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Foreword

This thesis comprises the work performed in the Metalloproteins and
Bioenergetics Unit from Instituto de Tecnologia Quimica e Biolégica,
Universidade Nova de Lisboa, under the supervision of Prof. Miguel

Teixeira and Dr. Manuela Pereira.

This thesis is divided into eight chapters: the first two are introductory
chapters, being the first focused on electron transfer respiratory chain
and its diversity and flexibility, in general, while in the second the
respiratory chain of the bacterium Rhodothermus marinus is described.
Chapters three to six are based on original published, as well as some
unpublished results and may be read independently. On chapter 6, in
addition to new presented results, overall aspects of the alternative
complex III are also discussed. Concluding remarks of the work are
presented on chapter seven. The information of the amino acids
sequences used to construct the dendograms discussed on chapter six is
presented as supplementary information on chapter eight while the
alignment of those amino acid sequences are available on the supplied

CD-ROM.
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Summary

The aim of the work presented in this thesis was the characterization of
a complex with quinol: electron carrier oxidodoreductase activity
present in the membranes of the thermohalophilic bacterium
Rhodothermus (R.) marinus.

The complexes involved in the R. marinus respiratory chain have been
extensively studied in the past few years. Specifically, the purification
and characterization of a complex I (NADH: quinone oxidoreductase), a
complex II (succinate:quinone oxidoreductase) and of three different
oxygen reductases from the heme-copper oxygen reductases
superfamily have been performed. Since those oxygen reductases are
unable to receive electrons from quinol molecules, the presence of a
complex linking complexes I and II to the oxygen reductases was
needed. In fact, a complex with quinol: HiPIP oxidoreductase activity
was purified and partially characterized. The absence of the Rieske
protein indicated that the complex isolated from R. marinus has a
different composition when compared with the typical cytochrome bc;
complex.

In this thesis it is described that, indeed, the complex with quinol:
electron carrier oxidoreductase activity in R. marinus respiratory chain is
the first example of the newly identified family of oxidoreductases,
named alternative complex III (ACIII), to be purified and characterized.

The ACIII of R. marinus is composed by seven subunits (A-G), whose
coding genes are organized in a seven genes cluster (ActABCDEFG).
Subunit A (27kDa) and subunit E (22 kDa) have, in their amino acid
sequences, five and one c-type heme binding motifs (CXXCH),
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respectively. Subunit A is also predicted to have one transmembrane
helix (TMH). Subunit B (97 kDa) has three binding motifs for [4Fe-4S]
2+/1+ centers and one for a [3Fe-4S] 1+/0 center. Subunits C and F have 42
and 35 kDa, respectively, and are predicted to be integral membrane
proteins with 10 TMHs. Subunits D and G are also membrane bound
with two and one TMH, respectively, and no binding motifs for redox
cofactors were detected.

The amino acid sequences of subunits B and C showed similarities
with subunits of members of the complex iron sulfur molybdoenzyme
(CISM) family. This family is characterized by the presence of three
subunits: a catalytic subunit with a molybdenum cofactor in the active
center, a four cluster protein (FCP) and a membrane anchor protein
(MAP). The subunit B can be considered as a fusion between the
catalytic subunit and the FCP since the first 800 amino acid residues of
the N-terminus show similarity with the catalytic subunit of CISM
family and the other 300 amino acid residues at the C-terminus show
similarity with the FCP. However, it should be stressed that the subunit
B of ACIII does not contain molybdenum. Subunit C shows similarity to
MAP subunits, yet with a larger number of TMH. Due to the similarity
between three of the seven subunits with subunits of the CISM, the
relation of the ACIII with the latter family was investigated by analyzing
all the available genomes by September of 2009. First, searches were
performed to determine the presence of the genes coding for subunits of
ACIII in other organisms. It was observed that, in fact, the ACIII is a
widespread enzyme being present in genomes in which the genes
coding for the typical complex III were absent, but there are also cases
where the two enzymes were present. Moreover, in many cases the

presence of genes coding for subunits of oxygen reductases following
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those coding for ACIII was observed. From the comparison between
subunits of ACII and those from the CISM family and related
complexes it was concluded that although the alternative complexes III
show a completely different architecture they are composed by
structural modules already observed in other enzymes.

The interaction of R. marinus ACIII with quinones was investigated
using HONO, a quinol analogue. Its fluorescence properties allowed the
determination of, at least, one quinone binding site.

The investigation of a possible structural and functional association
between the alternative complex III and the caas oxygen reductase was
also addressed. Several electrophoretic techniques conjugated with
different staining procedures led to the identification of a complex
with, approximately, 500 kDa formed by the two enzymes. By peptide
mass fingerprint, subunits of the two enzymes were identified in that
complex. Moreover, the association between ACIII and caas oxygen
reductase revealed to be also functional given that when put together
the enzymes showed quinol: oxygen oxidoreductase activity which
was HQONO and KCN inhibited (typical inhibitors of quinone
interacting enzymes and of the oxygen reductases, respectively).

Furthermore, in this structural and functional association, the
electron donor to cas; within ACIII was determined to be the
monoheme cytochrome ¢ (mhc) subunit. Oxygen consumption, which
was KCN inhibited, was observed upon addition of the reduced
monoheme cytochrome c (over expressed in Escherichia coli) to the caas
oxygen reductase. The reduction potential for mhc was determined to
be +160 mV at pH 7.5. The spectroscopic characterization showed
typical features of a low-spin heme with axial coordination

methionine-histidine. The subunit is also predicted to have covalently

Xl



bound lipids since in the N-terminus of its amino acid sequence a
characteristic consensus of a lipobox is detected. The pentaheme
cytochrome c subunit was also cloned and expressed in E. coli and the
UV-visible spectrum showed also characteristic features of low-spin
hemes.

This work is a step forward not only in the investigation and
recognition of the diversity and robustness of the electron transfer
respiratory chains but also in the evaluation of how nature uses the

same structural modules conjugated in several different ways.
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Sumadrio

O trabalho apresentado nesta tese teve como objectivo a caracterizacdo
de um complexo com actividade quinol: transportador de electrdes
oxidorreductase presente nas membranas da bactéria termohalofilica
Rhodothermus (R.) marinus.

Os complexos envolvidos na cadeia respiratéria de R. marinus tém
sido amplamente estudados nos tltimos anos. Antes do inicio deste
trabalho, o complexo I (NADH: quinona oxidorreductase), o complexo II
(succinato: quinona oxidorreductase) e trés diferentes reductases de
oxigénio (pertencentes a superfamilia das reductases de oxigénio hemo-
cobre) foram purificados e caracterizados. Devido ao facto das
reductases de oxigénio ndo conseguirem receber electrdes directamente
de quindis, a presenca de um complexo que permita a transferéncia de
electrdes entre o complexo I e II e as reductases de oxigénio era
necessdria. De facto, um complexo com actividade quinol: HiPIP
oxidorredutase foi purificado e parcialmente caracterizado. A auséncia
da proteina Rieske indicou que o complexo isolado de R. marinus teria
uma composi¢do diferente daquela observada para o complexo
citocromo bc;.

Esta tese descreve que na cadeia respiratéria de R. marinus, o complexo
com actividade quinol: transportador de electrdes oxidorreductase
pertence a uma recém identificada familia de complexos. Estes dltimos
designaram-se complexos III alternativos sendo o complexo de R.
marinus o primeiro membro a ser purificado e caracterizado.

O ACIII de R. marinus é composto por sete subunidades (A-G), cujos
genes codificantes estdo organizados numa associacdo (ActABCDEFG).

A subunidade A (27kDa) e a subunidade E (22 kDa) tém, nas suas
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sequéncias de residuos de aminoécidos, cinco e um motivos de ligagao a
hemos do tipo ¢ (CXXCH), respectivamente. Para a subunidade A prevé-
se, também, a presenca de uma hélice transmembranar (TMH). A
sequéncia de residuos de aminodcidos da subunidade B (97 kDa)
apresenta trés motivos de ligacdo para centros do tipo [4Fe-4S]>+/1+ e um
para um centro do tipo [3Fe-4S]'+/0. As subunidades C e F tém 42 e 35
kDa, respectivamente e dez hélices transmembranares foram previstas
para estas subunidades. Duas e uma hélices transmembranares foram,
respectivamente, previstas para as subunidades D e G. Nestas tltimas
subunidades, ndo foram detectados motivos de ligacdo para cofactores
redox.

A sequéncia de aminoécidos das subunidades B e C revelou que estas
apresentam similaridade com subunidades de membros da familia de
complexos enziméticos com ferro, enxofre e molibdénio (complex iron
sulfur molybdoenzymes -CISM). Esta familia é caracterizada pela
presenca de trés subunidades: uma subunidade catalitica com um
cofactor com molibdénio no centro activo, uma subunidade com quatro
centros de ferro e enxofre (FCP) e uma subunidade de ligagdo a
membrana (MAP). A subunidade B pode ser vista como uma fusao entre
as subunidades catalitica e FCP, dado que os primeiros 800 residuos de
aminodcidos do N-terminal revelam similaridade com a subunidade
catalitica enquanto que os restantes 300 residuos de aminoécidos do C-
terminal mostram similaridade com a FCP. No entanto, deve salientar-se
que a subunidade B do ACIII ndo contém molibdénio. A subunidade C
revela similaridade com subunidades MAP, ainda que tenha um
ndmero maior de TMH. Devido a similaridade entre trés das sete
subunidades do ACIII e subunidades da familia CISM, a relacdo do

ACIII com esta familia foi investigada através da andlise de todos os
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genomas completamente sequénciados disponiveis até Setembro de
2009. Em primeiro lugar, foram realizadas pesquisas para determinar a
presenca dos genes que codificam para subunidades do ACIII em outros
organismos. Observou-se que, de facto, o ACIII ndo é exclusivo de R.
marinus, estando presente em genomas que ndo possuem 0s genes que
codificam subunidades do complexo III tipico, mas também foram
encontrados genomas onde os genes codificantes para ambos os enzimas
foram detectados. Além disso, observou-se, em alguns casos, que a
associagdo de genes que codifica o ACIII é seguida por genes que
codificam subunidades de reductases de oxigénio. Através da
comparagdo entre as subunidades do ACIII e das subunidades de
membros da familia CISM e outras relacionadas com esta, concluiu-se
que os complexos III alternativos apresentam uma arquitectura
completamente diferente. No entanto, utilizam mdédulos estruturais ja
observados em outros enzimas.

A interacdo do ACII de R. marinus com quinois foi estudada
recorrendo as propriedades fluorescentes do HQNO, um analogo do
quinol. Assim, determinou-se a presenca de, pelo menos, um motivo de
ligagdo a quindis.

A associacdo estrutural e funcional estabelecida entre o complexo III
alternativo e a reductase de oxigénio caas foi também investigada.
Vdérias  técnicas electroforéticas  conjugadas com  diferentes
procedimentos de coloragdo levaram a identificagdo de um complexo
com, aproximadamente, 500 kDa formado pelo dois enzimas. Através
de técnicas de espectrometria de massa, subunidades dos dois enzimas
foram identificadas naquele complexo. Além disso, a associa¢do entre o
ACIII e a reductase de oxigénio caas é, também, funcional dado que

quando colocados juntos estes apresentam actividade quinol: oxigénio

XVl



oxidorreductase, inibida por HQNO e KCN (inibidores tipicos de
enzimas que interactuam, respectivamente, com quinonas e de
reductases de oxigénio).

Determinou-se que na associa¢do estrutural e funcional estabelecida
entre os dois complexos, o citocromo ¢ monohémico (mhc) do ACIII é
responsavel por transferir os electrdes para a reductase de oxigénio
caas. Isto porque se observou um consumo de oxigénio, inibido pelo
KCN, por parte da reductase de oxigénio caas aquando da adicdo do
citocromo ¢ monohémico reduzido (expresso em Escherichia coli). O
mhc foi caracterizado bioquimica e espectroscopicamente
determinando-se um potencial de reducdo de +160 mV a pH 7.5. O seu
espectro de absor¢do no visivel revelou as caracteristicas tipicas de um
hemo de baixo-spin com uma coordenagdo metionina-histidina. A
presenca de lipidos covalentemente ligados a subunidade monohémica
estd prevista, dado que no N-terminal da sua sequéncia de
aminodcidos observa-se uma lipobox. A subunidade citocromo c¢
pentahémica foi, também, clonada e expressa em E. coli e o seu
espectro de UV-visivel mostra caracteristicas tipicas de hemos de
baixo-spin.

Este trabalho contribuiu para a investigagdo e reconhecimento da
diversidade e robustez existente nas cadeias respiratérias, observando-
se um novo exemplo de como a natureza utiliza os mesmos médulos

estruturais e os conjuga de diferentes maneiras.
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ACIII
BN
CISM
DDM
DMSO
EDTA
FCP
HiPIP
HOQNO
MAP
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cytochrome ¢ subunits)

monoheme cytochrome ¢

optical density

polyacrylamide gel electrophoresis
pentaheme cytochrome ¢ truncated
phenylmethylsulfonyl fluoride
Rhodothermus

sodium dodecyl sulfate
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Electron transfer respiratory chains

1.1- Electron transfer respiratory chain (1-7]

Life is only possible with the existence of systems for storage and
transmission of information and of mechanism(s) for energy control.

The information is stored in the linear sequence of DNA, in the form
of the genetic code, and its replication allows the transmission of this
information through generations. The DNA is transcript into RNA
which is translated into proteins essential for the cell function.

The mechanisms for control of energy are not so easy to describe and
even the definition of energy is not simple. Energy is described as the
“capacity to do work” and although a correct measurement of energy
is not possible, a difference in energy between a system and its
surroundings is. Energy can thus be measured in terms of the heat
released during a reaction. In order for living systems to do work they
have to change energy from one form to another without using heat as
an intermediate, since this means wasting of energy. This issue is
achieved by coupling reactions consuming energy and those releasing
energy. ATP is considered the energetic currency of cells being its

hydrolysis coupled to energy consuming reactions.

Electrons obtained from the catabolism of organic substrates are
transferred by electron carriers (such as NADH) to an electron transfer
chain. Here the electrons are transported through membrane bound
complexes, with increasing redox potentials, to a final electron
acceptor (O in the aerobic organisms). However, the redox potential is
not the only property determining the transfer of electrons along this
sequence of electron transfer complexes. The interaction between the
redox components must be specific, since in the absence of specificity

the electron transfer would occur directly from the first electron donor
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to the final oxidant and all the energy would be released in only one
reaction. In fact, in electron transport chains the electron flow between
individual components is performed in small steps and with a
controlled release of energy from separated redox reactions. Moreover,
the possible consumption of the substrates/products of each
enzymatic complex by other enzymes outside the main electron
transfer chain is another advantage of this electron transfer being
preceded in small steps. In order to avoid loss of energy by short
circuit reactions (incorrect transfers or back flow of electrons) it is also
important that the electron transfer besides being specific is reasonably
fast, in the desired direction.

Some of the complexes of the respiratory electron transfer chains
couple the transfer of electrons to the translocation of protons across
the membrane. This will lead to the formation of a transmembrane
electrochemical potential (or proton motive force, pmf) composed by
two distinct components: one originated by the concentration
difference of an ion (in the specific case of a proton, ApH), and another
due to an electrical potential difference (A) between the two sides of
the membrane.

The dissipation of the transmembrane electrochemical potential
releases energy which is used and transduced into chemical energy by
ATP synthase to produce ATP from ADP and phosphate. This enzyme
is also able to hydrolyze ATP in order to pump protons against a
transmembrane electrochemical difference contributing to its

reestablishment [1].
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Figure 1.1

Generation of a transmembrane electrochemical potential by the mitochondrial
electron transfer chain (complexes I-IV) coupled to the production of ATP by ATP
synthase.

1.2 - Diversity and flexibility of the electron transfer

respiratory chains

In general, electron transfer chains are composed by membrane
bound enzymatic complexes with three different activities: electron
donor:quinone oxidoreductase, quinol:electron carrier oxidoreductase
and electron carrier: final electron acceptor oxidoreductase (figure 1.2).
In prokaryotes the latter two complexes can be replaced by a quinol:
final electron acceptor oxidoreductase complex. A quinone pool
(Q/QHa>) and, in some cases, an electron carrier mediate the transfer of
electrons between the enzymatic complexes. The mammalian
respiratory chain (figures 1.1 and 1.3) is the most studied electron

transfer chain being composed by four different complexes (named
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complex I to IV) [4, 8]. The complex I and II have NADH: and
succinate: quinone oxidoreductase activity, respectively. The dioxygen
is the last electron acceptor being reduced to water by the complex IV
(cytochrome aas oxygen reductase) while the complex III (cytochrome
bcr complex) transfers electrons from complexes I and II to complex 1V,
with quinones and cytochrome c as electron carriers. [1] Flavins (FMN
or FAD), hemes (g, b, and c), iron-sulfur centers and copper ions are the

redox centers present in the mitochondrial complexes.

electron
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\s oH, / |

|
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Electron Electron Final elec tron Final electron
donor red donor ox acceptor oxi acceptor red
Electron donor:Quinone Quinol: electron carrier Electron carrier: final
oxidoreductase oxidoreductase electron acceptor
oxidoreductase
Figure 1.2

General schematic representation of electron transfer respiratory chains. The
quinol: electron carrier oxidoreductase path can be suppressed by the transfer of
electrons directly from the quinone/quinol pool to a quinol: final electron acceptor
oxidoreductase complex. Adapted from [9].

