f ∧HASPATH

(
Rc◦ f ,mi ,m2

)
The algorithm computes the transitive closure of the given set of rules Rc◦ f unioned with the

set of trivial rules. It performs a breadth first search from the node representing the given view
model, traversing the lattice of models downwards (i.e. in the stronger than direction), until
there are no more applicable rules in the database. The algorithm is basically an exhaustive
rule rewriting procedure, for which the following is easy to see.

Proposition 7.24. Algorithm FindUb is sound if the rules database Rc◦ f is sound. It is complete
if the rules database Rc◦ f is complete.

7.3.4. Rule databases

Algorithm FindUb requires a database of rules Rc◦ f which is specific to the constraint c ◦ f .
Creating a rule database for any constraint is of course unpractical. Instead we create rule
databases for primitive constraints Rc and expressions R f and use them to obtain Rc◦ f .

Definition 7.25 (Constraint rule database). Let c be an arbitrary constraint and Rc be a con-
straint rule database for c. Then each rule 〈m1,m2〉 ∈ Rc specifies a non-trivial order relation
between two propagators for c, m1 =→

Φ1

π
Φ2Φ3
c →

Φ4

and m2 =→
Θ1

π
Θ2Θ3
c →

Θ4

.

100

7.3. Finding stronger models

Integrating a constraint rule database in a rule database is straightforward due to the follow-
ing corollary to proposition 7.17,

Corollary 7.26. For any constraint c, function f , and approximation operators Φi ,Θi ,

→
Φ3

π
Φ4Φ5
c →

Φ6

¹ →
Θ3

π
Θ4Θ5
c →

Θ6

⇒
→
Φ1

Φ+
2 f →Φ3

π
Φ4Φ5
c →

Φ6

Φ−
7 f →Φ8

¹ →
Φ1

Φ+
2 f →Θ3

π
Θ4Θ5
c →

Θ6

Φ−
7 f →Φ8

Definition 7.27 (Function rule database). Let f be an arbitrary function and R f be a function
rule database for f . Then each rule 〈m1,m2〉 ∈ R f specifies a non-trivial order relation be-
tween two view models, m1 = 〈Φ1, . . . ,Φ8〉x◦ f and m2 = 〈Θ1, . . . ,Θ8〉x◦ f , where x is an arbitrary
constraint.

Note that a function rule database abstracts the semantics of the constraint used with the
view - rules must be applicable to any constraint. For obtaining a tight upper bound, the al-
gorithm benefits from the specificity of the rules, which is increased when the function and
constraint rule databases for the given view model are combined.

Proposition 7.28. Let Rc be a constraint rule database for a constraint c, R f a function rule
database for a function f , let

R+
c = {〈t1, t2〉 :

t1 = 〈Φ1,Φ2,m1,Φ3,Φ4〉 , t2 = 〈Φ1,Φ2,m2,Φ3,Φ4〉 ,

Φ1, . . . ,Φ4 ∈
{
ϕ,β,δ

}
,

〈m1,m2〉 ∈ Rc }

Then Rc◦ f = R+
c ∪R f is a sound rule database for the constraint c ◦ f .

Example 7.29. Consider the constraint c◦ f = [ax1 ≥ x2], where c = [x1 ≥ x2] and f (x) = 〈ax1, x2〉,
and a is a positive constant. Let Rc be a rule database for c defined as follows:

Rc =

→
β
π
ββ?
c →

β
¹ →

β
π
βδ?
c →

β
(rule 1)

→
β
π
βδ?
c →

β
¹ →

β
π
βδ?
c →

δ
(rule 2)

→
δ
π
βδ?
c →

δ
¹ →

δ
π
βϕ?
c →

δ
(rule 3)

The first rule states that a ββ complete propagator for c achieves the same pruning that a
βδ-complete propagator for c when its input is a β-domain and its output is stored as a β-

domain. The second rule specifies that the output of πβδ?c (S) when S is a β-domain is always a

101

Chapter 7. Incomplete View-Based Propagation

β-domain. The third rule states that a βδ (range)-complete propagator for c achieves the same
pruning that a βϕ-complete propagator for c.

Let R f be a rule database for f defined as follows:

R f =
→
δ
β+

f →
β
πββ?→

β
β−

f →
δ

¹ →
δ
δ+f →

β
πββ?→

β
δ−f →

δ
(rule 1)

→
δ
δ+f →

β
πβδ?→

δ
δ−f →

δ
¹ →

δ
δ+f →

δ
πβδ?→

δ
δ−f →

δ
(rule 2)

→
δ
δ+f →

δ
πβϕ?→

δ
δ−f →

δ
¹ →

δ
δ+f →

ϕ
πϕϕ?→

ϕ
δ−f →

δ
(rule 3)

The first rule specifies that if the output of the image view function and the input of the ob-
ject view function are β-domains then the input of the image view function and the output of
the object view function may be relaxed to β-domains with no loss of representation. The sec-
ond rule states that when using a πβδ? propagator then the output of the image view function
for f may be relaxed to a β-domain with no loss of representation. The third rule specifies that
a domain complete propagator for πx◦ f for any constraint x achieves the same pruning that a
view model using a βϕ-complete propagator for x.

Now consider the following model m for propagating c ◦ f ,

m =→
δ
β+

f →
β
π
ββ?
c →

β
β−

f →
δ

Finding the transitive closure of this model under the combined set of rules Rc◦ f proves that
m is a domain complete propagator for c ◦ f . A possible trace of the algorithm is the following,

m =→
δ
β+

f →
β
π
ββ?
c →

β
β−

f →
δ

=→
δ
δ+f →

β
π
ββ?
c →

β
δ−f →

δ
(from rule 1 in R f)

=→
δ
δ+f →

β
π
βδ?
c →

δ
δ−f →

δ
(from rules 1 and 2 in R+

c)

=→
δ
δ+f →

δ
π
βδ?
c →

δ
δ−f →

δ
(from rule 2 in R f)

=→
δ
δ+f →

δ
π
βϕ?
c →

δ
δ−f →

δ
(from rule 3 in R+

c)

=→
δ
δ+f →

ϕ
π
ϕϕ?
c →

ϕ
δ−f →

δ
(from rule 3 in R f)

=πδδ?c◦ f (prop. 7.7)

7.3.5. Multiple views (functional composition)

As seen in the previous chapter, view-based propagators for composed constraints may be
obtained by exploring composition of views. In such cases, the corresponding view models

102

7.3. Finding stronger models

will use multiple views, contrasting with the single view models we have been considering so
far.

Definition 7.30. Let f , g be arbitrary functions, and c a constraint. A view model for the con-
straint c ◦ f ◦ g is characterized by the following functional composition,

〈Φ1, . . . ,Φ12〉 = →
Φ1

Φ+
2g →

Φ3

Φ+
4 f →Φ5

π
Φ6Φ7
c →

Φ8

Φ−
9 f →

Φ10

Φ−
11g →

Φ12

The previous algorithm has therefore to be adapted for handling view models parametrized
by a variable number of approximation operators. This may be accomplished for any con-
straint c ◦ f ◦ g using an adequate rule database Rc◦ f ◦g . We will not provide the counterpart of
proposition 7.28 for this case, but instead remark that it basically explores the following lemma
to map view models involving multiple views to the simpler case presented previously.

Lemma 7.31. Let f , g be arbitrary functions and c a constraint. Then,

→
Φ1

Φ+
2g →

Φ3

Φ+
4 f →ϕ π

ϕϕ?
c →

ϕ
Φ−

5 f →Φ6

Φ−
7g →

Φ8=
→
Φ1

Φ+
2g →

Φ3

π
Φ4Φ5?
c◦ f →

Φ6

Φ−
7g →

Φ8

7.3.6. Multiple views (Cartesian composition)

As discussed, constraints that involve Cartesian product of functions naturally express many
useful relations. In this case, the corresponding view based propagator may be obtained from
approximated views over a Cartesian product of functions. An approximated view over a Carte-
sian product of functions may in turn be defined from approximated views over these func-
tions.

Proposition 7.32. Let Sn ⊆ Zn , Si = proj1...i
(
Sk

)
, and S j = proji+1...i+ j

(
Sk

)
. Let f : Zn → Zi ,

g :Zn →Z j be two arbitrary functions, and Φ,Ψ ∈ {
ϕ,δ,β

}
. Then,

Vϕ+
f ×g

(
VSnWΦ

)
WΨ ⊆ Vϕ+

f

(
VSnWΦ

)
WΨ×Vϕ+

g

(
VSnWΦ

)
WΨ

Vϕ−
f ×g

(
VSkWΦ

)
WΨ ⊆ Vϕ−

f

(
VSi WΦ

)
WΨ∩Vϕ−

g

(
VS j WΦ

)
WΨ

Vϕ̂ f ×g

(
VSkWΦ,Sn

)
WΨ ⊆ Vϕ̂ f

(
VSi WΦ,Sn

)
WΨ∩Vϕ̂g

(
VS j WΦ,Sn

)
WΨ

with equality if f and g are functionally independent and Φ ∈ {
δ,β

}
.

The above proposition allows to obtain an approximated view over any Cartesian product
of functions by reusing views over the elementary functions. Moreover, when these functions
do not share variables and the input set is at least a Cartesian domain, then a propagator using

103

Chapter 7. Incomplete View-Based Propagation

this decomposition will have the same completeness as the one obtained using the original
(i.e. not decomposed) view.

7.3.7. Idempotency

The method for comparing propagation strength of view models described above does not
require them to be idempotent. Constraint rule databases are integrated through corollary
7.26 which does not require idempotency. In fact, constraint rule databases for idempotent
view models of a constraint c are a superset of constraint rule databases for non-idempotent
view models for c, since

→
Φ1

π
Φ2Φ3
c →

Φ4

¹ →
Θ1

π
Θ2Θ3
c →

Θ4

⇒
→
Φ1

π
Φ2Φ3?
c →

Φ4

¹ →
Θ1

π
Θ2Θ3?
c →

Θ4

The same occurs with function rule databases given that

→
Φ1

Φ+
2g →

Φ3

π
Φ4Φ5

c◦ f →
Φ6

Φ−
7g →

Φ8

¹ →
Θ1

Θ+
2g →

Θ3

π
Θ4Θ5

c◦ f →
Θ6

Θ−
7g →

Θ8

⇒
→
Φ1

Φ+
2g →

Φ3

π
Φ4Φ5?
c◦ f →

Φ6

Φ−
7g →

Φ8

¹ →
Θ1

Θ+
2g →

Θ3

π
Θ4Θ5?
c◦ f →

Θ6

Θ−
7g →

Θ8

This means that, by using rule databases that consider non-idempotent propagators exclu-
sively, we are sure that the algorithm is correct for the case where such propagators are exe-
cuted until fixpoint. However, rule databases that are specific to idempotent propagators may
be used to improve the approximations obtained for models that are indeed idempotent, in
particular for view models with multiple views since corollary 7.31 requires idempotency. This
is a consequence of the direct relation between specificity of rules and inference inherent to
rule rewriting algorithms.

Integrating idempotency information in our algorithm is a matter of selecting specific rules
(i.e. for idempotent or non-idempotent propagators) according to the model we are testing.
This assumes of course that there is a way to know the idempotency of the model. In fact this
may not be a problem, either because it is known beforehand as with auxiliary variables view
models (more on this later), or because it may be inferred (see section 7.2.3).

Finally, we recall that ΦΨ-completeness of a view model for a constraint c ◦ f is guaranteed
by requiring propagator for c to be idempotent. Therefore, for proving ΦΨ-completeness of a
view model that uses a non-idempotent propagator for c the rule database must contain some
rules comparing idempotent with non-idempotent propagators. Although this is possible in
theory, in our experiments we opted to use view models based on idempotent propagators
exclusively.

104

7.4. Experiments

7.3.8. Complexity and optimizations

Let n be the number of functions in a given view model
〈
Φ1, . . . ,Φ4(n+1)

〉c◦ f1◦...◦ fn . The algo-
rithm FindUb may explore an exponential number of models, more specifically O

(
34(n+1)

)
.

However, since practical constraints usually involve a small n, this is seldom a problem in
practice. For constraints with large n we may use an incremental version of the algorithm
which first computes the upper bound for 〈Φ1, . . . ,Φ8〉c◦ f1 , uses proposition 7.7 to select the
strongerΦΨ-complete propagator π̂ΦΨc◦ f in that set, and then repeat the process iteratively from(
c ◦ f1

)◦ f2 to
(
c ◦ f1 ◦ . . .

)◦ fn . In this case the algorithm will loose in completeness, but the run-
time complexity decreases to O

(
n38

)
.

The lattice structure of trivial order relations also provides opportunities for optimization.
The algorithm may maintain only the non-trivially stronger models of the upper bound, that is⌊
Ũ

⌋T
instead of the full set Ũ . This may be done by replacing line 2 by U ← {m}, the condition

in line 6 by m1 ∈ dUeT and line 7 by a routine which stores the model m2 in bUcT only if m2

is not already a member, in which case it first removes dm2eT from bUcT . We remark that in
this case the rule rewriting algorithm may still explore an exponential number of models in the
worst scenario, but the performance of the algorithm for the average case is increased.

Regarding the space complexity we note that although proposition 7.28 has shown how to
compute Rc◦ f from a union of explicit sets R+

c , and R f , this was intended for making the de-
scription of the algorithm more clear, and that an implementation of the FindUb algorithm
does not require the existence of a pre-computed Rc◦ f (not even R+

c), but instead infers the
combined rules dynamically from Rc and R f . In such case, the space complexity is in O

(
n ×316

)
since there are n rule databases each having a quadratic number of rules. We may still decrease
this number by optimizing the size of the rule databases, which also plays a role on the algo-
rithm runtime. Small rule databases may be obtained using the transitive reduction of all rules,
which may be computed offline, in polynomial time [Aho et al. 1972].

7.4. Experiments

There are two important applications for the algorithm described above, both of them central
in the modeling phase of a constraint program. On one hand we may use it to approximate the
completeness guarantees of a given view model for a specific constraint. This information is
helpful for reasoning globally about the constraint program and make an informed and con-
certed decision on the selection of propagators for the constraints in the problem. In this case
we have an arbitrary view model m = 〈Φ1, . . . ,Φn〉c , and test if aΦΨ-complete propagator πΦΨc

belongs to FindUb(m), FindLb(m), or both.

On the other hand, we may already have decided upon a specific strength for a given con-
straint propagator, but wish to select the most efficient view model that implements it. This
problem is the inverse of the former: we are given a ΦΨ-complete propagator m = πΦΨc and

105

Chapter 7. Incomplete View-Based Propagation

then select the most efficient view model 〈Φ1, . . . ,Φn〉c from FindUb(m).
For evaluating our algorithm, we simulated an instance of the first scenario. Specifically,

we have a view model m for a constraint c ◦ f1 ◦ . . . ◦ f2 consisting of only β approximation

operators except the initial and final approximation, that is m = 〈
δ,β,β, . . .β,δ

〉c◦ f1◦...◦ f2 , and
wish to know the strength of the resulting propagator. This problem occurs often in practice
since these ββ view approximations are very efficient to compute.

We have generated propagator rule databases for c = [
x = y

]
, and c = [

x ≤ y
]
, and view rule

databases for the functions f (x) = ax, f (x) = |x|, f
(
x, y

)= x+y , and f
(
x, y

)= x×y , where x, y
are variables and a,b are constants. The algorithm was then tested in a number of arithmetic
constraints created by composition of these functions.

Table 7.2 shows the results. For each function we show the obtained upper bound (actually
only the trivially stronger models) and their intersection with the obtained lower bound, which

was
⌈

L̃m
⌉T = {bounds(Z)} for all constraints. Set Ẽm = Ũm ∩ L̃m represents the set of view

models known to be equivalent to the given model. In the last column we show the difference
between the exact set of equivalent models and the set of equivalent models computed by our
algorithm. An empty set in this column means that the algorithm was exact.

Recall that a > represents the weakest view model in the lattice. We have found a number
of view models which are strictly stronger than > and strictly weaker than bounds(Z) which
we did not classify (see the last row in the table). The propagator strength of those models
should be bounds(R), a class strictly weaker than bounds(Z), however we are still unsure how
this class maps into the view model lattice.

7.5. Incomplete constraint checkers

Like propagators, constraint checkers may also be approximated. View models for constraint
checkers are reasonably simpler than view models for propagators since constraint checkers
may be defined exclusively from the image view function ϕ+. We may define an incomplete
constraint checker by approximating its input or output:

Definition 7.33 (Incomplete constraint checker). Let Φ1,Φ2 ∈ {
ϕ,δ,β

}
. An incomplete con-

straint checker for the constraint c is defined as

〈Φ1,Φ2〉c = Vϕ+ (
VSWΦ1

)
WΦ2

Proposition 7.34. Let Φ1,Φ2 ∈ {
ϕ,δ,β

}
and c be an arbitrary constraint. An incomplete con-

straint checker 〈Φ1,Φ2〉c is a sound constraint checker for c.

Additionally, we may rank constraint checkers according to its completeness similarly to
what was done with incomplete constraint propagators. Likewise, an incomplete constraint
checker for a functional composition may be created by combining the constraint checkers for

106

7.5. Incomplete constraint checkers

b U
m
cT

Ẽ
m

E
m

\
Ẽ

m

a
x
=

c
a

x
≥

y
{d

o
m

ai
n

}
{ b

o
u

n
d

s(
Z

),
b

o
u

n
d

s(
D

),
ra

n
ge

,d
o

m
ai

n
}

{} {}
x
+

y
≥

z
x
+

y
=

c

{ ra
n

ge
,b

o
u

n
d

s(
D

)}
{ b

o
u

n
d

s(
Z

),
b

o
u

n
d

s(
D

),
ra

n
ge

}
{d

o
m

ai
n

}
{}

∑ n
>2

i=
1

x i
≥

z
∑ n

>2
i=

1
x i

=
c

{ ra
n

ge
}

{ ra
n

ge
,b

o
u

n
d

s(
Z

)}
{d

o
m

ai
n

,b
o

u
n

d
s(

D
) }

{}
a

x
=

y
a

x
+b

y
=

c
a

x
+b

y
≥

z
{b

o
u

n
d

s(
D

) }
{b

o
u

n
d

s(
D

),
b

o
u

n
d

s(
Z

) }
{} {}

{ d
o

m
ai

n
,r

an
ge

}
∑ n i=

1
x i

=
z

x
×

y
=

c
x
×

y
≥

z
{b

o
u

n
d

s(
Z

) }
{b

o
u

n
d

s(
Z

) }
{} {}

{b
o

u
n

d
s(

D
) }

∏ n i=
1

x i
=

z
∏ n

>2
i=

1
x i

=
c

∑ n i=
1

a
ix

i
=

z
∏ n

>2
i=

1
x i

≥
z

{>
}

{}

{} {} {}
{b

o
u

n
d

s(
Z

),
b

o
u

n
d

s(
D

) }

Ta
b

le
7.

2.
:S

tr
en

gt
h

o
ft

h
e

vi
ew

m
o

d
el

m
fo

r
a

se
to

fa
ri

th
m

et
ic

co
n

st
ra

in
ts

.

107

Chapter 7. Incomplete View-Based Propagation

the individual functions, and its overall completeness may be assessed by an adapted version
of the rule rewriting algorithm described above.

7.6. Summary

In this chapter we have characterized view models as a tool for defining incomplete propa-
gators with different strength. For assessing the strength of a view model we have presented
a rule rewriting algorithm that maps the model into a lattice of consistencies including the
well-known cases of domain consistency as well as the different forms of bounds consistency.
The algorithm may be used to select the most efficient view-based propagator for a certain
consistency type or to inform the consistency achieved by some predefined model.

An implementation of the algorithm and the rule databases for the experiments in this chap-
ter may be obtained from the author upon request.

Related work

Ï Yuanlin and Yap [2000] present an analysis on the complexity of propagating some arith-
metic constraints. In particular, they show that a bounds complete propagation algorithm
is also domain complete when the constraints are linear.

Ï In [Apt and Zoeteweij 2003] the decomposition of arithmetic expressions using idempotent
propagators is presented formally. The propagation complexity is analyzed for different
decomposition models, although the focus is on symbolic manipulation of expressions, in
particular replacing common subexpressions and factorizing.

Ï A related problem is to compare the strength of two different sets of propagators in a given
CSP. This problem was approached in Schulte and Stuckey [2005] which presented an algo-
rithm that detects when two sets of propagators are equivalent, in particular bounds and
domain complete propagators. The algorithm performs a different, although related anal-
ysis, and provides exact results for cases where our algorithm does not, specifically con-
straints involving inequalities. There are other significant differences, namely that no dis-
tinction is made among several bounds complete classes, and that it works with propaga-
tors, and not arbitrary view models.

Ï Schulte and Tack [2008] provide a set of conditions which guarantees the strength of a view-
based propagator, which is the problem we address in section 7.3. In their work, the strength
of a view model is computed as a function of two properties of the involved views, namely
injectivity and surjectivity, and the strength of the propagator being derived. These proper-
ties essentially guarantee that a known set of equivalent models exists for the functions ϕ+

f ,
ϕ−

f and π f individually. It is then proved that when these models exist the obtained view
model is a propagator with a certain strength. The simplicity of this method is appealing,

108

7.6. Summary

but it has some limitations. Firstly, f is required to be an injective function, which excludes
many interesting functions for which efficient view models have been found, namely func-
tions involving multiple variables (see examples in section 6.1). Secondly, the method is less
committed to the semantics of the involved functions and consequently is less exact in gen-
eral. It cannot show for example that the view model for the constraint [ax = z] mentioned
in table 7.2 is a bounds(Z) propagator. Finally, our algorithm may be used to order view
models that are not (equivalent to) ΦΨ-propagators, and that is not possible using their
method.

Future work

The fact that we are using a blind, brute force algorithm for approximating the strength of a
view model suggests several developments:

. Compare models which use different functions. It has been shown that symbolic manip-
ulation such as factorizing improves propagation in some constraints [Apt and Zoeteweij
2003]. It would be interesting to see if we can adapt our algorithm to order different repre-
sentations of the same constraint.

. Create rule databases for specific non-idempotent propagators. In our experiments we used
rule databases solely for idempotent propagators. However, as discussed in section 7.3.7,
non-idempotent propagators may be integrated as well using specific rules.

. Improve the treatment of inequalities by considering open β-operators, i.e. box domains
which are not finite. These operators fit nicely in the operator hierarchy since they are
weaker than β-operators, and would allow for more expressive rules and therefore provide
stronger inference in general, and in particular for view models involving inequalities.

109

Chapter 7. Incomplete View-Based Propagation

110

Chapter 8.

Type Parametric Compilation of Box View
Models

This chapter details an efficient realization of the formerly described view models. More specif-
ically, it presents a set of algorithms for propagating a view model consisting exclusively of box
approximations, and shows how to apply them for an arbitrary decomposable constraint. The
set of algorithms described cover the classical propagation scheme for decomposable con-
straints based on the introduction of auxiliary variables, and also two frameworks based on
an abstraction called a view object. We show that the kind of algorithm used for propagating a
view model is deeply connected with its compilation scheme.

The chapter is organized as follows: we first discuss a class of view models which are inher-
ently very efficient to compute, namely box view models (§8.1). Then we introduce box view
objects, explain how they naturally map to box view models (§8.2), and discuss the connection
between practical implementations of view objects and the kind of polymorphism available
in the subjacent programming language (§8.3). Section 8.4 shows that view models may also
be implemented using auxiliary variables and extra propagators. Then, we describe a com-
pilation algorithm for each of the presented methods for propagating view models (§8.5) and
provide a theoretical comparison of these methods (§8.6). Finally, we discuss views over useful
non-arithmetic expressions (§8.7).

8.1. Box view models

Bounds propagators are widely used in constraint programs. Consider the following example.

Example 8.1. Let c = [x1 ≥ x2] and S2 an arbitrary δ-domain. A bounds(Z) propagator for c
(which happens to be also domain complete) may be defined as follows

π
ββ
c (S) = Vcon(c)∩VSWβWβ∩S

= ([⌊
proj2 (S)

⌋
. . .

⌈
proj1 (S)

⌉]× [⌊
proj2 (S)

⌋
. . .

⌈
proj1 (S)

⌉])∩S

The fact that the above bounds(Z) propagator is defined exclusively from operations involv-
ing the lower and upper bounds of the input set makes it very efficient to compute. In general,

111

Chapter 8. Type Parametric Compilation of Box View Models

computing view operations involving box approximations is also efficient: β-domains may be
stored in constant space since the domain is fully characterized by its lower and upper bound,
and computing views which are applied and relaxed toβ-domains does not depend on the size
of the domain for most functions.

Example 8.2. Let f (x) = |x| and S1,S2 ⊆ Z two arbitrary sets, and assume bS2c ≥ 0. Consider
the problem of computing the view functions Vϕ+

f

(
VS1Wβ

)
Wβ and Vϕ̂ f

(
VS2Wβ,VS1Wβ

)
Wβ. Re-

call that, by definition,

Vϕ+
f

(
VS1Wβ

)
Wβ = V

{
|x| : x ∈ VS1Wβ

}
Wβ

Vϕ̂ f

(
VS2Wβ,VS1Wβ

)
Wβ = V

{
x : |x| ∈ VS2Wβ∧x ∈ VS1Wβ

}
Wβ

This definition may suggest that evaluating these functions would take linear time, but in fact
they may be computed in constant time assuming that finding the minimum and maximum
of sets S1, S2 takes constant time (i.e. the sets are ordered):

Vϕ+
f

(
VS1Wβ

)
Wβ =

[bS1c . . .dS1e] ⇐bS1c > 0

[−dS1e . . .−bS1c] ⇐dS1e < 0

[0. . .max(−bS1c ,dS1e)] otherwise

Vϕ̂ f

(
VS2Wβ,VS1Wβ

)
Wβ =

[max(bS2c ,bS1c) . . .min(dS2e ,dS1e)] ⇐bS1c > 0

[max(−dS2e ,bS1c) . . .min(−bS2c ,dS1e)] ⇐dS1e < 0

[max(−dS2e ,bS1c) . . .min(dS2e ,dS1e)] otherwise

Before we proceed to analyze the efficiency of view models, let us make the following ob-
servation concerning notation. In this chapter we will focus on tuple sets which are at least
δ-domains. This allows us to express formulas like the above, which are based on the nota-
tion introduced in the previous chapter, with a more convenient notation which is also more
common within constraint programming.

Example 8.3. Let D be the set of Cartesian product of variable domains in a CSP 〈X ,D,C〉 as
defined in chapter 2. A bounds(Z) propagator for c = [x1 ≥ x2], x1, x2 ∈ X , may be defined as
follows

π
ββ
c (D) = ([⌊

proj2 (D)
⌋

. . .
⌈

proj1 (D)
⌉]× [⌊

proj2 (D)
⌋

. . .
⌈

proj1 (D)
⌉])∩D

= ([bD (x2)c . . .dD (x1)e]× [bD (x2)c . . .dD (x1)e])∩D

Given that the output of the above propagator is also a Cartesian product, i.e.

π
ββ
c (D) = proj1

(
π
ββ
c (D)

)
×proj2

(
π
ββ
c (D)

)

112

8.1. Box view models

we may express the propagator as

proj1

(
π
ββ
c (D)

)
= [bD (x2)c . . .dD (x1)e]∩D (x1)

proj2

(
π
ββ
c (D)

)
= [bD (x2)c . . .dD (x1)e]∩D (x2)

or more commonly,

π
ββ
c (D) =

{
D (x1) ← [bD (x2)c . . .dD (x1)e]∩D (x1)

D (x2) ← [bD (x2)c . . .dD (x1)e]∩D (x2)

Since bounds(Z) propagators and view box approximations are efficient to compute, it is not
surprising that view models resulting from the combination of these propagators and views are
also efficient.

Example 8.4. Let c ◦ f = [|x1| ≥ x2] where f (x1, x2) = 〈|x1| , x2〉, and c = [x1 ≥ x2]. The view
model

→
δ
β+

f →
β
π
ββ?
c →

β
β̂ f →

δ

may be defined based on the πββc propagator and view operations presented above:

D (x1) ← D (x1)∩

[bD (x2)c . . .dD (x1)e] ⇐bD (x1)c > 0

[bD (x1)c . . .−bD (x2)c] ⇐dD (x1)e < 0

D (x1) otherwise

D (x2) ← D (x2)∩

[bD (x2)c . . .dD (x1)e] ⇐bD (x1)c > 0

[bD (x2)c . . .−bD (x1)c] ⇐dD (x1)e < 0

[bD (x2)c . . .max(−bD (x1)c ,dD (x1)e)] otherwise

In this chapter we focus on the process of compiling efficient box view models like the above
from the necessary views and propagators.

