
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Dissertação de Mestrado

Mestrado em Engenharia Informática

A Middleware for Service
Oriented Computing in
Dynamic Environments

Danilo Manmohanlal (28068)

Lisboa
(2010)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157622841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Dissertação de Mestrado

A Middleware for Service
Oriented Computing in
Dynamic Environments

Danilo Manmohanlal (28068)

Orientador: Prof. Doutor Herve Paulino

Dissertação apresentada na Faculdade de
Ciências e Tecnologia da Universidade Nova
de Lisboa para a obtenção do Grau de Mestre
em Engenharia Informática.

Lisboa
(2010)

To all my friends

Acknowledgements

Before I begin introducing this thesis, I would like to recognize the people that sup-
ported me during my academic time. First, I thank my advisor Hervé Paulino, he
is responsible for proposing this thesis to me and for the same being completed suc-
cessfully. I want to acknowledge as well his continuous support, encouragement, and
advice throughout my dissertation.

I would also like to thank:

• CITI for the opportunity to work in this project with a scholarship.

• Ricardo Dias and Emanuel Couto for their support in understanding the Polyglot
framework.

• Professor João Lourenço for his support and motivation in the final days of the
project.

• To all professors that helped me during my course since day one.

• Pedro Bernardo and Bruno Teixeira for pulling an all nighter with me in the last
day to deliver the dissertation.

• Last, but not least, it is a pleasure to thank those who made this thesis possi-
ble: Hélio Dolores, André Costa, Pedro Ribeiro, Marcelo Martins, Farnel, Vera
Viegas, Pedro Fernandes, Bruno Félix, Maria Café, Nuno Luís, João Cartaxo, Rui
Domingues, Ana Martins, Vitor Varela, Tiago Borges, João Ferreira, Rui Mourato,
Ricardo Silva, Rui Rosendo, Andreia Tomás, Eduardo Evangelista, Pedro Pereir-
inha, Amável Santo, Bruno Alves, Marisa Fernandes, Rita Pires, Inês Andrade,
Noel Moreira, João Gomes, Ana Maria Pinto, João Ruivo, Luis Miranda, Ângelo
Sarmento, A Outra, (Un)Hapiness, Sara S. ... and everyone that helped me during
my course and project.

vii

Summary

The last years have witnessed a convergence on the SOA paradigm from industrial
processes enterprises (like logistics or manufacturing), using standards for data and
communication. SOA promotes reusability, interoperability and loose-coupling of ap-
plications.

The convergence towards SOA shows that we are leading to an infrastructure com-
posed by several heterogeneous devices, the "Internet of Things". In this infrastructure
everything can be abstracted as a service, such as household appliances, mobile de-
vices, or industrial machinery. It is expected that this trend will continue, and as these
devices interoperate in service composition, new functionalities may be discovered.

Existing approaches for service composition, namely in business processes, are too
bound to BPEL. Several alternatives and extensions of BPEL have been developed, but
they feel more like patches than solutions. In this context SeDeUse [29] model has
been proposed as an exercise to define new language constructs promoting a separa-
tion from service awareness and use. The model also relies on a middleware layer to
support the execution of the application in dynamic environments.

The goal of this dissertation is to instantiate the SeDeUse model in a widely used
programming language in order to provide a framework for its assessment and for
its future development. The work consists on implementing a concrete syntax for the
model, a compilation process, and a middleware layer. The syntax contains the new
language constructs that are integrated in the hosting language. The compilation pro-
cess is responsible for service definition and code generation. Finally, the middleware
acts as a support for the application (generated code) requests.

We have seamlessly integrated SeDeUse in the Java programming language and
developed a functional prototype. To assess the prototype capability, three scenarios
were developed in which we demonstrated that our implementation provides a new,
and simpler, approach for abstracting resources as services.

Keywords: SOA, Service Composition, Abstractions, Services, Internet of Things.

ix

Sumário

Nos últimos anos empresas da indústria como, logística ou produção têm vindo a con-
vergir no uso do paradigma SOA ao usar normas para dados e comunicação. Este
paradigma promove a reutilização, interoperabilidade e acoplamento fraco de apli-
cações.

Esta convergência, por parte de várias empresas, em relação a SOA mostra que es-
tamos a caminhar para uma infraestrutura composta por vários dispositivos heterogé-
neos, a "Internet of Things". Nesta infraestrutura é possível abstrair tudo em serviços
tais como, eletrodomésticos, dispositivos móveis ou máquinas industriais. É esper-
ado que esta tendência continue e que os serviços possam trabalhar em conjunto com
outros numa composição de serviços de modo a fornecer novas funcionalidades.

O trabalho que existe nesta área de composição de serviços, nomeadamente em pro-
cessos de negócio, está muito ligado à tecnologia BPEL. As alternativas ou extensões
que existem, ao BPEL, não se configuram como uma solução plena. Neste contexto foi
proposto o modelo SeDeUse [29] como um exercício de definição de novas construções
que promove uma separação sobre a definição do serviço e o seu uso. O modelo tam-
bém apresenta uma camada intermédia que funciona de suporte à aplicação durante a
sua execução.

O objetivo desta dissertação é instanciar o modelo SeDeUse numa linguagem de
programação de uso geral de modo a obter uma plataforma em que se possa aferir
a sua funcionalidade e servir para desenvolvimento futuro. O trabalho consiste em
implementar uma sintaxe concreta para o modelo, um processo de compilação e uma
camada intermédia. A sintaxe contém as novas construções que são integradas na
linguagem base. O processo de compilação é responsável pela definição do serviço
e geração de código. A camada intermédia funciona como suporte aos pedidos da
aplicação.

O modelo foi integrado de uma forma harmoniosa na linguagem Java e foi de-
senvolvido um protótipo funcional. Para aferir da funcionalidade e expressividade
do protótipo foram desenvolvidos três cenários de teste. Com a realização dos testes

xi

podemos concluir que a implementação deste modelo fornece uma nova abordagem
para o uso de recursos do dia a dia como serviços de uma forma simples e intuitiva.

Palavras-chave: SOA,Composição de Serviços, Abstracções, Serviços, Internet of Things.

xii

Contents

1 Introduction 1
1.1 Problem Statement and Work Goals . 2
1.2 Proposed Solution . 4
1.3 Contributions . 6
1.4 Document Outline . 6

2 Related Work 7
2.1 Service-Oriented Architecture . 7

2.1.1 Service Oriented Computing . 10
2.1.2 Web Services . 10
2.1.3 Service Composition . 13
2.1.4 Challenges . 19

2.2 Using Web Services in Dynamic Environments 19
2.2.1 BPEL in Dynamic Environments 19
2.2.2 Dynamic Binding support in BPEL 20
2.2.3 Dynamic Composition of Web Services 27

2.3 Web Services with attributes . 27
2.3.1 TModels . 28
2.3.2 Semantic Web Services . 28

3 SeDeUse 31
3.1 SeDeUse Model . 31

3.1.1 Service Layers . 32

4 SedJ 39
4.1 Concrete Syntax . 39

4.1.1 Service Awareness Layer Syntax 40
4.1.2 Service Use Layer Syntax . 42

4.2 Compiler . 45
4.2.1 Technologies . 46

xiii

CONTENTS

4.2.2 General Overview . 48
4.2.3 SAL Component Processing . 50
4.2.4 SUL Component Processing . 51

4.3 Middleware . 62
4.3.1 General Overview . 62
4.3.2 Interface Mapping . 64
4.3.3 Service Discovery . 65
4.3.4 Service Bindings . 66
4.3.5 Service Replacement . 67

5 Applications/Case Studies 71
5.1 Setup/Experimental Settings . 71
5.2 A Document Manipulation Service . 72

5.2.1 Scenario Settings . 72
5.2.2 Execution . 74

5.3 Road services . 76
5.3.1 Scenario Settings . 76
5.3.2 Execution . 77

5.4 Airport Services . 78
5.4.1 Scenario Settings . 79
5.4.2 Execution . 80

5.5 Final Remarks . 81

6 Conclusions 83
6.1 Future Work . 84

A Appendix 87
A.1 ServiceAppProperties class . 87
A.2 ServiceLocation class . 89
A.3 Service class . 90
A.4 SedjInfo class . 91
A.5 Cache class . 92
A.6 TestTranslator generated code . 93
A.7 TestConverter generated code . 94
A.8 TestPrinter generated code . 95
A.9 TestHighway generated code . 97
A.10 TestAirport generated code . 99

xiv

List of Figures

1.1 Compilation process . 5
1.2 Middleware process . 5

2.1 The "find-bind-execute" mechanism . 8
2.2 Web Services Architecture . 11
2.3 Orchestration . 14
2.4 Choreography . 16

3.1 The compilation process . 32
3.2 Execution flow for {{ P1 | P2 } ; P3 } | P4 36
3.3 Middleware process . 37

4.1 Circular service use . 45
4.2 Polyglot compilation process . 47
4.3 Compiler module architecture . 49
4.4 Compiler package diagram . 50
4.5 Middleware module architecture . 62
4.6 Middleware package diagram . 63

xv

List of Tables

2.1 Frameworks addressing BPEL limitations 27

3.1 Values and identifiers . 33
3.2 Syntax of declarative components . 33
3.3 Syntax of functional components . 35

4.1 Concrete syntax of SAL components . 40
4.2 Concrete syntax of SUL components . 43

xvii

1
Introduction

Service-Oriented Architecture (SOA) [23] is currently the most popular paradigm for
developing distributed applications over the Web. This architectural style emphasizes
that application functionalities are provided as services, a self-contained and indepen-
dent set of functions available for use through an interface.

SOA promotes reusability, interoperability and the loose-coupling of applications.
For instance, previous legacy systems that worked independently can now be wrapped
as services and made available through interfaces over the network. This feature im-
proves interoperability between heterogeneous applications and technologies. In the
business world SOA had a major impact improving business-to-business (B2B) collab-
oration. Previous business systems were tightly-coupled, any change in one system
would cause changes in several dependent subsystems [5]. B2B applications can now
provide a better offer in services to end-users and also to collaborating enterprises.

Service-Oriented Computing (SOC) [28] is a paradigm that uses services to build
distributed applications in a rapid, low cost and simple composition way, in homoge-
neous and heterogeneous environments. SOC utilizes services to represent autonomous
and platform independent entities, i.e., entities that can be used by any framework.
The promise of SOC is to achieve a world where services can be built and integrated
quickly into a loosely-coupled network of services.

Web Services are the most promising technology that implements the SOC concept,
they are fundamental for developing and executing services distributed through the
web and available through interfaces. This technology revolutionize the world of ser-
vice integration and overcomes previous limitations in application integration such as,

1

1. INTRODUCTION 1.1. Problem Statement and Work Goals

interoperability and firewall problems [17].

Service composition is one the benefits of the SOC technology. It allows the con-
struction of complex compound applications from single services and from different
locations. Business Process Execution Language for Web Services (BPEL) [20] is the
technology community standard for composing business processes. Its main goal is
to provide an environment where business processes are composed in a flexible man-
ner, by the means of orchestration. However, the existing coordination models in SOC,
choreography and orchestration have several limitations of which we emphasize, tar-
get mostly static environments where locations of services are already known. This
does not conform to SOC use in dynamic environments.

Another important aspect is mobile computing in service use. Today almost every
person has a mobile device (mobile phones, pda’s, laptops). The access of services for
mobile devices has increased the range of users that can benefit from their use. For
instance, a user that cannot attend a conference in person, with the use of a mobile
device and Internet he can be present at the reunion [2]. Mobile devices can self adjust
to surrounding environment, in the previous example if the network conditions get
worse then the device can adjust voice and image quality to a lower level but still
maintain connectivity. Mobile phones with GPS support can assist a person in finding
a certain location or place, a pda can be used to schedule meetings, and so on. The
options for service use are endless.

Today with Internet available everywhere and in almost every computational de-
vice many possibilities come up. Services that are deployed across the world can be
used by users located in different locations. For example, a user that intends to print
the contents of a message or of a file that is reading in his mobile device can search the
surrounding network for a printer that matches his preferences. In a reunion, if rele-
vant information is in a mobile device, then it can search for a display in the room and
pass the information for a better visualization. These two examples show that publicly
available resources can be abstracted as services. Every operation performed by users
in mobile devices or any kind of computational device can be abstracted as a service,
we are moving towards an Internet of Things [37]. Therefore this area of describing
abstractions for services and business processes accessible through mobile devices in
dynamic environments is a current research topic.

1.1 Problem Statement and Work Goals

BPEL is a very popular orchestration framework between and within enterprises, its
popularity comes from the ability to develop business processes and define in which

2

1. INTRODUCTION 1.1. Problem Statement and Work Goals

order the services are invoked, making business applications more flexible.
Business processes are nowadays more dynamic and enterprises need to adapt to

changes in the environment. Any modification and improvement in the composition
process requires much time spent by developers in rearranging the composition. BPEL
presents itself as the standard for Web Service composition, it pretends to achieve busi-
ness process integration and define in which order the services are executed, making
business applications more flexible. Although BPEL has much popularity in the busi-
ness world, when working in dynamic environments the framework needs improve-
ment. In BPEL interaction between business process and services or clients are defined
using partner links, that are defined at design time. This is one of BPEL limitations due
to its static logic of composition, other problems are now presented:

Data manipulation: It is not possible to create variables dynamically, they are de-
clared declared at design time and at process level. BPEL cannot tell if two vari-
ables are composed of the same primitive type, this reduces BPEL flexibility [13].

Fixed participants: BPEL assumes that the number of participants in the process is
known at design time and this number cannot be changed, this restrains BPEL
use in dynamic settings [15].

Dynamic binding: In BPEL links from business processes to concrete services are de-
fined at design time, this results in so the service tightly-coupled applications
between providers and consumers. If the partner service address changes the
process fails [12].

Failure recovery: The framework allows to define simple recovery statements but for
more complex recovery plans such as rollbacks, alternative execution models or
service replacement it is not possible [24].

Dynamic environment: Business processes evolve in time and new services that inte-
grate the composition should not require significant changes in the process work-
flow [40].

However, in regard these problems there is some work done, namely BPEL exten-
sions and alternatives have been developed. These approaches that are discussed in
more detail in Subsection 2.2.1.

The current composition schemes used for orchestration and choreography are mostly
designed to work in business processes with a static environment, but today commu-
nications and services are dynamic. Alternatives and extensions to BPEL that were
mentioned feel more like patches than solutions. In this context the SeDeUse [29] was

3

1. INTRODUCTION 1.2. Proposed Solution

proposed as an exercise to define new language constructs and a software layer for
service use in dynamic environments. The main goal for this thesis is to instantiate
the SeDeUse model in a widely used programming language in order to provide a
framework for its assessment and for its future development. The work consists on
implementing a concrete syntax for the model, a compilation process, and a middle-
ware layer.

1.2 Proposed Solution

The focus of this thesis is to develop an initial implementation of the framework. The
SeDeUse model hides from user the SOC characteristics in dynamic environments by
using a middleware layer between the application and services. This layer provides
dynamic discovery, management and acquisition of services.

The model separates functional from non-functional requirements. It uses a two
layer approach based on studied frameworks such as, WS-Binder [10], MASC [12],
and AOP [40]. The two layers are:

• Service Awareness Layer (SAL), defines the kind of services to be used on the
application, i.e., services that are discovered in the network. Also attributes are
defined to constrain the search space.

• Service Use Layer (SUL), defines a simple coordination model for service use

Listing 1.1 presents an example of a SAL definition for a printer. The use of at-
tributes such as, colors, paper and type, will constrain the search to providers that
have black and white printers with the ability to print on letter paper.

This printer kind is identified by the Printer identifier, which can be used in the
SUL layer, as presented in Listing 1.2. In this example MyPrinter is abstracted on both
the doc parameter as well as in a provider of Printer.

Listing 1.1: A printer
P r i n t e r {

co lo rs = " blackandwhi te " ,
paper = " l e t t e r "

}

Listing 1.2: Using a service
use P r i n t e r in MyPr in ter (S t r i n g doc) { P r i n t e r . p r i n t (doc) }
new MyPr in ter (‘ ‘ myDocument ’ ’)

4

1. INTRODUCTION 1.2. Proposed Solution

SeDeUse does not define a complete language, thus it must rely on a hosting lan-
guage. Our work will focus on the instantiation of the model in the Java language to
carry computational work and interact with the middleware. A pre-processing step
is required to translate SAL and SUL definitions into Java code, as illustrated in Fig-
ure 1.1.

Figure 1.1: Compilation process

Note that during the preprocessing stage, a connection to the middleware can be
performed for service discovery purposes. This approach allows for a early and late
binding technique. The generated Java code will be able to interact with the middle-
ware layer, also to be implemented in Java language. It will be a software layer with
the ability to manage service bindings and interaction, providing an interface for the
upper layer applications in order to respond to application requests. The role of the
middleware layer is illustrated in Figure 1.2.

Figure 1.2: Middleware process

5

1. INTRODUCTION 1.3. Contributions

1.3 Contributions

This dissertation provides the following contributions.

Sedj: The concrete instantiation of the SeDeUse model in the Java language, which we
named as Sedj. It expresses the definition of a concrete syntax for the model’s
constructs in Java.

Prototype: The development of an operational prototype that includes:

• SAL/SUL: The translation of SAL and SUL components to the Java lan-
guage.

• Middleware: The implementation of a software layer able to define inter-
faces for the lower and upper layer, generation of proxies for service invo-
cation, communication with service registry, and handle dynamic nature of
the execution environment(ex: service replacement, matching).

• Interface Mapping: The implementation of a mechanism for interface map-
ping between services.

Evaluation: Test and analysis of the Sedj prototype in terms three possible real world
scenarios.

1.4 Document Outline

The remainder of this dissertation is organized has follows. Chapter 2 describes the re-
lated work that most closely relates to the objectives of this thesis. Chapter 3 describes
the SeDeUse model for service oriented computing in dynamic environments. Chapter
4 describes Sedj, the developed implementation of the SeDeUse model. In Chapter 5,
we present the evaluation process of the implemented framework. Finally in Chapter
6 we present the conclusions of this dissertation and a list of tasks to achieve in future
work.

6

2
Related Work

In this chapter we present the work that most closely relates to the scope of this thesis.
Section 2.1 introduces the paradigm of service-oriented architectures (SOA) and an
analysis to the technology that best implements the paradigm, Web Services, followed
by its use in Java technology. Next, we present the notion of service composition,
orchestration and choreography, focusing mainly in the use of BPEL technology in the
business world.

Section 2.2 approaches the use of Web Services in dynamic environments, also the
support and limitations of BPEL in this environment. Then, a comparison is performed
regarding several approaches that try to cover BPEL limitations.

Finally, in Section 2.3 we introduce the notion of Web Services with attributes.
TModels and Semantic Web have been used together to provide semantic description
of Web Services, thus improving its discovery and selection process.

2.1 Service-Oriented Architecture

We begin this section by introducing the concept of Component-Based Architecture
(CBA) [41], an architecture paradigm that has two main objectives: to simplify the
design process of a system/application and to reduce software development time.
This architecture is the result of an improvement on software quality, promoting loose-
coupling and component reusability.

The architecture of CBA is composed by software components and interfaces. The
former represents a system, that have well defined interfaces for communication with

7

2. RELATED WORK 2.1. Service-Oriented Architecture

other software components. The latter defines the role of software components and a
mean of communication with external components. Examples of technologies based on
CBA are: Common Object Request Broker Architecture (CORBA) [9], Java Beans [19],
Java Remote Method Invocation (RMI) [35] and Component Object Model (COM) [8].

In recent years software architecture evolution has been driven by the necessity of
improving business service and interoperability between enterprises. The notion of
service led to the evolution of CBA to Service Oriented Architectures (SOA) [23], an
architectural model that is defined by a set of interacting services.

In this architectural model, a system is defined by a set of interacting services, these
are composed by software components. SOA aims to increase loose-coupling and ser-
vice reusability, and, in that process, promote separation of concerns between interface
and implementation. With this new architectural style, enterprises can develop, inter-
connect and maintain their applications and services on a cost efficient way.

A service-oriented architecture contains the following particular characteristics:

• Services are discoverable through a central registry and dynamically bound;

• Services are independent and modular;

• Services emphasize interoperability;

• Services are loosely-coupled;

• Services have a network-addressable interface;

• Services are location transparent;

• Services are able to be composite;

• SOA are able to recover independently from errors;

Figure 2.1: The "find-bind-execute" mechanism

The SOA architecture is illustrated in Figure 2.1, and is defined by the following six
entities [23]:

8

2. RELATED WORK 2.1. Service-Oriented Architecture

Service Contract/Interface: the contract is a definition on how the service consumer
communicates (request and response from service) with the service provider. It
may also refer to the quality of service (QoS) levels, the non-functional aspects of
the service.