Although mammalian mitochondria present a simple respiratory
chain, some diversity is observed with the presence of several electron
donor:quinone oxidoreductases. Besides the complex I and complex II,
an electron transfer flavoprotein-ubiquinone oxidoreductase and an a-
glycero-phosphate dehydrogenase are also responsible for the supply
of electrons into the quinone pool [1]. It is worth mentioning that plant
mitochondria have an alternative path, in which a so-called alternative

6



Electron transfer respiratory chains

oxidase (quinol: dioxygen oxidoreductase) may act as the last electron
accepting complex; also, plant mitochondria have a type II (or
alternative) NADH: quinone oxidoreductase. Both these alternatives
complexes do not couple electron transfer to charge
translocation/separation, and thus energy is lost in the form of heat

[10-12].

ComplexI
(NADH dehydrogenase)

( ComplexII

| (Succinate dehydrogenase)

(" Flavoprotein-ubiquinone
oxidoreductase

Complex III
(Cytochrome be,
complex)

Complex IV
(Cytochrome aa,
oxygenreductase)

([« -Glycero-phosphate
dehydrogenase

Figure 1.3

Schematic representation of the flexibility presented by the mammalian electron
transfer respiratory chain. The ubiquinone/ubiquinol pool is the link between the
quinone reductases (complex I, complex II, flavoprotein-ubiquinone
oxidoreductase and 0-glycero-phosphate dehydrogenase) and cytochrome bc;
complex. The final electron acceptor, dioxygen, is reduced by complex IV which
has received the electrons from cytochrome c.

The respiratory chains of prokaryotic organisms are more robust
than mitochondrial ones since they have several alternative pathways.
The ability of these organisms to use different electron donors and
final acceptors depending on the growth conditions contributes for the
diversity and flexibility observed on their respiratory chains.
Therefore, the same organism can present different electron transfer
complex composition depending on its growth conditions. The type of
quinone and electron carrier expressed may also depend on those
conditions. Analogous complexes to the mitochondrial ones are
observed in prokaryotes; however, they are simpler having fewer

polypeptide chains.
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The respiratory chain of Escherichia coli is the most studied and a
good example of the diversity and flexibility of prokaryotic respiratory
chains [4, 13, 14]. E. coli is one of the cases where a complex with
quinol: final acceptor oxidoreductase replaces the quinol: electron
carrier oxidoreductase complex (cytochrome bci complex), which is

absent. Hence, in this bacterium the quinone/quinol pool is the link

[ NADH dehydrogenase —
(complex I or typeI) Cytochrome bo, @
r 2]
NADH dehydrogenase Oxygen reductase £
L (type 1) g
r - Cytochrome bd <
Succinate dehydrogenase oxygen reductase T and IT
(complex II) =
[ Flavoprotein-ubiquinone TMAO reductase )
oxidoreductase J
a-Glycero-phosphate DMSO reductase .
L dehydrogenase Aand B g
[ Formate dehydrogenase S
Nitrate reductase g
[ Hydrogenase 1 and 2 (Nar and Nap and NapZ) | é
p- Lactate hydrogenase N
and L-Lactate hydrogenase Fumarate reductase
Pyruvate oxidase —

P
\

Figure 1.4

Schematic representation of the Escherichia coli electron transfer respiratory chain
as an example of the high diversity and robustness of respiratory chains. In aerobic
conditions NADH dehydrogenase II together with quinol oxidases are expressed
and ubiquinone (UQ/UQH;) mediates the electron transfer. In anaerobiosis the
nitrate is the preferred final electron acceptor. MQ, menaquinone; DMQ,
dimethylmenoquinone.

between 15 primary dehydrogenases and 10 terminal reductases [14].
E. coli is able to grow in diverse oxygen concentrations including total
anaerobiosis using nitrate, nitrite, dimethylsulphoxide (DMSO),
trimethylamine N-oxide (TMAO) and fumarate as electron acceptors.
NADH, succinate, glycerol-3-phosphate, Hz, formate, piruvate, and
lactate are the possible electron donors [13, 14]. The expression of the

different enzymes is induced by the growth conditions and it was
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observed that dioxygen represses the anaerobic respiratory pathways.
In anaerobic conditions nitrate is the preferred electron acceptor. The
expression of the three types of quinones also depends on the growth
conditions being ubiquinone the most abundant quinone in aerobic
conditions  [15], while in anaerobic growth conditions
naphthoquinones are preferred: menaquinone (MK) with fumarate or
DMSO as electron acceptors and dimethylmenaquinone (DMK) with
nitrate [16].

Additional electron donors can be used such as proline and malate as
in the case of Corynebacterium glutamicum [17, 18], or sulfide as in the
case of Paracoccus denitrificans [19]. A surprising aspect of the
respiratory chain of the latter bacterium is its capacity to grow on
methanol or methylamine as the carbon source, since methanol
dehydrogenase and methylamine dehydrogenase transfer the electrons
directly to the aas oxygen reductase. In the case of methanol
dehydrogenase the electron transfer occurs through cytochrome css,
while in the case of methylamine dehydrogenase aminocyanin, a
copper protein, mediates the transfer to the cytochrome css1 [4, 20].

The presence of different enzymes performing the same reaction is an

additional NADH

evidence of the
flexibility of the
prokaryotic Q

. . H
respiratory chains. 2

An example is

Na+

th ist ¢ Figure 1.5
€ exstence o Schematic representation of the different types of NADH
three enzymes dehydrogenase.

with NADH: quinone oxidoreductase activity; besides a complex I
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analogue (NADH dehydrogenase type I, NDH1) [21], the presence of a
so called alternative NADH dehydrogenase (type II, NDH-2), and
NADH dehydrogenase type III (or Na+- translocating NDH or Nqr) is
also observed [22]. In addition to the cytochrome aa; oxygen reductase,
more types of dioxygen reductases exist, and three different groups
can be considered: heme-copper oxygen reductases [23, 24],
cytochrome bd oxidases [25, 26] and alternative oxidases. The latter is
believed to be exclusive of mitochondria; however, it was also found in
a-proteobacteria [15, 27, 28].

Despite the large diversity, flexibility and robustness observed in the
electron transfer respiratory chains, the cytochrome bc; complex was,
until now, the only family of enzymes known to perform the quinol:

electron carrier oxidoreductase activity (see 1.3.1).

In the work presented in this thesis a complex with quinol:electron
carrier oxidoreductase activity which does not belong to the
cytochrome bc; complex family was, for the first time, identified and
characterized. Since this complex, named alternative complex III, is
functionally related to the cytochrome bci complex family but
structurally related to the complex iron-sulfur molybdoenzymes
(CISM) family, in the next section a brief introduction of the two

families will be presented.

10



Electron transfer respiratory chains

1.3 — Alternative complex 111 related complexes

1.3.1- Functionally related complexes - Cytochrome bci
complex family

Cytochrome bci complexes, complexes III of mitochondria respiratory
chain, are integral membrane proteins with quinol: cytochrome c
oxidoreductase activity. The related cytochrome bef complexes are
present in cyanobacteria and involved in the photosynthetic pathway
in chloroplasts (for a
recent review see [30]). A
cytochrome b, a
cytochrome ¢ and a
Rieske iron sulfur subunit
are the three catalytic
subunits of this enzyme
family (figure 1.6). The
cytochrome b subunit has

two b-type hemes, named

bu and b1 (H and L stand

Figure 1.6

Structure of the Saccharomyces cerevisiae
cytochrome bc1 complex with bound cytochrome
¢ in the reduced state at 1.9 A resolution. One
molecule of cytochrome c (green) binds to one of
the cytochromes c; (pink) of the cytochrome bc;

for high and low redox
potential, respectively),

and two quinone/quinol

sites

(Q/QHy)

located towards opposites

binding

sides of the membrane.
The prokaryotic enzymes

are composed only by

dimer (light gray). The protein was crystallized
with antibody fragments (dark gray). Water
molecules are shown in cyan. Lipid and detergent
molecules are colored in yellow with oxygen
atoms in red. Carbon and oxygen atoms of heme
groups and stigmatellin are in black and red,
respectively. Yellow horizontal lines indicate the
relative position of the membrane. Image from
[29].

these three subunits or in some cases have one extra subunit, whereas
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the mitochondrial enzymes can have up to eleven subunits. Recently,
Kramer, Nitschke and Cooley proposed to term these complexes as
Rieske/cyt b (RB) complexes since they observed that only the Rieske
protein and the cytochrome b subunits are conserved, while the
cytochrome c¢; is not. This subunit was even considered to be a
phylogenetic marker since each phylum has, apparently, its
characteristic heme subunit. For example, the “standard” cytochrome
c1 is only present in a-, B- and y-proteobacteria, whilst the e-
proteobacteria branch contains a diheme cytochrome c belonging to
the cytochrome c¢; family. O-proteobacteria have a tetraheme
cytochrome c; and the major difference is observed for cyanobacteria
where a cytochrome f is present (cytochrome bef) [31].

Although related to cytochrome bc; complexes, cytochrome bef
complexes have additional prosthetic groups such as one chlorophyll
a, one [-carotene and a heme c, (also called c;). The latter heme has a
unique property which is the absence of an amino acid side chain as an
axial ligand; instead heme ¢y, is positioned close to heme b, and a water
molecule or a OH- group bridge the iron of ¢, and the propionate of b,

[30, 32].

1.3.1.1- Q-cycle mechanism

The cytochrome bc; complexes couple the electron transfer to the
translocation of protons through a Q-cycle mechanism (figure 1.7), first
proposed by Peter Mitchell in the seventies [33, 34] who named it
proton-motive Q cycle. Later modified versions were proposed taking
into account the data obtained by x-ray and spectroscopic kinetic
analysis. This cycle postulates the presence of two quinone binding

sites in opposite sides of the membrane: a quinone oxidation site Qo
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(also called Qp) located towards the outer or positive side of the
membrane and a reduction site Q; (also called Q) located close to the
inner or negative side of the membrane. One of the most important
features of this model is the oxidation of the quinol being proceed in
two steps: in the first step one quinol molecule is oxidized in the Q.
site and one of the electrons is transferred to the cytochrome ¢ through
the FeS center and cytochrome c; (“high potential chain”), while the

other electron is

transferred through the 4';“

cytochrome b (b and bu) e — 01 .+
(“low potential chain”) to ZQ«> Qu

the Qi site where a quinone 2QH, 1 by

molecule is one electron J

reduced. In the second step QQP;:) Q& bn

a second quinol molecule . ) \T / .

is oxidized at the Q, site I

and the electrons are

transferred in a similar Figure 1.7
Q-cycle mechanism of cytochrome bc;

way. The quinone  complexes by which the electron transfer is

molecule at the Q; site is coupled to proton translocation.
1

totally reduced and a second cytochrome ¢ molecule is reduced. In this
process two protons are uptaken from the negative side of the
membrane and four are delivered at the positive side contributing to
the formation of the transmembrane electrochemical potential.
Another important property of bci complexes is the mobility of the
peripheral arm of the Rieske protein. The available structures of the
complex, determined several years after the Q-cycle was proposed,

showed that the peripheral arm of the Rieske center is mobile [35]
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being able to move approximately 20A. In the oxidized state the Rieske
protein is close to the surface of the polypeptide near the Qo site. In
the reduced state the interaction becomes weaker and the Rieske
protein moves to a new position closer to the cytochrome ci. After
transferring the electrons to the cytochrome c; the Rieske protein
returns to the oxidized state and the affinity for cytochrome c; becomes
lower and thus the position near the Qo site is adopted again [4].

Even though the basic fundaments of the mechanism proposed by
Peter Mitchell are still valid and accepted nowadays, several proposals
have been made in order to overcome some unexplained details. One
of those is that the modified Q-cycle mechanism was proposed
considering the bci complex as a one monomer only; however,
structural information showed that, in fact, the bci complexes are
homodimers [29, 35, 37-44], and also the monomer of the complex is
inactive [35, 45-49]. Therefore, it was questioned whether the Q-cycle
was viable in the dimer or not. Mechanisms in which the peripheral
arm of the Rieske protein of one monomer interacts with the catalytic
interface of the other monomer (figure 1.8) and the b-type hemes of the
two monomers are in close contact and a direct interaction between the
active centers of each monomer were proposed [45, 50, 51]. Another
issue is related to the formation of reactive oxygen species (ROS,
which can lead to the damage of cellular components) due to the high
reactivity of the semiquinone intermediates, formed during the Q-
cycle, with oxygen. Several studies were performed with the intent of
detecting the semiquinone radical, but these turned out to be

unsuccessful [52-55]. The investigation of how those side reactions are
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avoided was also the aim of several studies and different types of

mechanism were proposed. The gated and the double gated

Cyt b
Monamer 1 (M 1) Maonomer 2 (M 2}

Top view
M1 M2

Figure 1.8

Structure of the dimeric cytochrome bci from Rhodobacter capsulatus and its
components. A) Both a side view (top) and a top view (bottom) of the dimeric cyt bc;
are shown using space-filling representations. Three subunits of one monomer (M2,
right) representing the cytochrome b, the cytochrome ci, and the Fe/S protein are in
slate, cyan, and blue, whereas those of the other monomer (M1, left) are in white and
gray. (B) Modified Q-cycle mechanism of cytochrome bci. The three catalytic subunits
(cyt b, cyt c1, and Fe/S), the cofactors (hemes by, by, and ¢1, shown as diamonds, and
the [2Fe-25] cluster as a square), and the active sites (Q, and Q;, shown as circles) of
the cytochrome bc; are represented schematically. Electron transfer (e-) steps
catalyzed by the enzyme via the bifurcation reaction at the Q, site are shown with
black arrows on the monomer 1(M1) only. The dashed arrows refer to the mobility of
the extrinsic domain of the Fe/S protein. From [36].

mechanisms are based on the allowance or not of an electron transfer
to occur depending on the reduction state of the redox partner. For
example, in a double gated mechanism the oxidation of the quinol is
only allowed when the Rieske protein and the heme b. are both
oxidized. In a concerted mechanism the two electrons from the quinol

are transferred to the Rieske protein and to heme by at the same time
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and therefore the formation of the semiquinone is completely avoided.
Another type of proposal takes into account the stabilization of the
semiquinone radical making the reaction with oxygen an
endoenergetic reaction. However, these mechanisms are difficult to

validate since the intermediates of Qo site were never detected [56-59].

1.3.1.2- Inhibitors

Several compounds were described as inhibitors of bci complexes,
being associated to the Q, site. Antimycin was the only one observed
to be associated to the Q; site. The Q, site inhibitors were classified in
class I and II according to the distance of their binding position to the
heme by; class I (such as stigmatellin and HHDBT) bind to a domain
distal from heme by and interact with the FeS center, class II (such as
mixothiazol and MOA-stilbene) bind to a domain proximal to the
heme br. The local where NQNO (or HQNO) binds is still
controversial, since although it has been described to bind to the Q; site
[60], in the structure of the bovine mitochondrial bci complex this

inhibitor was identified in the two quinone sites (Q, and Q; sites) [61].

1.3.2 - Structurally related complexes — Complex iron-sulfur
molybdoenzyme (CISM) family

Complex iron-sulfur molybdoenzyme (CISM) is an important family
of molybdenum containing enzymes that play a crucial role in
supporting respiratory diversity. This family includes enzymes such as
DMSO reductase, polysulfide reductase, formate dehydrogenase and

nitrate reductase.
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The overall composition of the members of this family comprises three
subunits: a catalytic subunit, a four cluster protein (FCP) subunit and a
membrane anchor protein (MAP) [63]. These subunits are also
designated as o, 3 and y subunits, respectively [64]. Besides the overall
composition, all the CISM family members interact with quinones (or
quinols). A remarkable feature of this family is the diversity observed
in the orientation of the catalytic and FCP subunits in respect to the
membrane. This orientation is dependent of the presence of a twin
arginine translocase (tat) leader sequence [65, 66] in the N-terminus of
the catalytic subunit [63]. In its presence, the catalytic and the FCP
subunits are transported across the cytoplasmic membrane into the

periplasmic space. In figure 1.9 are represented the structures of two

periplasm

L
i,
cytoplasm
2H*

#  Fdnl

HOy NO, s HO

Figure 1.9
Structures of the CISM family members: nitrate reductase (NarGHI) and
formate reductase (FAnGHI) from Escherichia coli oriented towards

opposite sides of the membrane and therefore creating a redox loop.
Adapted from [62].
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CISM family members, nitrate reductase (NarGHI) and formate
reductase (FAnGHI) that have the catalytic and FCP subunits oriented
towards opposite sides of the membrane. In this case, the two enzymes
interact by means of the quinol pool creating a redox loop [62, 67]
where two protons are translocated across the membrane contributing
to the electrochemical membrane potential. Even for the same enzyme,
this diversity in the enzyme orientation may exist; for example, it was
observed that the nitrate reductase (NarGHI) depending on the
organisms, can adopt one or the other orientation [64].

The catalytic subunit has the Mo-bisPGD (molybdo-bis(pyranopterin
guanine dinucleotide) (figure 1.10) and can also have a [4Fe-4S]2+/1+
cluster (named FS0) located in the N-terminus of the subunit and close
to the Mo-bisPGD cofactor. The FCP subunit contains four [4Fe-4S]2+/1+
centers named FS1 to FS4 in sequence according to the increasing
distance to the catalytic subunit. These Fe-S centers are coordinated by
four Cys residues (CaxxCpx211CcCpP). A [3Fe-4S]!+/0 center replaces
the [4Fe-4S]2+/1+ FS4 in NarH of nitrate reductase A [69].

