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Abstract 

The research work performed under the course of this thesis at the Nano-Bio Physics Group 

of the Institute of Ion Physics and Applied Physics, University of Innsbruck, deals exclusively 

with electron driven reactions in complexes embedded in helium nanodroplets. Helium 

nanodroplets provide a special and exotical environment that is not reachable with other 

techniques. The cold environment of the helium nanodroplets (0.38K), is a perfect tool to 

study complex systems in their ro-vibrational ground state. Dopants are added to the helium 

nanodroplets in a pick up cell allowing to control accurately the growing of clusters‘ size in 

helium droplets. The research activities described in this thesis cover the interaction of low 

and intermediate energies (0 – 100 eV) electrons with a wide range of simple and complex 

molecules in a very cold environment. Electron impact ionisation and free electron attachment 

to different systems were studied. Different halogenated molecules were used to study the size 

of solvated cations and anions. Clusters of the rare gas argon were also investigated and 

compared with argon cluster ions formed upon electron impact of pure neutral argon clusters. 

Several biomolecules and molecules with biological interest have been studied, these 

including: some amino acids as Glycine, L-alanine and L-serine embedded in helium 

nanodroplets. Several features were assigned as helium solvation and fragmentation. In the 

case of L-serine, a magic octamer S8H+ cluster was observed and identified. Free electron 

attachment experiments to L-serine shows very rich chemistry observed here for the first time 

in amino acids embedded in helium nanodroplets. Positively and negatively charged ions 

from He nanodroplets doped with acetic acid were also investigated. Chemistry triggered by 

low energy electrons was discuss and compared with previous studies especially with single, 

gas phase molecules. Preliminary studies on L-valine show strong indication for peptide bond 

formation at cold temperatures and triggered by low electron energy, close to 0 eV. 
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Chapter 1 

Introduction 

How life begins remains a fundamental unsolved mystery. The origin of life on Earth may 

well represent only one pathway among many, along which life can emerge [1.1]. In 

searching for the origins of life, one may find two possibilities: either the building blocks 

were assembled on Earth in the so-called primordial soup, or the building blocks were formed 

elsewhere in the universe and somehow have been “carried” to Earth (panspermia). Under this 

(second) scenario the primary constituents of life may have been delivered from the 

interstellar space (or medium) by meteorites or comets flying to the Earth between 4500 and 

3500 millions years ago [1.2, 1.3]. 

 

The interstellar medium (ISM) has extreme conditions of low temperature of a few Kelvin 

and low pressure in the extreme ultra high vacuum region, such that only two body (i.e., 

bimolecular) reactions can occur, so that the probability of a 3-body collision is negligible at 

such pressures, even on the time-scale of the lifetime of the universe [1.4]! 

 

The ISM contains different sources of radiation: 

– Light emission (from cosmic background radiation to extreme gamma radiation) of which 

the ultraviolet (from nearby stars) is the most important for inducing chemistry; 

– High energy particles: about 89% of which are protons, 10% helium nuclei (alpha particles) 

and about 1% ions of the heavier elements and electrons. It is believed that most galactic 

cosmic rays derive their energy from supernova explosions, which occur approximately once 

every 50 years in our galaxy [1.5]. 

 

In the gas phase most of the chemistry in the ISM is driven by ion-neutral and positive ion-

electron (dissociative recombination) reactions yielding the formation of molecules. These 

reactions are generally with no activation barrier, implying that if the reactants pass each other 

within a defined (velocity-dependent) cross section, a reaction always may occur. They can 
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therefore take place at low temperatures, indeed in many cases their reaction rate constants 

actually increase with decreasing temperatures [1.5].  

 

So far, many building blocks for molecules important in biology of life are present in the 

interstellar environment [1.6]. More than a 150 species have been detected in the ISM and 

they include short and large-chain and ring-like molecules, positive and negative ions, free 

radicals, amines, alcohols, and also more complex molecules like sugars such as 

glycolaldehyde, among many others. This sugar can be a building block for ribose forming 

the DNA and RNA backbones. Ion-molecule reactions are competitive reactions with respect 

to reactions with free radical or ionic species, since the neutral-neutral molecules are 

generally inhibited by an activation energy and therefore shown not to compete with any of 

the above [1.7]. Complex living organisms, as humans are, have specified features towards 

the interaction of radiation with biological constituents which may open new questions and 

give new research targets, regarding the approach, either at the molecular or at the 

physiological level. The role of homochirality in living organisms is still a matter of research 

within the scientific community. Why only L amino acids are part of proteins, only D sugars 

exist in human organism and why nucleic acids in RNA and DNA appear in the D form [1.8]? 

 

In order to understand several processes in the ISM and those related to the origins of life, life 

in space and astrobiology, a considerable number of experimental laboratories studying gas 

phase, surface (ices) or condensed phase reactions. Techniques have been developed to 

simulate or mimic conditions close to those found in the ISM.  

 

Electron impact ionisation and free electron attachment to gas phase targets have been carried 

out since several decades by making use of different experimental techniques developed over 

the years. Meanwhile, condensed phase studies have also seen an increase of interest from the 

scientific community. Nonetheless, there is still a gap between gas and condensed phases. To 

link these two phases several approaches can be taken into account by either increase the 

complexity of the gas phase molecular structures or as in the present research by making use 

of helium nanodroplets. Before we get started in helium droplets, the main subject related to 

the present thesis, we need to understand why it is important to use electrons as ionising 

particles. In space, photon interactions with matter release electrons via the photoelectric 
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effect and photoionisation. These electrons play an important role in space chemistry. It has 

been suggested that ionising radiation to living cells might produce approximately 5×104 low 

energy electrons for each MeV of incident radiation [1.9, 1.10]; these electrons have an 

energy distribution centred below 20 eV and may cause many of the lethal DNA lesions. The 

yields of single and double strand breaks (SSBs and DSDs, respectively) (Figure 1.1) caused 

by such electrons have been observed to be 8.2×10-4 and 2×10-4 strand breaks per electron, 

respectively, at 10 eV. Comparing these results with 10 to 25 eV photons they have found that 

the former (electrons) are roughly one to two orders of magnitude larger [1.11]. Furthermore, 

another study from Sanche’s group [1.12], report that SSBs and DSBs occur in the energy 

range of 5-7 eV, below the threshold of DNA ionisation, i.e., 7.5 eV. The yields of SSBs and 

DSBs showed to be energy dependent suggesting that electron attachment, a resonant process, 

is the initial mechanism damaging DNA. They claim that the SSBs are initiated by resonant 

electron attachment process to the DNA constituents, i.e, bases, deoxyribose phosphate or 

water, followed by bond cleavage. For the DSBs, they suggest that they are caused by 

subsequent reactions of the products of SSBs with other DNA constituents. 

  
     a)    b) 

Figure 1.1 – Single (a)) and double (b)) strand breaks, SSBs and DSBs, respectively, pointed with arrows  

Picture from en.wiki 

Due to the relative high cross sectional values for free electron attachment to these molecules 

(of the order of 10-21 – 10-20 cm2), several experimental investigations in Europe have been 

carried out mainly here in Innsbruck and in Berlin by the group of Eugen Illenberger. So far, 

free electron attachment and electron impact ionisation to several molecules with astro-

biological interest, have already been studied. However, the complexity of these biological 

environments require that we have to investigate more complex and bigger molecules if we 
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were to assess the effects of the secondary particles emitted during the ionisation tracks. So 

the question that we may raise relies on how about more complex systems? 

 

To understand ionisation processes at a more complex level than the single molecular 

structures, cluster science provides tools to generate such targets. The technique to produce 

helium nanodroplets appeared in the 60’s. Helium nanodroplets offer special properties that 

open doors to new pathways that can go through some answers about the origin of life, life in 

space or many biological processes. Helium has special features that make helium 

nanodroplets a special tool to investigate complex molecular systems. Helium nanodroplets 

are somehow easily synthesized with sizes between 103 to 108 [1.13] helium atoms per 

droplet. Controlling the stagnation conditions enables to control the size of the droplet. By 

evaporative cooling of weakly bonded helium atoms, cold (internal) temperatures (0.38K) can 

be achieved. At this temperature helium nanodroplets are superfluid [1.14-1.15]. Due to this 

fact almost all molecules that collide with the droplets move towards the centre of the 

nanodroplet, where they are cooled down. One consequence of this feature is that cold 

clusters and metastable (unannealed) complexes can be formed. This technique may also be 

useful to elucidate several processes and reactions in the interstellar space due to the low 

temperature characteristic. 

 

This thesis is divided in 9 chapters. In order to better understand the experimental results 

presented, a short overview about positive and negative ionisation is described in chapter two 

and cluster science is described in the chapter three. Chapter four describes in detail the 

experimental set-up as it was assembled during the time while these measurements were 

carried out. Chapter five goes through the size of ions solvated in helium droplets [1.16]. 

Clusters of argon have been extensively studied and are a model system in cluster research 

[1.17 – 1.20]. Electron impact ionisation of argon clusters embedded in helium nanodroplets 

was investigated in this thesis and is described in chapter six [1.21]. Acetic acid is a molecule 

with biological interest. Furthermore, acetic acid measurements could help to understand the 

formation of biomolecules as amino acids in the ISM. In chapter seven electron impact 

ionisation and electron attachment studies of acetic acid and formamide are presented [1.22]. 

Some studies with amino acids were performed. Clusters of simple amino acids like Glycine 

and L-alanine and more complex amino acids like L-serine that has a hydroxyl group in the 
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side chain, were analyzed and compared. [1.23, 1.24] Results are described in detail in chapter 

eight. 

 

In chapter nine remarks and conclusions are presented. Preliminary results with Valine in 

helium nanodroplets are presented in this chapter. Furthermore, as future work some guide 

lines are proposed in order to prove peptide bonding formation at low temperatures and 

initiated via low energy electron interactions, and some indication for future studies with 

different amino acids are suggested. 
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Chapter 2 

Ionisation 

This chapter is devoted to mechanisms related to the interaction of electrons with molecular 

targets through ionisation and attachment, leading to positive ion formation via electron 

impact ionisation and negative ion formation via electron attachment. We will recall the Frank 

Condon principle and the Coulomb explosion in case of multiple ionisation associated with 

these mechanisms. For the particular case of attachment, we will analyse the different kinds of 

resonant states of the negative ions and some comparisons will be drawn between gas and 

cluster/condensed phases.  

2.1. Electron impact ionisation 
Electron impact ionisation involves the interaction (collision) of an electron with a target 

particle, and subsequent formation of one ion and two electrons, one of those being ejected 

from the target. The first electron-ion ionisation measurement performed by Dolder, 

Harrinson and Thoneman [2.1] dates back to 1961 and the following process was studied: 

e- + He+ → He2+ + 2e-, 

Electron impact ionisation together with mass spectrometry is one of the most common 

methods to detect and study atomic and molecular clusters. If the energy of an incoming 

electron interacting with neutral clusters is greater than the critical value leading to the 

formation of an ionic channel, i.e., the appearance energy, some of the neutral clusters will be 

ionised. As the electron energy is increased, the variety and abundance of the ions produced 

will increase because the ionisation process may proceed via different reaction channels [2.3 – 

2.5]. However, the resulting ion efficiency curves do not follow a straight line dependence 

due to the fact that other competing channels will be opened as will be addressed with a few 

examples in section 2.1.1. 
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2.1.1. Ionisation processes 

Electron Impact Ionisation processes for a single molecule AB as a function of the incoming 

electron energy can be classified in the following exit channels:  

AB + e → AB+ + es + ee     single ionisation   (2.1) 

AB + e → AB2+ + es + 2ee     double ionisation   (2.2) 

AB + e → ABz+ + es + zee     multiple ionisation   (2.3) 

AB + e → ABk+ + es + ee     k shell (inner) ionisation  (2.4) 

AB + e → AB** + es → AB+ + es + ee   autoionisation   (2.5) 

AB + e → AB+* + es + ee → AB2+ + 2ee   autoionisation   (2.6) 

AB + e → AB+* + es + ee → A+ + B + es + ee  fragmentation   (2.7) 

AB + e → AB+* + es + ee → AB+ + hυ + es + ee  radiative ionisation  (2.8) 

AB + e → A+ + B+ es + ee     dissociative ionisation (2.9) 

AB + e → A+ + B- + es + ee     ion par formation  (2.10) 

AA + e → AA2+* + es + 2ee → A+ + A+ + es + 2ee  Coulomb explosion  (2.11) 

 

In equations (2.1 – 2.11) es is the scattered electron and ee the ejected electron. The processes 

described in the equations (2.1 –2.4) and (2.9 and 2.10), may be consider as single step 

ionisation (direct) reactions, whereas (2.5 – 2.8) and (2.11) have to be viewed as two steps 

ionisation (indirect) processes where the initial interaction leads to the intermediate product 

which reacts subsequently via a unimolecular process. Processes that occur by single step 

ionisation, the ejected and scattered electrons leave the atom/molecule within a time window 

of the order of 10-16 s. For the indirect ionisation cases, the processes are slower than the 

direct processes. The time window in these particular casees can be of the order of 10-13 and 

10-5 s. 

2.1.2. Frank-Condon Principle 

Inelastic collisions, i.e., when the kinetic energy of the incoming electron is not conserved and 

may be transformed into vibrational rotational or electronic energy of the target, between 

electrons and atoms/molecules involve transitions between two states. The molecular state is 

characterized by its electronic (e), vibrational (v) and rotational states (J). Therefore, its 

related energy can be estimated according to the Born-Oppenheimer approximation, such that 

is the summed contribution of each of them: 
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Etotal = Erotational + Evibrational + Eelectronic (2.12) 

with Eelectronic = 102Evibracional = 104Erotational [2.2]. Transitions between two electronic states can 

easily be described if one considers that they occur so rapidly that the intermolecular 

distances of the molecule do not have time enough to change appreciably the position of 

equilibrium. This is known as the Frank Condon principle [2.6]. This is due to the great ratio 

of the nuclear to electronic mass and the short interaction time. The arrival point in the 

potential energy curve (for diatomics) of the excited state (that can also be an ionic state) lies 

above the starting point of the initial potential energy curve by drawing a vertical transition 

line from the vibrational ground state of the neutral. In the case of ionisation, the energy 

between both states in a vertical transition is the vertical ionisation energy, and usually 

assumed to correspond to the point of maximum intensity in the experimental spectrum. The 

probability that the vibrational quantum numbers may change depends on the relative position 

of the potential energy curves, which in turn means depending also on the geometry and 

energetic properties of the molecular states. This probability is defined by the Frank Condon 

overlap integral using the Born’s first approximation [2.5]: 

( )2'
, ~ dRp uöul ∫ υυψψ   (2.13) 

with pl,u the probability of the transition involving the vibrational level υ in the lower state l 

and υ’ in the upper state u. υψ ö  and 'υψ u  the corresponding vibrational wave functions, and R 

the internuclear distance. Depending on the relative shape of the potential curves of a system, 

different reaction channels can be attained. Figure 2.1 shows the potential energy curves for 

H2 and H2
+. The internuclear separation in the ground vibrational state lies between the limits 

R1 and R2 for all possible transitions and according to the Frank Condon principle, it must still 

lie between the same limits after any of these transitions. Figure 2.1 shows not only the 

discrete vibrational states that can be populated but also some part of the continuum and 

repulsive states [[H2(X 1Σg
+) → H2(B 1Σu

+), H2(X 1Σg
+) → H2

+(2Σg
+), H2(X 1Σg

+) → H2
+(2Σu

+), 

in Figure 2.1]. The shaded area corresponds to the Frank Condon region. 
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Figure 2.1 – Schematic potential energy diagram of H2 showing the neutral ground state and higher states 

representing the exited or double ionized molecule, after [2.3] 

The Frank Condon principle described above is applied to diatomic molecules. However, in 

the case of polyatomic molecules, the potential energy curves have to be replaced by n-

dimensional potential-energy surfaces where n is the number of the atoms in the molecule. 

For polyatomic molecules, the access to ionic states formed by electron impact ionisation, 

may be given in agreement with the Frank Condon principle. Moreover, for large polyatomic 

molecules due to the several degrees of freedom, the ionisation process in terms of the 

potential hypersurfaces, may be better described according to statistical concepts, as quasi-

equilibrium theory (QET) or Rice-Ramsperger-Kassel-Markus basic assumption (RRKM), 

based in statistical dynamics [2.3]. 

 

The properties of the ionic states depend on the type of the ejected electron from the neutral 

molecule, which can be classified in three categories [2.6]: 

i) non-bonding electron: in this case the bond strengths of the ion remains virtually 

the same as those of the neutral molecule, hence the bond lengths and the 

vibrational spacing are also similar; 
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ii) anti-bonding electron: the bonds became stronger, the ion bond length are 

generally shorter than those in the neutral and the vibrational spacing increases; 

iii) bonding electron, the bonds became weaker, thus the ionic bond lengths became 

larger than those than neutral and the vibrational spacing decreases. 

2.1.3. Coulomb explosion 

Coulomb explosion can be considered as a two steps ionisation process. In this thesis we will 

focus on the Coulomb explosion as a significant process in clusters. It is well known that 

many doubly ionised molecules are not stable because the Coulomb repulsion energy between 

the two positive holes exceeds the molecular binding energy. The first evidence of Coulomb 

explosion for clusters was reported by Sattler and co-workers [2.7]. Since energy transfer into 

the ionised molecule or cluster is much smaller in field evaporation or ionisation than the 

electron impact, the chance to observe doubly charged molecules or clusters should be greater 

in these cases than in the traditional ionisation methods [2.8]. The doubly charge particle 

(molecule or cluster) is stable only if the molecule or cluster exceeds a critical size. It was 

conclude that there is a Coulomb explosion when the size of the doubly charged ion is below 

a critical value, i.e., when the distance between holes is too small [2.8]. If the repulsive 

Coulomb energy Ec of the two separated holes exceeds the binding energy of the cluster 

atoms, EB, the molecular system breaks apart to single charged particles. However, if the 

diameter of the molecule or cluster exceeds the critical value only, the condition EC < EB is 

fulfilled and doubly charge molecules or clusters are stable. The critical size of the cluster 

could be calculated using the Liquid-droplet approximation. The total energy Et of a multiple 

charged cluster could be writing as the sum of the volume term, surface term and Coulomb 

term. The coulomb energy of the clusters is estimated by assuming that z elementary charges 

are distributed uniformly within the cluster. Taking the cluster as a continous medium with 

dielectric constant ε, we could write the follow expression for Coulomb energy [2.9]: 

( )
r

ezz
r
ezEc εε

ε
5

13
2

1 2
0

2
0

2 −
+

−
=   (2.14) 

where e0 is the elementary charge and r is the radius of the cluster. 
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2.1.4. Ion formation 

Electron impact ionisation of atoms leads to the production of single and multiple charged 

ions. Ionisation of molecules or clusters gives rise to many different kinds of ions as parent 

ions, fragment ions, metastable ions, multicharged ions and rearrangement ions. In this 

section we will present a short description of the different kinds of ions produced by electron 

impact ionisation. 

2.1.4.1. Parent ions 

Parent ions are formed according to reaction (2.1) when one electron is removed from a 

neutral species. The production of the parent ion relative to other ions depends on the electron 

energy and on the molecular properties of the neutral molecule. When one molecule or cluster 

is bombarded with electrons with a kinetic energy just above the ionisation threshold, and if 

the neutral and cationic potential wells lie within the Franck-Condon region, singly charged 

ions are formed, but if the electrons are energetically higher than the ionisation potential, 

access to other cationic potential energy curves may be accessable leading to, fragment ions 

and multicharged ions formation. The formation of the parent ion is also dependent on the 

internal temperature of the molecule or cluster. Increasing the internal temperature of a 

molecular target, vibrational energy increases and this leads to a decrease in the parent ion 

intensity due to the competing channels for higher fragmentation formation, if in this process 

there is a considerable change in the internuclear distance between neutral ground and 

cationic states. The range of energy generally used in electron impact ionisation experiments 

is of the order of 50 to 100 eV [2.5] because in this energy range the fragmentation patterns 

do not vary too much (as a function of the energy) and the total ionisation cross section has its 

maximum for these values. For energies above these values, due to the high velocity of the 

incoming electron, the ionisation efficiency decreases. Due to the fact that a diversity of 

fragment ions can be produced, the electron impact ionisation is considered as a non-soft 

technique compared to chemical ionisation. However, at low electron energies it’s possible to 

have less fragmentation and in this case this is considered as a soft ionisation. 
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2.1.4.2. Fragment ions 

If the electron energy increases above the ionisation potential of the molecule, fragment ions 

are produced according to reaction (2.6). The primary fragment ions may be formed in excited 

states and subsequently decay into further fragment ions. The number of fragment ions and 

their relative abundances are characteristic for a corresponding molecule. Fragments ions can 

be divided into three categories [2.5]: 

i) those contain the functional group; 

ii) those produced by breaking of the functional group; 

iii) rearrangement ions; 

 

The relative abundance of fragment ions is related to their rates of formation and 

decomposition. There are several factors that influence these rates: 

i) ionisation potential; 

ii) electronic configuration; 

iii) bond dissociation energies; 

iv) rearrangement and eliminations reaction channels; 

 

Concerning the ionisation potential, Stevenson [2.5.] reports to a general rule, that applied to 

hydrocarbons where the appearance potential for the reaction (2.9), AP(A+/AB), is given by 

the sum of the ionisation potential of A and the dissociation energy DE(A-B) if IP(A) < IP(B). 

This rule, known as Stevenson’s rule, was extended by Audier [2.5]. Audier used the 

Stevenson’s rule to state the decay of the cation AB+. This cation can decay into A+ + B or A 

+ B+, and the preferred path is that producing the ion where neutral species have lower 

ionisation potential. 

2.1.4.3. Metastable ions 

Many ions formed via electron impact ionisation have sufficient internal energy to dissociate 

before reaching the detector, i.e., ions with lifetimes < 10-5 s. This sort of ions is designated as 

“metastable ions”. If the ions decompose before leaving the ionisation region they are 

“prompt fragment ions” with lifetimes < 106 s; on the other hand an ion that is formed and 

reaches the detector without decomposition is designated as “stable ion”.  
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The metastable decomposition, analysed in a sector field mass spectrometer, gives in the mass 

spectrum a peak showing that the daughter ion with mass m2 appears in a mass position 

designated as the apparent m* according the following equation [2.5]: 
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where UA is the accelerating voltage, U the potential difference through which the parent ion 

of mass m1 falls before the decomposition, z1 and z2 the charges of parent and daughter ions, 

respectively. 