Service Provider: is the service itself, accepts and executes requests from consumers,
the service contact is published, by the provider, in the registry.

Service Registry: it is a service directory where services can be found. The directory
keeps service contracts from service providers and those contracts are accessible
to service consumers.

Service Consumer: can be a client, a service, or an application that needs a service.
The consumer begins by searching services in the registry, then binds to a selected
one and executes it by sending a request according to the contract.

Service Proxy: this entity is not required, but can improve performance by keeping
a cache of remote references and other data information. The proxy is a service
that is supplied by the service provider and is a reference to the remote object,
the consumer executes the remote object functions by calling them on its service
proxy.

Service Lease: a lease is granted to the service consumer for a specific time, during
that time the contract is valid, when the time runs out a new lease needs to be
requested by the consumer. This is necessary when services need to keep state
information about the service provider and consumer.

Although SOA paradigm presents itself as a reliable approach for service integra-
tion, researchers continue working on improving SOA abstraction, that led to Service
Component Architecture (SCA) [3]. The motivation for SCA is to abstract the middle-
ware programming model dependencies from the business logic, reducing complexity
for developers when using middleware APIs. This approach is not relevant for the
work but is worth mentioning. SCA supports several technologies, service interfaces
can be defined using a Web Service Description Language or Java. Service compo-
nents can be built with Enterprise Java Beans, Spring Beans, CORBA components or
with programming languages such as, Java, C++ and PHP. Allows adaptation of exist-
ing applications and data using a SOA abstraction. One important feature of SCA is
the freedom of using the most suitable implementation. The implementation is servant
of the business process and not the opposite.

9

2. RELATED WORK 2.1. Service-Oriented Architecture

2.1.1 Service Oriented Computing

Service Oriented Computing (SOC) [28] is a programming paradigm that uses services
as the main support to develop distributed application in a rapid, low cost and easy
composition way, even in heterogeneous environments.

SOC uses the concept of service to describe an autonomous and platform-independent
entity. Services can be described, published and discovered. Any developed code or a
system component can be reused by converting it to a service and making it available
through the network.

One great advantage of adopting SOC technology is the ability of developing com-
pound applications that previously worked in a isolated way. Enterprise Resource
Planning (ERP), Customer Relationship Management (CRM), Supply Chain Manage-
ment (SCM) and other legacy systems can now be transformed to service architectures,
therefore improving productivity on applications whose information resides on differ-
ent systems.

The promising vision of SOC is to reach a condition where services can cooper-
ate with each other, resulting on less effort for application development, thus creating
flexible processes and agile applications that can help to expand and create more orga-
nizations.

Web Services are the promising technology based on the SOC concept, they provide
the base for developing and executing processes that are distributed over the network
and available through interfaces. Legacy systems and other applications previously
developed are now accessible through the Internet, making Web Services so appealing
nowadays.

2.1.2 Web Services

Web Services are one of the technologies available today that allow the implementation
of SOA. There are several definitions for Web Services, this is taken from the W3C 1

website:

“A Web service is a software system designed to support interoper-
able machine-to-machine interaction over a network. It has an interface
described in a machine-processable format (specifically WSDL). Other sys-
tems interact with the Web service in a manner prescribed by its description
using SOAP messages, typically conveyed using HTTP with an XML seri-
alization in conjunction with other Web-related standards.“

1W3C is a consortium that works to develop standards for the web, www.w3c.org

10

2. RELATED WORK 2.1. Service-Oriented Architecture

In loosely-coupled systems any change in components rarely makes an impact on
the whole system. The use of web technologies allows interoperability between enter-
prises working in different frameworks. Web Services are accessible everywhere with
a connection to the web, they reduce heterogeneity and the process of application inte-
gration is easier. In regard to the six SOA concepts mentioned in the beginning of this
section, Web Services do not support the contract lease.

Web Services try to solve some of the problems found in former technologies that
were used to develop CBA/SOA applications (RMI, CORBA, COM/DCOM), namely:

Interoperability: Each enterprise uses their own message format. By using XML as a
standard, interoperability can be achieved.

Firewall: Former technologies suffer of communication problems, ports not allowed
were used. Web Services use HTTP through port 80.

The problem with firewall permissions can be solved with HTTP tunneling tech-
nique [17], this approach is used to encapsulate network protocols using HTTP proto-
col. The motivation is to overcome some limitations that can appear in locations where
connectivity is limited or restrict, but it has disadvantages. HTTP tunneling use is in-
efficient, significant bandwidth waste on use. This technique has been used on RMI to
overcome firewalls.

Web Services Architecture

Figure 2.2: Web Services Architecture

This architecture is supported by three specifications: WSDL [48] for service de-
scription, UDDI [39] for service discovery and SOAP [36] for transport. It also has

11

2. RELATED WORK 2.1. Service-Oriented Architecture

three roles: service consumer, provider and registry. The service consumer inquires the
registry (UDDI), it evaluates the request and responds with an interface (WSDL), con-
taining information about the service provider location and operations. The consumer
can now interact with service provider through SOAP messages, the architecture is
illustrated on Figure 2.2 2.

Hypertext Transfer Protocol (HTTP) [16] and eXtensible Markup Language (XML) [50]
and are essential in Web Services execution. XML is a markup language designed to
provide a simple message format to categorize data. Due to its simplicity, XML is the
standard message format for Web Services communication. HTTP is an application-
level protocol that allows browsing the Web.

1. Web Service Description Language (WSDL), a XML document describing the
Web Service interface, the service methods and data types.

2. Universal Description Discovery and Integration (UDDI), is a platform-independent
Web Service registry. The consumers use UDDI to search services and a service
interface, WSDL, is provided.

3. Simple Object Access Protocol (SOAP), is a standard communication protocol
based on XML over HTTP.

Interoperability and Internet deployment has highly increased Web Services pop-
ularity. Currently several standards have been defined: security (WS-Security) [43],
messaging (WS-ReliableMessaging) [42], transaction (WS-Transaction) [44], manage-
ment (WS-Management) [49], and composition (WS-BPEL and WS-CDL) [46] [47].

Web Services in Java

There are several Java technology APIs, the following two are amongst the most
used: Java API for XML Web Services (JAX-WS) 3 and Apache Axis2 4.

Java API for XML Web Services (JAX-WS) is a Java technology to develop Web
Services. Currently in version 2.0, it provides a simple and standard model to develop
Web Service applications and clients. The process of developing a Web Service using
JAX-WS involve the following steps:

1. Annotate in the class file the @WebService tag to expose the application as a Web
Service.

2Figure taken from from Business-to-business interactions: issues and enabling technologies, The
VLDB Journal (2003)

3https://jax-ws.dev.java.net/
4http://ws.apache.org/axis2/

12

2. RELATED WORK 2.1. Service-Oriented Architecture

2. Annotate the methods that will be exposed as Web Service operations with @Web-
Method tag.

3. Generate server stubs with wsgen tool and deploy the Web Service.

4. Generate the client stubs with wsimport tool from an executing instance of the
Web Service.

Apache Axis2 is an open source framework for developing Web Services in Java.
The process of developing a Web Service involves the following steps:

1. Generate the WSDL interface from the Java interface with java2wsdl tool.

2. Generate the server stub with wsdl2java tool and edit the code.

3. Deploy the Web Service in Axis2 server.

4. Generate the client stub with wsdl2java tool and create a client for the service.

2.1.3 Service Composition

Web Service composition is the process of developing a Web Service that gathers re-
sources from other services. For example, a flight reservation service can use other
services, a car rental or a hotel accommodation service. The idea of application inte-
gration is not new but previous attempts were too complex, difficult to manage and
had limited success [1].

The use of composition in business processes is very important, Business-to-business
(B2B) interactions at a process level with Web Services requires the definition of a work-
flow, that describes interactions between services. To achieve a scenario where online
applications cooperate with people and organizations efficiently, some characteristics
need to be assured:

• All involved parties must be able to communicate through different platform-
s/frameworks.

• Provide security on personal information and business operations.

• Modularity and interoperability

• Dynamic recomposition of services to face the current/future changes.

13

2. RELATED WORK 2.1. Service-Oriented Architecture

To define business activities and workflow there are two approaches, orchestration
and choreography, the former based on a central entity that controls all the execution
of services and message passing, the latter based on a scheme where all components
involved have their role defined and there is no need of a central manager [28].

A business process is a set of of service invocations and activities that produce a
business result, within or across organizations.

Orchestration 5

Orchestration in Web Services is like the maestro conducting an orchestra, there
is a central coordinator that defines the execution of the involved Web Services. Web
Services in that process have no knowledge of other services, only the coordinator has
that information.

Figure 2.3: Orchestration

Business Process Execution Languages for Web Services (BPEL 6) [20], proposed
on a joint effort from IBM and Microsoft. BPEL is a language for specifying business
processes through service composition. BPEL uses partner link types to describe in-
teraction between a BPEL process and involved parties (Web Services and client). This
framework main goal is to become the standard in Web Services automation.

Inside organizations BPEL is used to achieve the integration of systems that previ-
ously worked isolated. Between organizations BPEL allows a better and easier service
integration with other partners. To better understand the orchestration concept a work-
flow is illustrated in Figure 2.3. The central coordinator is the process (can be another
Web Service) responsible for controlling the orchestration, it defines which services
and operations are executed. Web Services involved in the composition are not aware
of others and do not know that belong in a composition, only the coordinator has that

5This section and the next are based on [20]
6Also known as BPEL4WS or WSBPEL

14

2. RELATED WORK 2.1. Service-Oriented Architecture

information.

Below are some of the most important features of BPEL:

• Describe the logic of business processes through composition of services.

• Handle synchronous and asynchronous operations invocations on services, and
manage callbacks that occur at later times.

• Invoke service operations in sequence or parallel.

• Maintain multiple long-running transactional activities, which are also interrupt-
ible.

• Structure business processes into several scopes.

Choreography

Choreography in Web Services, unlike orchestration, does not have a coordinator.
Each involved web service knows when and with whom execute their operations. It
is a collaborative effort that emphasizes the public message exchange between public
business processes.

Web Service Choreography Description Language (WS-CDL) [47] is a language that
describes the interaction between the participants in collaborative applications. With
this approach a global vision of the business process is achieved. In this language it is
possible to describe sets of rules that define how services work together. WS-CDL spec-
ifications are useful to verify message exchange execution in runtime between business
partners.

The following sentence [47] explains in a formal way the Web Services choreogra-
phy specification:

"The Web Services Choreography specification is aimed at the composi-
tion of interoperable collaborations between any type of party regardless of
the supporting platform or programming model used by the implementa-
tion of the hosting environment."

WS-CDL authors see it as a complementary language to BPEL, as it concentrates
on the flow and behavior of a specific business process (internal behavior), WS-CDL
defines the message flow of involved parties. The choreography concept is illustrated
in Figure 2.4. In this situation there is no coordinator, every service involved is aware of
the composition and knows when to interact and what operations need to be executed.

15

2. RELATED WORK 2.1. Service-Oriented Architecture

Figure 2.4: Choreography

BPEL, as seen, has support for orchestration (executable business process) but also
supports choreography through abstract business processes. Executable business pro-
cesses combine existing services, define their activities and input/output messages.
This process that is created diminishes the gap between developed code and business
process specification. Abstract business processes only describe the public message
exchange between involved parties.

Although BPEL relies on a central manager to coordinate the composition is more
flexible than choreography: the entity responsible for the process execution is always
known, Web Services can be added even if they are not aware that belong to a business
process and alternative scenarios can be defined as support for any failure. evolution
and changes.

Web Service Composition Frameworks

Nowadays Web Services composition and interoperability are very important, not
only at research level but also in enterprise collaboration. Several frameworks have
been developed trying to offer the best approach in associating services from differ-
ent locations. Here are some of the developed frameworks that support Web Services
composition:

BPELJ [6], is the combination of BPEL with Java to create composition of business
process applications. BPELJ allows developers to define portions of Java code, Java
snippets, in BPEL process definitions. By integrating Java code in BPEL processes it
is possible to execute intermediate actions such as, calculate values for flow control,
build XML documents, execute other code without creating another Web Service.

16

2. RELATED WORK 2.1. Service-Oriented Architecture

BPELJ defines other type of partner links, Java partner links, making it possible to
define Java interfaces instead of only WSDL. This new type of partner links allows a
BPEL process to use Java components with Web Services, having the ability of passing
serializable Java objects as operation parameter or return value.

JOpera [32], is a visual composition language for service composition that provides
tools for modeling, execution, monitoring and debugging of Web Services in work-
flows. Services are composed in processes, they are defined in a visual notation based
in data and control flow graphs. A control flow graph defines the order of task execu-
tion. A data flow graph defines from where the information comes to each service.

JOpera has a threading model that decouples process instances from the threads
that execute them. This decision in the JOpera engine enables the architecture to move
from a centralized to a distributed configuration. To support this process execution is
divided in two components: navigator and dispatcher. The navigator runs processes,
it uses a graph traversal algorithm to set the tasks for execution on the task queue.
The dispatcher retrieves them from the task queue and executes the Web Service in-
vocation, after the invocation is complete the result is put into the event queue. The
navigator collects the results and updates the process.

The description of service composition is kept independent from the protocols used
to invoke services. This abstraction improves JOpera’s scope beyond composition of
coarse-grained Web Services, allowing inclusion of Java modules in the composition
without needing to define them as new Web Services [30].

The composition model is incrementally verified for consistency, for instance, data
flow connections of linking services. Also to ensure efficiency on execution, the lan-
guage is compiled to Java and once more compiled to bytecode, the result is loaded
into the kernel of JOpera.

JOpera is a tool for Eclipse IDE, started at Information and Communication Sys-
tems Research Group at the Department of Computer Science of ETH Zurich and now
actively developed by the Faculty of Informatics of the University of Lugano, Switzer-
land.

SELF-SERV [4], is a language for Web Service composition based on statecharts. In
this framework there are three types of services: elementary, composite and communities.
Elementary service is an application accessible through the Web. A composite service
is a composition of Web Services. A service community provides means to compose
a large number of Web Services in a flexible way, they offer description of services
without mentioning any provider. A community works like a container of substitute

17

2. RELATED WORK 2.1. Service-Oriented Architecture

services and, during runtime, is responsible selecting the service that best fits a user
profile in that situation.

The orchestration model for SELF-SERV is peer-to-peer and the responsibility is
distributed by coordinators attached to each composition state. Coordinators are soft-
ware components responsible for initiating, controlling and monitoring the attributed
state, and collaborate with other coordinators. In runtime the knowledge required by
the coordinators is extracted from the statechart, containing preconditions and post-
processing actions. The composition and execution environment is implemented in
Java and service communication is done with XML documents.

ServiceCom [26], is a Java based tool for modular Web Service composition. This
tool is based on service components, they are a packaging mechanism for developing
distributed applications using already published Web Services. This mechanism is
supported by Service Composition Specification Language (SCSL). This language uses
constructs such as activity, binding, condition and composition type to define the Web
Service composition. For instance, the binding construct is used to link the activity
construct with service providers, and can define properties to be used for searching
service providers at runtime.

ServiceCom uses a four step approach to service composition: description, plan-
ning, building, invocation. The description phase allows the user to specify a compo-
sition by defining SCSL constructs in a visual development environment. In the plan-
ning phase ServiceCom provides a library with Web Service providers to help the user
define a service provider for an activity in the composition. The library contains ser-
vice providers that are locally known, and services can be added and removed of the li-
brary. If the user does not specify a service provider, then at runtime a service provider
is selected automatically using the properties defined in the binding construct. The
building phase is responsible for linking the composition specification and the actual
invocation of services. The following files are generated:

1. For each activity in the composition Java source code is generated.

2. Java source code for the composition.

3. A WSDL definition for the composition

Finally the Invocation phase is the execution of the composition.

18

2. RELATED WORK 2.2. Using Web Services in Dynamic Environments

2.1.4 Challenges

The most important challenge in service composition is to achieve the automatic com-
position of business processes, all in a reduced cost, efficiently, reliable, secure and dy-
namic way. There are no business processes able to react to the evolution and changes.
All service interactions are known from the beginning thus being hard to define ser-
vice composition that function in a proper way in all situations, especially dynamic
environments.

2.2 Using Web Services in Dynamic Environments

Nowadays Web Services are being used in dynamic contexts, new services are cre-
ated, others stop working, partners and business rules change. All this motivates for a
composition progressing from static to a dynamic and more flexible way. This section
introduces the limitations of BPEL, specially in dynamic environments, and several
extensions that were developed to overcome these limitations.

2.2.1 BPEL in Dynamic Environments

In BPEL, partner links describe links to Web Services or to clients that invoke BPEL
processes, but these links are defined at design time, precluding BPEL use in dynamic
environments due to its static logic of composition [20]. Next some limitations of BPEL
are presented:

Data manipulation: In BPEL it is not possible to create variables dynamically, each
used variable must be declared at design time and at process level. BPEL cannot
recognize if two variable are composed of the same primitive type, this reduces
BPEL flexibility [13].

Fixed participants: BPEL assumes that the number of participants in the process is
known at design time and cannot be modified during runtime. This limits BPEL
use on dynamic environments where participants enter and leave at any time [15].

Dynamic binding: In BPEL the service requester must know the correct endpoint ad-
dress of a partner service, this results in tightly-coupled systems between ser-
vice providers and requesters. In a situation where the partner service address
changes the process fails [12].

Failure recovery: BPEL presents two statements for handling faults: catch and
catchAll. The catch handles faults defined in WSDL. The catchAll handles

19

2. RELATED WORK 2.2. Using Web Services in Dynamic Environments

undefined faults. When a Web Service fails and a process tries to invoke that
service the fault is catched with catchAll statement, but since the fault type
cannot be determined this limits BPEL QoS [13]

It is not possible for the developers/designers to have an absolute domain knowl-
edge and account all recovery strategies for BPEL processes. BPEL statements for
recovery are simple and do not allow to define complex recovery plans, for in-
stance, rollbacks, alternative execution models or Web Service replacement [24].

Dynamic environment: BPEL is not designed for dynamic environments, businesses
evolve in time and new services need to be integrated quickly. Addition of new
services should not require significant work in changing the process workflow, a
substitute service can have a different interface so a mapping is needed [40].

To address these limitations of BPEL on Web Services composition, dynamic bind-
ing7 technique is used.

Actions that are performed/used several times are associated with a name or sym-
bol, this is known as binding. There are two types of binding, static and dynamic.
Static binding is when the binding of a call to a method is performed during com-
pilation time and dynamic binding is the process of binding one call to a method in
runtime [11]. The latter is used in situations where there is more than one method for
a call, preventing the developer from writing conditional statements. Although this
technique slows the application there are some advantages:

• Polymorphism, more than one method can be defined for one operation, the
correct method is selected at runtime.

• Extensible, new classes can be created to receive messages without modifying or
recompiling the class where the message came from.

• Complexity, reduces complexity by eliminating switch instructions and substi-
tuting them with functions calls.

2.2.2 Dynamic Binding support in BPEL

Although BPEL has limitations regarding dynamic binding there are some approaches
developed to overcome its limitations in dynamic binding, namely WS-Addressing [45],
a standard providing a mechanism, endpoint reference, that represents a Web Service
endpoint and enables the user to select services from available services or specify new

7Sometimes called Late binding

20

2. RELATED WORK 2.2. Using Web Services in Dynamic Environments

services at runtime [1]. However this approach does not solve all problems, interven-
ing services are still defined at design time. To overcome some BPEL limitations some
extensions have been developed and are now presented.

Using proxies

Proxy is a technique used by several frameworks to support dynamic binding in
Web Services, it has the responsibility of monitoring service behavior so it can detect
any failure and reconfigure in an autonomous way. The proxy concept is used on
MASC [12], WS-Binder [10] and TRAP/BPEL [14], all extensions to BPEL.

Manageable and Adaptable Service Compositions (MASC) is a framework for Web
Service composition in dynamic environments, providing policy-based mechanisms to
achieve a more tolerant composition. To achieve this goal, business process interactions
are made to a dynamic proxy, that is responsible for monitoring failures and service
replacement.