< IP” /731 XX
A)I - :‘-7-"*‘&5

H;N

Figure 1.10

Chemical and three dimensional structure of the molybdo-bis(pyranopterin guanine
dinucleotide) (Mo-bisPGD). The three dimensional structure is represented in ball and
stick presentation (cyan-Mo, grey-C, red-O, yellow- S, brown- Fe, blue-N). Adapted
from [68].
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The MAP subunit is responsible for the anchoring of the catalytic and
FCP subunits to the membrane and also provides a redox
quinol/quinone-binding site. This subunit is the one that presents less
similarity within the members of this family. The differences reside in
the size of the sequence, the number of transmembrane helices, in the
presence or absence of two b-types hemes and in the amino acid
sequence.

The FSO of the catalytic subunit and FS1-FS4 of the FCP subunit are
described to mediate the electron transfer between the Mo-bisPGD and

the quinone/quinol binding site in the MAP subunit [63].

1.3.2.1- CISM family related complexes

The subunits of the CISM family can be also found as components of
other enzymes. The Rhodovulum sulfidovilum dimethyl sulfide
dehydrogenase (DdhABC) [70, 71] is one example in which the
catalytic dimer, formed by the catalytic and FCP subunits, exists
without the MAP subunit. Interestingly, DdhC has also two b-type
hemes but it is not membrane bound. The catalytic subunit can also be
found isolated as in the case of TMAO reductase (TorA) [72-74],
conjugated with other subunit as a Rieske center containing subunit as
in the case of arsenite oxidase (AoxAB)[75], or with a diheme
cytochrome ¢ as observed for the periplasmatic nitrate reductase
(NapAB) [76-78]. In cytochrome c Nitrite reductase (NrfABCD)
enzyme, the MAP subunit (NrfD) forms a complex with the FCP
subunit (NrfC) and with two pentaheme cytochrome ¢ subunits (NrfA
and NrfB) [79].
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Rhodothermus marinus respiratory chain

2.1- Rhodothermus marinus

Rhodothermus ~ (R.)  marinus
(figure 2.1) was isolated for the
first time from shallow marine
hot springs in Iceland by .
Alfredsson and coworkers [1]
and later was also found in
shallow marine hot springs in
Praia da Ribeira Quente, Azores, Figure 2.1

Rhodothermus marinus DMS4252 cells
Portugal [2]. It is a strict aerobic, (from wwwjgi.doe.gov)

heterotrophic, thermohalophilic Gram-negative bacterium which

grows optimally at 65 °C, pH 7 and at 1-2 % of NaCl [1, 2].

Comparison of the 165 rRNA gene sequence placed Rhodothermus
close to the root of the Flexibacter-Cytophaga-Bacteroides (FCB) group
with affinities to green sulphur bacteria, fibrobacteria and spirochaetes
[1]. The recently defined Bacteroidetes phylum substituted the former
FBC group and R. marinus was included as member of the
Crenotrichacea family within the Sphingobacteria class (figure 2.2) [3].
Within Bacteroidetes, Rhodothermus and Thermonema are the only
described thermophilic species while Salinibacter ruber (close relative to
R. marinus) is an extreme halophile and Toxothrix trichogenes is a

psychrophile.
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Sulfolob i icu Crenarcheota
Aquife licus Aquificae
Fervidobacterium-islandicum }
Thermotogae
itima
desulfovibrio-island, Nitrospirae
fle: tiacus Chloroflexi
Th icrobium-roseum Thermomicrobia
Ther phil )
Deinococcus/
Deinococcus-radiod, } Thermus
, v Cyanobacteria
L] -| Geob hermodenitrifican Firmicutes
Acidimicrobium-ferraoxidans Actinobacteria
r——ThmbacsHus-denilrfﬁwm
L Ch pid: Proteobacteria
Rhodospirillum-rubrum
I——‘Sa.’mlbucu‘er-rnber Crenotrichaceae ™
Rhodotherm inus Crenotrichaceae
| The lap. Flammeovirgaceae
Flexib: Flexib eae >.—.
Lewinella-cohaerens Sapospiraceae
Flavobacterium-johnsoniae  Flavobacteriaceae

di Bacteroid J

Figure 2.2
Phylogenetic position of Rhodothermus marinus. From [3].

2.2- Rhodothermus marinus respiratory chain

Rhodothermus marinus has been extensively studied and most of the
known enzymes of this bacterium were identified during screenings
for thermostables enzymes with potential biotechnological application.
The electron transfer respiratory chain of R. marinus has also been
extensively studied, namely the identification, purification and
characterization of its components. For that, a non-pigmented strain of
R. marinus, PRQ-62B strain, is used.

The electrons enter the respiratory chain of R. marinus at the level of a

typical complex I with NADH:quinone oxidoreductase activity. This
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complex was isolated with a non-covalently bound FMN and six to
eight iron sulfur centers of the [2Fe-25]2+/1+ and [4Fe-4S]2+/1+ types
were observed by EPR spectroscopy [4, 5]. This complex was, recently,
described to have two translocation sites, one of which, translocates
sodium ions in the opposite direction of protons [6]. A succinate:
quinone oxidoreductase complex (complex II) is another entry point
for the electrons. It is composed by three subunits (70, 32 and 18 kDa)
and has a covalently bound FAD, 2 b-type hemes and three iron sulfur
centers ([2Fe-25]2+/1+,[4Fe-4S]2+/1+, and [3Fe-4S]'+/9) [7, 8]. According to
the proposed classification for the succinate: quinone oxidoreductases
and quinol:fumarate oxidoreductases, complex II from R. marinus is a
type B enzyme [9].

Three different oxygen reductases, a caa; [10, 11], a bas [12] and a cbbs
[13] belonging to the A2, B and C families of heme-copper oxygen
reductases, respectively, have been also characterized. The caas oxygen
reductase is composed by four subunits with apparent molecular
masses of 42, 35, 19 and 15 kDa. It has a c- and two a-type hemes with
redox potentials of 260, 255 and 180 mV, respectively [10]. The cbb;
oxygen reductase was purified as a five subunits complex with
apparent molecular masses of 64, 57, 36, 26 and 13 kDa. Two low-spin
c-type heme (26 kDa subunit) and one low- and one high-spin b-type
hemes were observed in this enzyme with redox potentials ranging
from -50 to +195 mV [13]. The bas; oxygen reductase was isolated with
two subunits with apparent molecular masses of 42 and 38 kDa. The
heme content of the enzyme comprises a low-spin b-type heme and a
high-spin a-type heme [12]. A periplasmatic cytochrome ¢ [14] and a
membrane-bound HiPIP (high-potential iron-sulfur protein) [15-17]
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were described as the electron transfer proteins. The quinone pool is

composed in its majority by menaquinone-7 [18].

The three oxygen reductases present in this bacterium are oxidases of

periplasmatic electron carriers, |

A

|
{ A Abs=02 |

being unable to receive electrons
directly from reduced quinones.

Therefore, the presence of a bc:

complex or an analogue with

uinol: periplasmatic electron
q perip \JAL\\‘_

carrier oxidoreductase activity is

400 500 600 700

required to link complex I and II Wavelength (nm)

to complex IV. To investigate

2027
the presence of a cytochrome bc; |

|

M 1.940

complex, genomic and

1.830

biochemical searches for a '_VMJL/\»\‘d/,

Rieske centre were performed,
295 320 345 370 305

without success. Furthermore, Magnetic field (mT]

the typical inhibitors of b1 Figure 2.3

The redox cofactors of R. marinus complex
III Upper- Visible spectra of oxidized (---) and
mixothiazol and DBMIB, reduced (—) R. marinus complex III with the

characteristic fingerprints of cytochromes.
showed to have no effect in R. Down- EPR spectrum of the [3Fe-4S] center
[19].
marinus electron transfer

complexes such as antimycin A,

respiratory chain [15, 19]. In fact, a complex with menadiol:HiPIP
oxidoreductase activity [16] was purified from R. marinus membranes
[19]. It was proposed to be a multihemic cytochrome complex
containing at least five low-spin heme centers (figure 23A).
Spectroscopic data strongly suggested that two of the hemes are in van
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der Waals contact, yielding a split Soret band. EPR spectra of the
oxidized complex showed resonances of five low-spin ferric heme
centers and of a [3Fe-4S]'+/0 centre (figure 2.3B), which has a high
reduction potential of +140 mV. The hemes have reduction potentials
in the range of -45 to +235 mv [20].

The further and deep characterization of this different complex III
present in the Rhodothermus marinus respiratory chain (figure 2.4) was

the aim of the work presented in this dissertation.

@ cytochrome c
+ @ HiPIP

t
out ! ComplexI Complex II

MQ
2 'y
in Q99900
0, HO0 0, HO0O, HO
menaquinol: electron oxygen reductases

acceptor oxidoreductase

succinate fuymarate
NADH NAD*

Figure 2.4

Rhodothermus marinus electron transfer respiratory chain. The gray and black
spheres represent c- and b-type hemes, respectively, while the smaller spheres
represent copper ions. Cubes, pyramids and rectangles represent [4Fe-45]2+/1+, [3Fe-
4S]1+/0 and [2Fe-2S]2+/1+ centers, respectively.
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3.1 - Summary

Rhodothermus marinus is a thermohalophic bacterium, whose
respiratory chain has been extensively studied. The biochemical,
spectroscopic and genetic search for a bci complex was always
fruitless; however a functional equivalent complex, i.e. having
quinol:cytochrome ¢ oxidoreductase activity was purified from the
membranes and biochemically and spectroscopically characterized [1].
Now, with the sequencing of R. marinus genome it was possible to
assign the N-terminal sequences obtained from several proteins of this
complex to its coding genes. It was observed that the R. marinus
complex III has the same genomic organisation of the so called MFlIcc
complexes, which have been proposed to be oxidoreductases
participating in the respiratory, as well as in the photosynthetic
electron transfer chains [2]. Furthermore, it was observed the presence
of this complex in several genomes in which the genes coding for the
bci complex are absent and in which a quinol:cytochrome ¢
oxidoreductase has to be present. R. marinus alternative complex III is
coded by a seven gene cluster. Three of these genes codify for
peripheral proteins; two cytochromes ¢, a pentahemic and a
monohemic one, and a large protein containing a [3Fe-4S]'+/0 and three
[4Fe-4S]2+/1+ centres. The other four genes code for transmembrane
proteins: two are predicted to have ten transmembrane helices with
putative quinone binding motifs and are homologous to each other
and to membrane subunits present in several members of the complex
iron-sulfur molybdoenzyme family; the two other genes code for one
and two transmembrane helices proteins. This is the first time that an
assignment of a biochemically characterized alternative complex III to
its coding gene cluster is performed.
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3.2 — Introduction

The presence of a typical bci complex in the membranes of
Rhodothermus marinus has been excluded given that the Rieske center
EPR signal was never detected, and the typical inhibitors of this family
of enzymes were showed to be inefficient. In fact, the presence of a
completely different complex III in R. marinus has been described [1,
3]. The green non-sulfur bacterium Chloroflexus aurantiacus is another
organism in which a complex with quinol: mobile electron carrier
oxidoreductase activity should exist. Furthermore, when the
membrane cytochrome-containing complexes from this bacterium
were analyzed, no complex matching the features of a bc; complex was
found [4].

With the increasing number of prokaryotic genome sequences, it is
now possible to identify in silico so far unknown respiratory
complexes, namely when accompanied with a thorough biochemical
characterization at the protein level, which results from the still largely
unexplored enormous biodiversity of the microbial world. Based on
sequence analysis of the genomes so far sequenced, Yanyushin and
coworkers anticipated the presence of a protein complex, proposing it
to be an alternative complex III, involved in the respiratory and in the
photosynthetic electron transfer chains [2]. Furthermore, it was
observed the presence of this complex in several genomes in which the
genes coding for the bc; complex are absent and in which it is expected
to exist a quinol: electron acceptor oxidoreductase, since genes coding
for oxygen reductases, oxidizing periplasmatic electron donors are
present. The gene cluster identified by those authors is constituted by

six genes. Two of those are homologous to genes coding for the three
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subunits of molybdopterin containing oxidoreductases of the DMSO
reductase family and other two code for ¢ type cytochromes [2].

In this report the genes coding for the subunits of the R. marinus
complex III [1] were identified and it is shown that this complex is a
MFlcc complex like the one proposed by Yanyushin and coworkers [2].
It is thus established undoubtedly the existence of a different complex
III, named alternative complex III (ACIII), by its identification at the

biochemical and genomic levels.

3.3 — Material and methods

3.3.1 - Bacterial growth and protein purification
Rhodothermus marinus strain PRQ62b growth and protein purification

were performed as described in [5].

3.3.2 — Electrophoresis techniques
Tricine-SDS-PAGE was carried out as described by Schiagger and von
Jagow [6] with 10%T, 3%C, and heme staining followed Goodhew et al

[7].

3.3.3 — Protein, heme and metal determination

Protein concentrations were determined using the bicinchoninic acid
(BCA) method [8] and an apparent molecular mass of 266 kDa,
determined by Tricine-SDS-PAGE (considering a 1:1 stoichiometry for
all subunits) was considered to define metal and heme contents. Heme
content was determined by pyridine hemochrome [9], and HPLC
analysis after heme extraction as described in [5]. Iron and

molybdenum were analyzed by atomic absorption on a graphite
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chamber, at the Laboratério de Andlises, Instituto Superior Técnico,
Lisbon and Faculdade de Ciencias e Tecnologia, Universidade Nova

de Lisboa.

3.3.4 — N-terminal amino acid sequence determination

The enzyme subunits were transferred from the SDS-PAG to a
polyvinylidene difluoride (PVDF) membrane. Each transferred sample
was submitted to N-terminal protein sequence analysis by automated
Edman degradation [10] using an Applied Biosystems Procise 491 HT

protein sequencer.

3.3.5 — Amino acid sequence identification

The sequence of the genes coding for the subunits of the ACIII from
Rhodothermus marinus were partially identified in silico from a local
Prokaria genome database of R. marinus ITI378 by using the N-
terminal sequences determined for the several proteins. The gene
library was obtained by Gudmundur O. Hreggvidsson and Sigridur
Hjorleifsdottir (Iceland) and it was prepared as follows. DNA was
fragmented by nebulization and cloned into pTrueBlue (Stratagene).
Plasmids were isolated by high-throughput minipreparation, and
sequencing was performed. Contigs were assembled with the Phred—
Phrap package [11], and putative open reading frames (ORFs) were
identified with the GetORF program from the EMBOSS package [12],
followed by BLASTP searches [13] against protein sequence databases.
Gaps were closed by PCR amplification using sequences from flanking
contigs. Neither the full sequence of gene F nor gene G were obtained

at this stage. In order to obtain the complete gene sequence of the gene
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F and taking into account that in some organisms the genes coding for
subunits of ACIII are followed by those coding for subunits of the caas
oxygen reductase [2], appropriate primers were designed and PCRs
were performed at ITQB. The forward primer (5-ATG GCC GAA G
TG AAA GCG AA -3’) was designed to hybridize with the available
gene sequence of AtcF, while the reverse primer (5'- CCT TTA CCC
CAC CAC CGC AT-3’) was designed to hybridize with the first gene
of the cluster coding for the caa; oxygen reductase. The sequence of the
PCR product obtained was translated using an expasy tool

(http:/ /www .expasy.org/tools/dna.html).

3.3.6 — Mass spectrometry experiments

The protein band with an apparent molecular mass of 18 kDa from
the Tricine- SDS-PAG of the alternative complex III was excised and
submitted to proteolytic digestion with Trypsin and analyzed by mass
spectrometry. The mass spectra of the peptides were acquired by
MALDI-TOF in the positive reflection mode in the Mass Spectrometry
Laboratory, Analytical Services Unit of ITQB/IBET. The identification
of the peptides was performed by direct comparison of the molecular
masses predicted for the peptides with those experimentally obtained.
The molecular masses of the peptides were predicted using

PeptideMass at http:/ /expasy.org/cgi-bin/peptide-mass.pl [14].
3.3.7 — Prediction of transmembrane topology

Transmembrane topology was predicted using Conpredll at

http:/ /bioinfo.si.hirosaki-u.ac.jp/~ConPred2/ [15].
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3.3.8 — Nucleotide sequence accession number
The gene sequence coding for alternative complex III gene cluster of

R. marinus has been deposited in GenBank under accession no. 924811.

3.4— Results

3.4.1 — Subunits and prosthetic groups composition

The purified R. marinus ACIII shows seven bands in a Tricine-SDS-
PAGE, corresponding to subunits with apparent molecular masses of
97, 42, 35, 27, 25, 22 and 18 kDa (figure 3.1-A). The bands
corresponding to subunits with apparent molecular masses of 27 and
22 kDa have also colored with heme staining, indicating the presence

of c- type hemes (figure 3.1-B).

Markers — p B
(kDa)
97— o w+—97kDa
66— W
42— W
— 42kDa
30— — 35kDa
| 27kDa——
— 25kDa
20.1— — 22kDa——
— 18kDa
14.4—
Figure 3.1

Tricine- SDS-PAGE of the alternative complex III from R.
marinus stained by Commasie (A) and for hemes (B).

The cytochromes of the ACIII from R. marinus have been previously

characterized by HPLC analysis and UV-visible and EPR
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spectroscopies and a total of 5 hemes were showed to be present in the
complex [5]. Besides the presence of c-type hemes, the presence of a b-
type heme was reported based on the maximum absorption band at
557 nm for one of the hemes and on HPLC analysis. The heme content
was here reanalyzed. The peak at 557 nm is still present, but no hemes
were detected by HPLC analysis, meaning that only c-type hemes are
present in the complex. The complex did not contain molybdenum and
the iron content was now determined by atomic absorption and a

value of 20+0.5 Fe per protein molecule was obtained.