 

The formation of metastable ions can be explained by different mechanisms depending on the 

size and property of the precursor ion [2.3]: forbidden predissociation, tunnelling through a 

barrier, vibrational predissociation and rearrangement transitions. The intensity of the peaks 

corresponding to the metastable ions is usually less than 1% of the parent ion [2.3] because of 

the distribution of internal energy, i. e. for high internal energy leads to prompt fragmentation 

and low internal energy leads to parent ion formation. 

2.1.4.4. Doubly charged ions 

The presence of doubly charged ions in mass spectra was observed as early as 1930. Under 

standard electron impact ionisation conditions, ~70 eV, doubly charged ions are formed from 

most of organic compounds since their double ionisation energies are between 25 and 35 eV. 

However, the abundance of the doubly charge ions is typically 103-104 smaller than the 

corresponding abundance of the singly charged ions [2.10]. Most of the doubly charged 

diatomic ions AB2+ observed, can be described according to [2.3]: 

( ) ( ) ( ) ( )++++ ≤<+ 22 BIPAIPBIPAIP   (2.16) 

where IP are the single and double ionisation potentials for the single atoms A and B. There is 

a second group of doubly charged diatomic ions, satisfying the following condition: 

( ) ( ) ( )+++ >+ 2ABIPBIPAIP   (2.17) 
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The repulsive Coulomb interaction between A+ and B+ lies above the weakly bound state 

arising from A2+ + B allowing the formation of stable AB2+ ions [2.3]. 

 

Doubly ionised molecules or clusters can decompose via two different ways, depending on 

how the charges are distributed and if they remain in the same fragment or if they are 

distributed over the two fragments: 

+++ +→ BAAB2   (2.18) 

BAAB +→ ++ 22   (2.19) 

In general, the larger fraction of the electron impact multiple ionisation processes of 

molecules leads to singly charged fragment ions following reaction (2.18). 

2.1.4.5. Rearrangement ions 

Generally, rearrangement ions are defined as ions that contain bonds that are not present in 

the precursor molecule. This can be represented by the following reaction: 

( ) ( ) eYZXeZYXeZYX 22 ++−→+−−→+−− ++   (2.20) 

For rearrangement ions to occur, their unfavourable entropies of activation must be balanced 

by favourable activation energies, ∆H°f(X-Z+) + ∆H°f(Y) which in turn must be small. 

Hydrogen or fluorine rearrangements are common but those involving groups as CH3 or C6H5 

have also been frequently observed [2.5]. 

2.1.5. Ionisation in clusters 

Clusters may also be ionised by electron bombardment. The ionisation process generally 

imparts 1-2 eV of the energy to the cluster, which leads to the cluster heating and partial 

evaporation. In helium droplets, the ionisation cross section is proportional to the cross 

sectional area of the droplet [2.11]. The ionisation process of a helium droplet with an inner 

dopant may go through single helium atom ionisation (IP 24.59 eV) followed by charge 

hopping towards the dopant and charge transfer from He+ to the dopant. The process starts 

with ionisation of a helium atom somewhere in the droplet. The charge hopping process then 

takes place in which the positive charge jumps to adjacent, or nearby helium atoms. This 
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hopping process is terminated via formation of He2+ or by the irreversible cation formation of 

the dopant [2.12]. Penning ionisation is also a competitive ionisation process. The lowest 

excited state of He requires 19.82 eV, energy enough to ionise most dopants. The cross 

section of this process, is ten times lower than the ionisation cross section of helium, and has 

the maximum at energies between 20 and 30 eV [2.13]. 

2.2. Electron attachment 
Low energy-electron collisions with atoms, molecules or clusters are among the most 

important elementary process in many environments including low temperature plasmas, 

gaseous dielectrics and biological systems [2.14]. The formation and decay of negative ions is 

a field that has brought to the attention physicists and physical chemists for several decades as 

well as considerable theoretical and experimental work [2.15]. 

2.2.1. Electron scattering  

When one electron interacts with a neutral atom, molecule or cluster, this interaction is 

characterised as a scattering process by the incoming electron. If the electron is trapped for 

“longer” time, than in the case of direct scattering, the molecule forms a temporary negative 

ion (TNI). Electron capture can only happen if the energy of the incident electron fits with 

electronic state of the molecule and this is thus a resonant process. This process can be 

divided in two distinct classes: elastic and inelastic scattering. 

2.2.1.1. Elastic scattering  

If an incident electron collides with a target atom, molecule or cluster and will eventually be 

deviated from its original direction, this is known as direct scattering. Direct scattering may 

be divided into two classes concerning the energy deposited in the target. Elastic scattering is 

defined when the energy of the electron scattered is not affected, or the amount of energy that 

is released is of the order of me/M (me = electron mass and M = molecule mass) which is 

generally speaking negligible and less than 10-5. 

2.2.1.2. Inelastic scattering 

Here an electron looses some kinetic energy, due to excitation of internal degrees of freedom 

of the target. Because the mass ratio between the electron and the molecule is too small 
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(me < M), the direct inelastic scattering only causes initially electronic excitation of the target 

molecule. 

2.2.2. Electron affinity 

The quantity that relates a neutral particle (M) with its negative ion (M-), is the electron 

affinity [2.16]. The electron affinity is normally defined as the difference between the neutral 

molecule plus one electron at rest at infinity and the molecular negative ion when both, 

neutral molecule and negative ion, are in their ground electronic, vibrational and rotational 

states, i.e., adiabatic electron affinity (EAad). The electron affinity can be positive (>0eV) if 

the ground state of M- lies below of the neutral molecule M or negative (<0eV) if M- lies 

above the neutral molecule M [2.5, 2.13]. The vertical detachment energy (VDE) may be 

defined as the energy required to remove the electron from the ground state of the negative 

ion, and the vertical electron attachment (VEA), corresponding to the appearance energy of 

the resonance. 
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Figure 2.2 – Schematic diagrams illustrating the positive and negative values of EA and the relation of EA to 

VAE and VDE, after [2.5] 

The schematic figure above shows the physical significance of the VDE, VAE and EA for 

electron capture by an atom (a and d) and a diatomic molecule (b, c, e, and f). In the diagrams 

a, b and c the EA is positive. For an atom ( ) ( )−= AVDEAEA , however for molecules 

( ) ( )−= AXVDEAXEA  only if the internuclear separation for AX and AX- is the same as is 

shown in c. Although, for the majority of the molecules, the situation is similar to the 

situation described in b, i.e., ( ) ( )−< AXVDEAXEA . d and e illustrate the cases of electron 

excited Feshbach resonances (will be described next), for atoms and molecules, respectively. 

In these cases the electron is capture in the field of an excited atom A* or an electronically 

excited molecule AX*, forming the respective anions, A*- and AX*-. The EA(A*) and 

EA(AX*) represent the electronic affinity for the excited atom and for the excited molecule, 

respectively. The situation depicted in f, the electron is temporarily bound to the molecule 

with a “transient binding energy spectrum” (shaded area). In this case ( ) ( )AXEAAXVAE −≤  

2.2.3. Temporary Negative Ion formation 

Under single collisions, a stable molecular anion (M-) can be produced by electron transfer 

from neutral atoms or molecules and from atomic or molecular anions, following the two 

reactions: 

−+ +→+ MAMA   (2.21) 

−− +→+ MAMA   (2.22) 

Reaction 2.21 occurs if the electron affinity of M is lower than the ionisation energy of A, 

which means that this reaction is usually endothermic and can only occur if at least A and/or 

M contain sufficient energy (kinetic energy), i.e., above the reaction threshold. In a resonant 

process, the electron is trapped by the atom, molecule or cluster, forming a TNI (Transient 

Negative Ion).  

−∗→+ MMe   (2.23) 
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In the present work described in this thesis, the type of negative ions formed via electron 

attachment processes will be described based on the single particle (1p) and two particle-one 

hole (2p-1h) resonances. In a single particle resonance (1p), the incoming electron 

temporarily occupies one of the normally empty MOs, LUMO orbital, without affecting the 

electronic configuration of the target molecule. A two particle-one hole resonance (2p-1h), is 

formed when the incoming electron concomitantly excites at least one of the target electrons 

resulting in one hole and two electrons in normally unfilled MOs [2.15] (see figure 2.3). 

 
Figure 2.3 – Electronic configuration for a one particle resonance and for a two particle one hole resonance 

The resonances may be classified as a function to their energy in comparison with the neutral 

or excited molecule. When one electron is captured and the electronic state of the negative ion 

formed lies above in energy of the neutral state, this is classified as an open channel or shape 

resonance. On other hand, when an electron is captured and the electronic state of the negative 

ion produced lies below of the neutral state, this is referred as a nuclear excited Feshbach 

resonance (figure 2.4) [2.2] 
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Figure 2.4 – The different types of resonances with respect to their energy in comparison to the neutral (excited) 

molecule 

2.2.3.1. One particle resonances 

2.2.3.1.1. Shape or single-particle resonances 

In this type of resonances, the incident electron is trapped in a potential well which arises 

from the interaction between the incident electron and the neutral molecule in its electronic 

ground state. This trapping mechanism is described by the shape of the interaction potential 

between the electron and the neutral molecule: combination of the attractive polarisation 

interaction [2.17]. 

( ) 4

2

2r
qrVa

α
−=    (2.24) 

(where α is the polarisation of the target molecule, r is the distance between the incoming 

electron and the molecule and q the elementary charge), and the repulsive centrifugal term 

[2.17] 

( )
μ2

2

2
1

r
Vl

+
=

llh    (2.25) 

(where l  is the angular momentum quantum number, μ reduced mass of the 

electron/molecule system (μ ~ me)) producing a centrifugal barrier in the resulting potential in 
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which the additional electron can temporarily be trapped. Since it is the particular shape of the 

potential which is responsible for the trapping, these states are also named as shape 

resonances. 

 

Therefore the effective potential is given by the combination of the attractive polarisation and 

repulsive centrifugal potential resulting: 

( ) ( ) ( )
μ

α
2

2

4

2

2
1

2 rr
qVrVrV laeff

+
+−=+=

llh   (2.26) 

Figure 2.5 shows schematically the interaction potential for different angular momentum 

quantum numbers l = 0, 1 and 2. For l ≠ 0 a centrifugal barrier is formed and the electron can 

be temporarily trapped within the effective potential [2.15]. Shape resonances are usually 

located at low energies, < 4 eV and above the potential energy curve of the neutral molecule, 

i.e., the molecular electron affinity is negative. The decay of the TNI is dictated by the 

competition between dissociation and autodetachment, the latter having lifetimes of the order 

of 10-15 - 10-10s. 

 

Figure 2.5 – Effective interaction potential for an electron approaching a neutral molecule, after [2.15] 

2.2.3.1.2. Nuclear-excited Feshbach resonances 

This is another kind of resonance where no excitation of the target molecule is involved but 

only nuclear motion. The negative ion state formed lies below the ground state of the parent 

molecule, in this way exhibits positive electron affinity (EA). In the initial step of the negative 

ion formation their resonant states are in the vibrational level υ’ at or above the lowest 
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vibrational level υ = 0 of the parent neutral state and can decay through autoionisation. The 

lifetimes are usually up to 10-6s. 

2.2.3.2. Two particle one hole resonances 

2.2.3.2.1. Core excited shape resonances or open channel resonances 

If the energy of one incoming electron is high enough to produce an electronic excitation in 

the neutral molecule, a resonance can be formed in which two electrons occupy normally 

unoccupied MO, as shown in 2.3). The negative ion formed is energetically above the 

corresponding electronically excited state of the neutral molecule and the electron is bound by 

a centrifugal barrier like in the case of the shape or single particle resonances [2.15]. Since the 

potential barrier is strongly dependent on the l  value of the occupied excited state orbital, no 

s electrons can be attached (through such barrier), so s-wave ( 0=l ) resonances are turned 

into a bound state. Also, as in the case of shape or single particle resonances, core excited 

resonances can decay via autodetachment or dissociative attachment, which leads to a typical 

lifetime of 10-3 – 10-2s. 

2.2.3.2.2. Core excited Feshbach or core excited close channel resonances 

In this case the incident electron interacts with an excited electronic state of the target 

molecule. These resonances arise when the interaction potential between the excited target 

molecule and the incoming electron is strong enough to support the bound state. They lie 

below the parent state, usually 0 to 0.5 eV below the energy of the corresponding excited 

state. When the transient negative ion is in a vibrational level 'υ  that lies energetically below 

0=υ of the corresponding excited parent neutral state, decay into the parent state is not 

energetically possible. 
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Figure 2.6 – Schematic potential energy diagram showing the formation of core excited shape (open channel) 

resonances and core excited Feshbach (close channel) resonances, after [2.15] 

2.2.4. Decomposition processes of TNI 

Under single collision conditions, the principal decomposition channels of the resonances 

described above can be: 

( ) ( ) −∗∗− +→ eABAB    (2.27) 

( ) ωh+→ −∗− ABAB    (2.28) 

( ) −∗− +→ BAAB  or BA +−   (2.29) 

the reaction described by (2.27) is referred to autodetachment, when the electron is ejected, 

and is often associated with vibrational excitation of the resulting neutral molecule. The 

autodetachment lifetime varies over a wide scale, depending on the energy of the resonance 

and the size of the molecule, ranging from less than a vibrational period (10-14 s) to the micro 

or millisecond scale for larger molecules [2.16]. The channel described by reaction (2.28) is 

known as radiative stabilization to the thermodynamically stable ground state which is 

possible for molecules having a positive electron affinity. This process is associated to a 

photon emission. It is a slow process when compared to processes (2.27) and (2.29), with 

radiative lifetimes of the order of 10-9 to 10-8 s [2.16]. The third process, reaction (2.29), 
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named as dissociative electron attachment - DEA, represents unimolecular decomposition 

into a stable negative and neutral fragment. This process typically occurs on a time scale 

ranging from 10-14 to 10-12s, depending on the mechanism of the reaction. Dissociative 

electron attachment may occur if a thermodynamically stable anion, may be formed [2.16]. 

2.2.4. Decomposition processes of TNI under aggregation 

The interaction of electrons with molecular aggregates, clusters, changes considerably as 

compared to the isolated phase. The formation of TNI in clusters may proceed via two 

different schemes: 

i) The primary step of the incoming electron is to be captured to form a localised 

negative ion within the cluster and forms a core excited resonance which relaxes 

into the ground state leading to dissipation of the vibrational fraction of its excess 

energy within the cluster. This results in stabilisation of the TNI with respect to 

dissociation (dissociative attachment) as well as autodetachment and the excess 

energy is carried away by evaporation of a part or of the entire cluster. The latter is 

usually named as evaporative attachment. This process is assigned to direct 

electron capture. 

ii) If the incoming electron is ineslastically scattered in the cluster, slowed down and 

captured by another molecule within the same cluster, this process is assigned as 

self-scavenging if it occurs in homogeneous clusters or auto-scavenging if it 

occurs in heterogeneous clusters [2.17]. 

 

Figure 2.7 illustrates some of the different possibilities of negative ion formation following 

electron capture by clusters. The first situation corresponds to the case that the TNI 

decomposes via dissociative attachment, i.e., with emission of a free ionic fragment A- or 

solvated ion A-Mn; It can also relax into its a more stable configuration B- thereby evaporating 

the target cluster, via evaporative attachment. At higher electron energies the incoming 

electron can at first be scattered at one component of the cluster before localisation. In the 

case of inelastic scattering, excited states or resonances coupled with excitation of the neutral 

molecule become visible as an ionic product, C-. 
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Figure 2.7 – Illustration of some electron induced processes in clusters induced by low energy electrons: 

dissociative attachment, evaporative attachment and inelastic scattering, after [2.17, 2.18] 

In Figure 2.8, we show schematic potential energy curves for the isolated neutral molecule 

and corresponding negative ion in gas phase (black line) and the potential energy curves in a 

clusters (red dashed curve and subscript solv). The autodetachment competes strongly with 

dissociation since the anionic potential energy surface is usually lowered more in the cluster 

with respect to the neutral, due to the binding interaction (induced polarization in the case of 

films); the time that the system needs to escape from the autodetachment region is shortened, 

and consequently, the cross section for negative ion formation is enhanced [2.17]. The figure 

also shows that the TNI is stabilised compared to the neutral precursor due the stronger 

polarisation of the environment in the presence of the negative charge. It is also possible to 

see, on the right side of the figure, the projection of the estimated cross section profile for the 

anion in gas phase and in the condensed phase cluster, by applying the reflection method to 

the anionic potential energy curve. 
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Figure 2.8 – Schematic potential energy diagram illustrating DA in the gas phase and in clusters. The right side 

shows the cross section for the negative ion formed in gas phase and in clusters, after [2.15] 

2.2.4. Energy balance for dissociative electron attachment 

The process 

( ) ( ) −−− +→→+ XRMMe εε   (2.30) 

where ε  is the electron energy can be pictured in the Born-Oppenheimer potential energy 

diagram below (Figure 2.9), applied to diatomic molecules. 

 

Figure 2.9 – Born-Oppenheimer potential energy curves associated with electron attachment and subsequent 

electronic dissociation, after [2.19] 

The energy balance for dissociative electron attachment can be deduced from Figure 2.9, 

according with the following equation: 

( ) ( ) ∗+−−= EXEAXRDε   (2.31) 
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Where D is the bond dissociation energy of the neutral molecule, EA is the electron affinity of 

X and 21 εεε ≤≤ . The minimum heat of formation for the reaction is 

( ) ( )XEAXRDH −−=Δ 0   (2.32) 

By combination of the equations (2.31) and (2.32), the excess energy may be given by 

0HE Δ−=∗ ε   (2.33) 

When 0HΔ is known, equation (2.35) gives the total excess energy for a given incident 

electron energy. For polyatomic molecules the total excess energy, E* is shared among the 

different degrees of freedom [2.19]. 
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Chapter 3 

Clusters 

3.1. Introduction  
Clusters are of fundamental chemical and physical interest because of their own intrinsic 

properties and also because of the central role bridging gas phase molecular physics and 

condensed matter science [3.1]. Free electron attachment and electron impact ionisation 

experiments on molecules embedded in helium droplets were carried out during the course of 

the present PhD thesis. In this way, it is very important to understand how clusters and helium 

droplets are formed. Helium clusters usually are produced with several thousands of helium 

atoms, while “helium droplets” is usually the term to define neutral helium cluster. Helium 

droplets show unique properties (e.g., superfluidity) that will be addressed later in this 

chapter. Clusters can be defined as a group of atoms bound together by interatomic forces. In 

the simplest definition clusters are a group of particles, between 2 and 106 [3.2]. These 

particles can be identical, leading to homo clusters or different leading to hetero clusters. The 

earliest reference to clusters is reported in 1661 by Robert Boyle [3.2]. 

3.2. Types of clusters 
The different constituents make different sorts of clusters and therefore having specific 

properties. The types of atoms and the nature of the bonding involved allow to divide clusters 

in different categories. Table 3.1 resumes the different categories of clusters according to the 

atoms involved, binding forces and their mean energies.  
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Cluster Type Atoms involved Binding forces 
Mean binding 

energy (eV) 

Metal clusters s-block metals, sp- block metals, d-

block 

Covalent metallic forces 0.5 - 3 

Semiconductor 

clusters 

Semi conductors elements (ex. C, Si, 

As, Ga) 

Covalent forces 1 - 10 

Ionic clusters Halides and oxides of the groups 1 

and 2 

Ionic forces 2 - 4 

Rare gas 

clusters 

Rare gases and closed shell 

molecules 

Weak Van der Waals forces < 0.3 

Molecular 

clusters 

Organic molecules, and molecules 

with electronegative elements 

Van der Waals, dipole-dipole 

interaction and hydrogen 

bonding 

0.15 - 1 

Table 3.1 – Categories of clusters according to the constituent atoms, forces involved and binding energies, after 

[3.2] 

3.3. Clusters sources 
Clusters can be generated in different sources that may involve the following processes: 

vaporization, production of molecular aggregates in the gas phase, nucleation (start point of 

clustering), growth and the coalescence (merging of small clusters to form large clusters). The 

different kind of sources available can be distinguished by their operative modes, sort of 

clusters produced, velocity of the beam, among many others. The most common clusters 

sources are [3.2]: Knudsen Cell or Effusive Source; Supersonic Nozzle Sources or Supersonic 

Free Jet; Laser Vaporization – Flow Condensation Source; Pulsed Arc Cluster Ion Source 

(PACIS); Ion Sputtering Source; Magnetron Sputtering Source; Gas Aggregation or Smoke 

Source; Liquid Metal Ion Sources and Spray Sources. In this thesis, special attention is given 

to the Supersonic Free Jet source. This type of cluster source was utilized for the experiments 

carried out in the present thesis. Three paramters determine the size distribution of the 

resulting cluster beam: stagnation pressure (i.e., inlet pressure before expansion), temperature 

in the expansion region and the nozzle diameter. The cluster size increases with increasing 

stagnation pressure and nozzle size, and decreases with increasing temperature. 
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3.4. Supersonic expansion 
The supersonic expansion through a small nozzle (ø ≈ 5 μm) is assumed to be an adiabatic 

process [3.3]. The stagnation enthalpy of the gas is converted mainly into kinetic energy and a 

small remaining enthalpy, assuming that turbulence and effects of collisional heating are 

negligible. According to these assumptions, we may describe the following expression for the 

conservation of the energy as: 

2

2

0
mvHH +=    (3.1) 

with 00 TcH p=  and TcH p= . Where H0 is the stagnation enthalpy, H is the enthalpy after 

expansion, cp is the specific heat at constant pressure, stagnation T0, T is the temperature 

along the stream. Rearranging expression (3.1) we can write: 

2

2

0
mvTcTc pp +=    (3.2) 

Obtaining equation 3.2 as a function of T, the beam temperature is: 

( )
1

2
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−
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⎤
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⎡ −+= MTT γ    (3.3) 

where 
v

p

c
c

=γ , cv is the specific heat at constant volume, and M is named the Mach number, 

and defined as the ratio between the velocity of the molecules and the local speed of the 

sound. 
c
vM = , where c is the speed of sound and is defined as 

m
kTc γ

= , with k = cp-cv. 