The policy mechanism in MASC is called WS-Policy4MASC and is an extension to
WS-Policy. WS-Policy4MASC is used to define policies for: finding the most suitable
endpoint for a given interaction, and to control binding at runtime. The policies used
for service selection specify service preferences such as, performance, reliability and
cost. These policies are attached to process activities allowing flexible service selection
based on the instance executing the process. At runtime if a service replacement is
executed there are dependencies that need to ensured between the process activity
and service. MASC defines a parameter for this type of situations, ServiceBindingScope.
By assigning the parameter to SingleInvocation then a different service provider
can be used for each process operation, this is only possible if operations are different
at every execution of the process, for example, in a web search.

MASC introduces the concept of Virtual Endpoint (VEP), where several equivalent
services act like a recovery block, configured to provide backup when necessary. VEP
supports MASC middleware in dynamic binding, for each service added to a VEP
block it is necessary to define a protocol for message exchange between the proxy and
service. The proxy is responsible for heterogeneity using conversion rules that describe
how input/output messages from equivalent services need to be transformed.

MASC middleware does not use UDDI registry so the authors developed their own
data model for managing and searching metadata on registered services.

WS-Binder is a Web Service composition framework with support for dynamic

21

2. RELATED WORK 2.2. Using Web Services in Dynamic Environments

binding, the framework operates at two levels of composition: before and during its
execution.

In pre-execution binding, the framework is responsible for setting the bindings that
best satisfy the QoS of the composition. WS-Binder accepts a BPEL workflow as input
and a set of properties, the workflow goes through a series of steps, service discovery,
selection, binding and proxy instantiation, the last is responsible for initiating the ser-
vice and all interactions go through it. In a failure situation or when bindings are not
defined a slice of the workflow is selected for rebinding, the discovery and selection
process is executed again. After rebinding is complete the control is returned to the
proxy.

At runtime after a service is replaced, the invocations performed by the proxy may
need conversion because the new service may represent the same operation differently,
so the proxy call an adapter that applies a protocol to resolve mapping differences. To
achieve this, services need a richer interface than WSDL. The framework introduces the
concept of facets that describe specific properties of the service, for instance, a behav-
ioral facet describes the behavior of a service in terms of a state machine.The mapping
is done by components known as adapters, they apply the protocol looking for concepts
that match.

WS-Binder is being developed within the SeCSE (Service-Centric System Engineer-
ing) European IP Project, and includes components for service specification, discovery,
composition, publication, testing and monitoring.

TRAP/BPEL is a framework for Web Service composition supporting dynamic adap-
tation, providing BPEL with autonomic behavior by using a generic proxy. BPEL pro-
cesses are adapted to gain self-management behavior, hooks are incorporated in the
process, they catch and forward the interaction to the generic proxy. Hooks are nor-
mally included in invoke operations.

Specific proxies have an interface that is an aggregation of all service interfaces that
are being monitored. This can be troublesome if a high number of services are be-
ing used. TRAP/BPEL introduces a generic proxy that has a standard interface for all
monitored services invoked by adapted BPEL processes. So the process of replacing
a service invocation to a proxy invocation involves identifying all the messages nec-
essary to create the input message for the proxy, contents are serialized in the input
variable, and it is also necessary to create a sequence of activities that deserialize the
output message from the proxy.

The proxy upon receiving an invocation checks previous loaded policies to find a
match for that invocation. If a policy is found then the proxy can invoke the service

22

2. RELATED WORK 2.2. Using Web Services in Dynamic Environments

recommended in the policy, find a new service, retry service invocation, if no policy
is found then default behavior is to search the registry for a service that has the same
port type.

Using Aspects

Aspect-Oriented Programming [7] is a paradigm that increases modularity of cross-
cutting concerns 8. Concerns like auditing and logging are very important in business
processes, they are spread in several process definitions leading to code duplication.
This way applications are more complex and difficult to manage.

To address this AOP introduced a new modularity unit, the aspect, composed by
three features: join points, pointcuts and advices. A join point is a point defined in the
program execution, including method call, field access, exception handler. A pointcut
is a element that extracts the context of join points, it specifies where the aspect is
integrated. An advice is auxiliary code that is executed when the specified join point
is reached, this code can be set for execution before, after or instead of the original join
point.

Aspect-Oriented for BPEL (AO4BPEL) is an aspect-oriented extension for BPEL to
make Web Service composition more flexible and modular. AO4BPEL enables dynamic
integration of aspects in processes at runtime, and they can be activated and deac-
tivated during execution allowing the application to adapt its behavior dynamically.
Dynamic binding in AO4BPEL is achieved by introducing, at runtime, aspects with
new functionalities to a composition. For example, a scenario where there is a compo-
sition of a flight travel with hotel accommodation service and the developer defines an
aspect with car rental service. The developer submits to BPEL engine the WSDL and
port address of the new Web Service and the aspect is registered. This new aspect can
be activated dynamically while the process is running. If business rules change in the
future the aspect can be deactivated.

The focus of AO4BPEL is mainly Web Services composition and not management.
Web Service Management Layer (WSML) [40] is a management layer that handles man-
agement problems. This framework is an alternative to BPEL.

The management layer is placed between the application and Web Services and
allows dynamic selection and integration of services, service management on the client
side and supports rules that restrain selection, integration and composition. WSML
functionality is implemented by JAsCo, a dynamic aspect-oriented language with the
following properties:

8Crosscutting concerns are concerns that cross several entities in a business process.

23

2. RELATED WORK 2.2. Using Web Services in Dynamic Environments

• Aspects are highly reusable, they are described independently from context.

• JAsCo allows easy application and removal of aspects during runtime.

• JAsCo supports specification for aspect combinations.

The JAsCo language has two concepts that are important: aspect beans and connec-
tors. An aspect bean is an extension of Java Bean component that specifies crosscutting
behavior. Connectors are responsible for specifying where the behavior is deployed.

WSML uses an Abstract Service Interface (ASI) between concrete services and ap-
plication to hide syntactic differences between semantically equivalent services. The
application makes requests to ASI, and WSML is responsible for making the transfor-
mation to a concrete service. To achieve this it is necessary to describe the mapping
of service or service composition into ASI, these descriptions can be provided by the
service owner or specified by the developer. Also it is necessary to describe the map-
ping between the ASI and concrete service interfaces. Both mappings are done with
sequence diagrams.

To realize this abstraction, JAsCo defines aspects that are responsible for redirection
of generic requests to services. This aspect catches requests from the application and
replaces them with a concrete Web Service invocation. Connectors are responsible for
deploying the redirection aspect, and they contain the mapping information of generic
requests from the application and also how to make that request to a specific service.
So there will be as many connectors as different requests from the application.

Connectors are created dynamically providing integration of new services dynam-
ically. This feature allows new services to be integrated by defining a new connector
at runtime that maps the new service. In the WSML architecture the Selection Mod-
ule is responsible for selecting the correct connector. This module works together with
Monitoring Module that searches services in the UDDI registry. For example, when
a service is not available or takes too much time to respond, the Selection Module can
replace the service by deactivating its connector and activating another connector.

Responding to Failure Recovery

Nowadays it is very important to increase self management behavior in Web Ser-
vice compositions, services today work in dynamic environments and their becomes
essential that services can configure autonomously.

SH-BPEL [24] is a plugin for BPEL engine that promotes self healing. The architec-
ture is composed by standard BPEL engine and a Process Manager, the main module

24

2. RELATED WORK 2.2. Using Web Services in Dynamic Environments

is responsible for executing management actions and is itself composed by other mod-
ules, Message Monitor and Management Engine. For example, when a service fails
the Message Monitor sends a message to the Management Engine, this module works
in two modes: active or passive. In passive mode the module ignores the message and
waits for an external action. In the active mode the management action attached to the
message is executed. Here are some of the supported modules for SH-BPEL:

• Web Service Invoker: dynamic invocation of Web Services, the invocation is
done independently from WSDL.

• Substitution Manager: functionalities for Web Service replacement.

• Web Service Retriever: operations that enable dynamic Web Service search.

• Mediation Service: when a Web Service is replaced the WSDL interface may
be different and so the communication with BPEL is not possible. To minimize
this problem the Mediation Service transforms the exchanged messages between
services and BPEL.

Using Reflection

JOpera [31] uses a visual composition language to define service composition, its
framework provides a development environment with the following features: con-
ditional execution, failure handling, type-safety, nesting, recursion, late binding with
reflection.

Reflection is the ability of a system to represent and modify by itself internal infor-
mation. JOpera uses reflection to access metadata information about the static process
structure, its execution state and runtime environment. These characteristics are avail-
able through system parameters and system services. With reflection the developer has
access to bindings and registry services during runtime and is able to control them
through the composition language making the process more flexible.

Each task defined in JOpera’s visual editor for composition has associated a set
of system parameters and properties, these contain metadata about process execution
and are updated by the runtime environment. System services expose information of
JOpera runtime environment and allow interaction with the process. This information
includes: program library API, process control API and resource management API.
The process control API is used for controlling process execution from the process it-
self, allowing for instance, to cancel a process execution after reaching a condition, to
suspend automatically a process when coming to a stage.

25

2. RELATED WORK 2.2. Using Web Services in Dynamic Environments

In a scenario where Web Services from different organizations are used in a com-
position some problems may appear, organizations may represent data differently. So
to overcome this limitation it is necessary to adapt messages from different services.
JOpera uses Stylesheet Transformations (XSLT) or XML Path query language.

Using groups

To overcome BPEL limitations on the fixed number of participants Sliver [15] mid-
dleware has been developed. This framework is an extension to BPEL with the goal
for deployment in mobile devices such as, mobile phones, pda’s, laptops. Sliver only
depends on two lightweight external libraries increasing its use by a wide range of de-
vices, and supports several communication protocols, from HTTP to Bluetooth. To find
services Sliver uses Bluetooth service discovery mechanism. As new service providers
are discovered then BPEL can update its service bindings.

In regard the problem of fixed participants, the Sliver middleware implements ex-
tensions for partner groups and partner link reuse. A partner group is a unbounded list
of partner links, they can be assigned to any number of service endpoints at the same
time while partner links do not, and can be controlled by the process at runtime. With
this it is not necessary to define the number of participants at design time, initially
partner groups have no connection to endpoints, then with add and remove BPEL
activities it is possible to add an endpoint, from a partner link, to a partner group.

In Sliver middleware the BPEL Server Layer is responsible for mapping incoming
partner links to the kinds of messages that they accept as input and map outgoing
partner links to concrete service endpoints. The applications that use Sliver can define
policies to use already defined mappings or runtime mapping of partner links.

In the studied frameworks dynamic binding and failure recovery definitions may
appear similar, dynamic binding refers to the ability of runtime service discovery, and
failure recovery is related to a Web Service replacement, substitute services may al-
ready be defined before runtime. To summarize, all the frameworks presented in
this section are shown in Table 2.1 in regard to BPEL limitations presented on Sub-
section 2.2.1. Not all limitations presented are in the table, only the ones encountered
on the studied frameworks.

26

2. RELATED WORK 2.3. Web Services with attributes

Fixed
participants

Failure
recovery

Dynamic
binding

Dynamic
environ-

ments

BPEL based

MASC No Yes Yes Yes Yes

WS-Binder No Yes Yes Yes Yes

TRAP/BPEL No Yes Yes No Yes

AO4BPEL No Yes No No Yes

WSML No Yes Yes Yes No

SH-BPEL No Yes Yes Yes Yes

JOpera No Yes Yes Yes No

Sliver Yes Yes Yes Yes Yes

Table 2.1: Frameworks addressing BPEL limitations

2.2.3 Dynamic Composition of Web Services

Business services are frequently changing new ideas are always coming, research in
this topic is still emergent there is a need to make Web Services composition suitable in
dynamic environments. Dynamic composition of Web Services can detect service fail-
ures and present alternatives to the user, allow the user to search services that satisfy
functional and non-functional requirements at runtime, ensure more flexibility. The
ultimate goal is a state where everything is autonomous, systems developed with the
ability of self-management, self-configuration, self-healing and self-protection.

To achieve this state of the art new approaches have been developed but they are
mainly extensions to BPEL, so the problem needs to be addressed from another per-
spective.

2.3 Web Services with attributes

The UDDI registry shows wide support from some of the software companies that use
the notion os service property on Web Service discovery and use, it has become the
standard for storing interface descriptions of Web Services. In UDDI services are de-
scribed in XML with physical attributes such as name, address and provided services.
However, XML is a machine-readable language but not a machine-understandable lan-
guage, so UDDI does not support semantic information on Web Services. For example,
two different syntactic queries to UDDI may represent semantically equivalent ser-
vices. Also UDDI does not support discovery by service capabilities and other proper-
ties, thus inhibits to explore its abilities [34].

27

2. RELATED WORK 2.3. Web Services with attributes

The use of semantic information together with UDDI registry to provide a better
Web Service description is a work in progress. To overcome this limitation and enhance
UDDI use, some work has been developed: tModels [38] and Web Ontology Language
for Web Services (OWL-S) [27].

2.3.1 TModels

A Web Service to be registered in UDDI must implement an interface, and it has to be
previously registered in UDDI. For example, airlines may work together to define an
interface and publish it in UDDI for querying ticket prices on a specific date, time and
departure/arrival cities. This situation presents several Web Service implementations,
one for each airline, but only one interface in UDDI. This interface is a tModel, an
important data structure in UDDI registry that can be used to represent interfaces,
classification information and can be used as namespaces to give more meaning in
UDDI. The tModel is composed by:

• name: a Web Service name.

• description: a description of the service.

• overviewURL: a link pointing to the document that describes the Web Service,
for example, the WSDL interface.

• categoryBag: used to categorize information, helps to determine which category
the business belongs to. The categoryBag element can hold several keyedRefer-
ences elements.

• Universally Unique Identifier (UUID): this is generated automatically and used
to reference the tModel.

To register the developed Web Service in UDDI it is necessary to create a data
model, this document contains the following elements: businessEntity, businessService
and bindingTemplate. The businessService describes a service and has a bindingTem-
plate element that points to the tModel. The businessEntity provides a Web Service that
implements the interface (tModel) referenced by bindingTemplate.

2.3.2 Semantic Web Services

Web Services and Semantic Web are two areas of the World Wide Web that had great
evolution in past years, the intersection of these two promotes semantic in Web Ser-
vices [22]. Semantic Web focuses on having software agents that can use resources of

28

2. RELATED WORK 2.3. Web Services with attributes

the web intelligently, making the web understand and satisfy requests from people or
other entities. The goal of using together these two technologies is to achieve a better
service description, leading to a greater automation in service composition, selection
and invocation.

29

3
SeDeUse

Nowadays one of the top reasons in distributed systems research is the interaction of
networks composed of mobile and pervasive devices with the Internet, this is a priority
in service-based applications available in the business market.

Services mainly abstract business processes but they can also abstract common pub-
licly available resources, such as a network printers, sensors, displays, and any type of
resource that can be made available through the network. However the state-of-the-
art in this field field targets mainly business-to-business interaction as service directo-
ries store business specific interfaces instead of general abstract interfaces. Besides the
existing coordination models, such as service orchestration and choreography, were
designed to operate generally with previously known locations and tightly coupled
resource awareness and usage.

Several solutions have been proposed, discussed in Chapter 2, to overcome these
limitations but, a new approach is required for this problem. SeDeUse presents itself
as a new approach, thinking the problem from scratch, were resource awareness can
be abstracted from its use. SeDeUse [29] is an initial proposal for a model that tries to
overcome the mentioned limitations, the model is described thoroughly in this chapter.

3.1 SeDeUse Model

SeDeUse features a two layer approach to separate the service use from awareness and
a intermediate layer between the application and services. The latter provides dynamic
discovery, management and acquisition of services. The two layers are:

31

3. SEDEUSE 3.1. SeDeUse Model

• Service Awareness Layer (SAL), defines the kind of services to be used on the ap-
plication, i.e., services that are discovered in the network. Also service attributes
are defined to constrain the search space.

• Service Use Layer (SUL), defines a simple coordination model for service use.

Figure 3.1: The compilation process

This separation of service use and awareness was designed with the service end-
user in mind and the model offers intuitive abstractions for its use, with this model the
user can define a simple coordination language for the functional components.

The SeDeUse model does not define by itself a complete language so this model
will be mapped into a hosting language and a preprocessing stage is required to gen-
erate code of the hosting language, as illustrated in Figure 3.1. This intermediate step
is responsible for processing SAL and SUL definitions and generate code that will in-
teract with the middleware for service discovery, binding, reconfiguration and failure
recovery. The middleware also supports migration of computations, devices with low
computational resources, mobile phones, pda’s, can send their computation to more
capable devices.

3.1.1 Service Layers

The syntax for service awareness and service use components is based on identifiers
and values defined in Table 3.1. A sequence of zero or more elements of a given cate-
gory γ by γ̃, an empty sequence by ε and an optional symbol or production by the []
notation.

32

3. SEDEUSE 3.1. SeDeUse Model

s, r Service identifier
o Service operation identifier
a Variable identifier
t Type identifiers of the hosting language
x Exception identifiers of the hosting language
v Values of the hosting language

Table 3.1: Values and identifiers

Service Awareness Layer

This layer defines a syntax for service declaration and definition of attributes that is
shown in table 3.2, the syntax is composed by a sequence of service kind declarations.
A kind is service interface identifier and a set of specific properties. The identifier
defines the key for discovering the service in available repositories, and attributes will
restrict the search space. It is also possible to declare restrictions as hard (= operator),
soft (in operator) or as preferences using pref keyword.

D ::= D D Sequence of declarations

| s { Ã } Service kind declaration

| s { Ã } alias r Service kind declaration with alias
A ::= [pref] a = v Attribute constraint

| [pref] a in { v1, v2, . . . , vn } Attribute soft constraint

Table 3.2: Syntax of declarative components

Listing 3.1 defines a possible SAL representation for a printer service. The colors,
paper and type attributes limit the search space imposing restrictions on service at-
tributes.

Listing 3.1: A printer
P r i n t e r {

co lo rs = " blackandwhi te " ,
paper = " l e t t e r "
type = " l ase r "

}

33

3. SEDEUSE 3.1. SeDeUse Model

Listing 3.2 defines a possible document converter service, where the input attribute
can be “doc” or “docx” and the output is a document in “pdf” format.

Listing 3.2: Document converter
Convert {

i npu t in { " doc " , " docx " } ,
ou tput = " pdf "

}

Several definitions of a service kind may exist so to avoid name conflicts the syntax
resorts to aliases. These names are service identifiers and can be used in SAL and SUL
definitions. Listing 3.3 presents the use of aliases to distinguish between different kinds
of services, the ColorPrinter defines a Printer kind with designated attributes. Color-
LaserPrinter constrains the ColorPrinter definition by setting the type attribute to be
laser or ink jet.

Listing 3.3: More printer type definitions
P r i n t e r {

co lo rs = " co l o r " ,
paper = " a4 "

} a l ias C o l o r P r i n t e r

C o l o r P r i n t e r {
type in { " l a se r " , " i nk j e t " }

} a l ias Co lo rLase rPr in te r

These service declarations and attributes do not define concrete services, they de-
fine service kinds. The use of SAL together with SUL definitions will produce different
results, according to each SUL definition.

Service Usage Layer

SUL provides programming abstractions and a coordination model in service use to
manage computations in network services. The syntax for SUL is described in Table 3.3

Using Services: The use construct abstracts the computation into a set of parame-
ters, similar to a class definition in Object-Oriented languages. To create instances of
such abstraction the new construct is used, it is responsible for binding the defined pa-
rameters to values provided as arguments. Service operations are invoked as methods
on objects.

The innovation in this constructs is that the use keyword allows code to be repre-
sented as service identifiers and these identifiers are bound in a dynamic and trans-
parent way every time an instance is created. After the identifiers are connected to
instances it is possible to invoke operations through them.

34

3. SEDEUSE 3.1. SeDeUse Model

P ::= uses S̃ in c(ã) P X̃ Service use abstraction
| P | P Parallel composition
| P ; P Sequential composition
| { P } Grouping
| [a =] E Assignment
| retry in e Restart a transaction

| ĩ Hosting language process
E ::= new c(ẽ) An instance of an use abstraction

| s.o(Ẽ) | s[e].o(Ẽ) Method invocation
| e Hosting language expression

S ::= [volatile] e s | [volatile] all s Service allocation
X ::= catch (x a) { P } Exception handling

Table 3.3: Syntax of functional components

Listing 3.4: Using a service
use P r i n t e r in MyPr in ter (S t r i n g doc) {

P r i n t e r . p r i n t (doc)
}
new MyPr in ter (‘ ‘ myDocument ’ ’)

Listing 3.4 presents an example of use and new construct, the parameter “doc” is
passed in constructor, while the binding for Printer service is obtained transparently
with the intermediate layer when the instance is created. Another property of use is
its ability to bind several different services of the same kind. This feature is useful
to manage several service requests or to synchronize data, an example is illustrated
in listing 3.5. The services are accessed just like an array, and to avoid exceptions
like array index out-of-bounds the indexes are converted to values between 0 and the
number of services available. This feature is achieved by defining an upper bound
number of services, thus conforming to dynamic environments, and permits multiple
service instances to be used transparently.

