The alternative complex III from Rhodothermus marinus - a prototype of a new family of quinol: electron acceptor oxidoreductase

Ana Patrícia Neto Refojo

Dissertation presented to obtain a PhD degree in Biochemistry at the Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa

Supervisors: Prof. Miguel Teixeira and Dr. Manuela Pereira Opponents: Dr. Wolfgang Nitschke and Dr. Arnaldo Videira

Instituto de Tecnologia Quimica e Biológica Universidade Nova de Lisboa

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

<u>From left to right</u>: Dr. Teresa Catarino, Dr. Maria João Romão, Dr. João Arrabaça, Dr. Inês Pereira, Dr. Wolfgang Nitschke, Ana Patrícia Refojo, Dr. Arnaldo Videira, Dr. Carlos Romão, Dr. Manuela Pereira and Prof. Miguel Teixeira.

Metalloproteins and Bioenergetic Unit Biological Energy Transduction Laboratory Instituto de Tecnologia Química e Biológica Av. da República Estação Agronómica Nacional 2780-157 Oeiras Portugal Tel. +351- 214 469 323

III

IV

This thesis comprises the work performed in the Metalloproteins and Bioenergetics Unit from Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, under the supervision of Prof. Miguel Teixeira and Dr. Manuela Pereira.

This thesis is divided into eight chapters: the first two are introductory chapters, being the first focused on electron transfer respiratory chain and its diversity and flexibility, in general, while in the second the respiratory chain of the bacterium *Rhodothermus marinus* is described. Chapters three to six are based on original published, as well as some unpublished results and may be read independently. On chapter 6, in addition to new presented results, overall aspects of the alternative complex III are also discussed. Concluding remarks of the work are presented on chapter seven. The information of the amino acids sequences used to construct the dendograms discussed on chapter six is presented as supplementary information on chapter eight while the alignment of those amino acid sequences are available on the supplied CD-ROM.

V

The work here presented would not be possible without the help and support of several people to whom I would like to thank...

Prof. Miguel Teixeira, my supervisor, for sharing with me his knowledge and wisdom, for his interest and dedication towards my work.

Dr. Manuela Pereira, my supervisor, for her endless support and for the dedication and enthusiasm about my work. For all the help, advises and orientation and for all the scientific discussions.

To all my colleagues and friend from the Metalloproteins and Bioenergetics Laboratory: Célia Romão, João Vicente, Filipa Sousa, Ana Paula Batista, Ana Filipa Pinto, Vera Gonçalves, Sandra Santos, Lara Paulo, Ana Teresa Bernardo, Liliana Pinto and Gabriel Martins. To the previous members of the group: Andreia Verissimo, Andreia Fernandes, João Rodrigues, Tiago Bandeiras and Susana Lobo. I specially thank the older ones who teached and helped me during my first months at ITQB. Outside the group: Sofia Venceslau, Cláudia Almeida, Marta Justino and Catarina Paquete and all the people from the 3rd floor.

Ana Paula Batista, Ana Raquel Correia, Ligia Nobre and Sofia Leite with whom I shared all the adventures of the university and later at the ITQB. Bárbara Henriques and Vera Gonçalves that joined us at ITQB. Thank you for all the help and support. Hugo Botelho for the "chás de camomila" that were so useful and of course for all the informatics help.

VI

Dr Gudmundur O. Hreggvidsson and Dr Sigridur Hjorleifsdottir for providing the nucleotide sequences of some of the subunits of *Rhodothermus marinus* ACIII.

To Dr. Mikhail Yanuyshin for the critical reading and discussions.

To Dr. Eurico Melo for the helpful discussions about fluorescence spectroscopy measurements.

Eng. Manuela Regalla from the Amino Acid Analysis Service for Nterminus sequence determinations.

To Dr. Ana V. Coelho, Elisabete Pires and Peter from the Mass Spectrometry Lab at ITQB for the MS experiments.

To Dr. Inês Cardoso Pereira and Dr. Smilja Todorovic for the critical readings.

João Carita from the ITQB fermentation Unit for the cell growth and for all the help and support.

Although, the work performed in the Institute of Microbiology in Darmstadt was not included in this thesis, I would like to acknowledge Dr Arnulf Kletzin for receiving me in his laboratory and Christian Bauer for the help in the cloning and expression of the Rieske protein subunit of the cytochrome *ba* complex of the archaeon *Acidianus ambivalens*.

I thank to all my friends, especially Ana Paula Batista for being my everyday friend.