3.4.2 - Amino acid sequence comparison

The N-terminal sequences for four of the bands have been
determined: for the 97 kDa band, RYPVEKILPYV, for the 42 kDa band,
AHATKDL, for the 35 kDa band, AEVKANGFPGWLLDP, and for the
25 kDa band, EARDGS. Attempts to sequence the N-terminal of the
other bands were always fruitless. Search in R. marinus strain ITI378
gene database showed that the first sequence corresponds to the N-
terminal sequence of a putative molybdopterin containing reductase
which is fused to an iron-sulfur protein. The two sequences obtained
for the 42 and 35 kDa bands correspond to two N-terminal sequences
of different transmembrane proteins present in several complexes of
the DMSO reductase family (eg DmsC; PsrC, NrfD). The last sequence

is the N-terminal of a hypothetical protein present in several genomes.
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3.4.3 — Gene cluster organization and gene sequence analysis

The genes coding for the above mentioned proteins seem to form a
cluster with two other genes coding for two type ¢ cytochromes with
predicted molecular masses of 27 and 23.5 kDa, which is in agreement
with the results of the heme staining of the SDS- PAGE.

The genomic organization of the alternative complex III seems to be
the same observed by Yanyushin and coworkers [2], which was
proposed to codify for a new class of bacterial membrane bound
oxidoreductases involved in the respiratory and in the photosynthetic
electron transfer chains. Searching in all genomes so far available the
authors observed that these complexes are distributed in almost all
bacterial phyla, with special relevance for those in which genes coding
for a bci complex are not present, but a quinol: electron acceptor
activity has to be present.

Gene ActA codes for a protein containing five heme C binding
motifs, CXXCH, being the fifth motive one amino acid residue apart
from the C-terminal. Seven other histidine and three methionine
residues are present in the sequence being candidates for the sixth
ligand of the heme irons. A possible signal peptide in the N-terminal
region may be present, but the putative cleavage site is inside the
predicted transmembrane helix and thus it is possible that this
cytochrome is attached to the membrane by that helix. Gene ActB is the
fusion of two genes, encoding a putative molybdpterin containing
protein (N-terminal) and an iron-sulfur protein (C-terminal), whose
genes cluster together in several genomes coding for complexes of the
DMSO reductase family. Three binding sites for [4Fe-4S]2+/1+ clusters
and one for a [3Fe-4S]'+/0 cluster are observed in the deduced

sequence; in the previous characterization of R. marinus complex the
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[3Fe-4S]1+/0 cluster was identified by EPR spectroscopy. This gene, like
the ones coding for the molybdpterin containing oxidoreductase of the
DMSO reductase family has a twin arginine translocase (Tat) signal
peptide [16, 17]. Gene ActC codes for a homologue of nrfD, which as
mentioned above is a transmembrane protein of some members of the
DMSO reductase family responsible for the interaction with quinones.
Topology prediction reveals the possibility of ten transmembrane
helices. Two possible quinone binding sites, as proposed by Fisher and
Rich [18], are present in the transmembranes helices. Gene ActD codes
for a hypothetical protein predicted to have two transmembrane
helices. The protein coded by gene ActE contains one CXXCH motif,
and several histidines and methionines residues that can be the heme
sixth ligand. However, this is most probably a methionine residue in
the conserved motive MPA present in other cytochromes (e.g.[19]). No
transmembrane helices were predicted to be present. Finally gene ActF
codes for a protein homologous to the one coded by gene ActC.
However, when comparing the gene sequence of gene ActF deposited
in the local Prokaria genome database with those from other MFlcc
complexes, the R. marinus gene seemed to be incomplete. In order to
obtain the complete sequence of ActF, suitable primers were designed
taking into consideration that in several organisms the gene cluster
conding for MFlcc is followed by that coding for subunits of caa;
oxygen reductase [2] and PCRs were performed. A PCR product with
ca 1800 bp was obtained and sequenced. The sequencing revealed the
total sequence of the ActF gene and also an ORF which did not
correspond to any subunit of the already known subunits of the
alternative complex III and of the caa; oxygen reductase complexes.

The protein encoded by this gene, named G, was predicted to have
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14.5 kDa and one transmembrane helix. No binding motifs for redox
cofactors were observed. The subunit G was assigned to the protein
band observed in the SDS-PAG of the alternative complex III with an
apparent molecular mass of 18 kDa (figure 3.1). This assignment was

confirmed by peptide mass fingerprint analysis.

Table 3.1: Peptide mass fingerprint of in-gel tryptic digest of the band
with an apparent molecular mass of 18 kDa in the SDS-PAG of figure 3.1.

Comparision of the molecular masses values experimentaly obtained for the protein
band with an apparent molecular mass of 18 kDa in the Tricine-SDS-PAGE of ACIII
(fig 3.1) with those predicted for subunit G of the ACII (accession number
YP_003289521). Zero and one possible miss cleavage were considered for the
comparison.

Start- m/z m/z Miss Sequence
End | (Observed) | (predicted) | cleavage q
KQPAVAEAELPAVQPD
7-30 2577.1926 | 2577.2943 1 EANF EAPR
QPAVAEAELPAVQPDE
8-30 2449.1035 | 2449.1993 0 ANFE APR
70-81 | 1471.6918 | 1471.7288 1 YPLREETEAHAR
82-89 | 1895.8868 | 1895.9497 0 gLLEGYGVVDAEQGVY
104- AMEEIVEAYGGDSVWT
128 2692.2048 | 2692.2922 0 LPOP SAVSR
104- AMEEIVEAYGGDSVWT
2708.2380 | 2708.2872 0 LPQP SAVSR (oxidation
128 M)

The gene cluster of R. marinus alternative complex III is thus
composed by seven genes organized as in figure 3.2. This cluster has
one more gene than the gene cluster of MFlcc proposed by Yanyushin

and coworkers.
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B ACIC__gAdD JATE S ActF it 4

1000 bp

Figure 3.2

Gene cluster organization of the alternative complex III from R. marinus. The gene
cluster is composed of seven genes (ActA - G). ActA codes for a protein containing five
heme ¢ binding motifs. ActB is the fusion of two genes, a putative molybdopterin
containing protein (N-terminal) and an iron-sulfur protein (C-terminal), containing
three binding sites for [4Fe-4S]2+/1+ clusters and one for a [3Fe-4S]'+/0 cluster. ActC
and ActF code for transmembrane proteins with 10 TM helices each and are both
homologs of the membrane proteins of some members of the DMSO reductase family
responsible for the interaction with quinones. ActD and ActG code for hypothetical
proteins predicted to have two and one transmembrane helices, respectively. ActE
codes for a monohemic cytochrome c.

3.4.4 — Protein complex composition

Based on the genomic organization, on previous biochemical and
functional studies and on
the available information
for members of the CISM

family, the R. marinus

alternative complex III
may look like
schematized in figure

33. The order of

prosthetic groups is not Figure 3.3

Schematic representation of the alternative complex
I from R. marinus. Based on the genomic
intended to show that ©rganization, on our previous biochemical and

functional studies and on what is known for members
subunits containing the of the DMSO reductase family. The gray spheres

represents the c-type hemes and cubes and pyramides
prosthetic groups represents [4Fe-4S]/+ and [3Fe-4S]'+/0  centers,
respectively.

known; here it is only

should be peripheral
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and facing the periplasm, based on the observation of the signal
peptides present in the genes coding for these proteins. The presence
of ¢ type cytochromes and of a [3Fe-4S]'+/0 centre has already been
established in the previous characterization of R. marinus alternative
complex III. The presence of three [4Fe-4S]2+/1+ centers, besides the
similarity with the members of DMSO reductase family, from which
several structures are known, is highly supported by the iron content
of the sample, considering the presence of five hemes, three [4Fe-
4S]2+/1+ centers and one [3Fe-4S]!+/0 center.

At a first glance it may appear unexpected that having a protein
similar to a molybdopterin reductase this complex does not contain
molybdenum. This situation is not unique. The structure of the C-
terminal part of Nqo3/NuoG, the largest subunit of respiratory chain
complex I, is also similar to the family of molybdopterin reductases
[20]. In fact it presents the same four structural domains, where
domains II and III create a cavity, which in the other members of the
family is occupied by the molybdopterin guanine dinucleotide (MGD)
prosthetic group. In the case of Nqo3 the cavity is occupied by domain
IV. The function of the C-terminal of Nqo3 is not known, being a
flexible area and suggested to have a regulatory role [20].

Similarly to what is observed for the nitrate reductases that are
members of the DSMO reductase family, coded by the NarGHI
operons, for the succinate:quinone oxidoreductase [21, 22] and for the
DMSO reductase of E. coli engineered with a [3Fe-4S]'+/0 cluster [23],
this centre should be the one that interacts with the quinone/quinol. In
this case, the subunit of R. marinus alternative complex III containing
the iron-sulfur centers should be the one receiving the electrons from

the membrane subunits and transferring these to the c¢ type
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cytochromes. Also taking into account the structure of the formate
dehydrogenase from Escherichia coli, the iron-sulfur centers should
form a wire for electron transfer [24].

The two transmembrane subunits with the higher molecular mass
are homologous to each other and homologous to several membrane
proteins of the DMSO reductase family. Interaction studies of 2-n-
heptyl-4-hydroxyquinoline-N-oxide (HQNO) with DMSO reductase
from E. coli showed a binding stoichiometry of 1:1, thus indicating the
presence of one quinone binding site [25]. As mentioned above,
inspection of the amino acid sequences of these subunits reveals the
presence of at least two possible quinone binding sites, as proposed by
Fisher and Rich [18], and so the presence of more than one quinone
binding site can not be excluded. The reason that the alternative
complex III from R. marinus contains two of such membrane subunits
is not known, but again taking the example of complex I this is not
unique since in this type of complex it is observed the presence of
homologous subunits within the complex, such as Nqo 12, Nqo13 and
Nqo14 [26, 27].

The small transmembrane subunits seem to be unique for these
alternative complexes and its function is unknown and quinone

binding sites seem not to be present.

3.5 — Conclusion

The alternative complex III of R. marinus is a newly identified quinol:
electron acceptor oxidoreductase complex composed by seven
subunits: two c-type heme containing subunits (a mono and a

pentaheme); four membrane bound subunits, and a peripheral subunit
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with three [4Fe-4S]>+/1+ and one [3Fe-4S]'+/0 centers. Comparing the
composition of the alternative complex III here described with the one
of the bc; it can be observed that, generically, they are not completely
different. Both have transmembrane subunits, which interact with
quinone/quinols and transfer electrons to an iron-sulfur containing
protein, which in its turn promotes the electron transfer to
cytochromes.

The existence of two complexes performing the same reaction, i.e.
two different complexes III, in this case, is not unique in respiratory
chains. For all the other respiratory complexes there are alternatives. In
the case of complex I, Type II (NDH-II) and Na*-pumping
NADH:quinone oxidoreductases are alternatives. Different types of
oxygen reductases of the heme-copper family and of the bd family are
observed as well as succinate:quinone oxidoreductases with different
types of membrane attachments. In this report we have established
undoubtedly the existence of an alternative complex III by its

identification at the biochemical and genomic levels.
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4.1 - Summary

An alternative complex III (ACIII) is a respiratory complex with
quinol: electron acceptor oxidoreductase activity. It is the only
example of an enzyme performing complex III function that does not
belong to the bci complex family. ACIII from Rhodothermus (R.) marinus
was the first enzyme of this type to be isolated and characterized, and
in this work we deepen its characterization. We addressed its
interaction with the quinol substrate and with the caa; oxygen
reductase, whose coding gene cluster follows that of the ACIIL. There
is at least, one quinone binding site present in R. marinus ACIII as
observed by fluorescence quenching titration of HQNO, a quinone
analogue inhibitor. Furthermore, electrophoretic and spectroscopic
evidence, taken together with mass spectrometry revealed a structural
association between ACIII and caas oxygen reductase. The association
was also shown to be functional, since quinol: oxygen oxidoreductase
activity was observed when the two isolated complexes were put
together. This work is thus a step forward in the recognition of the

structural and functional diversities of prokaryotic respiratory chains.

4.2- Introduction

Until now the bci complexes were considered to be the only
complexes involved in the aerobic respiratory chains to have quinol:
cytochrome c oxidoreductase activity. The alternative complex III from
Rhodothermus marinus was the first purified and characterized example
of an enzyme with the equivalent function but showing a completely

different constitution [1, 2].
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In the study performed by Yanyushin and coworkers [3] it was
observed that in several genomes the gene cluster coding for ACIII
(called MFIcc in the cited reference) is followed by the gene cluster
coding for oxygen reductases. The clustering between the genes
coding for subunits of complex III and complex IV have been also
observed for Mycobacterium smegmatis [4] and Corynebacterium
glutamicum [5]. In the two cases the gene cluster coding for subunits of
the aas oxygen reductase is preceded by that coding for subunits of the
cytochrome bc complex and a functional association between the two
complexes was observed [4-7]. The cytochrome c; subunits of the bc
complexes of Mycobacterium smegmatis [4, 6] and Corynebacterium
glutamicum [8] have an extra domain with a c-type heme binding motif
(CxxCH), proposed to replace the soluble cytochrome c [4-7] (showed
to be absent [7, 9]).

Functional associations of complex III and IV were also observed in
other bacteria where the gene clusters of these complexes are not
consecutive namely in Thermophilic bacterium PS3 [10], Paracoccus
denitrificans [11] and Thermus thermophilus [12].

In this work we address the structural and functional association of
the ACIII of R. marinus with the caas oxygen reductase and also the
interaction with menadiol (analogue of the R. marinus physiologic

quinol).

4.3 - Materials and Methods

4.3.1 - Bacterial growth and protein purification
Growth of Rhodothermus marinus strain PRQ62b was performed as

described before [1]. Solubilised membranes (prepared according to
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[1]) in 20 mM Tris-HCl, 1 mM PMSF, 0.05% n-Dodecyl B—D-maltoside
(DDM) pH8 were applied into a Q-Sepharose High Performance
column. The sample was eluted applying a gradient from 0 to 0.5 M of
NaCl in the same buffer. A fraction eluted with approximately 0.35 M
of NaCl, called D5, and containing both the ACIII and the caas oxygen
reductase was obtained. This fraction was used for further studies,
including a Blue Native (BN)-PAGE and a Tricine-SDS-PAGE. The
same fraction was also submitted to further chromatographic
procedures in order to isolate the ACIII and the caas oxygen reductase

as described before [1, 13].

4.3.2 - DNA techniques

R. marinus genomic DNA was extracted from a liquid grown culture
using GenElute Bacterial Genomic DNA kit (Sigma). In order to
confirm that the gene clusters coding for the ACIII and for the caas
oxygen reductase were consecutive, appropriate primers were
designed. The forward primer (5-ATG GCC GAA G TG AAA GCG
AA -3) was designed to hybridize with the last gene of the cluster
coding for ACIII while the reverse primer (5'- CCT TTA CCC CAC
CAC CGC AT-3’) was designed to hybridize with the first gene of the
cluster coding for the caas oxygen reductase. The sequence of the PCR
product obtained was translated using an expasy tool

(http:/ /www .expasy.org/tools/dna.html).

4.3.3 — Fluorescence spectroscopy

The binding of HQNO (2-heptyl-4-hydroxyquinoline-N-oxide) to the
ACII was measured on a Cary Varian Eclipse fluorescence
spectrophotometer. The excitation wavelength was set at 341 nm and
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the emission spectra were recorded between 370 and 600 nm. These
measurements were performed considering the quenching of the
HQNO fluorescence by the addition of ACIIL. The complex was added
to a 6 pM HQNO solution in small aliquots to a maximum
concentration value of 4.4 puM. The fluorescence of the ACIII at the
mentioned wavelengths was also measured and subtracted. The
number of binding sites (n) and the binding constant (K) were
determined from the following equation, log (Fo-F)/ F = log K + nlog [Q]
(equation 1) [14], where the values F and Fo are the fluorescence
intensities of HQNO in the presence and absence of the ACIII

(quencher), respectively.

4.3.4 — Electrophoresis techniques

The BN-PAGE was performed as in [15] and the Tricine-SDS-PAGE
was carried out as in [16] with 10% T, 3% C. Heme staining was done
as in [17] to identify the protein bands of the complex having
covalently bound hemes. The bands of BN-PAGE were also stained for

cytochrome c oxidase activity according to [18].

4.3.5 — Mass spectrometry assays

The protein bands present in the Tricine-SDS-PAGE having as
sample the D5 lane of the BN-PAGE were excised from the gel and
submitted to proteolytic digestion with Trypsin or Chymotrypsin. The
mass spectra of the peptides were acquired by MALDI-TOF in the
positive reflection mode in the Mass Spectrometry Laboratory,
Analytical Services Unit of ITQB/IBET. The identification of the

peptides was performed either by searching in the data bases with
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Mascot software (http://www.matrixscience.com, [19]) or by direct
comparison of the molecular masses predicted for the peptides with
those experimentally obtained. The molecular masses of the peptides
were predicted using PeptideMass at http://expasy.org/cgi-
bin/peptide-mass.pl [20].

4.3.6- UV-Visible absorption spectroscopy

UV-visible absorption spectroscopy was performed using a
Shimadzu UV-1603 spectrophotometer. The ACIII (0.28 uM) spectra
were measured under anaerobic conditions using a mixture of glucose
(3 pM), glucose oxidase (4U/mL) and catalase (132U/mL). HQNO

(used three times more concentrated than ACIII) was used as inhibitor.