Definition 8.5 (Box view model). A box view model is a view model consisting exclusively of
box approximation operators, formally

→
δ
β+

f →
β
π
ββ?
c →

β
β̂ f →

δ

113

Chapter 8. Type Parametric Compilation of Box View Models

8.2. View objects

To help us formalize view model implementations it is useful to think of views and domain
variables as objects exposing a known interface. Note however that this does not imply an
object oriented architecture for practical use of views, as it will be shown in the next chapter.

8.2.1. Typed constraints

Let us begin by introducing a type-aware representation of constraints and expressions. Specif-
ically, we will express constraints as sentences of a first-order language L (Σ, X) involving a
standard set of arithmetic and logical operators Σ, and domain variables X . The type of a vari-
able occurring in a constraint is made explicit by a suffix : type after the reference to the vari-
able. Making the type of the operands explicit allow us to specify constraints between objects
of different types unambiguously.

Domain variables are objects of type dvar and their interface simply exposes the lower and
upper bounds of the variable’s domain. We assume throughout this chapter that accessing and
updating these bounds takes constant time.

Example 8.6. The constraint c ◦ f of the previous example applied to the set of domain vari-
ables D may be represented by the following typed constraint e ∈L (Σ, X),

e = [|x1 : dvar| ≥ x2 : dvar]

Note that the function c ◦ f of the previous example uniquely maps to the above typed con-
straint e ∈L (Σ, X) when applied to D .

8.2.2. Box view objects

A box view object implements the operations Vϕ+
f

(
VS1Wβ

)
Wβ and Vϕ̂ f

(
VS2Wβ,VS1Wβ

)
Wβ over

a specific expression e ∈ L (Σ, X). We assume that both the function f and the δ-domain S1

may be determined from e as in the previous example.

Box view objects are of type bnd, and have the following interface,

bnd :

{
GETMIN : func [→ l] , GETMAX : func [→ u] ,

UPDMIN : func [l →] , UPDMAX : func [u →]

}
(8.1)

The GETMIN and GETMAX functions computeϕ+ and the UPDMIN and UPDMAX are used to

114

8.3. View object stores

update ϕ̂, specifically

GETMIN : l ←
⌊
Vϕ+

f

(
VS1Wβ

)
Wβ

⌋
GETMAX : u ←

⌈
Vϕ+

f

(
VS1Wβ

)
Wβ

⌉
UPDMIN (l) : S1 ← S1 ∩Vϕ̂ f

(
[l . . .+∞] ,VS1Wβ

)
Wβ

UPDMAX (u) : S1 ← S1 ∩Vϕ̂ f

(
[−∞ . . .u] ,VS1Wβ

)
Wβ

Note that the parameter l , b of the UPDMIN and UPDMAX functions are respectively the lower
and upper bounds of VS2Wβ.

Example 8.7. A box view object over a domain variable x ∈ X is defined by the following set of
methods

bnd [x : dvar] =

GETMIN = {r ←bD (x)c}

GETMAX = {r ←dD (x)e}

UPDMIN = {D (x) ← D (x) \ [−∞ . . . i −1]}

UPDMAX = {D (x) ← D (x) \ [i +1. . .+∞]}

8.3. View object stores

A view object provides a known interface to a specific expression e ∈L (Σ, X). The set of view
objects over expressions of a given language is called a view object store.

Definition 8.8 (View store). A view store λ〈L 〉 is an indexed collection of objects which pro-
vide a common interface (a view) to each element of the language L being viewed. We call
λ〈L 〉 a view store λ over L , and λ [e] the view object for the expression e ∈L .

A box view store over the language of typed constraints defined previously is conveniently
denoted bnd〈L 〉. View stores indexing other kinds of view objects, i.e. views combined with
other approximations, could be defined in the same way.

Given that one may create infinitely many expressions from most useful languages, in par-
ticular from our language L , defining a view object for each possible expression is clearly in-
feasible. We now turn to this problem and present two solutions with a different compromise
regarding efficiency as we will see later.

8.3.1. Subtype polymorphic stores

A possible solution explores the fact that each view object has a known interface, described
above by eq. 8.1. As long as the interface defines the necessary operations, the true identity of

115

Chapter 8. Type Parametric Compilation of Box View Models

the object may be abstracted away. This approach, called subtype polymorphism, is a classical
solution to the problem of allowing values of different data types to be handled using a uniform
interface.

Subtype polymorphic view stores are defined over a subset L ′ of language L supporting a
finite number of expressions. Specifically, finite view stores define view objects over domain
variables and operations involving other view objects, formally

L ′ = {x : dvar}∪ ⋃
⊕∈Σ

x : bnd⊕ y : bnd

Example 8.9. The following is the definition of a bnd view object over the addition of two bnd
objects:

bnd
[
x : bnd+ y : bnd

]
:

GETMIN ={
r ← x.GETMIN ()+ y.GETMIN ()

}
GETMAX ={

r ← x.GETMAX ()+ y.GETMAX ()
}

UPDMIN =
{

x.UPDMIN
(
i − y.GETMAX ()

)
y.UPDMIN (i −x.GETMAX ())

}

UPDMAX =
{

x.UPDMAX
(
i − y.GETMIN ()

)
y.UPDMAX (i −x.GETMIN ())

}

Since a subtype polymorphic view store indexes a limited set of expressions, the problem of
obtaining the view object corresponding to an expression e ∈ L such that e ∉ L ′ remains to
be solved. This problem will be addressed later when we focus on compilation of expressions.

8.3.2. Parametric polymorphic stores

Another possible solution is to design a store that indexes generic view objects, that is view
objects whose definition does not depend on the actual type of the associated expression. This
design idiom is commonly referred to as parametric polymorphism [Reynolds 1974]. Let us
formalize expressions involving generic types.

Definition 8.10 (Expression template). An expression template is an expression t ∈ L
(
Σ, X ′)

where X ′ is the set of domain variables X augmented with term variables (denoted by upper-
case letters). It represents the largest language subset L t ⊆ L where for all i ∈ L t , i may be
obtained from t by instantiating the term variables.

Unlike subtype polymorphic stores, parametric polymorphic stores are based on two impor-
tant requirements: Firstly, view objects may be associated with partially defined expressions,
i.e. expression templates, instead of concrete expressions e ∈L . Secondly, references to view
stores may appear in the definition of view objects. By providing view objects for a careful
selection of expression templates, we may obtain a view object for any expression e ∈L .

116

8.4. Auxiliary variables

Example 8.11. The following is the definition of a bnd view object for the addition of two
generic expressions:

bnd [X+Y] =

GETMIN = {r ← bnd [X] .GETMIN ()+bnd [Y] .GETMIN ()}

GETMAX = {r ← bnd [X] .GETMAX ()+bnd [Y] .GETMAX ()}

UPDMIN =
{

bnd [X] .UPDMIN (i −bnd [Y] .GETMAX ())

bnd [Y] .UPDMIN (i −bnd [X] .GETMAX ())

}

UPDMAX =
{

bnd [X] .UPDMAX (i −bnd [Y] .GETMIN ())

bnd [Y] .UPDMAX (i −bnd [X] .GETMIN ())

}

8.4. Auxiliary variables

The classical solution for creating propagators for arbitrary constraints does not make use of
view objects at all. Instead, it consists in introducing a propagator and an auxiliary variable
for each subexpression of the input expression. The propagator is responsible for channeling
modifications in the auxiliary variable’s domain to the domains of the variables in the subex-
pression and vice-versa.

Proposition 8.12. Any box view model may be enforced by a set of propagators and a set of
auxiliary domain variables.

8.5. Compilation

We now detail the process of generating a propagator or set of propagators for a given arbitrary
constraint. The compilation process will be defined declaratively by means of action rules:

Definition 8.13 (Action Rule, Rule repository). An action rule associated with a language L

takes the form

t

e

a1

...

an

and defines the rewriting of any input expression i ∈L t (i.e. matched by the template expres-
sion t) into output expression e ∈ L , performing actions a1, . . . , an (the rule actions) as a side
effect. A rule repository R(L) is a collection of action rules associated with language L .

Rule repositories will be used to perform derivations of expressions.

117

Chapter 8. Type Parametric Compilation of Box View Models

Definition 8.14 (Derivation). A derivation (written R [e]) denotes the output of applying the
most specific rule in the repository R matching e. A rule r1 ≡ t1

e1
is more specific than a rule

r2 ≡ t2
e2

if L t1 ⊂L t2 . For simplification, we will assume that there is no ambiguity for selecting
the most specific rule for a given expression. In practice this can be enforced by adding extra
rules to the repository.

8.5.1. Subtype polymorphic views

Compiling an arbitrary expression to subtype polymorphic view objects recursively rewrites
an expression bottom-up, starting with higher precedence subexpressions. The introduction
of an auxiliary variable is replaced by the introduction of a box view object, which means that
all view object definitions may safely assume that all operands are x : bnd objects.

The compilation algorithm is fully described by the following rule repository:

RBND =

∀⊕∈Σ

X ⊕Y

z : bnd

[
z ← newbnd [RBND [X]⊕RBND [Y]]

]
x : dvar

z : bnd

[
z ← newbnd [x : dvar]

]
The above repository is incomplete: extra rules should be added for handling expressions with
arity other than two, and creating bound objects from literals. We intentionally exclude these
rules throughout this section for the sake of simplicity - they may be included straightforwardly
without loss of correctness.

The decomposition process for an arbitrary constraint e ∈ L is triggered by the addition of
the following propagator to the constraint store

π [X] = {RBND [X] .UPDMIN (true)} (8.2)

Propagator π [e] instantiates the view for the constraint e and propagates it by setting its
value to true.

Example 8.15. The compilation of the constraint [a ×b + c ≤ d] using repository RBND yields
the following derivation:

118

8.5. Compilation

a : dvar×b : dvar+ c : dvar≤ d : dvar

v1 : bnd× v2 : bnd+ c : dvar≤ d : bnd

v3 : bnd+ v4 : bnd≤ v6 : bnd

v5 : bnd≤ v6 : bnd

v7 : bnd

v1 ← newbnd [a : dvar]
v2 ← newbnd [b : dvar]

v3 ← newbnd [v1 : bnd× v2 : bnd]
v4 ← newbnd [c : dvar]

v5 ← newbnd [v3 : bnd+ v4 : bnd]
v6 ← newbnd [d : dvar]

v7 ← newbnd [v5 : bnd≤ v6 : bnd] ,
π= {v7.UPDMIN (true)}

postπ

8.5.2. Parametric polymorphic views

The decomposition model described above assume the existence of a finite indexed collection
of views. Replacing subexpressions by view objects guarantees the existence of a view for each
generated subexpression. Compiling an expression to parametric polymorphic view objects
can be done simply by a top-down recursive instantiation of view objects, triggered by instan-
tiating the view for the full expression:

π [X] = {bnd [X] .UPDMIN (true)} (8.3)

Given that now the full expression is known to the view (i.e. operands are not abstractions
like before), it is easy to design an algorithm which, for a specific instantiation, replaces all
function calls with the corresponding definitions.

Example 8.16. Simplification of the GETMIN function of the bnd view over the a+b+c expres-
sion:

bnd [a : dvar+b : dvar+ c : dvar] .GETMIN =
= {r ← bnd [a : dvar+b : dvar] .GETMIN ()+bnd [c : dvar] .GETMIN ()} =
= {r ← bnd [a : dvar] .GETMIN ()+bnd [b : dvar] .GETMIN ()+bD (c)c} =

= {r ←bD (a)c+bD (b)c+bD (c)c}

In the present context, views are used very much like macros, effectively allowing creating
specific propagators for arbitrary expressions which do not make use of function calls at exe-
cution.

Example 8.17. The compilation of the constraint [a +b + c = d] using repository RBND yields

119

Chapter 8. Type Parametric Compilation of Box View Models

the following propagator:

π=

D (d) ← D (d) \ [−∞ . . .bD (a)c+bD (b)c+bD (c)c−1]

D (d) ← D (d) \ [dD (a)e+dD (b)e+dD (c)e+1. . .+∞]

D (a) ← D (a) \ [dD (d)e−bD (b)c−bD (c)c+1. . .+∞]

etc.

8.5.3. Auxiliary variables

The compilation process for the auxiliary variables model recursively rewrites an expression
bottom-up, starting with higher precedence subexpressions, similarly to what is done for sub-
type polymorphic views. It is defined by the following repository:

RAUX (π) =

∨
⊕∈Σ

X ⊕Y

z : dvar

[
z ← newdvar,

postπ [RAUX [X]⊕RAUX [Y] = z]

]
x : dvar

x : dvar
[]

The decomposition process for an arbitrary constraint e ∈ L is triggered by the addition of
the following propagator to the constraint store:

π [RAUX [e] = true] (8.4)

Note that in this decomposition process auxiliary variables are introduced for any subexpres-
sion, possibly using reification in the case of logical or comparison subexpressions.

Example 8.18. The compilation of the constraint [a ×b + c ≤ d] using repository RAUX yields
the following derivation:

a : dvar×b : dvar+ c : dvar≤ d : dvar

t3 : dvar+ c : dvar≤ d : dvar

t2 : dvar≤ d : dvar

t1 : dvar

t1 ← newdvar
t2 ← newdvar
t3 ← newdvar

postπ [a : dvar×b : dvar= t3 : dvar]
postπ [t3 : dvar+ c : dvar= t2 : dvar]
postπ [(t2 : dvar≤ d : dvar) = t1 : dvar]

postπ [t1 : dvar= true]

This method requires a predefined repository of propagators for basic expressions involv-

ing domain variables, more specifically it assumes the existence of a collection of propagators
π

〈
L ′〉 indexed by expressions of a bounded language L ′ ⊂L , typically defined as

120

8.6. Model comparison

nn−1

n2

n1

l1 l2

l3

ln

Figure 8.1.: An unbalanced expression syntax tree. The internal nodes n1 . . .nn−1 represent op-
erators and leafs l1 . . . ln represent variables.

L ′ = ⋃
⊕∈Σ

x : dvar⊕ y : dvar= z : dvar

Since rules in RAUX may only generate x : dvar expressions, created propagators will always
have x : dvar operands, i.e. RAUX (π) [e] only requires propagators in π

〈
L ′〉, for any e ∈L .

Assuming a method like hashing is used to index elements of the rule and propagator repos-
itories, the runtime cost of the compilation algorithm RAUX for an arbitrary constraint is linear
on the number of binary operators in the constraint.

8.6. Model comparison

The adoption of views avoids introducing auxiliary variables and propagators for every subex-
pression. Conceptually, a view object over an expression serves the same purpose as the aux-
iliary variable introduced for that expression: to expose its domain. However, the presented
models differ in many ways. We will refer to the decomposition model using auxiliary vari-
ables as VARS, subtype polymorphic view as SVIEWS, and parametric polymorphic views as
PVIEWS.

For the memory and runtime analysis below we will consider an arithmetic constraint in-
volving n variables with uniform domain size d , with an unbalanced syntax tree, i.e. where
each operator in the expression involves at least one variable. Figure 8.1 shows a fragment of
the expression syntax tree.

8.6.1. Memory

A view object can be designed to expose just the subset of the expression’s domain which is re-
quired for the view’s client (e.g. the bounds of the expression). In contrast, a variable maintains
the full domain of the expression, possibly containing regions which will always be ignored for
propagation. For an expression containing n−1 operators such as the expression in fig. 8.1, the

121

Chapter 8. Type Parametric Compilation of Box View Models

auxiliary variables memory overhead is in O (nD) compared to any of the views model, where
D is the size of the largest domain of an auxiliary variable. For some expressions, namely an
expression containing only multiplications, we can have D = d n−1. In practice, the use of in-
tervals to store the auxiliary variable’s domains (i.e. D = 2) eliminates this problem.

8.6.2. Runtime

There is a fundamental operational difference between both view models and the auxiliary
variables model. A view object computes its domain on demand, that is, it will never update
its domain before it is needed by the view’s client. This is the opposite of what happens in the
auxiliary variable model, as the posted propagators will act on the auxiliary variable’s domains
independently.

This analysis focuses the cost of accessing and updating the bounds of an expression, which
may correspond to accessing/updating an auxiliary variable or a view object, depending on the
model. The cost is measured in terms of number of propagators executed, number of function
calls, number of arithmetic operations, and number of domain updates.

We first note that enforcing bounds(R) consistency to an algebraic expression requires O (nd)
steps [Yuanlin and Yap 2000]. As an example, consider a CSP with the constraint x×2 = y×2+1,
where D (x) = D

(
y
)= [1 . . .d].

We will first focus on the costs of updating the bounds of an expression whose syntax tree
resembles fig. 8.1. The auxiliary variables model associates a propagator and an auxiliary vari-
able with each internal node ni of the expression syntax tree. The propagator for a node n1

involving two leafs may execute O (2d) times and cause the same number of updates in the
domain of the corresponding auxiliary variable. This means that the propagator for n2 may
execute O (3d) times and so on for all the n −1 internal nodes. The number of propagators ex-
ecuted for the auxiliary variables model is therefore O

(
n2d

)
. Since each propagator execution

requires a constant number of arithmetic operations, the number of operations for this model
is also O

(
n2d

)
. Finally, given that each propagation implies the update of the domain of an

auxiliary variable, the number of domain updates is O
(
n2d

)
.

Both subtype and parametric polymorphic views have only one propagator for the entire
expression, which can be executed at most O (nd) times. Unfortunately, a single update of the
expression is now more costly because it may require evaluating the full tree, which is O (n).
This means that the total number of operations is still O (nd ×n) . However, given that there
are no auxiliary variables in these models, the number of domain updates is only O (nd). We
remark that the only difference between both view models is in the number of function calls
due to the simplification described in section 8.5.2.

Accessing the bounds of an expression is cheaper in the auxiliary variables model. This
is because the domain of each subexpression is cached in the associated auxiliary variable. In
contrast, both models involving views require evaluating the expression. Table 8.1 summarizes
these results.

122

8.6. Model comparison

model propagators functions operations updates

VARS - O
(
n2d

)
O (1) - O (1) O

(
n2d

)
- O

(
n2d

)
SVIEWS - O (nd) O (n) O

(
n2d

)
O (n) O

(
n2d

)
- O (nd)

PVIEWS - O (nd) O (1) - O (n) O
(
n2d

)
- O (nd)

Table 8.1.: Cost of accessing and updating an arbitrary expression represented by each of the
described models.

8.6.3. Propagation

The consistency achieved by view based propagators was detailed in the previous chapter. We
have seen that idempotency of the propagator for a constraint c plays an important role in the
strength of a view model for a constraint c◦ f . Unlike views, decomposing arbitrary expressions
using auxiliary variables assures that non-idempotent propagators for subexpressions will al-
ways act as idempotent propagators. This is due to the fact that subexpressions are propagated
independently and therefore will be added to the propagation queue whenever they are not at
fixpoint. As a consequence of proposition 7.10, decomposing a constraint c ◦ f using auxil-
iary variables may improve propagation comparing to views when the propagator for c is not
idempotent.

Example 8.19. Consider the constraint c◦ f = [x1 ×x2 ×2 = x3], where f (x1, x2, x3) = 〈x1 ×x2, x3〉
and c = [x1 ×2 = x2] and a box view model m for propagating the constraint c ◦ f . Assume
D (x1) = D (x2) = [2 . . .3], and D (x3) = [9 . . .15]. Propagating m (D) leaves the domains of x1 and
x2 unchanged, and prunes the domain of x3:

Vϕ+
f

(
VDWβ

)
Wβ = [4 . . .9]× [9 . . .15]

π
ββ?
c ([4 . . .9]× [9 . . .15]) = [5 . . .7]× [10. . .14]

Vϕ̂ f

(
[5 . . .7]× [10. . .14] ,VDWβ

)
Wβ∩D = [2 . . .3]× [2 . . .3]× [10. . .14]

Now consider the following standard (non-idempotent) propagator πββc for the constraint c:

π
ββ
c =

{
D (x3) ← D (x3)∩ [bD (x1 ×x2)c×2. . .dD (x1 ×x2)e×2]

D (x1 ×x2) ← D (x1 ×x2)∩ [bD (x3)c/2. . .dD (x3)e/2]

If the constraint is decomposed using a view object for D (x1 ×x2), then propagating m using

123

Chapter 8. Type Parametric Compilation of Box View Models

the above propagator gives:

Vϕ+
f

(
VDWβ

)
Wβ = [4 . . .9]× [9 . . .15]

π
ββ
c ([4 . . .9]× [9 . . .15]) = [5 . . .7]× [9 . . .15]

Vϕ̂ f

(
[5 . . .7]× [10. . .14] ,VDWβ

)
Wβ∩D = [2 . . .3]× [2 . . .3]× [9 . . .15]

Since the domains of the variables did not change, the propagator is at fixpoint. If the con-
straint is decomposed using an auxiliary variable to represent D (x1 ×x2), then the propaga-

tion engine would reexecute πββc since the domain of the auxiliary variable has changed. This
would then cause m to be also reexecuted and infer D (x3) = [10. . .14] as when using an idem-
potent propagator for c.

The above example may suggest that a decomposition of constraint c ◦ f using views would
be equivalent to using auxiliary variables if view models simply allow the propagator πc to run
until fixpoint. However, converting non-idempotent propagators to idempotent propagators
requires also that the changes made by πc are persistent from one execution to another, which
is always true when πc involves domain variables exclusively, but might not be the case when
πc is applied to view objects. In fact, updating the domain of an auxiliary variable may be seen
as a permanent operation - the domain effectively remembers the update. The same is not
always true when updating view objects since they are not strictly monotonic in general, that
is

S1 ⊂ S2; Vϕ̂
(
VS1Wβ,VSWβ

)
Wβ∩S ⊂ Vϕ̂

(
VS2Wβ,VSWβ

)
Wβ∩S

Example 8.20. Consider again the previous example, but now assume that we use a view

model that runs propagator πββc until fixpoint. The first execution of the view model would
compute

D (x3) ← D (x3)∩ [bD (x1 ×x2)c×2. . .dD (x1 ×x2)e×2] = [10. . .14]

D (x1 ×x2) ← D (x1 ×x2)∩ [bD (x3)c/2. . .dD (x3)e/2] = [5 . . .7]

However, when D (x1 ×x2) is associated with a view object, evaluating D (x1 ×x2) after the sec-
ond update above would still yield D (x1 ×x2) = [4 . . .9], i.e. the update is not persistent. The
reason for this is that the interval [5 . . .7] cannot be obtained by the product of a unique pair of

integer intervals representing D (x1) and D (x2). Therefore, reexecutingπββc would not perform
any further pruning.

As we have discussed earlier, decompositions using auxiliary variables cache the domains of
subexpressions across executions of the involved propagators. In contrast, the domain repre-
sented by box view objects is not maintained but recomputed in every propagation. A possible
solution to the above problem would be to cache the domains of the box view objects when

124

8.7. Beyond arithmetic expressions

the update cannot be expressed by pruning the domains of the variables involved in the corre-
sponding subexpression. This solution is a compromise between recomputing and caching
the domain of subexpressions and guarantees that decomposition based on views has the
same strength as when using auxiliary variables even when using non-idempotent propaga-
tors. While caching domains introduces performance penalties as discussed above, we would
still expect this solution to be more efficient than the auxiliary variable decomposition since
domains would be cached much less frequently. In our experiments we found out that the
amount of extra propagation earned when using auxiliary variables does not compensate the
overall inefficiencies of the variable decomposition model, as will be shown in the following
chapter.

8.7. Beyond arithmetic expressions

Although we have mostly focused on views over arithmetic expressions, views are also effective
for accessing and updating other kind of expressions, namely the following.

8.7.1. Casting operator

Casting provides a type-safe mechanism to access or update polymorphic data types. A very
common situation in Constraint Programming is treating Boolean variables as integer vari-
ables or vice-versa, as shown in the following example.

Example 8.21 (Casting). Consider again the EXACTLY(x, v,c) constraint which constrains the
number of occurrences of a given value in a collection of variables, i.e.

[∑
i (xi = v) = c

]
. The

expression in parenthesis is a Boolean expression, while the sum is treating it like a numeric ex-
pression, where tr ue corresponds to 1 and f al se to 0. This is known as type casting. Defining
a box view object over casting expressions allows a solver to integrate these kind of expressions
in an efficient, type-safe manner.

8.7.2. Array access operator

The ELEMENT(x, i , v) constraint is used to access a position in an array of domain variables
by constraining the element i of the array x to be equal to v . By forcing the xi variable to
equal variable v , using this constraint may introduce a superfluous variable in a number of
constraints, for example

[
xi > y

]
which is typically decomposed as

[
ELEMENT (x, i , v)∧ v > y

]
.

In contrast, a box view object over a xi expression maintains the bounds of the variable at
position i , and does not introduce an extra variable.

125

Chapter 8. Type Parametric Compilation of Box View Models

8.7.3. Iterated expressions

Sometimes we may want to aggregate n subexpressions in some global expression, and n is
not known at compile time. For example in the Golomb ruler problem (see [Gent and Walsh
1999]), the constraint

c = [
DISTINCT

(
xi −x j : 1 < i < j < m

)]
enforces all pairwise differences to be distinct. Since m is typically given at runtime, the num-
ber of differences (m × (m −1)/2) is not known when compiling the program, and therefore
we cannot state the constraint by enumerating all subexpressions literally. Even if we could, it
would not be very convenient either since m can be arbitrarily large.

When decomposing using auxiliary variables or subtype polymorphic views, an auxiliary
variable (resp. a subtype polymorphic view object) is created for each difference at runtime,
and the DISTINCT constraint is posted on these variables (resp. sview objects),

c = ∧
1<i< j<m

[
ai j = xi −x j

]
∧ [DISTINCT(a)]

However, for compiling constraints to type parametric view objects the compiler must visit
the full expression top-down at compile time, as explained above. We must therefore find a
compact and readable description of a repeating occurrence of a subexpression. Based on
the concept of aggregator [Hentenryck et al. 2000; Hentenryck and Michel 2005], we solved
this problem using the ALL(I ,S,d ,e) expression which represents an array where each position
holds the expression e instantiated when each variable in I is assigned to a value of the set S
and the condition d is satisfied.

Example 8.22 (ALL expression). The constraint c may be represented as follows, where i , j are
variables taking values in {1, . . . ,m}, satisfying i < j ,

c = [
DISTINCT

(
ALL

({
i , j

}
, {1, . . . ,m} , i < j , xi −x j

))]
For this to work we defined view objects over iterated expressions, that is, expressions that

depend on the value of the iterated variables i , j . In this particular case, view objects over
iterated expressions are able to save a quadratic number of variables and still benefit from the
efficiency of type parametric view objects.

8.8. Summary

This chapter introduced subtype and parametric polymorphic box view objects for efficient
propagation of box view models for arbitrary decomposable constraints. We have established

126

8.8. Summary

a formal relation between decompositions using view objects and auxiliary variables. Specifi-
cally, we have shown under which circumstances using view objects or auxiliary variables for
propagating a given view model lead to the same search space. We have also seen how to
compile a propagation algorithm using a set of view objects or a set of propagators and aux-
iliary variables from an arbitrary constraint. Moreover, we have presented two variants of the
propagation algorithm based on view objects, which suggest distinct implementations in poly-
morphic programming languages. In the next chapter we will see that this difference has a
significant impact on performance.

Related work

There is a significant amount of work related to the material in this chapter, but since it is avail-
able mostly in the form of computer program implementations, we have chosen to discuss it
in the end of the next chapter.

Future work

. We have intentionally restricted the instantiation of view models to view models consisting
only of box approximations. This was partially because view objects may be implemented
efficiently as discussed, but also because presenting an implementation of a generic view
model would make the exposition much more complex. In fact, other view models may be
propagated using a similar approach. The resulting propagators are correct, but creating
efficient corresponding view objects is much more challenging in general. As an example,
consider designing a domain view object, that is an object which computes

Vϕ+
f

(
VS1Wδ

)
Wδ

S1 ← S1 ∩Vϕ̂ f
(
VS2Wδ,VS1Wδ

)
Wδ

A domain view object must be able to compute δ-domains, which cannot be done in con-
stant time for most functions f as it is the case for β-domains. In fact, the above operations
require time exponential in the arity of f , which renders domain view objects unpractical
for most functions. It was found that for specific classes of functions, namely injective func-
tions, computing δ-domain objects may be done in linear time [Tack 2009]. As future work
it would be interesting to see if incrementality (discussed in part I of this dissertation) could
be used to improve the runtime cost of computing domain view objects.

. Providing a domain view (or evenϕ-view) object over a compact extensional representation
of the domain of the view is another possible development. Compact representations of ar-
bitrary tuple sets have been successfully used for propagating extensional constraints [Gent
et al. 2007; Cheng and Yap 2008]. Since such representations are exponential in the worst
case, using views over subexpressions could be a way to achieve a finer space-time tradeoff.

