
Preprint DM-FCT-UNL

The idempotent-separating degree of a
block-group

Vı́tor H. Fernandes1
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Abstract. In this paper we describe the least non-negative integer n such that
there exists an idempotent-separating homomorphism from a finite block-group S

into the monoid of all partial transformations of a set with n elements. In particular,
as for a fundamental semigroup S this number coincides with the smallest size
of a set for which S can be faithfully represented by partial transformations, we
obtain a generalization of Easdown’s result established for fundamental finite inverse
semigroups.
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Introduction and preliminaries

It is well-known that any semigroup can always be represented faithfully by
full or partial transformations of a set. Given a finite semigroup S, it is then
natural to ask for a description of the least non-negative integer n such that
S can be embedded in PTn, the monoid (under composition) of all partial
transformations of a set with n elements. This question derives from Problem
45 posed by Schein in 1972 [11] and was solved by Easdown in 1987 [2] for
fundamental finite inverse semigroups. By a fundamental semigroup we mean
a semigroup without non-trivial idempotent-separating congruences. In this
paper, we study a related problem: we consider idempotent-separating repre-
sentations by partial transformations, instead of faithful representations, and
describe the least non-negative integer n such that there exists an idempotent-
separating homomorphism from a block-group S into PTn. Since for a fun-
damental semigroup S this number coincides with the smallest size of a set
for which S can be faithfully represented by partial transformations, in par-
ticular we generalize the result of Easdown. Recall that a block-group can be
defined as a finite semigroup whose elements have at most one inverse. For
convenience, we will also call block-group to any infinite semigroup such that
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every element has at most one inverse. A block-group can also be defined
as a semigroup such that every R-class and every L-class has at most one
idempotent. Clearly, the class of all block-groups comprises all idempotent
commuting semigroups and, in particular, all inverse semigroups. The class
BG of all finite block-groups forms a pseudovariety of semigroups (i.e. a class
of finite semigroups closed under homomorphic images of subsemigroups and
finitary direct products) and plays a main role in the following celebrated re-
sult: ♦G = PG = J ∗ G = J©m G = BG = EJ, where G and J denote the
pseudovarieties of all groups and of all J-trivial semigroups, respectively, PG
and ♦G denote the pseudovarieties generated by all power monoids of groups
and by all Schützenberger products of groups, respectively, and, finally, EJ
denotes the pseudovariety of all semigroups whose idempotents generate a J-
trivial semigroup. See [9] for precise definitions and a complete story of these
equalities.

Given a set X, we denote by PT (X) the monoid (under composition) of all
partial transformations on X and by I(X) the symmetric inverse semigroup on
X, i.e. the inverse submonoid of PT (X) of all injective partial transformations
on X.

A well-known result due to Vagner and Preston states that every inverse
semigroup S has a faithful representation into I(S). Another classical repre-
sentation of an inverse semigroup is the Munn representation. We may describe
it as follows: for every inverse semigroup S, denoting by E the semilattice of
all idempotents of S, a homomorphism from S into I(E) is defined by

φ : S → I(E)
s 7→ sφ : Ess−1 → Es−1s

e 7→ s−1es.

Notice that, in general, the Munn representation of an inverse semigroup is
not injective. Indeed, the kernel of φ is the maximum idempotent-separating
congruence on S. Therefore, φ is an injective homomorphism if and only if S
is a fundamental semigroup (see [6] or [8], for more details).

For a finite semigroup S, a description of the maximum idempotent-separa-
ting congruence on S was first presented by Rhodes in [10] (see also Chapter 8
of Arbib’s book [1]). Next, we recall this description, using a slightly different
language. Let S be an arbitrary semigroup. Let RL(S) and RR(S) be the set
of all regular L-classes of S and the set of all regular R-classes of S, respectively,
and denote the dual semigroup of PT (RR(S)) by PT ∗(RR(S)). Consider the
homomorphism Θ : S → PT (RL(S) × PT ∗(RR(S)), s 7→ (ρs, λs), where the
partial map ρs is defined by

ρs : RL(S) → RL(S)

Lx 7→
{

Lxs if xs Rx
undefined otherwise ,
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and the partial map λs is defined dually, for all s ∈ S. Then, for a finite semi-
group S, Rhodes proved that the kernel of Θ is the maximum idempotent-
separating congruence on S. More generally, this result is also valid for an
eventually regular semigroup S, i.e. a semigroup S such that each element of
S has a power which is regular (see [3]). Notice that Rhodes considered H′-
homomorphisms (i.e. a homomorphism such that all pairs of regular elements
of its kernel are H-related) instead of idempotent-separating homomorphisms:
it is easy to show that these two notions coincide for eventually regular semi-
groups. Let µ be the kernel of Θ. Clearly, µ can be described by: given
a, b ∈ S, a µ b if and only if, for each regular element x ∈ S the following four
conditions are satisfied: x Rxa implies xa H xb; x Rxb implies xa H xb; x L ax
implies ax H bx; and x L bx implies ax H bx. Observe that, in general for an
arbitrary semigroup S, the relation µ is an idempotent-separating congruence.