4.3.7- Activity assays

The menaquinol: oxygen oxidoreductase activity was determined by
the oxygen consumption measured polarographically with a Clark-
type oxygen electrode, YS Model 5300, from Yellow Springs. The
assays were carried out at 30 °C in 20 mM potassium phosphate pH6.5
buffer. Menadiol, obtained by reducing menadione with sodium
dithionite [21], was used as the electron donor for the menaquinol:
oxygen oxidoreductase activity measurements. The ACIII and the caas
oxygen reductase were used in a 1:1 ratio. KCN (=0.7 mM) and HQONO
(the same ratio as before) were used as inhibitors of caas oxygen
reductase and ACIII, respectively. The activity values were calculated
per milligram of caas oxygen reductase. HiPIP, when used, was six

times more concentrated than ACIII and caas oxygen reductase.
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4.4 — Results

4.4.1 - The genomic organization

In the genome of several organisms the gene cluster coding for the
ACIII precedes the gene cluster coding for oxygen reductases [3, 22]. In
most genomes in which this type of organization is observed the
oxygen reductases genes code for a caas, nevertheless examples of
genes coding for other oxygen reductases, such as cbb; oxygen
reductases are also observed [22].

In order to investigate whether R. marinus genome contains such a
gene organization, suitable primers were designed to amplify the
region between the two clusters. A PCR product with ca 1800 bp was
obtained and sequenced. The N-terminal and C-terminal part of this
sequence corresponded to those of the ActF and SCOI (codes for a
protein involved in the incorporation of copper) gene sequences,
showing that indeed in R. marinus the gene clusters coding for the

ACIII and for the caas oxygen reductase were consecutive (figure 4.1).

B Eo DD EE<od DL Sl

1000bp

Figure 4.1

Rhodothermus marinus genomic organization of the genes coding for the
alternative complex III (black boxes) and those coding for the caa; oxygen
reductase (grey boxes).
4.4.2 — Interaction of alternative complex III with menadiol

The interaction of ACIII with menadiol, a menaquinol analogue, was
investigated by UV-Visible absorption spectroscopy. It was observed
that the oxidized ACIII was approximately 60 % reduced by menadiol

(figure 4.2-A).
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B —— AcIIl +HQNO oxidized
—— ACIIl +HQNO with menadiol o
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Figure 4.2

UV-Visible Absorption Spectra of the alternative complex III in the oxidized state
(—) and reduced by menadiol (O ) or by sodium dithionite (---). In the absence (A)
and presence (B) of HQNO.

The fully reduced state of the complex was achieved by the addition
of sodium dithionite. In order to check the specificity of menadiol
reduction, HONO, a menadiol structural analogue and an inhibitor of
several quinone interacting enzymes, was used. In its presence the
reduction by menadiol was 25
% inhibited (figure 4.2-B).

Several studies showed that

&0 1

the fluorescence intensity of

40 |

HQNO is quenched upon its

20 4
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binding to a protein (e.g.

DMSO reductase [23] and i - -
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at 479 nm when excited at 341 0.5 and 4.4 pM) quenching effect on
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fluorescence intensity with the
increasing concentration of the ACIII was observed (figure 4.3). The
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fluorescence  quenched

titration  data  were
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quenching of HQNO

fluorescence intensity by

log[(FO-F)/F]

ACIII as a static process

[25]. A binding constant
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Figure 4.4

(n=1.1) were calculated Double-log plot of the quenching effect on

o . HQNO fluorescence by the alternative
from the fitting of equation complex III monitored at 479 nm. The data
1 figure 44). were fitted using equation 1.

Our results indicate that the ACIII of R. marinus has one binding site
for HONO, which nevertheless does not exclude the presence of more

quinone binding sites, as observed for the bc; complex.

4.4.3 — Interaction between alternative complex III and caas
oxygen reductase
4.4.3.1- Structural association

The structural association of the ACIII and the caa; oxygen reductase
was investigated by native gel electrophoresis (figure 4.5). For this
process, i-the fraction D5, obtained after the first chromatographic
step; ii- the isolated ACIII and iii- the caas oxygen reductase were
applied in independent lanes in a BN-PAG. The result of this
electrophoresis showed that ACIII migrated with an apparent
molecular mass of 361 kDa, while the caas oxygen reductase showed an

apparent molecular mass of 210 kDa. Bands corresponding to these
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masses could not be observed in the lane of the D5 fraction. Instead, a
band with an apparent molecular mass of 550 kDa was detected,
which suggested that D5 fraction contained an association of ACIII
and caa; oxygen reductase. Replicates of the gel were submitted to
other staining procedures. Heme staining (figure 4.5B) revealed that
the 550 kDa band was the only band which stained for covalently
bound hemes in the lane of D5 (figure 4.5B, lane 2). This result was
consistent with the presence of an association of ACIII and caas; oxygen
reductase. Lanes 3 and 4, containing ACIII and caas oxygen reductase,
respectively, as expected, stained both under this procedure. The in gel
cytochrome c oxidase activity assays (figure 4.5C) showed a positive
result for the caas oxygen reductase and in the case of D5 fraction the

activity marker was spread in the first half of the lane but it was absent

669kDa —
N
232kDa —4 | | g
u -

140kDa —.

-

(%

g

67kDa l 'l
Figure 4.5

Blue Native-PAGE of D5 fraction (lane 2), alternative complex III (lane 3) and caa3
oxygen reductase (lane 4). Molecular mass protein markers are present in lane 1. The
native gel was stained with Coomassie (A), with Heme-staining procedures (B) and
cytochrome ¢ oxidase in gel activity (C).
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in the 200 kDa region. The results from the two staining procedures
corroborated the association of the ACIII and caas oxygen reductase.
The upper part (669-232 kDa) of the D5 lane of the BN gel lane was
submitted to a Tricine-SDS-PAGE (2D) (figure 4.6). Several bands were
observed in this denaturant second dimension. Nevertheless, in the
lane corresponding to the band with the apparent molecular mass of
550 kDa only subunits with apparent molecular masses compatible
with subunits of the complexes III and IV were observed. It was not
possible to assign the bands to each subunit just by analysing the
migration profiles of the subunits because two of the subunits of ACIII
[26] and two of the caas oxygen reductase [13] show the same apparent
molecular masses upon electrophoresis. The protein bands were

further identified by MS analysis: bands 1, 3 and 4 were assigned to

BN- PAGE (1D)

& —'» 97kDaACII_subunit B

97 —4—=

Tricine-SDS-
PAGE (2D)

66 ———
55— —

15—
36—
2 -]
29— 3 |——> 35kDaACIII_subunitF
24 4——— —~ 22kDaACIII _subunit E
20 —/——w» 5
6= . 19kDa caag oxygen reductase
I subunit 111
14,2———
6.5———

Figure 4.6
Tricine SDS-PAGE of the lane of the D5 fraction obtained after its subjection
to BN-PAGE. Left Lane — molecular mass protein markers.
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subunits B, F and E (monohemic cytochrome c), respectively, of the
ACIIL band 5 was identified as subunit III of caas oxygen reductase
(see tables 4.1-4.4). These results unequivocally showed that both,
ACIII and caas oxygen reductase were present in the complex observed

at 550 kDa in the BN gel.

Table 4.1: Peptide mass fingerprint of in-gel tryptic digest of the band 1.

Comparision of the molecular masses values experimentaly obtained for the protein
band 1 in the Tricine-SDS-PAGE of the lane D5 (fig 4.6) with those predicted for subunit
B of the ACIII (accession number ABV55245). Zero and one possible miss cleavage were
considered for the comparison.

Start- m/z m/z Miss Sequence

End (Observed) (predicted) | cleavage

81-86 760.4097 760.4716 0 ILPYVR
87-106 2305.9522 2306.1889 0 QPEEIIPGIPLYYATAMPER
135-153 2065.8349 2066.0189 0 GATGVFEQASLLNLYDPDR
160-174 1694.6764 1694.8285 1 KGEPASWGDFVQFAR
247-261 1617.8482 1617.6747 0 VIVSLDADFLGPTDR
334-345 1358.6003 1358.7215 0 FAGHPYVVEIAR
527-535 1092.4279 1092.5221 0 GAFEQAWQR
914-922 1296.5487 1296.6636 1 RENWENWVK

FNWFNWVKTLPIQVQMAQNP

915-939 3031.5610 3032.0200 1 DVTVR

Table 4.2: Peptide mass fingerprint of in-gel tryptic digest of the band 3.

Comparision of the molecular masses values experimentaly obtained for the protein
band 3 in the Tricine-SDS-PAGE of the lane D5 (fig 4.6) with those predicted for subunit
F of the ACIII (accession number ABV55249). Zero and one possible miss cleavage were
considered for the comparison.

m/z m/z .

Start- End (Observed) (predicted) Miss Sequence
6-21 1809.5911 1809.9758 0 ANGFPGWLLDPLRPTR
28-35 1047.3486 1047.5581 1 YRLPEDVR
92-99 928.3425 928.5363 0 AQWVVAVR

183-186 1565.4198 1565.7554 0 QDVDPDPSIPAQQR

256-264 995.4024 995.6108 1 RGPLQGIVR

400-412 1527.4330 1527.7372 0 HSLVPQNDPYMAR

400-412 1543.4287 1543.7322 0 HS].“VP.QNDPYMAR
(oxidation M)
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Table 4.3: Peptide mass fingerprint of in-gel tryptic digest of the band 4.

Comparision of the molecular masses values experimentaly obtained for the protein
band 4 in the Tricine-SDS-PAGE of the lane D5 (fig 4.6) with those predicted for subunit
E of the ACIII (accession number ABV55248). Zero and one possible miss cleavage were

considered for the comparison.

m/z m/z Miss
Start- End (Observed) (predicted) cleavage Sequence
46-58 1583.7494 1582.7421 0 KFEAQELNPFFADRR
46-59 1739.8518 1738.8445 1 KFEAQELNPFFADRRA
59-71 1433.8068 1432.7995 1 RRAMRPPVPGTVPRG
59-71 1449.7962 1448.7889 1 RR.AM.RPPVPGTVPRG
oxidation (M)
60-71 1277.7105 1276.7032 0 RAMRPPVPGTVPRG
60-71 1293.7033 1292.6960 0 RA.MR.PPVPGTVPRG
oxidation (M)
72-84 1514.7863 1513.7790 1 RGLLKEDTPFYFGKT
94-105 1264.7692 1263.7619 0 RIPVAVTPELVARG
164-177 1568.7833 1568.7760 0 RNMPAYGHQIPVADRW
178-185 977.5670 976.5597 0 RWAIVAYVRA

Table 4.4: Peptide mass fingerprint of in-gel chymotryptic digest of the band 5.

Comparision of the molecular masses values experimentaly obtained for the protein
band 5 in the Tricine-SDS-PAGE of the lane D5 (fig 4.6) with those predicted for subunit
III of the caas oxygen reductase (accession number CAC08533). Zero and one possible
miss cleavage were considered for the comparison.

m/z m/z Miss
Start- End (Observed) (predicted) cleavage Sequence
34-41 891.292 891.921 0 DAAKLGMW
44-51 947.852 947.5812 0 LVTEILLF
116-124 904.5502 903.816 0 LTIALAGVF
184-193 1088.341 1088.6574 0 VALKAQRGVF
199-207 991.921 992.5292 0 TPVEISALY

4.4.3.1- Functional association

The functional association of the ACIII and the caas; oxygen reductase

was addressed by investigating the direct oxidation of the former by

the oxygen reductase. Figure 4.8 shows the UV-Visible spectra of the
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ACIII in the oxidized state and reduced by sodium dithionite. In the
presence of oxygen, sub-stoichiometric amounts of caas oxygen

reductase could reoxidise the ACIIL.

0.8 —— ACIII oxidised
——ACIII fully reduced
— ACIII re-oxidised by caa,

0.7

Abs

0.0 T T T

T

T T
400 450 500 550 600 650 700
Wavelength (nm)

Figure 4.7
UV-Visible absorption spectra of the alternative complex III in the
oxidized and reduced state, and re-oxidized by the caa; oxygen reductase.

Moreover, if the ACIII receives electrons from quinol and gives
electrons to the caas oxygen reductase, a complex formed by the two
enzymes should have quinol: oxygen oxidoreductase activity. This
activity was determined by measuring oxygen consumption by a 1:1
mixture of the two complexes upon addition of menadiol and a value
of 77.3 uM Oz .min-l.mg?! was obtained. Addition of KCN (the typical
oxygen reductases inhibitor) completely abolished O. consumption,
while the addition of HQNO inhibited this activity by 45 % (34.8 uyM

Oz .minl.mg1).
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Menadiol caa3 oxygen reductase ACTH

KCN

Oxygen Concentration

Time
Figure 4.8
Example of the menadiol: oxygen oxidoreductase activity measurements

of the structural and functional association of the ACIII and the caas oxygen
reductase. Inhibitory effect of KCN in oxygen consumption.

HiPIP was described as being one of the electron acceptors of the
ACIII [1]. Therefore, in order to investigate its effect on the menadiol:
oxygen oxidoreductase activity, the same experiment was performed
in its presence. An increase of 20% in the activity (97 uM O, .min-l.mg;
1) was observed. This result can be interpreted as HiPIP being able to

mediate the electron transfer but not being essential.

4.5 — Discussion

In the electron transfer respiratory chain of the bacterium R. marinus
the ACIII is the only enzyme which accepts electrons directly from
reduced quinones. As previously shown, it is capable of performing
the same function as the cytochrome bc; complex, although it does not
belong to its family.

Here we addressed the interaction of ACIII with quinol and caas
oxygen reductase. We observed that the complex is reduced by
menadiol, the analogue of R. marinus physiologic quinone, and that
this reduction is inhibited by HQNO. The presence of at least one

quinol binding site in the ACIII was determined by fluorescence
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quenching titration of HQNO. In the case of cytochrome bci complexes
the HQNO binds only to one (Qi) of the two quinone binding sites
[27]; therefore, the presence of two or more quinol binding sites in the
ACIII could not be excluded.

In several organisms, including R. marinus, ACIII coding genes are
followed by those coding for caas oxygen reductase. This observation
led to the hypothesis of a direct interaction between the two
complexes. The findings here presented showed that the ACIII and
caas oxygen reductase are structurally and functionally associated into

a 550 kDa complex (figure 4.9).

MQH:

MQ

Figure 4.9

Schematic representation of the structural and functional association
between the alternative complex III (subunits A-G) and the caas oxygen
reductase (catalytic subunits I and II). The gray spheres represent c-type
hemes, the smaller gray and black spheres represent copper ions while
cubes and pyramids represent [4Fe-4S]2+/1+ and [3Fe-4S]'+/0 clusters,
respectively.

The functional association of the ACIII and the caas oxygen reductase

was further demonstrated by the observation of menadiol: oxygen
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oxidoreductase activity, upon mixing the two purified complexes,

which was KCN and HQNO inhibited. In cytochrome bci complexes,

and according to the Q-cycle mechanism, the cytochrome c; is the last

electron acceptor within the complex, transferring electrons to the

periplasmatic cytochrome c [28, 29]. The monohemic subunit of the

ACIII is proposed to perform an equivalent role. In the case of direct

interaction with caas oxygen reductase this subunit is also proposed to

replace the role of the periplasmatic electron carriers (such as

cytochrome c and HiPIP).
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5.1- Summary

The alternative complex III of Rhodothermus marinus has two subunits
with c-type hemes: a monoheme and a pentaheme. The objective of the
work presented was to structurally and functionally characterize these
subunits. Thus, their coding genes were cloned and expressed in
Escherichia coli. The UV-Visible spectra of the monoheme cytochrome ¢
subunit and of the partially purified pentaheme cytochrome ¢ showed
characteristic features of low-spin hemes. For the monoheme subunit,
a reduction potential of +160 mV was determined at pH 7.5.

Previously, alternative complex III and caas oxygen reductase were
reported to be structural and functionally associated. This work
allowed the identification of the monoheme cytochrome c as the
electron donor of caas oxygen reductase which presented an oxygen
consumption of 459 pM O.minlmg?! in the presence of the
cytochrome. A lipobox observed at the N-terminus of the amino acid
sequence of the monoheme cytochrome c led to the prediction of the
presence of lipids covalently bound to a conserved cysteine residue,

which was here investigated.

5.2 — Introduction

Cytochromes (meaning cellular pigment [1]) are heme (iron-
protoporphyrin IX) containing proteins involved in electron transfer
reactions. Cytochromes differ from each other according to the type of
incorporated heme (heme b, ¢, d, a, 0), which have distinct porphyrin
substituents or even a different degree of porphyrin reduction. The

modifications occur at the level of carbon 2 and/or 4 (Fisher
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numbering system) with heme d as the exception since the
modifications are at the carbons 5 and 6.

In cytochrome ¢, in contrast to the other cytochromes, the c-type
heme is covalently bound to the protein via two thioether bonds
between the heme and two cysteine residues in a characteristic heme
binding motif CXXCH. The histidine
residue serves as axial ligand to iron and
X represents any amino acid residue
(except cysteine) (figure 5.1). Although
CXXCH is the most observed c-type heme
binding motif some deviations were
observed. A higher number of X amino

acid residues were observed for several

multihemes cytochromes ¢ [2], for

. cytochrome css [3] (CXXXCH), and also for
Figure 5.1

Chemical structure of c-type the multiheme cytochrome ¢ MccA from

heme. The Fisher numbering ) )
system for the heme substituints Wolinella succinogenes (CXisCH) [4]. The

is shown.

catalytic heme of the pentaheme nitrite
reductase (NrfA) has a lysine residue as the axial ligand to the iron
(CXXCK) instead of the histidine [5]. The hemes can also be bound to
only one cysteine residue as in the case of some cytochromes fromf
Euglena gracilis and Crithidia oncopelti [6, 7].