Another special thanks to *Ricardo* for being always there for me, for being my shining "star" especially in the bad days. Thank you.

VII

To my parents for all the love, help, support and patient. To my sisters and brothers-in-law; and especially my nephews for fulfilling my life with happiness.

Fundação para a Ciência e Tecnologia is acknowledged for my PhD grant (SFRH XXI/BD/24745/2005) and for the financed project PTDC/QUI/66559/2006.

VIII

Thesis publications

The work presented in this dissertation is based on the publications:

Manuela M. Pereira, **Patrícia N. Refojo**, Gudmundur O. Hreggvidsson, Sigridur Hjorleifsdottir, Miguel Teixeira (2007) *The alternative complex III from Rhodothermus marinus – a prototype of a new family of quinol: electron acceptor oxidoreductase* FEBS Lett **481**, 4831-4835

Patrícia N. Refojo, Miguel Teixeira, Manuela M. Pereira (2010) *The alternative complex III from Rhodothermus marinus and its structural and functional association with caa*₃ *oxygen reductase* Biochim Biophys Acta **1797**, 1477-1482

Patrícia N. Refojo, Filipa L. Sousa, Miguel Teixeira, Manuela M. Pereira (2010) *The alternative complex III: A different architecture using known building modules* Biochim Biophys Acta *In Press*

Patrícia N. Refojo, Miguel Teixeira, Manuela M. Pereira (2010) *The lipid bound monoheme cytochrome c subunit of alternative complex III is the electron donor of caa₃ oxygen reductase in Rhodothermus marinus* In preparation

Publication not included in this thesis

Tiago M. Bandeiras, **Patricia N. Refojo**, Smilja Todorovic, Daniel H. Murgida, Peter Hildebrandt, Christian Bauer, Manuela M. Pereira, Arnulf Kletzin and Miguel Teixeira (2009) *The cytochrome ba complex from the thermoacidophilic crenarchaeote Acidianus ambivalens is an analog of bc*¹ *complexes*. Biochim Biophys Acta **1787**, 37-45.

IX

Х

Summary

The aim of the work presented in this thesis was the characterization of a complex with quinol: electron carrier oxidodoreductase activity present in the membranes of the thermohalophilic bacterium *Rhodothermus (R.) marinus.*

The complexes involved in the *R. marinus* respiratory chain have been extensively studied in the past few years. Specifically, the purification and characterization of a complex I (NADH: quinone oxidoreductase), a complex II (succinate:quinone oxidoreductase) and of three different oxygen reductases from the heme-copper oxygen reductases superfamily have been performed. Since those oxygen reductases are unable to receive electrons from quinol molecules, the presence of a complex linking complexes I and II to the oxygen reductases was needed. In fact, a complex with quinol: HiPIP oxidoreductase activity was purified and partially characterized. The absence of the Rieske protein indicated that the complex isolated from *R. marinus* has a different composition when compared with the typical cytochrome bc_1 complex.

In this thesis it is described that, indeed, the complex with quinol: electron carrier oxidoreductase activity in *R. marinus* respiratory chain is the first example of the newly identified family of oxidoreductases, named alternative complex III (ACIII), to be purified and characterized.

The ACIII of *R. marinus* is composed by seven subunits (A-G), whose coding genes are organized in a seven genes cluster (*ActABCDEFG*). Subunit A (27kDa) and subunit E (22 kDa) have, in their amino acid sequences, five and one *c*-type heme binding motifs (CXXCH),

XI

respectively. Subunit A is also predicted to have one transmembrane helix (TMH). Subunit B (97 kDa) has three binding motifs for [4Fe-4S] ^{2+/1+} centers and one for a [3Fe-4S] ^{1+/0} center. Subunits C and F have 42 and 35 kDa, respectively, and are predicted to be integral membrane proteins with 10 TMHs. Subunits D and G are also membrane bound with two and one TMH, respectively, and no binding motifs for redox cofactors were detected.