During the expansion, the local speed of the sound decreases with T , this leads to the 

increase of the Mach number. Equation 3.2 can be written in terms of the velocity of the beam 

as: 

)(
2

0 TT
m
c

v p −=    (3.4) 
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For T = T0 the beam velocity is 0 and increases with the decrease of the temperature. The 

increasing of the beam’s velocity, leads also to an increase of the Mach number. The velocity 

function distributions (f(v)) for different Mach numbers as a function of the velocity are show 

in Figure 3.1. 

 

Figure 3.1 – Velocity distributions for different Mach numbers as a function of the normalized velocity v where 

α = (1KT/m)-0.5 is the most probable velocity for the Maxwell-Boltzmann distribution, after [3.3] 

In the common situation of a real expansion, one has to consider additional features of the 
non-ideal supersonic jet which are schematically shown in Figure 3.2. Due to an 
overexpansion, very thin non-isentropic regions like the barrel shock at the side edges of the 
expansion region and the Mach disk shock in the forward direction are formed. In a 
descriptive explanation, the supersonic flow needs information about the boundary conditions 
along the expansion. This information is transported with the speed of sound but the particles 
in the expansion move faster. Thus leading to an overexpansion of the gas, but in order to get 
rid of these unknown boundary conditions, the Barrel shock and the Mach disc shock with a 
M number below 1 are provided to change the flow of the expansion if the boundary 
conditions are not satisfied. The Mach disk location at a distance xm from the nozzle can be 
calculated as a function of the nozzle diameter d, stagnation pressure p0 and background 
pressure pb with the following equation [3.4]: 

b

oM

p
p

d
x

67.0=     (3.5) 

The Mach disk is depending on the intensity of the interaction between the flow and the 
background pressure. According to equation 3.5 for sufficiently low background pressure pb 
the Mach disk vanishes. The upper limit for this point is reached when the free path of the 
background gas is comparable with the diameter of the Mach disk. At this point the Mach 
number is frozen to a certain constant value. The region where the interaction of the flow with 
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the background gas becomes negligible is called zone of silence. The core of the expansion is 
isentropic in this region [3.4]. 
 
Nevertheless, in the real expansion one has to consider the following problems: due to the 
presence of the background gas, a skimmer is placed after a certain distance from the nozzle. 
It turned out that the distance between nozzle and skimmer has a strong influence on the 
cluster formation. If the distance is too large the beam is scattered by the background gas 
which leads to a decrease in the intensity of the beam. For too low distances, an additional 
expansion starts in the skimmer causing turbulences which changes the properties of the 
initial cluster beam (e.g., velocity, mean cluster size, direction). In addition, the skimmer 
accomplishes the separation between the cluster source and the ion source, i.e., regions of 
different pressure. 

 

Figure 3.2 - Schematic view of the supersonic expansion structure illustrating jet boundaries and shock fronts, 

after [3.5] 

3.5. Clusters formation 
Cluster formation depends on many parameters. As far as a supersonic beam formation is 

concerned, the most relevant factors are: the stagnation pressure; the diameter of the nozzle; 

and the carrier gas temperature. Tuning these factors it is possible to control the cluster size. 

Low temperatures and high pressures, lead to large clusters; increasing the nozzle diameter 

and stagnation pressure, the cluster and the density of clusters formed increase. Two 

additional steps (nucleation and growth) in cluster formation are described below. 
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3.5.1. Cluster nucleation 

If the local temperature of the beam becomes lower than the corresponding binding energy of 

the dimer, then three body collisions can lead to the formation of a dimeric nucleus, with the 

third atom removing the excess of the kinetic energy. This process can be described taking an 

element A as an example: 

A + A + A (KE1) → A2 + A(KE2 > KE1)   (3.5) 

This dimer formation starts the condensation process. In the presence of an excess cold party, 

inert gas or quench gas (B), the nucleation step is shown to be much more efficient. 

A + A + B(KE1) → A2 + B(KE2 > KE1)   (3.6) 

3.5.2. Cluster growth 

The initially formed dimer cluster acts as a start for further clustering. The cluster growth 

occurs by accretion of atoms or molecules. Subsequently, collisions between smaller clusters 

lead to coalescence and formation of larger clusters. 

An + Am → An+m   (3.7) 

The cluster formation may be explained by the classical nucleation theory which can be 

described as a gas-fluid phase transition. In a phase diagram, pressure and temperature are 

separated by the saturation vapour pressure line. To start the condensation it is necessary to 

reach super saturated conditions because the surface tension is a barrier in the vapour pressure 

line. Supersaturation is defined as: 

∞

=Φ
P
Pk

k     (3.8) 

where Pk is the pressure value that determines Фk and P∞ is the vapour pressure of a plane 

fluid surface. A small cluster with radius r has the vapour pressure defined by: 

rkT
m

P
Pr

ρ
σ2ln =

∞

    (3.9) 
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Where σ is the surface tension of the cluster, ρ the density of the cluster, m is the cluster 

weight and r the radius of the cluster. For Pr = Pk equation 3.10 gives the r value for which 

the clusters start to grow. Below this critical radius clusters evaporate. 

kkT
mr
Φ

=
ln

2*

ρ
σ    (3.10) 

The phase diagram is represented in Figure 3.3, the supersonic expansion follows the 

adiabatic line, which crosses the vapour line at the point A. This line corresponds also to the 

boundary between gas and liquid phase. Cluster formation starts in the supersaturated region, 

point B, where the vapour pressure has a value high enough to allow condensation. At this 

point the expansion leaves the adiabatic line by releasing condensation heat and drops to the 

point C, where the equilibrium state between gas and liquid exists [3.3]. 

 

Figure 3.3 – phase diagram with separation between gas and liquid phases 

3.6. Helium clusters 
Helium clusters are one kind of rare gas clusters. Rare gas clusters include clusters with 

elements from 18th group in the periodic table. This section will be focused on helium 

clusters, since they have been used as a matrix for the present experimental work. 

 

Rare gases have a closed shell electronic configuration. In the particular case of atomic 

helium, the electronic ground state configuration is (1s)2. The closed shell electronic 
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configuration and high atomic ionisation energies, renders the rare gases to a chemical inert 

property. Figure 3.4 shows the schematic electronic distribution over the molecular orbitals 

for a helium dimer. The helium dimer has no net-covalent bonding, because both the bonding 

(σg) and the antibonding (σ*
u) molecular orbitals, arising from the overlap of the atomic 1s 

orbitals, are doubly occupied, thereby cancelling each other [3.2]. 

 

Figure 3.4 – Molecular orbital diagram for the He2 dimer 

Clusters or droplets of helium can be produced by supersonic expansion. To use the beam of 

helium droplets has several advantages [3.6]: 

• Benefit of continuous sample renewal; 

• The He droplets are free from perturbations from a substrate because they are in 

vacuum; 

• The He droplets can be efficiently doped in a controlled manner. They can serve as a 

supercold “nano-laboratory”. 

Both stable helium isotopes 3He and 4He form clusters, although their properties differ from 

each other. They are the only substances that don’t have a triple point in the phase diagram, 

but they exhibit superfluidity instead, which is a property that differs between both. At 1 bar, 
4He becomes superfluid for temperatures below 2.18K, and in the case of 3He it is restricted to 

temperatures below 3mK. The temperature of the He droplets is determined by evaporation of 

He atoms from the surface of the droplet, known as an evaporative ensemble. Because of the 

very weak binding energy between single He atoms and the droplet, the evaporation of the 

atoms from the droplet surface is in the specific case of the He droplets much more efficient 

than for other clusters. The evaporative process is accompanied by the decrease of the droplet 

temperature, and at the final temperature the evaporative process finishes and the droplet size 

is reached. At this point the system is in quasi-equilibrium. Several authors have been 
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calculating the temperatures of the He droplets and obtaining values between 0.3 and 0.4 K 

[3.7-3.10]. These values were confirmed experimentally by the analysis of line intensities of 

the ro-vibrational IR-spectrum of molecules embedded in He droplets. The obtained values 

were 0.37K for 4He and 0.15K for 3He [3.11]. For a special case of isentropic conditions, the 
4He expansion might be explained using pressure-temperature phase diagrams. The expansion 

follows the isentropes starting at P0 T0. In Figure 3.4 it is possible to see the number of 

isentropes for different stagnation temperatures and at 20 bar stagnation pressure. The 

isentropes can be divided into different regimes following the different kind of expansion 

[3.6]: 

a) Regime I or subcritical expansion: includes the part of the gas phase diagram 

where the isentropes pass from the gas phase through the phase transition line into 

the liquid phase regime. In this regime clusters are formed by condensation from 

the gas phase; 

b) Regime II or Critical expansion: part where the isentropes intersect the critical 

point, Tc = 5.2K and Pc = 2.27bar. This regime represents the transition of cluster 

formation from gas phase condensation to the liquid fragmentation; 

c) Regime III or Supercritical expansion: The isentropes lead through the coexistence 

regime directly into the liquid phase, in such expansion very large clusters are 

formed; 

 

Figure 3.4 – Pressure temperature phase diagram for 4He with isentropes, after [3.12] and references therein 

The droplet size is a function of the expansion conditions. As was described above for high 

pressure and low temperature, the droplet size increases and the He phase can be changed to 

liquid. To estimate the average size of a droplet, we will make use of the Hegena scaling law 
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[3.3]. This law is only valid for clusters that are formed under conditions that lead to 

condensation of the gas. In the results shown here, was assumed that the clusters are produce 

under these conditions. This scaling law is defined by: 
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Where P0, T0 and D0 are the stagnation pressure, temperature and nozzle diameter respectively 

for a known droplet size N0, and P1, T1 and D1 are the stagnation pressure, temperature and 

nozzle diameter respectively for a known droplet size N1. When the stagnation conditions 

leads to the cluster formation by liquid fragmentation, this scaling law is no longer valid.  

 

Figure 3.5 – Mean number size N4 and liquid droplets diameter DD of 4He formed in different types of 

continuous modes of jet operation, after [3.13] 

Figure 3.5 shows the droplet size and droplet diameter as a function of the stagnation pressure 

P0 and T0 measured with a nozzle diameter in the range of 2-5μm. It is clear that droplets with 

mean droplets atoms over 2×104 are produced by liquid fragmentation. Below this value, 

droplets are formed by gas condensation.  
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After helium droplets are formed, they are used as a matrix to study, in the particular case of 

this thesis, electron reactions driven in molecules embedded in helium droplets. In this way, 

the next step is to dope the droplets with different molecules. The first experiments with 

doped helium droplets were carried out by Becker and co-workers in the 80’s [3.2]. To pick 

up different species, the beam of helium droplets pass through a chamber or pick up cell were 

the species to be picked up is vaporized. The efficiency of the picking up process is controlled 

by the partial pressure in the pick up chamber. This process is accompanied by the 

evaporation of many helium atoms, because the strength of the dopant helium interaction is 

larger than the helium interaction. Equation 3.12 describes the pick up process followed by 

helium evaporation [3.2]. 

Hen + D → (D)(Hen)* → (D)Hem + He n-m  (3.12) 

where D is the dopant and n the droplet size before evaporation. Increased partial pressure in 

the pick up chamber leads to multiple collisions and increases the capture by the helium 

droplets. The pick up process is described as following the trend of a Poissonian distribution. 

Equation 3.13 describes the probability P to find a cluster formed by k dopant particles. 

( ) ( )ρσρσ
l

l
−= exp

!k
P

k

  (3.13) 

where σ is the cross section for a collision, ℓ is the length of the pick up chamber and ρ the 

density of the pick up gas. After the collision of the molecules with the helium droplets, these 

can be stuck to the droplet or can be repelled. The capture has high efficiency because the 

particles thermalise quickly and after that don not have enough energy to overcome the 

potential barrier at the droplet surface. However, the fact that the particle is on the surface or 

inside the droplet, depends on the interaction potential between the dopant and the helium. 

Theory and experiment have shown that open shell dopant atoms and molecules, i.e., alkali 

metals and O2, stay in the surface of the droplet due the strong repulsive interactions between 

the unpaired electrons and the helium atoms. When closed shell atoms or molecules are 

picked up, they are found in the centre of the droplet. The pick-up process does not leave the 

helium beam unaffected. The droplets have to assimilate the kinetic energy from the 

scattering process, the solvation energy and the internal energy of the molecules. Normally 

several hundred helium atoms are evaporated from the droplet for each pick up event [3.6]. 
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3.7. Molecular clusters in helium droplets 
The pick-up process of the molecules, of the same kind or different kind of molecules, one 

after another, leads to the neutral homo- or hetero-molecular cluster formation. The formation 

of molecular clusters in helium droplets is one process that grows unit by unit. The molecules 

are picked-up step by step, one after the other, and the system cools down via helium 

evaporation. The pick-up process stops either when the droplet leaves the pick-up chamber or 

when the droplet does not have enough size to pick-up more molecules. The clusters that are 

formed inside the helium droplet are held by weaker bonds than intermolecular forces. These 

forces can be classified as: dispersion interactions (London), dipole-dipole interactions, 

induction forces or hydrogen bonding [3.2]. In many molecular clusters, more than one kind 

of these forces may exist, depending on the molecule, dipolar momentum, constituent atoms, 

net charge, and so on.  

3.8. Conclusions 
This chapter focuses briefly on the formation processes of helium droplets. The studies of free 

electron attachment and electron impact ionisation were performed to different molecules 

embedded in helium droplets. The closed and detailed description about helium cluster 

formation is essential to understand all the results presented in this thesis. The formation of 

molecular clusters in helium droplets was also addressed.  



Clusters 

 
 

41

3.9. References 
[3.1] Solov’yov A. V. et al. Physica Scripta, 69, 2004, C45-53. 

[3.2] Roy L. Johnston, Atomic and Molecular Clusters, Taylor & Francis 2002, London. 

[3.3] Hellmut Haberland, Clusters of Atoms and Molecules, Springer-Verlag, 1994, USA. 

[3.4] Stephan Denifl, Ph.D. thesis, University of Innsbruck, 2004. 

[3.5] D. R. Miller, Atomic and Molecular Beams Methods, Giacinto Scoles, Oxford 

University press, 1988. 

[3.6] Werner F. Schmidt and Eugen Illenberger, Electronic Excitations in Liquefied Rare 

Gases, ASP 2005, USA. 

[3.7] Cornelius E. Klots, J. Phys. Chem., 92, 1988, 5864-5868. 

[3.8] Cornelius E. Klots, Nature, 327, 1987, 222-223. 

[3.9] Cornelius E. Klots, Physical Review A, 39, 1989, 339-343. 

[3.10] D. M. Brink and S. Stringari, Z. Phys. D Atoms, Molecules and Clusters, 15, 1990, 

257-263. 

[3.11] M. Hartmann et al., Physical Review Letters, 75, 1995, 1566-1569. 

[3.12] H. Buchenau et al., J. Chem. Phys., 92, 1990, 6875-6889. 

[3.13] J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. ed., 43, 2004, 2622-2648. 

 



 

42 

Chapter 4 

Experimental Set Up 

In this chapter we present a description of the experimental set up, pointing out a few details 

that are relevant for the type of experiments and molecular systems studied. All measurements 

presented in this thesis were obtained with a high resolution modified double focusing mass 

spectrometer, Varian CH5/DF of reversed Nier/Johnson type geometry, an electron gun 

operating in the energy range 0 to 1000 eV with a typical resolution of ~1 eV and a cluster 

source and pick up chamber attached to the ionisation chamber. Due to the relative 

complexity of the system, the description of the set-up is divided in two parts: one before the 

ionisation source, referred as “pre-ionisation region”, and the other after the ionisation, 

designated as “post-ionisation region”.  

4.1. “Pre-ionisation region” set-up  
In this region the helium droplets are produced and the molecules to be embedded are picked 

up. For the helium droplet production we use high purity helium, He 6.0 (> 99.9999%) 

supplied from Messer. The helium gas at a pressure of 20 bar is introduced into the cluster 

source by a stainless steel tube. This stainless steel line is evacuated by a turbo molecular 

pump (p1).This tube passes through a liquid nitrogen bath before entering the source, in order 

to improve the purity of the helium delivered to the source. A 0.5 μm porosity gas filter (FW 

Filter, Swagelok) is used prior to helium introduction into the cold head of the cryostat. The 

cryostat consists of two parts: a cold head (model 22 CTI Cryogenics) and a compressor 

(model 8300TM CTI Cryogenics). The helium gas is cooled down in two cooling stages. The 

He inlet in the 1st cooling block stage has a diameter of 3 mm and at the 2nd cooling block 

stage 1.5 mm diameter, figure 1a. At the end of the second stage, a Pt nozzle from Plano with 

5 μm aperture diameter is attached. This nozzle is glued at the top of the second cooling stage 

figure 1b with a normal epoxi two components glue. A silicon diode sensor from Lake Shore, 

model DT-470, is attached to the top of the second cold stage of the cold head to control the 

temperature of this region by a Lake Shore model 331 unit. The cold head is attached to one 
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chamber with 0.007 m3 (0.23 × 0.23 ×0.13 m). This chamber is evacuated by a turbo 

molecular pump (p2).The pressure is measured by a cold cathode gauge. The working 

pressure in the chamber is of the order of 1.8 – 4.7×10-4 mbar with 20 bar of helium in the line 

and a working temperature in the second cold stage of 9.7 – 14 K. Temperatures below 9.5K 

are not usually used because of the problems with freezing of impurities and subsequent 

nozzle clogging. As described in Chapter 3, the temperature of the nozzle defines, as well 

with the He inlet pressure, the cluster size. The pressure in the chamber where the supersonic 

expansion takes places depends also of these two parameters (inlet pressure and nozzle 

temperature). If the inlet pressure is constant, the pressure in the chamber increases when the 

nozzle temperature decreases. The first vacuum chamber, called cluster chamber, is connected 

to the second pick-up chamber by one 800 μm skimmer from Beam Dynamics, Inc USA. The 

pick-up chamber has a volume of approximately of 0.004 m3. The gas samples are introduced 

in this chamber through a stainless steel inlet attached to the top of the chamber, which also 

allows the introduction of liquid samples. The solid samples are introduced in the oven, which 

is located inside the chamber. The pick up cell has one entrance aperture allowing the helium 

beam to enter, and an exit aperture from where the doped He droplets leave the pick up 

region. The oven is heated by a tantalum resistive wire (99.9%) to vaporize the solid samples. 

The temperature of the oven is controlled by a Pt 100 and the pick up cell by a commercial 

thermocouple. This chamber, where the oven is placed, is evacuated by a turbo molecular 

pump (p3) allowing a background pressure of the order of 10 -7 mbar which is measured by a 

cold cathode gauge. To connect this chamber with the ionisation chamber, a second skimmer 

with the same geometrical characteristics as the previous, but with 2 mm aperture, is used.  



Experimental Set-up 

 
 

44

 

Figure 4.1a – Schematic draw and picture of cluster source, with 1st and 2nd cooling stages 

 

Figure 4.1b – Top of the cold head with the nozzle in the centre and silicon diode sensor model DT-470 

 

Figure 4.2 – Oven and pick up cell for solid samples 
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4.2. “Ionisation and Post-ionisation region” set-up 
After the second chamber the doped droplet beam passes through the second skimmer and 

enters the ionisation chamber. This chamber has approximately 0.004 m3 in volume. The ion 

source chamber is evacuated with a turbo molecular pump (p4). The base pressure in this 

chamber is of the order of 10-8 mbar and the residual gas consists mainly of air (oxygen and 

nitrogen) and water [4.1]. The pressure is measured by a compact full range gauge. In the 

chamber there is one gas inlet with a needle valve where the calibration gas (SF6) is 

introduced. Dissociative electron attachment to SF6 was well described by Christophorou and 

Olthoff [4.2]. Their study shows that for energies below 1.5 eV SF5
- is produced with two 

resonant features, one at 0 eV and another at 0.38 eV. The cross section for F- formation is the 

most important at energies above 2.5eV. The F- cross section exhibits four maxima at energies 

2.8, 5.2, 9.1 and 11.2 eV. Though, the electron energy calibration in the present experiments 

was obtained through the energy position of the resonances for these two fragments (SF5
- and 

F-). 

 

The ions formed in the interaction region are extracted from the Nier type modified [4.3, 4.4] 

ion source (Figure 4.3). The electron beam is produced by a tungsten rhenium filament, to 

which a typical current of 4 to 5 A [4.5, 4.6] is applied. Thermionic emission is most 

generally used as the source of electrons. The operation mechanism is based on the fact that, 

when a metal is heated to a sufficiently high temperature (or by letting a current pass through 

the metal), free electrons are produced with an energy distribution given by: 

( ) dE
kT

EWEdN ⎥⎦
⎤

⎢⎣
⎡ +
−∝ exp    (4.1) 

Where dN(E) is the number of electrons emitted per second between energies E and E+dE, k 

is the Boltzmann constant, T the absolute temperature, and w the work function of the metal 

[4.7]. 

 

The thermoemitted electrons are then accelerated through an applied variable potential 

showing a Maxwell-Boltzmann distribution with a FWHM energy spread of about 1 eV. The 

ion source consists of an ion housing (2) transversed by a weak magnetic field of about 

40 mT, and by the helium droplet beam. In this housing the ionisation takes place. The 
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electrons are accelerated through the potential applied between the filament (3, 5) and the ion 

source housing. The electron beam emission current can be regulated from a few μA to a 

typical value of 2 mA, and is measured in an electron collector (7), located opposite to the 

filament. The ion source is heated to about 470 K by ohmic heaters (15, 16) to avoid surface 

deposition on the electrodes. A Pt 50 is used to measure the temperature. Behind the ion 

source housing a “pusher” electrode is placed (1) that pushes the ions away from the 

production region. The potential applied to Lens L2* (9) produces a penetrating field in order 

to extract the ions from the collision chamber. The extraction efficiency of the ions is 

optimized by applying a proper potential to focusing lenses (8, 10, 11). Two plates placed in a 

parallel capacity arrangement in z and y directions (12, 17, 13, 18), improve and correct the 

direction of the ion beam across the entrance slit (14) of the mass spectrometer system [4.8]. 

