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Abstract

This paper is mainly dedicated to describing the congruences on certain monoids of trans-
formations on a finite chain Xn with n elements. Namely, we consider the monoids ODn and
PODn of all full, respectively partial, transformations on Xn that preserve or reverse the order,
as well as the submonoid POn of PODn of all its order-preserving elements. The inverse monoid
PODIn of all injective elements of PODn is also considered.

We show that in POn any congruence is a Rees congruence, but this may not happen in the
monoids ODn, PODIn and PODn. However in all these cases the congruences form a chain.
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Introduction and preliminaries

We start by defining the monoids that will be object of study in this paper.
For n ∈ N, let Xn be a finite chain with n elements, say Xn = {1 < 2 < · · · < n}. As usual,

we denote by PT n the monoid (under composition) of all partial transformations of Xn. The
submonoid of PT n of all full transformations of Xn and the (inverse) submonoid of all injective
partial transformations of Xn are denoted by Tn and In, respectively.

We say that a transformation s in PT n is order-preserving [order-reversing] if x ≤ y implies
xs ≤ ys [xs ≥ ys], for all x, y ∈ Dom(s). The following important property of these notions
is easy to show: the product of two order-preserving transformations or of two order-reversing
transformations is order-preserving and the product of an order-preserving transformation by an
order-reversing transformation is order-reversing.

Denote by POn the submonoid of PT n of all partial order-preserving transformations of Xn.
As usual, On denotes the monoid POn ∩ Tn of all full transformations of Xn that preserve the

1This work was developed within the activities of Centro de Álgebra da Universidade de Lisboa, supported by
FCT and FEDER, within project POCTI ”Fundamental and Applied Algebra”.
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order. This monoid has been largely studied, namely in [1, 11, 13, 14]. The injective counterpart of
On is the inverse monoid POIn = POn ∩ In, which is considered, for example, in [2, 3, 4, 6, 7, 8].

Wider classes of monoids are obtained when we take transformations that either preserve or
reverse the order. In this way we get PODn, the submonoid of PT n of all partial transformations
that preserve or reverse the order. Clearly, we may also consider ODn = PODn∩Tn and PODIn =
PODn ∩ In, the monoids of all transformations that preserve or reverse the order which are full
and which are partial and injective, respectively.

The following diagram, with respect to the inclusion relation and where 1 denotes the trivial
monoid, clarifies the relationship between these various semigroups:

•�
�

�

@
@

@

1

•�
�

�

POIn •@
@

@

On

•�
�

�

PODIn •@
@

@

ODn

•POn

• PODn

Let M be a monoid. For completion, we recall the definition of the Green equivalence relations
R, L, H and J: for all u, v ∈ M ,

uRv if and only if uM = vM ;
uLv if and only if Mu = Mv;
uHv if and only if uRv and uLv;
uJv if and only if MuM = MvM.

Associated to the Green relation J there is a quasi-order ≤J on M defined by

u ≤J v if and only if MuM ⊆ MvM,

for all u, v ∈ M . Notice that, for every u, v ∈ M , we have u J v if and only if u ≤J v and v ≤J u.
Denote by Ju the J-class of the element u ∈ M . As usual, a partial order relation ≤J is defined on
the set M/J by setting Ju ≤J Jv if and only if u ≤J v, for all u, v ∈ M . For u, v ∈ M , we write
u <J v and also Ju <J Jv if and only if u ≤J v and (u, v) 6∈ J.

Given a monoid M , we denote by E(M) the set of its idempotents. An ideal of M is a subset I
of M such that MIM ⊆ I. By convenience, we admit the empty set as an ideal. A Rees congruence
of M is a congruence associated to an ideal of M : if I is an ideal of M , the Rees congruence ρI is
defined by (u, v) ∈ ρI if and only if u = v or u, v ∈ I, for all u, v ∈ M . The rank of a finite monoid
M is, by definition, the minimum of the set {|X| : X ⊆ M and X generates M}. For more details,
see e.g. [12].