The covalent binding of c-type hemes to the protein requires the
existence of maturation systems. So far, three different systems have
been identified namely system I, Il and III [1, 8, 9]. System I, also called
cytochrome ¢ maturation (Ccm), is found mostly in Gram-negative
bacteria and in plant mitochondria and has up to nine different

proteins (CcnABCDEFGHI). System II or cytochrome c synthesis (Ccs)
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can be found in Gram-positive bacteria, cyanobacteria, chloroplasts of
plants and algae, and some -, 6-, and &-Proteobacteria. System III is a
cytochrome ¢ heme lyase (CCHL) and is just found in mitochondria.

The number of c-type hemes in a single polypeptide chain ranges
between one and 45 [10]. While monoheme cytochromes ¢ function in
its majority as electron transfer proteins within redox chains,
multiheme cytochromes c¢ are able to perform a larger number of
biochemical roles, including enzymatic activity [11]. One example is
the already mentioned NrfA in which the heme bound to the CXXCK
motif is the active site of the enzyme. The close proximity of the hemes
in the multiheme cytochromes c allows a fast transfer of electrons
through relatively long distances [10]. This can be further improved by
the interaction between two or more multiheme cytochromes c.

This chapter describes the cloning, expression and characterization of
the cytochrome c¢ subunits (monoheme cytochrome ¢ -mhc and
pentaheme cytochrome c- phc) of the alternative complex III from

Rhodotherimus marinus.

5.3 - Materials and Methods

5.3.1. - Cloning and expression of the cytochrome c subunits of
the alternative complex III

Rhodothermus marinus genomic DNA was extracted from a liquid
growth culture using GenElute Bacterial Genomic DNA kit (Sigma).
The gene encoding the mhc subunit (ActE) of ACIII was amplified by a
PCR using the genomic DNA of R. marinus as template and the
following oligonucleotides: 5’AAT GGA TCC AAT GCA GAA CAT
CAC AGC A 3" and 5 GAA TTC TTA CTC TCC CT GAA GCC GAG-
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3" with restrictions sites (underlined) for BamHI and EcoR],
respectively. A truncated form of the gene coding for the pentaheme
cytochrome ¢ (ActA) was also constructed in order to express the
protein without the N-terminal region which corresponds to a
transmembrane helix. The same procedure was performed using the
oligonucleotides: 5'- ATCCAT GGA CTT TTC GCC C -3’and 5" AAC
TCG AGT CAA TAG TGG CAG 3’ with restrictions site (underlined)
for Ncol and Xhol, respectively.

In order to express also a pelB signal sequence for potential
periplasmatic localization of the target proteins, the amplified
fragments were cloned into a pET22b(+) vector (Novagen), previously
digested with the appropriate restriction enzymes for each case. The
cloning result was confirmed by nucleotide sequencing of the entire
coding region. E. coli C41 (DE3) cells harboring a plasmid with
auxiliary genes for heme ¢ maturation (pEC86- ccmABCDEFGH) [12]
were used to express the cytochromes c.

Monoheme cytochrome c expressing cells were grown at 37 °C (180
rpm), in LB medium containing ampicilin (100 pg/mL) and
chloramphenicol (34 pg/mL), until an ODesoonm of approximately 0.6.
At this point, 0.5 mM of IPTG was added to the medium and the
culture was harvested after 16 hours. The cells for the expression of the
truncated form of the pentaheme cytochrome ¢ were grown at 30 °C
(150 rpm), in TB medium containing the same antibiotics used for the
mhc expression. The culture was harvested after, approximately, 45

hours.
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5.3.2 - Protein purification

The same procedures were followed for obtaining the soluble
fraction with the monoheme cytochrome c and that of the pentaheme
cytochrome c. The cells were harvested by centrifugation and the pellet
resuspended in 20 mM Tris-HCl, 1 mM EDTA, 1 mM PMSF pH 7.5.
These were then disrupted by passing through a French Press at 19000
psi and the unbroken cells were separated by centrifugation at 22000 g
for 15 min at 4 °C. Soluble and membrane fractions were separated by
centrifugation at 200000 g, for 45 min at 4 °C. The soluble fraction,
containing the mhc subunit, was applied into a Q- Sepharose Fast Flow
column using 20 mM Tris-HCl, 1 mM PMSF and pH 7.5 as buffer
(buffer A). The sample was eluted applying a linear gradient from 0 to
0.5 M of NaCl. The mhc subunit, eluted with approximately 0.1 M
NaCl, was concentrated and loaded into a gel filtration
chromatographic column S200 using buffer A with 150 mM NaCl. The
soluble fraction containing the truncated form of pentaheme
cytochrome c was applied also a into a Q- Sepharose Fast Flow column

using buffer A.

5.3.3 - Protein and heme quantification
Protein concentrations were determined by the bicinchoninic acid
(BCA) method [13]. Heme content was determined by the pyridine

hemochrome method [14].

5.3.4 - Electrophoretic techniques
The purity of the samples was investigated by SDS-PAGE [15].
Tricine-SDS-PAGE of ACIII was carried out as in [16] with 10 % T, 3 %
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C. Heme staining was done as in [17], previously described to identify

the covalently bound hemes.

5.3.5- Mass spectrometry assays

The protein bands observed in the SDS-PAG of the mhc were excised
and submitted to proteolytic digestion with trypsin. The mass spectra
of the peptides were acquired with positive reflection MS and MS/MS
modes using MALDI-TOF/TOF MS instrument (4800plus MALDI
TOF/TOF analyzer) in the Mass Spectrometry Laboratory, Analytical
Services Unit of ITQB/IBET. The collected MS and MS/MS spectra
were analysed in combined mode using Mascot search engine and
NCBI database. The identification of the peptides was also performed
by direct comparison of the molecular masses predicted for the
peptides with those experimentally obtained. The molecular masses of
the  peptides were  predicted wusing  PeptideMass  at
http:/ /expasy.org/cgi-bin/peptide-mass.pl [18].

5.3.6 - Spectroscopic characterization

UV-Visible absorption spectra were recorded in a Shimadzu UV-1603
spectrophotometer at room temperature. The anaerobic potentiometric
titration of the mhc (= 2.5 pM in 40 mM Tris-HCl pH 7.5) was
monitored by visible absorption spectroscopy in a glass cuvette of 1
cm path-length and 2.5 mL working volume continuously flushed
with argon. By stepwise addition of buffered sodium dithionite,
spectra from 380 to 700 nm were obtained at each solution redox
potential, after attaining equilibrium. The mixture of redox mediators,
at a final concentration of ~16 pM, used was: N,N-dimethyl-p-
phenylenodiamine (E'0=+340 mV), p-benzoquinone (E'0=+240 mV),
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1,2-naphtoquinone-4-sulphonic ~ acid  (E'o=+215 —mV), 1,2-
naphtoquinone (E'0=+180 mV), trimethylhydroquinone (E'o=+115
mV), phenazine methosulfate (E'0o=+80 mV), 1,4-naphtoquinone
(E'o=+60 mV), duroquinone (E'o=+5 mV), menadiona (E'o= 0 mV),
plumbagin (E'o= -40 mV) and phenazine (E'0=-125 mV). The redox
mediators were chosen in order to minimize spectral overlaps and to
cover the relevant redox potential range. The experimental data was
analyzed using MATLAB (Mathworks, South Natick, MA) for

Windows, and were fitted with a single-electron Nernst curve.

5.3.7 — Experiments with lipase

The mhc (15 pM) and the ACIII (15 pM) were incubated with 5 uM of
lipase from Rhizopus arrhizus in 20 mM Tris-HCl pH 7.5 at 37 °C for 24
h. The incubated and not incubated mhc and ACIII were subjected to
SDS-PAGE (Tricine-SDS-PAGE in the case of ACIII). The protein
bands of mhc with apparent molecular masses of 18 and 20 kDa and
that of the ACIII with an apparent molecular mass of 22 KDa were

excised from the gel and analyzed by mass spectrometry.

5.3.8 - Activities Assays

The mhc: oxygen oxidoreductase activity was determined by the
oxygen consumption measured polarographically with a Clark-type
oxygen electrode, YS Moldel 5300, from Yellow Springs. The assays
were carried out at 30 °C using 20 mM potassium phosphate pH 6.5 as
buffer. The mhc (2.2 pM) was reduced during the assay by sodium
ascorbate (=300 pM) and used as electron donor of cass oxygen
reductase (80 nM). Potassium cyanide (0.7 mM) was used as oxygen

reductase inhibitor. As a control, the oxygen consumption by caas
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oxygen reductase with sodium ascorbate as electron donor was

measured.

5.4 - Results and Discussion

5.4.1- Purification and characterization of the cytochromes c
subunits of ACIII

In order to structurally and functionally characterize the cytochromes
c subunits of the alternative complex III of R. marinus, the genes
coding for the mhc (ActE) and for the phc (ActA) were cloned and
expressed in E. coli. For the phc, a truncated form (phcT) was
constructed to express the protein without the N-terminal region
which corresponds to a transmembrane helix. The expression cells
also harbored the pEC86 plasmid with the auxiliary genes for the
maturation of the c-type hemes in E. coli and thus allowing the
expression of c-type cytochromes in aerobic conditions. The UV-
Visible spectrum of the as isolated mhc showed a typical oxidized c-
type heme cytochrome with a Soret band maximum at 410.5 nm and a
broad band between 500 and 600 nm (figure 5.2A). A band with a
maximum at 695 nm was also present indicating a histidine-
methionine-Fe coordination. After reduction with sodium dithionite,
typical features of low-spin ferrous hemes were observed in which the
Soret band maximum shifted to 417 nm and the a and 3 bands became
visible with maxima at 553.5 and 523 nm, respectively (figure 5.2A).
The difference between the spectrum of the reduced protein and that
of the as isolated protein (oxidized) showed a Soret band with
maximum at 418 nm and a a band with maximum at 553.5 nm (figure

5.2B). The Visible spectra of the soluble fraction containing phcT
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(figure 5.3A) and of this partially purified cytochrome (figure 5.3B)
showed also typical features of an oxidized cytochrome c with a Soret
band maximum at 409 nm and a broad band between 500 and 600 nm;
when in the reduced state the Soret band shifted to a maximum of 419
nm and the a- and -bands became visible with maxima at 552.5 and

524 nm, respectively.

05

A 417 — mhc oxidized
e mhc reduced
04+
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Figure 5.2

UV-Visible absorption spectra of the mhc of ACIII. A) Absolute spectra
in the oxidized (—) and reduced (---) state, B) difference between the
spectrum of the reduced and that of the oxidized protein. In the
spectrum of the reduced protein, the absorbance between 250 and 375
nm was omitted due to the interference of sodium dithionite.
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Visible absorption spectra of the soluble fraction containing the
truncated pentaheme cytochrome ¢ (A) and of a partially purified
sample of the protein (B) in the oxidized (—) and reduced (- -) state. In
the spectrum of the reduced protein, the absorbance between 250 and
375 nm was omitted due to the interference of sodium dithionite.

The c-type heme content of mhc subunit was determined to be 0.95
mol per mol of protein, which is in agreement with the presence of one
CXXCH binding motif in the amino acid sequence and meaning that
most protein has heme incorporated. The UV-Visible spectrum and the

heme content indicated that mhc sample has a high level of purity;
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however, the SDS-PAG showed three protein bands with apparent
molecular masses of 44, 20 and 18 kDa (figure 5.4B). Heme staining
(figure 5.4A) indicated clearly

that the two smallest protein A B I\?%:r)s
bands have covalently bound 97
hemes. The 44 kDa protein %
band also stained under this ®
procedure but with less 30
intensity. In order to identify

the proteins present in these 20
bands, mass spectrometry

analyses (MALDI-TOF/TOF) 14
were performed, and, in fact,

the three protein bands were . gure 5.4

identified as the mhc protein Heme (A) and coomassie (B) stained SDS-
PAG of the monoheme cytochrome c of the

subunit (see tables 5.1-5.3). ACII from R. marinus.

Therefore, the 44 kDa

protein band is proposed to be a homodimeric form of the mhc protein
while the two other protein bands are proposed to be different
structural conformations, since peptides with molecular masses

compatible with N- and C- termini were observed.
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Table 5.1: Peptide mass fingerprint of in-gel tryptic digest of the band
with an apparent molecular mass of 40 kDa in the SDS-PAG of figure 5.3B.

Comparision of the molecular masses values experimentaly obtained for the
protein band with an apparent molecular mass of 40 kDa in the SDS-PAGE of mhc
of ACIII (fig 5.3B) with those predicted for this subunit (accession number
ABV55248). Zero and one possible miss cleavage were considered for the

comparison.
Start- m/z m/z Miss Sequence
End (observed) (predicted) | cleavage

72-84 1514.790 1514.7889 1 GLLKEDTPFYFGK
94-105 1264.772 1264.7623 0 IPVAVTPELVAR
164-177 1568.792 1568.7638 0 NMPAYGHQIPVADR
164-177 1584.773 1584.7587 0 NMPA.YGHQIPVADR

(oxidation M)

178-185 977.566 977.5567 0 WAIVAYVR
190-203 1509.757 1509.7292 0 SQHATAADVPEEVR

Table 5.2: Peptide mass fingerprint of in-gel tryptic digest of the band with
an apparent molecular mass of 20 kDa in the SDS-PAG of figure 5.4B.

Comparision of the molecular masses values experimentaly obtained for the protein
band with an apparent molecular mass of 20 kDa in the SDS-PAGE of mhc of ACIII
(fig 5.4B) with those predicted for this subunit (accession number ABV55248). Zero

and one possible miss cleavage were considered for the comparison.

Start- m/z m/z Miss Sequence
End (observed) | (predicted) | cleavage 4
72-84 1514.802 1514.7889 0 GLLKEDTPFYFGK
76-84 1103.505 1103.5044 0 EDTPFYFGK
85-105 2227.219 2227.2080 0 TADGAYVERIPVAVTPELVAR
94-105 1264.7603 1264.7625 0 IPVAVTPELVARS
110-130 | 2285.187 2285.0260 0 YNIYCAV.C HGQAGDGQGIMR
(M oxidation)
148-163 | 1819.882 1819.8973 0 NVEDGYIFDVISHGVR
164-177 | 1568.766 1568.7639 0 NMPAYGHQIPVADR
164-177 | 1584.759 1584.7587 0 NMPA.YG.HQIPVADR
(M oxidation)
164-185 | 2543.317 2543.2987 0 ?MPAYGHQIPVADRWAIVAYV
178-575 977.575 977.5567 0 WAIVAYVR
186-203 1977.94 1978.0100 0 ALQRSQHATAADVPEEVR

8 - Peptide identified by MS/MS
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Table 5.3: Peptide mass fingerprint of in-gel tryptic digest of the band
with an apparent molecular mass of 18 kDa in the SDS-PAG of figure
5.4B.

Comparision of the molecular masses values experimentaly obtained for the
protein band with an apparent molecular mass of 18 kDa in the SDS-PAGE of
mhce of ACIII (fig 5.3B) with those predicted for this subunit (accession number
ABV55248). Zero and one possible miss cleavage were considered for the

comparison.

Start- m/z m/z Miss

End (observed) (prec;mted cleavage Sequence

60-71 1293.685 1293.7096 0 AMRPPVPGTVPR

72-84 1514.7206 | 1514.7889 1 GLLKEDTPFYFGK

76-84 1103.4857 | 1103.5044 0 EDTPFYFGK

85-93 981.4451 981.4636 0 TADGAYVER

85-105 2227.2063 | 2227.1885 1 EADGAYVERIPVAVTPELVA
94-105 1264.7422 | 1264.7625 0 IPVAVTPELVAR §
148-163 1819.863 1819.8973 0 NVEDGYIFDVISHGVR
164-177 | 1568.7527 | 1568.7639 0 NMPAYGHQIPVAVR
164-177 1584.789 1584.7587 0 NMPAYGHQIPVAVR

(M oxidation)
178-185 977.5207 977.5567 0 WAIVAYVR
186-203 1977.96 1978.0100 0 ALQRSQHATAADVPEEVR

§ - Peptide identified by MS/MS

A redox titration performed at pH 7.5 was monitored by visible
absorption spectroscopy revealing a mid-point reduction potential of
+160 mV (figure 5.5), which is different from the reduction potential
determined for the hemes within the ACIII (235, 80 and -45 mV) [19].
Nevertheless, it should be stressed that the value obtained for the
isolated mhc may not reflect the redox potential of the subunit inside
the ACIII, since when present in the complex mhc experiences a

different environment.
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Figure 5.5

Reductive titration of the monoheme cytochrome c
subunit of the ACII of R. marinus at pH 7.5. Data
collected at the a-band maximum 553.5 nm (¢). The
solid line was obtained fitting a single electron Nernst
curve with E=160 mV.

5.4.2 — Is monoheme cytochrome c a lipoprotein?

Lipids covalently bound to proteins constitute a possible way to
associate proteins to the membrane since it provides the protein with a
hydrophobic anchor.