Listing 3.5: Using several instances of a service
use 2 SearchEngine in MySearch (S t r i n g query) {

SearchEngine [0] . search (query) |
SearchEngine [1] . search (query)

}

The user may omit the the index and invoke the operation, this is possible because
SearchEngine.search(query) stands for SearchEngine[i++].search(query), where i is an
integer initialized with 0.

35

3. SEDEUSE 3.1. SeDeUse Model

Defining Computations: Computations are performed by processes(sequences of
instructions) of the hosting language, and they can be in a parallel or sequential way.
Instructions can be defined as parallel (| operator) or sequential (; operator). If parallel
composition is used then it is necessary to create a thread for each defined instruction.
The ; operator defines a point where all threads created from the current flow are ter-
minated. The use of parallel and sequential composition is illustrated in Figure 3.2.

Figure 3.2: Execution flow for {{ P1 | P2 } ; P3 } | P4

Failure Recovery: This layer allows to define failure recovery with two constructs:
retry and volatile. The model uses an exception handling mechanism syntactically
similar to Java. Protection is made for the code inside a use against a binding failure,
if discovery or invocation of the service fails then an exception is raised. The differ-
ence from the usual exception mechanisms is that here the scope of protection is for
service use, and not the delimited code. Listing 3.6 illustrates an example of this mech-
anism, the code delimited by use is seen as a transaction. If an exception is raised then
the transaction can be re-executed using retry. It performs a new discovery process,
eliminating the previous binding, and re-executing the service.

Listing 3.6: Handling exceptions
use P r i n t e r in V i r t u a l P r i n t e r (V i r tua lPC vpc) {

vpc . s e t P r i n t e r (P r i n t e r) ;
}
catch (Serv iceExcept ion e) {

vpc . un se tP r i n t e r () ;
re t ry in 0;

}

SUL definitions are regarded as stateful, (i.e., services have a representation of state),
but when working in dynamic environments services may become unavailable and
bindings are lost. Thus, the volatile keyword can be used for independent service
invocations (stateless). Rigorously, the use of this keyword totally agrees with the dy-
namic aspect of this kind of environments. And, in this sense, if a service binding is
lost a new one will be established by the middleware and no exception is raised.

36

3. SEDEUSE 3.1. SeDeUse Model

Listing 3.7: Using the volatile keyword
use v o l a t i l e Serv ice in Abs () {

Serv ice . op1 () ;
Serv ice . op2 ()

}
new Abs ()

Software Mobility: The model does not explicitly refer to mobility where the pro-
gram visits hosts, but a service location can be defined in service definitions. A special
attribute (@) allows the user to define if a given resource is local or remote to the com-
putation and the device itself. This attribute can take the following values:

• local: to guarantee that the resource is local to the device.

• remote: the opposite of local.

• coupled: the resource is local to the computation.

• closest: the resource and the computation are as close as possible.

• performance: the system chooses the instance that provides a better performance.

Code migration to a target host will only happen if he is willing to accept the code
for execution. This feature is not part of this project, but it is being developed in another
project and will be integrated with SeDeUse.

The model resorts to software layer to handle the characteristics of dynamic envi-
ronments. As illustrated on Figure 3.3 the layer is responsible to answer requests from
the application, generated in the compilation process, namely, obtain service bindings,
discovery, matching, and replacement.

Figure 3.3: Middleware process

37

4
SedJ

In this chapter we present the concretization of the SeDeUse model that was introduced
in Chapter 3. We have chosen Java programming language as our hosting language
for the model due to its widespread use and rapid prototyping. Our language with the
new abstractions added to Java language is called Sedj.

The SeDeUse architecture is structured according to two main modules, compiler
and middleware. The compiler is responsible for processing SAL and SUL files in
order to generate the executable Java code. The middleware is placed between the
application and the underlying network of services, being responsible for dynamic
service binding, discovery and recovery. These interactions between the application
and network are executed transparently, hiding the dynamic behavior from the user.

This chapter starts by presenting the concrete syntax for both SAL and SUL layers,
which includes the modifications required to adapt them to the Java language. Then
follows a description of each module, which includes the technologies used and a de-
scription of the implementation.

4.1 Concrete Syntax

The SeDeUse framework relies on two layers, as mentioned in the previous chapter,
one for service awareness (SAL) and other for service use (SUL). While the SUL defines
a simple coordination model for service interaction, SAL defines kinds of services to
be used in the application, where the service kind specifies a class of services. SAL
components are defined by a set of properties and a given interface.

39

4. SEDJ 4.1. Concrete Syntax

The model, introduced in Subsection 3.1.1, presents an abstract syntax for both lay-
ers. However, some modifications are required to integrate the new abstractions with
the Java language specification. The concrete syntax for SAL and SUL layers is ex-
plained in Subsections 4.1.1 and 4.1.2, respectively.

4.1.1 Service Awareness Layer Syntax

The concrete syntax for a SAL component is specified in Table 4.1. A SAL definition
is composed by a sequence of service kind declarations. Each kind is identified by a
name, an interface, and a list of properties.

The reserved words for the SAL syntax are highlighted in bold in the grammar, and
cannot be used as identifiers. The [] identifier stands for optional value.

Program ::= Service Program
| Service Program Sequence of declarations

Service ::= service ServiceDef { AttList } Service kind declaration
ServiceDef ::= Identifier InheritanceType Identifier

InheritanceType ::= implements Inheritance Type
| extends

AttList ::= [pref] Att [, AttList] Attribute preference
Att ::= Identifier = V alueList Attribute constraint

| Identifier in { V alueList } Attribute soft constraint
V alueList ::= V alue [, V alueList]

V alue ::= (IntegerLiteral | StringLiteral)+
Identifier ::= StringLiteral

Table 4.1: Concrete syntax of SAL components

In order to seamlessly incorporate these definitions in Java, we decided not to infer
the interface of the service kind from its use on the SAL components, but rather to free
the programmer to explicitly specify it, as is usual in Java programming. The use of an
interface at this stage ensures the absence of invocation errors.

For a better comprehension of the SAL syntax, we now present some examples in
Listing 4.1. Listing 4.2 illustrates the correspondent interfaces. BWPrinter specifies a
printer service with three properties (color, type and paper) and the interface (Printer)
that the service must match. In this situation the properties correspond to a printer
with "black" color, that uses "A4" paper, and of "laser" type.

40

4. SEDJ 4.1. Concrete Syntax

The Display example presents a definition of a document display service with two
properties: screen and files. For these properties the values are "wide" for screen and
"documents" for the type of file to be visualized. This service definition implements
the Monitor interface.

Listing 4.1: Service kind definitions
service BWPrinter implements P r i n t e r {

co l o r = " b lack " ,
type = " l ase r " ,
paper = " a4 "

}

service Disp lay implements Moni tor {
screen = " wide " ,
f i l e s = " documents "

}

service DocumentConverter implements
Converter {
i npu t in { " doc " , " docx " } ,
ou tput = " pdf "

}

service DocumentTranslator implements
Trans la to r {
format = " doc " ,
language in

{ " eng l i sh " , " f rench " , " german " } ,
ou tput = " portuguese "

}

service C o l o r P r i n t e r extends BWPrinter {
co l o r = " co lo rs "

}

Listing 4.2: Interfaces
public inter face P r i n t e r {

void p r i n t (byte [] document) ;
}

public inter face Moni tor {

void show (byte [] document) ;
}

public inter face Converter {

byte [] conver t (byte [] document , S t r i n g
extens ion) ;

}

public inter face Trans la to r {

byte [] t r a n s l a t e (byte [] doc , S t r i n g
input_ lang , S t r i n g output_ lang) ;

}

In another example in Listing 4.1 (DocumentConverter), is specified a possible ser-
vice that converts documents in one format to another. The property input refers to a
soft constraint (in), and in this case the service accepts documents in "doc" or "docx"
format, and the output property expresses the resulting document format, "pdf". The
interface for this SAL definition is Converter, that specifies that the service accepts a
document in an array of bytes, a string symbolizing the extension, and returns an array
of bytes of the converted document.

The DocumentTranslator defines a possible service that translates documents to a
given language. The format property refers to the document format, in this case only
"doc" format documents are accepted. The language property expresses the possible
languages that the service can accept, and the output specifies the language in which
the document is translated to. This service definition implements the Translator inter-
face.

Finally, the ColorPrinter service extends the previous BWPrinter definition and
overrides the color property value to "colors". This feature (extends) discards the orig-

41

4. SEDJ 4.1. Concrete Syntax

inal use of alias in order to distinguish equal services of different kinds.

4.1.2 Service Use Layer Syntax

In Table 4.2 we can see the concrete syntax grammar for SUL, it is an extension to the
original Java programming language specification. Once more the reserved words for
the SUL syntax are highlighted in bold in the grammar, and cannot be used as identi-
fiers. The ε identifier stands for empty value. This syntax displays several modifica-
tions regarding the abstract syntax presented in Chapter 3 on subsection 3.1.1. These
changes are performed to seamlessly integrate the Sedj syntax in Java language, and
are now described:

use⇒ uses: is defined at class level, just like implements or extends. It allows to ex-
tend the set of free variables in a class body (methods and constructors) with ser-
vice identifiers. These identifiers are bound, transparently, whenever an instance
is created.

new: the syntax remains unaltered , the semantics however now express a service
bindings request.

catch: service binding exception resorts to the Java catch mechanism syntax, and is
defined for service use.

retry in -> retry Java expr in Java expr: this construct is used for service restart, it is
defined the number of attempts and time to wait (i.e. retry 2 in 3;) before restart-
ing the process.

We now present some examples that demonstrate the SUL concrete syntax.

Document Converter service

In Listing 4.3 we have an example of a document converting service. The uses con-
struct abstracts the service and its computation into the service identifier
(DocumentConverter). The identifier refers to a SAL definition where properties and
an interface were declared. Line 9 shows that service invocation is performed upon the
service identifier. The exception mechanism (catch) in line 13 protects the service use
of broken service bindings, and in line 14 the retry construct triggers service re-binding
for, at most, two attempts and waits 4 seconds before calling the service again.

42

4. SEDJ 4.1. Concrete Syntax

Program ::= JavaPackageDecls JavaImportDecls TypeDecls Program
TypeDecls ::= TypeDecl [TypeDecls] Type declarations
TypeDecl ::= ClassDecl Class declaration

| JavaInterfaceDecl Java interface
ClassDecl ::= JavaModifiers class JavaIdentifier uses Service use

Srv_Aloc JavaIdentifier JavaInterfaces Body Catch

Srv_Aloc ::= [volatile] [Srv_Field] Service allocation
Srv_Field ::= JavaIntegerLiteral+ Java number

| all All services
Body ::= { BodyMembers } Class body

BodyMembers ::= BodyMember [BodyMembers] Class body members
BodyMember ::= ClassMember Class member

| JavaStaticInitializer Java static initializer
| JavaConstructorDecl Java constructor

ClassMember ::= JavaField Java field declaration
| Method Method declaration

Method ::= JavaMethodHeader Java method
| [MethodBody] Method body declaration

MethodBody ::= JavaLocalDecl Java local declaration
| JavaStatement Java statement
| SedjExpr Sedj expression

SedjExpr ::= JavaExpr ; JavaExpr Sequential composition
| SedjExpr | SedjExpr Parallel composition
| JavaIdentifier.JavaMethodCall Method invocation
| new JavaConstrutorCall Instance of uses abstraction
| retry JavaExpr in JavaExpr Restart a transaction
| JavaExpr Java Expression

Catch ::= catch { retry JavaExpr in JavaExpr } Exception handling

Table 4.2: Concrete syntax of SUL components

43

4. SEDJ 4.1. Concrete Syntax

Listing 4.3: Document converter service example
1 public class ServicePDFTest uses DocumentConverter {
2

3 byte [] res = nul l ;
4

5 public ServicePDFTest () {
6 }
7

8 public byte [] c a l l (byte [] doc) {
9 res = DocumentConverter . conver t (doc , " pdf ") ;

10 return res ;
11 }
12 }
13 catch (Except ion e) {
14 re t ry 2 in 4;
15 }

Printer service

Listing 4.4 illustrates a printer service example, it presents parallel composition, an
implicit exception handling mechanism, and uses, if available, two instances of the
ColorPrinter service. Line 11 shows the parallel composition of service invocations
using the | construct. The use of volatile construct in line 1 guarantees the automatic
rebinding whenever a failure occurs and some other instance is available. Service re-
placement is only performed once, if no match is found in service registry then the
application ends execution and a message is shown that no service was found.

Listing 4.4: Printer service example
1 public class Serv i cePr i n te rTes t uses v o l a t i l e 2 C o l o r P r i n t e r {
2

3 byte [] document = nul l ;
4

5 public Serv i cePr i n te rTes t () {
6 }
7

8 public void c a l l (byte [] doc) {
9 th is . document = doc ;

10

11 { C o l o r P r i n t e r . p r i n t (document) ; } | { C o l o r P r i n t e r . p r i n t (document) ; }
12 }
13 }

Translation service

Listing 4.5 illustrates a document translation service. This example uses the all con-
struct instead of specifying the number of different instances to be used. All available

44

4. SEDJ 4.2. Compiler

services that match DocumentTranslation definition are used. For instance, if only
two different services that match the given definition are found, then the service invo-
cations are performed in a circular way, as illustrated in Figure 4.1.

This example presents the usage, at most, of three different translation services,
with three potential different translations. The results are shown in order to establish
which translation is more accurate.

Figure 4.1: Circular service use

Listing 4.5: Translation service example
public class Serv i ceTrans la t i onTes t uses a l l DocumentTranslator {

S t r i n g t e x t ;
S t r i n g lang_ in ;
S t r i n g lang_out ;

public Serv i ceTrans la t i onTes t () {
th is . t e x t = t e x t ;
th is . l ang_ in = lang_ in ;
th is . lang_out = lang_out ;

}

public void c a l l (S t r i n g tex t , S t r i n g lang_in , S t r i n g lang_out) {
S t r i n g res1 , res2 , res3 ;

res1 = DocumentTranslator . t r a n s l a t e (tex t , lang_in , lang_out) ;
res2 = DocumentTranslator . t r a n s l a t e (tex t , lang_in , lang_out) ;
res3 = DocumentTranslator . t r a n s l a t e (tex t , lang_in , lang_out) ;

System . out . p r i n t l n (" Trans la ted t e x t : \ n " + res1 + " \ n " + res2 + " \ n " + res3) ;
}

}

4.2 Compiler

The compiler is responsible for processing SAL and SUL components and generate the
correspondent Java code ready to be interpreted with the remainder of the application.
There are three main steps in this module, SAL processing, SUL processing, and code
transformation to generate an application.

45

4. SEDJ 4.2. Compiler

To process SAL components a grammar was defined in JavaCC according to the
rules shown in Table 4.1. Regarding SUL components, an extension to Polyglot5 was
developed to apply a transformation process in order to generate the Java code.

We will begin by describing the technologies used to implement the compiler, fol-
lowed by a general overview, and how SAL and SUL components are processed.

4.2.1 Technologies

The following technologies were used to develop the compiler module: Java Compiler
Compiler (JavaCC) [21], Polyglot5 [33]. This Subsection now describes each of these
technologies in detail.

JavaCC

JavaCC is a compiler generator written in Java that works with any VM from version
1.2, it accepts language specifications in BNF-like format as input. The compiler reads
a specification that matches a pattern defined in the grammar and produces pure Java
code. This tool has the following features: top-down parsers, tree building preproces-
sor, customizable, document generation, debug, special tokens, and is used by large
community.

Top-down parsers allow the use of general grammars that are easier to debug.
JavaCC comes with JJTree, an extremely powerful tree building preprocessor. It also
offers several options to customize its behavior and the behavior of the generated
parsers, such as, the kinds of Unicode processing to perform on the input stream. Ex-
tensive debug is available with options like DEBUG_PARSER, DEBUG_LOOKAHEAD
and DEBUG_TOKEN_MANAGER, allowing an in-depth analysis.

The user may define tokens as special tokens in the lexical specification and these
are ignored during parsing, an example is the processing of comments. JavaCC in-
cludes a tool called JJDoc that converts grammar files to documentation files, there is a
good suppor of JavaCC, it comes with several examples and documentation that are a
great way to get started with.

Parsers generated by JavaCC can clearly point the location of parse errors with com-
plete diagnostic information. JavaCC is the most popular parser generator to develop
compiler in Java.

46

4. SEDJ 4.2. Compiler

Polyglot5

Polyglot5 is an extension of Polyglot [25], a source-to-source compiler that adds sup-
port to the Java 5 programming language. Polyglot is an extensible compiler frame-
work for Java programming language, as default it is simply a semantic checker for
Java 1.4, but a developer can extend it and create a new compiler. The framework
is implemented using design patterns to promote extensibility, hence new language
extensions may be developed without duplicating code from the framework itself.

Figure 4.2: Polyglot compilation process

In Polyglot the base language is the default supported language (Java 1.4), and the
new language is called language extension. The language extension accepts source
code of a program written in that extension and outputs a new program written in
Java 1.4 source code. The steps in compiling a new extension in polyglot are illustrated
in Figure 4.2, the name Ext stands for language extension. The first step consists in
parsing the input source code to produce an abstract syntax tree (AST), Polyglot has
an extensible parser generator (PPG) that allows the programmer to define a new syn-
tax as changes to the base language grammar. The programmer can add, modify, or
remove productions and symbols of the base grammar. PPG is developed as a prepro-
cessor for CUP LALR parser generator [18]. The resultant AST may have new nodes
that represent the new syntax.

The second step lies on a series of compilation passes applied to the AST. Both
semantic analysis and translation to Java may include several of such passes. The
extension defines the order of these passes to be applied over a single source file. At
runtime these are selected by a scheduler. Each compilation pass, if successful, rewrites
the AST and is input to the next pass. When all passes are executed the result is a Java
AST.

Polyglot5, a language extension for Polyglot, is a semantic checker for the Java 5
programming language. Extensions developed in Polyglot can also be used as base
languages for a new extension, we will them use Polyglot5 as our base language to
create a Java5 compliant extension.

47

4. SEDJ 4.2. Compiler

4.2.2 General Overview

A general overview of this module is illustrated in Figure 4.3. The module performs
actions in order to process SAL and SUL components, and generates Java code. The
sequence of actions in order to obtain Java code is as follows: first SAL components
are processed by a grammar defined in JavaCC, which generates a list of service defi-
nitions; secondly the SUL components are processed in three steps:

1. SUL file is parsed for service information such as, service identifier (this asso-
ciates to a SAL definition), and number of services.

2. The framework interface provides an option allowing to perform, at this stage, a
service search. This approach offers the possibility to have a mechanism similar
to early/late binding. In early binding the service search is performed before ap-
plying the transformation process to the SUL component, and when Java code is
generated the services are in cache and ready to be used. With late binding ap-
proach, services are discovered only during application execution. This approach
is useful for instance, to enable disconnected compilation and to allow to use the
application at another time, for example, several days later.

3. Finally, the SUL component is processed by the SedJ module, an extension to
Polyglot5 developed to apply a series of transformations in order to generate the
final Java code.

As illustrated in Figure 4.3 the processing of the SAL components generates infor-
mation (service information), that is used during SUL component processing for the
purpose of retrieving service properties.

SUL component processing will perform, if selected, a service search and store in-
formation about the interface, number of services, properties, and services founds to
be used during the transformation process and application execution.

We now present the Java package structure for the compiler module in Figure 4.4.

gui: includes the classes that perform interactions with the framework. The package
contains a subpackage called user, it includes classes for a graphic interface to
aid in the selection and process of SAL and SUL components.

manager: this package is responsible for managing the framework. It dispatches re-
quests from the interface to the correspondent components.

compiler: is responsible for processing SAL and SUL components. SAL components
are processed by a JavaCC grammar and generate a list of service definitions.