In this paper, on one hand, we aim to describe the Green relations on some of the mentioned
monoids and to use the obtained descriptions to calculate the ranks of the respective monoids. This
kind of questions were considered by Gomes and Howie [11] for On and POn, by Fernandes [6] for
POIn and by the authors [9] for PODIn. So it remains to study the monoids ODn and PODn

and that is done in section 1.
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On the other hand, we want to answer a much harder question that consists in describing the
congruences. For these monoids, the congruences were known only for On and for POIn. In fact
Aı̌zenštat [1], and later Lavers and Solomon [14], showed that in On the congruences are exactly
the Rees congruences. An analogous result was proved by the first author [6] for the monoid POIn.

In section 2 we also show that the only congruences on POn are the Rees congruences. Section
3 is dedicated to the study of the congruences on PODn, PODIn and ODn. In these three cases
we prove that there are other congruences besides the Rees congruences, but in all four cases the
congruences form a chain.

1 The monoids ODn and PODn

In this section we aim to describe the Green relations and to determine the rank of the monoids
ODn and PODn. We show that they have a structure similar to the one of the monoids On,
POn, POIn, PODIn and also of the monoids PT n, Tn and In. In particular, in all of them the
J-classes are the sets of all elements with the same rank and, with respect to the partial order ≤J,
the corresponding J-quotients are chains. Notice also that these monoids are all regular monoids.
Moreover, the monoids POIn, PODIn and In are inverse.

In what follows, we must have in mind that an element of PODn is either in POn or it is order-
reversing. Denote by PDn the set of all order-reversing partial transformations of Xn and by Dn the
subset of PDn of all its full transformations. Clearly, PODn = POn∪PDn and so ODn = On∪Dn.
Furthermore, POn ∩ PDn = {s ∈ PTn : | Im(s)| ≤ 1} and so On ∩ Dn = {s ∈ Tn : | Im(s)| = 1}. It
is also easy to show that E(PODn) = E(POn) and so E(ODn) = E(On).

Now, consider the following permutation of order two:

h =
(

1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
.

Clearly, h is an order-reversing full transformation. We showed in [9] that POIn together with
h form a set of generators of PODIn. Similarly, by just noticing that, given an order-reversing
transformation s, the product sh is an order-preserving transformation, it is easy to show that
PODn is generated by POn ∪ {h} and ODn is generated by On ∪ {h}.

Next we prove that PODn is regular, using the fact that POn is regular [11]. It is clear that it
suffices to show that all the elements of PDn are regular. Let s be a order-reversing transformation.
Then sh ∈ POn and so there exists s′ ∈ POn such that (sh)s′(sh) = sh. Thus, multiplying on
the right by h, we obtain s(hs′)s = s and so s is a regular element of PODn. Therefore PODn is
a regular submonoid of PTn. An analogous reasoning allows us to deduce that ODn is a regular
submonoid of Tn (and of PTn).

Proposition 1.1 Let M be either the monoid PODn or the monoid ODn. Let s and t be elements
of M . Then

1. sRt if and only if Ker(s) = Ker(t);

2. sLt if and only if Im(s) = Im(t);

3. s ≤J t if and only if | Im(s)| ≤ | Im(t)|.
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Proof. Since PODn and ODn are regular submonoids of PTn, conditions 1 and 2 follow immedi-
ately from well known results on regular semigroups (e.g. see [12]).

Next, we prove condition 3. Suppose that s ≤J t. Then there exist x, y ∈ M such that s = xty,
whence Im(s) ⊆ Im(ty). Since | Im(ty)| = | Im(t)y| ≤ | Im(t)|, it follows that | Im(s)| ≤ | Im(ty)| ≤
| Im(t)|.

Conversely, let s, t ∈ M be such that | Im(s)| ≤ | Im(t)|. First, suppose that s and t are order-
preserving transformations. Then, it is well known that | Im(s)| ≤ | Im(t)| implies s ≤J t in POn

(and so in PODn). If both s and t are full transformations, | Im(s)| ≤ | Im(t)| also implies s ≤J t
in On (and so in ODn). Hence, in this case, s ≤J t in M . Next, suppose that s is order-preserving
and t is order-reversing. Then, as | Im(t)| = | Im(th)| and s and th are order-preserving, it follows
that s ≤J th in M , by the previous case. So there exist x, y ∈ M such that s = x(th)y. Thus
s ≤J t in M . The remaining cases are similar. �

It follows, from condition 3 of the last proposition, that

PODn/J = {J0 <J J1 <J · · · <J Jn},

where Jk = {s ∈ PODn | | Im(s)| = k}, for all 0 ≤ k ≤ n. Similarly

ODn/J = {J1 <J · · · <J Jn},

where Jk = {s ∈ ODn | | Im(s)| = k}, for all 1 ≤ k ≤ n.
It is well known that the monoids On and POn are aperiodic (i.e. they have trivial H-classes),

but that is not the case with PODn and ODn. However in both these cases the situation is not too
far as we show next. Let s ∈ PODn. If s has rank less than or equal to 1, then s is order-preserving
and so its H-class (in PODn and, if s is a full transformation, also in ODn) is a singleton. However,
if s has rank at least 2, it easy to show that with the same kernel and the same image as s there are
precisely two elements name s and t, say, one is order-preserving and the other is order-reversing.
More precisely, if Im(s) = {a1 < a2 < · · · < am} and Y1, Y2, . . . , Ym are the classes of Ker(s) such
that Yis = {ai}, for 1 ≤ i ≤ m, then the transformation t ∈ PODn with the same kernel and
the same image as s is defined by Yit = {am−i+1}, for 1 ≤ i ≤ m. For example, let n = 6 and

s =
(

1 2 3 4 5 6
1 1 2 2 2 4

)
then t =

(
1 2 3 4 5 6
4 4 2 2 2 1

)
. Furthermore, s is order-preserving if

and only if t is order-reversing, and vice-versa. Summarising, we have:

Proposition 1.2 Let M be either the monoid PODn or the monoid ODn. Let s be an element of
M such that | Im(s)| ≥ 2. Then |Hs| = 2. Moreover, the maximal subgroups of the J-classes of M
of the elements of rank at least two are cyclic of order two. �

When dealing with finite semigroups it is a particular to know their size. For example, when we
are checking if we have a presentation of a finite monoid M , for instead using GAP, the knowledge
of the cardinal of M is crucial [15, Proposition 3.2.2].

To calculate the cardinals of PODn and of ODn we consider the mapping ϕ : POn −→ PDn

defined by sϕ = sh, for all s ∈ POn. Clearly ϕ is a bijection, thus we have |PDn| = |POn| =∑n
r=1

(
n
r

)(
n+r−1

r

)
, by [11]. On the other hand, the restriction of ϕ to On has image Dn and so

|Dn| = |On| =
(
2n−1
n−1

)
, by [13]. Now, as |POn∩PDn| = |{s ∈ PTn : | Im(s)| ≤ 1}| = n

∑n
r=1

(
n
r

)
+1

and |On ∩ Dn| = |{s ∈ Tn : | Im(s)| = 1}| = n, we conclude the following:
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Proposition 1.3 |PODn| =
∑n

r=1

(
n
r

) (
2
(
n+r−1

r

)
− n

)
− 1 and |ODn| = 2

(
2n−1
n−1

)
− n. �

Naturally, at this point, we would like to compute the rank of these monoids.
As usual, for x ∈ R, we denote by dxe the least integer greater than or equal to x.
Let n ≥ 2 and p = dn

2 e.
First, we consider the monoid ODn.
Let

ui =
(

1 · · · i− 1 i i + 1 · · · n
1 · · · i− 1 i + 1 i + 1 · · · n

)
,

for 1 ≤ i ≤ n − 1, and recall, from [10], that ODn = 〈u1, . . . , un−1, h〉. Now, for 1 ≤ j ≤ p, let zj

be the (unique) element of On (of rank n− 1) with image {1, 2, . . . , j − 1, j + 1, . . . , n} and kernel
defined by the partition {{1}, . . . , {p− j}, {p− j +1, p− j +2}, {p− j +3}, . . . , {n}}. It is a routine
matter to prove that the following relations hold:

uj = zp−j+1zj , 1 ≤ j ≤ p,

and
un−j = hzp−j+1zj+1h, 1 ≤ j ≤ n− p− 1.

Therefore, we have:

Proposition 1.4 ODn = 〈z1, . . . , zp, h〉. �

Next, we can show that in fact ODn has rank p + 1.

Theorem 1.5 For n ≥ 2, the monoid ODn has rank dn
2 e+ 1.