The amino acid sequences of subunits B and C showed similarities with subunits of members of the complex iron sulfur molybdoenzyme (CISM) family. This family is characterized by the presence of three subunits: a catalytic subunit with a molybdenum cofactor in the active center, a four cluster protein (FCP) and a membrane anchor protein (MAP). The subunit B can be considered as a fusion between the catalytic subunit and the FCP since the first 800 amino acid residues of the N-terminus show similarity with the catalytic subunit of CISM family and the other 300 amino acid residues at the C-terminus show similarity with the FCP. However, it should be stressed that the subunit B of ACIII does not contain molybdenum. Subunit C shows similarity to MAP subunits, yet with a larger number of TMH. Due to the similarity between three of the seven subunits with subunits of the CISM, the relation of the ACIII with the latter family was investigated by analyzing all the available genomes by September of 2009. First, searches were performed to determine the presence of the genes coding for subunits of ACIII in other organisms. It was observed that, in fact, the ACIII is a widespread enzyme being present in genomes in which the genes coding for the typical complex III were absent, but there are also cases where the two enzymes were present. Moreover, in many cases the presence of genes coding for subunits of oxygen reductases following

XII

those coding for ACIII was observed. From the comparison between subunits of ACIII and those from the CISM family and related complexes it was concluded that although the alternative complexes III show a completely different architecture they are composed by structural modules already observed in other enzymes.

The interaction of *R. marinus* ACIII with quinones was investigated using HQNO, a quinol analogue. Its fluorescence properties allowed the determination of, at least, one quinone binding site.

The investigation of a possible structural and functional association between the alternative complex III and the *caa*³ oxygen reductase was also addressed. Several electrophoretic techniques conjugated with different staining procedures led to the identification of a complex with, approximately, 500 kDa formed by the two enzymes. By peptide mass fingerprint, subunits of the two enzymes were identified in that complex. Moreover, the association between ACIII and *caa*³ oxygen reductase revealed to be also functional given that when put together the enzymes showed quinol: oxygen oxidoreductase activity which was HQNO and KCN inhibited (typical inhibitors of quinone interacting enzymes and of the oxygen reductases, respectively).

Furthermore, in this structural and functional association, the electron donor to caa_3 within ACIII was determined to be the monoheme cytochrome *c* (mhc) subunit. Oxygen consumption, which was KCN inhibited, was observed upon addition of the reduced monoheme cytochrome *c* (over expressed in *Escherichia coli*) to the *caa*₃ oxygen reductase. The reduction potential for mhc was determined to be +160 mV at pH 7.5. The spectroscopic characterization showed typical features of a low-spin heme with axial coordination methionine-histidine. The subunit is also predicted to have covalently

XIII

bound lipids since in the N-terminus of its amino acid sequence a characteristic consensus of a lipobox is detected. The pentaheme cytochrome *c* subunit was also cloned and expressed in *E. coli* and the UV-visible spectrum showed also characteristic features of low-spin hemes.

This work is a step forward not only in the investigation and recognition of the diversity and robustness of the electron transfer respiratory chains but also in the evaluation of how nature uses the same structural modules conjugated in several different ways.

XIV

Sumário

O trabalho apresentado nesta tese teve como objectivo a caracterização de um complexo com actividade quinol: transportador de electrões oxidorreductase presente nas membranas da bactéria termohalofilica *Rhodothermus (R.) marinus*.

Os complexos envolvidos na cadeia respiratória de *R. marinus* têm sido amplamente estudados nos últimos anos. Antes do início deste trabalho, o complexo I (NADH: quinona oxidorreductase), o complexo II (succinato: quinona oxidorreductase) e três diferentes reductases de oxigénio (pertencentes à superfamília das reductases de oxigénio hemocobre) foram purificados e caracterizados. Devido ao facto das reductases de oxigénio não conseguirem receber electrões directamente de quinóis, a presença de um complexo que permita a transferência de electrões entre o complexo I e II e as reductases de oxigénio era necessária. De facto, um complexo com actividade quinol: HiPIP oxidorredutase foi purificado e parcialmente caracterizado. A ausência da proteína Rieske indicou que o complexo isolado de *R. marinus* teria uma composição diferente daquela observada para o complexo citocromo bc_1 .

Esta tese descreve que na cadeia respiratória de *R. marinus*, o complexo com actividade quinol: transportador de electrões oxidorreductase pertence a uma recém identificada familia de complexos. Estes últimos designaram-se complexos III alternativos sendo o complexo de *R. marinus* o primeiro membro a ser purificado e caracterizado.