48

4. SEDJ 4.2. Compiler

Figure 4.3: Compiler module architecture

SUL components go through two steps in order to generate Java code. This pack-
age contains two subpackages, one for each type of component.

compiler.sal: includes classes that perform SAL component processing and generate
a list of Service. The package includes a subpackage (grammar), containing the
rules defined for the JavaCC grammar.

compiler.sal.grammar: includes the classes that parse a grammar defined in JavaCC.

compiler.sul: includes classes to process SUL components in two steps: first, the com-
ponent is analyzed for service information (identifier and number of services)
and performs a service search in a registry, only if that option is selected. In-
formation regarding the interface name, number of existing services and class-
name are kept in SedjInfo structure. Secondly, the SUL component goes through
a series of passes, in polyglot.ext.sedj package, and uses information stored in
SedjInfo to generate Java code.

49

4. SEDJ 4.2. Compiler

Figure 4.4: Compiler package diagram

polyglot.ext.sedj: this package performs transformation to SUL components and gen-
erates Java code. The SUL component is parsed by a grammar extension of a Java
grammar specification, then a series of passes are applied, as visitors, to the AST.
These passes carry through transformations to generate a file with Java code. The
package contains four subpackages: ast, parse, types, and visit.

polyglot.ext.sedj.dam: contains classes that correspond to the new nodes created or
modified.

polyglot.ext.sedj.visit: includes the classes that correspond to the visitors that per-
form transforms to the SUL component.

services: includes classes that contain information about services and are used both in
the compiler and middleware module.

The compiler is written in the Java programming language and uses the Java 6
library. JavaCC and an extension to Polyglot5 are used to process SAL and SUL com-
ponents. Our language (SedJ), is implemented as an extension to Polyglot5.

4.2.3 SAL Component Processing

As illustrated in Figure 4.3, SAL components are processed according to a grammar
specification defined in JavaCC, and the result is a list of Service. The data structure

50

4. SEDJ 4.2. Compiler

stores the SAL identifier, the interface identifier, and the service properties. It is used
later during SUL component processing to retrieve service properties.

The Service class is listed in Appendix A.3, it is used to store information of SAL
components, such as, SAL name, interface name, and properties. The structure is used
during SUL component processing in order to retrieve service properties.

An example of a SAL component is illustrated in Listing 4.6.

Listing 4.6: SAL example
service BWPrinter implements P r i n t e r {

co l o r = " b lack " ,
type = " l ase r " ,
paper = " a4 "

}

4.2.4 SUL Component Processing

As illustrated in Figure 4.3, the SUL component goes through two phases. In the first
phase, the file is parsed for the number of services and the service identifier. The lat-
ter is used to match a SAL definition, thereby obtaining its interface, and list of at-
tributes. The interface is loaded into the execution environment using the Java class-
loader mechanism.

The framework provides the possibility to perform a service search at this stage, a
connection is made to the middleware in order to retrieve the services. Service search is
realized with base on interface name, and the results are filtered according to properties
defined in SAL definition. This approach is useful for places where several services of
the same type are available. The discovery process is described in SubSection 4.3.3.

Listing 4.7: SUL example
public class ServicePDFTest uses DocumentConverter {

byte [] res = nul l ;

public ServicePDFTest () {
}

public byte [] c a l l (byte [] doc) {
res = DocumentConverter . conver t (doc , " pdf ") ;
return res ;

}
}
catch (Except ion e) {

re t ry 2 in 4;
}

Information regarding the interface, and number of service instances is stored in a
data structure called SedjInfo. This class is listed in Appendix A.4, it is used to store

51

4. SEDJ 4.2. Compiler

information of interface name, number of services, and classname. This information
is used when applying transformations to the SUL component. Finally, as illustrated
in Listing 4.7, service invocations are performed upon service identifiers, but they are,
now, replaced for the interface name, as illustrated in Listing 4.8. This procedure is
required, before submitting the SUL component to the Sedj module, in order to be
parsed correctly by the developed Java 5 compiler extension.

Listing 4.8: SUL example before applying transformations
public class ServicePDFTest uses DocumentConverter {

byte [] res = nul l ;

public ServicePDFTest () {
}

public byte [] c a l l (byte [] doc) {
res = Converter . conver t (doc , " pdf ") ;
return res ;

}
}
catch (Except ion e) {

re t ry 2 in 4;
}

In the second phase, the SUL component is subject to a transformation process by
the Sedj module. First, to integrate the new constructs defined in the SUL concrete
syntax some modifications were required in Java grammar specification, namely:

Class header: Extension of the Java class header specification with service use (uses)
and service allocation abstractions (volatile, number of services, and all). These
abstractions are defined at the same level as implements and extends keywords.

Class body: Extension of Java class body to add an exception handling mechanism
that catches the whole service execution inside uses. The catch abstraction can
now be used at the end of a class definition.

Block: Extension of Java block to allow parallel composition (|) of statements and
expressions.

Statements: Extension of Java statements to add a retry statement for service re-execution.
However, this can only be used inside the new catch mechanism.

After modifying the Java grammar and adding new nodes, a compilation process
takes place to generate the final Java code. The core of this process is a series of compi-
lation passes applied to the abstract syntax tree. New passes were created to perform
transformations on the AST. The pass scheduler selects the passes to run over the AST,

52

4. SEDJ 4.2. Compiler

in an order defined by the language extension, guaranteeing that dependencies are not
violated. A pass consists on a execution of a visitor that realizes transformations on
nodes of the AST, these transformations are executed either when entering or when
leaving a node. The implemented visitors only perform transformations when leaving
nodes, this approach has the benefit of when leaving a node the compiler will not visit
it again.

Next, we present a description of the visitors created to apply the desired transfor-
mations:

CreateServiceField : creates a global field to represent the interface for the service be-
ing used.

ReplaceStaticInvocation : visits each service invocation and replaces the invocation
performed with the interface name with the identifier created in the previous
visitor.

CreateGlobalFields : creates the global fields required by the application and instan-
tiates them with the appropriate value. For instance, a list of service instances, a
list of threads required for parallel execution.

ReplaceServiceInvocation : replaces the current service invocation with a list of the
service interface type.

CreateTryCatchForService : creates a try catch mechanism for each service invocation,
and the decisions to perform if it fails.

ReplaceParallel : replaces, for each defined sequence of operations, the parallel con-
struct with threads. This visitor only performs transformation if parallel compo-
sition is found in the input file.

CreateAuxMethod : generates the code to start thread execution regarding parallel
composition. As in the previous visitor, this visitor only performs transforma-
tions if parallel composition is found.

CreateServiceRetry : creates the service re-execution operation, it only performs trans-
formations if a retry statement is found or if the service use is declared as volatile.

RemoveFieldsStatic : This visitor removes the fields created by CreateServiceField visi-
tor.

After all visitors and remaining passes are executed the result is a Java AST with
all transformations applied. The last operation executed by SedJ is to call the Java
compiler .

53

4. SEDJ 4.2. Compiler

We now describe the transformations executed by each visitor on a SUL component.
Listing 4.9 and 4.10 illustrate, respectively, the SAL definition and the correspondent
interface for a printer service. Given the SUL example in Listing 4.11, Listing 4.12
presents the interface of the service being used, it is generated by the CreateServiceField
visitor. Listing 4.13 illustrates the transformation performed by ReplaceStaticInvocation
visitor. Service invocations that were performed with the interface name are now re-
placed by a valid identifier, service operations are not static and so they need to be
substituted to obtain a correct Java file.

Listing 4.9: SAL ColorPrinter
service C o l o r P r i n t e r implements P r i n t e r {

co l o r = " co l o r " ,
type = " l ase r " ,
paper = " a4 "

}

Listing 4.10: Printer interface
public inter face P r i n t e r {

void p r i n t (byte [] document) ;
}

Listing 4.11: SUL example
1 public class Serv i cePr i n te rTes t uses 2 C o l o r P r i n t e r {
2

3 public byte [] document = nul l ;
4

5 public Serv i cePr i n te rTes t () {
6 }
7

8 public void c a l l (byte [] doc) {
9 th is . document = doc ;

10

11 P r i n t e r . p r i n t (document) ;
12

13 / / parallel composition
14 { P r i n t e r . p r i n t (document) ; } | { P r i n t e r . p r i n t (document) ; }
15 }
16 }
17 catch (Except ion e) {
18 / / restart service execution
19 re t ry 1 in 3;
20 }

Listing 4.12: Service interface service field
private P r i n t e r a u x i l i a r _ i n t e r f a c e ;

Listing 4.13: Service invocations

54

4. SEDJ 4.2. Compiler

1 public void c a l l (byte [] doc) {
2 th is . document = doc ;
3

4 a u x i l i a r _ i n t e r f a c e . p r i n t (document) ;
5 {
6 {
7 a u x i l i a r _ i n t e r f a c e . p r i n t (document) ;
8 }
9 {
10 a u x i l i a r _ i n t e r f a c e . p r i n t (document) ;
11 }
12 }
13 }

In Listing 4.14 the CreateGlobalFields visitor creates the global fields and instantiates
them in the class constructor. In line 3, fail represents if a service invocation failed.
The srvs field represents a list of the service instances previously discovered and that
are available for service invocation, the failed_srvs field is used to store the index
of the service instance from srvs that fail causing the exception to be triggered. The
application will communicate with the middleware through the app_manager field.
The passed, and threads are used for parallel composition.

The constructor instantiates the fields and establishes a connection with the mid-
dleware to retrieve the service bindings.

Listing 4.14: Global fields and constructor
1 public class Serv i cePr i n te rTes t {
2

3 / / automatically generated fields
4 public boolean f a i l = fa lse ;
5 private java . u t i l . L i s t < P r i n t e r > srvs ;
6 private java . u t i l . L i s t < In teger > f a i l e d _ s r v s ;
7 private middleware . a p p l i c a t i o n . Appl icat ionManager app_manager ;
8 public boolean passed = fa lse ;
9 private java . u t i l . L i s t <Thread> threads ;
10 private P r i n t e r a u x i l i a r _ i n t e r f a c e ;
11

12 / / class attributes
13 byte [] document = nul l ;
14

15 public Serv i cePr i n te rTes t () {
16 super () ;
17 f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
18 app_manager = new middleware . a p p l i c a t i o n . Appl icat ionManagerImpl (" Se rv i cePr i n te rTes t ") ;
19 threads = new java . u t i l . L inkedL is t <Thread > () ;
20 srvs = app_manager . ge tServ iceBind ings () ;
21 }

Listing 4.15 illustrates the service invocation being replaced by srvs field. Lines
3-10 represent parallel service invocation.

Listing 4.15: Replace service invocation

55

4. SEDJ 4.2. Compiler

1 public void c a l l (byte [] doc) {
2 th is . document = doc ;
3

4 srvs . get (0) . p r i n t (document) ;
5 {
6 / / begin parallel
7 {
8 srvs . get (1) . p r i n t (document) ;
9 }

10 {
11 srvs . get (0) . p r i n t (document) ;
12 }
13 }
14 / / end parallel
15 }

Listing 4.16 shows the transformation, generated by CreateTryCatchForService, of the
new catch mechanism. Each service invocation is protected, if an error situation occurs,
the index corresponding the failed service is stored, it will be used for service replace-
ment.

Listing 4.16: Try-catch for service invocation
public void c a l l (byte [] doc) {

th is . document = doc ;

t ry {
s rvs . get (0) . p r i n t (document) ;

} catch (Except ion e) {
f a i l = true ;
i f (! f a i l e d _ s r v s . conta ins (0)) {

f a i l e d _ s r v s . add (0) ;
}

}
/ / begin parallel
{

{
t ry {

s rvs . get (1) . p r i n t (document) ;
} catch (Except ion e) {

f a i l = true ;
i f (! f a i l e d _ s r v s . conta ins (1)) {

f a i l e d _ s r v s . add (1) ;
}

}
}
{

t ry {
s rvs . get (0) . p r i n t (document) ;

} catch (Except ion e) {
f a i l = true ;
i f (! f a i l e d _ s r v s . conta ins (0)) {

f a i l e d _ s r v s . add (0) ;
}

}
}

56

4. SEDJ 4.2. Compiler

}
/ / end parallel

}

Listing 4.17 illustrates the transformations executed for processing parallel com-
position. Threads are created by the ReplaceParallel visitor. CreateAuxMethod visitor
creates the code for threads to start and join. An auxiliary method is created for thread
generation.

Listing 4.17: Parallel composition transformation
public void c a l l (byte [] doc) {

th is . document = doc ;

i f (! passed)
threadGen () ;

t ry {
s rvs . get (0) . p r i n t (document) ;

} catch (Except ion e) {
f a i l = true ;
i f (! f a i l e d _ s r v s . conta ins (0)) {

f a i l e d _ s r v s . add (0) ;
}

}

for (i n t i = 0 ; i < threads . s ize () ; i ++) {
threads . get (i) . s t a r t () ;

}

for (i n t i = 0 ; i < threads . s ize () ; i ++) {
t ry {

threads . get (i) . j o i n () ;
} catch (I n te r rup tedExcep t i on e) { }

}
}

private void threadGen () {
passed = true ;
Thread t0 = new Thread (new Runnable () {

public void run () {
t ry {

s rvs . get (1) . p r i n t (document) ;
} catch (Except ion e) {

f a i l = true ;
i f (! f a i l e d _ s r v s . conta ins (1)) {

f a i l e d _ s r v s . add (1) ;
}

}
}

}) ;
threads . add (t0) ;
Thread t1 = new Thread (new Runnable () {

public void run () {
t ry {

s rvs . get (0) . p r i n t (document) ;
} catch (Except ion e) {

57

4. SEDJ 4.2. Compiler

f a i l = true ;
i f (! f a i l e d _ s r v s . conta ins (0)) {

f a i l e d _ s r v s . add (0) ;
}

}
}

}) ;
threads . add (t1) ;

}

Listing 4.18 illustrates the code generated by CreateServiceRetry visitor. This is cre-
ated for the retry expression present in line 18 of Listing 4.11. A new method is created
to perform service invocation. The global field representing the interface Printer is
removed by the RemoveFieldsStatic visitor.

Listing 4.18: Service retry
private void _ c a l l (i n t attempts , i n t t ime , byte [] doc) {

. . .

i f (f a i l && at tempts > 0) {
f a i l = fa lse ;
for (i n t i = 0 ; i < f a i l e d _ s r v s . s ize () ; i ++) {

Object ob j = app_manager . rep laceServ iceB ind ing (f a i l e d _ s r v s . get (i)) ;
s rvs . set (f a i l e d _ s r v s . get (i) , (P r i n t e r) ob j) ;

}

f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
t ry {

Thread . s leep (t ime) ;
} catch (I n te r rup tedExcep t i on e) { }
_ c a l l (a t tempts − 1 , t ime) ;

}
}

public void c a l l (byte [] doc) {
_ c a l l (1 , 3000 , doc) ;

}

The entire transformation for the example in Listing 4.11 is listed on Listing 4.20.

Listing 4.19: Generated code
public class Serv i cePr i n te rTes t {

public boolean f a i l = fa lse ;
private java . u t i l . L i s t < P r i n t e r > srvs ;
private java . u t i l . L i s t < In teger > f a i l e d _ s r v s ;
private middleware . a p p l i c a t i o n . Appl icat ionManager app_manager ;
public boolean passed = fa lse ;
private java . u t i l . L i s t <Thread> threads ;
byte [] document = nul l ;

public Serv i cePr i n te rTes t () {
super () ;
f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;

58

4. SEDJ 4.2. Compiler

app_manager = new middleware . a p p l i c a t i o n . Appl icat ionManagerImpl (" Se rv i cePr i n te rTes t ") ;
threads = new java . u t i l . L inkedL is t <Thread > () ;
s rvs = app_manager . ge tServ iceBind ings () ;

}

private void _ c a l l (i n t attempts , i n t t ime , byte [] doc) {
th is . document = doc ;
i f (! passed)

threadGen () ;
t ry {

s rvs . get (0) . p r i n t (document) ;
} catch (Except ion e) {

f a i l = true ;
i f (! f a i l e d _ s r v s . conta ins (0)) {

f a i l e d _ s r v s . add (0) ;
}

}

for (i n t i = 0 ; i < threads . s ize () ; i ++) {
threads . get (i) . s t a r t () ;

}

for (i n t i = 0 ; i < threads . s ize () ; i ++) {
t ry {

threads . get (i) . j o i n () ;
} catch (I n te r rup tedExcep t i on e) { }

}
passed = fa lse ;
threads = new java . u t i l . L inkedL is t <Thread > () ;

i f (f a i l && at tempts > 0) {
f a i l = fa lse ;
for (i n t i = 0 ; i < f a i l e d _ s r v s . s ize () ; i ++) {

Object ob j = app_manager . rep laceServ iceB ind ing (f a i l e d _ s r v s . get (i)) ;
s rvs . set (f a i l e d _ s r v s . get (i) , (P r i n t e r) ob j) ;

}
f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
t ry {

Thread . s leep (t ime) ;
} catch (I n te r rup tedExcep t i on e) { }
_ c a l l (a t tempts − 1 , time , document) ;

}
}

private void threadGen () {
passed = true ;
Thread t0 = new Thread (new Runnable () {

public void run () {
t ry {

s rvs . get (1) . p r i n t (document) ;
} catch (Except ion e) {

f a i l = true ;
i f (! f a i l e d _ s r v s . conta ins (1)) {

f a i l e d _ s r v s . add (1) ;
}

}
}

59

4. SEDJ 4.2. Compiler

}) ;
threads . add (t0) ;
Thread t1 = new Thread (new Runnable () {

public void run () {
t ry {

s rvs . get (0) . p r i n t (document) ;
} catch (Except ion e) {

f a i l = true ;
i f (! f a i l e d _ s r v s . conta ins (0)) {

f a i l e d _ s r v s . add (0) ;
}

}
}

}) ;
threads . add (t1) ;

}

public void c a l l (byte [] doc) {
_ c a l l (1 , 3000 , doc) ;

}
}

We now present what part of the generated code correspond to the new abstractions
integrated in the Java grammar specification:

uses: In Listing 4.20, line is the result of using this abstraction, a list of the given iden-
tifier is created.

retry X in Y: In Listing 4.21, line 9-12 is the result of using service re-execution. The
application waits for Y time and afterwards a new attempt on the service is per-
formed.

volatile: allows an implicit retry mechanism. If this abstraction is used, then lines 9-11
in Listing 4.21 are not generated, only a invocation to the method (call()) would
appear instead.

| (parallel): Listing 4.22 illustrates the generated code of using the parallel compo-
sition abstraction. For each sequence of operations in parallel a new thread is
created.

catch: In Listing 4.21 the lines 6-13, and 19-26 are the result of using the catch abstrac-
tion, a try-catch mechanism is created for each service invocation.

Listing 4.20: Generated Java code example - Service use
1 public class Serv i cePr i n te rTes t {
2

3 public boolean f a i l = fa lse ;
4 private java . u t i l . L i s t < P r i n t e r > srvs ;
5 private java . u t i l . L i s t < In teger > f a i l e d _ s r v s ;

60

4. SEDJ 4.2. Compiler

6 private middleware . a p p l i c a t i o n . Appl icat ionManager app_manager ;
7 public boolean passed = fa lse ;
8 private java . u t i l . L i s t <Thread> threads ;
9 byte [] document = nul l ;
10 . . .
11 }

Listing 4.21: Generated Java code example - Service retry
1 . . .
2 i f (f a i l && at tempts > 0) {
3 f a i l = fa lse ;
4 for (i n t i = 0 ; i < f a i l e d _ s r v s . s ize () ; i ++) {
5 Object ob j = app_manager . rep laceServ iceB ind ing (f a i l e d _ s r v s . get (i)) ;
6 srvs . set (f a i l e d _ s r v s . get (i) , (P r i n t e r) ob j) ;
7 }
8 f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
9 t ry {
10 Thread . s leep (t ime) ;
11 } catch (I n te r rup tedExcep t i on e) { }
12 _ c a l l (at tempts − 1 , time , doc) ;
13 }
14 . . .

Listing 4.22: Generated Java code example - Parallel composition
1 . . .
2 private void threadGen () {
3 passed = true ;
4 Thread t0 = new Thread (new Runnable () {
5 public void run () {
6 t ry {
7 srvs . get (1) . p r i n t (document) ;
8 } catch (Except ion e) {
9 f a i l = true ;
10 i f (! f a i l e d _ s r v s . conta ins (1)) {
11 f a i l e d _ s r v s . add (1) ;
12 }
13 }
14 }
15 }) ;
16 threads . add (t0) ;
17 Thread t1 = new Thread (new Runnable () {
18 public void run () {
19 t ry {
20 srvs . get (0) . p r i n t (document) ;
21 } catch (Except ion e) {
22 f a i l = true ;
23 i f (! f a i l e d _ s r v s . conta ins (0)) {
24 f a i l e d _ s r v s . add (0) ;
25 }
26 }
27 }
28 }) ;
29 threads . add (t1) ;
30 }

61

4. SEDJ 4.3. Middleware

4.3 Middleware

The middleware is a software layer that provides an interface, which the code gener-
ated by the compiler will use, to make requests, such as, service binding, discovery and
recovery. Also, the compiler module interacts with the middleware in order to request
a service discovery process during the compiler phase.