Proof. For 1 ≤ i ≤ n, let Di = {1, 2, . . . , n} \ {i}. Let U be a set of generators of ODn. Then, by
Proposition 1.4, it suffices to prove that |U | ≥ p+1. First, notice that there must exist at least one
element in U of rank n − 1. On the other side, as h is the unique element of rank n that reverse
the order, we need to have h in U . Observe now that if f is a transformation with image Di, for
some 1 ≤ i ≤ n, then fh has image Dn−i+1.

Let {f1, . . . , fk} be the subset of U of all elements of rank n− 1, for some k ∈ N. Then, for all
1 ≤ i ≤ k, we have Im(fi) = D`i

, for some 1 ≤ `i ≤ n. Thus, if v ∈ ODn is an element of rank
n − 1, we have v = ffi or v = ffih, for some f ∈ ODn and 1 ≤ i ≤ k, and so Im(v) = D`i

or
Im(v) = Dn−`i+1. Since there exist n possible images for a transformation of rank n − 1, the set
{D`1 , . . . , D`k

, Dn−`1+1, . . . , Dn−`k+1} has at least (in fact, precisely) n elements, whence 2k ≥ n.
Then k ≥ p and so |U | ≥ p + 1, as required. �

Next, we turn our attention to the monoid PODn.

Let s0 =
(

2 · · · n− 1 n
1 · · · n− 2 n− 1

)
and

si =
(

1 · · · n− i− 1 n− i n− i + 2 · · · n
1 · · · n− i− 1 n− i + 1 n− i + 2 · · · n

)
,
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for i ∈ {1, 2, . . . , n− 1}. In [11], Gomes and Howie proved that POn = 〈s0, . . . , sn−1, u1, . . . , un−1〉.
Since th ∈ POn and t = (th)h, for any order-reversing partial transformation t, it follows that
PODn = 〈s0, . . . , sn−1, u1, . . . , un−1, h〉. Let

s =
(

1 2 · · · n− p n− p + 2 · · · n
2 3 · · · n− p + 1 n− p + 2 · · · n

)
.

We showed in [9] that

〈s1, . . . , sp−1, s, h〉 = 〈s0, . . . , sn−1, h〉 (= PODIn)

and so
PODn = 〈s1, . . . , sp−1, s, z1, . . . , zp, h〉,

by Proposition 1.4. In this way, we have obtained a generating set of PODn with n + 1 elements
when n is even, and with n + 2 elements when n is odd. However, if n is odd, we get z2 = hz1hs1,
for n = 3, and z2 = hz1zphz1hs1h, for n ≥ 5, whence

PODn = 〈s1, . . . , sp−1, s, z1, z3, . . . , zp, h〉.

Thus, for an odd integer n ≥ 3, we also have a generating set of PODn with n+1 elements. Hence
PODn has rank at most n + 1. In fact, n + 1 is exactly its rank.

Theorem 1.6 For n ≥ 2, the monoid PODn has rank n + 1.

Proof. It remains to prove that any generating set of PODn has at least n + 1 elements. Let U
be a generating set of PODn. In this case, we also must have h ∈ U .

Let v ∈ PODn be a transformation of rank n − 1. Then v = uz or v = huz, for some
u ∈ U \ {h} and z ∈ PODn. Since u 6= h, then u must have rank n − 1 and so Ker(u) = Ker(v)
or Ker(u) = Ker(hv). Notice that, for 1 ≤ j ≤ n, if v is a (full) transformation with kernel defined
by the partition {{1}, . . . , {j − 1}, {j, j + 1}, {j + 2}, . . . , {n}}, then hv is a (full) transformation
with kernel defined by the partition {{1}, . . . , {n− j − 1}, {n− j, n− j + 1}, {n− j + 2}, . . . , {n}},
for 1 ≤ j ≤ n− 1. On the other hand, if v is a transformation with kernel defined by the partition
{{1}, . . . , {j−1}, {j+1}, {j+2}, . . . , {n}} (and so v is an injective map), then hv is a transformation
with kernel defined by the partition {{1}, . . . , {n− j− 1}, {n− j}, {n− j + 2}, . . . , {n}} (and so hv
also is an injective map). Therefore, U contains at least dn−1

2 e full transformations of rank n − 1
and at least dn

2 e injective transformations of rank n− 1, whence |U | ≥ dn−1
2 e+ dn

2 e+ 1 = n + 1, as
required. �

We finish this section by setting some notations and by summarising some properties of the
monoids ODn, PODIn and PODn that will be used in the remain two sections.