The monoheme cytochrome c is predicted to be a lipid modified
protein due to the presence of a signal peptide, lipobox, in its N-
terminal amino acid sequence. According to Babu and coworkers [20]
a typical signal peptide for lipid incorporation is composed by three
distinct regions: a n-region containing five to seven amino acid
residues including two positively charged residues (lysine or
arginine); a hydrophobic region constituted by seven to twenty two
amino acid residues, and a cregion with the consensus
[LVIJ[ASTVI][GAS]C. The consensus in the c-region is the, so called,
lipobox and the last cysteine residue is the amino acid to which the

lipid molecules are bound (figure 5.6). In the case of mhc, the n-region
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has nine amino acids residues with an arginine as the positively
charged residue, the hydrophobic region is composed by eleven amino
acid residues and LAGC form the lipobox (figure 5.6).

The prediction of mhc as a lipid modified protein was corroborated
by several informatics programs available online such as: i) A database
of bacterial lipoproteins (DOLOP) (http:/ /www.mrc-
Imb.cam.ac.uk/genomes/dolop/analysis.shtml) [20] and ii) LipoP 1.0
Server (http:/ /www.cbs.dtu.dk/services/LipoP/) [21].

Typical lipoprotein Signal peptide

Hydrophobic
n-region region c-region

N 5-7 aa residues 7-22 aa C
including an R or K residues [LVI[ASTVIIGASIC
LIPOBOX
Lipoprotein Signal peptide of monoheme cytochrome c
Hydrophobic
n-region region c-region
RGMISSKP.
N MONITAMPR TIWTGLLLGLL LAGC B c
LIPOBOX
Figure 5.6

Lipoproteins signal peptide. Upper: Typical lipoprotein signal peptide with the
three different regions. The n-region is composed by five to seven amino acid
residues including two positively charged residues; the hydrophobic region has
seven to twenty two amino acid residues mainly hydrophobic and uncharged; the c-
region contains the consensus sequence [LVIJ[ASTVI][GAS] and the conserved lipid
modified cysteine (lipobox). Lower: Lipoprotein signal peptide present in the
monoheme cytochrome c subunit.

Usually, the covalent binding of the lipid to the protein occurs in
three steps catalyzed each one by a different enzyme [22]. In the first
step, a diacylglycerol molecule is bound to the conserved cysteine

residue by a thioether linkage in a reaction catalyzed by the
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phosphatidylglycerol:pre-lipoprotein diacylglycerol transferase (Lgt).
In the second step, the prolipoprotein signal peptidase/ signal
peptidase II (LspA) catalyzes the cleavage of the N-terminus signal
peptide at the level of the cysteine residue. The last step was only
observed in Gram negative bacteria and consists in the amino
acylation of the conserved cysteine and is catalyzed by the
phospholipid: apolipoprotein N-acyltransferase (Lnt). In order to
analyze if the presence of lipoproteins is viable in Rhodothermus
marinus, searches were performed to identify genes coding for the
three needed enzymes. Indeed, homologous enzymes were found in
its genome. Therefore, it is possible that the mhc is lipid modified.

In order to investigate the presence of a lipid molecule bound to the
mhc a peptide mass fingerprint approach was used with the subunit
expressed in E. coli and the native cytochrome c (part of the ACIII). If a
lipid was present the first 22 amino acid residues of the N-terminus
would be absent and a difference in the molecular masses predicted
for the peptides would be expected. Thus, the mhc expressed in E. coli
and the ACIII were treated with a lipase which catalyzes the
hydrolysis of an ester bond. The incubated and non-incubated mhc
expressed in E. coli and the ACIII were subjected to SDS-PAGE and the
protein band with apparent molecular mass of 22 kDa of the ACIII
lanes and the 18 and 20 kDa protein bands of the mhc were excised
from the gel and analyzed. However, the obtained results were not
conclusive since the observed molecular masses for the peptides of the
N-terminal of the protein only matched the predicted values if several
modifications were considered. Namely, the peptide composed by the
first nine amino acid residues (MQNITAMPR) would be considered if

two or three modifications have occurred (the oxidation of one
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methionine residue and one deamidation! reaction or the oxidation of
the two methionine residue plus deamidation). This makes the

identification of the N-terminus uncertain.

5.4.3 - Within ACIII the mhc subunit is the electron donor of
caaz oxygen reductase

The moneheme cytochrome c¢ subunit was proposed to be the last
electron acceptor within the ACIII (as cytochrome c¢; in the bc
complex) and also to mediate the electron transfer between ACIII and
the caas oxygen reductase (equivalent role to the periplasmic electron
carrier, such as cytochrome ¢ and/or HiPIP) (see chapters 1 and 4). In
order to test this hypothesis, dioxygen consumption measurements

were performed using the mhc as substrate. The assay was started by

A Sodium :
ascorbate s
l/ oxygen =
reductase
TR ‘L mhc subunit of -
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Figure 5.7

Example of the assay done to measure the oxygen consumption by caas oxygen
reductase using the monoheme: cytochrome c subunit of the alternative complex III as
electron donor. Sodium ascorbate was used to reduce the electron donor.

the addition of the mhc and a average value of 459 uM O.. min-!. mg-!

was obtained (figure 5.7). This O, consumption ceased completely

! Deamidation- glutamine (Q) modified to glutamate (E)
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upon addition of KCN to the assay which demonstrated the specificity
of the reaction. The activity corresponded to a turnover value of 99
min. It is important to mention that the obtained value is most
probably underestimated since it was determined at 30 °C (due to
technical constrains of the oxygen electrode) and the optimal
temperature for the activity of the enzyme was determined to be 70 °C
[23]. HiPIP and the soluble monoheme cytochrome c of Rhodothermus
marinus were also proposed to be electron donors of the caas oxygen
reductase and turnovers of 208 and 26 min’, respectively, have been
obtained [24]. Although the activity determined with mhc was lower
than that with HiPIP it should be noticed that physiologically the mhc
is not isolated. In fact, it is integrated into the ACIII and the affinity
and the interaction between the subunits and even between the

complexes should have a strong influence.

5.5- Conclusions

The expression of the cytochromes ¢ subunits of ACIII in E. coli
allowed the spectroscopic, biochemical and functional characterization
of the monoheme subunit and the spectroscopic characterization of the
pentaheme cytochrome c. The two subunits showed UV-visible spectra
with the typical features of low-spin hemes. For the mhc subunit, a
reduction potential of +160 mV was determined by UV-visible
absorption spectroscopy at pH 7.5.

In this work, the functional role of the monoheme cytochrome ¢ was
addressed and it was showed that, indeed, this subunit is an electron
donor of the oxygen reductase in the structural and functional

association established between the ACIII and the caas oxygen
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reductase. Therefore, the monoheme cytochrome c is the last electron
acceptor within the ACIIL In conclusion, the monoheme cytochrome c
of ACIII is able to perform an equivalent functional role of the
cytochrome ¢; in the bei complexes and of a periplasmic electron
carrier. The attachment of the mhc to the membrane, due to the
eventual presence of covalently bound lipids in its N-terminus, could
provide some mobility to the subunit facilitating its function as an

electron carrier between the complexes.
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6.1 — Summary

Until recently cytochrome bci complexes were the only known
enzymes able to transfer electrons from reduced quinones to
cytochrome c. However, a complex with the same activity and with a
unique subunit composition was purified from Rhodothermus marinus
membranes and biochemical, spectroscopic and genetically
characterized. This complex was named alternative complex III
(ACIII). Its presence is not exclusive of R. marinus being the genes
coding for this novel complex widespread in the Bacteria domain. In
this work, a comprehensive description of the current knowledge on
ACIII is presented. The relation of ACIII with members of the complex
iron-sulfur molybdoenzyme family is investigated by analyzing all the
available completely sequenced genomes. It is concluded that ACIII is
a new complex composed by a novel combination of modules already

identified in other respiratory complexes.

6.2 — Introduction

Cytochrome bci complexes are part of the respiratory chains and have
quinol: cytochrome ¢ oxidoreductase activity (see chapter 1). Besides
this family, several other enzymes are able to oxidize quinols, namely
quinol oxidases from the heme-copper oxygen reductases superfamily
[1], and DMSO reductase, nitrite and nitrate reductases from the
complex iron-sulfur molybdoenzyme (CISM) family [2]. However, and
until recently, the cytochrome bci complex family was the only one
described to receive electrons from quinols and transfer them to

cytochrome c. The alternative complex III (ACIII), purified for the first
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time from Rhodothermus (R.) marinus membranes and structural and
functionally characterized [3-5], was the first example of a complex
performing the same function as the bc1 complex but not belonging to

its family.

6.3- The alternative complex III is a widespread quinol:

electron acceptor oxidoreductase

The R. marinus respiratory chain has been extensively studied [1, 3-
13] and the presence of three different oxygen reductases, a caas [11,
12], a bas [13] and a cbb; [10] was observed. These enzymes are unable
to receive electrons from reduced quinones and therefore a complex
which transfers electrons from quinols to periplasmatic electron
carriers is required. A cytochrome bc; complex was never observed at
the protein level and its absence has now been corroborated by the
analysis of the recently sequenced R. marinus genome [14], in which
genes coding for such a complex are not present. Instead, a seven
subunits complex (chapter 3 and [15]) with quinol: HiPIP
oxidoreductase activity was isolated from the membranes of R.marinus
[3-5]. This complex is structurally different from the cytochrome bc:
complexes, even though it performs the same function. By this reason
the complex was named alternative complex III (ACIII) [5, 16].

The presence of ACIII is not exclusive of R.marinus. A homologous
complex was also isolated from the membranes of the green non-sulfur
proteobacterium Choroflexus (C.) aurantiacus [16-18] and was recently
shown to have menaquinone: aurocyanin oxidoreductase activity [16].
As in the case of the R. marinus enzyme [5], it was not inhibited by the

typical inhibitors of the cytochrome bc; complex, such as antimycin A.
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The genes coding for ACIII were also identified in the &
Proteobacterium Myxococcus xanthus and the same function for the
complex was proposed [19]. Furthermore, Yanyushin and coworkers
observed that the new complex was widespread and related to the
complex iron-sulfur molybdoenzyme (CISM) family [18]. Due to the
similarity with the members of that family, the name MFlcc
(molybdopterin, FeS, integral membrane subunits, with two c-type
heme subunits) has been proposed. This designation may be
misleading since the complex does not contain molybdenum [5, 18],
and thus the name alternative complex III was adopted [5, 16].

In this work, we performed an exhaustive search for ACIII coding
genes in organisms with a completely sequenced genome, by
September 2009. We confirmed that ACIII is a widespread enzyme in
the Bacteria domain (figure 6.1). The genes coding for the complex
may be present in genomes that do not contain coding genes for bc:
complex subunits and in which genes coding for a quinol: cytochrome
c oxidoreductase should exist, but there are also examples of genomes
where ACIII genes coexist with those coding for the classical

complexes III (figure 6.1).
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Phylogenetic profile of the presence of alternative complex III (ACIII), MFIc complex and cytochrome bc; complex
family (bc1/bef). The type of heme-copper oxygen reductases (HCO) coded by the gene cluster following the ACIII gene

cluster is also indicated. The black dots represent the presence of the corresponding gene clusters. For the construction of

this phylogenetic profile only aerobic organisms were considered.
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The genes encoding ACIII form a cluster composed by six to eight
genes (ActABCDEFG); in some cases ActG is absent, while in others
ActB is splitted into two different genes ActB; and ActB,, which
correspond to the two domains of the gene ActB product (see below).
A gene cluster with a similar organization but in which the ActD, ActE
and ActF are absent was also earlier identified and its product named
MFIc complex [18]; in this gene cluster the gene ActB is also splitted in
two. The presence of MFIc complexes is only predicted for &
Proteobacteria (figure 6.1), and their function has not been established
yetl.

The analysis of the gene clusters coding for ACIII in the sequenced
genomes, in relation to their neighboring genes revealed that they may
be isolated, ie, without any obvious functional relationship with
preceding and following genes or gene clusters; or they may be
followed by a gene cluster coding for a heme-copper oxygen
reductase. This latter situation presents four possibilities; illustrative
examples of each one are represented in figure 6.2. R. marinus is one
example of the most observed organization in which the following
gene cluster codes for subunits of the cas; oxygen reductase.
Salinibacter ruber represents a similar example but in this case the SCOI
gene (whose product is involved in copper incorporation [20]) is
absent. The presence of a following gene cluster coding for subunits of

cbbs oxygen reductases can also be observed in Opitutu terreae), as well

1 After the publication of this work and during the writing of this thesis the
work of Venceslau et al (2010, in press) showed that the MFIc of Desulfovibrio
vulgaris Hildenborough have cytochrome cs: quinone oxidoreductase activity
and therefore, it was renamed Qrc (quinone reductase complex).
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as genes coding only for subunits I and II of other oxygen reductases
(Flavobacterium psychrophilum). Thermus thermophilus exemplifies a
situation in which the gene cluster coding for ACIII is isolated. In

Different gene cluster sor ganization
Rhodothermus marinus

g 2 & ActB ACIC ~ JACD JAGEY ACIE /& Scoerid ML I I N 1T 1/
= Salinibacter ruber
S o I A AGC e 3 ActEJ oo TR RIS 1T 174
B Flavobacteriumpsychrophilum
5 16 ActB ACIC  grcogaacd — ACF (TR R 2
g Opitututerrae
= 6 & ActB ACIC g0
Thermus thermophilus
16 (D) TR R D D EDD oty
Figure 6.2

Organization of the gene clusters coding for alternative complex III subunits (dark
grey) and those coding for the different heme-copper oxygen reductases (light grey).
SCOI gene product is involved in the incorporation of copper. I, II, Il and IV represent
the different subunits of oxygen reductases while FixN, FixP and cyt ¢ are the genes
coding for subunits of cbb; oxygen reductase. An example of an organism for each
organization is indicated. In eight of the sixteen cases exemplified by Thermus
thermophilus, ActG is absent.

figure 6.1, the type of oxygen reductase (Al, A2, B and C-type, [21])
encoded by the gene cluster that follows the genes coding for ACIII is

indicated.

6.4- Structural characterization of the alternative

complex I11

The first gene of the cluster (ActA) codes for a 27 kDa protein with
five c-type heme binding motifs (CXXCH); the fifth motif is one amino
acid residue apart from the C-terminus. Three methionine and seven
other histidine residues are present in the sequence and are thus

candidates for the sixth ligand of the hemes. However, the alignment
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of the amino acid sequence of the subunits A of all ACIII showed that
four histidine (H54, H57, H129, H132, R. marinus enzyme numbering)
and one methionine (M160) residues are strictly conserved and are
thus the most probable sixth heme ligands. A possible signal peptide
in the N-terminal region is present, but its putative cleavage site is
inside a predicted transmembrane helix, which suggests a membrane
attachment mode for subunit A.

ActB codes for a 115 kDa protein with two distinct domains: domain
B1, located in the N-terminus, is similar to molybdopterin containing
proteins, while domain B2, located towards the C-terminus, has three
binding motifs for [4Fe-4S]2+/1+ clusters and one for a [3Fe-4S]'+/0
cluster [5]. As mentioned before, the isolated complex does not have
molybdenum [5, 18]. The ActC gene encodes a 55 kDa protein
predicted to have ten transmembrane helices, where two conserved
possible quinone binding sites as those proposed by Fisher and Rich
[22] can be detected [5]. However, this prediction should be considered
with caution due to the variability of the quinone binding sites. ActD
codes for a 25 kDa protein with two predicted transmembrane helices.
The 22 kDa protein encoded by ActE has a single c-type heme binding
motif (CXXCH). Several methionine residues present in its sequence
may act as the sixth ligand of the heme; however, the most probable is
the methionine residue in the conserved motif MPA, as observed in
many other cytochromes [23]. Subunit E is predicted to be a
lipoprotein since in the N-terminal region a probable lipoprotein
signal sequence (lipobox) [24] is present. ActF codes for another

integral membrane protein (48kDa), also predicted to have ten
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transmembrane helices. Finally, the product of ActG is a small 15 kDa
protein predicted to be membrane bound by a single transmembrane
helix.

The subunits of ACIII can be divided in two groups according to the
proposed function: i) membrane attachment and quinone interaction
modules, subunits C, D, G and F, and ii) electron transfer modules

composed by subunits A, B and E (figure 6.3).

Alter nativecomplex 111

/ MEMBRANEATTACHMENT  \ f ELECTRON TRANSFER MODULES\

AND Q INTERACTING MODULES /—B
Q0009
A
MQH, E
Py, ©
MQ ¥lc G|F 4
N
SubunitC and F : SubunitA:
Membrane attachment (10 TMH) Pentaheme cytochrome ¢
Interaction with quinol SubunitB: )
Domain |- Similar to molybdopterin
SubunitD and G: containing proteins
Membrane attachment (2TMH, 1TMH) Domain |- Iron sulfur centers protein
SubunitE:
\ / \ Lipoprotein monohemecytochrome ¢ )

Figure 6.3

Schematic representation of the alternative complex III. The subunits (modules)
of the complex may be separated according to their proposed function. The
membrane attachment and quinone interacting modules correspond to subunits
C, D, F and G, while subunits A, B and E are electron transfer modules. The
spheres represent c-type hemes, cubes and pyramids represent [4Fe-4S]2+/1+ and
[3Fe-4S]1+/0 clusters, respectively.

Despite the presence of the gene cluster coding for ACIII in many
genomes, so far R. marinus and C. aurantiacus enzymes are the only

complexes that were isolated. The presence of c-type hemes is the only
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structural information available for ACIII from C. aurantiacus [17, 18].
On the other hand, the ACIII from R. marinus has been extensively
investigated [4, 5, 15]. All the subunits coded by the respective genes
were identified in the isolated complex and the redox centers were
analyzed [4, 5, 15]. Besides the presence of low-spin c-type hemes
detected by EPR and UV/visible absorption spectroscopies, a [3Fe-
4S]1+/0 center was also observed by EPR spectroscopy. Three redox
transitions at -45, +80 and +235 mV were determined for the c-type
hemes and a reduction potential of +140 mV was obtained for that

iron-sulfur center [4].