O ACIII de *R. marinus* é composto por sete subunidades (A-G), cujos genes codificantes estão organizados numa associação (*ActABCDEFG*). A subunidade A (27kDa) e a subunidade E (22 kDa) têm, nas suas

XV

sequências de resíduos de aminoácidos, cinco e um motivos de ligação a hemos do tipo *c* (CXXCH), respectivamente. Para a subunidade A prevêse, também, a presença de uma hélice transmembranar (TMH). A sequência de resíduos de aminoácidos da subunidade B (97 kDa) apresenta três motivos de ligação para centros do tipo [4Fe-4S]^{2+/1+} e um para um centro do tipo [3Fe-4S]^{1+/0}. As subunidades C e F têm 42 e 35 kDa, respectivamente e dez hélices transmembranares foram previstas para estas subunidades. Duas e uma hélices transmembranares foram, respectivamente, previstas para as subunidades D e G. Nestas últimas subunidades, não foram detectados motivos de ligação para cofactores redox.

A sequência de aminoácidos das subunidades B e C revelou que estas apresentam similaridade com subunidades de membros da família de complexos enzimáticos com ferro, enxofre e molibdénio (complex iron sulfur molybdoenzymes -CISM). Esta família é caracterizada pela presença de três subunidades: uma subunidade catalítica com um cofactor com molibdénio no centro activo, uma subunidade com quatro centros de ferro e enxofre (FCP) e uma subunidade de ligação à membrana (MAP). A subunidade B pode ser vista como uma fusão entre as subunidades catalítica e FCP, dado que os primeiros 800 resíduos de aminoácidos do N-terminal revelam similaridade com a subunidade catalítica enquanto que os restantes 300 resíduos de aminoácidos do Cterminal mostram similaridade com a FCP. No entanto, deve salientar-se que a subunidade B do ACIII não contém molibdénio. A subunidade C revela similaridade com subunidades MAP, ainda que tenha um número maior de TMH. Devido à similaridade entre três das sete subunidades do ACIII e subunidades da familia CISM, a relação do ACIII com esta família foi investigada através da análise de todos os

XVI

genomas completamente sequênciados disponíveis até Setembro de 2009. Em primeiro lugar, foram realizadas pesquisas para determinar a presença dos genes que codificam para subunidades do ACIII em outros organismos. Observou-se que, de facto, o ACIII não é exclusivo de *R. marinus*, estando presente em genomas que não possuem os genes que codificam subunidades do complexo III típico, mas também foram encontrados genomas onde os genes codificantes para ambos os enzimas foram detectados. Além disso, observou-se, em alguns casos, que a associação de genes que codifica o ACIII é seguida por genes que codificam subunidades de reductases de oxigénio. Através da comparação entre as subunidades do ACIII e das subunidades de membros da familia CISM e outras relacionadas com esta, concluiu-se que os complexos III alternativos apresentam uma arquitectura completamente diferente. No entanto, utilizam módulos estruturais já observados em outros enzimas.

A interação do ACIII de *R. marinus* com quinois foi estudada recorrendo às propriedades fluorescentes do HQNO, um análogo do quinol. Assim, determinou-se a presença de, pelo menos, um motivo de ligação a quinóis.

A associação estrutural e funcional estabelecida entre o complexo III alternativo e a reductase de oxigénio *caa*³ foi também investigada. Várias técnicas electroforéticas conjugadas com diferentes procedimentos de coloração levaram à identificação de um complexo com, aproximadamente, 500 kDa formado pelo dois enzimas. Através de técnicas de espectrometria de massa, subunidades dos dois enzimas foram identificadas naquele complexo. Além disso, a associação entre o ACIII e a reductase de oxigénio *caa*³ é, também, funcional dado que quando colocados juntos estes apresentam actividade quinol: oxigénio

XVII

oxidorreductase, inibida por HQNO e KCN (inibidores típicos de enzimas que interactuam, respectivamente, com quinonas e de reductases de oxigénio).

Determinou-se que na associação estrutural e funcional estabelecida entre os dois complexos, o citocromo c monohémico (mhc) do ACIII é responsável por transferir os electrões para a reductase de oxigénio caa₃. Isto porque se observou um consumo de oxigénio, inibido pelo KCN, por parte da reductase de oxigénio caa3 aquando da adição do citocromo c monohémico reduzido (expresso em Escherichia coli). O mhc foi caracterizado bioquimica e espectroscopicamente determinando-se um potencial de redução de +160 mV a pH 7.5. O seu espectro de absorção no visivel revelou as características típicas de um hemo de baixo-spin com uma coordenação metionina-histidina. A presença de lípidos covalentemente ligados à subunidade monohémica está prevista, dado que no N-terminal da sua sequência de aminoácidos observa-se uma lipobox. A subunidade citocromo c pentahémica foi, também, clonada e expressa em E. coli e o seu espectro de UV-visivel mostra caracteristicas típicas de hemos de baixo-spin.