We assume some knowledge on semigroups, namely on Green’s relations,
regular elements and inverse semigroups. Possible references are [6, 8].

1 Idempotent-separating representations of a
block-group

Let S be a semigroup. We denote by E(S) the set of all idempotents of S and
by Reg(S) the set of all regular elements of S. Recall the definition of the quasi-
orders ≤R and ≤L associated to the Green relations R and L, respectively: for
all s, t ∈ S, s ≤R t if and only if sS1 ⊆ tS1 and s ≤L t if and only if S1s ⊆
S1t, where S1 denotes the monoid obtained from S through the adjoining of
an identity if S has none and denotes S otherwise. To each element s ∈ S,
we associate the following two subsets of E(S): R(s) = {e ∈ E(S) | e ≤R s}
and L(s) = {e ∈ E(S) | e ≤L s}. Clearly, if e ∈ R(s) then es ∈ Reg(S) and,
dually, if e ∈ L(s) then se ∈ Reg(S).

Now, let S denote a (finite or infinite) block-group and s−1 the unique in-
verse of a regular element s ∈ S. It is easy to check that, given s ∈ S and
e ∈ R(s), then e = (es)(es)−1 = s(es)−1 = s(es)−1e, (es)−1(es) ∈ L(s) and
(es)−1(es) D e. Dually, for s ∈ S and e ∈ L(s), we have also e = (se)−1(se) =
(se)−1s = e(se)−1s, (se)(se)−1 ∈ R(s) and (se)(se)−1

D e. From these proper-
ties, it is easy to deduce that the mappings δs : R(s) → L(s), e 7→ (es)−1(es),
and δ̄s : L(s) → R(s), e 7→ (se)(se)−1, are mutually inverse bijections that pre-
serve D-classes. Moreover, if we identify each regular L-class with its unique
idempotent, it is not difficult to prove that, given s ∈ S, δs is a restriction
of ρs and, in fact, they coincide if S is eventually regular. Dually, we have
the analogous properties by identifying each regular R-class with its unique
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idempotent. It is routine to show that the mapping

δ : S → I(E(S))
s 7→ δs : R(s) → L(s)

e 7→ (es)−1(es)

is an idempotent-separating homomorphism. Clearly, for an inverse semigroup
S, the homomorphism δ defined above coincides with the (usual) Munn rep-
resentation of S. Therefore, for a block-group S, it seems appropriate to also
call this homomorphism the Munn representation of S. Furthermore, like for
the Munn representation of an inverse semigroup, as a particular instance of
Rhodes’ result (notice that, for an eventually regular block-group S, up to an
identification, ρs and λs are mutually inverse bijections, for all s ∈ S), we
immediately have:

Theorem 1.1 The kernel of the Munn representation of a block-group con-
tains µ. Moreover, if S is an eventually regular block-group then the kernel of
the Munn representation of S is the maximum idempotent-separating congru-
ence on S.

Notice the following immediate interesting consequence of Theorem 1.1:

Corollary 1.2 Every fundamental block-group is a subsemigroup of an inverse
semigroup.

Observe that we defined a semigroup S to be fundamental if the identity
is the unique idempotent-separating congruence on S. This concept extends
naturally the notion of “fundamental” from regular to arbitrary semigroups
and was proposed by Edwards in [4]. An alternative definition was considered
by Grillet [5]: for this author a semigroup is “fundamental” if the maximum
congruence contained in H is the identity. Clearly, this last notion comprises
the first one, since a congruence contained in H separates idempotents. It is
well known that for regular semigroups the converse is also true, i.e. these
two notions of “fundamental” coincide. This is not the case in general, even
for finite semigroups. For instance, if S is a null semigroup (i.e. a semigroup
with zero 0 such that S2 = {0}) then S is H-trivial and all congruences on S
separates idempotents (there exists just one: the zero), whence if S has at least
two elements, the maximum congruence on S contained in H is the identity
and S has at least two distinct idempotent-separating congruences.

Now, let E be a finite semilattice. Denote by 0 the zero of E and, for
e, f ∈ E, denote by e ∨ f the supremum of e and f , when it exists, with
respect to the natural partial order ≤ of E. Recall that e ≤ f if and only
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if e = ef(= fe). Let e ∈ E. Say that e is join irreducible if e 6= 0 and,
for all e1, e2 ∈ E, e = e1 ∨ e2 implies e = e1 or e = e2. Given a subset
X of E, we denote the set of all join irreducible elements of E belonging to
X by Irr(X). Observe that, any element e ∈ E is the supremum of the
set of all join irreducible elements of the principal ideal generated by e, i.e.
e =

∨
Irr({f ∈ E | f ≤ e}) (see [2, Lemma 3]).

Example 1.1 Let n ∈ N, In = I({1, 2, . . . , n}) and E = E(In). Since E is
the set of all partial identities on {1, 2, . . . , n} and, for all α, β ∈ E, α ≤ β if
and only if α is a restriction of β, we have Irr(E) =

{(
1
1

)
,
(
2
2

)
, . . . ,

(
n
n

)}
and so

|Irr(E)| = n.