127

Chapter 8. Type Parametric Compilation of Box View Models

128

Chapter 9.

Implementation and Experiments

This chapter is divided in two parts. The first provides some details on how view objects pre-
sented previously may be implemented, either in a logic programming setting (§9.1) or in a
strongly typed imperative language (§9.2). The second part evaluates decomposition methods
experimentally, summarizing the tested models and benchmarks (§9.3), and discussing the
results obtained (§9.4).

9.1. View models in Logic Programming

Propagators for box view models may be implemented straightforwardly in Prolog. A view
object for a given function f is defined by a set of predicates, one for each method, of the
form METHOD

(
f ,b

)
where b is either an input or output parameter depending on the method.

Prolog’s unification mechanism allows a literal implementation of parametric polymorphic
view stores with respect to the previously described conceptual model. The rule repository is
the Prolog predicate store, and rewriting rules are simply stated as Prolog predicates.

Example 9.1. Partial implementation of bnd [x : dvar], bnd [X +Y], and π [X] in (eclipse) Pro-
log:

% bnd[X+Y]
bnd_getmin (X+Y , R):− bnd_getmin (X , R1) ,

bnd_getmin (Y , R2) ,
R i s R1+R2 .

bnd_updmin(X+Y , I):− bnd_getmax (X ,MX) ,
bnd_getmax (Y ,MY) ,
IX i s I−MY, IY i s I−MX,
bnd_updmin(X , IX) ,
bnd_updmin(Y , IY) .

% bnd[x : dvar]
bnd_getmin (X , R):− get_min (X , R) .
bnd_updmin(X , I):− X #>= I .

129

Chapter 9. Implementation and Experiments

% pi [X]
propagate (X):− bnd_updmin(X , 1) .

The above program implements type parametric box view objects. The optimization con-
sisting of inlining the predicates that define the propagator, described in section 8.5.2, may
be done either implicitly by the Prolog compiler, or explicitly if the Prolog engine supports it,
which is not uncommon (e.g. expand_goal/2 in eclipse Prolog).

9.2. View models in strongly typed programming languages

Implementing our conceptual box view model in a strongly typed programming language is
possible if some sort of type polymorphism support is available in the language. Most if not
all popular strongly typed programming languages have built in support for subtype polymor-
phism, either by overloading or through the use of inheritance in the case of object oriented
programming languages. Recently, parametric polymorphism has been introduced in some
object oriented programming languages such as c++, java and c#.

We have implemented box view models in c++. Since c++ supports both subtype and para-
metric polymorphism, we were able to integrate the two variants of our model within the con-
straint solver engine, therefore obtaining a fair experimental platform. Let us detail these im-
plementations.

9.2.1. Subtype polymorphism

Subtype polymorphism is available in C++, C#, through the use of inheritance. In this setting
we need to define an abstract interface for box view objects, which is essentially the imple-
mentation of equation 8.1 on page 114.

class IBox {
v i r t u a l int getMin () = 0 ;
v i r t u a l int getMax () = 0 ;
v i r t u a l void updMin(int i) = 0 ;
v i r t u a l void updMax(int i) = 0 ;

} ;

A box view object for a specific function is a kind of a box view object, that is it implements
the box view object interface.

Example 9.2. The following class defines bnd [X+Y], the subtype polymorphic box view object
for the addition of two box view objects:

130

9.2. View models in strongly typed programming languages

class Add2 : IBox {
Add2(IBox * x , IBox * y) : x (* x) , y (* y) { }
v i r t u a l int getMin () { return x . getMin () + y . getMin () ; }
v i r t u a l int getMax () { return x . getMax () + y . getMax () ; }
v i r t u a l void updMin(int i)
{ x . updMin(i−y . getMax ()) ; y . updMin(i−x . getMax ()) ; }
v i r t u a l void updMax(int i)
{ x .updMax(i−y . getMin ()) ; y .updMax(i−x . getMin ()) ; }
IBox& x ;
IBox& y ;

} ;

Compiling a given constraint into subtype polymorphic box view objects is straightforward
since in c++ expressions are evaluated bottom-up. Below are set of convenience functions
which may be used to create subtype polymorphic view box objects for a binary addition.

IBox * add (IBox * x , IBox * y)
{ return new Add2(x , y) ; }

IBox * operator +(IBox * x , IBox * y)
{ return new Add2(x , y) ; }

The user may then create box view objects for arbitrary expressions in C++ using a clean
syntax:

DomVar a , b , c ;
a+b* c ;
add (a , mul(b , c)) ;

9.2.2. Parametric polymorphism

The fact that the c++ compiler evaluates expressions bottom-up makes the implementation of
parametric polymorphic view objects slightly more complex, since as we have seen in the pre-
vious chapter, need to be compiled top-down. The solution we propose breaks the compilation
algorithm in two phases. The first phase creates a syntactic representation of the expression,
called a type parametric relation object, using the natural bottom-up evaluation order intrin-
sic in the language. Type parametric relations captures the data and the type of the objects and
operations involved in the constraint. After the full constraint is compiled, we use the obtained
relation object for instantiating the required view objects.

131

Chapter 9. Implementation and Experiments

We will use templates for defining type parametric relations, since this is the language mech-
anism available in c++ to support type parametric polymorphism. The following template de-
fines generic binary relations, where “Op” is a type describing the operator, and “X” and “Y”
are types of the operands.

template<class Op, class X , class Y>
class Rel2 {

Rel2 (X x , Y y) : x (x) , y (y) { }
X x ;
Y y ;

} ;

Since any expression may be transformed to a relation object with a unique type, we can
create view objects over arbitrary expressions by defining templates over relation objects.

Example 9.3. The following template defines bnd [X+Y], the parametric polymorphic box
view object for the addition of two arbitrary objects:

template<class X , class Y>
class Box<Rel2<Add, X , Y> > {

Box (Rel2<Add, X , Y> r) : x (r . x) , y (r . y) { }
int getMin () { return x . getMin () + y . getMin () ; }
int getMax () { return x . getMax () + y . getMax () ; }
void updMin(int i)
{ x . updMin(i−y . getMax ()) ; y . updMin(i−x . getMax ()) ; }
void updMax(int i)
{ x .updMax(i−y . getMin ()) ; y .updMax(i−x . getMin ()) ; }
Box<X> x ;
Box<Y> y ;

} ;

Parametric relation objects are created by a set of convenience functions, such as:

template<class X , class Y>
Rel2<Add, X , Y> add (X x , Y y)
{ return Rel2<Add, X , Y>(x , y) ; }

template<class X , class Y>
Rel2<Add, X , Y> operator +(X x , Y y)
{ return Rel2<Add, X , Y>(x , y) ; }

132

9.3. Experiments

Note that the above functions only create the relation object for the expression, and not the
corresponding view object. Creating the view object is accomplished by providing the relation
object to the following function:

template<class T>
Box<T> box (T t)
{ return Box<T>(t) ; }

The following code instantiates two parametric box view objects for an expression using the
above constructs.

DomVar a , b , c ;
box (a+b* c) ;
box (add(a , mul(b , c))) ;

9.2.3. Advantages of subtype polymorphic views

We have seen in section 8.6.3 that propagators using type parametric view objects are theo-
retically more efficient than those using subtype polymorphic view objects, by assuming that
the compiler is able to eliminate function calls. This is often the case when the constraint is
stated directly in a strongly typed programming language supporting type parametricity and
the code is compiled with a modern compiler. However, this may not be possible if the expres-
sion is given as input by the user at runtime, for example if the solver is embedded in an inter-
preter. In this case the expression was obviously not known when compiling the interpreter,
and therefore there is no opportunity for compile time optimizations. We remark however that
type parametric views may still be useful in this scenario for defining a set of propagators for
a limited number of expressions, which may be enough for domain specific interpreters. An
example is to create a propagator for an n-ary sum from a set of binary sums.

9.3. Experiments

In this section we evaluate the performance of previously described decomposition methods
on a set of benchmarks. Specifically we are interested in comparing the following models.

9.3.1. Models

VARS This is the classical method for decomposing constraints into primitive propagators
introducing one auxiliary variable for each subexpression, as discussed in section 8.4 on
page 117.

133

Chapter 9. Implementation and Experiments

VARS+GLOBAL This model is similar to the previous but uses global constraints for lowering
the number of auxiliary variables. Only a subset of problems support this decomposition
in which case we will specifically mention which global constraints are used.

PVIEWS The model that implements the decomposition based on parametric polymorphic
view objects, the central topic in the previous chapter.

SVIEWS The decomposition based on subtype polymorphic view objects described in the
previous chapter.

CPVIEWS This model is equivalent to the pviews model except that the computations of
the view objects are cached in order to guarantee the same propagation as when using
auxiliary variables. This was discussed in section 8.6.3 on page 123.

VIEWS+GLOBAL Like the VARS+GLOBAL model, this model uses a combination of some type
of views and a global constraint propagator.

All the above decomposition models were implemented in CaSPER. Additionally, we also im-
plemented the first two in Gecode [Gecode 2010] as an external reference, denoted GECODE-
VARS and GECODE-VARS+GLOBAL respectively.

9.3.2. Problems

The set of benchmarks covers a total of 22 instances from 6 different problems. Before we
present them in detail, we should make a few general considerations.

For each given instance we used the same labeling heuristics (or no heuristics at all) for
testing the above models. This means that, for each instance, the solvers resulting from the
implementation of the above models explore exactly the same search space, unless the de-
compositions have different propagation strength, which may occur as we have already seen.

In the following exposition we will mostly focus on the decomposable constraints for which
our models apply. When describing the model, we may choose to ignore other necessary,
redundant, or symmetry breaking constraints that we used in our implementations. These
were kept constant across all implementations of the above models for each benchmark and
therefore do not influence the conclusions. For additional information, we provide references
to detailed descriptions of the problems in the online constraint programming benchmark
database CSPLib [Gent and Walsh 1999]. The source code for all the solvers may be obtained
from the author upon request.

Systems of linear equations

This experiment consists in solving a system of linear equations. Linear equations are usually
integrated in Constraint Programming using a specific global constraint propagator. The goal

134

9.3. Experiments

of the experiment is therefore to assess the overhead of decomposing expressions using the
presented models compared to a decomposition which uses a special purpose algorithm, i.e.
a global constraint.

Each system of linear equations is described by a tuple 〈n,d ,c, a, s|u〉 where n is the number
of variables in the problem, d is the uniform domain size, c is the number of linear equa-
tions, a is the number of terms in each equation, and the last term denotes if the problem is
(s)atisfiable or (u)nsatisfiable. Each problem is defined by

c∧
i=1

∑
v∈p(i)

v = t

where p (i) is a function returning a combination of a variables for the equation i , selected ran-
domly from the full set of C n

a possible combinations. The independent term t in each equation
was selected randomly with a uniform probability from the interval [a . . . a ×d]. Different ran-
dom seeds were experimented in order to generate difficult instances.

The a-ary sum constraints were decomposed using binary sums implementing a subset of
the previously described models, namely VARS, SVIEWS, and PVIEWS. Model VARS+GLOBAL

used global constraint propagators for the a-ary sums.

Systems of nonlinear equations

The second experiment considers systems of nonlinear equations. These problems arise often
in practice, and since the decomposition to special purpose propagators is not so direct as in
previous case, it provides a realistic opportunity to apply the previously discussed models.

A system of nonlinear equations is described by a tuple 〈n,d ,c, a1, a2, s|u〉 where a1 is the
number of terms in each equation, each term is composed of a product of a2 factors, and all
remaining variables have the same meaning as before. Each system of nonlinear equations is
formally defined as:

c∧
i=1

a1∑
j=1

∏
v∈p(i , j)

v = t

where p
(
i , j

)
is a function returning a combination of a2 variables for the term j of equation

i , selected randomly from the full set of C n
a2

possible combinations.

The tested models consist on the decomposition into binary sums and products using aux-
iliary variables exclusively (VARS) and using view models (SVIEWS, PVIEWS, and CPVIEWS).
We also tested two models where each product is decomposed using either auxiliary variables
or views, projected to a variable xi , and a sum propagator is used to enforce

∑a1
i=1 xi for each

equation (VARS+GLOBAL and PVIEWS+GLOBAL respectively).

135

Chapter 9. Implementation and Experiments

Social golfers (prob10 in CSPLib)

The Social golfers problem consists in scheduling a golf tournament. The golf tournament
lasts for a specified number of weeks w , organizing g games each week, each game involving
s players. There is therefore a total of g × s players participating in the tournament. The goal is
to come up with a schedule where each pair of golfers plays in the same group at most once.

This problem may be solved efficiently in Constraint Programming using a 3-dimensional
matrix x of w ×g × s integer domain variables, where each variable identifies a golf player. For
two groups of players G1, G2, the MEETONCE constraint ensures that any pair of players in one
group does not meet in the other group,

MEETONCE (G1,G2) =
[∑

x∈G1,y∈G1

(
x = y

)≤ 1

]

This constraint is then used to impose that each pair of players meets at most once during the
entire tournament,∧

1≤wi<w j≤w
MEETONCE

({
xwi ,gi ,si : 1 ≤ gi ≤ g ,1 ≤ si ≤ s

}
,
{

xw j ,g j ,s j : 1 ≤ g j ≤ g ,1 ≤ s j ≤ s
})

We tested a subset of our models for propagating the MEETONCE constraint, namely PVIEWS+GLOBAL,
SVIEWS+GLOBAL, CPVIEWS+GLOBAL, and VARS+GLOBAL. View based models implement the
MEETONCE constraint using the above expression directly, using a global propagator for the
sum constraint. This constraint translates almost literally to CaSPER,

MEETONCE (G1,G2) = [
SUM

(
ALL

(
x ∈G1, y ∈G2, x = y

))≤ 1
]

The VARS+GLOBAL model implements the traditional decomposition using a set b of s2 aux-
iliary boolean domain variables,

MEETONCE (G1,G2) = ∧
x∈G1,y∈G2

[
bi =

(
x = y

)]
(9.1)

∧
[

s2∑
i=1

bi ≤ 1

]
(9.2)

In this case we used the (reified) equality propagator for each equation in the conjunction of
eq. 9.1, and a sum global propagator for equation 9.2.

136

9.3. Experiments

Golomb ruler (prob6 in CSPLib)

A Golomb ruler of m marks and length xm is a set of m integers,

0 = x1 < x2 < . . . < xm

such that the m(m − 1)/2 differences xi − x j , 1 ≤ j < i ≤ m are distinct. The Golomb ruler
problem is an optimization problem, where the goal is to find the smallest possible Golomb
ruler with a given number of marks.

This problem makes use of a constraint of the form

DISTINCT
({

xi −x j : 1 ≤ j < i ≤ m
})

enforcing that the pairwise differences xi − x j are all distinct. The classical decomposition for
this constraint (VARS+GLOBAL) introduces one auxiliary variable for each pairwise difference,
and makes use of the distinct global propagator for the DISTINCT constraint,∧

1≤i< j≤m
[
ai , j = xi −x j

]
∧ [DISTINCT (a)]

Using views avoids introducing the set of auxiliary variables a. Instead, the constraint is
used directly as follows,

DISTINCT
(

ALL
(
1 ≤ i ≤ m,1 ≤ j ≤ m, j < i , xi −x j

))
and enforced with the bounds complete propagator introduced by Lopez-Ortiz et al. [2003]. In
our benchmarks we solved the decision version of this problem, i.e. we provided the size of the
ruler xm as a parameter of the problem, and asked for the ruler satisfying the constraints.

Low autocorrelation binary sequences (prob5 in CSPLib)

The goal is to construct a binary sequence S = x1, . . . , xn of length n, where D (xi) = {−1,1},
1 ≤ i ≤ n, that minimizes the autocorrelations between bits, i.e. that minimizes the following
expression,

m =
n−1∑
i=1

(
n−i−1∑

j=1
x j ×x j+i+1

)2

(9.3)

137

Chapter 9. Implementation and Experiments

The VARS+GLOBAL model decomposes the above expression using three sets of auxiliary vari-
ables a, b, and c, and sum constraints as follows,∧n−1

i=1

∧n−i−1
j=1

[
x j ×x j+i+1 = ai , j

]
∧n−1

i=1

[
n−i−1∑

j=1
ai , j = bi

]
∧n−1

i=1

[
b2

i = ci
]

∧
[

m =
n−1∑
i=1

ci

]

In this experiment we implemented three variants of the PVIEWS model. The PVIEWS-
PARTIAL1 model implements the following decomposition which is just slightly more compact
than the above,

∧n−1
i=1

[
n−i−1∑

j=1
x j ×x j+i+1 = bi

]
∧n−1

i=1

[
b2

i = ci
]

∧
[

m =
n−1∑
i=1

ci

]

The PVIEWS-PARTIAL2 model further decreases the number of auxiliary variables,

∧n−1
i=1

[
n−i−1∑

j=1
x j ×x j+i+1 = bi

]

∧
[

m =
n−1∑
i=1

b2
i

]

Finally, the PVIEWS, SVIEWS and CPVIEWS model implements expression 9.3 directly, without
introducing any auxiliary variable.

Fixed-length error correcting codes (prob36 in CSPLib)

This problem involves generating a set of strings from a given alphabet which satisfy a pairwise
minimum distance. Each instance is defined by a tuple 〈a,n, l ,d〉 where a is the alphabet
size, n is the number of strings, l is the string length, and d is the minimum distance allowed
between any two strings. For measuring the distance between two strings we have used the
Hamming distance on two instances and the Lee distance on the other two. For two arbitrary

138

9.4. Discussion

strings x, y of length l , these measures are defined as follows,

HAMMING
(
x, y

) =
l∑

i=1

(
xi 6= yi

)
LEE

(
x, y

) =
l∑

i=1
min

(∣∣xi − yi
∣∣ , a − ∣∣xi − yi

∣∣) (9.4)

This problem was modeled by a matrix x of n×l integer domain variables, where each variable
xi , j can take a value in 1. . . a corresponding to the symbol of string i in position j . Then,
distance constraints are imposed between each pair of strings,∧

1≤i1<i2≤n
DISTANCE

({
xi1, j : 1 ≤ j ≤ l

}
,
{

xi2, j : 1 ≤ j ≤ l
})≥ d

The VARS+GLOBAL model decomposes distance constraints using auxiliary variables and sum
constraints. Note that in the case of the Lee distance, a total of 4l auxiliary variables are in-
troduced for each distance constraint. The SVIEWS, PVIEWS, and CPVIEWS models implement
both distance functions without any extra variables.

9.3.3. Setup

The code for the first two experiments was compiled with the gcc-4.2.4 C++ compiler, while
the remaining experiments were compiled with gcc-4.4.3. All experiments were executed on
an Intel Core 2 Duo @ 2.20GHz, using Linux-2.6.31.6. The versions of the CaSPER and Gecode
solvers were the most recently available, respectively revision 548 and version 3.3.1. Each
benchmark was repeated until the standard deviation of the runtime was below 2% of the av-
erage time, and then the minimum runtime was used.

9.4. Discussion

The results of all benchmarks are detailed in appendix B.3 from which we drawn the following
conclusions.

9.4.1. Auxiliary variables Vs Type parametric views

Table 9.1 compares the runtime of the best model using auxiliary variables, i.e. either VARS

or VARS+GLOBAL, with the runtime of the best model that uses type parametric views, i.e. ei-
ther PVIEWS or PVIEWS+GLOBAL. View objects do not intend to be a replacement for global
constraint propagators, and therefore this table shows how much the runtime of a constraint
program may be improved when using the best available tools.

139

Chapter 9. Implementation and Experiments

mean stddev min max

Systems of linear equations 1.07 1.15 0.91 1.21
Systems of nonlinear equations 0.42 1.08 0.36 0.46

Social golfers 0.62 1.09 0.59 0.69
Golomb ruler 0.74 1.02 0.73 0.75

Low autocorrelation binary sequences 0.35 1.02 0.35 0.36
Fixed-length error correcting codes 0.44 1.38 0.28 0.57

All 0.56 1.51 0.28 1.21
All except linear 0.49 1.34 0.28 0.75

Table 9.1.: Geometric mean, standard deviation, minimum and maximum of the ratios defined
by the runtime of best performing model using views over the runtime of the best
performing model using auxiliary variables, on all benchmarks.

Before we take a global view on the results in this table, let us focus on the special case of the
benchmark involving systems of linear equations. We recall that this benchmark should not
be considered as part of a realistic application of views or auxiliary variables since it may be
modeled using a global constraint propagator exclusively. However, modeling the global sum
constraint using type parametric views over binary sums was only 7% worst on average, which
is nevertheless remarkable.

For all other benchmarks, using type parametric views instead of auxiliary variables was
consistently better, approximately twice as fast on (geometric) average, and always more than
25% faster. An interesting particular case are the two instances of the “Fixed length error
correcting codes” problem using the Lee distance. These instances are in fact the only for
which decomposing using auxiliary variables could be recommended. This is because there
is a subexpression which occurs twice in the expression, and therefore can be represented by
the same auxiliary variable (see equation 9.4), possibly leading to a smaller search tree. Even
without this optimization, the solver using type parametric views was more than twice as fast
on average on these instances.

Regarding propagation, even if using auxiliary variables may sometimes lead to smaller
search trees, the difference was not so significant in our experiments. In fact, for those in-
stances where using auxiliary variables increases propagation strength compared to views, the
discrepancy in the number of fails was only of 6% on average, and never more than 20% (table
9.2). On the other hand, the number of propagations using auxiliary variables is on average
an order of magnitude greater than when using views, which partially explains the superior
performance of type parametric view models (shown in the appendix).

140

9.4. Discussion

mean stddev min max

Systems of nonlinear equations 1.06 1.08 1.01 1.16
Golomb ruler 1.00 1.00 1.00 1.01

Fixed-length error correcting codes 1.20 1.00 1.20 1.20

All 1.06 1.08 1.00 1.20

Table 9.2.: Geometric mean, standard deviation, minimum and maximum of the ratios defined
by the number of fails of the best performing solver using views over the number of
fails of the best performing solver using auxiliary variables, on all instances of each
problem where the number of fails differ.

mean stddev min max

Systems of linear equations 0.57 1.63 0.33 0.96
Systems of nonlinear equations 0.83 1.07 0.77 0.93

Social golfers 0.77 1.05 0.73 0.81
Golomb ruler 0.89 1.03 0.87 0.91

Low autocorrelation binary sequences 0.41 1.02 0.41 0.42
Fixed-length error correcting codes 0.55 1.43 0.4 0.77

All 0.67 1.4 0.33 0.96

Table 9.3.: Geometric mean, standard deviation, minimum and maximum of the ratios defined
by the runtime of the solver implementing the PVIEWS model over the runtime of
the solver implementing the SVIEWS model, on all benchmarks.

9.4.2. Type parametric views Vs Subtype polymorphic views

Recall from section 8.6.2 on page 122 that solvers using type parametric view objects are able to
avoid a linear number of function calls for each access or update due to code inlining optimiza-
tions. Table 9.3 shows how this optimization improves performance in practice, in particular
for problems involving a large number of subexpressions where it can be 66% times faster.

9.4.3. Caching type parametric views

Caching type parametric views is a way to overcome the loss of propagation strength in some
problems compared to the decomposition based on auxiliary variables. In our experiments,
cached parametric view objects increased runtimes considerably, even if exploring a smaller
search space. Table 9.4 summarizes the results.

As we have seen in table 9.2, the search space visited by type parametric views is not much
larger than when performing caching, which certainly influences these results. Note that caching

141

Chapter 9. Implementation and Experiments

mean stddev min max

Systems of nonlinear equations 0.57 1.13 0.46 0.65
Social golfers 0.6 1.06 0.56 0.63
Golomb ruler 0.83 1.03 0.8 0.85

Low autocorrelation binary sequences 0.82 1 0.82 0.82
Fixed-length error correcting codes 0.57 1.44 0.33 0.72

All 0.64 1.27 0.33 0.85

Table 9.4.: Geometric mean, standard deviation, minimum and maximum of the ratios defined
by the runtime of the solver implementing the PVIEWS model over the runtime of
the solver implementing the CPVIEWS model, on all benchmarks.

type parametric views is still more efficient than using auxiliary variables (15% better on aver-
age).

9.4.4. Competitiveness

Modeling decomposable constraints using type parametric views makes CaSPER competitive
with the state-of-the-art Gecode solver. This may be seen by comparing the results presented
in table 9.5 with table 9.6. In the first table we compare the runtimes obtained by running the
same model on both solvers, i.e. VARS+GLOBAL and GECODE-VARS+GLOBAL. The second ta-
ble compares the PVIEWS model against GECODE-VARS+GLOBAL, which are the best models
that can be implemented in both platforms using the available modeling primitives. While
CaSPER is worse in all but one problem when using auxiliary variables and global propagators,
it becomes very competitive when using type parametric views. We believe that the discrep-
ancy observed in the “Fixed length error correcting codes” benchmark is related to aspects of
the architecture of both solvers which are orthogonal to the tested models, in particular the
performance of labeling which seems to vary with the number of variables in Gecode, while
remaining approximately constant in CaSPER (see figure 9.1).

9.5. Summary

We have seen how box view objects may be implemented using several language paradigms,
with a focus on strongly typed languages, namely c++. Decomposition models based on aux-
iliary variables, subtype polymorphic views, and type parametric views were implemented for
a number of well known benchmarks, and the results were discussed. We observed that type
parametric views are clearly more efficient than models resulting from the other decompo-
sition/compilation methods for all benchmarks. Moreover, we have seen that this technique

142

9.5. Summary

mean stddev min max

Systems of linear equations 1.32 1.22 0.99 1.54
Systems of nonlinear equations 1.42 1.12 1.2 1.63

Social golfers 1.43 1.28 1.15 1.86
Golomb ruler 1.59 1.13 1.38 1.71

Low autocorrelation binary sequences 1.45 1.01 1.44 1.46
Fixed-length error correcting codes 0.19 1.93 0.09 0.33

All 0.99 2.34 0.09 1.86
All except fixed-length error correcting codes 1.43 1.16 0.99 1.86

Table 9.5.: Geometric mean, standard deviation, minimum and maximum of the ratios defined
by the runtime of the CaSPER solver implementing the VARS+GLOBAL model over
the runtime of the Gecode solver implementing the VARS+GLOBAL model, on all
benchmarks.

mean stddev min max

Systems of linear equations 1.42 1.3 0.98 1.78
Systems of nonlinear equations 0.59 1.12 0.5 0.68

Social golfers 0.89 1.28 0.67 1.1
Golomb ruler 1.18 1.15 1 1.29

Low autocorrelation binary sequences 0.51 1.03 0.5 0.52
Fixed-length error correcting codes 0.08 2.47 0.03 0.19

All 0.55 2.87 0.03 1.78
All except fixed-length error correcting codes 0.85 1.54 0.5 1.78

Table 9.6.: Geometric mean, standard deviation, minimum and maximum of the ratios defined
by the runtime of the CaSPER solver implementing the PVIEWS model over the run-
time of the Gecode solver implementing the VARS+GLOBAL model, on all bench-
marks.

143

Chapter 9. Implementation and Experiments
Sheet3

Page 1

10 20 40 80 160 320 640 1280

0

1

2

3

4

5

6

7

8

9

10

Labeling runtime

casper
gecode

#variables

#
so

lu
tio

n
s/

se
c o

n
d

 (
x1

0
^-

5
)

Figure 9.1.: Number of solutions per second when enumerating all solutions of a CSP with a
given number of variables (in the xx axis), domain of size 8, and no constraints.

improves the performance of CaSPER to the point of being competitive with Gecode, which is
regarded as one of the most efficient solvers available.

Related work

Ï Most popular Prolog systems [SICStus 2006; ECLiPSe 2010; GNUProlog 2008] automatically
decompose constraints over arbitrary arithmetic expressions using auxiliary variables. The
use of indexicals and goal expanded constraints [SICStus 2006] is advised as a way to avoid
introducing auxiliary variables. We are not aware of a published description of the imple-
mentation of the propagator achieved in this case, but we suspect it should be comparable
to subtype polymorphic views model, since Prolog, being an untyped interpreted language,
should not support type parametric polymorphism. Given the simplicity of the Prolog im-
plementation of this model (see section 9.1) it is unfortunate that it requires special features
of the language and is not transparent to the user.

Ï ILog Solver is well known constraint solver written in C++ supporting posting constraints
over arbitrary expressions. It processes an expression bottom-up by converting its subex-
pressions to constrained expressions [ILOG 2003a], which are exactly subtype polymorphic
view objects.

Ï Choco solver [Choco 2010] is a constraint solver written in Java which also allows posting
constraints over arbitrary expressions. In this system the user may ask the solver to either
decompose the expression using the auxiliary variables model, or to compile the expression
to an extensional representation.