First, recall that ODn = 〈On, h〉, PODIn = 〈POIn, h〉 and PODn = 〈POn, h〉.
Next, let T ∈ {On,POIn,POn} and M = 〈T, h〉. Then both T and M are regular monoids

(moreover, if T = POIn then M and T are inverse monoids) and E(M) = E(T ). Another
important property that we will require is the following: if s ∈ M\T then sh, hs ∈ T and the
elements s, sh, hs have the same rank.
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Remember also that, for the partial order ≤J, the quotients M/J and T/J are chains (with
n + 1 elements for T = POIn and T = POn and with n elements for T = On). More precisely, if
S ∈ {T,M}, then

S/J = {JS
0 <J JS

1 <J · · · <J JS
n }

when T ∈ {POIn,POn}; and
S/J = {JS

1 <J · · · <J JS
n }

when T = On. Here
JS

k = {s ∈ S : | Im(s)| = k},

with k suitably defined.
For S ∈ {T,M} and 0 ≤ k ≤ n, let IS

k = {s ∈ S : | Im(s)| ≤ k}. Clearly IS
k is an ideal of S.

Since S/J is a chain, it follows that
{IS

k : 0 ≤ k ≤ n}

is the set of all ideals of S.
Finally, observe that T is an aperiodic monoid and that the H-classes of M contained in JM

k

have precisely two elements (one of them belonging to T and the other belonging to M\T ) when
k ≥ 2. If k = 1 then such H-classes are trivial.

2 The congruences of the monoid POn

In this section we show that the congruences of POn are exactly its Rees congruences. We will
make use of the fact that the same happens in On and in POIn [1, 14, 6].

First, we prove an easy technical result. Given s ∈ POn, we say that s ∈ On is a full r-extension
of s if s extends s (that is s |Dom(s)= s) and s and s have the same rank.

Lemma 2.1 Any non-zero element s ∈ POn has a full r-extension extension s ∈ On.

Proof. Let Dom(s) = {i1 < · · · < ik}, with 1 ≤ k ≤ n. For instance, if we define s by

(x)s =


(i1)s, 1 ≤ x ≤ i1;
(it)s, it−1 < x ≤ it, 2 ≤ t ≤ k;
(ik)s, ik < x ≤ n,

we obtain a full r-extension of s, as required. �

Theorem 2.2 The congruences of POn are exactly its n + 1 Rees congruences.

Proof. If n = 1 the result is trivial. Let n ≥ 2. Let ρ be a congruence of POn. We aim to find an
ideal of POn associated to ρ. Let us consider ρ = ρ ∩ (On ×On). There exists k ∈ {1, . . . , n} such
that ρ = ρ

IOn
k

, the Rees congruence associated to the ideal IOn
k of On.

We start by proving that IPOn
k ⊆ 0ρ, where 0 denotes the empty map.

If k = 0 then IPOn
k = {0} and so, trivially, IPOn

k ⊆ 0ρ. Hence, admit that k ≥ 1.
Let c1 be the constant full transformation of On with image {1}. Clearly c1 ∈ IOn

k . Since n ≥ 2
we can also consider the constant c2 with image {2}. Let e1 be the partial identity with domain
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(and image) {1}. Then c1, c2 ∈ IOn
k and so c1 ρ c2. Hence c1 ρ c2. Now c1 = c1e1 ρ c2e1 = 0. Thus

c1 ∈ 0ρ.
Next, we take s ∈ JPOn

k . Let s be a full r-extension of s and let e be the partial identity with
domain Dom(s). Then es = s and, s ∈ JOn

k . We have c1 and s both in IOn
k and so s ρ c1, whence

s = es ρ ec1 ρ e0 = 0. Therefore s ∈ 0ρ. As s generates the ideal IPOn
k and 0ρ is an ideal of POn,

it follows that IPOn
k ⊆ 0ρ.

Next, we take ρ̃ = ρ ∩ (POIn × POIn) and ` ∈ {0, 1, . . . , n} such that ρ̃ = ρ
IPOIn
`

and prove

that IPOn
` ⊆ 0ρ. This inclusion is obvious for ` = 0. Assume that ` ≥ 1.