 

 
Figure 4.3 – Ion source, adapted from [4.9] 

1 – “pusher” electrode; 2 – ion source housing; 3, 5 – filament; 4 – wehnelt electrode; 6 – temperature 

sensor; 7 – electron collector; 8 – extracting lenses; 9, 10, 11 – focusing lenses; 12, 17 – zz-deflectors; 

13, 18 – yy-deflectors; 14 – entrance slit to the mass spectrometer; 15, 16 – heaters. 

 

The ion source controlling panel is connected to a computer which controls and records all the 

data. The power supply for the ion source is a 3kV model PNC 3500-50upm Heinzinger. This 

unit is also the power supply for the focusing lenses 10 and 11. The lenses Pusher and the 

extracting lenses have individual power capable of supplying an additional potential of 30V. 

Lens 9 operates at a voltage of the order of 1000V but, can also operate at a 3kV by switching 

to a different power supply, depending on the experimental type of measurements to perform. 
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The optimisation of the ion source is made by tuning the voltages applied to the ion source 

lenses, the filament current, the electron energy and the cylindrical Einzel lenses that are 

placed before the mass analyzer [4.10]. 

 

The ion source chamber and the double focusing two sector field mass spectrometer are 

separated by the entrance slit (14). After this slit, there is a valve to separate the ion source 

from the analysing section of the mass spectrometer. The high resolution modified double 

focusing mass spectrometer, model Varian MAT CH5-DF, of reversed Nier-Johnson type 

geometry (BE), is schematically represented in Figure 4.4 and the helium installation is 

schematically represented in Figure 4.5.  

 

 
Figure 4.4 – CH5 experiment scheme; P1 to P6 - pumps, S1, S2 - slits, EL - Einzel lenses, FFR - Free Field 

Region, SEM - Chaneltron type Secondary Electron Multiplier, B-Field - magnetic sector field, E-Field - 

electrical sector field 
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Figure 4.5 – Installation scheme of helium inlet and position of the different chambers 

The resulting ions produced in the ion source are accelerated through a 3 kV potential into the 

spectrometer. They pass through the first field free region, with a 0.602 m path length and are 

momentum-analyzed by a 48.45° magnetic sector field, B. The first field free region is 

pumped by a turbo molecular pump (P5) and the pressure is monitored by IMG 060 Balzers 

gauge. After the magnetic sector, the ions enter a second field free region with a 0.333 m path 

length and pass through a 90° electric sector field, E. Two power supplies Heinzinger model 

LCU 600-20pos for positive voltage and LCU 600-20neg for negative voltage are used to 

apply the voltages to the inner and outer plates of the electrical sector field. The voltage drop 

typically used is around 511V (-255,5 V and + 255,5 V) and the sector is evacuated by a turbo 

molecular pump (P6) and the pressure monitored in a JMR 112 Balzers gauge. Before the 

electric sector field there is a second slit (S2) and before the magnetic sector field a set of 

Einzel lenses (EL) are implemented to focus the ion beam. For the Einzel lenses we make use 

of a 415 B High Voltage Power Supply. Finally, the ions are detected by a channeltron-type 

secondary electron multiplier (SEM) KBL 510 S/N 8014 f model from Dr. Sjuts Optotechnik 

GmBH [4.11]. To detect negative ions +3.66 kV is applied to the end of the channeltron using 

a power supply Heinzinger model LCU 6000-2pos and the entrance is kept grounded; to 

measure positive ions we apply -3 kV to the entrance of the detector using a Heinzinger 

power supply model HNLC 6000-1neg and the end side is grounded. The signal provided by 
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the channeltron is amplified and analyzed (counted) by a dual counter/timer model TC 512 

Tennelec unit. The dual counter/timer is connected to a computer for data acquisition.  

 

All the experimental parameters are computer controlled through a Lab view program [4.12], 

which enables several options to be varied such as the number of runs, gate time, different 

electron energies for the mass scans and mass clusters scans, different mass for the energy 

scans. It, therefore, allows running mass scans, mass-cluster scans, energy and MIKE scans. 

The Lab view program is also prepared to record all the optimization settings for the ion 

source, Einzel lenses, cryostat temperature, pressures in the cluster chamber, pick-up chamber 

and ion source chamber. 

 

At the main window of this computer program it is possible to choose what kind of 

measurement will be performed. Five different options can be chosen (Figure 4.6). 

 

Figure 4.6 – LabView main window 

If mass scan is chosen, the window mass scan is open and different options may be adjusted. 

General information as operator name, file name can be chosen and detailed information as 

number of runs, number of sections, and up to 8 different mass sections are possible to set. 10 

different energies can be chosen given the possibility to run several mass scans at different 

energies. The difference between normal mass scan and mass cluster scan lies on the 

parameters of the sections. For the normal mass scan, it is only necessarily to set start and 
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stop scan and also the step with and gate time. On the other hand in the mass cluster scan it is 

necessarily to choose the gap mass and the number of masses that we want to measure for 

each cluster. Both windows are illustrated in Figures 4.7 and 4.8. 

 

Figure 4.7 – LabView Mass Scan window 

 

Figure 4.8 – LabView Mass Cluster Scan window 

For the energy scans, the differences are just that it is possible to record energy scans for 

different voltages of the electrical sector field, Figure 4.9. 
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Figure 4.9 – LabView Electron Energy Scan window 

To study metastable decays, in the 2nd field free region, this software allows to record MIKE 

(Mass Analyzed Ion Kinetic Energy Spectra) scans. In these scans it is possible to analyze the 

parent ion fragmentation into possible fragment ions. The software is developed in the way 

that the user just needs to choose the ratio fragment mass / parent mass. With this input 

automatically the voltage in the plate of the electrical sector field is changed in order to select 

just the fragments. The MIKE scan window is presented in the Figure 10. 

 

Figure 4.10 – LabView MIKE Scan window 
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Equipment Power supply model 
Ion source Heinzinger PNC 3500-50 ump 

Oven Gwinstek GPR – 1810 HD 
Box Gwinstek GPR – 1810 HD 

Einzel Lenses 415B High Voltage Power Supply 
Electric Sector Field Heinzinger LCU-20pos 
Electric Sector Field Heinzinger LCU-20neg 

Channeltron positive mode Heinzinger HNLC 6000-1neg 
Channeltron negatice mode Heinzinger LCU 6000-2pos 

Table 4.1 – Power supplies 
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Pump 
Pumping 

speed (l/s) 
Pump Model Model Gauge Type Pre vacuum to: 

Power 

supply 

PV1  
RD 4 

Vacuubrand 
TCG 031 Balzers Rotary P1 - 

PV2 9.72 
DUO 35 

Pfeiffer 

Compact pirani 

TPR 265 Pfeiffer 
Rotary P2 and P3 - 

PV3 9.72 
DUO 35 

Pfeiffer 

Compact pirani 

TPR 265 Pfeiffer 
Rotary P4 - 

PV4 6.94 
D25B Trivac 

Laybold 

TCP 310 Pfeiffer/ 

Balzers 
Rotary P5 and P6 - 

P1 170 

TPU 170 

Pfeiffer 

Balzers 

TPG 031 Balzers 
Turbo 

molecular 
- 

TCP 300 

Pfeiffer/ 

Balzers 

P2 1380 
TMU 1601 P 

Pfeiffer 
Cold Cathode 

Turbo 

molecular 
- 

DCU 600 

Pfeiffer 

P3 230 
TMU 261 P 

Pfeiffer 
Cold Cathode 

Turbo 

molecular 
- 

DCU 200 

Pfeiffer 

P4 520 
TMH 521 P 

Pfeiffer 

Compact Full 

range 

Turbo 

molecular 
- 

DCU 300 

Pfeiffer 

P5 170 

TPU 170 

Pfeiffer 

Balzers 

Log-Ln Ion 
Turbo 

molecular 
- 

TCP 310 

Pfeiffer/ 

Balzers 

P6 520 
TMU 521 YP 

Pfeiffer 
JMR 112 Balzers 

Turbo 

molecular 
- 

DCU 300 

Pfeiffer 

Table 4.2 - Pumps 
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Chapter 5 

On the size of ions solvated in helium 

clusters 

5.1. Introduction 
Solvation is a unifying concept in chemistry. A central topic is, of course, ion solvation in 

water; [5.1–5.3] gas-phase studies of hydrated ions in which physical properties are measured 

as a function of the exact number of water molecules have helped unraveling microscopic 

details of hydration [5.4–5.15]. 

 

Experimental methods applied to hydrated ions in the gas phase are equally well suited to 

study solvation of ions or neutrals in nonpolar solvents. Particularly illuminating are 

measurements of the size-dependence of features in electronic, vibrational or rotational 

spectra of the solute, usually accomplished by some variant of action (depletion) 

spectroscopy, [5.16-5.18] photoelectron spectroscopy, [5.19-5.21] or resonant photoionisation 

[5.22]. 

 

Of special interest are the microscopic properties of solvation shells. Closure of the first 

solvation shell in a complex XYn (where the solute X is either neutral or charged) can be 

inferred from an abrupt change in the evaporation energies, i.e. the incremental binding 

energies ΔE(n), 

XYn = XYn-1 + Y - ΔE(n).   (5.1) 

ΔE(n), also called dissociation or separation energy, may be obtained from ion-molecule 

equilibria in high-pressure mass spectrometric measurements [5.4, 5.6, 5.23]. Alternatively, 

ΔE(n) can be deduced from photoelectron spectra of neutral or negatively charged XYn 

complexes [5.21]. However, closure of a solvation shell is often evident more easily from data 
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that reflect evaporation energies of cluster ions in a qualitative way. In many experiments, 

cluster ions are vibrationally excited, and they are prone to unimolecular dissociation in a 

field-free section of the mass spectrometer. Although the quantitative relation between 

evaporation energies and the size dependence of dissociation rates is complex because an 

evaporative ensemble [5.24] is neither canonical nor microcanonical, one usually finds that 

particularly unstable cluster ions (those with small ΔE(n) values) are characterized by 

enhanced dissociation rates and therefore form local minima in mass spectra. Magic numbers 

in mass spectra often reflect particularly stable cluster sizes, [5.25] and stepwise drops in the 

yield of solvated ions indicate closure of a solvation shell. For non-directional bonding, 

icosahedral structures are often energetically favorable, and ns = 12 is a commonly observed 

number of solvent atoms in the first solvation shell, e.g. for O
-
Arn, NO

-
Arn, [5.21] and 

HFArn.[5.26] For large size differences between solvent and solute one finds steps below or 

above n = 12; the ns values do no longer convey structural information but may be used 

instead to determine the size of the solute [5.27]. 

 

With the recent development of powerful helium nanodroplet sources, nearly any kind of 

atom or molecule, neutral or charged, can be embedded in helium [5.16, 5.17, 5.28, 5.29]. 

Whereas neutral alkali and alkaline earth atoms will reside at or near the surface of helium 

droplets, nearly all other dopants will gain energy upon moving toward the center of the 

droplet [5.30]. The interaction of molecules including N2O, CO2 and OCS with helium has 

been explored by high-resolution vibrational and rotational spectroscopy. One surprising 

result is the appearance of superfluidity in the solvent even before the first solvation shell is 

completed; [5.31-5.33] this raises the question if solvation shells are defined at all [5.34]. 

 

For charged dopants the interaction with the solvent atoms is much stronger. Half a century 

ago Atkins estimated that ions in liquid 4He form snowballs containing about 50 tightly bound 

atoms [5.35]. More recent quantum mechanical calculations of helium clusters doped with 

alkali cations do indeed show a rigid first coordination shell with strongly localized solvent 

atoms [5.36-5.40]. However, ions do not always induce localisation: Helium atoms in the first 

solvation shell of Ne+ remain delocalised, and calculated evaporation energies ΔE(n) vary 

smoothly with n [5.41]. Theory also suggests that singly charged earth alkaline ions [5.42, 
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5.43] and some anions including halide ions, [5.44] form bubbles rather than snowballs, and 

that solvent atoms in the “crust” of these bubbles remain delocalized. 

 

There is no shortage of experiments on charged atoms, molecules or clusters embedded in 

helium, [5.45-5.55] but very few relate to solvation. Meiwes-Broer and coworkers reported 

that mass spectra of Mg+Hen, formed by femtosecond ionisation, exhibit a strong drop in ion 

yield for small n followed by a broad plateau [5.56]. The feature was assigned to closure of a 

first solvation shell around n = 20. In another noteworthy study, mass spectra of Ar+Hen 

exhibit an abrupt drop at n = 12 whereas mass spectra of Ne+Hen do not show reproducible 

intensity anomalies [5.41]. Helium clusters grown in a drift tube around cations of N2, O2, 

CO, CO2, and rare gas atoms show drops in the ion yield at or near n = 12 [5.57-5.59]. In 

recent work from our laboratory, CCl4 and SF6 molecules were embedded in helium 

nanodroplets; extended cluster ion series F+Hen and Cl+He were formed by electron impact 

ionisation [5.60]. 

 

In the present work we apply mass spectrometry to determine the size of the first solvation 

shell for several ions embedded in helium droplets. Cations X+Hen with X+ = F+, Cl+, Br+, I+, 

I2
+, or CH3I+ are formed by electron impact ionisation of helium droplets doped with SF6, 

C4F8, CCl4, C6H5Br, CH3I, or I2. Anions X-Hen with X- = F-, Cl- and Br- are formed by electron 

attachment to helium droplets doped with SF6, CCl4 or C6H5Br. Each observed cluster ion series 

exhibits a marked drop at a characteristic size ns that we interpret as the number of solvent atoms in 

the first solvation shell. For F-, Cl- and Br-, ns values are about 70 % larger than for the corresponding 

cations. We propose a simple classical model to estimate radii of ions solvated in helium from the 

observed values of ns; results for halide ions are compared with published experimental and theoretical 

work. 

5.2. Results 

5.2.1. Positive ion mass spectra 

Positive ion mass spectra were recorded for helium droplets doped with SF6, CCl4, C6H5Br, I2, 

or CH3I. Note that a neutral droplet may capture more than one dopant molecule in the pick-

up cell. The following ions were observed to form large complexes with helium: F+, Cl+, Cl2
+, 
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Br+, I+, I2
+, I3

+, CH3I+, CH3I2
+. Some of these ion series escaped quantitative analysis because 

they coincide in mass with other ion series. The mass resolution in the present study was 

insufficient to clearly separate ions with nominally identical mass, such as 12CHI+ (a fragment 

of methyl iodine, mass 139.91 u) and He35
+ (140.09 u). 

 

Cation spectra of droplets doped with SF6 or CCl4 have been published previously [5.60]. 

They are congested due to the presence of more than one isotope in natural sulfur and 

chlorine. Data analysis is challenging as illustrated further below in our discussion of anion 

spectra. 

 

In Figure 5.1 we present cation mass spectra of droplets doped with iodine (panels a and b) 

and methyl iodine (panel c). These compounds are essentially monisotopic, except for the 1.1 

% abundance of 13C in natural carbon. All spectra show an extended series of Hen
+ (marked 

black, nominal mass 4n u). For droplets doped with I2, a series of I+Hen ion peaks (marked 

red) sets in at 127 u (bare I+). The yield of this series decreases markedly with increasing size 

n if the partial I2 pressure in the pickup cell is low (panel a). When the I2 pressure is increased 

threefold (panel b), the yield of I+Hen levels off much more slowly. At this increased I2 

pressure we observe another ion series beginning at 254 u due to I2
+Hen ions (marked blue). 

At higher mass (not shown) we also observe a strong I3
+ peak followed by I3

+Hen ions. 
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Figure 5.1 - Mass spectra of cations resulting from ionisation of helium droplets doped with I2 (panels a and b) 

and CH3I (panel c). Note the logarithmic ordinate and the break in the abscissa. Panel b was recorded with 

increased partial I2 pressure, thus increasing the likelihood of doping with more than one neutral molecule. Most 

prominent are cluster ion series Hen
+ (marked black), I+Hen (red), I2

+Hen (blue) and CH3I+Hen (green). Hatched 

peaks flag ions that contain significant contributions from two ion series. For example, He35
+ and CHI+ both 

contribute to the peak at 140 u 

The situation is more complex in Figure 5.1c which shows ions resulting from helium 

droplets doped with CH3I. In addition to Hen
+, I+Hen and I2

+Hen we also observe CH3I+Hen 

starting at 142 u. The CH3I+Hen series levels off quickly, hence it does not obscure the I2
+Hen 

series which, beginning at 254 u, coincides in nominal mass. However, CHI+ and CI+ 

fragment ions at 140 and 139 u, respectively, do coincide with members of the Hen
+ and I+Hen 

ion series. Beginning at 267 u, ions resulting from clusters doped with two or more CH3I 

molecules lead to several mass spectral coincidences. Peaks in Figure 5.1c that seem to 

contain significant contributions from two or more ions are shown hatched. Peaks that are not 

members of any significant ion series are left unfilled. 

5.2.2. Negative ion mass spectra 

Negative ion mass spectra recorded for helium droplets doped with SF6, CCl4 and C6H5Br 

provided useful mass spectra; they are reproduced in Figure 5.2. Pure helium cluster anions 

are metastable [5.46]; they are not observed under our conditions. C6H5Br dopants (Figure 

5.2a) result in two prominent ion series, 79Br-Hen (marked red) and 81Br-Hen (unfilled), of 

nearly equal yield (the isotope abundance in natural Br is indicated by triangles above the 
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79Br- and 81Br- ion peaks). Beginning at 156 u, the appearance of C6H5Br- makes the spectrum 

more complex. The theoretical abundance distribution of its four most prominent isotopomers 

(12C6H5
79Br, 13C12C5H5

79Br, 12C6H5
81Br, 13C12C5H5

81Br) is indicated by triangles. Although 

the cluster ion 79Br-He20 at 159 u is contaminated by 13C12C5H5
81Br-, the yields of the two ions 

can be disentangled with help of the 81Br-He20 signal at 161 u or 12C6H5
81Br- at 158 u. 

 

Figure 5.2b shows a mass spectrum obtained for droplets doped with CCl4. This molecule 

gives rise to several fragment anions. The expected relative abundances of Cl-, Cl2
-, CCl2

-, Cl3
-

, and CCl3
- isotopomers that derive from 35Cl (75.8 %) and 37Cl (24.2 %) are indicated by 

triangles. Isotopomers containing a 13C isotope (1.1 %) are ignored. Although the spectrum is 

quite complex, most members of the series 35Cl-Hen can be accurately analyzed. Cl2
- and CCl2

- 

do not interfere because their nominal masses are even. 35Cl2
37Cl- contaminates 35Cl-He18 at 

107 u but this can be corrected for by analyzing other peaks of the Cl3
- isotopomers. The 

correction procedure fails when the contamination overwhelms the cluster ion signal; we 

cannot determine the yields of Cl-He21 and Cl-He22 which are swamped by isotopomers of 

CCl3
-. 
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Figure 5.2 - Mass spectra of anions resulting from attachment of electrons to helium droplets doped with a) 

C6H5Br, b) CCl4, and c) SF6. Cluster ions 79Br-Hen, 35Cl-Hen and F-Hen are marked red. Hatched peaks indicate 

mass spectral coincidences. Pure helium anions are not observed. Triangular symbols illustrate expected isotope 

patterns of various molecular ions 
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The anion mass spectrum of helium droplets doped with SF6 (Figure 5.2c) is complex because 

sulfur has three naturally occurring isotopes: 32S (95.0 %), 33S (0.8 %), and 34S (4.2 %). 

Contributions of 32SF2
- and 33SF3

- to the ion series F-Hen can be eliminated by analysis of the 

isotope pattern as described above whereas the contaminations due to 32SF5
- and 33SF6

- are too 

strong to be corrected reliably. 

5.2.3. Ion yield versus number of solvent atoms 

Figure 5.3 displays the size dependence of the yield of cations solvated in helium. Data for 

F+Hen and Cl+Hen have already been published previously; [5.60] data for Br+Hen, I+Hen, 

I2
+Hen and CH3I+Hen are extracted from the current work. The statistical uncertainty of the 

data may be judged from their scatter. Each distribution exhibits a drop in yield at a distinct 

size ns. Some drops are more abrupt than others but all are clearly discernible. We extract 

their positions by fitting a step function (a generalized Fermi function) to sections of the data. 

The results are indicated by solid lines; values of ns are listed in Table 5.1a. They range from 

ns = 10.2 ± 0.6 for F+ to 20.0 ± 0.1 for I2
+. Quoted uncertainties are standard errors reported 

by the fitting routine. The difference between the values obtained from two independent 

measurements for I+ (15.9 ± 0.1 and 16.7 ± 0.2) indicate that the actual uncertainties are larger 

than the quoted ones. 
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Figure 5.3 - Yield of cations versus number of helium atoms attached. Data are deduced from mass spectra 

including those shown in Figure 5.1. The solid line shows the fitted step function 

Figure 5.4 displays the size dependence of the yield of anions solvated in helium. Step 

functions are fitted to the data. Values for ns, listed in Table 5.1b, range from 18.3 ± 0.9 for F- 

to 22.0 ± 0.2 for Br-. We note that halogen anions are much larger than the corresponding 

cations; the average ratio ns(anion)/ns(cation) is 1.70. 
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Figure 5.4 - Yield of anions versus number of helium atoms attached. Data are deduced from mass spectra 

shown in Figure 5.2. The solid line shows the fitted step function 
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5.3. Discussion 
To summarize our results, 

• Each ion series X±Hen exhibits a stepwise drop in the yield at some characteristic value ns. 

• The steps are not always abrupt; they extend over a few cluster sizes. The ns values that we 

quote are 50 %-values obtained from fitting step functions. 

• Anions of F, Cl and Br are much larger than their cations; the average ratio 

ns(anion)/ns(cation) is 1.70. 

• For a given charge state, ns values of halogen ions increase with increasing atomic number. 

 

What can be concluded from the observation of stepwise drops in the ion yield? In this work, 

cluster ions are formed by electron ionisation of much larger, doped helium clusters. The 

initial ionisation event leads to extensive fragmentation and, after most of the excess energy is 

removed and the remaining energy is randomized over all vibrational modes, evaporation of 

helium atoms [5.46, 5.61, 5.62]. In this scenario, any possible traces of kinetic effects in the 

initial formation of the neutral precursors will be wiped out and anomalies in the ion yield 

will be mainly due to anomalies in the evaporation energies ΔE(n) (defined in eq. 5.1). Details 

of the ion yield will also depend on technical parameters that characterize the mass 

spectrometer (time scales, rejection of fragment ions due to their recoil energies, etc.), and on 

configurational entropies of the cluster ions [5.25, 5.63-5.65]. By and large, however, an 

abrupt drop in ΔE(n) at ns will be reflected in a similarly abrupt drop in the ion yield at ns 

[5.66]. 