144

9.5. Summary

Ï Gecode solver [Gecode 2010] is a very efficient constraint solver written in C++. At the time
of this writing, Gecode does not support constraints over arbitrary expressions. Instead, it
requires the user to provide the decomposition by means of auxiliary variables. However,
this solver makes an extensive use of views very much as we describe in section 8.5.2. The
main difference is that in Gecode, views are available as an extension mechanism for de-
signing new propagators explicitly. That is, unlike our model, there is no automatic process
for instantiating the required views for a given arbitrary expression. For more information
see [Schulte and Tack 2005].

145

Chapter 9. Implementation and Experiments

146

Part III.

Applications

147

Chapter 10.

On the Integration of Singleton Consistencies
and Look-Ahead Heuristics

Complete constraint programming solvers have their efficiency dependent on two comple-
mentary components, propagation and search. Constraint propagation is a key component
in constraint solving, eliminating values from the domains of the variables with polynomial
algorithms. When propagation is effective, such algorithms reduce the search space by some
combinatorial (i.e exponential) factor, with a polynomial cost. The other component, search,
aims at finding solutions in the remaining search space, and is usually driven by heuristics
both for selecting the variable to enumerate and the value that is chosen first.

Typically, these components are independent. In particular, heuristics take into account
some features of the remaining search space, and some structure of the problem to take de-
cisions. Clearly, the more information there is, the more likely it is to get a good (informed)
heuristics. In many search problems addressed in Artificial Intelligence, additional informa-
tion is often obtained by performing a limited amount of look-ahead, and assessing the state
of search some steps ahead. For example in two players games, like chess or checkers, rather
than considering the current state of the board to decide the move to make, a number of moves
by both players can be simulated, such that board configurations with a more advanced phase
of the game (thus better informed) can be taken into consideration.

Although better solver performances can be achieved by improving any of the two compo-
nents (propagation and search) they are seldom, if ever, integrated. The main reason for this
lies in that typical propagation procedures, such as maintenance of local bounds or domain
consistency, are basically local filtering algorithms. Recently, a lot of attention has been given
to a class of algorithms which analyze look-ahead what-if scenarios: what would happen if
a variable x takes some value v? Such look-ahead analysis (typically done by subsequently
maintaining some local consistency on the constraint network) may detect that value v is not
part of any solution, and eliminate it from the domain of variable x. This is the purpose of
the different variants of Singleton Consistency (SC) [Debruyne and Bessière 1997; Barták and
Erben 2004; Bessière and Debruyne 2005; Lecoutre and Cardon 2005].

In this chapter we propose to go one step further of the above approaches. On the one hand,
by recognizing that SC propagation is not very cost-effective [Prosser et al. 2000], we propose

149

Chapter 10. On the Integration of Singleton Consistencies and Look-Ahead Heuristics

to restrict it to those variables more likely to be chosen by the variable selection heuristics
(§10.1). More specifically, we assume that there are often many variables that can be selected
and for which no good criteria exists to discriminate them. This is the case with the first-fail
(FF) heuristics, where often there are many variables with 2 values, all connected to the same
number of other variables (as is the case with complete graphs). Hence the information gain
obtained from SC propagation is used to break the ties between the pre-selected variables.

On the other hand, we attempt to better exploit the information made available by the looka-
head procedure, and use it not only to filter values but also to guide search. We thus investigate
the possibility of integrating Singleton Consistency propagation procedures with variable and
value selection heuristics (§10.2), and analyze the speedups obtained in a number of bench-
mark problems (§10.3-10.4).

10.1. Singleton consistencies

Let us consider a CSP P = 〈X ,D,C〉 where X is the set of variables, D is the Cartesian product
of the variables domains, and C is the set of constraints (see def. 2.5 on page 10). Let n be the
number of variables in P , i.e. n = |X |.

Definition 10.1 (Singleton θ-consistency). Let d be δ-domain such that d ⊆ D , and d |xi=a be
the domain obtained by setting d (xi) = {a}, i.e.

d |xi=a = d (x1)× . . .×d (xi−1)× {a}×d (xi+1)× . . .×d (xn)

Additionally, let d |θx=a be the subdomain d |θx=a ⊆ d |x=a which is θ-consistent for all con-
straints c ∈ C . A domain d is singleton θ-consistent (SC), iff for any value a ∈ d (x) of every
variable x ∈ X , d |θx=a is not empty.

Cost-effective singleton consistencies are singleton arc-consistency (SAC) [Debruyne and
Bessière 1997] and singleton generalized arc-consistency (SGAC) [Prosser et al. 2000].

To achieve SC in a CSP, procedure SC [Debruyne and Bessière 1997] instantiates each vari-
able to each of its possible values in order to prune those that (after some form of propagation)
lead to a domain wipe out (function SC).

Once some (inconsistent) value is removed, then there is a chance that a value in a previ-
ously revised variable has become inconsistent, and therefore SC must check these variables
again. This can happen at most ns times, where n is the number of variables, and s the size
of the largest domain, hence SC time complexity is in O(n2s2Θ), Θ being the time complexity
of the algorithm that achieves θ-consistency on the constraint network. Variants of this al-
gorithm with the same pruning power but yielding distinct space-time complexity trade-offs
have been proposed [Barták and Erben 2004; Bessière and Debruyne 2004, 2005; Lecoutre and
Cardon 2005]. A related algorithm that considers each variable only once (function RSC), has

150

10.2. Informed decision making

Function SCθ(d ,X ,C)
Input: A domain d , a set of variables X , and a set of constraints C
Output: A domain d ′ ⊆ d which is singleton consistent with C
repeat1

modified ← false2

foreach x ∈ X do3 〈
d ,modified′〉← SReviseθ(x,d ,C)4

modified = modified ∨ modified′5

if d (x) =; then6

return ;7

8

9

until ¬ modified10

return d11

Function RSCθ(d ,X ,C)
Input: A domain d , a set of variables X , and a set of constraints C
Output: A domain d ′ ⊆ d which is restricted singleton consistent with C
foreach x ∈ X do1

〈d ,modified〉← SReviseθ(x,d ,C)2

if d (x) =; then3

return ;4

5

return d6

better runtime complexity O(nsΘ), but achieves a weaker consistency, is called restricted sin-
gleton consistency (RSC) [Prosser et al. 2000].

Note that both algorithms use function SRevise which prunes the domain of a single vari-
able by trying all of its possible instantiations.

10.2. Informed decision making

Another possible trade-off between run-time complexity and pruning power is to enforce sin-
gleton consistency on a subset of variables S ⊆ X . We identified two possible goals which con-
dition the selection of S : filtering and decision making. From a filtering perspective, S should
be the smallest subset where (restricted) singleton consistency can actually prune values, and
although this is not known a priori, approximations are possible by exploring incrementality

151

Chapter 10. On the Integration of Singleton Consistencies and Look-Ahead Heuristics

Function SReviseθ(x,d ,C)
Input: A variable x, domain d , and a set of constraints C
Output: A domain d ′ ⊆ d where d |θx=a ∀a ∈ d (x) is θ-consistent with C
modified ← false1

foreach a ∈ d (x) do2

if Propagateθ(d ,C ∪ [x = a]) =; then3

d (x) ← d (x) \ a4

modified ← true5

6

return 〈d ,modified〉7

and value support [Barták and Erben 2004; Bessière and Debruyne 2005]. On the other hand, S
may be selected for improving the decision making process, in particular of variable selection
heuristics that are based on the cardinality of the current domains. In this case, the pruning
resulting from enforcing singleton consistency is used as a mechanism to break ties both in
the selection of variable and in the choice of the value to enumerate.

Observing the general preference for variable heuristics which select smallest domains first,
we propose defining S as the set of variables whose domain cardinality is below a given thresh-
old t .

Definition 10.2. Let X≤t be the subset of variables in X having domains with cardinality less
or equal to t , i.e.

X≤t = {xi ∈ X : |d (x1)| ≤ t }

We denote by RSC≤t (d , X ,C) and SC≤t (d , X ,C), respectively, the algorithms RSC(d , X≤t ,C) and
SC(d , X≤t ,C).

A further step in integrating singleton consistencies with search heuristics is to explore in-
formation regarding the subproblems that are generated each time a value is tested for con-
sistency. We propose a class of look-ahead heuristics (LA) for any CSP which reason over the
number of solutions in the current domain d ⊆ D , given by a function σ (d), collected while
enforcing singleton consistency. Although there is no known polynomial algorithm for com-
puting σ (finding the number of solutions of a CSP is a #P-complete problem), there exists a
number of naive as well as more sophisticated approximation functions [Gent et al. 1996; Kask
et al. 2004]. We conjecture that by estimating the size of the solution space for each possible

instantiation, i.e. σ
(

d |θx=a

)
, there is an opportunity for making more informed decisions that

will exhibit both better first-failness and best-promise behavior. Moreover, the class of ap-
proximations of σ presented below are easy to compute, do not add complexity to the cost of
generating the subproblems, and only requires a slight modification of the SRevise function.

152

10.2. Informed decision making

Function SReviseInfoθ(x,d ,C ,INFO)
Input: A variable x, domain d , a set of constraints C , and a reference to the INFO data

strucure
Output: A domain d ′ ⊆ d where d |θx=a ∀a ∈ d (x) is θ-consistent with C
modified ← false1

foreach a ∈ d (x) do2

b ←Propagateθ(d ,C ∪ [x = a])3

INFO [x, a] ← CollectInfo(b,C)4

if b =; then5

d (x) ← d (x) \ a6

modified ← true7

8

return 〈d ,modified〉9

The SReviseInfo function stores in a table, denoted INFO, relevant information to the spe-
cific subproblem being considered in each loop iteration. In our case, INFO is an estimation

of the subproblem solution space, more formally INFO [x, a] =σ′
(

d |θx=a

)
where σ′ ≈σ. The ta-

ble is initialized before singleton consistency enforcement, computed after propagation, and
handed to the SelectVariable and SelectValue functions as shown in function Solve.

There are several possible definitions for these functions associated with how they integrate
the collected information. Regarding the selection of variable, we identified two FF heuristics
which are cheap and easy to compute:

VAR1 (d) = argmin
x∈X

(∑
a∈d(x)

σ′
(

d |θx=a

))

VAR2 (d) = argmin
x∈X

(
max

a∈d(x)
σ′

(
d |θx=a

))
Informally, VAR1 gives preference for the variable with a smaller sum of the number of solu-

tions for every possible instantiation, while VAR2 selects the variable whose instantiation with
maximum number of solutions is the minimum among all variables. For the selection of value
for some variable x ∈ X , a possible BP heuristic is

VAL1 (d , x) = arg max
a∈d(x)

(
σ′

(
d |θx=a

))
which simply prefers the instantiation that prunes less solutions from the remaining search
space.

Functions VAR1 and VAL1 correspond to the minimize promise variable heuristic and maxi-

153

Chapter 10. On the Integration of Singleton Consistencies and Look-Ahead Heuristics

Function Solveθ(d ,C ,INFO)
Input: A domain d , and a set of constraints C
Output: A set of solutions in d satisfying all constraints in C
INFO ←;1

d ← SCθ(d ,C , INFO)2

if d =; then3

return ;4

if |d | = 1∧∀c ∈C ,d ⊆ con(c) then5

return d6

x ←SelectVariable(X , INFO)7

a ←SelectValue(x, INFO)8

return Solveθ(d ,C ∪ [x = a])∪Solveθ(d ,C ∪ [x 6= a])9

mize promise value heuristic defined in [Geelen 1992]. Note that we do not claim these are the
best options for the estimation of the search space or the number of solutions. We have simply
adopted them for simplicity and for testing the concept (more discussion on section 10.5).

10.3. Experiments

A theoretical analysis on the adequacy of these heuristics as FF or BP candidates is needed,
but hard to accomplish. Alternatively, in this section we attempt to give some empirical evi-
dence of the quality of these heuristics by presenting the results of using them combined with
constraint propagation and backtracking search on a set of typical CSP benchmarks.

More specifically, the set of experiments presented in this section intend to answer the fol-
lowing three questions:

• Does performing any restricted form of singleton consistency improves the overall solv-
ing process compared with performing full singleton consistency? In this case we are
interested in assessing the possible advantages of using a faster but less complete prop-
agation algorithm, indepentently of the search heuristic used.

• When solving a problem using (restricted) singleton consistent propagation, does inte-
grating lookahead information in the search heuristic present any advantage compared
to using a search heuristic which discards this information?

• How does performing (restricted) singleton consistency and using the look-ahead in-
formation to guide search compares with not performing such costly propagation and
using other good heuristics which do not require look-ahead information.

154

10.3. Experiments

10.3.1. Heuristics

LA This heuristic implements the proposed functions VAR1 and VAL1. As a first attempt at
measuring its potential, a simple measure was used for estimating the number of solu-
tions in a given domain d :

σ′ (d) =
∑

x∈X
log2 (|d(x)|)

which informally expresses that the number of solutions is correlated to the size of the
subproblem search space1. Although this is a very rough estimate, we are assuming
that it could nevertheless provide valuable information to compare alternatives (see sec-
tion 10.5).

DOM+value This heuristic selects the variable with less values in its domain, and assigns it
the value selected by the value heuristic value. The value heuristic value can be either
MIN, which corresponds to selecting the minimum possible value in the domain of the
selected variable, or MC that selects the value which minimizes the number of conflicts
with the variables connected to the selected variable by some constraint.

DOM/WDEG+value This heuristic selects the variable with the smallest ratio between the
number of values in its domain and the sum of the weighted degrees of all the con-
straints it participates. The weighted degree of a constraint is the the number of times it
has been proven unsatisfiable since the begining of the search process (see [Boussemart
et al. 2004]). The value selection is guided by value as described above.

IMPACTS The impact of an assignment x 7→ a is defined as,

Ix 7→a (d) =
σ′ (d)−σ′

(
d |θx=a

)
σ′ (d)

averaged over all domains d since the begining of search. This heuristic selects the vari-
able and value with largest impact (see [Refalo 2004]).

10.3.2. Strategies

heuristic On every choice point uses heuristic without any kind of singleton consistency en-
forcement to make the decision on which variable/value to select, where heuristic is one
of the heuristics defined in the previous section.

SC+heuristic On every choice point first achieves singleton consistency and then uses heuris-
tic to make the decision on which variable/value to select.

1We use the logarithm since the size of search space can be a very large number.

155

Chapter 10. On the Integration of Singleton Consistencies and Look-Ahead Heuristics

RSC+heuristic On every choice point first achieves restricted singleton consistency and then
uses heuristic to make the decision on which variable/value to select.

SC2+heuristic On every choice point first achieves singleton consistency further restricted
to variables with only two values in its domain, i.e. SC≤2(X ,C) as discussed previously,
and then uses heuristic to make the decision on which variable/value to select.

RSC2+heuristic On every choice point first achieves restricted singleton consistency further
restricted to variables with only two values in its domain, i.e. RSC≤2(X ,C) as discussed
previously, and then uses heuristic to make the decision on which variable/value to se-
lect.

10.3.3. Problems

Graph Coloring

Graph coloring consists of trying to assign n colors to m nodes of a given graph such that no
pair of connected nodes have the same color. In this section we evaluate the performance of
the presented heuristics in two sets of 100 instances of 10-colorable graphs, respectively with
50 and 55 nodes, generated using Joseph Culberson’s k-colorable graph generator [Culberson
2010].

A CSP for solving the graph coloring problem was modeled by using variables to represent
each node and values to define its color. Difference binary constraints were posted for every
pair of connected nodes.

The average degree of a node in the graph d , i.e. the probability that each node is connected
to every other node, has been used for describing the phase transition in graph coloring prob-
lems [Cheeseman et al. 1991]. In this experiment we started by determining empirically the
phase transition to be near d = 0.6, and then generated 100 random instances varying d uni-
formly in the range [0.5. . .0.7].

Random CSPs

Randomly generated CSPs have been widely used experimentally, for instance to compare dif-
ferent solution algorithms. In this section we evaluate the look-ahead heuristics on several
random n-ary CSPs. These problems were generated using model C [Gent et al. 2001] general-
ized to n-ary CSPs, that is, each instance is defined by a 5-tuple

〈
n,d , a, p1, p2

〉
, where n is the

number of variables, d is the uniform size of the domains, a is the uniform constraint arity, p1

is the density of the constraint graph, and p2 the looseness of the constraints.
These tests evaluate the performance of the several heuristics in a set of random instances

near the phase transition. For this task we used the constrainedness measure κ [Gent et al.
1996] for the case where all constraints have the same looseness and all domains have the

156

10.3. Experiments

same size:

κ= −|C | log2

(
p2

)
n log2 d

where |C | is the number of n-ary constraints.

We started by fixing n, d and a, and then computed 100 values for p2 uniformly in the range
[0.1. . .0.8]. For each of these values, a value of p1 was used such that κ= 0.95 (problems in the
phase transition have typically κ≈ 1). The value of p1, given by

p1 =−κn log2 d

log2 p2
× a! (n −a)!

n!

is computed from the first formula and by noting that p1 is the fraction of constraints over all
possible constraints in the constraint graph, i.e.

p1 = |C | a! (n −a)!

n!

Solutions were stored as positive table constraints and a domain complete propagator im-
plementing GAC-Schema [Bessière and Régin 1997] was used for filtering.

Partial Latin Squares

Latin squares is a well known benchmark which combines randomness and structure, already
introduced in chapter 2. Recall that the problem consists in placing the elements 1. . .n in a
n ×n grid, such that each element occurs exactly once on the same row or column. A partial
Latin squares (or quasigroup completion) problem is a Latin squares problem with a number
of preassigned cells, and the goal is to complete the puzzle.

The problem was modeled using the direct encoding, i.e. using an all-different constraint for
every row and column, propagated using a domain complete propagator. The dual encoding
model, as proposed in [Dotu et al. 2003], was also considered but never improved over the di-
rect model on the presented instances. The value selection heuristic used in conjunction with
the dom variable selection heuristic, denoted as mc (minimum-conflicts), selects the value
which occurs less in the same row and column of the variable to instantiate. This is reported
to be the best known value selection heuristic for this problem [Dotu et al. 2003].

We generated 200 instances of a satisfiable partial Latin squares of a given size, with approx-
imately one third of cells preassigned, using lsencode-v1.1 [Kautz et al. 2001], a widely used
random quasigroup completion problem generator.

157

Chapter 10. On the Integration of Singleton Consistencies and Look-Ahead Heuristics

 10

 15

 20

 25

 30

 0 50 100 150 200 250 300

sc+dom+min
rsc+dom+min
sc2+dom+min

rsc2+dom+min
 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 100 200 300 400 500 600

sc+dom+min
rsc+dom+min
sc2+dom+min

rsc2+dom+min
 140

 150

 160

 170

 180

 190

 200

 0 100 200 300 400 500 600 700 800 900

sc+dom+mc
rsc+dom+mc
sc2+dom+mc

rsc2+dom+mc

Figure 10.1.: Number of problems solved (yy axis) after a given time period (xx axis). The
graphs show the results obtained for, from left to right, the graph coloring in-
stances, the random instances, and latin square instances.

10.4. Discussion

In the following experiments all times are given in seconds, and represent the time needed
for finding the first solution. The first set of experiments try to answer the two first questions
presented in the previous section. These experiments considered the graph coloring instances
with n = 50 nodes, the random instances with n = 50, d = 5 and a = 3, and the latin square
problem instances of size n = 30. The experiments involving graph coloring and random in-
stances were performed on a Pentium4, 3.4GHz with 1Gb RAM, while the experiments involv-
ing latin square instances were performed on a Pentium4, 1.7GHz with 512Mb RAM. Timeouts
were set to 300, 600 and 900 seconds for the graph coloring, random and latin squares in-
stances respectively. These experiments were implemented in CaSPER, revision 157.

Figure 10.1 compares the results obtained for solving the benchmarks described above when
achieving some form of (restricted) singleton consistency, but using an heuristic that does not
make use of look-ahead information to guide the search (we used DOM+MIN on the graph and
random instances, and DOM+MC on the latin square instances). Note that this experiment
only considers using singleton consistency for improving propagation.

We can observe that restricting singleton consistency to subsets of variables with a small do-
main size has an impact on performance, but it is not clear if it is positive in general - it is posi-
tive on the random and latin square instances, and negative on the graph instances. However,
using restricted singleton consistency was consistently better than full singleton consistency
across all instances, which confirms the results of [Prosser et al. 2000].

In figure 10.2 we assess the advantage of using look-ahead information to guide search in the
case this information is available for free, that is as a consequence of the enforcement of some
form of singleton consistency. For this we compare the performance of the solver using the
LA heuristic with the performance of the solver using either DOM+MIN or DOM+MC as in the

158

10.4. Discussion

-6

-4

-2

 0

 2

 4

 6

 8

 0 50 100 150 200 250 300 350

sc
rsc
sc2

rsc2

-5

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600

sc
rsc
sc2

rsc2

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0 100 200 300 400 500 600 700 800 900

sc
rsc
sc2

rsc2

Figure 10.2.: Difference between the number of problems solved when using the LA heuris-
tic and when using the DOM+MIN heuristic (yy axis) after a given time period (xx
axis). The graphs show the results obtained for, from left to right, the graph color-
ing instances, the random instances, and latin square instances.

previous experiment, when both solvers already maintain some form of singleton consistency.

The figure shows that using look-ahead information to guide search when this information
is available at no extra cost is significatively advantegeous on all instances except on those of
the graph coloring problem, where it did not make much difference. We can also observe that
this is true independently of the form of singleton consistency enforced, although the combi-
nation with some forms of singleton consistency seem to perform better on some problems.
Finally, we note that the fact that the curves tend to zero with time is a consequence of the
smaller number of hard problems compared with the number of easy problems (heavy tailed
behaviour).

The second set of experiments address the third question presented in the previous section.
These experiments considered the graph coloring instances with n = 65 nodes, the random
instances with n = 50, d = 5 and a = 4, and the latin square problem instances of size n = 35.
Experiments were performed on a Pentium4, 1.7GHz with 512Mb RAM. Timeout was set to
1800 seconds for any instance. These experiments were implemented in CaSPER, revision 333.

In these experiments we compared the performance of a solver implementing some form
of singleton consistency and using the collected information to guide search with the perfor-
mance of a solver implementing other good heuristic which does not required lookahead in-
formation.

The results (fig. 10.3) show that there is no clear winner across all problems. As possibly
expected, for problems where propagation achieves less pruning, impact based heuristics are
less effective. This is the case of both the random and the graph coloring problems, as illus-
trated in fig. 10.4, that shows, in log scale, the reduction of the size of the search space, sub-
sequent to each enumeration. In random problems the propagation is poor given the lack of
structure of the problem.

159

Chapter 10. On the Integration of Singleton Consistencies and Look-Ahead Heuristics

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 200 400 600 800 1000 1200 1400 1600 1800

dom/wdeg+min
impacts+min

rsc2+la 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 200 400 600 800 1000 1200 1400 1600 1800

dom/wdeg+min
impacts+min

rsc2+la 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 200 400 600 800 1000 1200 1400 1600 1800

dom/wdeg+min
impacts+min

rsc2+la

Figure 10.3.: Number of problems solved when using several strategies (yy axis) after a given
time period (xx axis). The graphs show the results obtained for, from left to right,
the graph coloring instances, the random instances, and latin square instances.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30

latin
graph

random

Figure 10.4.: Search space size during solving of a typical instance in each problem.

160

10.5. Summary

strategy #timeouts avgfails stddevfails avgtime stddevtime

dom/wdeg 2 63549 422439 13.7 94.6
la 42 8022 30312 208.3 366.4

Table 10.1.: Results for finding the first solution to latin-15 with a selected strategy.

The networks for the graph coloring problem exhibit some locality, and propagation mostly
affect variables in the same cluster of the variable being assigned, with limited propagation
to variables far away in the network. Apparently, the dom/wdeg heuristics, by reasoning at
constraint level, is able to "infer" such locality and take advantage of it for variable selection.

In contrast, in the latin square instances modeled by means of all different global constraints
locality is not so marked (two variables often share the same constraint, if in the same row or
column, or are separated by two constraints, one row and one column, and seldom by more
than that, when both row and column pivot elements are already ground). Moreover, gen-
eralized arc consistency propagation virtually affects all variables after variable enumeration.
The greater impact achieved in these problems, together with the lack of locality to be ex-
ploited by a constraint centered impact heuristic such as dom/wdeg, makes variable centered
impact heuristics more adequate in this problem. We tried both heuristics in a set of smaller
latin square instances modelled with pairwise distinct constraints while maintaining (single-
ton) node consistency and observed a different ranking, which confirms our thesis (see table
10.1).

10.5. Summary

This chapter presented an approach that incorporates look ahead information for directing
backtracking search, and suggested that this could be largely done at no extra cost by taking
advantage of the work already performed by singleton consistency enforcing algorithms. We
described how such a framework could extend existing SC and RSC algorithms by requiring
only minimal modifications. Additionally, a less expensive form of SC was revisited, and a new
one proposed which involves revising only a subset of variables. Finally, empirical tests with
two common benchmarks and with randomly generated CSPs showed promising results on
instances near the phase transition.

Related work

Ï The impact heuristic introduced by Refalo [2004] suggests improving the variable selection
heuristic based on the impact each variable assignment has on the future search space size.
In their paper the use of a specific look-ahead procedure for measuring this impact is re-
garded as costly, and depreciated in favor of a method that accumulates this information

161

Chapter 10. On the Integration of Singleton Consistencies and Look-Ahead Heuristics

across distinct search branches and/or search iterations (restarts). Their results show that
the method eventually converges to a good variable ordering (the value selection heuristic
is not considered).

Ï In [Kask et al. 2004], belief updating techniques are used to estimate the likelihood of a value
belonging to some solution. These likelihoods are then used to improve the value selection
heuristic and as propagation: if it decreases to zero, the value is discarded from the domain.
However, the integration of this kind of propagation with common local propagation algo-
rithms is not explored in that paper.

Future work

. As discussed in the previous section, tests which use singleton consistency on a subset of
variables defined by its cardinality were not consistently better or worse than the others,
but may be very beneficial sometimes. We think this deserves more investigation, namely
testing with more structured problems, and using a distinct selection criteria (other than
domain cardinality).

. Improving the FF and BP measures. Look-ahead heuristics presented above use rather naive
estimation of number of solutions for a given subproblem compared to, for example, the κ
measure introduced in [Gent et al. 1996], or the probabilistic inference methods described
in [Kask et al. 2004]. The κ measure, for example, takes into account the individual tight-
ness of each constraint and the global density of the constraint graph. Their work shows
strong evidence for best performance of this measure compared with standard FF heuris-
tics, but also point out that the complexity of its computation may lead to suboptimal results
in general CSP solving (the results reported are when using forward-checking). Given that
we perform a stronger form of propagation and have look-ahead information available, the
cost for computing κ may be worth while.

. Include the use of faster singleton consistency enforcing algorithms [Barták and Erben 2004;
Bessière and Debruyne 2005], which should be orthogonal to the results presented here, and
the use of constructive disjunction during the maintenance of SC, by pruning values from
the domains of a variable that does not appear in the state of the problem for all values of
another variable.

162

Chapter 11.

Overview of the CaSPER* Constraint Solvers

This chapter describes the casperzito and casperzao constraint solvers submitted to the third
international CSP solver competition. These solvers are based on the CaSPER solver, the con-
straint solver integrating the techniques presented throughout this dissertation. Addition-
ally, they implement automatic symmetry detection and symmetry breaking, the lookahead
heuristics described in the previous chapter, and search strategy sampling. The structure of
the chapter is as follows. We first describe the competition purpose, scope, and rules (§11.1),
and then focus on the techniques integrated on solvers submitted to the competition, namely
concerning propagation (§11.2), symmetry breaking (§11.3), and search (§11.4). Finally, we
present and discuss the results obtained (§11.5).

11.1. The third international CSP solver competition

The goal of this competition is to help identifying successful techniques in constraint solving
by comparing solvers in the same environment presented with a large set of benchmarks. The
third edition of the competition happened in 2008 and the results were presented during the
CP’2008 conference. The rules of the competition are as follows.