Take s ∈ JPOn
` . Let D be any transversal of Ker(s) and let e be the partial identity with

domain D. Then es ∈ JPOIn
` and so es ρ̃ 0. Let (es)−1 be the inverse (in POIn) of es. Then

s = s(es)−1es ρ s(es)−10 = 0

and so s ∈ 0ρ.
Again, as s generates the ideal IPOn

` , we obtain IPOn
` ⊆ 0ρ.

Our next step consists of showing that k = `. Since IPOIn
k ⊆ IPOn

k ⊆ 0ρ, we have

IPOIn
k ⊆ 0ρ̃ = IPOIn

` ,

whence k ≤ `.
If ` = 0 then ` ≤ k and so ` = k. If ` ≥ 1 , we have IOn

` ⊆ IPOn
` ⊆ 0ρ and so

IOn
` ⊆ cρ = IOn

k ,

with c any element of JOn
1 , whence ` ≤ k. Thus k = `.

Before completing the proof of the theorem we notice that given s ∈ POn there exists s′ ∈ POIn

such that s′ is an inverse of s. For example: if D is an arbitrary transversal of Ker(s) we can take
the unique element s′ ∈ POIn such that Dom(s′) = Im(s) and Im(s′) = D.

Now, we show that ρ = ρ
IPOn
k

. So far we proved that IPOn
k ⊆ 0ρ.

Next, take s, t ∈ POn such that s ρ t and s has rank greater than k, i.e. s 6∈ IPOn
k .

Let s′ ∈ POIn be an inverse of s and t′ ∈ POIn an inverse of t. Then s ρ t implies
s′st′t ρ s′tt′t = s′t ρ s′s. Now s′s, t′t ∈ POIn and so s′st′t ∈ POIn. Hence s′st′t ρ̃ s′s and, as s′s
has rank greater than k, it follows that s′st′t = s′s, whence s = (st′)t. Then rank(t) ≥ rank(s) > k.
Similarly, rank(s) ≥ rank(t) and rank(s) = rank(t).

Now, let D be any transversal of Ker(s) and let e be the partial identity with domain D. Then
es and s have the same rank. Since es ρ et, from the above we get rank(es) = rank(et).

On the other hand,

|D| = |Im(s)| = |Im(et)| ≤ |Dom(et)| = |D ∩Dom(t)| ≤ |D|,

and so |D| = |D ∩Dom(t)|, whence D ⊆ Dom(t).
As D is an arbitrary transversal of Ker(s), it follows that Dom(s) ⊆ Dom(t). Similarly,

Dom(t) ⊆ Dom(s) and so Dom(s) = Dom(t).
Next, let e be a full r-extension of the partial identity with domain Dom(s)(= Dom(t)). Then

es, et ∈ On and s, t, es and et have the same rank (greater than k). Since es ρ et, we have es ρ et
and as ρ = ρ

IOn
k

we get es = et. Hence s = es|Dom(s) = et|Dom(t) = t.

Thus, we have proved that ρ = ρ
IPOn
k

, as required. �
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3 The congruences of the monoids ODn, PODIn and PODn

In this section we focus our attention in the study of the congruences of the monoids with order-
reversing elements.

In what follows T ∈ {On,POIn,POn} and M = 〈T, h〉.
First, notice that it follows from [1] or [14], from [6] and from the last section, that the set

Con(T ) of all congruences of T is {ρIT
k

: 0 ≤ k ≤ n}.
Next, observe that, for 1 ≤ k ≤ n, we can define a congruence πk on M by: for all s, t ∈ M ,

s πk t if and only if

1. s = t; or

2. s, t ∈ IM
k−1; or

3. s, t ∈ JM
k and sH t

(see [5, Lemma 4.2]).
For 0 ≤ k ≤ n, denote by ρk the Rees congruence ρIM

k
associated to the ideal IM

k of M and by
ω the universal congruence of M . Clearly, for n ≥ 2, we have

1 = π1 ( ρ1 ( π2 ( ρ2 ( · · · ( πn ( ρn = ω.

Our main result of this section establishes that the above congruences are precisely all congru-
ences of M :

Theorem 3.1 Let M be either the monoid ODn or the monoid PODIn or the monoid PODn,
with n ≥ 2. Then M have 2n congruences. More exactly,

Con(M) = {1 = π1, ρ1, π2, ρ2, . . . , πn, ρn = ω}.