 

The size dependence of evaporation energies may exhibit a variety of features, such as local 

singular maxima, minima, ledges, etc. Closure of a geometric shell at size ns is usually 

preceded by a more or less constant evaporation energy, followed by a substantially lower 

evaporation energy for cluster size ns+1. The ion yield will then change in a similarly abrupt 

fashion. This is not what we observe; we tentatively conclude that the evaporation energies of 

X±Hen change more gradually upon completion of the first solvation shell. This conclusion 

agrees with quantum Monte Carlo calculations. For example, stepwise decreases occur in the 

computed evaporation energies of Mg2+Hen at n = 4, 6, 8 and finally 9 where the first 

solvation shell is filled [5.67]. Similarly, the computed evaporation energies of Li+Hen exhibit 

several drops before the first solvation shell closes at n = 10 [5.68]. Even more compelling, 
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the evaporation energies computed for halide anions drop gradually over a size interval Δn ≅ 

10. At the end of this interval, the evaporation energies have approached the bulk value of 

helium [5.44]. 

 

We now turn to a quantitative discussion of our results. To begin with, the values of ns 

observed for halogen ions exhibit the expected trend: They increase toward the heavier 

halogens, and they are larger for anions than for cations. To our knowledge, so far only two 

published experiments provide information about the number of helium atoms in the first 

solvation shell of ions. Meiwes-Broer and coworkers observed a very gradual drop in the 

yield of Mg+Hen formed by femtosecond ionisation; the slope was steepest at ns = 20 [5.56]. 

Janda and coworkers observed an abrupt drop at ns = 12 in the ion yield of Ar+Hen [5.41]. 

This value compares reasonably well with our result for Cl+ where ns = 11.6 is obtained. 

 

Theoretical work has mostly focused on solvation of alkali and alkaline earth cations [5.36-

5.40, 5.67, 5.68] but a recent variational and diffusion Monte Carle calculation for F-, Cl- and 

Br- by Gianturco and coworkers is of particular interest [5.44]. Evaporation energies of X-Hen 

computed in that work drop very gradually. We fit step functions to the evaporation energies; 

the location of the steps (i.e., their midpoints) are listed in Table 5.1. On average, the resulting 

ns values are 18 % smaller than our experimental values. However, the relation between 

evaporation energies and ion yields is complex. Under certain assumption, anomalies in the 

ion yield depend on the derivative of the evaporation energies, and it is possible to 

quantitatively derive evaporation energies from measured ion yields [5.25, 5.65]. The 

procedure requires knowledge of the vibrational heat capacities which are usually assumed to 

be close to their equipartition value (3n-6)kB for cluster ions containing n atoms. That 

assumption will not be met at the ultralow temperatures of doped helium cluster ions, but a 

more involved analysis is beyond the scope of the present work.  
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 cations 

ion Dopant ns a rion (Å) a 
F± SF6 10.2 ± 0.6 1.80 
Cl± CCl4 11.6 ± 0.2 1.98 
Br± C6H5Br 13.5 ± 0.1 2.27 
I+ I2 15.9 ± 0.1 2.63 
I+ CH3I 16.7 ± 0.2 2.76 
I2

+ I2 20.0 ± 0.1 3.19 
CH3I+ CH3I 17.8 ± 0.2 2.91 

Table 5.1a - Observed number ns of helium atoms in the first solvation shell of positive ions embedded in Hen. 

Ionic radii rion are estimated from ns using a classical model (see Appendix) and assuming a helium number 

density of 0.0218 Å-3. Literature values are shown for halide anions 

 anions 
ion dopant ns a ns b rion (Å) a rion (Å) c rion (Å) d rion  (Å) e 

F± SF6 18.3 ± 0.9 13.1 ± 0.1 3.07 1.36 2.67 2.7 
Cl± CCl4 19.5 ± 0.2 17.3 ± 0.3 3.14 1.81 3.02 3.3 
Br± C6H5Br 22.0 ± 0.2 19.0 ± 0.2 3.46 1.95  3.5 
I+ I2       
I+ CH3I       
I2

+ I2       
CH3I+ CH3I       

Table 5.1b - Observed number ns of helium atoms in the first solvation shell of negative ions embedded in Hen. 

Ionic radii rion are estimated from ns using a classical model (see Appendix) and assuming a helium number 

density of 0.0218 Å-3. Literature values are shown for halide anions 

a This work 
b Estimated from stepwise drops in computed evaporation energies [5.44]. 
c Ionic radii derived from lattice constants of alkali halide crystals [5.69]. 
d Cavity radius of anion bubbles in bulk helium [5.42-5.43]. 
e Ionic radii from computed radial density profiles [5.44]. 

 

It is tempting to estimate ionic radii from our data. In the Appendix we present a simple 

classical model that relates the radii of solvated ions to the number ns in the first solvation 

shell. However, the model should be taken with a grain of salt. First, it requires knowledge of 

the solvent number density in the vicinity of the solute ion which will be higher than the bulk 

value due to electrostriction. Second, the concept of a distinct solvation shell becomes 

questionable when the solvent atoms are delocalised. True, cationic impurities cause strong 

electrostriction, localisation of solvent atoms and formation of a well-defined first solvation 

shell. However, the quantum Monte Carlo study by Gianturco and coworkers [5.44] shows 

that the interaction of helium with halide anions is much weaker, the solvent atoms remain 

delocalised, and no distinct solvation shell is formed. 
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With these cautionary remarks, we present radii of halogen ions embedded in helium in Table 

5.1; they are graphed in Figure 5.5. The values are calculated from the values of ns under the 

assumption that the solvent density in the first solvation shell equals the bulk density. On 

average, computed anion radii are 60 % larger than cation radii. Also listed in Table 5.1 are 

the radii of F-, Cl- and Br- in alkali halide crystals [5.69]. They are, on average, nearly a factor 

two smaller than for X-Hen. The difference reflects the very weak solute-solvent interaction in 

helium.  
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Figure 5.5 - Radii of anions and cations in helium droplets derived with a classical model from the present data, 

assuming a bulk helium density. Anionic radii derived from lattice constants of alkali halide crystals are shown 

for comparison. Also shown are values resulting from a quantum molecular dynamics study [5.44] and from ion 

mobilities in superfluid bulk helium [5.42, 5.43] 

A comparison with other published work is possible for halide anions. Khrapak and Schmidt 

have derived radii of F- and Cl- in superfluid bulk helium [5.42, 5.43]. Because of exchange 

repulsion, the ions reside in cavities. Their properties are evaluated in a continuum model and 

compared with ion mobility data. The calculated radii of the cavities are listed in Table 5.1 

and graphed in Figure 5.5; they are slightly smaller than ionic radii derived in the present 

work. Such a trend is expected. In van der Waals bound crystals the long-range attractive 

interaction between solvent atoms leads to a nearest-neighbor distance that is shorter than the 

dimer bond length [5.69]. The effect is strong in helium because of its very shallow 

interaction potential. Toennies and coworkers applied molecular beam scattering to determine 

the density of superfluid helium droplets [5.70]. For droplets containing 700 atoms the density 
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is only 40 % the bulk density; the density increases to 85 % for droplets containing 13 000 

atoms. 

 

Gianturco and coworkers have applied variational and diffusion Monte Carlo calculations to 

determine radial density profiles ρ(r) and solvent evaporation energies for halide ions 

solvated in helium clusters [5.44]. This work provides a great deal of information. The 

interaction of the anions with the solvent is very weak, although strong enough to cause 

solvation. This is in contrast to H- which is even more weakly bound and remains outside the 

helium cluster [5.71]. The solvent forms a very delocalised quantum layer around the halide 

anions. There is no clear distinction between a first and second solvation layer except, 

perhaps, for F- and Cl-. Nevertheless, the computed radial density profiles of the solvent 

shown in that work indicate that the anion radii are well defined. As no numerical values were 

reported in ref. [5.44], we read them off the published graphs by linearly extrapolating to zero 

the steepest slopes before the first maximum in ρ(r). Our estimated reading errors are 0.1 Å. 

The values are listed in Table 5.1 and graphed in Figure 5.5. 

 

In spite of the simplicity of our classical model, and the assumption of a helium density being 

equal to the bulk density, the agreement between anion radii derived in this work and those 

reported in the literature [5.42-5.44] is surprisingly good, with a mean standard deviation 

below 10 %.  

 

Given the strong delocalisation of solvent atoms in the vicinity of halide anions, the 

surprisingly good agreement with our classical model may be fortuitous, but it also bears on 

the question of superfluidity at finite temperatures. The microscopic environment of neutral 

molecules embedded in helium has been explored by vibrational and rotational spectroscopy. 

Early experiments carried out on OCS in mixed 3He/4He droplets indicated that a minimum of 

60 4He atoms were needed for superfluidity [5.72]. More recent high-resolution microwave 

spectra of linear molecules complexed with pure 4Hen reveal non-monotonic changes of the 

molecular rotational constant B with size n [5.33, 5.73, 5.74]. For OCS in helium, a sharp 

increase of B beginning at n = 9 is interpreted as the onset of superfluidity, as the helium 

decouples from the rotational motion of the molecule. Another change in slope of B(n) at n = 

20 is tentatively interpreted as indication of the evolution of “some sort of solvation shell 
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structure” [5.33]. This interpretation is supported by theoretical work using path integral 

methods [5.32, 5.75, 5.76]. 

 

Experiments on charged atoms or molecules solvated in helium are, so far, limited to mass 

spectra; they cannot provide a similar level of detail. Is the observation of steps in the ion 

yield inconsistent with superfluidity in the first solvation shell? Theoretical work suggests that 

this conclusion would be premature. A comprehensive study of Ne+Hen may suggest such a 

correlation [5.41]: The measured ion yield of Ne+Hen exhibits no reproducible stepwise drop, 

and diffusion quantum Monte Carlo calculations using a diatomics-in-molecule 

parameterization of the potential indicate strong delocalisation of the solvent atoms [5.41]. 

However, Ne+Hen seems to be a very special case; partial delocalisation of the charge within 

the Ne+He2 ion core results in very complicated potential energy surfaces. For all other 

cations electrostriction leads to snowball formation with a rigid first solvation shell [5.36-

5.40]. Anions (halides and OH-), on the other hand, form bubbles because of the exchange 

repulsion between the excess electron and helium, and solvent atoms in the first shell of 

anions are delocalised [5.44, 5.77]. A systematic difference between solvated cations and 

anions may be inferred from the radial density distributions. For cations, the first maximum is 

followed by a deep minimum; i.e. there is a clear distinction between the first and second 

solvation shell for cations. This is not so for anions.  

 

However, one must also consider the role of temperature. First, density profiles computed for 

neutral neon solvated in helium hardly change when the system is warmed above the 

transition temperature [5.34]. Second, whereas neutral molecules complexed with helium may 

be even colder [5.33] than 0.37 K, the usually assumed value of helium nanodroplets, [5.78] 

small ion-helium complexes are likely to be warmer. After ionisation they cool by 

evaporation of helium atoms; the evaporative model [5.34] predicts that the vibrational 

temperature is such that the helium evaporation rate equals the inverse characteristic time of 

the mass spectrometer. That time is shorter than in experiments on neutral helium droplets, 

and evaporation energies are larger, especially for cations but also for anions [5.44, 5.77]. 

These differences will lead to vibrational temperatures higher than 0.37 K, possibly exceeding 

the bulk transition temperature for superfluidity in bulk 4He, 2.17 K. 
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5.4. Conclusions 
We have measured the yield of ion-helium complexes for halogen cations, anions, and a few 

molecular cations as a function of the number of helium atoms. Each ion series X±Hen 

exhibits a pronounced drop at a characteristic size ns. These drops are assigned to stepwise 

decreases in the energy for evaporation of helium atoms from the cluster ion. The drops are 

not as abrupt as found in the distributions of ions solvated in classical solvents; evaporation 

energies computed for X±Hen do, indeed, show a gradual decline that extends over a range of 

cluster sizes [5.44]. 

 

Values of ns for halogen ions exhibit an expected trend: They increase with atomic number, 

and values for anions are larger than for cations by, on average, 70 %. A simple classical 

model is proposed to derive ionic radii from ns. Assuming a helium density equal to the bulk 

value we find that halide anions in helium are nearly twice as large as in alkali halide crystals. 

The radii agree, within 10 %, with values derived from ion mobilities in superfluid bulk 

helium, [5.42, 5.43] and with values derived from radial density profiles computed by 

quantum Molecular Carlo methods [5.44]. 
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5.5. Appendix 

A classical model for the relation between ns and the ionic radius 

For each ion series X±Hen we observe a drop in the ion yield at a characteristic size ns. We 

interpret ns as the number of helium atoms in the first solvation shell of the ion X±. To 

determine the radius rion of the solvated ion, we model the solvated ion and the helium atoms 

as hard spheres of radii rion and rHe, respectively. The model does not assume any specific 

structural order, nor a solid-like cluster. However, this classical approach becomes 

questionable when the solvent atoms are delocalized. ns will scale as the surface area of the 

solvation shell, hence as the square of its radius rs. A reasonable measure of rs is the distance 

from the center of the solvated ion to the nuclei of the atoms in the first shell, 

Heions rrr +=    (5.A1) 

In a close-packed arrangement of atoms with isotropic interaction each atom has 12 nearest 

neighbors. In other words, if rion=rHe then ns=12, hence [5.83] 
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To be consistent with the hard-sphere model, rHe should be viewed as the radius of a helium 

atom in a close-packed crystal, that is, rHe equals one half the interatomic distance. Condensed 

helium does not form a solid at or below ambient pressure; we estimate rHe from the atomic 

volume vHe,  

fvr HeHe =3

3
4π   (5.A3) 

where f=0.74 is the packing fraction in close-packed elemental crystals [5.69]. vHe equals the 

inverse of the number density of helium which depends strongly on pressure and temperature. 

A widely used value for the bulk density is 0.0218 Å-3 [5.70] corresponding to vHe=45.9 Å3 

and rHe= 2.01 Å. The density in small pure helium droplets is smaller [5.70] but the decrease 
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will be partially compensated for because the solvated ion induces electrostriction. Ionic radii 

calculated from our measured ns values are listed in Table 5.1 and graphed in Figure 5.5. We 

test our model for consistency by evaluating the number of atoms in the second coordination 

shell of a close-packed crystal. In the spirit of Equation (5.A1), the second solvation shell 

would have a radius rs=rion + 3rHe, and Equation (5.A2) would predict ns=48 for the number 

of atoms in the second solvation shell if rion=rHe, in good agreement with the actual value 42 

for fcc, ideal hcp and icosahedral packing [5.84–5.86]. 
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Chapter 6 

Argon clusters embedded in helium 

nanodroplets 

6.1. Introduction 
Argon clusters have long been a model system in cluster research. Ar2 was among the first 

dimers whose presence was identified by Robbins and Leckenby in high pressure gases [6.1]. 

Shortly thereafter, Milne and Greene synthesized large argon clusters in a nozzle beam; they 

noted a distinct minimum in the abundance of Ar20
+ in the mass spectra [6.2]. Farges and 

coworkers measured electron diffraction off free argon clusters and noted non-crystalline 

features in the Debey-Scherrer patterns [6.3]. Friedman and Beuhler reported the existence of 

“magic numbers” in mass spectra of large argon cluster ions, formed by expansion of a 

weakly ionised mixture of helium and argon [6.4]. The numbers coincided, within the 

experimental error, with the number of atoms that are required to build compact aggregates of 

icosahedral symmetry with three to six complete shells, containing 147, 309, 561, and 923 

atoms, respectively [6.5 - 6.6]. The same magic numbers (with 147 being replaced by 148) 

were observed when large neutral argon clusters were ionized by electron impact ionisation 

[6.7 – 6.8]. Icosahedral shell closures are also observed in many metallic clusters, containing 

hundreds to thousands of atoms [6.9 – 6.10]. 

 

Argon enjoys favorite status among experimentalists because it is inexpensive and essentially 

monisotopic; spectral congestion that plagues mass spectra of neon, krypton and xenon 

clusters is thus avoided. For theorists, neutral argon clusters come closest to a classical system 

characterized by simple pairwise additive interactions. Quantum effects play a large role for 

helium and possibly neon whereas three-body interactions will become more important for 

krypton and xenon [6.11 – 6.12]. 
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However, argon cluster ions present a major, as yet unexplained puzzle. Size distributions of 

Arn
+ with n ≤ 79 atoms are strikingly different when ions are produced by different methods. 

Distributions obtained by electron impact ionisation of free pre-formed neutral clusters are 

smooth, with the exception of a deep minimum at n = 20 [6.7, 6.8, 6.13 – 6.15], and a less 

prominent ledge at n = 23 [6.7 – 6.8]. Single-photon ionisation of free Arn also shows these 

two features and an otherwise smooth distribution [6.16]. In contrast, when Arn
+ is formed by 

expanding weakly ionised pure argon, a rich pattern of abundance maxima at n = 19, 23, 26, 

29, 32, 34, 43, 49, 55 and beyond is found [6.17]. The numbers below 55 can be assigned to 

closure of icosahedral subshells around a rigid icosahedral Ar13
+ core, essentially following 

the Aufbau principle explored by Hoare and others for arrangement of atoms that interact via 

a Lennard Jones potential [6.5 – 6.6]. 

 

There is little doubt that the formation of a tightly bound molecular ion in Arn
+ plays a major 

role in the observed differences. Photoabsorption and computational studies suggest that the 

ionic core in Arn
+ is best described as a linear trimer ion [6.18 -6.21], although a gradual 

transition to a tetramer ion with increasing size is a possibility [6.22 – 6.23]. A non-spherical 

ionic core impedes icosahedral arrangement of neutral atoms in its surroundings. However, 

inert gas clusters are compliant. When the charge is localized on an impurity X whose 

ionisation energy is much less than that of Ar (e.g., X = NO), the distribution of ArnX+ 

exhibits a pronounced maximum at n = 12 [6.24]. Also, xenon cluster ions formed from pure 

Xen by electron impact ionisation shows, by and large, all the intensity anomalies that one 

expects for soft sphere packings [6.7, 6.8, 6.25]. 

 

An unanswered question is why the ionic core in Arn
+ should hinder the appearance of magic 

numbers when neutral clusters are ionised by electron impact or photon ionisation, but not 

when clusters are grown around a charged seed. True, a large amount of energy is released 

when a strongly bound ionic core forms after vertical ionisation. The energy greatly exceeds 

the binding energy of neutral atoms in Arn
+, thus leading to extensive fragmentation into 

cluster ions as small as Ar2
+ [6.26 – 6.27]. Indeed, it is this very process that leads to 

abundance maxima for cluster ions that feature particularly high evaporation energies. Mass 

spectrometric studies of size-selected ions in the “metastable” time window, some 10-6 to  
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10-4 s after ionisation, clearly show that abundance maxima correlate with minima in the 

evaporation rate, and vice versa [6.14, 6.15, 6.28]. 

 

Two factors may be thought to cause the observed differences in the distributions of Arn
+, 

namely i) kinetic effects when Arn
+ grows around ionic seeds, and ii) differences in the 

vibrational temperature. The temperature of argon cluster ions formed by vertical ionisation is 

such that their evaporation rate constant k approximately equals the inverse of the time that 

has elapsed since their formation [6.29 – 6.30]. The temperature of clusters grown around 

ionic seeds could be lower. Structural isomers of the ionic core are known to exist [6.22, 6.31, 

6.32]. Their relative populations may change with temperature, thus favoring different cluster 

structures and resulting in different magic numbers [6.33 – 6.35]. 

 

A systematic variation of cluster ion temperature in one of the two experimental approaches 

would be illuminating. As mentioned above, ionisation of free Arn inevitably produces 

clusters that are “boiling hot” [6.29 – 6.30] because the vertical ionisation energy greatly 

exceeds the adiabatic value. However, the situation changes when clusters are embedded in 

large, cold helium droplets [6.36]. The dominant ionisation mechanism upon electron impact 

would now be formation of He+ followed by charge hopping, influenced by the attractive 

interaction with the induced dipole moment of the dopant. Charge migration will terminate 

either by selftrapping, i.e. formation of a highly excited He2
+ which is subsequently ejected 

from the droplet, or charge exchange between He+ and the dopant [6.37 – 6.41]. Although a 

large amount of vibrational energy would still be released upon formation of the ionic core in 

Arn
+, the helium bath provides a mechanism for rapid cooling via evaporation of helium 

atoms, possibly quenching the fragmentation of Arn
+. Early mass spectra obtained by electron 

impact ionisation of argon clusters embedded in helium droplets seemed to indicate negligible 

fragmentation of the cluster ions [6.42]. This would imply that the ionic size distribution 

reflects the distribution of neutral clusters in the droplet which is probably a smooth 

Poissonian, void of anomalies. More recent data, however, suggest otherwise. In particular, 

Janda and coworkers have measured the yield of ArmHen
+ ions as a function of argon pressure 

in the pick-up cell, and simulated their data by treating the charge transfer probability and 

cluster ion fragmentation as free parameters [6.37]. Their main conclusions are that i) droplets 

doped with a single argon atom mostly yield ArHen
+ but no bare Ar+, ii) droplets doped with 



Argon clusters embedded in helium nanodroplets 

 
 

78

argon dimers mostly yields bare argon dimer ions, iii) droplets doped with larger argon 

clusters fragment into smaller, bare argon cluster ions. 

 

Nevertheless, there is evidence that the helium bath reduces the degree of fragmentation by 

suppressing evaporation, i.e. statistical reactions that occur after randomization of the excess 

energy within the argon cluster ion. The observed cluster ions could be significantly colder 

than those formed in an evaporative ensemble even if no helium atoms remain attached to the 

observed ions, and the “magic numbers” in the distributions of Arn
+ could conceivably 

change. Previous measurements of argon and other inert gas clusters embedded in helium 

were restricted to small clusters; they did not extend to sizes where abundance anomalies are 

expected [6.37, 6.39, 6.42 – 6.45]. However, electron impact ionisation of water cluster ions 

embedded in helium droplets do show the same characteristic abundance anomaly at 

(H2O)20H3O+ that is observed when bare water clusters are ionised [6.46 – 6.47]. 