Instances are represented in XCSP 2.1, a XML based format of CSP instances, for which all
solvers must provide a parser (see [Roussel and Lecoutre 2009]). Solvers may compete in sev-
eral categories:

2-ARY-EXT only binary constraints defined in extension

2-ARY-INT only binary constraints (some of them being defined by a predicate)

N-ARY-EXT some n-ary constraints (all constraints defined in extension)

N-ARY-INT some n-ary constraints and some constraints defined by a predicate

GLOBAL some global constraints

The categories 2-ARY-EXT and N-ARY-EXT allows defining positive and negative table con-
straints, i.e. enforce that the values of a given sequence of variables either belong or do not

163

Chapter 11. Overview of the CaSPER* Constraint Solvers

constraint value bounds domain

positive table no no [Bessière and Régin
1997; Gent et al. 2007] (a)

negative table custom (b) no custom (b)
distinct custom [Lopez-Ortiz et al. 2003] [Régin 1994]
element no custom custom

linear no [Yuanlin and Yap 2000] no
cumulative no [Beldiceanu and

Carlsson 2002; Mercier
and Hentenryck 2008]

no

Table 11.1.: Global constraint propagators used in solvers.

belong to a given table. The set of predicates in 2-ARY-INT and N-ARY-INT allows defining
arithmetic and logical expressions, and the available set of global constraints in GLOBAL is
restricted to CUMULATIVE, DISTINCT, WEIGHTEDSUM, and ELEMENT.

A solver is given an amount of time (30 minutes) and memory (900MB), and one CPU for
each benchmark. The solver must decide if the problem is satisfiable or unsatisfiable. In the
former case it must also present a satisfiable solution to the problem. A solver giving a wrong
answer is disqualified from that category. The ranking of the solvers is based on the number of
solved instances.

11.2. Propagation

11.2.1. Predicates

Except for global constraints (see below), arithmetic predicates used in the competition are
enforced in CaSPER using bounds consistency. In many benchmarks used in the competi-
tion, predicates are conjoined together in larger predicates, and we found that decomposing
them was sometimes penalizing performance. To solve this problem, we translated these con-
junctions of predicates to positive or negative table constraints (whichever is smaller) by solv-
ing the corresponding subproblems before search, and enforced domain consistency on these
constraints during search. We only did this in zao, since we were not sure this was a good idea.

11.2.2. Global constraints

Table 11.1 describes the propagators used for the global constraints in the competition.
For the domain consistency propagator for positive table constraints (a) we used the first

algorithm [Bessière and Régin 1997] on zito and the new trie-based propagator of [Gent et al.

164

11.3. Symmetry breaking

2007] in zao. While the latter exhibited better results in our tests, we still found the first more
efficient for small arity constraints.

The most popular algorithm for propagating the negative table constraint (b) seems to be
the two watched literal scheme introduced for SAT, which achieves value (node) consistency.
In [Bessière and Régin 1997], a domain consistency algorithm for this constraint that makes
heavy use of hashing for checking disallowed tuples was presented. We have extended the
work of [Gent et al. 2007] which focus on positive table constraints to handle negative table
constraints as well. While we also base our idea in the trie data structure, this is in fact a com-
pletely different propagator which has the advantage of performing much cheaper tests com-
pared to the hashing proposal. For the competition we used the value consistency propagator
for negative table constraints in zito and our new trie-based propagator in zao.

11.3. Symmetry breaking

We mostly followed the ideas of Puget [2005] for automatic symmetry detection using compu-
tational group theory and [Aloul et al. 2006; Puget 2005] for symmetry breaking. The basic idea
of the detection process is to translate the given CSP to a graph which expresses the symmetries
associated with each constraint. The automorphism group of this graph defines the set of sym-
metries in the original CSP. Puget shows how to translate some common global constraints, e.g.
the alldifferent constraint. Extending the idea for the predicates and global constraints used in
the competition is straightforward. Additionally, both solvers perform a small amount of sym-
bolic computation in order to circumvent some situations where the symmetries in the CSP
would be hidden by the formulation. Although the detection process is able to identify both
variable and value symmetries, we just focused on the first kind1.

Since the number of detected variable symmetries is quite large for most problems, we fol-
lowed the method of Aloul et al. [2006] for breaking symmetries, that is we restrict to the vari-
able symmetries present on the generators of the symmetry group (also referred as the GEN
class in [Puget 2005]), and added a number of lexicographic ordering constraints [Carlsson and
Beldiceanu 2002] before starting search. This is a popular technique known as static symmetry
breaking (SSB) [Puget 1993]. Moreover, both solvers do some effort to identify symmetries in
sets of variables known to be all different, in which case we break symmetries by enforcing a
total ordering.

It is known that SSB may potentially make the task of solving a satisfiable problem harder,
since it can prune the solutions that would be found first by the search heuristics. In our pre-
liminary tests we also tried breaking symmetries using the dynamic lex method [Puget 2006]
which does not have this drawback. Despite performing slightly better, this method requires
a fixed value selection ordering, which we found too restrictive for our exploration strategies
described in the next section.

1We adapted the code from saucy, a graph automorphism generator [Darga et al. 2004].

165

Chapter 11. Overview of the CaSPER* Constraint Solvers

11.4. Search

11.4.1. Heuristics

It is well known that variable and value selection heuristics play a crucial goal for guiding
search towards a solution, or for proving that no solution exists. Recently, the dom/wdeg [Bousse-
mart et al. 2004] heuristic has been given a lot of attention, although we have found that im-
pact based heuristics [Refalo 2004] perform better for some problems, as seen in the previous
chapter. For the competition we considered a portfolio composed of the dom/wdeg and impact
variable heuristics for the zito solver, and also the lookahead variable heuristic (as described
in the previous chapter) for the zao solver.

While there has been recent work aiming at informed value selection heuristics [Hsu et al.
2007], the most popular is probably the min-conflicts which selects the value having less con-
flicts with the values of other variables. Other common value selection heuristics select the
values in increasing ordering (min), or just randomly (rand). Unfortunately, for the compe-
tition we didn’t have time to implement anything more sophisticated than the min and rand
value selection ordering.

11.4.2. Sampling

In order to choose which variable-value heuristic combination is finally used for solving a
given instance, we introduced a sampling phase in the solving process (alg. 20). We evaluate
each strategy based on the criteria of first-failness and best-promise [Haralick and Elliott 1980;
Geelen 1992]. Roughly, first-failness is the ability of the heuristic to easily find short refutations
for large regions of the search tree that contain no solutions, while best-promise characterizes
the potential to guide search quickly towards a solution. Typical search strategies combine
these two components, usually by associating first-failness with the variable selection heuris-
tic, and best-promise with the value selection heuristic.

Informally, our sampling phase works by performing several time bounded search runs
(restarts) with each possible strategy while collecting information regarding its behavior. The
time slice is increased geometrically from one run to the next in order to provide a basis for
projecting the behavior of the strategy on a real (time unbounded) search run. After each run
we compute an approximation of the ratio of the explored search space by analyzing the visited
search tree, and store this information in F . After the sampling process, we compute from F an
estimate of the first-failness and best-promise coefficients for each variable and value heuris-
tic and select the best combination. Although the approximation makes a strong assumption
that the search tree is uniformly balanced, our preliminary tests revealed that most of the times
this method selects the best heuristics, specially when the choice of heuristic is crucial.

166

11.5. Experimental evaluation

Algorithm 20: Search strategy sampling

Input: A set S of possible exploration strategies, initial and final time slice Ti ,T f , and
geometric ratio r

Output: One of SAT,UNSAT or 〈UNKNOWN,F 〉
F ← {}1

foreach s ∈S do2

t ← Ti3

while t ≤ T f do4

f ← search(s,t) /* Search with strategy s, timeout at t. */5

if f=SAT or f=UNSAT then6

return f7

e ← ratioOfExploredSearchSpace()8

F ← F ∪〈s, t ,e〉9

t ← t × r10

11

return 〈UNKNOWN,F 〉12

11.4.3. SAC

Enforcing singleton arc consistency on a constraint network is a popular pruning technique
[Debruyne and Bessière 1997], although its time complexity can be limiting. For the com-
petition, both solvers enforce a time bounded SAC on the first propagation only. However,
given that RSAC [Prosser et al. 2000], a restricted form of SAC, is achieved while evaluating the
lookahead heuristic (only on zao), then it may happen that RSAC is always enforced on some
instances if it is selected by the method described in the previous section.

11.4.4. Restarts

For exploring the search tree we employed depth first search with time bounded restarts. Com-
pleteness is guaranteed by increasing the time allowed for each restart. We used 2.5 as the
geometric ratio.

11.5. Experimental evaluation

Currently CaSPER does not implement any learning techniques, smart backjumping methods,
constraint network analysis and (de)composition, or specialized data structures for CSPs given
in extension (apart from table constraints). We think that these are required to be competitive
in all categories except the GLB category, and perhaps on the set of instances from the INT and
NINT categories that are too large to convert to extensional form. Unfortunately, there was a

167

Chapter 11. Overview of the CaSPER* Constraint Solvers

zito zao

static symmetry breaking yes yes
predicate tabling no yes

lookahead var heuristic no yes
heuristic sampling yes yes

GAC for negative table no yes

Table 11.2.: Summary of features in each solver.

bug in the propagator achieving bounds consistency for the constraint
[
mod(x, y) = z

]
which

caused both solvers to be disqualified from the INT category. We will therefore focus on the
GLB and NINT categories exclusively.

Table 11.2 summarizes the distribution of the previously discussed features among both
solvers.

The results of the CPAI’08 solver competition for the NINT and GLB categories are given in
tables B.43 and B.44 in the appendix, and also in the website of the competition [CPAI08 2008].
In the n-ary intension constraints category, zao was the third best solver out of 18 contestants,
ranked after the two versions of the portfolio solver cpHydra. In the global constraints category,
zito and zao were ranked in the 6th an 7th positions respectively out of 17 contestants, loosing
to cpHydra, Sugar (a SAT solver), and Mistral.

Finally, we would like to point out that zito and zao were the two best solvers for the subset
of UNSAT problems in both categories. This supports our belief that the absence of a smart
value ordering heuristic, which is mostly important for proving satisfiability, was a key factor
for not obtaining even better overall results.

11.6. Conclusion

This chapter describes the casperzito and casperzao constraint solvers as submitted to the third
international solver competition. These solvers are small instantiations of the CaSPER library
which aims to provide a comprehensive environment for doing applied research in constraint
programming.

After a brief description of the propagation model, we focused on the less standard features
which were added specifically to the competition, such as automatic symmetry detection and
symmetry breaking, or are product of our own research, such as search strategy sampling, and
impact based search. Finally, we have made a global analysis of the results from the competi-
tion, which shows a good overall performance of both solvers.

168

11.6. Conclusion

Future work

. At the propagation level, a careful analysis on the best propagator to use for a given con-
straint when there is more than one choice is missing. A propagator for positive table con-
straints, for example, may be implemented based on a table [Bessière and Régin 1997], a
trie [Gent et al. 2007], or a multivalued decision diagram [Cheng and Yap 2008], with dis-
tinct average runtime expectation. An online or offline sampling strategy could perhaps
provide some insight on the best propagator for a specific constraint.

. The symmetry breaking framework could be made more dynamic and complete and ex-
tended to value symmetries as well. Search would certainly benefit from ideas such as learn-
ing from restarts [Lecoutre et al. 2007], conflict-based static value ordering [Mehta and van
Dongen 2005] and better integration of our own work on lookahead heuristics.

169

Chapter 11. Overview of the CaSPER* Constraint Solvers

170

Chapter 12.

Conclusions

This dissertation covered a number of techniques for improving the implementation of con-
straint solving. In general it shows that achieving a good compromise between flexibility and
efficiency is feasible within a constraint solver, a large and relatively complex system. In par-
ticular, it presented the following contributions.

12.1. Summary of main contributions

We have described a constraint propagation kernel supporting different models of incremen-
tal propagation. We have seen that incremental propagation may be more efficient than non-
incremental propagation for a number of constraints, in particular constraints over set domain
variables. The support for incremental propagation adds an overhead to the propagation ker-
nel which is a function of the model used for incremental propagation. Since this overhead is
close to zero when no incremental propagators are used, this architecture actually implements
a pay-per-use philosophy, allowing the designer of each propagator to perform an uncommit-
ted choice of the best propagation model for each specific case. We believe this design boosts
the flexibility of a constraint solver.

We have introduced views over multiple variables, which generalizes the model of Tack
[2009]. The new model allows to derive efficient propagation algorithms for many more de-
composable constraints, in particular arithmetic constraints. We have seen that the general-
ized model is sound and that its completeness may be approximated using a rule rewriting
inference process. We have introduced an automatic compilation method of arbitrary decom-
posable constraints into box view models based on parametric polymorphic objects, yielding
very efficient propagation algorithms. We remark that the top-down approach followed by the
compilation algorithm does not bound subexpressions to specific propagation algorithms, as
is usual in most constraint solvers. Instead it allows any propagation algorithm to be associ-
ated with an arbitrary decomposable constraint as a whole, which we consider a very impor-
tant feature of a flexible constraint solver.

171

Chapter 12. Conclusions

We performed a number of experiments with non-standard heuristics and propagation al-
gorithms, which eventually allowed us to contribute with a new general constraint solving
method that explores a fruitful combination of search heuristics integrating lookahead infor-
mation and singleton consistency propagation algorithms. This work greatly benefited from
the flexibility of our solver, which allowed us to easily obtain a sound and competitive imple-
mentation of the algorithms.

We contributed CaSPER, a highly efficient and flexible constraint solver, which is now a valu-
able resource for advanced research on constraint programming. The correctness, efficiency
and flexibility of the solver are witnessed by the results obtained from the large number of ex-
periments done with the platform, either when integrating all the techniques described above,
or as a participant of the third international solver competition.

12.2. Future work

Future work which extends the material presented in this dissertation has been pointed out at
the end of each corresponding chapter. Here we mention work which we intend to perform in
the near future for improving our solver in general and unrelated ways.

. The recent trend consisting of introducing CPU’s with multiple cores for increasing process-
ing power has made exploring parallelism one major concern for any time critical computer
program. Parallelizing a sequential program raises a number of important problems, much
of them related to the concurrent access to shared resources such as memory, which are not
trivially solved in general. However, the particular exploratory nature of constraint solving
makes parallelization less hard to implement. A simple technique, which is being adopted
by several constraint solvers such as Gecode [Chu et al. 2009], is to create several copies of
the constraint program, and synchronize them in a way that they explore different parts of
the search tree. Integrating this method in CaSPER should not be too hard and is orthogonal
to any of the presented techniques.

. We intend to further develop our preliminary work on real valued reasoning. The propaga-
tors for constraints over real valued variables are based on box view models, and are very
similar to the corresponding propagators for integer domain variables. Although propaga-
tion of real valued variables takes into account other concerns, such as safe rounding-off
operations, in our solver we were able to use the same infrastructure for propagating box
view models for real and integer valued variables. This gave us a comprehensible set of
propagators for constraints over real-valued variables, almost for free. We intend to further
develop this model by integrating algorithms which are specific to the propagation of con-
straints over real valued variables, such as the Newton method among others [Benhamou
1995].

172

Bibliography

ACP (2010). Standardization of Constraint Programming. The Internet.
http://4c110.ucc.ie/cpstandards/.
Cited on page 39.

Afred V. Aho, Michael R. Garey, and Jeffrey D. Ullman (1972). The Transitive Reduction of a
Directed Graph. SIAM Journal on Computing, volume 1(2):131–137, SIAM.
Cited on page 105.

Hassan Aït-Kaci (1991). Warren’s Abstract Machine: A Tutorial Reconstruction. MIT Press.
Cited on page 37.

Fadi A. Aloul, Karem A. Sakallah, and Igor L. Markov (2006). Efficient Symmetry Breaking for
Boolean Satisfiability. IEEE Transactions on Computers, volume 55(5):549–558, IEEE Com-
puter Society.
Cited on page 165.

Krzysztof R. Apt and Peter Zoeteweij (2003). A Comparative Study of Arithmetic Constraints
on Integer Intervals. ERCIM workshop on Constraint Solving and Constraint Logic Program-
ming, CSCLP’03 (proceedings), volume 3010 of Lecture Notes in Artificial Intelligence, pp.
1–24. Springer.
Cited on pages 108 and 109.

Francisco Azevedo (2007). Cardinal: A Finite Sets Constraint Solver. Constraints journal, vol-
ume 12(1):93–129, Springer.
Cited on pages 59, 60, 61, and 75.

Thomas Ball, Andreas Podelski, and Sriram K. Rajamani (2003). Boolean and Cartesian ab-
straction for model checking C programs. International Journal on Software Tools for Tech-
nology Transfer (STTT), volume 5(1):49–58, Springer.
Cited on page 14.

Roman Barták and Radek Erben (2004). A New Algorithm for Singleton Arc Consistency.
Florida Artificial Intelligence Research Society Conference, FLAIRS’04 (proceedings). AAAI
Press.
Cited on pages 149, 150, 152, and 162.

173

http://4c110.ucc.ie/cpstandards/.

Bibliography

Nicolas Beldiceanu and Mats Carlsson (2002). A New Multi-resource cumulatives Constraint
with Negative Heights. Principles and Practice of Constraint Programming, CP’02 (proceed-
ings), volume 2470 of Lecture Notes in Computer Science, pp. 63–79. Springer.
Cited on page 164.

Nicolas Beldiceanu, Mats Carlsson, and Jean-Xavier Rampon (2010). Global Constraint Cat-
alog. The Internet.
http://www.emn.fr/x-info/sdemasse/gccat/index.html.
Cited on pages 37 and 79.

Frédéric Benhamou (1995). Interval constraint logic programming. Constraint programming:
basics and trends (proceedings), volume 910 of Lecture Notes in Computer Science, pp. 1–21.
Springer.
Cited on pages 14, 38, and 172.

Frédéric Benhamou (1996). Heterogeneous Constraint Solving. Algebraic and Logic Program-
ming, ALP’96 (proceedings), volume 1139 of Lecture Notes in Computer Science, pp. 62–76.
Springer-Verlag.
Cited on pages 14 and 17.

Christian Bessière and Romuald Debruyne (2004). Theoretical analysis of singleton arc con-
sistency. ECAI’04 workshop on Modelling and Solving Problems with Constraints (proceed-
ings), pp. 20–29.
Cited on page 150.

Christian Bessière and Romuald Debruyne (2005). Optimal and suboptimal singleton arc
consistency algorithms. International Joint Conference on Artificial Intelligence, IJCAI’05
(proceedings), pp. 54–59. Morgan Kaufmann Publishers, Inc.
Cited on pages 149, 150, 152, and 162.

Christian Bessière and Jean-Charles Régin (1996). MAC and combined heuristics: Two rea-
sons to forsake FC (and CBJ?) on hard problems. Principles and Practice of Constraint Pro-
gramming, CP’96 (proceedings), volume 1118 of Lecture Notes in Computer Science, pp. 61–
75. Springer.
Cited on page 21.

Christian Bessière and Jean-Charles Régin (1997). Arc Consistency for General Constraint
Networks: Preliminary Results. Iternational Joint Conference on Artificial Intelligence, IJ-
CAI’97 (proceedings), pp. 398–404. Morgan Kaufmann Publishers, Inc.
Cited on pages 157, 164, 165, and 169.

Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais (2004). Boosting
Systematic Search by Weighting Constraints. European Conference on Artificial Intelligence,

174

http://www.emn.fr/x-info/sdemasse/gccat/index.html.

Bibliography

ECAI’04 (proceedings), pp. 146–150. IOS Press.
Cited on pages 21, 155, and 166.

Daniel Brélaz (1979). New methods to color the vertices of a graph. Communications of the
ACM, volume 22(4):251–256, ACM.
Cited on page 21.

Andrei A. Bulatov (2006). A dichotomy theorem for constraint satisfaction problems on a 3-
element set. Journal of the ACM, volume 53(1):66–120, ACM.
Cited on page 19.

Björn Carlson (1995). Compiling and executing finite domain constraints. Ph.D. thesis, Upp-
sala University.
Cited on page 87.

Björn Carlson, Mats Carlsson, and Daniel Diaz (1994). Entailment of Finite Domain Con-
straints. International Conference on Logic Programming, ICLP’94 (proceedings), pp. 339–
353. MIT Press.
Cited on page 31.

Mats Carlsson and Nicolas Beldiceanu (2002). Revisiting the Lexicographic Ordering Con-
straint. Research Report T2002-17, Swedish Institute of Computer Science.
Cited on page 165.

Mats Carlsson, Greger Ottosson, and Björn Carlson (1997). An Open-Ended Finite Do-
main Constraint Solver. Programming Languages: Implementations, Logics, and Programs,
PLILP’97 (proceedings), volume 1292 of Lecture Notes in Computer Science, pp. 191–206.
Springer.
Cited on page 31.

Peter Cheeseman, Bob Kanefsky, and William M. Taylor (1991). Where the Really Hard Prob-
lems Are. International Joint Conference on Artificial Intelligence, IJCAI’91 (proceedings), pp.
331–340. Morgan Kaufmann Publishers, Inc.
Cited on page 156.

Kenil C. K. Cheng and Roland H. C. Yap (2008). Maintaining Generalized Arc Consistency on
Ad Hoc r-Ary Constraints. Principles and Practice of Constraint Programming, CP’08 (pro-
ceedings), volume 5202 of Lecture Notes in Computer Science, pp. 509–523. Springer.
Cited on pages 88, 127, and 169.

Choco (2010). Choco constraint programming system. The Internet.
http://www.emn.fr/x-info/choco-solver/doku.php?id=.
Cited on pages 75 and 144.

175

http://www.emn.fr/x-info/choco-solver/doku.php?id=.

Bibliography

Geoffrey Chu, Christian Schulte, and Peter J. Stuckey (2009). Confidence-based Work Steal-
ing in Parallel Constraint Programming. Principles and Practice of Constraint Program-
ming, CP’09 (proceedings), volume 5732 of Lecture Notes in Computer Science, pp. 226–241.
Springer.
Cited on page 172.

Marco Correia, Pedro Barahona, and Francisco Azevedo (2005). CaSPER: A Programming En-
vironment for Development and Integration of Constraint Solvers. Workshop on Constraint
Programming Beyond Finite Integer Domains, BeyondFD’05 (proceedings).
Cited on page 88.

CPAI08 (2008). Third International CSP Solver Competition. The Internet.
http://cpai.ucc.ie/08/.
Cited on page 168.

Joseph Culberson (2010). Graph Coloring Resources. The Internet.
http://web.cs.ualberta.ca/~joe/Coloring/Generators/generate.html.
Cited on page 156.

Paul T. Darga, Mark H. Liffiton, Karem A. Sakallah, and Igor L. Markov (2004). Exploiting
structure in symmetry detection for CNF. Design Automation Conference, DAC’04 (proceed-
ings), Annual ACM IEEE Design Automation Conference, pp. 530–534. ACM.
Cited on page 165.

Romuald Debruyne and Christian Bessière (1997). Some Practicable Filtering Techniques for
the Constraint Satisfaction Problem. International Joint Conference on Artificial Intelligence,
IJCAI’97 (proceedings), pp. 412–417. Morgan Kaufmann Publishers, Inc.
Cited on pages 149, 150, and 167.

Rina Dechter (2003). Constraint Processing. Morgan Kaufmann.
Cited on page 21.

Yves Deville and Pascal Van Hentenryck (1991). An efficient arc consistency algorithm for
a class of CSP problems. International Joint Conference on Artificial Intelligence, IJCAI’91
(proceedings), pp. 325–330. Morgan Kaufmann Publishers, Inc.
Cited on page 57.

Dotu, del Val, and Cebrian (2003). Redundant Modeling for the QuasiGroup Completion Prob-
lem. Principles and Practice of Constraint Programming, CP’03 (proceedings), volume 2833
of Lecture Notes in Computer Science. Springer.
Cited on page 157.

176

http://cpai.ucc.ie/08/.
http://web.cs.ualberta.ca/~joe/Coloring/Generators/generate.html.

Bibliography

Ivan Dotu, Manuel Cebrián, Pascal Van Hentenryck, and Peter Clote (2008). Protein Struc-
ture Prediction with Large Neighborhood Constraint Programming Search. Principles and
Practice of Constraint Programming, CP’08 (proceedings), volume 5202 of Lecture Notes in
Computer Science, pp. 82–96. Springer.
Cited on page 3.

ECLiPSe (2010). ECLiPSe Prolog. The Internet.
http://www.eclipse-clp.org/.
Cited on pages 31, 75, and 144.

Eugene C. Freuder (1978). Synthesizing constraint expressions. Communications of the ACM,
volume 21:958–966, ACM.
Cited on page 19.

Gecode (2010). Gecode: Generic Constraint Development Environment. The Internet.
http://www.gecode.org.
Cited on pages 30, 71, 134, and 145.

Pieter Andreas Geelen (1992). Dual viewpoint heuristics for binary constraint satisfaction
problems. European Conference on Artificial Intelligence, ECAI’92 (proceedings), pp. 31–35.
John Wiley & Sons, Inc.
Cited on pages 22, 154, and 166.

I. P. Gent, E. MacIntyre, P. Prosser, and T. Walsh (1996). The Constrainedness of Search. Con-
ference on Artificial Intelligence, AAAI’96 (proceedings), volume 1, pp. 246–252. AAAI Press.
Cited on pages 152, 156, and 162.

Ian P. Gent, Christopher Jefferson, and Ian Miguel (2006a). Minion: A fast scalable constraint
solver. European Conference on Artificial Intelligence, ECAI’06 (proceedings), pp. 98–102.
IOS Press.
Cited on pages 34 and 37.

Ian P. Gent, Christopher Jefferson, and Ian Miguel (2006b). Watched Literals for Constraint
Propagation in Minion. Principles and Practice of Constraint Programming, CP’06 (proceed-
ings), volume 4204 of Lecture Notes in Computer Science, pp. 182–197. Springer.
Cited on pages 28 and 75.

Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale (2007). Data Structures
for Generalised Arc Consistency for Extensional Constraints. Conference on Artificial Intelli-
gence, AAAI’07 (proceedings), pp. 191–197. AAAI Press.
Cited on pages 88, 127, 164, 165, and 169.

177

http://www.eclipse-clp.org/.
http://www.gecode.org.

Bibliography

Ian P. Gent, E. MacIntyre, P. Prosser, Barbara M. Smith, and Toby Walsh (2001). Random
Constraint Satisfaction: Flaws and Structure. Constraints, volume 6(4):345–372, Springer.
Cited on page 156.

Ian P. Gent and Toby Walsh (1999). CSPLib: a benchmark library for constraints. Technical
report, APES-09-1999.
http://www.csplib.org/.
Cited on pages 71, 126, and 134.

Carmen Gervet (1994). Conjunto: Constraint Propagation over Set Constraints with Finite Set
Domain Variables. International Conference on Logic Programming, ICLP’94 (proceedings),
p. 733. MIT Press.
Cited on page 59.

GNUProlog (2008). GNU Prolog. The Internet.
http://www.gprolog.org/.
Cited on page 144.

Robert M. Haralick and G. L. Elliott (1980). Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, volume 14:263–313, Elsevier.
Cited on pages 21 and 166.

Emmanuel Hebrard, Eoin O’Mahony, and Barry O’Sullivan (2010). Constraint Programming
and Combinatorial Optimisation in Numberjack. Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, volume 6140 of Lecture
Notes in Computer Science, pp. 181–185. Springer.
Cited on page 39.

Pascal Van Hentenryck and Yves Deville (1993). The cardinality operator: a new logical con-
nective for constraint logic programming. Constraint logic programming: selected research,
pp. 383–403, MIT Press.
Cited on page 83.

Pascal Van Hentenryck and Laurent Michel (2005). Constraint-Based Local Search. The MIT
Press.
Cited on page 126.

Pascal Van Hentenryck, Perron, and Jean-François Puget (2000). Search and Strategies in
OPL. ACMTCL: ACM Transactions on Computational Logic, volume 1, ACM.
Cited on page 126.

Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville (1992). Constraint Processing in
cc(FD). Technical report, Brown University.
Cited on page 87.

178

http://www.csplib.org/.
http://www.gprolog.org/.

Bibliography

Eric I. Hsu, Matthew Kitching, Fahiem Bacchus, and Sheila A. McIlraith (2007). Using Expec-
tation Maximization to Find Likely Assignments for Solving CSP’s. Conference on Artificial
Intelligence, AAAI’07 (proceedings), pp. 224–230. AAAI Press.
Cited on page 166.

ILOG (2003a). ILOG Solver 6.0 Reference Manual. ILOG s.a.
http://www.ilog.com.
Cited on pages 34, 88, and 144.

ILOG (2003b). ILOG Solver 6.0 User’s Manual. ILOG s.a.
http://www.ilog.com.
Cited on page 75.

Richard Jones and Rafael D. Lins (1996). Garbage Collection: Algorithms for Automatic Dy-
namic Memory Management. Wiley.
Cited on page 37.

Julien Vion (2007). Hybridation de prouveurs CSP et apprentissage. Journées Francophones de
la Programmation avec Contraintes, JFPC’07 (proceedings), pp. 159–168.
Cited on page 38.

Jean Christoph Jung (2008). Value Orderings Based on Solution Counting. Master’s thesis,
Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa.
Cited on page 51.