We will begin by describing a general overview of this module, followed by a char-
acterization of the service interface mapping mechanism used in service discovery, and
a detailed description of the operations available in the middleware.

4.3.1 General Overview

A general overview of this module is illustrated in Figure 4.5, the middleware pro-
vides an API for communication with the application and is responsible for replying
to: service binding, and replacement requests. The middleware, besides the API, pro-
vides a service discovery process used during the compiler phase in order to retrieve
the number of services available.

Figure 4.5: Middleware module architecture

When the application is set for execution the first operation, and compulsory, is to
request service bindings to the middleware. Secondly, whenever a failure occurs, the

62

4. SEDJ 4.3. Middleware

application requests a service binding replacement. In this scenario the middleware
triggers a new service discovery process in order to provide an appropriate service
replacement according to its properties.

Services are maintained in a local cache and used during the discovery process,
the cache is updated whenever a service fails or a new binding is established. This
approach ensures less communications with the registry. Information regarding inter-
face, properties and services to be used were stored in Application properties during
the compiler phase and are now used during application execution to obtain service
bindings and replacement.

Services are registered in a jUDDI registry, and communication between the appli-
cation and services is realized with support on JAX-WS 1. Service discovery between
the middleware and jUDDI are performed resorting to UDDI4J 2 library. A java library
that provides an API that performs operations on jUDDI registry.

We now present the Java package structure for the middleware module in Fig-
ure 4.6.

Figure 4.6: Middleware package diagram

application: is responsible for interaction with the generated application, namely, to
retrieve service bindings when application is set for execution, and for binding

1https://jax-ws.dev.java.net/
2Library available at http://uddi4j.sourceforge.net/

63

4. SEDJ 4.3. Middleware

replacement in service failure scenarios. ApplicationManagerImpl class uses Ser-
viceAppProperties structure to retrieve, from local storage, the service interface,
properties and list of services to be used.

cache: cache mechanism for services retrieved from the registry. Services are main-
tained in a structure (Cache), this is composed by the interface name and a list of
services, being used, that implement that interface. In service failure or service
discovery situations the cache is updated.

communications: handles communications with service registries, currently only com-
munication with UDDI registry is supported. This package contains a subpack-
age, registry.

registry: performs communication with jUDDI registry, namely, registry connection,
service storage and discovery.

The ServiceLocation class is listed on Appendix A.2, it is used to store the WSDL
service address and the service properties location.

The CacheImpl class is listed on Appendix A.5, it is used to store the interface name
and the list of services that implement that interface.

To store service locations the middleware uses a Hashtable<String, ServiceLoca-
tion>, the String is the service name and ServiceLocation contains the information
about its location. To store service instances in cache the middleware uses a Hashtable<String,
Cache>, the String represents the interface name, and Cache contains the information
about what services implement that interface.

4.3.2 Interface Mapping

jUDDI registry only provides storage for service location, and discovery is only per-
formed in a name basis. To overcome this limitation, services stored in jUDDI also
include, besides the WSDL address, the location of a XML file containing service prop-
erties, as illustrated in Listing 4.23.

Listing 4.23: Service properties
<service > C o l o r P r i n t e r

<p roper t i es >
<type > laser </ type >
<brand>hp </ brand>
<paper>a4 ; a5 ; l e t t e r </ paper>

</ p roper t i es >
</ service >

64

4. SEDJ 4.3. Middleware

A service discovery process in the framework will return a structure (ServiceLo-
cation) with information regarding the WSDL and service properties location, both in
XML. Given the SAL example in Listing 4.24, the discovery process would compare the
properties defined in SAL definition against the properties in the XML of Listing 4.23.
If the given properties match the ones presented in the XML document then the ser-
vice is a match. In this scenario, the ColorPrinter service is a match for the properties
defined in SAL example.

Listing 4.24: Service properties
service BWPrinter implements P r i n t e r {

type = " l ase r " ,
paper = " a4 "

}

This approach provides our framework with a more advanced discovery mecha-
nism where service interface name is used to search for services and properties to limit
the result space.

4.3.3 Service Discovery

The service discovery process consists on the following steps:

1. A connection is established with the jUDDI registry through an invocation of the
searchServiceUDDI method from the communications package. The interface
name and number of services are passed as method arguments and a list of Ser-
viceLocation is returned as a result of the search.

2. From the returned list, the ServiceLocation structure has the information regard-
ing WSDL address and service properties location. Now a comparison is per-
formed between the given properties and the service properties described in
the XML file. This interface mapping between services is explained in SubSec-
tion 4.3.2.

3. If the properties are matched, then a four step process is performed:

- service stubs are generated from the service WSDL address.

- the interface correspondent to the service is extended with extends <service
interface name>. Given the example in Listing 4.25, if stubs are generated for
a ColorPrinter service and the given interface during SAL processing is Printer,
then the generated interface (ColorPrinter) is transformed in the code illustrated
in Listing 4.26.

- compile the generated classes.

65

4. SEDJ 4.3. Middleware

- create a jar archive of the generated service classes. This approach of cre-
ating a jar file benefits from only loading one file to the execution environment,
instead of loading each generated class.

4. The services location structure (Hashtable<String, ServiceLocation>), is updated
with a new service name and its service location. The cache structure is updated
for the given interface with a new service.

5. The steps from 2 to 4 repeat until all services returned from the jUDDI registry
are processed.

6. Finally, the cache and service location are stored locally, and a list of service
names is returned.

Listing 4.25: Inteface extension example
public inter face C o l o r P r i n t e r {

. . .

}

Listing 4.26: Interface extension example
public inter face C o l o r P r i n t e r extends

P r i n t e r {

. . .

}

4.3.4 Service Bindings

The first operation executed by the application when in execution is to request its ser-
vice bindings to the middleware. Listing 4.27 illustrates the constructor of the gener-
ated code of a given SUL component.

Listing 4.27: Class constructor
1 . . .
2 public Serv i cePr i n te rTes t () {
3 super () ;
4 f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
5 app_manager = new middleware . a p p l i c a t i o n . Appl icat ionManagerImpl (" Se rv i cePr i n te rTes t ") ;
6 threads = new java . u t i l . L inkedL is t <Thread > () ;
7 srvs = app_manager . ge tServ iceBind ings () ;
8 }
9 . . .

In line 4, the application establishes a connection with the middleware and passes
the class identifier as an argument. The identifier ("ServicePrinterTest") is used by the
middleware to load the ServiceAppProperties structure. The ServiceAppProperties
class is listed on Appendix A.1, it is used to store, locally, information regarding inter-
face name, classname, number of services, properties, and a list of services stubs to be
used. This information is used afterwards when the generated Java code is executing.

66

4. SEDJ 4.3. Middleware

In line 7, the application requests its service bindings invoking the getServiceBind-
ings operation on the middleware. The ServiceAppProperties structure is loaded when
a connection is performed (Line 6 in Listing 4.27) to the middleware by the application,
and information regarding this service execution is now available. This method con-
sists on the following steps:

1. The ServiceAppProperties contains the information regarding the list of "available"
services that match the kind required. First the middleware checks the size of that
list in order to know if a service search is required.

2. If the list size is bigger than zero, then the service stubs are loaded by the Java
classloader mechanism into the execution environment and new instances are
created for each service stub.

3. If the list contains no elements, then a service discovery process is required:

- First, the cache and services location mechanisms are loaded to memory.

- A lookup is performed in the cache mechanism to retrieve the cache struc-
ture of the given interface name. If no match is found, then that interface was not
yet registered. If a match is found, then we retrieve the service list that imple-
ments the given interface.

- For each service a comparison is performed between the given properties
(present in ServiceAppProperties) and the properties of the service obtained from
the cache mechanism (service properties are defined in a XML file whose location
is defined in services location mechanism). If a match occurs, then the service
name is stored in a list.

- If the number of services is not fulfilled (obtained from ServiceAppProper-
ties), a discovery is performed in jUDDI registry. The discovery process is de-
scribed in SubSection 4.3.3. The returned services are added to the list of service
names.

- Finally, if the number of services still is not fulfilled, then existing services
are copied and added until the desired number is met. If no matching services
are found, then the application stops its execution.

4.3.5 Service Replacement

In scenarios where bindings are broken, the application requests the middleware a
new service binding. Listing 4.28 shows sections, of the generated code for a SUL
component, related to service replacement.

67

4. SEDJ 4.3. Middleware

Listing 4.28: Service replacement mechanism
1 . . .
2 t ry {
3 srvs . get (0) . p r i n t (document) ;
4 } catch (Except ion e) {
5 f a i l = true ;
6 i f (! f a i l e d _ s r v s . conta ins (0)) {
7 f a i l e d _ s r v s . add (0) ;
8 }
9 }

10 . . .
11 . . .
12 i f (f a i l && at tempts > 0) {
13 f a i l = fa lse ;
14 for (i n t i = 0 ; i < f a i l e d _ s r v s . s ize () ; i ++) {
15 Object ob j = app_manager . rep laceServ iceB ind ing (f a i l e d _ s r v s . get (i)) ;
16 srvs . set (f a i l e d _ s r v s . get (i) , (P r i n t e r) ob j) ;
17 }
18

19 f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
20 t ry {
21 Thread . s leep (t ime) ;
22 } catch (I n te r rup tedExcep t i on e) { }
23

24 _ c a l l (at tempts − 1 , time , doc) ;
25 }
26 . . .

For instance, in line 3 a service with the print operation is invoked. If the connection
with the service is lost, then a new binding must be established (line 15). The service
replacement process consists on the following steps:

1. The middleware retrieves information regarding the interface name and proper-
ties from ServiceAppProperties structure.

2. A service discovery process takes place with the interface name, properties, and
only one service is requested. The service discovery process is described in Sub-
Section 4.3.3.

3. The Java classloader mechanism loads the returned service stub and creates a
new service instance.

4. Finally, the cache mechanism updates its information, by replacing in the given
interface the service name that failed, and in the ServiceAppProperties structure,
the service that failed is replaced by the new service name in the position pro-
vided by the application.

To summarize, in this chapter we presented the implementation of SeDeUse frame-
work. Firstly, it was introduced the concrete syntax for both, SAL and SUL compo-
nents. Secondly, a description of the compiler regarding the technologies used and the

68

4. SEDJ 4.3. Middleware

process in order to generate Java code (in more detail the transformation applied to
the SUL component). Finally, a description of the middleware layer with detailed in-
formation on how syntactically different services are semantically equivalent, and the
operations provided by the middleware. In the next chapter, we present three scenar-
ios of possible use for the Sedj language.

69

5
Applications/Case Studies

This chapter reports the results of three case studies aimed at evaluating the Sedj frame-
work. These studies assess the framework’s programming abstractions supported by
a middleware layer that hides the nature of using service-oriented computing in dy-
namic environments.

The first scenario consists in a document manipulation service, where a document
is converted from its original digital format into a specified format, then is translated
to another language, finally the document is sent for a printing service. The second
scenario involves service operations available in a highway road. The third scenario
demonstrates services that are used in airport terminals.

The chapter begins with a description of the experimental settings for the frame-
work’s language evaluation, followed by the presentation of three scenario examples.
Finally, a conclusion is presented regarding the framework’s evaluation.

5.1 Setup/Experimental Settings

The experimental evaluation was executed on the Computer Science Department at
Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa.

Three applications were developed to demonstrate the framework’s utility, regard-
ing the programming abstractions for service awareness and use, sustained by a mid-
dleware layer for support in dynamic environment.

The settings for our experimental evaluation is as follows: one laptop to execute
the Sedj framework; one host computer with three jUDDI registries deployed in the

71

5. APPLICATIONS/CASE STUDIES 5.2. A Document Manipulation Service

Apache Tomcat framework; and a variable number of host computers executing Web
Services that establish connection to services. JUDDI uses a MySQL database to main-
tain registry data.

5.2 A Document Manipulation Service

In this case study, the scenario is a composition of services to manipulate a text docu-
ment. Firstly, the contents of the text document contents are translated to a specified
language by a document translation service. Then, the document is given to another
service in order to be converted to a format suitable for the available printers. Finally,
the resulting document is sent to the available printer services to be printed.

The goal of this scenario is to demonstrate the use of service abstraction (uses), par-
allel composition (|), service allocation (all), exception handling (catch), and service
re-execution (retry).

We now present the settings for this case study, also the SAL and SUL components
used, and the main class file with the composition for this demonstration.

5.2.1 Scenario Settings

The execution environment setting for this scenario is as follows. One jUDDI registry
that contains three available printer services, one document translation service, and
two document converter services. At runtime, after invoking all services, the bindings
for the translation service and the printers are broken. The application is expected to
recover and create new bindings to other equivalent services registered in jUDDI.

In this subsection, we present the SAL and SUL components for this scenario, and
the main file coordinating the services. Listing 5.1 illustrates a possible SAL definition
for a document translation service. The SAL definition implements the Translation
interface, presented in Listing 5.2.

Listing 5.1: SAL - TextTranslation
service Tex tT rans la t i on implements Trans la t i on {

type = " doc " ,
i npu t in { " eng l i sh " , " f rench " , " german " } ,
ou tput in { " portuguese " }

}

Listing 5.2: Translation interface
public inter face Trans la t i on {

byte [] t r a n s l a t e (byte [] doc , S t r i n g in_lang , S t r i n g out_ lang) ;
}

72

5. APPLICATIONS/CASE STUDIES 5.2. A Document Manipulation Service

The SUL file to use the document translation service is presented on Listing 5.3, and
the correspondent generated code for this component is illustrated on Appendix A.6.

Listing 5.3: SUL - TestTranslator
import i n t e r f a c e s . T rans la t i on ;

public class Tes tT rans la to r uses Trans la t i on {

public byte [] r e s u l t ;

public Tes tT rans la to r () {
}

public byte [] c a l l (byte [] document , S t r i n g input_ lang , S t r i n g output_ lang) {
r e s u l t = T rans la t i on . t r a n s l a t e (document , input_ lang , output_ lang) ;
return r e s u l t ;

}
}
catch (Except ion e) {

re t ry 1 in 3;
}

Listing 5.4 illustrates a SAL definition for a possible document converter service, it
implements the Converter interface shown in Listing 5.5.

Listing 5.4: SAL - DocumentConverter
service DocumentConverter implements Converter {

i npu t in { " doc " , " docx " } ,
ou tput = " pdf "

}

Listing 5.5: Converter interface
public inter face Converter {

byte [] conver t (byte [] doc , S t r i n g extens ion) ;
}

Listing 5.6 illustrates the SUL file for a document converter application. The gener-
ated code for this SUL component is listed on Appendix A.7.

Listing 5.6: SUL - TestConverter
import i n t e r f a c e s . Converter ;

public class TestConverter uses v o l a t i l e Converter {

public byte [] res ;

public TestConverter () {
}

public byte [] c a l l (byte [] doc , S t r i n g extens ion) {
res = Converter . conver t (doc , extens ion) ;
return res ;

}
}

73

5. APPLICATIONS/CASE STUDIES 5.2. A Document Manipulation Service

Listing 5.7 illustrates a SAL definition for a possible document printer service. The
SAL definition implements the Printer interface presented in Listing 5.8.

Listing 5.7: SAL - ColorPrinter
1 service C o l o r P r i n t e r implements P r i n t e r {
2 co lo r = " co lo rs " ,
3 type = " l ase r "
4 }

Listing 5.8: Printer interface
public inter face P r i n t e r {

void p r i n t (byte [] document) ;
}

Listing 5.9 illustrates the SUL file for a printer application. The correspondent gen-
erated code for this component is illustrated on Appendix A.8.

Listing 5.9: SUL - TestPrinter
1 import i n t e r f a c e s . P r i n t e r ;
2

3 public class T e s t P r i n t e r uses a l l P r i n t e r {
4 public byte [] doc ;
5

6 public T e s t P r i n t e r () {
7 }
8

9 public void c a l l (byte [] doc) {
10 th is . doc = doc ;
11

12 / / parallel composition
13 { P r i n t e r . p r i n t (doc) ; } | { P r i n t e r . p r i n t (doc) ; }
14 }
15 }
16 catch (Except ion e) {
17 / / re-execute service, waits 4 seconds then re-executes once
18 re t ry 1 in 4;
19 }

5.2.2 Execution

Listing 5.10 illustrates the main file containing the composition of services and se-
quence of actions that are used in this scenario.

Listing 5.10: DocumentManipulationScenario class
1 import java . i o . F i l e ;
2

3 public class DocumentManipulat ionScenario {
4

5 public void run (S t r i n g f i lename) {
6 F i l e f = new F i l e (f i lename) ;

74

5. APPLICATIONS/CASE STUDIES 5.2. A Document Manipulation Service

7

8 Tes tT rans la to r t r a n s l a t o r = nul l ;
9 TestConverter conver te r = nul l ;
10 T e s t P r i n t e r p r i n t e r = nul l ;
11

12 / / get text from document
13 byte [] doc = U t i l s . getBytesFromFi le (f) ;
14

15 / / translate to portuguese
16 t r a n s l a t o r = new Tes tT rans la to r () ;
17 doc = t r a n s l a t o r . c a l l (doc , " en " , " p t ") ;
18

19 / / convert to pdf
20 conver te r = new TestConverter () ;
21 doc = conver te r . c a l l (doc , " pdf ") ;
22

23 / / send to printer
24 p r i n t e r = new T e s t P r i n t e r () ;
25 p r i n t e r . c a l l (doc) ;
26

27 / / breaking the binding for translate and printer
28 / / calling the services again
29

30 doc = t r a n s l a t o r . c a l l (doc , " en " , " p t ") ;
31 p r i n t e r . c a l l (doc) ;
32 }
33

34 public s t a t i c void main (S t r i n g [] args) {
35 new DocumentManipulat ionScenario () . run (args [0]) ;
36 }
37 }

The DocumentScenarioManipulation class defines a possible configuration for us-
ing the three generated classes of services. First, the translation service is executed,
it translates the given document, in byte array, from English to Portuguese language,
returning also a byte array. In line 16 the new construct creates a new instance of Test-
Translator class and obtains service bindings from the middleware. Then in line 17 the
translation service is executed, returning the document in the desired language.

Secondly, the document is sent to a document converter service, lines 20-21, in or-
der to convert the document from doc to pdf format. Finally, the document is sent to
a printing service. The TestPrinter class demonstrates the use of parallel composition
(|), the document is sent to print in two different printers at the same time.

Service Discovery at Runtime

In this case, the TestPrinter did not perform a service search during the compila-
tion phase. So, when a new instance of this class is created the getServiceBindings()
operation in line 18 of Appendix A.8 involves a service discovery process to retrieve

75

5. APPLICATIONS/CASE STUDIES 5.3. Road services

available service instances. Two different printers are found that match given proper-
ties.

Handling Broken Bindings

After executing all three services the bindings for the translation and printer ser-
vices are broken, the Web Services currently executing translation and printing oper-
ations are terminated. Invoking these services again will result in failure, lines 21-26
on Appendix A.6 of TestTranslator class show that when a service invocation failure
occurs, the index of service instances list is stored and a boolean variable is set to true.
The former is used in the middleware during service replacement to replace the fail-
ing instance, in the ServiceAppProperties class, with the new replacement. The latter
is used in line 27 to check if a failure occurred, in order to trigger the service bind-
ing replacement process (lines 30-31). A new binding is established for the translation
service and the service is executed as if no error occurred for the user.

The same process is realized in the TestPrinter class, lines 40-41 on Appendix A.8
show the service replacement. Regarding the printer service, the registry returns only
one service different from the services that failed. This new instance is used in both
invocations of the parallel composition. The document is sent twice for printing in the
same printer. Only during document printing we became aware that just one printer
service is available.

The case study demonstrated the use of service abstraction, parallel composition,
service allocation, exception handling and service re-execution.

5.3 Road services

The case study aims at evaluating the use of services possibly available through sen-
sors that are spread in highways, invoking operations such as, traffic report, get travel
assistance, how much far is the next gas station.

The goal in this scenario is to demonstrate the use of service abstraction (uses), and
implicit exception handling mechanism (volatile).