 

Here we present mass spectrometric data of ions formed by electron impact ionisation of 

helium droplets doped with argon. The mass resolution is sufficient to distinguish small ions 

of different compositions that are nominally isobaric such as He22
+, ArHe12

+ and Ar2He2
+; a 

previously reported abundance maximum for the ion peak at 88 u can be unambiguously 

assigned to a maximum in the abundance of ArHe12
+. Distributions of argon cluster ions 

containing up to 60 atoms have been recorded; observed anomalies are identical to those 

obtained by ionisation of bare argon clusters. However, when small amounts of nitrogen, 

oxygen and water impurities are present in the droplets we observe abundance maxima for 

Ar54N2
+, Ar54O2

+, and Ar55H2O+, probably related to the closure of a second icosahedral shell. 

Remarkably, the impurity content of the next several cluster sizes is reduced by an order of 

magnitude. 

6.2. Results and Discussion 
Mass spectra shown in this work were obtained by electron impact ionisation. A partial argon 

pressure of a few times 10-4 Pa was sufficient to dope helium droplets with one or two argon 

atoms; pressures up to 10-2 Pa were used to synthesize large argon clusters. Electron energies 

ranged from 30 to 200 eV. Most spectra shown here were recorded at 100 eV; the electron 

energy had no significant effect on the cluster size distributions. No evidence was found for 
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doubly charged cluster ions. This is not surprising because charge transfer between He+, the 

primary ion formed in large helium droplets, and a an argon cluster cannot, for energetic 

reasons, result in Arn
2+.  

 

Figure 6.1a displays a spectrum in the low mass range. The ion peaks are due to ArmHen
+. 

Peak heights are not an accurate measure of the ion abundance because of statistical scatter, 

and because ions with different compositions may contribute to one and the same peak. 

Helium is essentially monisotopic, with a mass of 4.00260 u. Argon consists of 40Ar (mass 

39.9624 u, natural abundance 99.6003 %), 36Ar (0.3365 %) and 38Ar (0.0632 %), therefore 

small argon clusters are mostly of the form 40Arm. The mass difference between He10 and 40Ar 

is 0.0636 u. This difference is sufficient to distinguish between nominally isobaric Ar2Hen
+, 

ArHen+10
+, and Hen+20

+ as demonstrated by the two close-ups in Figure 6.1b. The ion peak at 

40 u consists of Ar+ and He10
+. The different contributions are no longer fully resolved at 88 u 

but they can be extracted by fitting a triplet of Gaussians of equal width that are separated by 

0.0636 u. The fit is shown as a solid line; the individual contributions are shown as dashed 

lines. The peak at 88 u is clearly dominated by ArHe12
+. The low-mass shoulder arises from 

Ar2He2
+; the one at high mass from He22

+. 



Argon clusters embedded in helium nanodroplets 

 
 

80

 

 

Figure 6.1 - Upper panel: Section of a mass spectrum; Ar2
+ is the most prominent peak. Close-ups of the two 

peaks marked by triangles are presented in Figure 6.2b; they reveal two contributions at 44 u and three 

contributions at 88 u. The size distribution of two ion series with nominally identical mass, ArHen
+ and Hen+10

+, 

is displayed in the lower panel 

All peaks in the mass spectrum are analyzed in a similar way; the results for ArHen
+ and 

Hen+10
+ are collected in Figure 6.1c. Hen

+ displays the well-known abundance anomaly at 

n+10 = 14 [6.48 – 6.49]. The abundance of ArHen
+ reaches a local maximum at n = 12. This 

“magic number” was previously noted in similar experiments by Janda and coworkers [6.37] 

but the evidence was indirect because the resolution of the quadrupole mass spectrometer did 

not suffice to distinguish nominally isobaric ions. In that study it was concluded that argon 

clusters primarily fragment into Arn
+ by shedding all helium atoms plus a few argon atoms. 

However, Figure 6.1b clearly shows the presence of mixed ions Ar2Hen
+, in agreement with 

the conclusion reached by Neumark and coworkers in their photoionisation study of argon, 

krypton and xenon clusters embedded in helium droplets. 

 

A maximum in the distribution of ArHen
+ at n = 12 was also reported when argon ions were 

injected into a low-temperature drift tube filled with helium gas [6.50], and in distributions of 

similarly prepared HenN2
+, HenO2

+, and HenCO+ [6.51]. The magic number is commonly 
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assigned to the enhanced stability of a solvated ion surrounded by an icosahedral shell of 12 

helium atoms. Strong local maxima at n = 12 also appear in distributions of HenKr+, HenKr2
+ 

and HenKr3
+ produced by photoionisation of krypton clusters embedded in helium droplets 

[6.39], and in may other binary systems including He12Ag+ and He12Pb2+ [6.10]. 

 

Figure 6.2 displays a mass spectrum recorded with increased argon partial pressure. A Hen
+ 

ion series is clearly seen in the low-mass range (Figure 6.2b) whereas Arn
+ ions, extending to 

n = 61, dominate at larger mass (Figure 6.2a). For most values of n we can distinguish 

between nominally isobaric Arn
+ and He10n

+, but not mixed Ar-He cluster ions. However, 

close inspection of the ion series shows that contributions from mixed cluster ions are 

negligible. 

 

Figure 6.2 - Upper panel: Mass spectrum showing argon cluster ions with up to 61 atoms. Two reproducible 

abundance anomalies are marked. Lower panel: Low-mass section of the same spectrum, showing mostly pure 

helium and pure argon cluster ions 

One has to be cautious in interpreting the amplitudes of Arn
+ peaks in Figure 6.2. The number 

of events per digital bin is small; statistical fluctuations may wrongly suggest peak anomalies. 

These fluctuations can be reduced by integrating over each ion peak; the resulting data are 

shown in Figure 6.3. Two strong anomalies are apparent, a deep minimum at n = 20 and a 

ledge at n = 23. These anomalies have been confirmed by repeated measurements under 

various source conditions. The small local maximum at n = 29 in Figure 6.3 could not be 

confirmed. We observe a hint of maxima at n = 49 and 55 in some distributions (not shown) 
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but the enhancement relative to adjacent peaks never exceeds 10 %; additional data are 

needed to confirm these anomalies. 

 

The distribution in Figure 6.3 closely resembles those obtained by electron impact ionisation 

of free, neutral clusters. They are smooth below n = 79, with the exception of a deep 

minimum at n = 20 [6.7, 6.8, 6.13 – 6.15] and a small ledge at n = 23 [6.7 – 6.8]. (Additional, 

very minor features have been identified in spectra recorded with very good statistics [6.8].) 

Single-photon ionisation of free Arn also produces these two but no other features [6.16]. In 

short, the helium matrix has no discernible effect on the size distribution of Arn
+. One obvious 

conclusion is that the helium droplet does not provide for “soft”, fragmentation-free 

ionization. Otherwise one would expect a distribution void of any anomalies because neutral 

argon clusters grow in the droplets upon successive capture and coagulation of argon atoms; 

this process is controlled by statistics, not by energetics or kinetics which may be size-

dependent [6.42]. In contrast, when free, pure argon clusters are grown around charged seeds 

one observes local maxima at n = 19, 23, 26, 29, 32, 34, 43, 49, 55; the maxima at 49 and 55, 

but not 19, are followed by deep minima [6.17]. The position of maxima in these spectra 

coincides with subshell closures expected for growth of a second icosahedral shell around a 

first icosahedral shell that contains 13 atoms [6.5, 7.9]. 

 

Figure 6.3 - Abundance of Arn
+. Two reproducible anomalies are marked 

In the Introduction we had pointed out that active cooling of the nascent cluster ions by the 

surrounding helium may have an effect on the structure of the ionic core, and on the observed 
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abundance anomalies. In retrospect, our experimental approach is not well suited to reveal 

such an effect because a reduction in temperature below that given by the evaporative 

ensemble (approximately 35 K for neutral clusters [6.29], somewhat larger for more strongly 

bound charged clusters) will quickly reduce the evaporation rate; the size distribution will be 

frozen in. A more viable approach would be to heat cluster ions that were grown around a 

charged seed in a helium buffer gas and monitor their evaporation rate as a function of 

temperature. This kind of approach has been used to measure evaporation energies of sodium 

cluster ions, and C60
+ complexed with metal atoms, but it would be a challenge to apply the 

method to weakly bound argon cluster ions. 

 

An interesting effect arises in the presence of impurities. Data were recorded over the course 

of several weeks; in some instances impurities entered the pick-up cell through the gas inlet. 

Argon cluster ions that contain water, nitrogen or oxygen molecule are observed under those 

conditions. Impurity ions are particularly prominent around 2200 u, the nominal mass of 

Ar55
+. Figure 6.4 displays three mass spectra; a roughly tenfold increase of the impurity level 

in the pick-up cell to ≈1×10-5 Pa would explain the observed relative abundance of impurities. 

The main ion series in each panel is due to pure Arn
+. Three additional ion series are 

discernible in Figure 6.4a; they are due ArnH2O+ (peaks marked by triangles), ArnN2
+ (vertical 

lines) and ArnO2
+ (unmarked, 4 u above the ArnN2

+ series). The ArnH2O+ series terminates 

abruptly beyond Ar55H2O+ (2215.95 u). This is also seen in Figure 6.4c which shows a 

spectrum recorded at higher mass resolution; this spectrum also reveals the presence of 

(barely resolved) 36Ar40Arn-1
+ isotopomers. The ArnN2

+ series increases quite dramatically 

with size and abruptly drops after Ar54N2
+ (2185.98 u); the high-resolution spectrum in Figure 

6.4b shows the dramatic drop in abundance more clearly. The ArnO2
+ series reaches a 

maximum at Ar54O2
+ (2189.97 u). It is worth mentioning that next few larger clusters, shown 

up to n = 57, are essentially void of impurities; the reduction in impurity content is at least an 

order of magnitude compared to the magic clusters. 
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Figure 6.4 - Mass spectra near Ar55
+ (2197.9 u) recorded with different impurity levels and mass resolutions. The 

main peaks are due to pure Arn
+; isotopomers containing one 36Ar are resolved in panel c. The position of 

clusters containing one H2O or N2 molecule are marked by triangles and vertical bars, respectively; peaks 

containing one O2 are also visible. Note the abrupt drop in impurity abundance beyond Ar54N2
+ and Ar55H2O+ 

The ionisation energies of H2O and O2 are 12.621 and 12.070 eV, respectively, much less than 

the ionisation energy of Ar (15.759 eV) [6.52]. Hence it is tempting to postulate that the 

positive charge in ArnH2O+ and ArnO2
+ is localised on the impurity ion [6.53]. This would 

provide a plausible explanation for the enhanced stability of Ar54O2
+ which could be 

described by O2
+ surrounded by two shells of argon atoms with icosahedral packing. 

However, we cannot plausibly explain why ArnH2O+ reaches maximum abundance at n = 55 

rather than 54. 

 

The maximum found for Ar54N2
+ deserves a more careful discussion because the ionisation 

energy of N2 (15.581 eV) is only 0.178 eV below that of Ar. In fact, the structure of small 

Arx(N2)y
+ cluster ions has attracted considerable interest. Thermochemical data suggest that 

the core ions in these complexes are linear trimers, x + y = 3 [6.54], i.e. Ar2N2
+ in the present 
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study. The binding energy of Ar-N2
+ has been measured by several groups, see references in 

[6.55]. A recent value is 1.19 eV [6.55], slightly smaller than the binding energy of Ar-Ar+ 

(1.3147 eV [6.56]). The binding energy of Ar-Ar2
+ is 0.116 eV [6.55] whereas that of Ar-

ArN2
+ seems to be unknown [6.56]. Still, the two most likely ionic cores in Ar54N2

+, either 

Ar3
+ or Ar2N2

+, appear to be energetically very close. Either way, it is not obvious why either 

one of these linear ionic cores would lead to such a dramatic enhancement of the 

Ar54N2
+ signal when no such anomaly is observed for Ar55

+ or any of its neighbors. 

6.3. Conclusions 
To summarize, when argon clusters embedded in helium droplets are ionised by electron 

impact one observes anomalies in the size distributions that are closely resemble those 

observed after ionisation of bare argon clusters; this demonstrates that caging and cooling 

effects provided by the helium matrix do not suffice to quench fragmentation of the nascent 

argon cluster ion. Intriguing abundance anomalies are observed in distributions of argon 

cluster ions that contain one H2O, N2 or O2 molecule. The strong abundance of Ar55H2O+, 

Ar54O2
+ and Ar54N2

+ contrasts with the near-absence of slightly larger cluster ions containing 

an impurity. The features are most likely related to enhanced stability upon closure of the 

second icosahedral shell, but the difference in magic numbers (54 versus 55) and the well-

known reactivity of charged argon-nitrogen complexes suggest structural differences. 
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Chapter 7 

Electron impact ionisation and free electron 

attachment to acetic acid embedded in 

helium nanodroplets 

7.1. Introduction 
The interaction of electrons with molecules is important for understanding processes arising 

from radiation-induced chemistry [7.1]. Low energy electrons can trigger chemical reactions 

and it has been well established that the interaction of ionising radiation with matter generates 

secondary electrons with energies below 30 eV [7.2]. It has recently been demonstrated that 

these secondary electrons may induce single and double strand breaks in supercoiled DNA 

[7.3]. Carboxylic acids are relevant to this important problem because the carboxylic acid 

functionality is common to all amino acids. Consequently, its response to electron damage is 

an important component in gaining an understanding of how biological systems are affected 

by low energy electrons.  

 

Acetic acid, CH3COOH, is the second simplest organic acid after formic acid (HCOOH).  In 

order to assess its intrinsic response to low-energy electrons, it is useful to carry out 

experiments in an environment where other molecules are absent. Dissociative electron 

attachment to acetic acid monomer in the gas phase was first reported by Sailer et al. [7.4]. 

Electrons in the energy range 0 – 13 eV led to the formation of nine fragment anions, with the 

dominant products assigned to CH3COO-, (CH2O2)- and (HCOO)-. The anions are generated 

by two low energy resonances at 0.75 and 1.5 eV. Subsequent work by Pelc and co-workers 

has explored these low energy resonances at higher resolution, providing evidence for 

vibrational structure in the attachment spectra [7.5]. The only other electron attachment study 

relevant to the current work is the investigation of chemical reactions in clusters of 

trifluoroacetic acid triggered by electrons at sub-excitation energies (< 2 eV). This work, by 
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Langer et al. [7.6], showed that intracluster dissociative electron attachment leads to solvated 

fragment ions with remarkable size selectivity, i.e. only dimers respond.  

 

In contrast to the anions, there have been several studies of the cations produced by electron 

impact ionisation of acetic acid clusters. The first such investigation was reported by Sievert 

et al. [7.7], but subsequent work by Lifshitz and Feng [7.8] and Pithawalla et al. [7.9] have 

also addressed this topic. 

 

In this study we continue our recently instigated series of studies of the interaction of 

electrons with molecules and clusters in helium nanodroplets [7.10-7.16]. Here the ion 

chemistry takes place in a cold environment dictated by the extremely low temperature (0.38 

K) of the surrounding liquid helium. In the present study we report on the findings of both 

electron attachment and electron impact ionisation measurements on helium nanodroplets 

doped with acetic acid molecules. Included in this work is the first observation of dissociative 

electron attachment to acetic acid clusters. We also present evidence, based on the observation 

of helium atoms attached to the cluster anions, for the formation of metastable acyclic (head-

to-tail) acetic acid clusters in the low temperature environment provided by liquid helium 

rather than the cyclic clusters seen in the gas phase. 

 

The helium nanodroplets are formed by supersonic expansion at high pressure (20 bar) with 

high purity gaseous helium (> 99.9999%). Before expansion the helium passes through a 

liquid nitrogen-cooled trap, which helps to remove any remaining trace impurities. The 

typical nozzle temperature is 11 K, which is achieved using a closed-cycle cryostat. Under 

these operating conditions we expect helium droplets with an average size of 104 helium 

atoms to be produced [7.17, 7.18]. 

 

The expanding flow of helium droplets is skimmed 10 mm downstream of the nozzle and then 

passes into another vacuum chamber, where the doping with acetic acid takes place. 

Controlled addition of acetic acid is achieved via a needle valve.  Subsequently, the beam of 

helium droplets passes through a second skimmer and into the source region of a mass 

spectrometer. The ion source is of the Nier-type with an energy resolution of ∼1 eV.  The 

current is set to 100 �A and 20 �A for positive and negative mass scans, respectively. 
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The sample of normal acetic acid was obtained from Riedel-de Häen (99-100%).  Some 

experiments were also carried out with partially deuterated acetic acid (CH3COOD), which 

was purchased from Sigma Aldrich (99.99%). Prior to use both liquids were subjected to 

several freeze-pump-thaw cycles in order to remove any dissolved atmospheric gases.  

7.2. Results and discussion 

7.2.1. Positive ion mass spectra 

Figure 7.1 presents the mass spectrum of positive ions formed by electron impact ionisation 

of acetic acid clusters embedded in helium droplets. The scan range extends up to 1000 

Thomson (Th) and peaks are observed corresponding to cluster ions containing up to 15 acetic 

acid monomer units. In addition, a series of closely spaced (4 Th separation) peaks are seen in 

the low mass part of the spectrum and are due to helium cluster ions, Hen
+. Charged dopant 

species are thought to be formed in helium droplets after the initial ionisation of a helium 

atom (IE(He) = 24.59 eV) near the surface or in the interior of the droplet [7.19]. The 

resulting He+ migrates through the cluster by resonant charge transfer and the migration 

process terminates either by charge transfer to the dopant species or by the formation of Hen
+. 

Charge transfer to the dopant inevitably transfers over a considerable amount of energy, since 

the first ionisation energies of organic molecules are typically very much less than that of 

atomic helium. Consequently, the degree of dissipation of this excess energy by the 

surrounding helium is a critical factor in determining the reaction products that are ejected 

into the gas phase. 
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Figure 7.1 - Positive ion mass spectrum of CH3COOH measured at 100 eV electron energy 

The most intense series of peaks arises from the protonated parent clusters, i.e. 

(CH3COOH)nH+. These ions have been observed previously in electron impact ionisation 

studies of acetic acid clusters [7.7] and are thought to be formed by loss of H atoms from the 

carboxylic acid groups after initial ionisation, as shown in reaction (7.1) below: 

(CH3COOH)+
n → (CH3COOH) n-1H+ + CH3COO  (7.1) 

In principle the reactant on the left hand side of reaction (7.1) might also survive because of 

the intense cooling potential of the helium droplets. However, there is no evidence for the 

production of any of these unprotonated acetic acid cluster cations in the current experiments. 

 

Two other significant reaction products are observed. For clusters up to and including the 

hexamer, an adduct ion composed of the acetic acid cluster and a CH3CO fragment is clearly 

visible. These ions are not easily seen for larger clusters, although this may simply be due to 

the declining cluster ion intensity. These ions have also been reported previously and the 

reaction proposed by Sievert et al. is [7.7]: 
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(CH3COOH)+
n → [(CH3COOH)n-2·CH3CO]+  +  (CH3COOH)OH  (7.2) 

The other significant products are clusters of the type (CH3COOH)nH+·H2O, which appear 

with detectable intensities only for n ≥ 5.  Once again this observation ties in with previous 

gas phase work, where the specific cluster ion (CH3COOH)5H+·H2O has been reported to be a 

‘magic’ cluster [7.8, 7.9]. In that earlier work these hydronium-containing clusters were 

generated when a small amount of water was deliberately added to the gaseous sample. 

However, in the current experiments no water was added. Of course it is possible that traces 

of water vapour, e.g. from residual water adsorbed on the wall of the vacuum chamber or the 

inlet line, could enter the helium droplets. However, an alternative possibility is that these 

clusters are generated by the following reaction:  

(CH3COOH)+
n → (CH3COOH)n-4H+·H2O  + (CH3CO)2O + (CH3COOH)CH3COO (7.3) 

To see if this is plausible, mass spectra from deuterated acetic acid in helium nanodroplets 

have also been recorded. To reduce the possibility of H/D exchange in the inlet line, the 

sample inlet was charged and degassed with deuterated acetic acid several times and was 

subjected to several freeze-pump-thaw cycles. Figure 7.2 shows a positive ion mass scan 

recorded by electron impact ionisation at 100 eV for CH3COOD in helium droplets. The 

experimental conditions were similar to those employed for the undeuterated acetic acid 

experiments. The assignment of spectral features is essentially the same as in the previous 

section. Once again, protonated acetic acid-water clusters begin to be observed at the acetic 

acid pentamer. However, this time the cluster peaks are found at 20 mass units above the 

(CH3COOD)nD+ peaks, which is consistent with an assignment to (CH3COOD)nD+·D2O.  This 

shows that the water comes from within the original acetic acid clusters, indicating that 

reaction (7.3) is the main source of (CH3COOD)nD+·D2O in helium nanodroplets, in contrast 

to the gas phase work mentioned earlier. 
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Figure 7.2 - Positive ion mass spectrum of CH3COOD measured at 100 eV electron energy 

7.2.2. Negative ion mass spectra for (CH3COOH)n 

Figure 7.3 shows a negative ion mass scan between 50 and 190 Th obtained by attachment of 

electrons at 2.8 eV to helium droplets doped with acetic acid. The most prominent peaks in 

Figure 7.3 correspond to the negatively charged dimer (120 Th) and trimer (180 Th).  Slightly 

weaker are the dehydrogenated dimer and trimer anions at 119 and 179 amu, respectively. 