Kalev Kask, Rina Dechter, and Vibhav Gogate (2004). New Look-Ahead Schemes for Con-
straint Satisfaction. Artificial Intelligence and Mathematics, AMAI’04 (proceedings).
http://rutcor.rutgers.edu/~amai/aimath04/AcceptedPapers/Kask-aimath04.
pdf.
Cited on pages 152 and 162.

Kautz, Ruan, Achlioptas, Gomes, Selman, and Stickel (2001). Balance and Filtering in Struc-
tured Satisfiable Problems. International Joint Conference on Artificial Intelligence, IJCAI’01
(proceedings). Morgan Kaufmann Publishers, Inc.
Cited on page 157.

Ludwig Krippahl and Pedro Barahona (2002). PSICO: Solving Protein Structures with Con-
straint Programming and Optimization. Constraints, volume 7(3-4):317–331, Kluwer Aca-
demic Publishers.
Cited on page 38.

Thomas Kühne (1997). The Function Object Pattern. C++ Report, volume 9(9).
Cited on page 51.

179

http://www.ilog.com.
http://www.ilog.com.
http://rutcor.rutgers.edu/~amai/aimath04/AcceptedPapers/Kask-aimath04.pdf.
http://rutcor.rutgers.edu/~amai/aimath04/AcceptedPapers/Kask-aimath04.pdf.

Bibliography

François Laburthe and the OCRE project team (2008). CHOCO: implementing a CP kernel.
Proceedings of TRICS: Techniques for implementing constraint programming systems, a post-
conference workshop of CP2000 (proceedings).
Cited on pages 31 and 57.

Mikael Z. Lagerkvist (2008). Techniques for Efficient Constraint Propagation. Licenciate’s the-
sis, Royal Institute of Technology.
Cited on pages 57 and 75.

Mikael Z. Lagerkvist and Christian Schulte (2007). Advisors for Incremental Propagation.
Principles and Practice of Constraint Programming, CP’07 (proceedings), volume 4741 of
Lecture Notes in Computer Science, pp. 409–422. Springer.
Cited on pages 58 and 75.

Vitaly Lagoon and Peter J. Stuckey (2004). Set Domain Propagation Using ROBDDs. Principles
and Practice of Constraint Programming, CP’04 (proceedings), volume 3258 of Lecture Notes
in Computer Science, pp. 347–361. Springer.
Cited on page 75.

Charles F. Laywine and Gary L. Mullen (1998). Discrete Mathematics Using Latin Squares.
Wiley-IEEE.
Cited on page 3.

Michel Leconte (1996). A bounds based reduction scheme for constraints of difference. Inter-
national Workshop on Constraint-Based reasoning (proceedings), pp. 19–28.
Cited on page 19.

Christophe Lecoutre (2010). XCSP benchmarks. The Internet.
http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html.
Cited on page 55.

Christophe Lecoutre and Stéphane Cardon (2005). A Greedy Approach to Establish Singleton
Arc Consistency. International Joint Conference on Artificial Intelligence, IJCAI’05 (proceed-
ings), pp. 199–204. Morgan Kaufmann Publishers, Inc.
Cited on pages 149 and 150.

Christophe Lecoutre, Lakhdar Sais, Sebastien Tabary, and Vincent Vidal (2007). Recording
and Minimizing Nogoods from Restarts. Journal on Satisfiability, Boolean Modeling and
Computation(JSAT), volume 1:147–167.
Cited on page 169.

Ro Lopez-Ortiz, Claude-Guy Quimper, John Tromp, and Peter Van Beek (2003). A fast and
simple algorithm for bounds consistency of the alldifferent constraint. International Joint

180

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html.

Bibliography

Conference on Artificial Intelligence, IJCAI’03 (proceedings), pp. 245–250. Morgan Kaufmann
Publishers, Inc.
Cited on pages 137 and 164.

Alan K. Mackworth (1977a). Consistency in Networks of Relations. Artificial Intelligence, vol-
ume 8(1):99–118, Elsevier.
Cited on pages 13 and 17.

Alan K. Mackworth (1977b). On Reading Sketch Maps. International Joint Conference on Arti-
ficial Intelligence, IJCAI’77 (proceedings), pp. 598–606. Morgan Kaufmann Publishers, Inc.
Cited on page 17.

Michael J. Maher (2002). Propagation Completeness of Reactive Constraints. International
Conference on Logic Programming, ICLP’02 (proceedings), volume 2401 of Lecture Notes in
Computer Science, pp. 148–162. Springer.
Cited on pages 14 and 17.

Deepak Mehta and Mark R. C. van Dongen (2005). Static Value Ordering Heuristics for Con-
straint Satisfaction Problems. Second International Workshop on Constraint Propagation
And Implementation (proceedings), pp. 49–62.
Cited on page 169.

Sylvain Merchez, Christophe Lecoutre, and Frederic Boussemart (2001). AbsCon: A Pro-
totype to Solve CSPs with Abstraction. Principles and Practice of Constraint Program-
ming, CP’01 (proceedings), volume 2239 of Lecture Notes in Computer Science, pp. 730–744.
Springer.
Cited on page 38.

Luc Mercier and Pascal Van Hentenryck (2008). Edge Finding for Cumulative Scheduling.
Informs journal on computing, volume 20.
Cited on page 164.

Ugo Montanari (1974). Networks of constraints: Fundamental properties and applications to
picture processing. Information Science, volume 7:95–132.
Cited on pages 13 and 19.

Arnaldo V. Moura, Cid C. Souza, Andre A. Cire, and Tony M. Lopes (2008). Planning and
Scheduling the Operation of a Very Large Oil Pipeline Network. Principles and Practice of
Constraint Programming, CP’08 (proceedings), volume 5202 of Lecture Notes on Computer
Science, pp. 36–51. Springer.
Cited on page 3.

181

Bibliography

Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and
Guido Tack (2007). MiniZinc: Towards a Standard CP Modelling Language. Principles and
Practice of Constraint Programming, CP’07 (proceedings), volume 4741 of Lecture Notes in
Computer Science, pp. 529–543. Springer.
Cited on page 39.

Patrick Prosser, Kostas Stergiou, and Toby Walsh (2000). Singleton Consistencies. Principles
and Practice of Constraint Programming, CP’00 (proceedings), volume 1894 of Lecture Notes
in Computer Science, pp. 353–368. Springer.
Cited on pages 149, 150, 151, 158, and 167.

Jean-François Puget (1992). PECOS: A High Level Constraint Programming Language. Singa-
pore International Conference on Intelligent Systems, SPICIS’92 (proceedings).
Cited on page 59.

Jean-François Puget (1993). On the Satisfiability of Symmetrical Constrained Satisfaction
Problems. ISMIS ’93: Proceedings of the 7th International Symposium on Methodologies for
Intelligent Systems (proceedings), pp. 350–361. Springer-Verlag, London, UK.
Cited on page 165.

Jean-François Puget (1998). A fast algorithm for the bound consistency of alldiff constraints.
Conference on Artificial Intelligence, AAAI’98 (proceedings), pp. 359–366. AAAI Press, Menlo
Park, CA, USA.
Cited on page 19.

Jean-François Puget (2004). Constraint Programming Next Challenge: Simplicity of Use. Prin-
ciples and Practice of Constraint Programming, CP’04 (proceedings), volume 3258 of Lecture
Notes in Computer Science, pp. 5–8. Springer.
Cited on page 39.

Jean-François Puget (2005). Breaking symmetries in all different problems. International Joint
Conference on Artificial Intelligence, IJCAI’05 (proceedings), pp. 272–277. Morgan Kaufmann
Publishers, Inc.
Cited on page 165.

Jean-François Puget (2006). Dynamic Lex Constraints. Principles and Practice of Constraint
Programming, CP’06 (proceedings), volume 4204 of Lecture Notes in Computer Science, pp.
453–467. Springer.
Cited on page 165.

Jean-François Puget and Michel Leconte (1995). Beyond the Glass Box: Constraints as Ob-
jects. International Logic Programming Symposium, ILPS’95 (proceedings), pp. 513–527.

182

Bibliography

MIT Press.
Cited on page 57.

Philippe Refalo (2004). Impact-Based Search Strategies for Constraint Programming. Princi-
ples and Practice of Constraint Programming, CP’04 (proceedings), volume 3258 of Lecture
Notes in Computer Science, pp. 557–571. Springer.
Cited on pages 155, 161, and 166.

Jean-Charles Régin (1994). A Filtering Algorithm for Constraints of Difference in CSPs. Con-
ference on Artificial Intelligence, AAAI’94 (proceedings), pp. 362–367. AAAI Press.
Cited on pages 19, 44, and 164.

Raphael M. Reischuk, Christian Schulte, Peter J. Stuckey, and Guido Tack (2009). Maintain-
ing State in Propagation Solvers. Principles and Practice of Constraint Programming, CP’09
(proceedings), volume 5732 of Lecture Notes in Computer Science, pp. 692–706. Springer.
Cited on page 37.

John Reynolds (1974). Towards a theory of type structure. Programming Symposium, vol-
ume 19 of Lecture Notes in Computer Science, pp. 408–425. Springer.
Cited on page 116.

Francesca Rossi, Peter Van Beek, and Toby Walsh (eds.) (2006). Handbook of Constraint Pro-
gramming. Foundations of Artificial Intelligence. Elsevier Science.
Cited on pages 3, 17, 19, and 88.

Olivier Roussel and Christophe Lecoutre (2009). XML Representation of Constraint Networks:
Format XCSP 2.1. CoRR, volume abs/0902.2362.
Cited on pages 39 and 163.

Thomas J. Schaefer (1978). The complexity of satisfiability problems. Symposium on Theory
of Computing, STOC’78 (proceedings), pp. 216–226. ACM.
Cited on page 19.

Christian Schulte and Peter J. Stuckey (2004). Speeding Up Constraint Propagation. Principles
and Practice of Constraint Programming, CP’04 (proceedings), volume 3258 of Lecture Notes
on Computer Science, pp. 619–633. Springer.
Cited on pages 30, 31, and 83.

Christian Schulte and Peter J. Stuckey (2005). When do bounds and domain propagation
lead to the same search space? ACM Transactions on Programming Languages and Systems
(TOPLAS), volume 27(3):388–425, ACM.
Cited on page 108.

183

Bibliography

Christian Schulte and Peter J. Stuckey (2008). Efficient Constraint Propagation Engines.
Transactions on Programming Languages and Systems, volume 31(1):2:1–2:43, ACM.
Cited on pages 57 and 58.

Christian Schulte and Guido Tack (2005). Views and Iterators for Generic Constraint Imple-
mentations. Recent Advances in Constraints (proceedings), volume 3978 of Lecture Notes in
Computer Science, pp. 118–132. Springer.
Cited on pages 88 and 145.

Christian Schulte and Guido Tack (2008). Perfect Derived Propagators. Principles and Practice
of Constraint Programming, CP’08 (proceedings), volume 5202 of Lecture Notes on Computer
Science. Springer.
Cited on page 108.

Christian Schulte and Guido Tack (2010). Implementing Efficient Propagation Control.
TRICS: Techniques foR Implementing Constraint programming Systems, a conference work-
shop of CP 2010 (proceedings). St Andrews, UK.
Cited on pages 50 and 57.

SICStus (2006). SICStus Prolog 3.12 User’s Manual, 3.12 edition.
http://www.sics.se/sicstus/.
Cited on page 144.

Sérgio Silva (2010). Interfacing the CaSPER Constraint Solver. Technical report, Faculdade de
Ciências e Tecnologia / Universidade Nova de Lisboa.
Cited on page 39.

Helmut Simonis and Barry O’Sullivan (2008). Search Strategies for Rectangle Packing. Princi-
ples and Practice of Constraint Programming, CP ’08 (proceedings), volume 5202 of Lecture
Notes on Computer Science, pp. 52–66. Springer.
Cited on page 3.

Carl Spitznagel (2010). Magic Squares. The Internet.
http://www.jcu.edu/math/vignettes/magicsquares.htm.
Cited on page 1.

Mark Swaney (2000). History of Magic Squares. The Internet.
http://www.ismaili.net/mirrors/Ikhwan_08/magic_squares.html.
Cited on page 1.

Guido Tack (2009). Constraint Propagation – Models, Techniques, Implementation. Doctoral
dissertation, Saarland University.
Cited on pages 4, 6, 14, 16, 17, 30, 50, 57, 58, 88, 127, and 171.

184

http://www.sics.se/sicstus/.
http://www.jcu.edu/math/vignettes/magicsquares.htm.
http://www.ismaili.net/mirrors/Ikhwan_08/magic_squares.html.

Bibliography

Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara (2009). Compiling
finite linear CSP into SAT. Constraints, volume 14:254–272, Springer.
Cited on page 38.

Ruben Viegas and Francisco Azevedo (2007). GRASPER: A Framework for Graph CSPs. Work-
shop on Constraint Modelling and Reformulation, ModRef ’07 (proceedings).
Cited on page 72.

Ruben Duarte Viegas (2008). Constraint Solving over Finite Graphs. Master’s thesis, Faculdade
de Ciências e Tecnologia, Universidade Nova de Lisboa.
Cited on pages 38, 72, and 73.

Ruben Duarte Viegas, Marco Correia, Pedro Barahona, and Francisco Azevedo (2008). Using
Indexed Finite Set Variables for Set Bounds Propagation. IBERAMIA 2008 (proceedings),
volume 5290 of Lecture Notes in Artificial Intelligence, pp. 73–82. Springer.
Cited on page 75.

Toby Walsh (2003). Consistency and Propagation with Multiset constraints: A formal view-
point. Principles and Practice of Constraint Programming, CP’03 (proceedings), volume 2833
of Lecture Notes in Computer Science, pp. 724–738. Springer.
Cited on page 38.

Zhang Yuanlin and Roland H. C. Yap (2000). Arc Consistency on n -ary Monotonic and Linear
Constraints. Principles and Practice of Constraint Programming, CP’00 (proceedings), vol-
ume 1894 of Lecture Notes in Computer Science, pp. 470–483. Springer.
Cited on pages 108, 122, and 164.

Neng-Fa Zhou (2009). Encoding Table Constraints in CLP(FD) Based on Pair-Wise AC. Logic
Programming, volume 5649 of Lecture Notes in Computer Science, pp. 402–416. Springer.
Cited on page 38.

185

Bibliography

186

Appendix A.

Proofs

A.1. Proofs of chapter 6

Proposition 6.22. A view-based constraint checker χ̌c is a sound and complete constraint checker.

Proof. We want to prove that

con(c)∩Sn 6= ;⇔ 1 ∈ χ̌c
(
Sn)∧

con(c)∩Sn 6= Sn ⇔ 0 ∈ χ̌c
(
Sn)

Recall that, by definition, χ̌c (Sn) =ϕ+
c (Sn). For the first equivalence we note that:

con(c)∩Sn 6= ;⇔∃sn ∈ Sn : sn ∈ con(c)

⇔∃t ∈ϕ+
c

(
Sn)

: t = c
(
sn)

,sn ∈ con(c) (def. 6.14)

⇔ 1 ∈ϕ+
c

(
Sn)

The proof for the second equivalence is analogous:

con(c)∩Sn 6= Sn ⇔∃sn ∈ Sn : sn ∉ con(c)

⇔∃t ∈ϕ+
c

(
Sn)

: t = c
(
sn)

,sn ∉ con(c) (def. 6.14)

⇔ 0 ∈ϕ+
c

(
Sn)

Proposition 6.24. A view-based complete propagator for a constraint c is a sound and complete
propagator for c.

Proof. By def 6.14 ϕ−
c ({1}) = con(c) , therefore

π̌?c
(
Sn)=ϕ−

c ({1})∩Sn = con(c)∩Sn =π?c
(
Sn)

187

Appendix A. Proofs

Property 6.26. ϕ+
f and ϕ−

f are monotonic for any arbitrary function f .

Proof. This can be shown for ϕ+
f as follows (the proof for ϕ−

f is analogous): Assuming Sn
1 ⊆ Sn

2 ,

and rewriting it as Sn
2 = Sn

1 ∪Sn
3 where Sn

3 ∈Zn (possibly the empty set), we have

ϕ+
f

(
Sn

1

)⊆ϕ+
f

(
Sn

2

)
ϕ+

f

(
Sn

1

)⊆ϕ+
f

(
Sn

1 ∪Sn
3

)
ϕ+

f

(
Sn

1

)⊆ϕ+
f

(
Sn

1

)∪ϕ+
f

(
Sn

3

)
(prop. 6.25)

which is always true.

Proposition 6.28. Let Si ⊆ Zi , Sk ⊆ Zk denote arbitrary tuple sets, f : Z j → Zk , g : Zi → Z j

arbitrary functions (possibly composition of functions). Then,

ϕ+
f ◦g

(
Si

)
= ϕ+

f ◦ϕ+
g

(
Si

)
ϕ−

f ◦g

(
Sk

)
= ϕ−

g ◦ϕ−
f

(
Sk

)

Proof.

ϕ+
f ◦g

(
Si

)
=

{
f ◦ g

(
si

)
: si ∈ Si

}
=

=
{

f
(
t j

)
: t j = g

(
si

)
,si ∈ Si

}
=

=
{

f
(
t j

)
: t j ∈ϕ+

g

(
Si

)}
=

= ϕ+
f ◦ϕ+

g

(
Si

)

ϕ−
f ◦g

(
Sk

)
=

{
si : f ◦ g

(
si

)
∈ Sk

}
=

=
{

si : g
(
si

)
= t j , f

(
t j

)
∈ Sk

}
=

=
{

si : g
(
si

)
∈ϕ−

f

(
Sk

)}
=

= ϕ−
g ◦ϕ−

f

(
Sk

)

Corollary 6.29. Let Si ⊆ Zi , Sk ⊆ Zk denote arbitrary tuple sets, f : Z j → Zk , g : Zi → Z j arbi-

188

A.1. Proofs of chapter 6

trary functions (possibly Cartesian product of functions). Then,

ϕ̂−
f ◦g

(
Sk ,Si

)
= ϕ̂−

g

(
ϕ̂−

f

(
Sk ,ϕ+

g

(
Si

))
,Si

)

Proof.

ϕ̂−
f ◦g

(
Sk ,Si

)
=ϕ−

f ◦g

(
Sk

)
∩Si = (def. 6.17)

=ϕ−
g ◦ϕ−

f

(
Sk

)
∩Si = (lem. 6.28)

Since Si =ϕ−
g ◦ϕ+

g

(
Si

)∩Si by property 6.27,

ϕ−
g ◦ϕ−

f

(
Sk

)
∩Si =ϕ−

g ◦ϕ−
f

(
Sk

)
∩ϕ−

g ◦ϕ+
g

(
Si

)
∩Si = (prop. 6.27)

=ϕ−
g

(
ϕ−

f

(
Sk

)
∩ϕ+

g

(
Si

))
∩Si = (prop. 6.25)

=ϕ̂−
g

(
ϕ̂−

f

(
Sk ,ϕ+

g

(
Si

))
,Si

)
(def. 6.17)

Proposition 6.32. A view-based constraint checker for the constraint c ◦ f may be obtained by

χ̌c◦ f
(
Sn)=ϕ+

c ◦ϕ+
f

(
Sn)

Proof. For any arbitrary Sn ⊆Zn :

χ̌c◦ f
(
Sn)=ϕ+

c◦ f

(
Sn)

(def. 6.21)

=ϕ+
c ◦ϕ+

f

(
Sn)

(def. 6.28)

Proposition 6.33. A complete view-based propagator for the constraint c ◦ f may be obtained by

π̌c◦ f
(
Sn)= ϕ̂ f

(
π?c

(
ϕ+

f

(
Sn))

,Sn
)

In this case π̌c◦ f (Sn) is also idempotent, i.e. π̌c◦ f (Sn) = π̌?c◦ f (Sn).

189

Appendix A. Proofs

Proof. We only need to prove that π̌c◦ f (Sn) =π?c◦ f (Sn) for any arbitrary Sn ⊆Zn :

π?c◦ f

(
Sn)= ϕ̂c◦ f

(
{1} ,Sn)

(def. 6.23)

= ϕ̂−
f

(
ϕ̂−

c

(
{1} ,ϕ+

f

(
Sn))

,Sn
)

(def. 6.29)

= ϕ̂−
f

(
π?c

(
ϕ+

f

(
Sn))

,Sn
)

(def. 6.23)

= π̌c◦ f
(
Sn)

Lemma A.1. Let πc and πd be two arbitrary propagators for constraints c, d, and S an arbitrary
tuple set. Then, π?d

(
π?c (S)

)=π?c (S) if and only if π?c (S) ⊆π?d (S).

Proof. By definition π?c (S) = con(c)∩S, and therefore

π?d
(
π?c (S)

) = con(d)∩π?c (S)

= con(d)∩con(c)∩S

= π?d (S)∩π?c (S)

The lemma then follows from the fact that A∩B = A ⇔ A ⊆ B for any sets A,B .

Proposition 6.35. A complete constraint propagator (not necessarily idempotent) for the con-
straint c ◦ f may be obtained by

π̌c◦ f
(
Sn)= ϕ̂ f

(
πc

(
ϕ+

f

(
Sn))

,Sn
)

Proof. Let us denote the above propagator by p, and the idempotent propagator π̌c◦ f given by
proposition 6.33 by q (note that therefore q = q?) . Now we have to show that propagator q
and propagator p have the same fixpoint for every Sn , i.e.

q?
(
Sn) = p?

(
Sn)

Case 1. We will prove p? (Sn) ⊆ q? (Sn) by proving the equivalent relation q?
(
p? (Sn)

) =
p? (Sn) given by lemma A.1. We know that q?

(
p? (Sn)

) ⊆ p? (Sn) since propagators are con-
tracting. To prove the converse let Sn be an arbitrary tupe set Sn ⊆Zn and F n ⊆ Sn the fixpoint
of p (Sn), i.e.

F n = p?
(
Sn)= p?

(
F n)= p

(
F n)

190

A.2. Proofs of chapter 7

Assume that p? (Sn)* q?
(
p? (Sn)

)
. Then,

F n * q?
(
F n)⇔∃t n ∈ F n : t n ∉ q?

(
F n)

⇔∃t n ∈ F n : t n ∉ ϕ̂ f

(
π?c

(
ϕ+

f

(
F n))

,F n
)

(cor. 6.33)

⇔∃t n ∈ F n : t n ∉ϕ−
f ◦π?c ◦ϕ+

f

(
F n)

⇔∃t n ∈ F n : t k ∉ϕ−
f ◦πi

c ◦ . . .◦π2
c ◦π1

c ◦ϕ+
f

(
F n)

⇔∃t n ∈ F n : t k ∉ϕ−
f ◦πi

c ◦ . . .◦π2
c ◦ϕ+

f ◦ϕ−
f ◦π1

c ◦ϕ+
f

(
F n)

⇔∃t n ∈ F n : t k ∉ϕ−
f ◦πi

c ◦ . . .◦π2
c ◦ϕ+

f ◦ ϕ̂ f

(
π1

c ◦ϕ+
f

(
F n)

,F n
)

(pty. 6.27)

⇔∃t n ∈ F n : t k ∉ϕ−
f ◦πi

c ◦ . . .◦π2
c ◦ϕ+

f ◦p
(
F n)

⇔∃t n ∈ F n : t k ∉ϕ−
f ◦πi

c ◦ . . .◦π2
c ◦ϕ+

f

(
F n)

⇔∃t n ∈ F n : t k ∉ F n

⇔⊥

Case 2. This case proves q? (Sn) ⊆ p? (Sn). The proof is analogous to case 1.
The proposition follows from the union of the above cases.

A.2. Proofs of chapter 7

Proposition 7.5. Let Φ1, . . . ,Φ8 ∈
{
ϕ,δ,β

}
be a set of approximation operators. Any view model

〈Φ1, . . . ,Φ8〉c◦ f is a sound propagator for c ◦ f .

Proof. Let us write the view model corresponding to a complete view-based propagator for
c ◦ f :

π̂c◦ f =
〈
ϕ, . . . ,ϕ

〉c◦ f =→
ϕ
ϕ+

f →
ϕ
π
ϕϕ
c →

ϕ
ϕ̂ f →

ϕ

Since all operations involved in a view model are monotonic, replacing any ϕ operator in the
above expression by a weaker operator results in a weaker expression, that is〈

ϕ, . . . ,ϕ
〉c◦ f ⊆ 〈Φ1, . . . ,Φ8〉c◦ f

and since π̂c◦ f is sound (by proposition 6.35) so must be 〈Φ1, . . . ,Φ8〉c◦ f .

Proposition 7.7. A ΦΨ view model for a constraint c ◦ f is a ΦΨ-complete propagator for c ◦ f .
Moreover, it is also an idempotent propagator.

Proof. Let m be a ΦΨ view model for the constraint c ◦ f . We only need to show that m (Sn) =

191

Appendix A. Proofs

πΦΨ?c◦ f (Sn) for any arbitrary Sn ⊆Zn :

πΦΨ?c◦ f

(
Sn)= Vcon

(
c ◦ f

)∩VSnWΦWΨ∩Sn (def. 7.1)

= Vϕ̂c◦ f
(
{1} ,VSnWΦ

)
WΨ∩Sn (def. 6.23)

= Vϕ̂ f

(
ϕ̂c

(
{1} ,ϕ+

f

(
VSnWΦ

))
,VSnWΦ

)
WΨ∩Sn (def. 6.29)

= Vϕ̂ f

(
π?c ◦ϕ+

f

(
VSnWΦ

)
,VSnWΦ

)
WΨ∩Sn (def. 6.23)

= m
(
Sn)

Proposition 7.10. Let S be an arbitrary tuple set and m aΦΨ relaxed view model for c ◦ f . Then
m is ΦΨ-complete if and only if any prunning achieved by the propagator for c is preserved by
all involved view functions and approximations, formally

πc

(
ϕ+

f

(
VSWΦ

)) ⊇ ϕ+
f

(
Vm? (S)WΦ

)

Proof. By proposition 7.7, the above propagator m is ΦΨ-complete iff

m? ⊆ Vϕ̂ f

(
π?c ◦ϕ+

f

(
VSWΦ

)
,VSWΦ

)
WΨ∩S

Therefore, we have to prove

m? (S) ⊆ Vϕ̂ f

(
π?c ◦ϕ+

f

(
VSWΦ

)
,VSWΦ

)
WΨ∩S (A.1)

⇔
πc

(
ϕ+

f

(
VSWΦ

)) ⊇ ϕ+
f

(
Vm? (S)WΦ

)
(A.2)

Case 1: Proof that eq. A.1 implies eq. A.2:

m? (S) ⊆ Vϕ̂ f

(
π?c ◦ϕ+

f

(
VSWΦ

)
,VSWΦ

)
WΨ∩S

⇒Vm? (S)WΦ ⊆ VVϕ̂ f

(
π?c ◦ϕ+

f

(
VSWΦ

)
,VSWΦ

)
WΨ∩SWΦ

⇒ϕ+
f

(
Vm? (S)WΦ

)⊆ϕ+
f

(
VVϕ̂ f

(
π?c ◦ϕ+

f

(
VSWΦ

)
,VSWΦ

)
WΨ∩SWΦ

)
⇒ϕ+

f

(
Vm? (S)WΦ

)⊆ϕ+
f

(
VSWΦ

)

192

A.2. Proofs of chapter 7

Case 2: Proof that eq. A.2 implies eq. A.1:

ϕ+
f

(
Vm? (S)WΦ

)⊆πc

(
ϕ+

f

(
VSWΦ

))
⇒πc

(
ϕ+

f

(
Vm? (S)WΦ

))⊆πc

(
πc

(
ϕ+

f

(
VSWΦ

)))
⇒πc

(
ϕ+

f

(
Vm? (S)WΦ

))⊆π?c (
ϕ+

f

(
VSWΦ

))
⇒ϕ̂ f

(
πc

(
ϕ+

f

(
Vm? (S)WΦ

))
,S

)
⊆ ϕ̂ f

(
π?c

(
ϕ+

f

(
VSWΦ

))
,S

)
⇒Vϕ̂ f

(
πc

(
ϕ+

f

(
Vm? (S)WΦ

))
,S

)
WΨ∩S ⊆ Vϕ̂ f

(
π?c

(
ϕ+

f

(
VSWΦ

))
,S

)
WΨ∩S

⇒m
(
m? (S)

)⊆ Vϕ̂ f

(
π?c

(
ϕ+

f

(
VSWΦ

))
,S

)
WΨ∩S

⇒m? (S) ⊆ Vϕ̂ f

(
π?c

(
ϕ+

f

(
VSWΦ

))
,S

)
WΨ∩S

Proposition 7.20. The set of view models for a constraint ordered by the trivially stronger rela-
tion is a bounded lattice where >= 〈

β,β, . . . ,β
〉

and ⊥= 〈
ϕ,ϕ, . . . ,ϕ

〉
.