Next, recall that, given any semigroup S, the natural partial order ≤ of
E(S) is defined by e ≤ f if and only if e = ef = fe, for all e, f ∈ E(S). Recall
also that BG = J(xωyω)ω = (yωxω)ωK = J(xωyω)ωxω = (xωyω)ω = yω(xωyω)ωK
(see [9]). Using these descriptions, given S ∈ BG, it is easy to show that
(E(S),≤) is a meet-semilattice. In fact, the infimum e ∧ f of e and f is equal
to (ef)ω, for all e, f ∈ E(S).

Let us consider the Munn representation δ : S → I(E(S)) of S ∈ BG,
as defined above. Let s ∈ S, e ∈ E(S) and a, b ∈ E(S) be such that e =
a ∨ b. If e ∈ R(s) then, it is easy to show that, a, b ∈ R(s) and eδs =
aδs ∨ bδs. Dually, if e ∈ L(s) then a, b ∈ L(s) and eδ̄s = aδ̄s ∨ bδ̄s. Now,
it is a routine matter to prove that, given s ∈ S, the mappings δs and δ̄s

preserve join irreducible idempotents and so we may consider their restrictions
ϑs : Irr(R(s)) → Irr(L(s)), e 7→ (es)−1(es), and ϑ̄s : Irr(L(s)) → Irr(R(s)),
e 7→ (se)(se)−1, respectively, which are mutually inverse bijections.

We can now prove the main result of this section.

Theorem 1.3 Let S be a finite block-group. Then, the mapping ϑ : S →
I(Irr(E(S))), s 7→ ϑs, is an idempotent-separating homomorphism. Moreover,
the kernel of ϑ is the maximum idempotent-separating congruence on S.

Proof. Clearly, ϑ is a homomorphism. Next, we prove that ϑ separates
idempotents. Let e, f ∈ E(S) be such that ϑe = ϑf . Hence, in particu-
lar, Irr(R(e)) = Irr(R(f)). Since R(e) and R(f) are the principal ideals of
(E(S),∧) generated by e and f , respectively, it follows that e =

∨
Irr(R(e)) =∨

Irr(R(f)) = f . Thus, ϑ is an idempotent-separating homomorphism. Fi-
nally, as the kernel of δ is contained in the kernel of ϑ, then we immediately
conclude, by Theorem 1.1, that the kernel of ϑ is the maximum idempotent-
separating congruence on S, as required.
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2 The idempotent-separating degree of a block-group

Let S be a finite semigroup. We define the idempotent-separating degree d(S) of
S to be the least non-negative integer n such that there exists an idempotent-
separating homomorphism from S into PTn. The minimal faithful degree d(S)
of S is the least non-negative integer n such that S can be embedded in PTn.
For a finite fundamental inverse semigroup S, Easdown [2] proved that d(S) is
the number of join irreducible elements of E(S). In this section, we will show
that, for any S ∈ BG, d(S) is also the number of join irreducible elements of
E(S).

Notice that, for an arbitrary finite semigroup S, since S/µ is fundamental
[4], we have d(S) ≤ d(S/µ) = d(S/µ). It will follow from our result that, for
S ∈ BG, d(S) = d(S/µ). This equality is not true in general, as our next
example shows.

Example 2.1 Let LC0 [7] be the subsemigroup of PT2 generated by the
idempotents

(
1 2
1 1

)
,

(
1
1

)
and

(
2
2

)
. Then LC0 is a five elements semigroup with

just one non-regular element that forms a 0-minimal J-class. It is clear that
d(LC0) = 2 = d(LC0). On the other hand, LC0/µ is a four elements band and,
by inspection, it is easy to verify that LC0/µ cannot embed in PT2, whence
d(LC0/µ) ≥ 3.

For α ∈ E(PTn), denote by α ∈ E(In) the partial identity with domain
Im(α). For any two idempotents α and β of PTn, it is routine to show that:
(i) if α ≤ β then α ≤ β ; (ii) α β ≤ (αβ)ω and α β ≤ (βα)ω ; and (iii) if
(αβ)ω ≤ α , β then α β = (αβ)ω . Now, it is easy to prove that, if T ∈ BG is
a subsemigroup of PTn, then the mapping (E(T ),∧) → (E(In), ·), α 7→ α , is
an injective homomorphism of semilattices.

Next, we prove the main result of this paper.

Theorem 2.1 The idempotent-separating degree of a finite block-group is equal
to its number of join irreducible idempotents.

Proof. Let S be a finite block-group. Since the map ϑ : S → I(Irr(E(S))),
defined in the Theorem 1.3, is an idempotent-separating homomorphism, we
have d(S) ≤ |Irr(E(S))|. On the other hand, let ϕ : S → PT d(S) be
an idempotent-separating homomorphism. Then the mapping (E(S),∧) →
(E(Id(S)), ·), e 7→ eϕ , is an injective homomorphism of semilattices. As a
semilattice is a fundamental inverse semigroup, by Easdown’s result, we have
|Irr(E(S))| ≤ d(S), as required.

Corollary 2.2 If S is a finite block-group then d(S) = d(S/µ).
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