Interestingly, the monomer shows only the dehydrogenated anion. 
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Figure 7.3 - Negative ion mass spectrum of CH3COOH measured at 2.8 eV electron energy.  Although not 

explicitly labelled in the figure, the long series of peaks above 120 Th arising from addition of helium atoms to 

the dimer anions (both parent and dehydrogenated) should be noted.  Clusters with up to 14 helium atoms have 

been identified for the acetic acid dimer anion 

The observation of only the dehydrogenated parent monomer anion is identical with previous 

gas phase studies of electron attachment to acetic acid. However, there have been no prior 

studies of electron attachment to acetic acid clusters so it is not immediately clear whether the 

survival of the parent anions for the dimer and trimer is a special feature of electron 

attachment in helium droplets, and in particular the potential for rapid cooling of excited 

anions, or whether it is a consequence of the presence of additional acetic acid unit(s). Langer 

et al. have reported electron attachment to the trifluoroacetic acid (TFA) monomer and its 

clusters in the gas phase [7.6]. Both parent and dehydrogenated anions are seen for 

monomeric TFA, so acetic acid is clearly different and the question of the role of the liquid 

helium in the formation of parent cluster anions is therefore not answered by this comparison 

and it remains an open question.  
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In the gas phase low energy electron attachment to acetic acid monomer can lead not only to 

H atom loss from the carboxylic acid group, but also ejection of CH2 [7.4]. The maximum 

probability for ejection of CH2 in the gas phase occurs at an electron energy of 0.75 eV, 

whereas loss of H from the carboxylic acid group peaks at roughly 1.5 eV. These excitation 

energies will be shifted to significantly higher energies for acetic acid in helium droplets for 

reasons discussed in section 7.1.2.4. In the gas phase the ejection of H is only marginally 

more probable than the loss of CH2. However, for acetic acid clusters in helium nanodroplets 

the CH2 loss channel seems to be completely absent, which is a remarkable change in 

chemistry. It has been seen previously that the surrounding liquid helium can hinder the 

formation of reactions which proceed via ‘loose’ transition states [7.20] and this may be the 

reason why the methylene ejection channel is not observed for acetic acid and its clusters.  

 

Another substantial set of peaks arises from the dehydrogenated parent anions with an 

attached H2O molecule. In the case of the clusters the hydrated parent anion is also observed. 

In order to confirm the source of the water, additional experiments with deuterated acetic acid 

were carried out. Figure 7.4 shows a scan recorded at 2.8 eV electron energy in the mass 

range between 200 and 260 Th. At the lower masses it is possible to assign the peak at 203 Th 

as the hydrated form of the trimer anion, while the 201 peak is the same species but with loss 

of D. The peak at mass 202 is assumed to be the trimer clustered with HDO, due to some 

residual H/D exchange. 
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Figure 7.4 - Part of the negative ion mass spectrum of CH3COOD measured at 2.8 eV electron energy 

Additionally, the peaks at 204 and 224 are consistent with the formation of acetic anhydride. 

This has precedent since the corresponding anhydride has been reported by Langer et al. in 

the case of electron attachment to trifluoroacetic acid clusters [7.6]. The signal at mass 204 

corresponds to the dimer of acetic anhydride (see reaction (7.4) below) while mass 224 

corresponds to one molecule of acetic anhydride coupled with two molecules of deuterated 

acetic acid, as per reaction (7.5) below: 

e- + (CH3COOD)4 → [(CH3CO)2O]2
- + 2D2O   (7.4) 

e- + (CH3COOD)4 → [(CH3COOD)2·(CH3CO)2O]- + D2O  (7.5) 

The peaks at 242 and 244 are assigned to the tetramer with loss of one D atom and the 

undissociated tetramer, respectively. 

 

Other low intensity peaks can be assigned to the dimer and trimer ions having lost O or OH, 

where we propose the reactions: 
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e- + (CH3COOH)n → (CH3COOH)n-1·(CH3CO)- + OH  (7.6) 

e- + (CH3COOH)n → (CH3COOH)n-1·(CH3COH)- + O  (7.7) 

The analogous reactions for TFA clusters were not reported by Langer et al. [7.6]. 

7.2.3. Anions with attached helium atoms 

Previous studies of anions ejected from helium nanodroplets have shown that some anions 

leave with one or more helium atoms attached [7.21 - 7.24]. However, a surprising 

observation in the current work is that only the dimer anions and larger clusters show any 

evidence of attached helium atoms, as will be evident from inspection of Figure 7.3. 

Consequently, there is something unique about the monomer which prevents attachment of 

helium atoms or which releases the helium atoms before the aggregated clusters can reach the 

detector. 

 

Helium atoms are likely to be rapidly ejected from the anion if the temperature is too high 

since the binding will be very weak. Although the dominant product for the monomer is the 

dehydrogenated species rather than the parent anion, added helium atoms are seen for both 

parent and dehydrogenated dimers and larger clusters. There is no reason to expect a 

substantially larger heat release for the monomer anion formation when compared to the 

clusters and consequently there is no reason to expect the temperature of the monomer anion 

to be significantly higher than that of the cluster anions. As a result, we rule out excessive 

heat released as the reason why helium atoms are not attached to the monomer species. 

 

A more likely explanation stems from the structure and electronic properties of the anions. 

One of the unique features of helium nanodroplets is that the rapid and continuous cooling has 

the potential to trap species in shallow minima reached through favourable long-range 

interactions. In the case of carboxylic acids, the long range electrostatic forces will favour a 

head-to-tail alignment of the molecules to maximise the dipole-dipole interaction. On the 

other hand, at least for small clusters, the global minimum on the potential energy surface is 

known to be a closed structure which maximises the hydrogen bonding. In the case of the 

dimers this gives rise to a cyclic structure composed of two hydrogen bonds. For the dimers 

of formic and acetic acid, the cyclic structures are the only isomers detected in gas phase work 
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[7.25-7.29]. Evidence that helium nanodroplets trap the dimers in the acyclic (head-to-tail) 

structure has recently come from an infrared spectroscopic study of formic acid dimers [7.30]. 

There is also prior evidence from formic acid monomers in argon matrices that the acyclic 

structure is a precursor to the cyclic structure as the matrix is annealed [7.31]. Given the clear 

evidence in the case of formic acid, a similar response would be expected for acetic acid. 

Thus it seems highly likely that acyclic structures dominate for acetic acid clusters in helium 

nanodroplets. 

 

We speculate that this acyclic structure confers favourable electronic properties to bind 

helium atoms. One possibility is that formation of the monomer anion results in a relatively 

uniform negative charge distribution which is unfavourable for attachment of helium atoms.  

On the other hand, the dimer and large cluster may see the negative charge localized on one of 

the monomer units, leaving the other free to undergo more attractive interactions with helium 

atoms. An alternative mechanism is the helium atoms bind through interaction with the 

electric dipole moment of the anion. Although the dipole moments of neither acetic acid 

monomer anion nor the cluster anions have been determined, values for the neutral species are 

known. The dipole moment for acetic acid monomer is known accurately (1.6741(10) D 

[7.32]) and calculated values exist for the various conformers of the dimer [7.33]. Whereas 

the cyclic dimer has a zero dipole moment, the acyclic isomer has an estimated value of 3.95 

D. Assuming this marked difference in dipole moments is maintained in the anions, then it is 

conceivable that binding through the dipole plays a role. Of course this is currently 

speculation and it would be valuable to explore the binding mechanism of the helium atoms to 

acetic acid monomer and cluster anions through detailed ab initio calculations. It is hoped that 

this work will stimulate such an investigation. 

7.2.4. Anion efficiency curves 

Figures 7.5 and 7.6 illustrate how the yields of parent and dehydrogenated parent cluster 

anions vary with incident electron energy. Figure 7.5 is for the trimer of acetic acid and is 

dominated by a low energy resonance peaking at approximately 3.5 eV. As mentioned earlier, 

in gas phase acetic acid there are two low energy reaction channels, one leading to CH2 loss 

and the other leading to H atom loss. The cross sections for these two processes were found to 

be similar, but their peak energies were different (0.75 eV for CH2 ejection and 1.5 eV for H 
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atom loss). Although CH2 ejection is not observed in the current work, it seems likely that 

both of these absorption features are the source of the low energy peak in Figure 7.5 and we 

observe merely a superposition of the two which cannot be distinguished at the current 

electron energy resolution. The peak maximum is shifted to higher energies than in the gas 

phase because of the roughly 2 eV energy required for the electron to penetrate inside the 

helium droplet [7.34]. The peak at approximately 22 eV corresponds to the same excitation 

process but in combination with inelastic scattering of the electron by a helium atom 

(electronic excitation to the 23S state at 19.82 eV above the ground electronic state).  

 

Figure 7.5 - Yield of the acetic acid trimer anion as a function of electron kinetic energy 

Figure 7.6 shows the efficiency curve for formation of the dehydrogenated acetic acid dimer 

anion. Here the strongest peak is a broad feature centred near 10 eV. This is indicative of 

higher energy resonances that lead to fragmentation of the anions. Quenching by the 

surrounding helium can funnel these excited anions into the H atom loss channel, reducing the 

conversion to other fragment anions. This is illustrated by the low count rate seen in Figure 6 

when compared with Figure 7.5, which is consistent with the mass spectrometric observation 

of only minor fragments other than the dehydrogenated parent anion. Confirmation is 

provided by Figure 7.7, which shows the efficiency curves for ejection of OH and O from the 

dimer anion. These efficiency curves are essentially the same as that shown in Figure 7.6.  

Note also that the lowest energy resonance in both Figures 7.6 and 7.7 is given an artificially 
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low intensity because of the scattering of low energy electrons by the helium, as noted 

elsewhere [7.34]. 

 

Figure 7.6 – Yield of the dehydrogenated acetic acid trimer anion as a function of electron kinetic energy 

 

Figure 7.7 - Ion yields of (CH3COOH)·(CH3CO)- and (CH3COOH)·(CH3CO)- as a function of the electron 

energy 

7.3. Conclusions 
Electron impact ionisation of helium nanodroplets doped with acetic acid clusters yields the 

protonated parent species as the dominant product ions. No evidence has been found for the 
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survival of unprotonated parent cations. Another notable product is the species AcnH+·H2O, 

which is observed only for n ≥ 5. Through the addition of partially deuterated acetic acid, we 

have shown that this species is a product of an intra-cluster reaction rather than from pick-up 

of trace water vapour from within the vacuum chambers. The reason why these clusters are 

not seen for n < 5 is currently unknown. 

 

In the case of anion production there is a clear distinction between the monomer and the 

clusters. For the monomer the dominant product is the dehydrogenated species, [Ac–H]-, 

whereas for the clusters both the parent anion, Acn
-, and the dehydrogenated species, [Acn–H]-

, have similar abundances. 

 

Another important difference between the monomer and the cluster anions is the observation 

of attached helium atoms to the latter but not to the former. Specifically, both Acn
-·Hek and 

[Acn–H]-·Hek clusters are readily observed for n ≥ 2. We propose that this monomer/cluster 

disparity arises because of the formation of acyclic (head-to-tail) isomers of acetic acid 

clusters in helium nanodroplets. These clusters form a local minimum on the potential energy 

surface, the global minimum arising when the number of hydrogen bonds is maximised. 

However, the rapid and continuous cooling in helium nanodroplets can trap clusters in local 

minima and in the case of the acyclic clusters this configuration is favoured at long range due 

to electrostatic steering by the dipole moments of the monomer units. We postulate that the 

acyclic cluster anions can generate much stronger interactions with helium atoms because of 

their asymmetric charge distributions, and in particular their substantial dipole moments, 

leading to the selective survival of some anionic clusters with helium atoms attached. 
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Chapter 8 

Electron impact ionisation and free electron 

attachment to amino acids embedded in 

helium nanodroplets 

8.1. Formation of the ‘magic’ L-serine octamer in helium nanodroplets 

8.1.2. Introduction 

Determining the origins of life is one of the great quests of science. One of the many 

intriguing aspects of life on earth is the homochirality of key groups of biomolecules.  Nature 

has a strong preference for L-amino acids and D-sugars, and therefore any successful 

explanation of how life initially evolved must be able to account for this strong chiral 

preference. 

 

Mass spectrometry experiments have pointed to a possible route to chiral selectivity. In 2001 

both Cooks et al. and Hodyss et al. reported a strong chiral preference in the formation of 

clusters of serine, an amino acid [8.1 – 8.2]. This was observed using electrospray ionisation 

and manifested itself in a strong preference for homochirality in the protonated octamer of 

serine, which we shall abbreviate as S8H+. This cluster ion appears as a ‘magic’ number in the 

mass spectrum, i.e. a peak of pronounced intensity relative to adjacent clusters. The strong 

homochirality was demonstrated by comparing the enantiopure serine mass spectra (both L 

and D forms) with various enantiomeric mixtures, with the latter leading to severely depleted 

production of S8H+ with a minimum in abundance when fully racemic. On the basis of this 

finding, the serine octamer has been proposed as a possible precursor to chiral selectivity in 

living organisms [8.3]. If some mechanism in the prebiotic earth were able to produce an 

initial excess of L-serine, chiral transmission could be propagated through formation of the 
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homochiral octamer and onwards to other biomolecules through subsequent enantiomer-

selective reactions. 

 

In addition to S8H+, other positive and negative ion clusters derived from the serine octamer 

have been shown to possess strongly ‘magic’ character. For example, the prominent octamer 

has been observed as adducts with Na+ and also in anionic form as the ions (S8 + 2Cl)2- and 

(S8 + 2Br)2- [8.4 – 8.5]. On the basis of these observations, Nanita and Cooks have suggested 

that the stable entity driving all of these observations is the neutral serine octamer and that the 

charges added, whether positive or negative, merely provide the means for detection of this 

strongly preferred cluster [8.5]. 

8.1.3. Electron impact ionisation to L-serine  

In this study, I present the first observations of L-serine clusters formed in helium 

nanodroplets. Helium nanodroplets are exceptionally cold (0.38 K) liquid droplets which can 

be formed in a molecular beam inside a vacuum chamber. The droplets are used to pick-up L-

serine monomers ejected into the gas phase by heating solid L-serine. The temperature of the 

sample and the size of the helium droplets, both of which can be controlled, provide the 

means for determining the degree of cluster formation. 

 

The serine-doped helium droplets are probed using electron impact mass spectrometry. The 

dominant mechanism for ionisation of dopant molecules and their clusters proceeds through 

initial formation of a He+ ion by electron impact somewhere within the droplet, followed by 

charge hopping between helium atoms until the dopant species is reached [8.7]. Charge 

transfer releases considerable energy, since the first ionisation energy of atomic helium 

(24.59 eV) is very much higher than the first ionisation energies of organic molecules such as 

L-serine. Consequently, ion fragmentation is possible but the rapid cooling by the surrounding 

helium can quench some of this excess energy, softening the ionisation process.  

 
Figure 8.1 shows the mass spectrum obtained from L-serine in relatively large helium droplets 

with an estimated mean number of 16500 helium atoms. The peaks arise solely from 

protonated serine clusters and a monotonic decline in cluster ion intensities is observed, with 

no magic character observable for S8H+. This could be taken to indicate no special stability 
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for S8 or S8H+, but such an interpretation would be unreliable because the efficient cooling of 

cluster ions in large droplets can freeze in the original neutral cluster distribution, essentially 

stabilising all clusters. 

 

Figure 8.1 - Electron impact ionisation mass spectrum derived from L-serine clusters in helium nanodroplets 

with a mean size of 16500 helium atoms 

However, with smaller helium droplets consisting of approximately 9800 helium atoms there 

is now a profound change, as illustrated in Figure 8.2. Here a very distinct ‘magic’ peak is 

observed for S8H+. The marked difference between the mass spectra obtained for the two 

different droplet sizes is attributed to incomplete cooling of the cluster ions for the smaller 

droplets. This follows because of the reduced quantity of helium, which makes it less able to 

dissipate the excess ion energy prior to ejection into the gas phase. As a result, more 

fragmentation is now possible and the formation of intrinsically stable cluster ions becomes 

reflected in the pronounced intensities of particular species. A crucial point to recognise is 

that the stability that is reflected in these mass spectra derives from the ions, not the neutral 

clusters. The neutral species will be maintained at the exceptionally low droplet temperature 

(0.38 K) prior to ionisation regardless of the size of the droplets. This is true providing, of 

course, that the droplets are sufficiently large to avoid evaporation of all helium atoms when 

the neutral clusters initially form. Demonstration that this is avoided in the present work is 
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provided by the extensive Hen
+ cluster ion signals seen in the low mass part of the spectrum 

for both large and small droplets (not shown in Figures 8.1 and 8.2). 

 

Figure 8.2 - High resolution section of the electron impact ionisation mass spectrum derived from L-serine 

clusters in helium nanodroplets with a mean size of 9800 helium atoms 

8.1.4. Conclusions 

The conclusion from this work is clear: we obtain the first definitive experimental evidence 

that the protonated serine octamer is a particularly stable ion, as is the protonated dimer. This 

does not contradict the claims by Nanita and Cooks that the neutral serine octamer is also a 

particularly stable species. However, it does show that the observation of prominent S8H+ 

peaks in various mass spectrometric studies is not solely a product of the special stability of 

neutral S8. Finally, in Figure 3 we show how the intensity of SnH+ peaks varies for n = 1-10. 

In addition to the magic peak at n = 8, there is also a clear intensity enhancements at n = 2.  
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Figure 8.3 - L-serine clusters distributions in helium nanodroplets with a mean size of 4000 helium atoms 

obtained by electron impact ionisation 

This is consistent with previous suggestions that the stability of the octamer is conferred by a 

particularly favourable structural arrangement of serine dimers in the octamer [8.3, 8.8]. 
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8.2. Free electron attachment to amino acids clusters in helium 

nanodroplets: Glycine, L-alanine and L-serine 

8.2.1. Introduction 

Amino acid clusters have recently generated considerable interest. The most celebrated amino 

acid cluster derives from serine, which shows a remarkable tendency to produce octamers in 

high abundance. These octamers, in the form of cations (e.g. protonated octamers) or in 

association with anions, have been observed by mass spectrometry using electrospray 

ionisation of solutions and related techniques such as sonic spray ionisation [8.9 – 8.12]. 

These observations have been taken as strong evidence for a special stability of the neutral 

octamers [8.11]. Furthermore, a comparison of chiral and racemic solutions of serine reveals a 

strong chiral preference at work in the cluster formation process [8.9]. This in turn has led to 

speculation that the strong homochirality of serine clusters could have been the source of the 

well-known homochirality in key biological molecules in the emergence of life on Earth 

[8.13]. 

 

Other evidence for the significance of amino acid clusters has emerged. For example, Charvat 

and co-workers have recorded mass spectra derived from laser-induced liquid beam ionisation 

desorption (LILBID) [8.14]. This technique is an alternative to electrospray ionization for 

extracting ions from solutions and Charvat et al. have argued that LILBID comes close to 

reflecting the cluster distributions in the original solution. By investigating several amino 

acids and by varying solution conditions such as concentration and pH, amino acid clusters 

were readily observed and in some cases exceed the signal from monomer ions in the mass 

spectrum. 

 

It has recently been established that low energy (< 20 eV) electrons can induce single and 

double strand breaks in DNA [8.15]. This has motivated several recent studies of low energy 

electron attachment to the basic building blocks of proteins, the alpha amino acids [8.16 – 

8.25]. However, there have so far been no comparable studies of non-covalent clusters of 

amino acids. One of the interesting features of amino acids is the potential for competition 
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between zwitterionic and non-zwitterionic tautomers. A good example of this is glycine, 

which is found only as the neutral tautomer in the gas phase [8.26] whereas in aqueous 

solution and in the solid phase there is firm evidence that the zwitterion predominates [8.27, 

8.28]. Zwitterionic forms become plausible in amino acid clusters because there is greater 

tolerance to charge separation when there are one or more neighbouring amino acid 

monomers. In effect, the charge separation can be stabilized by solvation by the surrounding 

species. In turn, this could alter the response to electron attachment when the monomers are 

compared to the dimers. For this reason, and because of the potential biological significance 

of amino acid clusters described above, we report here the first detailed study of electron 

attachment to amino acid clusters. These clusters are formed in helium nanodroplets, which 

provide a convenient low temperature environment for growing non-covalent clusters. In this 

study glycine, alanine and serine have been targeted for investigation.  

8.2.2. Results and discussion 

8.2.2.1. Reaction products 

The clusters of all three amino acids considered in the present work show similar electron-

induced chemistry. Glycine is considered first, and the negative ion mass spectrum resulting 

from an incident electron impact energy of about 2 eV is shown in Figure 8.4. This mass 

spectrum focuses mainly on the mass region between the dimer and trimer anions, which is 

also representative of the behaviour for higher clusters. The most intense peak for each 

particular cluster size is the parent cluster anion. This is in stark contrast to amino acid 

monomers (AA), where the primary anionic product is always the dehydrogenated parent 

anion, [AA-H]–, with no evidence of any surviving parent anion, [AA]–. However, in an initial 

investigation of thymine clusters in helium nanodroplets reported from this laboratory, parent 

cluster ions consisting of up to six monomer units were found to survive intact [8.29]. This is 

consistent with the present study and is clear evidence that embedding the amino acid clusters 

in liquid helium is able to prevent full conversion to the dehydrogenated species. 



EII and FEA to acetic acid embedded in helium nanodroplets 

 
 

112

 

Figure 8.4 - Negative ion mass spectrum for glycine in helium nanodroplets.  The electron impact energy was 

∼ 2 eV.  This mass spectrum focuses on the region between the dimer and trimer anions 

Nevertheless, the dehydrogenated cluster anions are also produced and are the most abundant 

products after the parent cluster anions. Also significant, but rather weak, are peaks in the 

mass spectrum at 17 amu below the parent anion peaks. This has been attributed to loss of OH 

in Figure 8.4 but it could equally arise from loss of NH3. However, time consuming reactions, 

such as rearrangement processes, are often severely impeded in helium droplets [8.35, 8.36]. 

Consequently, OH ejection is the more likely channel giving rise to the peaks at 17 amu 

below the parent anion. This peak has also been seen in previous gas phase studies of the 

electron attachment to glycine monomers [8.31 – 8.33]. 

 

A few additional weak peaks can be identified in the mass spectrum of glycine that are 

attributed to the species Glyn
–·H2O, [Glyn–H]–·COO, and [Glyn–O]–. The first two species 

must arise from intra-cluster reactions induced by electron attachment. The loss of an O atom 

was not found in electron attachment to the glycine monomer and so it appears that this minor 

product is only produced in reactions of the cluster anions. 

 

The anion chemistry for alanine clusters is broadly similar to that of glycine clusters, although 

there are differences in relative abundances of products. Figure 8.5 shows the relevant mass 

spectrum, which was recorded at the same incident electron energy as that of glycine clusters. 
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In contrast to glycine, the parent anion is now less abundant than the dehydrogenated species. 

Other fragments observed for alanine clusters are essentially the same as for glycine clusters. 