Observe that Con(OD1) = {1} and if M ∈ {PODI1,POD1} then Con(M) = {1, ω}.
To prove Theorem 3.1 we first present some auxiliary results. We start with two routinist facts.
Let c1, . . . , cn ∈ Tn be such that Im(ci) = {i}, for all 1 ≤ i ≤ n (i.e. c1, . . . , cn are the n constant

mappings of Tn). Let s, t ∈ Tn be such that cis = cit, for all 1 ≤ i ≤ n. Then, it is routine to prove
that s = t.

A version of this property for partial transformation is the following: let c1, . . . , cn ∈ PTn

satisfying Dom(ci) = Im(ci) = {i}, for all 1 ≤ i ≤ n (i.e., the n partial identities of rank one).
Given s, t ∈ PTn such that cis = cit, for all 1 ≤ i ≤ n, it also is easy to show that s = t.

In what follows, c1, . . . , cn denote the constant mappings of Tn when M = ODn, and the partial
identities of rank one of PTn when M = PODIn or M = PODn.

Notice that in all cases c1, . . . , cn ∈ T .
Let ρ be a congruence of M and consider ρ = ρ ∩ (T × T ). Then ρ is a Rees congruence of T

and so there exists 0 ≤ k ≤ n such that ρ = ρIT
k
.

This notation will be used in the next lemmas.

Lemma 3.2 If k = 0 then ρ = 1.
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Proof. First notice that k = 0 if and only if ρ = 1. Now, it is clear that for all 1 ≤ i ≤ n and
s ∈ M we have cis ∈ T . (In fact, cis is either a constant map of image {(i)s} or the empty map.)
Let s, t ∈ M be such that s ρ t. Then for all any i, we get cis ρ cit and, since cis, cit ∈ T , we have
cis ρ cit. Hence cis = cit, for all 1 ≤ i ≤ n. Therefore s = t and so ρ = 1, as required. �

¿From now on, we consider k ≥ 1.

Lemma 3.3 ρk ⊆ ρ.

Proof. It suffices to show that s ρ t, for all s, t ∈ IM
k . So, let us consider s, t ∈ IM

k .
If s, t ∈ T then s, t ∈ IT

k and so s ρ t, whence s ρ t.
If s, t ∈ M\T then sh, th ∈ T and so sh, th ∈ IT

k . Thus sh ρ th, whence sh ρ th. Then
s = shh ρ thh = t.

Finally, admit that s ∈ M\T and t ∈ T . Then hs ∈ IT
k and so hs ρ c1, since c1 ∈ IT

k . Hence
hs ρ c1. Thus s = hhs ρ hc1. Since hc1 ∈ IT

k (in fact hc1 is a constant map), we also have hc1 ρ t,
whence hc1 ρ t. Then s ρ t, as required. �

Lemma 3.4 Let s, t ∈ M be such that s ρ t. Then | Im(s)| > k if and only if | Im(t)| > k.

Proof. We prove that | Im(s)| > k implies | Im(t)| > k. The converse is analogous.

(1) If s, t ∈ T then s ρ t. Since s 6∈ IT
k , we have s = t, whence | Im(t)| > k.

(2) If s, t ∈ M\T then sh, th ∈ T and shρ th. Since | Im(sh)| = | Im(s)| > k, by the previous case
we have sh = th, whence s = t and so | Im(t)| > k.

(3) Now, consider s ∈ T and t ∈ M\T . If | Im(t)| ≤ k then t ρk c1 and so t ρ c1, by Lemma 3.3.
Hence s ρ c1. By the case (1) we get s = c1, and this is a contradiction for c1 has rank one.
Then | Im(t)| > k.

(4) Finally, suppose that s ∈ M\T and t ∈ T . Then sh ∈ T and sh ρ th. Since | Im(sh)| =
| Im(s)| > k, by the case (1) or by the case (3), we deduce that | Im(t)| = | Im(th)| > k, as
required. �

Given a finite semigroup S and x ∈ S, we denote by xω the unique idempotent of the subsemi-
group of S generated by x.

Lemma 3.5 Let s, t ∈ M be such that s ρ t and | Im(s)| > k. Then sH t.

Proof. Let s′ and t′ be (any) inverses of s and t, respectively. Then

| Im(ss′)| = | Im(s′s)| = | Im(s)| > k

and, by Lemma 3.4,
| Im(tt′)| = | Im(t′t)| = | Im(t)| > k.