We now present the settings for this case study, also the SAL and SUL components
used, and the main class file with the composition for this demonstration.

5.3.1 Scenario Settings

For this scenario the settings involve two jUDDI registries, each one containing a ser-
vice that represent different road sections. During runtime after executing several op-

76

5. APPLICATIONS/CASE STUDIES 5.3. Road services

erations from one service we simulate a road change, from one highway to another
road, by replacing the current registry address. The application is expected to fail
when changing and recover from that failure.

In this Subsection, we present the SAL and SUL components for this scenario, and
the main file coordinating the services. Listing 5.11 illustrates a possible SAL defini-
tion for a service regarding sensors in a highway. The SAL definition implements the
Highway interface, presented in Listing 5.12.

Listing 5.11: SAL - RoadServices
1 service RoadServices implements Highway {
2 d i r e c t i o n = " nor th "
3 }

Listing 5.12: Highway interface
1 public inter face Highway {
2

3 S t r i n g t r a f f i c R e p o r t (i n t kms_ahead) ;
4 void t r ave lAss i s t ance (i n t km) ;
5 S t r i n g vehiclesInOppositeWay () ;
6 S t r i n g nearestGasStat ion () ;
7 }

The SUL file to use the highway sensors service is presented on Listing 5.13, and
the correspondent generated code for this component is illustrated on Appendix A.9.

Listing 5.13: SUL - TestHighway
1 import i n t e r f a c e s . Highway ;
2

3 public class TestHighway uses v o l a t i l e Highway {
4 public TestHighway () { }
5

6 public void c a l l () {
7

8 S t r i n g output = " " ;
9 output = Highway . t r a f f i c R e p o r t (15) ;
10 System . out . p r i n t l n (output) ;
11

12 Highway . t r ave lAss i s tance (145) ;
13

14 output = Highway . vehiclesInOppositeWay () ;
15 System . out . p r i n t l n (output) ;
16

17 output = Highway . nearestGasStat ion () ;
18 System . out . p r i n t l n (output) ;
19 }
20 }

5.3.2 Execution

Listing 5.14 illustrates the main file containing the composition of services and se-
quence of actions that are used in this scenario.

77

5. APPLICATIONS/CASE STUDIES 5.4. Airport Services

Listing 5.14: HighwayServicesScenario class
1 public class HighwayServicesScenario {
2

3 public void run () {
4

5 TestHighway road_serv ices = new TestHighway () ;
6

7 road_serv ices . c a l l () ;
8

9 / / changing from one road to another changes the service provider
10 / / so here a new connection to a different registry is required
11 / / and previous bindings are lost
12

13 road_serv ices . c a l l () ;
14 }
15

16 public s t a t i c void main (S t r i n g [] args) {
17 new HighwayServicesScenario () . run () ;
18 }
19 }

In line 5 of Listing 5.14 a new instance of TestHighway class is created in order to
obtain service bindings from the middleware. Line 7 shows the invocation of highway
services, as illustrated on Appendix A.9 on lines 20, 29, 37, and 46. After obtaining
the results of this invocation we simulate a change from one highway to another, this
results in changing the registry address, current service bindings are lost. In line 13
another service invocation is realized and now every invocation fails and the replace-
ment process is performed, lines 55-63 on Appendix A.9. A new binding is established
and service invocation is performed once again, the results now are relative to another
highway service.

This case study demonstrated the use of service abstraction (uses), and volatile.
The latter used to replace service binding. If no match is found for that service, then
the application stops executing.

5.4 Airport Services

This case study aims at evaluating the use of the services available at terminals in an
airport. The operations available in this kind of services include, checking the flight
list, reserve a ticket, check a flight status, and alert problem in the airport.

The goal in this scenario is similar to the previous scenario, demonstration the use
of service abstraction (uses), implicit exception handling mechanism (volatile), and
what happens when services are not available.

We now present the settings for this case study, also the SAL and SUL components
used, and the main class file with the composition for this demonstration.

78

5. APPLICATIONS/CASE STUDIES 5.4. Airport Services

5.4.1 Scenario Settings

For this scenario the settings involve three jUDDI registries, two contain one service
that represent different terminals in the same airport. During runtime after executing
several operations from one service we simulate a change from one airport terminal
to another by replacing the current registry address. The application is expected to
fail when changing from one terminal to another, recover from that failure and when
changing to another terminal the application will fail.

In this Subsection, we present the SAL and SUL components for this scenario, and
the main file coordinating the services. Listing 5.15 illustrates a possible SAL defini-
tion for a service regarding sensors in a highway. The SAL definition implements the
Airport interface, presented in Listing 5.16.

Listing 5.15: SAL - RoadServices
1 service A i rpo r tSe rv i ces implements A i r p o r t {
2 l o c a t i o n = " L i sbonA i rpo r t "
3 }

Listing 5.16: Airport interface
1 import java . u t i l . L i s t ;
2

3 public inter face A i r p o r t {
4 L i s t <St r ing > c h e c k F l i g h t L i s t () ;
5 S t r i n g checkForRestaurants () ;
6 S t r i n g where IsF l i gh t (S t r i n g f l i g h t _ i d) ;
7 void reportProblem (S t r i n g problem) ;
8 S t r i n g carRenta l (S t r i n g car_brand) ;
9 }

The SUL file to use the services in airport terminals is presented on Listing 5.17, and
the correspondent generated code for this component is illustrated on Appendix A.10.

Listing 5.17: SUL - TestAirport
1 import i n t e r f a c e s . A i r p o r t ;
2 import java . u t i l . L i s t ;
3 import java . u t i l . L i nkedL i s t ;
4

5 public class T e s t A i r p o r t uses v o l a t i l e A i r p o r t {
6

7 public T e s t A i r p o r t () { }
8

9 public void c a l l () {
10

11 L i s t <St r ing > res = new L inkedL is t <St r ing > () ;
12 S t r i n g f l i g h t = " " ;
13

14 res = A i r p o r t . c h e c k F l i g h t L i s t () ;
15 System . out . p r i n t l n (res) ;

79

5. APPLICATIONS/CASE STUDIES 5.4. Airport Services

16

17 /∗ user enters a f l i g h t _ i d ∗ /
18 /∗ ex : TP301 − TAP f l i g h t number 301 ∗ /
19 f l i g h t = A i r p o r t . whe re IsF l i gh t ("TP301") ;
20 System . out . p r i n t l n (f l i g h t) ;
21

22 /∗ a l e r t to a problem i n the a i r p o r t ∗ /
23 A i r p o r t . reportProblem (" The e leva to rs are not working . ") ;
24 }
25 }

5.4.2 Execution

Listing 5.18 illustrates the main file containing the composition of services and se-
quence of actions that are used in this scenario.

Listing 5.18: AirportServicesScenario class
1 public class Ai rpo r tServ i cesScenar io {
2

3 public void run () {
4

5 T e s t A i r p o r t a i r p o r t _ s r v s = new T e s t A i r p o r t () ;
6

7 a i r p o r t _ s r v s . c a l l () ;
8

9 / / change to another terminal, service bindings are lost
10 a i r p o r t _ s r v s . c a l l () ;
11

12 / / change to terminal 3, service bindings are lost
13 a i r p o r t _ s r v s . c a l l () ;
14 }
15

16 public s t a t i c void main (S t r i n g [] args) {
17 new Ai rpo r tServ i cesScenar io () . run () ;
18 }
19 }

In Line 5, the application creates a new instance of TestAirport class in order to
obtain service bindings from the middleware. Line 7 shows the first invocation of the
service, at this stage we are located in terminal 1 of the airport. After obtaining all
results we change to another terminal in the same airport, terminal 2. This results in
changing the registry address and losing service bindings. Performing another request
of airport services results in a failure, and since we have declared the service use as
volatile, a new service binding is obtained.

Moving to another terminal in the same airport, terminal 3, and invoking airport
services in line 13 results in failure again, but in this situation since the registry has
no service registered no service is obtained from the middleware. The service use is
declared as volatile, meaning that the middleware performs one search for services

80

5. APPLICATIONS/CASE STUDIES 5.5. Final Remarks

and if no matching service is found, then the application ends. A different use for this
scenario could be moving from different airports and using services on each one.

The case study demonstrated the use of service abstraction (uses), volatile excep-
tion handling and failure.

5.5 Final Remarks

The case studies presented here demonstrated the usage of the Sedj language. On the
first scenario, we presented the use of three different services using parallel composi-
tion (|), service allocation (all), exception handling (catch), and service re-execution(retry).
In the second scenario we focused on losing bindings changing from one location to
another and recover from them with volatile service definition. Finally, in the third
scenario we shown recovery from losing bindings, also with volatile service definition,
and what happens if no service is available. The evaluation of these results have been
the expected.

One benefit that is most notorious from using our framework is to compare the
input SUL component with the correspondent generated code. We can agree that the
equivalent generated code is more complex and bigger in regard the code presented in
SUL components using the new programming abstractions.

Sedj provides a simpler and easier way for service composition concerning SAL and
SUL components. The framework is supported by a middleware that handles aspects
of the dynamic environment.

81

6
Conclusions

The objective of this dissertation was to study and develop an initial implementation of
the SeDeUse model. It features new programming abstractions added to Java language
specification and is sustained by a middleware layer to cope with the characteristics of
using service-oriented computing in dynamic environments. The model is divided in
two phases, the compiler and middleware modules. The former is responsible for sep-
arating the functional from the non-functional requirements on a two-layer approach,
SAL and SUL. The latter represents a software layer that provides an API for interac-
tion with the generated code from the compiler phase, and handles the dynamic nature
of the execution environment.

To achieve this goal we first designed a model that can be easily integrated in high-
level programming languages such as, Java. In this model we also studied from scratch
a support mechanism for dynamic environments. Secondly, the model is instantiated
in a general use language in order to serve as a tool to assess the language expressive-
ness.

This thesis provided three main contributions. First the concrete instantiation of the
SeDeUse model in the Java language, which we named Sedj. It expresses the concrete
syntax for the new constructs in Java. Secondly, development of a prototype that in-
cludes, translation of SAL and SUL components to Java language, a middleware layer,
also in Java, for support to the application in dynamic environments, and an interface
mapping mechanism between services.

Finally, we tested our functional prototype in order to assess the language expres-
siveness. Three case studies were performed, and from our experiments we have con-

83

6. CONCLUSIONS 6.1. Future Work

cluded that our implementation of SeDeUse presents good results. There is a sepa-
ration between service use and definition, and the middleware handles the dynamic
nature of the execution environment.

6.1 Future Work

During the development of our work, some aspects that can be improved in the future
were identified. This section highlights the most important.

Semantic web: in order to achieve a full automation of the Web Services life-cycle.

Several services in one SUL component: the possibility of declaring different services
in SUL components.

Interface mapping: other type of interface mapping support can be added to the frame-
work.

Dynamic properties: the possibility of modifying service properties at runtime.

Integration: with another project being developed by another student in order to achieve
code mobility.

The use of Semantic Web has a key concept: the ontology. It is a formal repre-
sentation of the knowledge within a certain domain. An ontology is a data structure
hierarchized with information regarding entities and the relations between them in a
certain domain. With an ontology for Web Services, the whole process of searching,
selection, and invoking services can be autonomous.

At the moment, only one type of service can be defined in each SUL component.
The possibility of declaring more than one service diminishes the number of SUL com-
ponents, and increases the language expressiveness. Listing 6.1 illustrates an example
of a possible SUL component with several services.

The mapping mechanism can be a replaceable component in the framework. In
Chapter 2 in subsection 2.2.2 regarding the frameworks that use aspects, the Web Ser-
vice Management Layer (WSML) [40] uses an abstract service interface that hides syn-
tactic differences between semantically equivalent services. In this case, the abstract
service interface performs the required transformations in order to match the requests
to the equivalent services. Other types of mapping can be added to our framework, for
instance, a similar mechanism to WSML or service methods mapping.

In Chapter 3 on subsection 3.1.1 regarding the software mobility topic, we present
the possibility of specifying a code mobility mechanism on service properties (SAL).

84

6. CONCLUSIONS 6.1. Future Work

Another thesis regarding this topic is being developed and is a feature to be later inte-
grated in Sedj.

Listing 6.1: SUL example several services
1 public class DocumentManipulat ionScenario uses v o l a t i l e Trans la t ion , Converter , P r i n t e r {
2

3 public DocumentManipulat ionScenario () {
4 }
5

6 public byte [] c a l l T r a n s l a t i o n (byte [] document , S t r i n g input_ lang , S t r i n g output_ lang) {
7 byte [] r e s u l t = nul l ;
8 r e s u l t = T rans la t i on . t r a n s l a t e (document , input_ lang , output_ lang) ;
9 return r e s u l t ;
10 }
11

12 public byte [] ca l lConve r t e r (byte [] document , S t r i n g extens ion) {
13 byte [] res = nul l ;
14 res = Converter . conver t (doc , extens ion) ;
15 return res ;
16 }
17

18 public void c a l l P r i n t e r (byte [] doc) {
19 th is . doc = doc ;
20

21 / / parallel composition
22 { P r i n t e r . p r i n t (doc) ; } | { P r i n t e r . p r i n t (doc) ; }
23 }
24 }

85

A
Appendix

A.1 ServiceAppProperties class

1 package serv ices ;
2 import java . i o . S e r i a l i z a b l e ;
3 import java . u t i l . HashMap ;
4 import java . u t i l . L i s t ;
5

6 public class Serv iceAppProper t ies implements S e r i a l i z a b l e {
7

8 private s t a t i c f i n a l long ser ia lVers ionUID = 3L ;
9 private S t r i n g interface_name ;
10 private L i s t <St r ing > serv ice_s tubs ;
11 private S t r i n g classname ;
12 private i n t nos ;
13 private HashMap<St r ing , L i s t <St r ing >> p r o p e r t i e s ;
14 private boolean i s V o l a t i l e ;
15

16 public Serv iceAppProper t ies (S t r i n g interface_name ,
17 L i s t <St r ing > serv ice_stubs , S t r i n g classname , i n t nos ,
18 HashMap<St r ing , L i s t <St r ing >> proper t i es , boolean i s V o l a t i l e) {
19 th is . interface_name = interface_name ;
20 th is . se rv ice_s tubs = serv ice_s tubs ;
21 th is . classname = classname ;
22 th is . nos = nos ;
23 th is . p r o p e r t i e s = p r o p e r t i e s ;
24 th is . i s V o l a t i l e = i s V o l a t i l e ;
25 }
26

27 public S t r i n g getInterfaceName () {
28 return th is . interface_name ;
29 }
30

87

A. APPENDIX A.1. ServiceAppProperties class

31 public L i s t <St r ing > getServ iceStubs () {
32 return th is . se rv ice_s tubs ;
33 }
34

35 public S t r i n g getClassname () {
36 return th is . classname ;
37 }
38

39 public i n t getNos () {
40 return th is . nos ;
41 }
42

43 public HashMap<St r ing , L i s t <St r ing >> ge tP rope r t i es () {
44 return th is . p r o p e r t i e s ;
45 }
46

47 public void addStubs (L i s t <St r ing > stubs) {
48 th is . serv ice_s tubs . addAl l (stubs) ;
49 }
50

51 public void rep laceServ iceStub (i n t index , S t r i n g stub) {
52 th is . serv ice_s tubs . se t (index , stub) ;
53 }
54

55 public boolean i s V o l a t i l e () {
56 return th is . i s V o l a t i l e ;
57 }
58 }

88

A. APPENDIX A.2. ServiceLocation class

A.2 ServiceLocation class

1 package middleware ;
2

3 import java . i o . S e r i a l i z a b l e ;
4

5 public class Serv iceLocat ion implements S e r i a l i z a b l e {
6

7 private s t a t i c f i n a l long ser ia lVers ionUID = 1L ;
8 private S t r i n g wsd l_ loca t ion ;
9 private S t r i n g p rop_ loca t ion ;
10

11 public Serv iceLocat ion (S t r i n g wsdl , S t r i n g prop) {
12 th is . wsd l_ loca t ion = wsdl ;
13 th is . p rop_ loca t ion = prop ;
14 }
15

16 public S t r i n g getServ iceLocat ion () {
17 return th is . wsd l_ loca t ion ;
18 }
19

20 public S t r i n g ge tP roper t i esLoca t i on () {
21 return th is . p rop_ loca t ion ;
22 }
23 }

89

A. APPENDIX A.3. Service class

A.3 Service class

1 package serv ices ;
2

3 import java . i o . S e r i a l i z a b l e ;
4 import java . u t i l . HashMap ;
5 import java . u t i l . L i s t ;
6

7 public class Serv ice implements S e r i a l i z a b l e {
8

9 private s t a t i c f i n a l long ser ia lVers ionUID = 1L ;
10 private S t r i n g name ;
11 private S t r i n g serv ice_extends ;
12 private S t r i n g service_implements ;
13 private HashMap<St r ing , L i s t <St r ing >> p r o p e r t i e s ;
14

15

16 public Serv ice (S t r i n g name, S t r i n g interface_name , S t r i n g extends_name , HashMap<St r ing ,
L i s t <St r ing >> p r o p e r t i e s) {

17 th is . name = name ;
18 th is . serv ice_implements = interface_name ;
19 th is . serv ice_extends = extends_name ;
20 th is . p r o p e r t i e s = p r o p e r t i e s ;
21 }
22

23 public S t r i n g getName () {
24 return th is . name ;
25 }
26

27 public S t r i n g g e t I n t e r f a c e () {
28 return th is . serv ice_implements ;
29 }
30

31 public S t r i n g getExtends () {
32 return th is . serv ice_extends ;
33 }
34

35 public HashMap<St r ing , L i s t <St r ing >> ge tP rope r t i es () {
36 return th is . p r o p e r t i e s ;
37 }
38 }

90

A. APPENDIX A.4. SedjInfo class

A.4 SedjInfo class

1 package compi ler ;
2

3 import java . i o . S e r i a l i z a b l e ;
4

5 public class Sed j In fo implements S e r i a l i z a b l e {
6

7 private s t a t i c f i n a l long ser ia lVers ionUID = 1L ;
8

9 private S t r i n g interface_name ;
10 private i n t nos ;
11 private S t r i n g classname ;
12

13 public Sed j In fo (S t r i n g interface_name , i n t nos , S t r i n g classname) {
14 th is . interface_name = interface_name ;
15 th is . nos = nos ;
16 th is . classname = classname ;
17 }
18

19 public S t r i n g getInterfaceName () {
20 return th is . interface_name ;
21 }
22

23 public i n t getNumberOfServices () {
24 return th is . nos ;
25 }
26

27 public S t r i n g getClassname () {
28 return th is . classname ;
29 }
30 }

91

A. APPENDIX A.5. Cache class

A.5 Cache class

1 package middleware . cache ;
2

3 import java . u t i l . L i s t ;
4

5 public class CacheImpl implements Cache {
6

7 private S t r i n g interface_name ;
8 private L i s t <St r ing > serv ice_s tubs ;
9

10 public CacheImpl (S t r i n g interface_name) {
11 th is . interface_name = interface_name ;
12 }
13

14 public void addServiceStub (S t r i n g name) {
15 serv ice_s tubs . add (name) ;
16 }
17

18 public L i s t <St r ing > getServ iceStubs () {
19 return th is . se rv ice_s tubs ;
20 }
21

22 public boolean removeServiceStub (S t r i n g stub_name) {
23 return serv ice_s tubs . remove (stub_name) ;
24 }
25 }

92

A. APPENDIX A.6. TestTranslator generated code

A.6 TestTranslator generated code

1 import i n t e r f a c e s . T rans la t i on ;
2

3 public class Tes tT rans la to r {
4

5 public boolean f a i l = fa lse ;
6 private java . u t i l . L i s t <Trans la t ion > srvs ;
7 private java . u t i l . L i s t < In teger > f a i l e d _ s r v s ;
8 private middleware . a p p l i c a t i o n . Appl icat ionManager app_manager ;
9 public byte [] r e s u l t = nul l ;
10

11 public Tes tT rans la to r () {
12 super () ;
13 f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
14 app_manager = new middleware . a p p l i c a t i o n . Appl icat ionManagerImpl (" Tes tT rans la to r ") ;
15 srvs = app_manager . ge tServ iceBind ings () ;
16 }
17

18 private byte [] _ c a l l (i n t attempts , i n t t ime , byte [] document , S t r i n g input_ lang , S t r i n g
output_ lang) {