Proof. For any two approximation operators Φ,Ψ ∈ {
ϕ,δ,β

}
, let

min(Φ,Ψ) =
{
Φ ⇐Φ¹Ψ
Ψ ⇐Ψ¹Φ

max(Φ,Ψ) =
{
Φ ⇐Ψ¹Φ
Ψ ⇐Φ¹Ψ

Let v1 = 〈Φ1, . . . ,Φn〉, v2 = 〈Ψ1, . . . ,Ψn〉 be two arbitrary view models, and

v1 ∧ v2 = 〈min(Φ1,Ψ1) , . . . ,min(Φn ,Ψn)〉
v1 ∨ v2 = 〈max(Φ1,Ψ1) , . . . ,max(Φn ,Ψn)〉

The trivially stronger relation (def. 7.19) partially orders the set of view models for a con-
straint. The poset is a lattice because for any two view models v1, v2, we can always find two
unique models l = v1 ∧ v2 and u = v1 ∨ v2. Since the number of approximation operators is
fixed the lattice has exactly 3n nodes, and is bounded above and below by >= 〈

β,β, . . . ,β
〉

and
⊥= 〈

ϕ,ϕ, . . . ,ϕ
〉

.

193

Appendix A. Proofs

Lemma 7.31. Let f , g be arbitrary functions and c a constraint. Then,

→
Φ1

Φ+
2g →

Φ3

Φ+
4 f →ϕ π

ϕϕ?
c →

ϕ
Φ−

5 f →Φ6

Φ−
7g →

Φ8=
→
Φ1

Φ+
2g →

Φ3

π
Φ4Φ5?
c◦ f →

Φ6

Φ−
7g →

Φ8

Proof. We note that (see the proof of proposition 7.7),

πΦΨ?c◦ f = Φ+
f →
ϕ
π
ϕϕ?
c →

ϕ
Ψ−

f

and therefore

π
Φ4Φ5?
c◦ f = Φ+

4 f →ϕ π
ϕϕ?
c →

ϕ
Φ−

5 f

→
Φ1

Φ+
2g →

Φ3

π
Φ4Φ5?
c◦ f →

Φ6

Φ−
7g →

Φ8

=→
Φ1

Φ+
2g →

Φ3

Φ+
4 f →ϕ π

ϕϕ?
c →

ϕ
Φ−

5 f →Φ6

Φ−
7g →

Φ8

(cor. 7.26)

Lemma A.2. Let Sn ⊆ Zn , f : Zn → Zi , g : Zn → Z j two aribtrary functions, and Φ ∈ {
ϕ,δ,β

}
.

Then,

ϕ+
f ×g

(
VSnWΦ

) ⊆ ϕ+
f

(
VSnWΦ

)×ϕ+
g

(
VSnWΦ

)
with equality if f and g are functionally independent and Φ ∈ {

δ,β
}
.

Proof. {〈x,x〉 : x ∈ VSnWΦ
}⊆ {

x : x ∈ VSnWΦ
}×{

x : x ∈ VSnWΦ
}{〈

f (x) , g (x)
〉

: x ∈ VSnWΦ
}⊆ {

f (x) : x ∈ VSnWΦ
}×{

g (x) : x ∈ VSnWΦ
}

ϕ+
f ×g

(
VSnWΦ

)⊆ϕ+
f

(
VSnWΦ

)×ϕ+
g

(
VSnWΦ

)
If f and g are functionally independent andΦ ∈ {

δ,β
}
, then we can prove the converse case by

proving the equivalent relation,

y ∈ϕ+
f

(
VSnWΦ

)×ϕ+
g

(
VSnWΦ

)⇒ y ∈ϕ+
f ×g

(
VSnWΦ

)

194

A.2. Proofs of chapter 7

Deriving the expression on the left hand side,

y ∈ϕ+
f

(
VSnWΦ

)×ϕ+
g

(
VSnWΦ

)
⇒ y = (

f (x1) ∥ g (x2)
)

: x1 ∈ VSnWΦ,x2 ∈ VSnWΦ

⇒ y = (
f (x1) ∥ g (x2)

)
: x1 ∈ proj f

(
VSnWΦ

)
,x2 ∈ projg

(
VSnWΦ

)
⇒ y = (

f (x1) ∥ g (x2)
)

: x1 ∈ Vproj f

(
Sn)

WΦ,x2 ∈ Vprojg

(
Sn)

WΦ

⇒ y = (
f (x1) ∥ g (x2)

)
: 〈x1,x2〉 ∈ Vproj f

(
Sn)

WΦ×Vprojg

(
Sn)

WΦ

⇒ y = (
f (x1) ∥ g (x2)

)
: x ∈ Vproj f

(
Sn)

WΦ×Vprojg

(
Sn)

WΦ

⇒ y = (
f (x1) ∥ g (x2)

)
: x ∈ Vproj f

(
Sn)×projg

(
Sn)

WΦ

⇒ y = (
f (x1) ∥ g (x2)

)
: x ∈ VSnWΦ (since f , g are f.i. and Φ ∈ {

δ,β
}

)

⇒ y ∈ϕ+
f ×g

(
VSnWΦ

)

Lemma A.3. Let Φ ∈ {
ϕ,δ,β

}
, f : Zn → Zi , g : Zn → Z j be two aribtrary functions, Sk ⊆ Zk ,

Si = proj1...i
(
Sk

)
, and S j = proji+1...i+ j

(
Sk

)
. Then,

ϕ−
f ×g

(
VSkWΦ

)
⊆ ϕ−

f

(
VSi WΦ

)
∩ϕ−

g

(
VS j WΦ

)
with equality if Φ ∈ {

δ,β
}
.

Proof.{
x :

(
f (x) ∥ g (x)

) ∈ VSkWΦ
}
⊆

{
x : f (x) ∈ proj1...i

(
VSkWΦ

)}
∩

{
x : g (x) ∈ proji+1...i+ j

(
VSkWΦ

)}
{

x :
(

f (x) ∥ g (x)
) ∈ VSkWΦ

}
⊆

{
x : f (x) ∈ Vproj1...i

(
Sk

)
WΦ

}
∩

{
x : g (x) ∈ Vproji+1...i+ j

(
Sk

)
WΦ

}
ϕ−

f ×g

(
VSkWΦ

)
⊆ϕ−

f

(
VSi WΦ

)
∩ϕ−

g

(
VS j WΦ

)
If Φ ∈ {

δ,β
}
, then we can prove the converse case by proving the equivalent relation,

x ∈ϕ−
f

(
VSi WΦ

)
∩ϕ−

g

(
VS j WΦ

)
⇒ x ∈ϕ−

f ×g

(
VSkWΦ

)

195

Appendix A. Proofs

Deriving the expression on the left hand side,

x ∈ϕ−
f

(
VSi WΦ

)
∩ϕ−

g

(
VS j WΦ

)
⇒∃y1 ∈ VSi WΦ,∃y2 ∈ VS j WΦ : f (x) = y1, g (x) = y2

⇒∃(
y1 ∥ y2

) ∈ VSi WΦ×VS j WΦ : f (x) = y1, g (x) = y2

⇒∃(
y1 ∥ y2

) ∈ VSi ×S j WΦ : f (x) = y1, g (x) = y2

⇒∃(
y1 ∥ y2

) ∈ Vproj1...i

(
Sk

)
×proji+1...i+ j

(
Sk

)
WΦ : f (x) = y1, g (x) = y2

⇒∃(
y1 ∥ y2

) ∈ VSkWΦ : f (x) = y1, g (x) = y2 (since Φ ∈ {
δ,β

}
)

⇒∃(
y1 ∥ y2

) ∈ VSkWΦ :
(

f × g
)

(x) = (
y1 ∥ y2

)
⇒∃y ∈ VSkWΦ :

(
f × g

)
(x) = y

⇒ x ∈ϕ−
f ×g

(
VSkWΦ

)

Proposition 7.32. Let Sn ⊆ Zn , Si = proj1...i
(
Sk

)
, and S j = proji+1...i+ j

(
Sk

)
. Let f : Zn → Zi ,

g :Zn →Z j be two arbitrary functions, and Φ,Ψ ∈ {
ϕ,δ,β

}
. Then,

Vϕ+
f ×g

(
VSnWΦ

)
WΨ ⊆ Vϕ+

f

(
VSnWΦ

)
WΨ×Vϕ+

g

(
VSnWΦ

)
WΨ

Vϕ−
f ×g

(
VSkWΦ

)
WΨ ⊆ Vϕ−

f

(
VSi WΦ

)
WΨ∩Vϕ−

g

(
VS j WΦ

)
WΨ

Vϕ̂ f ×g

(
VSkWΦ,Sn

)
WΨ ⊆ Vϕ̂ f

(
VSi WΦ,Sn

)
WΨ∩Vϕ̂g

(
VS j WΦ,Sn

)
WΨ

with equality if f and g are functionally independent and Φ ∈ {
δ,β

}
.

Proof. For the first equation we have,

ϕ+
f ×g

(
VSnWΦ

)⊆ϕ+
f

(
VSnWΦ

)×ϕ+
g

(
VSnWΦ

)
(lem. A.2)

⇒Vϕ+
f ×g

(
VSnWΦ

)
WΨ ⊆ Vϕ+

f

(
VSnWΦ

)×ϕ+
g

(
VSnWΦ

)
WΨ

⇔Vϕ+
f ×g

(
VSnWΦ

)
WΨ ⊆ Vϕ+

f

(
VSnWΦ

)
WΨ×Vϕ+

g

(
VSnWΦ

)
WΨ

When f and g are functionally independent and Φ ∈ {
δ,β

}
then all subset relations above are

196

A.2. Proofs of chapter 7

replaced by equalities. The proof for the second equation is similar,

ϕ−
f ×g

(
VSkWΦ

)
⊆ϕ−

f

(
VSi WΦ

)
∩ϕ−

g

(
VS j WΦ

)
(lem. A.3)

⇒Vϕ−
f ×g

(
VSkWΦ

)
WΨ ⊆ Vϕ−

f

(
VSi WΦ

)
∩ϕ−

g

(
VS j WΦ

)
WΨ

⇒Vϕ−
f ×g

(
VSkWΦ

)
WΨ ⊆ Vϕ−

f

(
VSi WΦ

)
WΨ∩Vϕ−

g

(
VS j WΦ

)
WΨ

The first two subset relations above are replaced by equalities when Φ ∈ {
δ,β

}
. The last subset

relation becomes an equality when f and g are functionally independent, which can be proved
as follows. Firstly, note that set intersection commutes with their Cartesian product, i.e. for sets

Si
1,Si

2 ⊆Zi and S j
1,S j

2 ⊆Z j , it is always true that(
Si

1 ×S j
1

)
∩

(
Si

2 ×S j
2

)
=

(
Si

1 ∩Si
2

)
×

(
S j

1 ∩S j
2

)
(A.3)

Deriving the right hand side of the second subset relation above gives us,

Vϕ−
f

(
VSi WΦ

)
∩ϕ−

g

(
VS j WΦ

)
WΨ

= V
(
proj f

(
ϕ−

f

(
VSi WΦ

))
×projg

(
Zn))∩ (

proj f

(
Zn)×projg

(
ϕ−

g

(
VS j WΦ

)))
WΨ (since f , g are f.i.)

= V
(
proj f

(
ϕ−

f

(
VSi WΦ

))
∩proj f

(
Zn))× (

projg

(
Zn)∩projg

(
ϕ−

g

(
VS j WΦ

)))
WΨ (eq. A.3)

= Vproj f

(
ϕ−

f

(
VSi WΦ

))
∩proj f

(
Zn)

WΨ×Vprojg

(
Zn)∩projg

(
ϕ−

g

(
VS j WΦ

))
WΨ

= Vproj f

(
ϕ−

f

(
VSi WΦ

))
WΨ×Vprojg

(
ϕ−

g

(
VS j WΦ

))
WΨ

= proj f

(
Vϕ−

f

(
VSi WΦ

)
WΨ

)
×projg

(
Vϕ−

g

(
VS j WΦ

)
WΨ

)
=

(
proj f

(
Vϕ−

f

(
VSi WΦ

)
WΨ

)
∩proj f

(
Zn))× (

projg

(
Zn)∩projg

(
Vϕ−

g

(
VS j WΦ

)
WΨ

))
=

(
proj f

(
Vϕ−

f

(
VSi WΦ

)
WΨ

)
×projg

(
Zn))∩ (

proj f

(
Zn)×projg

(
Vϕ−

g

(
VS j WΦ

)
WΨ

))
(eq. A.3)

= Vϕ−
f

(
VSi WΦ

)
WΨ∩Vϕ−

g

(
VS j WΦ

)
WΨ (since f , g are f.i.)

The proof for the third equation is very similar to the one just presented and therefore is
ommited.

Proposition 7.34. Let Φ1,Φ2 ∈ {
ϕ,δ,β

}
and c be an arbitrary constraint. An incomplete con-

straint checker 〈Φ1,Φ2〉c is a sound constraint checker for c.

Proof. Since by definition χ̂c (S) = ϕ+
c (S) is a sound constraint checker and we have ϕ+

c (S) ⊆
Vϕ+

c

(
VSWΦ1

)
WΦ2 then 〈Φ1,Φ2〉c must be sound.

197

Appendix A. Proofs

A.3. Proofs of chapter 8

Lemma A.4. Let Sn ,Sk be two arbitrary δ-domains, f :Zn →Zk a Cartesian product of k n-ary
functions, and Φ,Ψ ∈ {

δ,β
}
. Let N = 1. . .n, K = n +1. . .n +k, and c = [

f (xN) = xK
]
. Then,

Vϕ+
f

(
VSnWΦ

)∩VSkWΦWΨ∩Sk = projK ◦πΦΨ?c

(
Sn ×Sk

)
Vϕ̂ f

(
VSkWΦ,VSnWΦ

)
WΨ∩Sn = projN ◦πΦΨ?c

(
Sn ×Sk

)
Proof. Let t = n+k and S t = Sn ×Sk . Additionally, we will explore the decomposition c = e ◦g ,
where g

(
x t

)= 〈
f (xN) , xK

〉
and e = [x1...k = xk+1...2k]. For the first equation we have,

projK ◦πΦΨ?c

(
S t) = projK

(
Vϕ̂g

(
π?e ◦ϕ+

g

(
VS tWΦ

)
,VS tWΦ

)
WΨ∩S t

)
= projK

(
Vϕ̂g

(
π?e ◦ϕ+

g

(
VS tWΦ

)
,VS tWΦ

)
WΨ

)
∩projK

(
S t)

= VprojK

(
ϕ̂g

(
π?e ◦ϕ+

g

(
VS tWΦ

)
,VS tWΦ

))
WΨ∩Sk

= VprojK

(
ϕ−

g

(
π?e ◦ϕ+

g

(
VS tWΦ

)))∩projK

(
VS tWΦ

)
WΨ∩Sk

= Vprojk+1...2k

(
π?e ◦ϕ+

g

(
VS tWΦ

))∩VSkWΦWΨ∩Sk

= Vproj1...k

(
ϕ+

g

(
VS tWΦ

))∩projk+1...2k

(
ϕ+

g

(
VS tWΦ

))∩VSkWΦWΨ∩Sk

= Vϕ+
f

(
VSnWΦ

)∩VSkWΦWΨ∩Sk

The proof for the second equation is as follows.

projN ◦πΦΨ?c

(
S t) = projN

(
Vϕ̂g

(
π?e ◦ϕ+

g

(
VS tWΦ

)
,VS tWΦ

)
WΨ∩S t

)
= projN

(
Vϕ̂g

(
π?e ◦ϕ+

g

(
VS tWΦ

)
,VS tWΦ

)
WΨ

)
∩projN

(
S t)

= projN

(
Vϕ̂g

(
π?e ◦ϕ+

g

(
VS tWΦ

)
,VS tWΦ

)
WΨ

)
∩Sn

= VprojN

(
ϕ̂g

(
π?e ◦ϕ+

g

(
VS tWΦ

)
,VS tWΦ

))
WΨ∩Sn

= Vϕ̂ f

(
proj1...k

(
π?e ◦ϕ+

g

(
VS tWΦ

))
,VSnWΦ

)
WΨ∩Sn

= Vϕ̂ f

(
proj1...k

(
ϕ+

g

(
VS tWΦ

))∩projk+1...2k

(
ϕ+

g

(
VS tWΦ

))
,VSnWΦ

)
WΨ∩Sn

= Vϕ̂ f

(
ϕ+

f

(
VS tWΦ

)∩VSkWΦ,VSnWΦ
)
WΨ∩Sn

= Vϕ̂ f

(
VSkWΦ,VSnWΦ

)
WΨ∩Sn

198

A.3. Proofs of chapter 8

Proposition 8.12. Any box view model may be enforced by a set of propagators and a set of
auxiliary domain variables.

Proof. A box view model for constraint c ◦ f and a δ-domain Sn is an instance of the following
expression:

m = Vϕ̂ f

(
Vπββ?c

(
Vϕ+

f

(
VSnWβ

)
Wβ

)
Wβ,VSnWβ

)
Wβ∩Sn (A.4)

Let us assume a function f : Zn → Zk and consequently fix the arity of c to k. Propagating
m may be achieved by considering a CSP with a domain Sn × Sk , where Sk is the Cartesian
product of the domains of k new domain variables. The auxiliary variable’s domain must be
sufficiently large, specifically such that Vϕ+

f

(
VSnWβ

)
Wβ ⊆ Sk , and consequently

Vϕ+
f

(
VSnWβ

)
Wβ = Vϕ+

f

(
VSnWβ

)
∩VSkWβWβ∩Sk

Then, using the above lemma one may rewrite equation A.4 using propagators πββ?c , and πββ?d
where d = [

f (x1...n) = xn+1...n+k
]
.

199

Appendix A. Proofs

200

Appendix B.

Tables

B.1. Tables of chapter 4

benchmark #wsum #distinct #element #cumulative benchmark #wsum #distinct #element #cumulative

quasigroup3-7.xml 14 49 bibd-31-31-6-6-1_glb.xml 527
quasigroup4-7.xml 14 49 bibd-25-30-6-5-1_glb.xml 355
quasigroup6-7.xml 14 97 bibd-7-210-60-2-10_glb.xml 238
quasigroup7-7.xml 14 97 bibd-14-26-13-7-6_glb.xml 131
squares-10-10.xml 45 2 bibd-19-57-9-3-1_glb.xml 247
squares-11-11.xml 55 2 bibd-15-35-7-3-1_glb.xml 155

squares-9-9.xml 36 2 bibd-8-56-21-3-6_glb.xml 92
bibd-6-60-30-3-12_glb.xml 81 patat-02-comp-17.xml 300
bibd-6-50-25-3-10_glb.xml 71 patat-08-comp-10.xml 904
bibd-7-42-18-3-6_glb.xml 70 patat-08-comp-15.xml 486
bibd-7-49-21-3-7_glb.xml 77 patat-08-comp-8.xml 490
bibd-8-42-21-4-9_glb.xml 78 latinSquare-dg-6_all.xml 24
bibd-8-28-14-4-6_glb.xml 64 queens2.xml 3

bibd-8-56-28-4-12_glb.xml 92 cabinet-5561.xml 7 98
bibd-9-48-16-3-4_glb.xml 93 cabinet-5562.xml 7 98

rcpsp20-06.xml 3 cabinet-5563.xml 7 98
rcpsp20-10.xml 3 cabinet-5564.xml 7 98
rcpsp20-18.xml 3 cabinet-5565.xml 7 98
rcpsp20-19.xml 3 cabinet-5566.xml 7 98

bibd-11-55-15-3-3_glb.xml 121 cabinet-5567.xml 7 98
bibd-10-60-18-3-4_glb.xml 115 cabinet-5568.xml 7 98
bibd-13-78-18-3-3_glb.xml 169 cabinet-5569.xml 7 98
bibd-12-44-11-3-2_glb.xml 122 cabinet-5570.xml 7 98
bibd-13-52-12-3-2_glb.xml 143 cabinet-5571.xml 7 98

magicSquare-8_glb.xml 18 1 cabinet-5572.xml 7 98
magicSquare-7_glb.xml 16 1 cabinet-5573.xml 7 98
magicSquare-9_glb.xml 20 1 cabinet-5574.xml 7 98
magicSquare-6_glb.xml 14 1 cabinet-5575.xml 7 98

bibd-13-26-8-4-2_glb.xml 117 cabinet-5576.xml 7 98
bibd-11-22-10-5-4_glb.xml 88 cabinet-5577.xml 7 98
bibd-12-22-11-6-5_glb.xml 100 cabinet-5578.xml 7 98
bibd-16-24-9-6-3_glb.xml 160 cabinet-5579.xml 7 98
bibd-19-19-9-9-4_glb.xml 209 cabinet-5580.xml 7 98
bibd-21-21-5-5-1_glb.xml 252 costasArray-13.xml 11

bibd-15-70-14-3-2_glb.xml 190 costasArray-14.xml 12
bibd-16-80-15-3-2_glb.xml 216 costasArray-15.xml 13

Table B.1.: Number of global constraints of each kind present in each benchmark

201

Appendix B. Tables

algorithm propagator-centered event-centered
event policy cost FIFO cost FIFO
filter policy cost FIFO cost FIFO cost FIFO cost FIFO

quasigroup3-7.xml 30.55 43.83 31.34 47.02 472.59 455.16 2322.28 2275.57
quasigroup4-7.xml 28.63 41.91 30.18 45.69 470.21 469.29 2194.11 2217.49
quasigroup6-7.xml 1.11 1.54 1.15 1.67 28.67 29.07 100.09 101.77
quasigroup7-7.xml 8.66 12.09 8.96 13.16 202.88 209.24 737.07 756.63
squares-10-10.xml 14.47 47.3 14.24 47.39 114.34 128.24 114.51 126.78
squares-11-11.xml 0.63 0.8 0.61 0.79 1.68 1.91 1.68 1.91

squares-9-9.xml 0.99 0.98 0.98 0.97 1.94 2.2 1.96 2.17
bibd-6-60-30-3-12_glb.xml 1.86 1.77 1.84 1.75 46.32 47.27 44.44 47.04
bibd-6-50-25-3-10_glb.xml 0.41 0.41 0.41 0.4 9.34 9.55 9.36 9.63
bibd-7-42-18-3-6_glb.xml 3.47 3.34 3.45 3.28 47.65 46.4 48.11 47.53
bibd-7-49-21-3-7_glb.xml 25.13 25.2 24.93 24.95 516.81 549.29 509.87 547.62
bibd-8-42-21-4-9_glb.xml 0.52 0.51 0.52 0.5 9.02 8.72 8.91 8.77
bibd-8-28-14-4-6_glb.xml 0.4 0.38 0.4 0.37 4.65 4.63 4.62 4.61

bibd-8-56-28-4-12_glb.xml 0.5 0.48 0.5 0.48 12.73 13.08 12.8 13.19
bibd-9-48-16-3-4_glb.xml 19.18 18.06 19.3 17.88 361.73 367.75 361.59 365.39

rcpsp20-06.xml 21.1 42.08 21.05 41.98 86.18 101.04 85.44 102.69
rcpsp20-10.xml 1.13 1.95 1.13 1.95 4.29 4.96 4.28 4.91
rcpsp20-18.xml 30.51 58.9 30.55 58.78 124.26 146.21 124.29 145.59
rcpsp20-19.xml 0.78 1.42 0.79 1.41 3.71 4.15 3.65 4.11

bibd-11-55-15-3-3_glb.xml 0.28 0.28 0.28 0.28 8.26 8.27 8.17 8.26
bibd-10-60-18-3-4_glb.xml 0.67 0.65 0.68 0.66 17.99 18.37 18.02 18.36
bibd-13-78-18-3-3_glb.xml 0.92 0.88 0.92 0.9 38.17 38.5 38.38 39.05
bibd-12-44-11-3-2_glb.xml 0.51 0.48 0.52 0.48 10.34 10.7 10.32 10.68
bibd-13-52-12-3-2_glb.xml 0.16 0.16 0.16 0.16 4.65 4.78 4.64 4.78

magicSquare-8_glb.xml 1.63 2.38 1.58 2.52 2.35 2.81 3.2 3.17
magicSquare-7_glb.xml 43.86 62.9 43.86 65.6 81.41 81.94 94.94 94.98
magicSquare-9_glb.xml 11.63 18.08 11.42 19 22.46 22.07 25.89 25.72
magicSquare-6_glb.xml 1.08 1.53 1.08 1.61 1.92 1.92 2.29 2.29

bibd-13-26-8-4-2_glb.xml 0.16 0.16 0.16 0.15 1.83 1.87 1.83 1.44
bibd-11-22-10-5-4_glb.xml 2.52 2.39 2.51 2.36 22.18 22.63 22.03 22.34
bibd-12-22-11-6-5_glb.xml 0.32 0.3 0.32 0.29 2.95 2.94 2.96 2.92
bibd-16-24-9-6-3_glb.xml 0.73 0.68 0.72 0.69 6.93 7.07 6.93 6.92
bibd-19-19-9-9-4_glb.xml 0.46 0.39 0.46 0.39 3.42 3.32 3.4 3.3
bibd-21-21-5-5-1_glb.xml 0.04 0.05 0.04 0.05 0.35 0.3 0.39 0.37

bibd-15-70-14-3-2_glb.xml 3.3 3.23 3.39 3.26 103.82 105.89 103.85 105.9
bibd-16-80-15-3-2_glb.xml 0.93 0.93 0.93 0.93 40.1 40.4 39.62 40.62

Table B.2.: Propagation time (seconds) for solving each benchmark using each model (table
1/2)

202

B.1. Tables of chapter 4

algorithm propagator-centered event-centered
event policy cost FIFO cost FIFO
filter policy cost FIFO cost FIFO cost FIFO cost FIFO

bibd-31-31-6-6-1_glb.xml 0.14 0.15 0.14 0.14 1.8 1.79 1.81 1.8
bibd-25-30-6-5-1_glb.xml 0.41 0.41 0.41 0.41 5.47 5.36 5.46 5.37

bibd-7-210-60-2-10_glb.xml 0.19 0.19 0.19 0.2 32.43 31.28 32.47 32.35
bibd-14-26-13-7-6_glb.xml 43.05 40.24 42.14 40.25 443.59 446.59 444.1 449.1
bibd-19-57-9-3-1_glb.xml 0.24 0.25 0.23 0.25 7.3 7.59 7.32 7.5
bibd-15-35-7-3-1_glb.xml 0.07 0.07 0.07 0.08 1.22 1.25 1.23 1.24
bibd-8-56-21-3-6_glb.xml 8.98 8.1 9.05 8.09 184.62 185.28 186.44 185.6

patat-02-comp-17.xml 3.17 3.52 3.21 3.72 4.25 4.45 7.77 7.55
patat-08-comp-10.xml 1.98 2.12 1.91 2.22 2.52 2.52 4.97 4.92
patat-08-comp-15.xml 19.62 26.43 19.38 26.01 23.87 23.11 49.99 49.24
patat-08-comp-8.xml 0.91 1.02 0.9 1.04 1.23 1.23 1.96 1.94

latinSquare-dg-6_all.xml 0.96 1.1 0.96 1.13 1.11 1.09 1.8 1.79
queens2.xml 1.6 3.99 1.61 4.41 2.41 2.37 4.72 4.6

cabinet-5561.xml 14.7 15.76 14.37 15.45 55.69 53.59 69.2 67.25
cabinet-5562.xml 14.68 15.64 14.43 15.46 55.7 53.78 68.63 68.43
cabinet-5563.xml 14.55 15.81 14.42 15.49 55.94 53.97 68.99 66.92
cabinet-5564.xml 14.56 15.77 14.47 15.45 54.58 53.12 69.17 67.82
cabinet-5565.xml 14.6 15.73 14.49 15.45 55.79 53.84 69.55 67.29
cabinet-5566.xml 14.6 15.72 14.47 15.52 55.1 53.89 69.15 66.96
cabinet-5567.xml 14.61 15.76 14.49 15.42 55.27 53 69.03 67.11
cabinet-5568.xml 14.59 15.72 14.43 15.35 55.3 53.45 69.38 67.21
cabinet-5569.xml 14.62 15.7 14.46 15.46 55.64 53.54 69.56 67.22
cabinet-5570.xml 14.61 15.68 14.44 15.43 55.25 53.42 69.21 68.16
cabinet-5571.xml 14.62 15.85 14.47 15.68 55.44 53.5 69.53 67.3
cabinet-5572.xml 14.67 15.78 14.53 15.47 55.57 53.58 69.17 67.19
cabinet-5573.xml 14.75 15.84 14.54 15.5 55.13 53.68 69.23 67.16
cabinet-5574.xml 14.68 15.9 14.58 15.56 55.14 53.13 69.73 67.5
cabinet-5575.xml 14.72 15.97 14.54 15.52 56.18 53.63 69.24 67.08
cabinet-5576.xml 14.98 16.11 14.76 15.78 56.67 54.6 71.3 68.46
cabinet-5577.xml 14.98 16.11 14.73 15.78 56.95 54.67 70.51 68.41
cabinet-5578.xml 15.06 16.1 14.71 15.75 56.93 54.73 70.46 68.68
cabinet-5579.xml 14.91 16.14 14.79 15.91 57.01 54.16 70.42 68.64
cabinet-5580.xml 14.94 16.21 14.71 15.76 57.03 54.59 71.06 68.4

costasArray-13.xml 1.96 2.91 1.95 3 2.53 2.51 3.61 3.59
costasArray-14.xml 1.86 2.88 1.86 2.99 2.37 2.35 3.49 3.44
costasArray-15.xml 10.28 16.52 10.14 17.15 13.25 13.18 20.09 19.75