Since sρt, we have st′ ρtt′, whence (st′)ω ρtt′ and so (st′)ω ρtt′, as tt′, (st′)ω ∈ E(M) = E(T ). Now,
since | Im(tt′)| > k, it follows that (st′)ω = tt′ and so (st′)ωt = t. Similarly, (ts′)ωs = s, whence
sR t.

On the other hand, we have t′s ρ t′t, whence (t′s)ω ρ t′t and so, as above, we may deduce that
(t′s)ω = t′t. This implies t(t′s)ω = t. Similarly, s(s′t)ω = s, whence s L t.

Thus sH t, as required. �
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Lemma 3.6 Let s, t ∈ M be such that s 6= t and s H t. Then, there exists z ∈ T such that
| Im(zs)| = | Im(s)| − 1, | Im(zt)| = | Im(t)| − 1 and (zs, zt) 6∈ L.

Proof. Let m = | Im(s)| = | Im(t)|. Notice that s 6= t and sH t imply m ≥ 2. Moreover, we may
suppose, without loss of generality, that s ∈ T and t ∈ M\T .

Let i1, i2, . . . , im ∈ {1, . . . , n} be such that Im(s) = Im(t) = {i1 < i2 < · · · < im}.
Let D1, D2, . . . , Dm ⊆ {1, . . . , n} be the classes of Ker(s) such that D`s = {i`}, 1 ≤ ` ≤ m. As

Ker(s) = Ker(t), by the previous conditions, D`t = {im−`+1}, 1 ≤ ` ≤ m.
Let r be a fixed element of Dm−1. We define a transformation z ∈ T by

(x)z =


x, x ∈ D1 ∪ · · · ∪Dm−2

r, x ∈ Dm−1

r, x ∈ Dm and M = ODn

(if M 6= ODn we are considering Dom(z) = D1 ∪ · · · ∪ Dm−1). Then Im(zs) = {i1, . . . , im−1}
and Im(zt) = {i2, . . . , im}, whence Im(zs) 6= Im(zt) (since m ≥ 2). Thus (zs, zt) 6∈ L. Moreover,
| Im(zs)| = | Im(zt)| = m− 1, as required. �

Finally, we prove Theorem 3.1.

Proof. (of Theorem 3.1) Let ρ ∈ Con(M) and ρ = ρ ∩ (T × T ) ∈ Con(T ). Let 0 ≤ k ≤ n be
such that ρ = ρIT

k
.

By Lemma 3.2, if k = 0 (i.e. ρ = 1) then ρ = 1 = π1.
Admit that 1 ≤ k ≤ n. Then ρk ⊆ ρ, by Lemma 3.3.
Let s, t ∈ M be such that s 6= t, s ρ t and | Im(s)| > k. Then, by Lemma 3.5, we have sH t.
Let m = | Im(s)| = | Im(t)|. As m > k ≥ 1, by Lemma 3.6, there exists z ∈ T such that

| Im(zs)| = | Im(zt)| = m− 1 and (zs, zt) 6∈ L. If we have m− 1 > k, as zs ρ zt, by Lemma 3.5, we
would get (zs, zt) ∈ H, and this is a contradiction. Thus m− 1 = k. Therefore ρ ⊆ πk+1.

Suppose that ρk ( ρ. In this case, we wish to prove that ρ = πk+1. Observe that k < n and so
there exist s0, t0 ∈ JM

k+1 such that s0 6= t0, s0 ρ t0 and s0 H t0.
Now, take s, t ∈ M such that s 6= t and (s, t) ∈ πk+1. If s, t ∈ IM

k then (s, t) ∈ ρk ⊆ ρ,
whence (s, t) ∈ ρ. If s, t ∈ JM

k+1 and s H t. As a consequence of Green’s Lemma [12], there exist
a, b ∈ M such that the map Hs0 −→ Hs, x 7→ bxa is a bijection. From Hs0 = {s0, t0}, it follows
that {s, t} = Hs = {bs0a, bt0a}. Since s0 ρ t0, then bs0a ρ bt0a and so s ρ t. We may conclude that
ρ = πk+1. We have proved that ρ = ρk or ρ = πk+1. The result follows, as required. �
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