19 t ry {
20 r e s u l t = srvs . get (0) . t r a n s l a t e (document , input_ lang , output_ lang) ;
21 } catch (Except ion e) {
22 f a i l = true ;
23 i f (! f a i l e d _ s r v s . conta ins (0)) {
24 f a i l e d _ s r v s . add (0) ;
25 }
26 }
27 i f (f a i l && at tempts > 0) {
28 f a i l = fa lse ;
29 for (i n t i = 0 ; i < f a i l e d _ s r v s . s ize () ; i ++) {
30 Object ob j = app_manager . rep laceServ iceB ind ing (f a i l e d _ s r v s . get (i)) ;
31 srvs . set (f a i l e d _ s r v s . get (i) , (T rans la t i on) ob j) ;
32 }
33 f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
34 t ry {
35 Thread . s leep (t ime) ;
36 } catch (I n te r rup tedExcep t i on e) {
37 }
38 _ c a l l (at tempts − 1 , time , document , input_ lang , output_ lang) ;
39 }
40 return r e s u l t ;
41 }
42

43 public byte [] c a l l (byte [] document , S t r i n g input_ lang , S t r i n g output_ lang) {
44 return _ c a l l (1 , 3000 , document , input_ lang , output_ lang) ;
45 }
46 }

93

A. APPENDIX A.7. TestConverter generated code

A.7 TestConverter generated code

1 import i n t e r f a c e s . Converter ;
2

3 public class TestConverter {
4

5 public boolean f a i l = fa lse ;
6 private java . u t i l . L i s t <Converter > srvs ;
7 private java . u t i l . L i s t < In teger > f a i l e d _ s r v s ;
8 private middleware . a p p l i c a t i o n . Appl icat ionManager app_manager ;
9 public byte [] doc ;

10 public byte [] res ;
11 public S t r i n g extens ion ;
12

13 public TestConverter () {
14 super () ;
15 f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
16 app_manager = new middleware . a p p l i c a t i o n . Appl icat ionManagerImpl (" TestConverter ") ;
17 srvs = app_manager . ge tServ iceBind ings () ;
18 }
19

20 private byte [] _ c a l l (byte [] doc , S t r i n g extens ion) {
21 t ry {
22 res = srvs . get (0) . conver t (doc , extens ion) ;
23 } catch (Except ion e) {
24 f a i l = true ;
25 i f (! f a i l e d _ s r v s . conta ins (0)) {
26 f a i l e d _ s r v s . add (0) ;
27 }
28 }
29 i f (f a i l) {
30 f a i l = fa lse ;
31 for (i n t i = 0 ; i < f a i l e d _ s r v s . s ize () ; i ++) {
32 Object ob j = app_manager . rep laceServ iceB ind ing (f a i l e d _ s r v s . get (i)) ;
33 srvs . set (f a i l e d _ s r v s . get (i) , (Converter) ob j) ;
34 }
35 f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
36 _ c a l l (byte [] doc , S t r i n g extens ion) ;
37 }
38 return res ;
39 }
40

41 public void c a l l (byte [] doc , S t r i n g extens ion) {
42 return _ c a l l (doc , extens ion)
43 }
44 }

94

A. APPENDIX A.8. TestPrinter generated code

A.8 TestPrinter generated code

1 import i n t e r f a c e s . P r i n t e r ;
2

3 public class T e s t P r i n t e r {
4

5 public boolean f a i l = fa lse ;
6 private java . u t i l . L i s t < P r i n t e r > srvs ;
7 private java . u t i l . L i s t < In teger > f a i l e d _ s r v s ;
8 private middleware . a p p l i c a t i o n . Appl icat ionManager app_manager ;
9 public boolean passed = fa lse ;
10 private java . u t i l . L i s t <Thread> threads ;
11 public byte [] doc ;
12

13 public T e s t P r i n t e r () {
14 super () ;
15 f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
16 app_manager = new middleware . a p p l i c a t i o n . Appl icat ionManagerImpl (" T e s t P r i n t e r ") ;
17 threads = new java . u t i l . L inkedL is t <Thread > () ;
18 srvs = app_manager . ge tServ iceBind ings () ;
19 }
20

21 private void _ c a l l (i n t attempts , i n t t ime , byte [] doc) {
22 th is . doc = doc ;
23 i f (! passed)
24 threadGen () ;
25 for (i n t i = 0 ; i < threads . s ize () ; i ++) {
26 threads . get (i) . s t a r t () ;
27 }
28 for (i n t i = 0 ; i < threads . s ize () ; i ++) {
29 t ry {
30 threads . get (i) . j o i n () ;
31 } catch (I n te r rup tedExcep t i on e) {
32 }
33 }
34 passed = fa lse ;
35 threads = new java . u t i l . L inkedL is t <Thread > () ;
36

37 i f (f a i l && at tempts > 0) {
38 f a i l = fa lse ;
39 for (i n t i = 0 ; i < f a i l e d _ s r v s . s ize () ; i ++) {
40 Object ob j = app_manager . rep laceServ iceB ind ing (f a i l e d _ s r v s . get (i)) ;
41 srvs . set (f a i l e d _ s r v s . get (i) , (P r i n t e r) ob j) ;
42 }
43 f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
44 t ry {
45 Thread . s leep (t ime) ;
46 } catch (I n te r rup tedExcep t i on e) {
47 }
48 _ c a l l (at tempts − 1 , time , doc) ;
49 }
50 }
51

52 private void threadGen () {
53 passed = true ;
54 Thread t0 = new Thread (new Runnable () {

95

A. APPENDIX A.8. TestPrinter generated code

55 public void run () {
56 t ry {
57 srvs . get (0) . p r i n t (doc) ;
58 } catch (Except ion e) {
59 f a i l = true ;
60 i f (! f a i l e d _ s r v s . conta ins (0)) {
61 f a i l e d _ s r v s . add (0) ;
62 }
63 }
64 }
65 }) ;
66 threads . add (t0) ;
67 Thread t1 = new Thread (new Runnable () {
68 public void run () {
69 t ry {
70 srvs . get (1) . p r i n t (doc) ;
71 } catch (Except ion e) {
72 f a i l = true ;
73 i f (! f a i l e d _ s r v s . conta ins (1)) {
74 f a i l e d _ s r v s . add (1) ;
75 }
76 }
77 }
78 }) ;
79 threads . add (t1) ;
80 }
81

82 public void c a l l (byte [] doc) {
83 _ c a l l (1 , 4000 , doc) ;
84 }
85 }

96

A. APPENDIX A.9. TestHighway generated code

A.9 TestHighway generated code

1 import i n t e r f a c e s . Highway ;
2

3 public class TestHighway {
4

5 public boolean f a i l = fa lse ;
6 private java . u t i l . L i s t <Highway> srvs ;
7 private java . u t i l . L i s t < In teger > f a i l e d _ s r v s ;
8 private middleware . a p p l i c a t i o n . Appl icat ionManager app_manager ;
9

10 public TestHighway () {
11 super () ;
12 f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
13 app_manager = new middleware . a p p l i c a t i o n . Appl icat ionManagerImpl (" TestHighway ") ;
14 srvs = app_manager . ge tServ iceBind ings () ;
15 }
16

17 private void _ c a l l () {
18 S t r i n g output = " " ;
19 t ry {
20 output = srvs . get (0) . t r a f f i c R e p o r t (15) ;
21 } catch (Except ion e) {
22 f a i l = true ;
23 i f (! f a i l e d _ s r v s . conta ins (0)) {
24 f a i l e d _ s r v s . add (0) ;
25 }
26 }
27 System . out . p r i n t l n (output) ;
28 t ry {
29 srvs . get (0) . t r ave lAss i s t ance (145) ;
30 } catch (Except ion e) {
31 f a i l = true ;
32 i f (! f a i l e d _ s r v s . conta ins (0)) {
33 f a i l e d _ s r v s . add (0) ;
34 }
35 }
36 t ry {
37 output = srvs . get (0) . vehiclesInOppositeWay () ;
38 } catch (Except ion e) {
39 f a i l = true ;
40 i f (! f a i l e d _ s r v s . conta ins (0)) {
41 f a i l e d _ s r v s . add (0) ;
42 }
43 }
44 System . out . p r i n t l n (output) ;
45 t ry {
46 output = srvs . get (0) . nearestGasStat ion () ;
47 } catch (Except ion e) {
48 f a i l = true ;
49 i f (! f a i l e d _ s r v s . conta ins (0)) {
50 f a i l e d _ s r v s . add (0) ;
51 }
52 }
53 System . out . p r i n t l n (output) ;
54

97

A. APPENDIX A.9. TestHighway generated code

55 i f (f a i l) {
56 f a i l = fa lse ;
57 for (i n t i = 0 ; i < f a i l e d _ s r v s . s ize () ; i ++) {
58 Object ob j = app_manager . rep laceServ iceB ind ing (f a i l e d _ s r v s . get (i)) ;
59 srvs . set (f a i l e d _ s r v s . get (i) , (Highway) ob j) ;
60 }
61 f a i l e d _ s r v s = new java . u t i l . L inkedL is t < In teger > () ;
62 _ c a l l () ;
63 }
64 }
65

66 public void c a l l () {
67 _ c a l l () ;
68 }
69 }

98

A. APPENDIX A.10. TestAirport generated code

A.10 TestAirport generated code

1 import i n t e r f a c e s . A i r p o r t ;
2 import java . u t i l . L i s t ;
3 import java . u t i l . L i nkedL i s t ;
4

5 public class T e s t A i r p o r t {
6

7 public boolean f a i l = fa lse ;
8 private L i s t < A i r p o r t > srvs ;
9 private L i s t < In teger > f a i l e d _ s r v s ;
10 private middleware . a p p l i c a t i o n . Appl icat ionManager app_manager ;
11

12 public T e s t A i r p o r t () {
13 super () ;
14 f a i l e d _ s r v s = new L inkedL is t < In teger > () ;
15 app_manager = new middleware . a p p l i c a t i o n . Appl icat ionManagerImpl (" T e s t A i r p o r t ") ;
16 srvs = app_manager . ge tServ iceBind ings () ;
17 }
18

19 private void _ c a l l () {
20 L i s t <St r ing > res = new L inkedL is t <St r ing > () ;
21 S t r i n g f l i g h t = " " ;
22 t ry {
23 res = srvs . get (0) . c h e c k F l i g h t L i s t () ;
24 } catch (Except ion e) {
25 f a i l = true ;
26 i f (! f a i l e d _ s r v s . conta ins (0)) {
27 f a i l e d _ s r v s . add (0) ;
28 }
29 }
30 System . out . p r i n t l n (res) ;
31 t ry {
32 f l i g h t = srvs . get (0) . where IsF l i gh t ("TP301") ;
33 } catch (Except ion e) {
34 f a i l = true ;
35 i f (! f a i l e d _ s r v s . conta ins (0)) {
36 f a i l e d _ s r v s . add (0) ;
37 }
38 }
39 System . out . p r i n t l n (f l i g h t) ;
40 t ry {
41 srvs . get (0) . a le r tProb lem (" The e leva to rs are not working . ") ;
42 } catch (Except ion e) {
43 f a i l = true ;
44 i f (! f a i l e d _ s r v s . conta ins (0)) {
45 f a i l e d _ s r v s . add (0) ;
46 }
47 }
48

49 i f (f a i l) {
50 f a i l = fa lse ;
51 for (i n t i = 0 ; i < f a i l e d _ s r v s . s ize () ; i ++) {
52 Object ob j = app_manager . rep laceServ iceB ind ing (f a i l e d _ s r v s . get (i)) ;
53 srvs . set (f a i l e d _ s r v s . get (i) , (A i r p o r t) ob j) ;
54 }

99

A. APPENDIX A.10. TestAirport generated code

55 f a i l e d _ s r v s = new L inkedL is t < In teger > () ;
56 _ c a l l () ;
57 }
58 }
59

60 public void c a l l () {
61 _ c a l l () ;
62 }
63 }

100

Bibliography

[1] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services:
Concepts, Architecture and Applications. Springer Verlag, 2004.

[2] Guruduth Banavar and Abraham Bernstein. Software infrastructure and design
challenges for ubiquitous computing applications. Commun. ACM, 45(12):92–96,
2002.

[3] Michael. Beisiegel and al. Service Component Architecture - Building Systems
using a Service Oriented Architecture. A Joint Whitepaper by BEA, IBM, Interface21,
IONA, SAP, Siebel, Sybase, Nov 2005.

[4] Boualem Benatallah, Marlon Dumas, and Quan Z. Sheng. Facilitating the Rapid
Development and Scalable Orchestration of Composite Web Services. In Dis-
tributed and Parallel Databases, 2005.

[5] Joseph Bih. Service oriented architecture (SOA) a new paradigm to implement
dynamic e-business solutions. Ubiquity, 7(30):1–1, 2006.

[6] Michael Blow, Yaron Goland, Matthias Kloppmann, Frank Leymann, Gerhard
Pfau, Dieter Roller, and Michael Rowley. BPELJ: BPEL for Java. BEA and IBM,
March 2004.

[7] Anis Charfi and Mira Mezini. Aspect-Oriented Web Service Composition with
AO4BPEL. In European Conference on Web Services, pages 168–182, 2004.

[8] COM/DCOM: http://www.microsoft.com/com/default.mspx.

[9] CORBA: http://www.omg.org.

[10] Massimiliano Di Penta, Raffaele Esposito, Maria Luisa Villani, Roberto Codato,
Massimiliano Colombo, and Elisabetta Di Nitto. WS Binder: a framework to

101

BIBLIOGRAPHY

enable dynamic binding of composite web services. In SOSE ’06: Proceedings of
the 2006 international workshop on Service-oriented software engineering, pages 74–80,
New York, NY, USA, 2006. ACM.

[11] Elilabs: http://www.elilabs.com/rj/dreams/node18.html.

[12] Abdelkarim Erradi and Piyush Maheshwari. Dynamic Binding Framework for
Adaptive Web Services. In ICIW ’08: Proceedings of the 2008 Third International
Conference on Internet and Web Applications and Services, pages 162–167, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[13] Oneyka Ezenwoye and S. Masoud Sadjadi. Composing aggregate web services in
BPEL. In ACM-SE 44: Proceedings of the 44th annual Southeast regional conference,
pages 458–463, New York, NY, USA, 2006. ACM.

[14] Onyeka Ezenwoye and S. Masoud Sadjadi. TRAP/BPEL: A framework for dy-
namic adaptation of composite services. 2008.

[15] Gregory Hackmann, Christopher Gill, and Gruia-Catalin Roman. Extending
BPEL for Interoperable Pervasive Computing. Pervasive Services, IEEE Interna-
tional Conference on, pages 204–213, July 2007.

[16] HTTP: http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[17] HTTP tunneling:
http://java.sun.com/developer/onlineTraining/rmi/RMI.html.

[18] Scott E. Hudson, Frank Flannery, C. Scott Ananian, Dan Wang, and Andrew Ap-
pel. CUP LALR parser generator for Java. http://www.cs.princeton.edu/ ap-
pel/modern/java/CUP/, 1996.

[19] Java Beans: http://java.sun.com/javase/technologies/desktop/
javabeans/index.jsp.

[20] Matjaz B. Juric. Business Process Execution Language for Web Services BPEL and
BPEL4WS 2nd Edition. Packt Publishing, 2006.

[21] Viswanathan Kodaganallur. Incorporating language processing into java applica-
tions: A javacc tutorial. IEEE Software, 21:70–77, 2004.

[22] David Martin, John Domingue, Michael L. Brodie, and Frank Leymann. Semantic
Web Services, Part 1. IEEE Intelligent Systems, 22(5):12–17, 2007.

102

BIBLIOGRAPHY

[23] James McGovern, Sameer Tyagi, and Sunil Mathew Michael Stevens. Java Web
Services Architecture. Elsevier Science and Technology, 2003.

[24] Stefano Modafferi, Enrico Mussi, and Barbara Pernici. SH-BPEL: a self-healing
plug-in for Ws-BPEL engines. In MW4SOC ’06: Proceedings of the 1st workshop
on Middleware for Service Oriented Computing (MW4SOC 2006), pages 48–53, New
York, NY, USA, 2006.

[25] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An
extensible compiler framework for java. In In 12th International Conference on Com-
piler Construction, pages 138–152. Springer-Verlag, 2003.

[26] Bart Orriëns, Jian Yang, and Mike P. Papazoglou. ServiceCom: A Tool for Service
Composition Reuse and Specialization. In WISE ’03: Proceedings of the Fourth Inter-
national Conference on Web Information Systems Engineering, page 355, Washington,
DC, USA, 2003. IEEE Computer Society.

[27] OWL-S: http://www.w3.org/Submission/OWL-S/, 2004.

[28] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, Frank Leymann, and
Bernd J. Krämer. 05462 Service-Oriented Computing: A Research Roadmap.
In Francisco Cubera, Bernd J. Krämer, and Michael P. Papazoglou, editors, Ser-
vice Oriented Computing (SOC), number 05462 in Dagstuhl Seminar Proceedings,
Dagstuhl, Germany, 2006. Internationales Begegnungs- und Forschungszentrum
für Informatik (IBFI), Schloss Dagstuhl, Germany.

[29] Hervé Paulino and Carlos Tavares. SeDeUse: A Model for Service-oriented Com-
puting in Dynamic Environments . In Second International Conference on MOBILe
Wireless MiddleWARE, Operating Systems, and Applications (Mobilware 2009), num-
ber 7 in Lecture Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, pages 157–170. Springer-Verlag, 04 2009.

[30] Cesare Pautasso. Rapid composition of web services with jopera for eclipse. In
Submission for the Research-Industry Exchange at EclipseCon 2005, 2005.

[31] Cesare Pautasso and Gustavo Alonso. "The JOpera visual composition language".
Journal of Visual Languages and Computing, 16(1-2):119 – 152, 2005. 2003 IEEE Sym-
posium on Human Centric Computing Languages and Environments.

[32] Cesare Pautasso, Thomas Heinis, and Gustavo Alonso. JOpera: Autonomic Ser-
vice Orchestration. IEEE Data Engineering Bulletin, 29, September 2006 2006.

103

BIBLIOGRAPHY

[33] Polyglot5:
http://www.cs.ucla.edu/~milanst/projects/polyglot5.

[34] Tian Qiu, Lei Li, and Pin Lin. Web Service Discovery with UDDI Based on Seman-
tic Similarity of Service Properties. In SKG ’07: Proceedings of the Third International
Conference on Semantics, Knowledge and Grid, pages 454–457, Washington, DC, USA,
2007. IEEE Computer Society.

[35] RMI: http://java.sun.com/javase/technologies/core/
basic/rmi/index.jsp.

[36] SOAP: http://www.w3.org/TR/soap/, 2007.

[37] Patrik Spiess, Stamatis Karnouskos, Dominique Guinard, Domnic Savio, Oliver
Baecker, Luciana Moreira Sá de Souza, and Vlad Trifa. SOA-Based Integration of
the Internet of Things in Enterprise Services. In IEEE International Conference on
Web Services, ICWS 2009 , Los Angeles, CA, USA, pages 968–975, July 6–10, 2009.

[38] TModel:
http://www.codeproject.com/KB/XML/understandingTModels.aspx.

[39] UDDI: http://uddi.xml.org/.

[40] Bart Verheecke, María A. Cibrán, and Viviane Jonckers. AOP for Dynamic Con-
figuration and Management of Web Services. pages 137–151.

[41] Guijun Wang and Casey K. Fung. Architecture Paradigms and Their Influences
and Impacts on Component-Based Software Systems. In HICSS ’04: Proceedings of
the Proceedings of the 37th Annual Hawaii International Conference on System Sciences
(HICSS’04) - Track 9, page 90272.1, Washington, DC, USA, 2004. IEEE Computer
Society.

[42] Web Services Reliable Messaging:
http://www.ibm.com/developerworks/library/specification/ws-rm/.

[43] Web Services Security:
http://www.ibm.com/developerworks/library/specification/ws-secure/.

[44] Web Services Transaction:
http://www.ibm.com/developerworks/library/specification/ws-tx/.

[45] WS Addressing:
http://www.w3.org/Submission/ws-addressing/, 2004.

104

BIBLIOGRAPHY

[46] WS-BPEL: http://www.oasis-open.org/committees/
download.php/14616/wsbpel-specification-draft.htm.

[47] WS-CDL:
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/, 2004.

[48] WSDL: http://www.w3.org/TR/wsdl20/, 2007.

[49] WS Management Standard: http://www.dmtf.org/standards/wsman/.

[50] XML: http://www.w3.org/TR/REC-xml, 2008.

105

BIBLIOGRAPHY

107