6.5 - Comparison of ACIII with other complexes

In order to obtain the amino acid sequences of the subunits of the
ACIII from other organisms a blast search using the sequences from R.
marinus subunits as queries was performed. The amino acid sequences
of each subunit of ACIII were aligned and the respective dendograms
were constructed. It was observed that the sequences of each subunit
showed high similarities among themselves (see below). The highest
divergence was observed for subunit A, in which some members of the
flavobacteriaceae family have an extra c-type heme binding motif
(CXXCH) at the N-terminal region.

Despite the unique gene organization and subunit composition of the
ACII, the different subunits have homology with subunits of
enzymatic complexes already characterized. In order to determine the
most related proteins, the output number of sequences obtained by

blast searches was enlarged. The sequences with the lower E-values
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obtained, excluding those of ACIII, were the subunits of the MFlc
complex, followed by the sequences of subunits of complexes
belonging to the complex iron-sulfur molybdoenzyme family (CISM
family) [2].

A relation between subunits B and C of ACIII and three subunits of
those complexes had already been observed [5, 18]. The CISM family is
characterized by the presence of three subunits [2]. A catalytic subunit
which has a molybdo-bis(pyranopterin guanine dinucleotide) (Mo-
bisPGD) cofactor and in some cases an iron-sulfur center (named FS0),
a protein with four iron-sulfur clusters (FS1-FS4) named four cluster
protein (FCP), and a membrane anchor protein (MAP). This family
includes complexes such as DMSO reductase (DmsABC), polysulfide
reductase (PsrABC), formate dehydrogenase (FAnGHI), and nitrate
reductase (NarGHI). Also related to this family are the complexes
nitrite reductase (NrfABCD), arsenite oxidase (AoxAB), TMAO
reductase (TorCA), formate dehydrogenase (FdhAB), nitrate reductase

Encoded subunits/domains

A Bl B2 C D E F G

ACEA ACC  JACD JActEy  AdF Y&

i R

DmsA DmsB DmsC

FdhA FdhB FdhC

B
5
O

Figure 6.4

Comparison of the gene cluster of the alternative complex III with the gene clusters
of the complexes iron-sulfur molybdoenzyme (CISM) family. The correspondence
between genes and respective encoded domains or subunits is indicated
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(NapAB), ethylbenzene dehydrogenase (EbdABC), and selenate
reductase (YnfEFG). Schematic representations of some of these
enzymes are presented further ahead in figure 6.5 and the respective
gene cluster organization is shown in figure 6.4.

To obtain the amino acid sequence of each subunit of the complexes
of this family, a new blast search against all genomes deposited at
Kegg server (http://www.genome.jp/kegg/) [25-27] was performed
using as initial query a sequence from a model organism, generally
Escherichia coli. Also, when orthology information was available, all
genes annotated as coding for proteins of the CISM family or for
related proteins were retrieved. The gene organization of each
complex within an organism was automatically inspected, and
dubious gene organizations were manually inspected. All retrieved
sequences were then mapped on NCBI Taxonomy using the BioSQL
package available to download at ftp://ftp.ncbinih.gov/ from April
2009.

6.5.1- The iron-sulfur protein - Subunit B

Domain I of subunit B showed similarity with the catalytic subunit of
the members of the CISM family, while domain II presented similarity
with the four cluster protein. Since the two domains observed in
subunit B are homologous to different proteins, the sequence was
divided (800 amino acid residues from the N-terminal- Domain I and
240 amino acid residues from the C-terminal-Domain II) and the two
parts analyzed separately. For the analysis of subunit B, the subunit

NuoG (or Nqo3) of the complex I (NADH: quinone oxidoreductase)
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was included, since this subunit is also related to the CISM family.
Furthermore, this subunit is another example of a protein that has a
molybdopterin-like domain, but lacks any molybdenum cofactor, and

has an iron-sulfur domain
[28]. As in the case of subunit

B of ACIII, the NuoG amino

acid sequence was also
separated in two parts
(NuoG_1, N-terminal and
NuoG_2, C-terminal).

Interestingly, subunit NuoG
has the domains in a reverse

order: the

molybdopterin
domain is located in the C-

the

Figure 6.5

Dendogram obtained from the analysis of the terminus while iron-
domain Bl of the subunit B (15-32) of
alternative complex III, subunit B of MFIc (1-
14), NuoG (C-terminal sequence) (155-188), and
related subunits of the members of the CISM
family: DmsA and YnfEF (33-45), TorA (46-54),
NarG and Ebda (55-80), PsrA (81-91), NapA (92-
113), FdhA (114-129), FdnG (130-145), AoxB
(146-154). Each branch is indicated by a

number, which corresponds to subunits whose

sulfur centers binding motifs
are at the N-terminus, thus
suggesting independent

fusion processes. NuoG_1

information can be consulted in the table 8.1 of
chapter 8. For clarity only some of the numbers
are indicated; however, the branches are
numbered consecutively.

and NuoG_2 were analyzed
with B2 and Bl domains of

subunit B, respectively.

The amino acid sequence of
domain I of subunit B was compared with sequences of catalytic
subunits of complexes of the CISM family. From the dendogram
obtained (figure 6.5) eleven different clades are observed, each clade

being composed by subunits of the same enzymatic complex. The
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similarity between the subunits of the members of the CISM family is

in agreement with previous analyses [2, 29]. Domain I of subunit B of

ACIII, subunit Bl of MFIc and NuoG are clearly related to those

members. The subunits of ACIII and of MFlc are clustered together

and seem to have a common

origin. Besides the absence of

molybdenum, the domain Bl
of ACIII does not have the FSO
cluster, present in some
catalytic subunits of the CISM
family members.

The amino acid sequences of

domain II of subunit B of ACIIIL

were aligned with those of
the FCP subunits of the CISM
family and related members
and the respective
dendogram was constructed
(figure 6.6). In contrast to
what is observed for the
domain I, NuoG is the less

similar protein. The ACIII

Figure 6.6

Dendogram obtained from the analysis of the
domain B2 of subunit B of alternative complex
I (127-138), subunit B2 of MFIc (107-126),
NuoG (N-terminal sequence, 1-35), and
subunits of the members of the CISM family:,
FdnH (36-52), FdhB (53-67), DmsB and YnfG
(68-79), EbdB (80-85), Narl (86-106) and PsrC
and NrfD (139-158). Each branch is indicated by
a number, which corresponds to subunits
whose information can be consulted in the
tables 8.2 of chapter 8. For clarity only some of
the numbers are indicated; however, the
branches are numbered consecutively.

and MFIc subunits are closely related, being NrfC and PsrB their

closest member of the CISM family and related complexes.
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6.5.2- The membrane quinol interacting proteins- Subunits C
and F

Subunits C and F are homologous to each other and to the subunits
NrfD, DmsC and PsrC, although having a higher number of predicted
transmembrane helices.
NrfD, DmsC and PsrC have
eight transmembrane
segments. Subunits Narl and
Fdnl are also membrane
anchor proteins of members
of the CISM family. These
subunits contain 5 and 6

transmembrane helices,

respectively and 2 b-type

Figure 6.7

Dendogram obtained from the analysis of the hemes. Narl, Fdnl and
subunit C (39-58) and F (59-76) of ACIII,
subunit C of MFIc (27-38), NrfD and PsrC (13- INIfD, DmsC and PsrC seem
26) and DmsC (1-12). Each branch is indicated
by a number, which corresponds to subunits
whose information can be consulted in the
table 8.3 of chapter 8. For clarity only some of
the numbers are indicated; however, the anchor proteins of the
branches are numbered consecutively.

to constitute different

subfamilies of membrane

members of the CISM
family [2]. Thus, only the amino acid sequences of subunits NrfD,
DmsC and PsrC were included in the sequence alignment with
subunits C and F of ACIIL As expected, this alignment revealed a low
similarity between all the proteins. Nevertheless, it was possible to
conclude that the subunits C and F are also related to the subunits
NrfD, DmsC and PsrC of the CISM family. In contrast to what was
observed for the domains of subunit B, the membrane subunits of the
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ACIII and MFIc complex seem to have had different origins (Figure

6.7).

6.5.3- c-type heme containing subunits- A and E

6.5.3.1- Subunit A

Although the typical CISM family members do not have c-type heme

cytochrome subunits, variations of the subunit composition of

complexes related to the family have been identified and subunits

Figure 6.8

Dendogram obtained from the analysis of
the subunit A of alternative complex III (76-
95), subunit A of MFIc (64-75) and related
subunits of the members of the CISM family:
NapC and TorA (1-24), NrfH (25-31, 42-44),
NrfB (32-41) and NrfA (45-63). Each branch is
indicated by a number, which corresponds to
subunits whose information can be consulted
in the table 8.4 of chapter 8. For clarity only
some of the numbers are indicated; however,
the branches are numbered consecutively.

containing c-type hemes have
been observed [2, 30, 31].
Therefore, the sequence of the
pentahemic cytochrome ¢ of
the alternative complex was
compared with that of other
multi-hemes subunits of the
CISM family and related
complexes such as NrfA, NrfB,
NrfH, NapC and TorC. All
these proteins belong to the
Napc/NrfH family of
cytochromes [32] with the
exception of NrfA and NrfB.
That  family plays an
important role in the electron
transfer between the

quinone/quinol  pool and
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oxidoreductases located outside the cytoplasmatic membrane [32, 33].
NapC and NrfH are typical examples of the family, which have four c-
type hemes and a membrane helix at the N-terminus; both are
involved in the transfer of electrons to other cytochrome domains.
NapA transfers electrons to the di-heme protein NapB from the
NapAB complex [32], while NrfH transfers electrons to NrfA [34].
NrfA and NrfB are also pentaheme c-type cytochromes but the
transmembrane anchor is absent [30, 35]. TorC belongs also to the
NapC/NrfH family [36, 37]; it contains at the C-terminus an additional
domain with a c-type heme described to be responsible for the
interaction with the molybdenum-containing TMAO reductase [36].
Three different clades can be considered in the dendogram
represented in figure 6.9: one formed by NapC, TorC, NrfH and NrfB,
a second one formed only by NrfA and a last one formed by subunits
A of the alternative complexes III and of the MFIc complexes. Within
their clade, NapC and TorC are clustered together as expected, since
both proteins belong to the same family; NrfH formed a sub-group
inside of this clade, as previously observed [38]. NrfA is the only one
of the analyzed proteins with an intrinsic catalytic activity; its catalytic
heme is bound through an unconventional binding motif where a
lysine replaces the typical histidine residue (CXXCK) [39, 40]. The
specific properties of NrfA are in agreement with its place as an
individual clade. The subunits A of the ACIII and of the MFIc complex
were found to be part of the same clade, being closely related, and

appear to have had the same evolutionary origin.
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6.5.3.2- Subunit E

There are multiple examples of monoheme c-type cytochromes. The
amino acid sequence of subunit E of ACIII was aligned with sequences
from diverse c-type cytochromes, cytochrome ¢; from cytochrome bc:
complex and also with monohemic domains of the oxygen reductases
(c-domain of subunit II of caa; oxygen reductase and ¢ domain of FixP
subunit of cbb; oxygen reductase). A dendogram was constructed (data
not shown); however, it was not possible to determine any closer
protein since the bootstrap values obtained for the different branches
of the dendogram were extremely low. Yet, it was possible to conclude
that the subunit E of ACII formed an independent clade. These
observations suggest that the monoheme c-type subunit of ACIII is

another example of a subfamily of c-type cytochromes.

6.5.4- The other membrane proteins- Subunits D and G
We were unable to identify any protein homologous of these two

proteins; their presence seems to be restricted to the ACIIL

6.6 - The alternative complex I1I is a different complex

composed by “old” modules

The ACIII has a unique subunit composition. However, the different
constituting subunits show similarities with subunits of complexes
already known, namely those of the CISM family. The subunits of the
different complexes can be divided in several modules according to
their function: 1-electron transfer, 2- catalytic and 3- membrane
attachment and quinone interacting modules (Figure 6.9). These
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Figure 6.9

Schematic representation of complexes of the complex iron sulfur molybdenum
(CISM) family and related complexes, including ACIII (A), and separation of the
complexes in the three different types of modules: membrane attachment and
quinone interaction, electron transfer and catalytic modules (B). The spheres
represent c-type heme, and bipyramids corresponds to the molybdopterin
cofactor. Cubes and pyramids represent [4Fe-4S]2+/1+ and [3Fe-4S]!+/0 clusters,
respectively.

modules can be observed in complexes combined in multiple ways.

The type of function performed could have influenced the different
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combinations of those subunits. This idea of modularity in the
construction of respiratory complexes has been proposed before, and
respiratory complex I and hydrogenases are examples of such type of
construction [41-43]. Furthermore, the existence of a redox protein
construction kit has been even proposed, with enzymes being

constructed from the limited set of modules present in that kit [44].

In conclusion, ACIII is a different complex composed by already
known modules, and another example of how nature uses the same
structural modules in different contexts according to the metabolic

needs.
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Concluding Remarks

Despite the large diversity and flexibility observed in the enzymatic
complexes composition of electron transfer respiratory chains, the
cytochrome bc; complex family was thought to be the only one able to
perform the quinol: electron acceptor oxidoreductase activity.
However, another family of complexes, named alternative complexes
III (ACII), able to catalyze the same reaction was identified. The
enzyme from Rhodothermus marinus was the first member to be
purified and characterized. Chloroflexus aurantiacus was also
described to have this complex; however, the characterization of the
heme proteins is the only structural information available for this
enzyme.

In this work, it was observed that ACIII is widespread in the Bacteria
domain being mostly present in genomes where the genes coding for
the subunits of a typical complex IIl are absent and for which the
presence of a quinol: electron carrier oxidoreductase complex is
predicted. R. marinus ACIII is composed by three peripheral and four
transmembrane proteins (figure 7.1). One of the latter is predicted to
have quinone binding sites, while the largest peripheral subunit has
one binding motif for a [3Fe-4S]'+/0 cluster and three binding motifs for
[4Fe-4S]2+/1+ clusters. Two other subunits, one with five and another
with one c-type heme binding motifs are also part of the complex.

The interaction of ACIII with its electron donor, menadiol
(menaquinol-7 analogue), was demonstrated and the presence of, at
least, one quinone binding site was established.

In several genomes, the gene cluster coding for ACIII is followed by
genes coding for subunits of oxygen reductases. In R. marinus, the

following genes were identified as those coding for the caas oxygen
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reductase. Furthermore, it was showed that ACIII and the caa; oxygen
reductase are structural and functionally associated (figure 7.1) and
that the monoheme cytochrome c is the electron donor of the oxygen
reductase within ACIIIL.

Although functionally related to the bci complexes, alternative
complexes III have a different structural composition. However, the
architecture of the ACIII family members is not completely new; these
complexes are composed by structural modules already identified in
members of the CISM family and related enzymes, also described as
quinone/quinol interacting enzymes.

The electron transfer and energy conservation mechanisms of ACIII
are not known. However, the absence of redox cofactors in the
membrane bound subunits makes the presence of a Q-cycle
mechanism unlikely. The possible existence of proton channels like in
the heme-copper oxygen reductases or the formation of redox loops
are possibilities to be considered.

According to what is known regarding the electron transfer
mechanism operating in the structural modules which compose ACIII
and, also that the monoheme cytochrome ¢ subunit is, in Rhodothermus
marinus enzyme, the last electron acceptor within the complex, the
following order of electron transfer event is proposed: the quinol is
oxidized in the quinone binding site at subunit C, the two electrons are
then transferred to: 1) the iron sulfur centers at subunit B, 2)
pentaheme cytochrome c¢ (subunit A), 3) monoheme cytochrome ¢
(subunit E). Since subunit F showed similarity to subunit C, the

existence of a second quinone binding site cannot be excluded. The
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apparent absence of redox cofactors in subunit D and G may indicate a

structural and stabilizing role for those subunits.

For Rhodothermus marinus in particular, a further step in the
identification and characterization of the complexes involved in its
respiratory chain was achieved. This bacterium represents another
example of the prokaryotic electron transfer chain diversity and
flexibility. The three different oxygen reductases, the unusual presence
of the HiPIP as an electron carrier protein, the complex I which is able
to translocate sodium in opposite direction of protons and the
existence of the alternative complex III confers the respiratory chain
distinctive features. In figure 7.1 is presented a schematic

representation of the R. marinus electron transfer respiratory chain.

@ cytochrome ¢
@ HiPIP

+

t
1 ComplexI Complex IT

out

QHj;
Alternative
Complex I11 0 HO G HOO HO
caaz cbb; bas
Oxygen reductases

succinate fuymarate
NADH NAD*

Figure 7.1

Schematic representation of the electron transfer respiratory chain of Rhodothermus
marinus. The gray and black spheres represent c- and b-type hemes, respectively,
while the smallest spheres represent copper,. Cubes, pyramids and rectangles
represents [4Fe-45]2+/1+, [3Fe-4S]1+/0 and [2Fe-2S]2+/1+ centers, respectively.
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In general, a family of enzymes with quinol: electron acceptor
oxidoreductase activity, which is structurally unrelated to the
cytochrome bc; complex, was identified for the first time and members
of this family were observed to be widespread in the Bacteria domain.
The identification of these enzymes was an important step for the
recognition of the diversity and flexibility observed in the prokaryotic

electron transfer respiratory chains.
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