 

Figure 8.5 - Negative ion mass spectrum for alanine in helium nanodroplets showing the region near the dimer 

and trimer anion peaks. The electron impact was energy was ∼ 2 eV 

It is the serine clusters where the major difference is seen in reaction products. In this case the 

OH loss product, [Sn–OH]–, is the major product anion for the trimer and larger clusters. 

Figures 8.6 and 8.7 illustrate this by showing the region between the dimer and trimer masses 

and a wider scan extending from the trimer to the pentamer, respectively. The situation 

changes for the dimer, where OH loss now becomes a minor channel (not shown in Figure 3) 

and below the monomer there is no evidence of any fragmentation products other than [S–H]– 

(which, as mentioned earlier, is more abundant than S–). Alanine differs from glycine in 

having a methyl group attached to the alpha carbon, whereas in serine this methyl group is 

replaced by a hydroxymethyl (CH2OH) substituent. This difference presents serine with a 

facile leaving group that is not available to the other two amino acids. Currently we have no 

explanation as to why OH loss only becomes the predominant channel for the serine trimer 

and larger clusters. 
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Figure 8.6 – Negative ion mass spectrum for serine in helium nanodroplets showing the rgion near the dimer and 

trimer anion peaks. The electron impact was energy was ∼ 2 eV 

 

Figure 8.7 - Negative ion mass spectrum for serine in helium nanodroplets showing features near the trimer, 

tetramer and pentamer parent anion peaks 

8.2.2.2. Amino acid cluster anions with attached helium atoms 

In addition to the chemistry described above, anions with attached helium atoms are also 

observed. The formation of such clusters demonstrates the high degree of cooling of the 

anions, if not for all then certainly for a significant subset of the amino acid clusters produced 

in the current experiments. 
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The most prominent helium clusters are those formed with glycine anions and the peaks are 

specifically identified in Figure 8.4. HekGly2
- clusters are detectable with up to at least 18 

helium atoms attached. Helium clusters are also seen with the dehydrogenated dimer anion, 

but the ratio of intensities compared with HekGly2
– is smaller than the intensity ratio of the 

bare [Gly2-H]– and Gly2
– ions. This may suggest that the Gly2

– ions are generally colder than 

the [Gly2-H]– ions, making retention of helium atoms easier in the former ions. 

 

In contrast to the cluster anions, the glycine monomer anion shows no evidence of attached 

helium atoms. Glycine is expected to have a negative electron affinity because there are no 

low-lying vacant orbitals on the molecule to accept the incoming electron. Consequently, the 

only way to attach an electron is through binding with the molecular dipole moment. Ab initio 

calculations have been carried out by Gutowski et al. [8.34] on the possible structures of 

glycine monomer and its anion and the dipole moments of these species have been calculated. 

The most stable species is a neutral (i.e. non-zwitterionic) structure which is calculated to 

have a low dipole moment (1.2 D). This is too small to allow formation of a dipole-bound 

anion. However, the calculations by Gutowski et al. also show other isomers. There is a non-

ionic but substantially more polar (dipole moment ∼ 5.5 D) isomer only 300 cm-1 or so above 

the global minimum. Much higher (∼ 6000 cm-1) still is a zwitterionic structure. Could 

electron attachment to one of these be responsible for the observation of glycine monomer 

anion in the mass spectrum. Is the anion really dipole-bound or is there a valence orbital 

accessible (e.g. for the metastable species)? 

 

Substantial differences are expected for the glycine dimer. Most likely the dimer will possess 

a higher dipole moment, so will be capable of stronger dipole-binding. Is this responsible for 

the attachment of helium atoms in the anion dimer? Why would this be so? Or is solvation by 

the additional glycine responsible for even more marked changes between the monomer and 

dimer. The zwitterionic structure will undoubtedly become much lower in energy in the dimer 

due to solvation by the other glycine. Might it now become even the global minimum? When 

an electron is added to the dimeric zwitterion does this generate a charge distribution which is 

particularly favourable for attachment of helium atoms (in contrast to glycine monomer 

anion)? Could the zwitterionic form be responsible for some or all of the anionic dimer signal. 

If so, might the observation of attached helium atoms for the dimer anion but not the 
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monomer anion be the first experimental evidence for zwitterionic dimers in the gas phase?  

However, the mechanism(s) for the association of helium atoms with anions and cations 

ejected from helium nanodroplets is unknown at the present time and it could be that the 

intensity ratio discrepancy is due to some unknown dynamical process. 

 

Interestingly, the HekGly2
– clusters appear to show a very prominent ´magic´number peak at 

k = 8. There is also an indication of enhanced intensities of the k = 11 and k = 15 peaks, 

although the former could also be explained by a contribution from Gly2COO–. By way of 

contrast, the k = 8 peak for Hek[Gly2-H]– clusters has an unusually low intensity relative to 

other peaks in this series, suggesting `anti-magic` behaviour for eight attached helium atoms.  

Instead, the k = 12 peak for Hek[Gly2-H]– shows an unusually large intensity, although we 

cannot rule out a contribution from an unknown fragment at this mass position. 

 

Like glycine, the monomer anions of alanine and serine show no evidence of any attached 

helium atoms in the mass spectra. However, helium atoms are seen attached to cluster anions 

of these two amino acids and peaks corresponding to these species are indicated on Figure 8.5 

and 8.6, but they are considerably less abundant relative to the unclustered parent ions when 

compared to glycine. A summary of the relative abundances in the case of the parent dimer 

anion is presented in Figure 8.8. This also includes the glycine dimer for comparison. Serine 

dimer anion shows no magic numbers, and indeed the anions with helium atoms become 

undetectably weak beyond k = 4. In contrast the alanine dimer anion shows an extensive 

series of peaks arising from attached helium atoms with a pronounced magic number at k = 16 

but no magic number at k = 8. 
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Figure 8.8 - Relative intensities (note the logarithmic scale) of the HekAA2
– anions (AA = amino acid) for 

glycine, alanine and serine 

8.2.2.3. Anion efficiency curves 

Figure 8.9 shows plots for the ion production efficiency as a function of electron kinetic 

energy, focusing on glycine dimer and glycine trimer parent anions. Similar plots were 

obtained for other glycine parent cluster anions, and indeed for parent cluster anions of 

alanine and serine, so here we focus solely on the glycine case in Figure 6 as typical data. The 

anion efficiency curve is similar to that seen for the dehydrogenated monomer anion of amino 

acids in gas phase dissociative electron attachment (DEA) studies [8.16 – 8.25]. The low 

energy attachment reaches a peak maximum at approximately 1 eV in the gas phase and leads 

exclusively to the dehydrogenated monomer anion, i.e. no parent monomer anion survives 

electron attachment. In other words, the initial anion formed is unstable on the timescale of 

the mass spectrometry experiment.  However, in the current work a considerable proportion of 

the initially formed parent cluster anions do survive to detection, an observation attributed to 

rapid cooling by the helium, which partially quenches the dehydrogenation route, as noted 

recently for thymine and adenine monomers [8.31]. The low energy resonance in the 

efficiency curves for the AAn
–  channel in helium nanodroplets is shifted approximately 2 eV 

higher when compared to the gas phase because of the ca. 2 eV threshold energy required for 

the electrons to penetrate the helium [8.29, 8.35]. The peak above 20 eV is derived from 

inelastic scattering of the electrons by the helium [8.29]. 
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Figure 8.9 – Glycine dimer upper panel and trimer lower panel anion yield spectra as a function of incident 

electron kinetic energy 

A higher energy resonance, peaking at 10 eV, becomes apparent for the dehydrogenated 

cluster anions of glycine, as can be seen in Figure 8.10. This is in the region previously 

assigned to core-excited resonances in the glycine monomer, which lead to a variety of 

reaction channels [8.31 – 8.33]. However, in helium nanodroplets the rapid cooling severely 

curtails these alternative reaction channels and many of the ions get funnelled into the [AAn-

H]– channel. Another noticeable feature is the variation in relative intensities of the first two 

resonances for each cluster in Figure 8.10. This is a consequence of the reduction in size of 

the helium droplets by evaporative loss when incorporating larger clusters compared with 

smaller ones. Low energy electrons are readily scattered by helium and therefore many do not 

penetrate sufficiently far into the droplet to reach the amino acid cluster if the droplet is large. 

However, as the droplet shrinks in size the proportion of low energy electrons reaching the 

dopant increases and thus the intensity ratio responds accordingly. 
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Figure 8.10 – The yield of dehydrogenated glycine cluster anions as a function of incident electron kinetic 

energy 

8.2.3. Conclusions 

The effect of low energy electron impact on the clusters of three different amino acids 

(glycine, alanine, and serine) has been reported. The clusters were formed inside superfluid 

helium nanodroplets and anionic prodicts ejected into the gas phase were detected by mass 

spectrometry. The chemistry of the clusters tend to be quite different from the corresponding 

monomers, whether in the gas phase or in helium nanodroplets. Excitation by 2 eV electrons 

for either glycine or alanine gave the parent cluster anions as the major reaction products. 

However, there were also significant fragmentation channels, such as OH loss from the parent 

anion, which are inactive in the monomer. In serine this fragmentation becomes more severe 

and the major product is the [AAn-OH]– channel. The differences between glycine and alanine 

on the one hand, and serine on the other, are assumed to arise from the presence of a facile 

leaving group (OH) located on the β carbon atom in the case of serine. 

 

Peaks are also observed in the mass spectra which arise from the amino acid cluster anions 

with multiple helium atoms attached. Surprisingly, helium atoms are only seen attached to 

amino acid cluster anions, i.e. the corresponding monomers show no propensity for helium 

attachment. For both glycine and alanine the relative abundances show ‘magic’ numbers of 

helium atoms, although these magic numbers are not comparable in the two cases. Once again 
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serine clusters are different and show only modest willingness to attach helium atoms and 

give no magic numbers. 

 

The anion yield spectra of the amino acid clusters are similar to the corresponding spectra 

from dehydrogentated monomer anion channel in gas phase work. This is explained by the 

rapid cooling of the cluster anions by the liquid helium after electron attachment, which helps 

to prevent extensive dissociation into the [AAn-H]– channel. 
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Chapter 9: Conclusions and future work 

This chapter is divided in two parts. In the first one the summary of the main conclusions will 

be presented. In the second part an outlook and future work is proposed. 

9.1. Conclusions 

9.1.1. Solvated ions 

The yield of ion-helium complexes for halogen cations, anions, and a few molecular cations 

as a function of the number of helium atoms was measured. The yield of these ions versus 

cluster size n drops at characteristic sizes ns that range from ns = 10.2 ± 0.6 for cation F+ to ns 

= 22.2 ± 0.2 for anion Br-. The size of the anion was observed to be 70 % larger than the 

corresponding cations. These drops in the ion yield are an indication of closure of the first 

salvation shell. The model to estimate ionic radii from ns was proposed. This model could be 

described as the radii of halide anions in helium are twice as large as in alkali halide crystals, 

indicating the formation of an anion bubble due to the repulsive forces that derive from 

exchange interactions. For the anions F- and Cl- the radii are about 10% larger than reported 

radii for the corresponding anion cavities in superfluid bulk helium. 

9.1.2. Argon clusters 

Electron impact ionisation to argon clusters embedded in helium nanodroplets was 

investigated. In this study was possible to observe an abundance maximum of ArHe12
+. 

Concerning the distribution of larger argon clusters up to 60 atoms closely resemble 

distributions observed upon electron impact ionisation or photoionisation of bare clusters, this 

demonstrates that caging and cooling effects provided by the helium matrix do not suffice to 

quench fragmentation of the nascent argon cluster ion. Intriguing abundance anomalies were 

observed in distributions of argon cluster ions that contain one H2O, N2 or O2 molecules. The 

strong abundance of Ar55H2O+, Ar54O2
+ and Ar54N2

+ contrasts with the near-absence of 

slightly larger cluster ions containing an impurity. The features are most likely related to 

enhanced stability upon closure of the second icosahedral shell, but the difference in magic 
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numbers (54 versus 55) and the well-known reactivity of charged argon-nitrogen complexes 

suggest structural differences. 

9.1.3. EII and FEA to acetic acid 

The acetic acid clusters were formed inside liquid helium nanodroplets and both cationic and 

anionic products ejected into the gas phase were detected by mass spectrometry. The cation 

chemistry (induced by electron impact at 100 eV) was dominated by production of protonated 

acetic acid (Ac) clusters, AcnH+, although some fragmentation was also observed. In the case 

of anion production (at 2.8 eV electron impact energy) there was a clear distinction between 

the monomer and the clusters. For the monomer the dominant product was the 

dehydrogenated species, [Ac–H]-, whereas for the clusters both the parent anion, Acn
-, and the 

dehydrogenated species, [Acn–H]-, have similar abundances. A particularly intriguing contrast 

between the monomer and cluster anions is that helium atoms were seen attached to the latter 

whereas no evidence of helium atom attachment was found for the monomer. This surprising 

observation is attributed to the formation of acyclic (head-to-tail) acetic clusters in helium 

nanodroplets, which have more favourable electronic properties for binding helium atoms. 

The acyclic clusters represent a local minimum on the potential energy surface and are 

distinct from the cyclic acetic acid dimer (the global minimum) identified in gas phase 

experiments. 

9.1.4. EII and FEA to amino acids 

9.1.4.1. EII to L-serine 

With this work is possible to conclude that L-serine forms magic dimer and octamer 

protonated cluster. This does not contradict the claims by Nanita and Cooks that the neutral 

serine octamer is also a particularly stable species. However, it does show that the observation 

of prominent S8H+ peaks in various mass spectrometric studies is not solely a product of the 

special stability of neutral S8. The work reported is consistent with previous suggestions that 

the stability of the octamer is conferred by a particularly favourable structural arrangement of 

serine dimers in the octamer. 
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9.1.4.2. FEA to glycine, L-alanine and L-serine 

Clusters of glycine, alanine and serine were formed inside helium nanodroplets, which 

provide a convenient low temperature (0.38 K) environment for growing non-covalent 

clusters. When subjected to low energy (2 eV) electron impact the chemistry for glycine and 

alanine clusters was found to be similar. In both cases the clusters of glycine and alanine yield 

parent anions as the major products, which contrasts markedly with the corresponding 

monomers in the gas phase, where the dehydrogenated product [AAn-H]–, dominates. Serine 

clusters are different, with the major product being the parent anion minus an OH group, an 

outcome presumably conferred by the facile loss of an OH group from the β carbon of serine. 

In addition to the bare parent anions and various fragment anions, helium atoms were also 

observed attached to both the parent anion clusters and the dehydrogenated parent anion 

clusters. Finally, we presented the first anion yield spectra as a function of incident electron 

energy. 
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9.2. Future work 
Throughout this thesis, it has been shown that the helium droplets technique is a promising 

and important tool to study chemical reactions, at cold temperatures, triggered by low energy 

electrons. Ultracold nano scale laboratories can be easily reached inside the helium nano 

droplets. The thorough study presented in this thesis, may open several alternative 

possibilities to investigate more complex biomolecular targets and the effective role of 

electron interaction with these molecular systems. Therefore, there are a few aspects that are 

worth addressing at this stage and can be seen as suggestions for future research activities. 

9.2.1. Different amino acids in helium nanodroplets 

In chapter 8, studies with amino acids have been described. Electron impact ionisation of L-

serine has shown to have a special tendency to form magic clusters with 2 and 8 units. The 

stabilisation of L-serine clusters with formation of magic dimer and octamer was not 

observed. In helium nanodroplets this special feature for this amino acid is directly related to 

the size of the nanodroplet. One important and crucial behaviour is the formation of magic 

clusters for the pure enantiomer, as was described by Cooks and co-workers [9.1, 9.2]. Further 

to this, a possible next step research activity could include the study the D-serine enantiomer 

(Figure 9.1). 

O

HO

NH2H

OHO

OH

HO

H NH2

D-serine L-serine  

Figure 9.1 – D/L – serine enantiomers  

The main characteristic of Serine is the existence of a hydroxil group in the side chain. The 

simplest way to learn about the role of this group in the chirality formation is to study similar 

molecules where this radical is substituted by a methyl group. With such study, not only we 

can learn about the influence of OH radical in chirality, but also what is the role of OH in the 

unusual rich chemistry observed in negative clusters ions from doped He droplets. D/L – 2 – 
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aminobutiric acid has a similar structure to the D/L – serine, but with a methyl group rather 

than an OH group in the side chain (Figure 9.2). 

O

HO

NH2H

O

OH

H NH2

D-2-aminobutiric acid L-2-aminobutiric acid 

Figure 9.2 – D/L – 2 aminobutiric acid enantiomers  

Another question that is still open is what is the role of the chain in the chemistry of the 

amino acid clusters? And could the radicals in the main chain of the amino acids be related 

with homochiriogenesis? One way to address these questions is to study amino acids with 

different groups in the side chain. One amino acid that may help to understand the influence 

of electronegative elements in the side chain is e.g., Cysteine (Figure 9.3) 

 

Figure 9.3 – L – cysteine 

Sulphur in the periodic table belongs to the same group as oxygen. The properties of these 

two elements are similar, although sulphur is less electronegative (EN (O) = 3.44 eV and EN 

(S) = 2.58 eV). Covalent bonds S-S are also common between two cysteine units. The 

properties of this amino acid could help in the future to understand aspects related to chirality, 

origin of life and also may give some information about radiation damage in living systems. 

The same analogy could deal with other amino acids with radical rings in the side chain. 

Amino acids as tryptophane and phenylalanine (Figure 9.4a) and b) respectively), may be use 

as trial examples to these studies.  
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Figure 9.4 – a) L-tryptophane   b) L-phenylalanine 

In both molecules a ring system is lying in the side chain. These rings systems are rigid and 

planar structures and have π orbitals with delocalised electrons. What is the influence of these 

strong structures? How is the influence of these rings in electron attachment? These are 

examples of questions that could be answered by the study of complexes amino acids 

embedded in helium nanodroplets. At the same time, for all of these suggested amino acids, 

droplet size dependence may provide information about the formation of magic numbers, as 

was proved for L-serine. 

9.2.2. Molecular synthesis  

Cold chemistry, i.e., molecular synthesis is another field that could be investigated in helium 

nanodroplets. Several molecules have been studied in helium droplets with the recent interest 

on the formation of amino acids in the ISM [9.3, 9.7]. Electron impact ionisation and free 

electron attachment studies to acetic acid have been presented in section 7.1 and also to 

ammonia, although for the latter these results were not included in this thesis. Formation of 

heterogeneous/mixed clusters, with acetic acid and ammonia, may help to understand glycine 

synthesis at cold temperatures triggered by low energy electrons, see Figure 9.5. 

O

OH

N

H

HH O

OH

H2N
+ + H2

 

Figure 9.5 – Reaction of glycine formation from acetic acid and ammonia 

Hulett and co-workers [9.8] reported the formation of amino acids, as glycine by heating a 

mixture of formaldehyde (CH2O) and ammonia at 185°C during 8 hours, where this reaction 

can occur in a 2:1 proportion, respectively. The control of the ratio of molecules in the droplet 

can be reach in two different stages. First, doping the droplet with formaldehyde and second, 
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dope with ammonia. Free electron attachment to mixed/heterogeneous cluster formed, may 

explain one path to glycine formation (Figure 9.6). 

O N

H

HH O

OH

H2N
+ + H22

 

Figure 9.6 – Reaction of glycine formation from formaldehyde and ammonia 

9.2.3. Peptide bond formation 

The primary structure of a protein is the linear sequence in which amino acids are covalently 

connected to form a polypeptide chain. Amino acids are linked in a chain by condensation of 

the α-carboxyl group of one amino acid with the α-amino group of the other. The linkage 

formed between two amino acids is called a peptide bond and from the condensation of two 

amino acids, one additional water molecule is formed (Figure 9.7) [9.9]. 

O O

OH OH

NH2 NH2

R R

H H

N

H OH

O

RO

NH2

R+ + H2O

 

Figure 9.7 – Reaction of peptide bond formation for two generic amino acids, R is generic the side chain 

Although not published or reported in this thesis, studies of electron impact ionisation and 

free electron attachment to L-valine were also carried out during the time period of the 

research activities described in the present thesis. The most interesting feature in the 

interaction of electrons (0 – 35 eV) with clusters of L-valine is the exit channel leading to the 

loss of water molecules. Figure 9.5 represents the ion yields for four different anions. A close 

inspection to the low energy region, especially below 5 eV, shows the absence of a resonant 

feature for [Val3–H3O]- formation. 



Conclusions and future work  

 
 

129

 

Figure 9.8 – Ion yields for valine trimer anions 

Gas phase electron attachment studies to glycine and alanine [9.10, 9.11] have shown that one 

fragmentation channel is the loss of H3O with virtually no energy. Electron attachment to gas-

phase valine (not yet publish and not shown here), has also been carried out in our laboratory. 

One fragmentation channel is the loss of a water molecule showing only resonant features at 

electron energies above 6 eV. With these observations, it is easy to conclude that the 

fragmentation channels in gas phase are different than fragmentation channels in helium 

nanodroplets, as far as loss of water molecules is concerned.  

 

Another question that arises is in which parte of the molecule the connection between both 

amino acids happens. For the loss of one water molecule, the two amino acids units could be 

linked by the two carboxyl groups or by the carboxyl and amino group. Considering that 

amino and carboxyl groups are the reactive points in the molecule, the loss of two water 

molecules from a trimer corresponds at least to one peptide bond formation (Figure 9.9 and 

Figure 9.10).  
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Figure 9.9 – Reaction between three generic amino acids with formation of two water molecules, one by the 

reaction between amino and carboxylic groups, and another by the reaction between two carboxylic groups 
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Figure 9.10 - Reaction between three generic amino acids with formation of two water molecules, both by the 

reaction between amino and carboxylic groups 

In order to better clarify the places where the bond is formed, it would be helpful to perform 

the same measurements with deuterated molecules (Figure 9.11). Studying the interaction of 

low energy electrons with L-Val-L-Val (Figure 9.12) and comparing the results with the 

previous investigations on single L-Val, would probably allow finding out if the loss of water 

molecules corresponds to a peptide bond formation. Therefore the formation of such a bond, 

triggered by low energy electrons, could be addressed. 

O

OHCD3

NH2D

D3C
D

 

Figure 9.11 – deuterated Valine 
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Figure 9.12 – Valine dimer – L-Val-L-Val 
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