Table B.3.: Propagation time (seconds) for solving each benchmark using each model (table
2/2)

203

Appendix B. Tables

B.2. Tables of chapter 5

B.2.1. Social golfers

#updates avg-update time #props

NON-INCREMENTAL 8.65E+6 6.37E-1 2.72 8,970,454
INCREMENTAL-PROPAGATOR 6.01E+6 6.06E-1 2.64 8,970,454

INCREMENTAL-VARIABLE 6.01E+6 6.07E-1 2.44 8,970,454
INCREMENTAL-HYBRID 5.42E+6 6.05E-1 2.94 8,970,454

GECODE N/A N/A 2.92 3,734,251

Table B.4.: Social golfers: 5w-5g-4s (v=25,c/v=11.2,f=25421)

#updates avg-update time #props

NON-INCREMENTAL 6.85E+8 5.64E-1 307 740,977,445
INCREMENTAL-PROPAGATOR 4.70E+8 6.49E-1 298 740,977,445

INCREMENTAL-VARIABLE 4.70E+8 6.49E-1 282.65 740,977,445
INCREMENTAL-HYBRID 4.24E+8 6.42E-1 303.62 740,977,445

GECODE N/A N/A 304 319,631,533

Table B.5.: Social golfers: 6w-5g-3s (v=30,c/v=13.6,f=1582670)

#updates avg-update time #props

NON-INCREMENTAL 1.25E+7 5.36E-1 5.36 13,597,902
INCREMENTAL-PROPAGATOR 8.17E+6 5.64E-1 5.75 13,597,902

INCREMENTAL-VARIABLE 8.17E+6 5.64E-1 5.13 13,597,902
INCREMENTAL-HYBRID 8.00E+6 5.61E-1 6.14 13,597,902

GECODE N/A N/A 6.65 6,265,389

Table B.6.: Social golfers: 11w-11g-2s (v=121,c/v=55.4,f=10803)

204

B.2. Tables of chapter 5

B.2.2. Hamming codes

#updates avg-update time #props

NON-INCREMENTAL 2.14E+6 1.48E+0 1.04 4,130,735
INCREMENTAL-PROPAGATOR 1.52E+6 6.20E-1 0.88 4,138,480

INCREMENTAL-VARIABLE 1.52E+6 6.20E-1 0.83 4,138,480
INCREMENTAL-HYBRID 1.37E+6 8.93E-1 0.9 4,138,480

GECODE N/A N/A 1.38 1,918,498

Table B.7.: Hamming codes: 20s-15l-8d (v=42,c/v=10,f=7774)

#updates avg-update time #props

NON-INCREMENTAL 8.34E+6 3.19E+0 5.66 16,769,450
INCREMENTAL-PROPAGATOR 5.61E+6 7.33E-1 3.78 16,775,413

INCREMENTAL-VARIABLE 5.61E+6 7.33E-1 3.73 16,775,413
INCREMENTAL-HYBRID 5.37E+6 1.11E+0 4.12 16,775,413

GECODE N/A N/A 5.16 6,420,351

Table B.8.: Hamming codes: 10s-20l-9d (v=22,c/v=5,f=59137)

#updates avg-update time #props

NON-INCREMENTAL 1.81E+7 1.88E+0 12.39 37,788,547
INCREMENTAL-PROPAGATOR 1.40E+7 5.84E-1 10.12 37,857,135

INCREMENTAL-VARIABLE 1.40E+7 5.84E-1 9.46 37,857,135
INCREMENTAL-HYBRID 1.23E+7 1.08E+0 10.97 37,857,135

GECODE N/A N/A 15.02 14,005,989

Table B.9.: Hamming codes: 40s-15l-6d (v=82,c/v=15.1,f=27002)

205

Appendix B. Tables

B.2.3. Balanced partition

#updates avg-update time #props

NON-INCREMENTAL 1.74E+6 5.34E+0 3.06 11,810,152
INCREMENTAL-PROPAGATOR 2.06E+6 5.28E-1 2.77 11,810,152

INCREMENTAL-VARIABLE 2.06E+6 5.27E-1 2.68 11,810,192
INCREMENTAL-HYBRID 1.02E+6 1.61E+0 2.86 11,810,152

GECODE N/A N/A 3.57 5,361,471

Table B.10.: Balanced partition: 150v-70s-162m (v=212,c/v=11.7,f=48525)

#updates avg-update time #props

NON-INCREMENTAL 2.01E+6 6.06E+0 3.86 14,504,618
INCREMENTAL-PROPAGATOR 2.50E+6 5.41E-1 3.41 14,504,618

INCREMENTAL-VARIABLE 2.50E+6 5.40E-1 3.29 14,504,658
INCREMENTAL-HYBRID 1.17E+6 1.75E+0 3.29 14,504,618

GECODE N/A N/A 4.64 6,598,932

Table B.11.: Balanced partition: 170v-80s-182m (v=242,c/v=13.4,f=54573)

#updates avg-update time #props

NON-INCREMENTAL 2.17E+6 6.77E+0 4.66 16,572,703
INCREMENTAL-PROPAGATOR 2.82E+6 5.52E-1 3.94 16,572,703

INCREMENTAL-VARIABLE 2.82E+6 5.51E-1 3.81 16,572,743
INCREMENTAL-HYBRID 1.26E+6 1.88E+0 4.4 16,572,703

GECODE N/A N/A 5.6 7,481,239

Table B.12.: Balanced partition: 190v-90s-202m (v=272,c/v=15,f=57424)

B.2.4. Metabolic pathways

time #props

INCREMENTAL-PROPAGATOR 0.9 1,030,438
INCREMENTAL-VARIABLE 0.74 1,268,920

Table B.13.: Metabolic pathways: g250_croes_ecoli_glyco (f=916)

206

B.2. Tables of chapter 5

time #props

INCREMENTAL-PROPAGATOR 10.3 7,163,926
INCREMENTAL-VARIABLE 9.38 20,681,066

Table B.14.: Metabolic pathways: g500_croes_ecoli_glyco (f=2865)

time #props

INCREMENTAL-PROPAGATOR 52.6 4,517,381
INCREMENTAL-VARIABLE 24.1 4,584,786

Table B.15.: Metabolic pathways: g1000_croes_scerev_heme (f=2466)

time #props

INCREMENTAL-PROPAGATOR 171 15,657,341
INCREMENTAL-VARIABLE 88.1 60,006,142

Table B.16.: Metabolic pathways: g1500_croes_ecoli_glyco (f=4056)

B.2.5. Winner determination problem

time #props

INCREMENTAL-PROPAGATOR 2.82 37,014
INCREMENTAL-VARIABLE 2.17 35,693

Table B.17.: Winner determination problem: 200 (f=1550)

time #props

INCREMENTAL-PROPAGATOR 13.4 69,030
INCREMENTAL-VARIABLE 9.92 66,536

Table B.18.: Winner determination problem: 300 (f=2924)

207

Appendix B. Tables

time #props

INCREMENTAL-PROPAGATOR 39 160,878
INCREMENTAL-VARIABLE 29.5 155,775

Table B.19.: Winner determination problem: 400 (f=6693)

time #props

INCREMENTAL-PROPAGATOR 80.4 393,580
INCREMENTAL-VARIABLE 61.7 381,869

Table B.20.: Winner determination problem: 500 (f=16213)

B.3. Tables of chapter 9

B.3.1. Systems of linear equations

#vars #vars/const time #fails #props

VARS 41 7 19.3 11,983,390 1.14E+7
VARS+GLOBAL 20 4 18.2 11,983,390 5.72E+6

PVIEWS 20 4 18.1 11,983,390 5.72E+6
SVIEWS 20 4 18.9 11,983,390 5.72E+6

GECODE-VARS 41 7 19.9 11,983,390 8.75E+6
GECODE-VARS+GLOBAL 20 4 18.4 11,983,390 2.90E+6

Table B.21.: Linear 20var-7vals-7cons-4arity-6s (SAT) (S=56.15)

#vars #vars/const time #fails #props

VARS 62 15 142 6,444,629 5.97E+8
VARS+GLOBAL 20 8 46.7 6,444,629 7.01E+7

PVIEWS 20 8 42.3 6,444,629 7.41E+7
SVIEWS 20 8 57 6,444,629 7.41E+7

GECODE-VARS 62 15 155 6,444,629 9.56E+8
GECODE-VARS+GLOBAL 20 8 30.36 6,444,629 6.62E+7

Table B.22.: Linear 20var-30val-6cons-8arity-2s (UNSAT) (S=98.14)

208

B.3. Tables of chapter 9

#vars #vars/const time #fails #props

VARS 508 39 134 1,515,353 5.25E+8
VARS+GLOBAL 40 20 21.4 1,515,353 1.81E+7

PVIEWS 40 20 25.8 1,515,353 1.81E+7
SVIEWS 40 20 58.4 1,515,353 1.81E+7

GECODE-VARS 508 39 163 1,515,353 9.21E+8
GECODE-VARS+GLOBAL 40 20 15.6 1,515,353 2.07E+7

Table B.23.: Linear 40var-7val-12cons-20arity-3s (UNSAT) (S=112.29)

#vars #vars/const time #fails #props

VARS 988 79 144 700,752 6.17E+8
VARS+GLOBAL 40 40 16.8 700,752 1.00E+7

PVIEWS 40 40 20.3 700,752 1.00E+7
SVIEWS 40 40 62 700,752 1.00E+7

GECODE-VARS 988 79 168 700,752 1.07E+9
GECODE-VARS+GLOBAL 40 40 11.4 700,752 1.54E+7

Table B.24.: Linear 40var-7val-10cons-40arity-3s (UNSAT) (S=112.29)

B.3.2. Systems of nonlinear equations

#vars #vars/const time #fails #props

VARS 90 15 53.1 651,189 1.89E+8
VARS+GLOBAL 60 12 46.9 651,189 1.24E+8

PVIEWS 20 8 19.6 651,189 2.40E+7
SVIEWS 20 8 21 651,189 2.40E+7

CPVIEWS 20 8 31.5 651,189 6.79E+7
PVIEWS+GLOBAL 20 8 25 651,189 2.40E+7

GECODE-VARS 90 15 40.3 651,189 2.67E+8
GECODE-VARS+GLOBAL 60 12 28.7 651,189 1.72E+8

Table B.25.: NonLinear 20var-20val-10cons-4term-2fact-2s (SAT) (S=86.44)

209

Appendix B. Tables

#vars #vars/const time #fails #props

VARS 183 15 136 1,451,881 4.79E+8
VARS+GLOBAL 126 12 119 1,451,881 3.10E+8

PVIEWS 50 8 48 1,451,881 5.70E+7
SVIEWS 50 8 56.4 1,451,881 5.70E+7

CPVIEWS 50 8 73.7 1,451,881 1.58E+8
PVIEWS+GLOBAL 50 8 60.5 1,451,881 5.70E+7

GECODE-VARS 183 15 105.8 1,451,881 6.34E+8
GECODE-VARS+GLOBAL 126 12 74.15 1,451,881 4.10E+8

Table B.26.: NonLinear 50var-10val-19cons-4term-2fact-1s (SAT) (S=166.1)

#vars #vars/const time #fails #props

VARS 358 23 93 514,680 2.90E+8
VARS+GLOBAL 134 15 86.7 514,680 2.23E+8

PVIEWS 50 12 38 596,669 2.79E+7
SVIEWS 50 12 47.4 596,669 2.79E+7

CPVIEWS 50 12 63.4 514,680 1.18E+8
PVIEWS+GLOBAL 50 12 43.9 596,669 2.79E+7

GECODE-VARS 358 23 71.3 514,680 3.95E+8
GECODE-VARS+GLOBAL 134 15 64.4 514,680 3.67E+8

Table B.27.: NonLinear 50var-10val-28cons-4term-3fact-1s (UNSAT) (S=166.1)

#vars #vars/const time #fails #props

VARS 270 23 51.2 342,311 1.60E+8
VARS+GLOBAL 110 15 46.8 342,311 1.20E+8

PVIEWS 50 12 16.9 346,762 1.18E+7
SVIEWS 50 12 20.4 346,762 1.18E+7

CPVIEWS 50 12 29.4 342,311 5.37E+7
PVIEWS+GLOBAL 50 12 19 346,762 1.18E+7

GECODE-VARS 270 23 39.1 342,311 2.20E+8
GECODE-VARS+GLOBAL 110 15 33.5 342,311 1.88E+8

Table B.28.: NonLinear 50var-5val-20cons-4term-3fact-1s (UNSAT) (S=116.1)

210

B.3. Tables of chapter 9

#vars #vars/const time #fails #props

VARS 440 31 68.6 282,476 2.12E+8
VARS+GLOBAL 362 28 65.3 282,476 1.75E+8

PVIEWS 50 16 27.6 287,138 1.30E+7
SVIEWS 50 16 35.8 287,138 1.30E+7

CPVIEWS 50 16 59.9 282,476 8.67E+7
PVIEWS+GLOBAL 50 16 28 287,138 1.30E+7

GECODE-VARS 440 31 51.7 282,476 2.92E+8
GECODE-VARS+GLOBAL 362 28 47.3 282,476 2.72E+8

Table B.29.: NonLinear 50var-6val-26cons-4term-4fact-1s (UNSAT) (S=129.25)

#vars #vars/const time #fails #props

VARS 420 31 1.34 7,742 4.18E+6
VARS+GLOBAL 348 28 1.27 7,742 3.39E+6

PVIEWS 60 16 0.58 7,742 2.68E+5
SVIEWS 60 16 0.75 7,742 2.68E+5

CPVIEWS 60 16 1.1 7,742 1.59E+6
PVIEWS+GLOBAL 60 16 0.59 7,742 2.68E+5

GECODE-VARS 420 31 1.13 7,743 5.68E+6
GECODE-VARS+GLOBAL 348 28 1.06 7,742 5.47E+6

Table B.30.: NonLinear 60var-4val-24cons-4term-4fact-5s (UNSAT) (S=120)

B.3.3. Social golfers

#vars #vars/const time #fails #props

VARS+GLOBAL 4100 48 0.89 5,035 3.47E+6

PVIEWS+GLOBAL 100 32 0.6 5,035 5.06E+5
SVIEWS+GLOBAL 100 32 0.82 5,035 5.06E+5

CPVIEWS+GLOBAL 100 32 1.07 5,035 4.23E+6

GECODE-VARS+GLOBAL 4100 48 0.89 5,035 3.47E+6

Table B.31.: Social golfers: 5week-5group-4size (S=432.19)

211

Appendix B. Tables

#vars #vars/const time #fails #props

VARS+GLOBAL 3465 27 9.88 33,969 4.25E+7

PVIEWS+GLOBAL 90 18 5.84 33,969 6.24E+6
SVIEWS+GLOBAL 90 18 7.66 33,969 6.24E+6

CPVIEWS+GLOBAL 90 18 9.74 33,969 3.72E+7

GECODE-VARS+GLOBAL 3465 27 5.31 33,969 2.81E+7

Table B.32.: Social golfers: 6week,5group,3size (S=351.62)

#vars #vars/const time #fails #props

VARS+GLOBAL 14602 147 38.2 120,110 1.50E+8

PVIEWS+GLOBAL 196 98 26.2 120,110 1.74E+7
SVIEWS+GLOBAL 196 98 32.4 120,110 1.74E+7

CPVIEWS+GLOBAL 196 147 41.4 120,110 1.40E+8

GECODE-VARS+GLOBAL 14602 147 27.9 120,110 7.05E+7

Table B.33.: Social golfers: 4week,7group,7size (S=1100.48)

B.3.4. Golomb ruler

#vars #vars/const time #fails #props

VARS+GLOBAL 55 55 0.11 1,703 3.77E+5

PVIEWS+GLOBAL 10 10 0.08 1,707 5.07E+4
SVIEWS+GLOBAL 10 10 0.09 1,707 5.07E+4

CPVIEWS+GLOBAL 10 10 0.1 1,703 2.24E+5

GECODE-VARS+GLOBAL 55 55 0.08 1,707 3.36E+5

Table B.34.: Golomb ruler: 10 (S=58.07)

212

B.3. Tables of chapter 9

#vars #vars/const time #fails #props

VARS+GLOBAL 66 66 0.63 7,007 2.12E+6

PVIEWS+GLOBAL 11 11 0.47 7,063 2.41E+5
SVIEWS+GLOBAL 11 11 0.52 7,063 2.41E+5

CPVIEWS+GLOBAL 11 11 0.56 7,007 1.23E+6

GECODE-VARS+GLOBAL 66 66 0.37 7,012 1.59E+6

Table B.35.: Golomb ruler: 11 (S=68.09)

#vars #vars/const time #fails #props

VARS+GLOBAL 78 78 36.58 283,156 1.16E+8

PVIEWS+GLOBAL 12 12 27.6 284,301 1.19E+7
SVIEWS+GLOBAL 12 12 30.7 284,301 1.19E+7

CPVIEWS+GLOBAL 12 12 32.4 283,156 6.73E+7

GECODE-VARS+GLOBAL 78 78 21.4 283,162 1.00E+8

Table B.36.: Golomb ruler: 12 (S=76.91)

B.3.5. Low autocorrelation binary sequences

#vars #vars/const time #fails #props

VARS+GLOBAL 296 296 17.6 214,151 5.15E+7

PVIEWS-PARTIAL-1 65 65 13.8 214,151 2.61E+7
PVIEWS-PARTIAL-2 44 44 10.6 214,151 1.34E+7

PVIEWS+GLOBAL 23 23 6.13 214,151 2.18E+6
SVIEWS+GLOBAL 23 23 14.6 214,151 2.18E+6

CPVIEWS+GLOBAL 23 23 7.51 214,151 8.97E+6

GECODE-VARS+GLOBAL 296 296 12.22 214,151 6.63E+7

Table B.37.: Low autocorrelation binary sequences: 22 (S=22)

213

Appendix B. Tables

#vars #vars/const time #fails #props

VARS+GLOBAL 347 347 65.5 724,517 1.88E+8

PVIEWS-PARTIAL-1 71 71 49.9 724,517 9.11E+7
PVIEWS-PARTIAL-1 48 48 39.1 724,517 4.83E+7

PVIEWS+GLOBAL 25 25 23.4 724,517 7.38E+6
SVIEWS+GLOBAL 25 25 57.2 724,517 7.38E+6

CPVIEWS+GLOBAL 25 25 28.5 724,517 3.24E+7

GECODE-VARS+GLOBAL 347 347 44.73 724,517 2.46E+8

Table B.38.: Low autocorrelation binary sequences: 24 (S=25)

B.3.6. Fixed-length error correcting codes

#vars #vars/const time #fails #props

VARS+GLOBAL 6721 52 17.8 240,475 4.93E+7

PVIEWS+GLOBAL 641 20 9.25 240,475 1.25E+7
SVIEWS+GLOBAL 641 20 12.7 240,475 1.25E+7

CPVIEWS+GLOBAL 641 20 12.9 240,475 4.10E+7

GECODE-VARS+GLOBAL 6721 52 53.5 240,475 2.41E+7

Table B.39.: Fixed-length error correcting codes: 2-20-32-10-hamming (S=640)

#vars #vars/const time #fails #props

VARS+GLOBAL 4201 50 7.96 153,207 2.46E+7

PVIEWS+GLOBAL 526 15 4.56 153,207 7.24E+6
SVIEWS+GLOBAL 526 15 5.89 153,207 7.24E+6

CPVIEWS+GLOBAL 526 15 6.51 153,207 2.09E+7

GECODE-VARS+GLOBAL 4201 50 24.57 153,207 1.84E+7

Table B.40.: Fixed-length error correcting codes: 3-15-35-11-hamming (S=525)

214

B.3. Tables of chapter 9

#vars #vars/const time #fails #props

VARS+GLOBAL 24961 148 35.1 240,475 1.71E+8

PVIEWS+GLOBAL 641 20 9.74 240,475 6.46E+6
SVIEWS+GLOBAL 641 20 23.8 240,475 6.46E+6

CPVIEWS+GLOBAL 641 20 29.4 240,475 2.09E+8

GECODE-VARS+GLOBAL 24961 148 292 240,475 1.48E+8

Table B.41.: Fixed-length error correcting codes: 2-20-32-10-lee (S=640)

#vars #vars/const time #fails #props

VARS+GLOBAL 15226 155 76.6 1,066,081 3.82E+8

PVIEWS+GLOBAL 526 15 34.5 1,283,612 2.86E+7
SVIEWS+GLOBAL 526 15 86.5 1,283,612 2.86E+7

CPVIEWS+GLOBAL 526 15 55.7 1,066,081 3.65E+8

GECODE-VARS+GLOBAL 15226 155 807 1,066,081 3.29E+8

Table B.42.: Fixed-length error correcting codes: 3-15-35-10-lee (S=525)

215

Appendix B. Tables

B.4. Tables of chapter 11

Rank Solver Version Number of
solved

instances

% of VBS Cumulated
CPU time
on solved
instances

Average
CPU time
per solved
instance

Virtual Best Solver (VBS) 660 100% 20689.09 31.35
1 cpHydra k_10 569 86% 31124.32 54.70
2 cpHydra k_40 569 86% 49899.25 87.70
3 casper zao 562 85% 31205.61 55.53
4 Mistral-prime 1.313 560 85% 17929.82 32.02
5 MDG-probe 2008-06-27 560 85% 20146.70 35.98
6 casper zito 555 84% 31629.81 56.99
7 Mistral-option 1.314 554 84% 43364.56 78.28
8 MDG-noprobe 2008-06-27 530 80% 18115.71 34.18
9 choco2_impwdeg 2008-06-26 518 78% 25745.10 49.70

10 Abscon 112v4 ESAC 488 74% 36101.57 73.98
11 Abscon 112v4 AC 486 74% 25860.43 53.21
12 Sugar v1.13+minisat 486 74% 29306.62 60.30
13 Sugar v1.13+picosat 481 73% 26580.81 55.26
14 bpsolver 2008-06-27 459 70% 77397.38 168.62
15 Concrete + CPS4J 2008-05-30 456 69% 91862.96 201.45
16 Concrete + CSP4J - Tabu Engine 2008-05-30 199 30% 36056.08 181.19
17 SAT4J CSP 2008-06-13 174 26% 19628.31 112.81
18 Concrete + CSP4J - WMC Engine 2008-05-30 174 26% 23628.78 135.80

Table B.43.: CPAI’08 competition results (n-ary intension constraints category)

216

B.4. Tables of chapter 11

Rank Solver Version Number of
solved

instances

% of VBS Cumulated
CPU time
on solved
instances

Average
CPU time
per solved
instance

Virtual Best Solver (VBS) 501 100% 12233.86 24.42
1 Sugar v1.13+picosat 424 85% 23575.77 55.60
2 cpHydra k_40 420 84% 80832.22 192.46
3 cpHydra k_10 419 84% 33879.89 80.86
4 Sugar v1.13+minisat 405 81% 30617.59 75.60
5 Mistral-prime 1.313 403 80% 22849.50 56.70
6 casper zito 397 79% 32937.25 82.97
7 casper zao 390 78% 24804.15 63.60
8 Mistral-option 1.314 383 76% 37615.36 98.21
9 choco2_dwdeg 2008-06-26 358 71% 26103.18 72.91

10 MDG-noprobe 2008-06-27 353 70% 16548.16 46.88
11 choco2_impwdeg 2008-06-26 347 69% 28393.77 81.83
12 bpsolver 2008-06-27 347 69% 48728.37 140.43
13 MDG-probe 2008-06-27 337 67% 17668.90 52.43
14 Minion/Tailor 2008-07-04 216 43% 14889.77 68.93
15 Abscon 112v4 AC 184 37% 31394.49 170.62
16 Abscon 112v4 ESAC 173 35% 33623.73 194.36
17 SAT4J CSP 2008-06-13 63 13% 8092.34 128.45

Table B.44.: CPAI’08 competition results (global constraints category)

217

	Introduction
	Constraint reasoning
	This dissertation
	Motivation
	Contributions
	Overview

	Constraint Programming
	Concepts and notation
	Constraint Satisfaction Problems
	Tuples and tuple sets
	Domain approximations
	Domains

	Operational model
	Propagation
	Search

	Summary

	Incremental Propagation
	Architecture of a Constraint Solver
	Propagation kernel
	Propagation loop
	Subscribing propagators
	Event driven propagation
	Signaling fixpoint
	Subsumption
	Scheduling

	State manager
	Algorithms for maintaining state
	Reversible data structures
	Memory pools

	Other components
	Constraint library
	Domain modules
	Interfaces

	Summary

	A Propagation Kernel for Incremental Propagation
	Propagator and variable centered propagation
	Incremental propagation
	Improving propagation with events
	Improving propagation with priorities

	The notify-execute algorithm
	An object-oriented implementation
	Dependency lists
	Performance

	Experiments
	Models
	Benchmarks
	Setup

	Discussion
	Summary

	Incremental Propagation of Set Constraints
	Set constraint solving
	Set domain variables
	Set constraints

	Domain primitives
	Incremental propagation
	Implementation
	Propagator-based deltas
	Variable-based deltas
	Optimizations

	Experiments
	Models
	Problems
	Setup

	Discussion
	Summary

	Efficient Propagation of Arbitrary Decomposable Constraints
	Propagation of Decomposable Constraints
	Decomposable constraints
	Functional composition

	Views
	View-based propagation
	Constraint checkers
	Propagators

	Views over decomposable constraints
	Composition of views
	Checking and propagating decomposable constraints

	Conclusion

	Incomplete View-Based Propagation
	-complete propagators
	View models
	Soundness
	Completeness
	Idempotency
	Efficiency

	Finding stronger models
	Trivially stronger models
	Relaxing the problem
	Computing an upper bound
	Rule databases
	Multiple views (functional composition)
	Multiple views (Cartesian composition)
	Idempotency
	Complexity and optimizations

	Experiments
	Incomplete constraint checkers
	Summary

	Type Parametric Compilation of Box View Models
	Box view models
	View objects
	Typed constraints
	Box view objects

	View object stores
	Subtype polymorphic stores
	Parametric polymorphic stores

	Auxiliary variables
	Compilation
	Subtype polymorphic views
	Parametric polymorphic views
	Auxiliary variables

	Model comparison
	Memory
	Runtime
	Propagation

	Beyond arithmetic expressions
	Casting operator
	Array access operator
	Iterated expressions

	Summary

	Implementation and Experiments
	View models in Logic Programming
	View models in strongly typed programming languages
	Subtype polymorphism
	Parametric polymorphism
	Advantages of subtype polymorphic views

	Experiments
	Models
	Problems
	Setup

	Discussion
	Auxiliary variables Vs Type parametric views
	Type parametric views Vs Subtype polymorphic views
	Caching type parametric views
	Competitiveness

	Summary

	Applications
	On the Integration of Singleton Consistencies and Look-Ahead Heuristics
	Singleton consistencies
	Informed decision making
	Experiments
	Heuristics
	Strategies
	Problems

	Discussion
	Summary

	Overview of the CaSPER* Constraint Solvers
	The third international CSP solver competition
	Propagation
	Predicates
	Global constraints

	Symmetry breaking
	Search
	Heuristics
	Sampling
	SAC
	Restarts

	Experimental evaluation
	Conclusion

	Conclusions
	Summary of main contributions
	Future work

	Bibliography
	Proofs
	Proofs of chapter 6
	Proofs of chapter 7
	Proofs of chapter 8

	Tables
	Tables of chapter 4
	Tables of chapter 5
	Social golfers
	Hamming codes
	Balanced partition
	Metabolic pathways
	Winner determination problem

	Tables of chapter 9
	Systems of linear equations
	Systems of nonlinear equations
	Social golfers
	Golomb ruler
	Low autocorrelation binary sequences
	Fixed-length error correcting codes

	Tables of chapter 11