Este trabalho contribuiu para a investigação e reconhecimento da diversidade e robustez existente nas cadeias respiratórias, observandose um novo exemplo de como a natureza utiliza os mesmos módulos estruturais e os conjuga de diferentes maneiras.

XVIII

Abbreviations

ACIII	alternative complex III			
BN	blue native			
CISM	complex iron-sulfur molybdoenzyme			
DDM	n- dodecyl-β -D-maltoside			
DMSO	dimethyl sulfoxide			
EDTA	Ethylenediamine tetraacetic acid			
FCP	four cluster protein			
HiPIP	High Potential Iron-Sulfur protein			
HQNO	2-heptyl-4-hydroxyquinoline-N-oxide			
MAP	membrane anchor protein			
MFIcc	molybdopterin, FeS, integral membrane subunit (two			
	cytochrome <i>c</i> subunits)			
mhc	monoheme cytochrome <i>c</i>			
OD	optical density			
PAGE	polyacrylamide gel electrophoresis			
phcT	pentaheme cytochrome <i>c</i> truncated			
PMSF	phenylmethylsulfonyl fluoride			
<i>R.</i>	Rhodothermus			
SDS	sodium dodecyl sulfate			
TMAO	trimethylamine N-oxide			
TMH	transmembrane helix			

XIX

хх

Table of contents

Chapter 1 Electron transfer respiratory chains

1.1 – Electron transfer respiratory chain		
1.2 - Diversity and flexibility of the electron transfer		
respiratory chains	5	
1.3 – Alternative complex III related complexes	11	
1.3.1-Functionally related - Cytochrome <i>bc</i> ₁ complex family	11	
1.3.1.1- Q-cycle mechanism	12	
1.3.1.2- Inhibitors	16	
1.3.2-Structurally related - Complex iron-sulfur molybdoenzyme	ļ	
family	16	
1.3.2.1- CISM family related complexes	19	
1.4 – References	20	

Chapter 2 Rhodothermus marinus electron transfer respiratory chain

2.1 – <i>Rhodothermus marinus</i>	
2.2 - Rhodothermus marinus respiratory chain	
2.3 –References	

XXI

Characterization of the alternative complex III from *Rhodothermus* marinus

3.1 – Summary		
3.2 - Introduction		
3.3 - Materials and Methods		
3.3.1 - Bacterial growth and protein purification		
3.3.2 – Electrophoresis techniques		
3.3.3 – Protein, heme and metal determination		
3.3.4 – N-terminal amino acid sequence determination		
3.3.5 – Amino acid sequence identification		
3.3.6 – Mass spectrometry experiments		
3.3.7 – Prediction of transmembrane topology		
3.3.8 – Nucleotide sequence accession number		
3.4 – Results		
3.4.1 – Subunits and prosthetic groups composition		
3.4.2 – Amino acid sequence comparison		
3.4.3 – Gene cluster organization and gene sequence analysis 48		
3.4.4 – Protein complex composition		
3.5 – Conclusion		
3.6 - References		

XXII

Structural and functional association of the Alternative complex III with *caa*₃ oxygen reductase

4.1 – Summary	63
4.2 – Introduction	63
4.3 - Materials and Methods	64
4.3.1 – Bacterial growth and protein purification	64
4.3.2 – DNA techniques	65
4.3.3 – Fluorescence spectroscopy	65
4.3.4 – Electrophoresis techniques	66
4.3.5 – Mass spectrometry assays	66
4.3.6 – UV-Visible absorption spectroscopy	67
4.3.7 – Activity assays	67
4.4 – Results	68
4.4.1 – The genomic organization	68
4.4.2 – Interaction of alternative complex III with menadiol	68
4.4.3 – Interaction between alternative complex III and <i>caa</i> ₃	
oxygen reductase	70
4.4.3.1- Structural association	70
4.4.3.2- Functional association	74
4.5 – Discussion	76
4.6 - References	78

XXIII

Characterizationofthec-typecytochromessubunitsofACIIIfromRhodothermusmarinus

5.1 – Summary		
5.2 – Introduction		
5.3 - Material and methods		
5.3.1 - Cloning and expression of the cytochrome c		
subunits of the alternative complex III		
5.3.2 - Protein purification91		
5.3.3 - Protein and heme quantification		
5.3.4 - Electrophoretic techniques		
5.3.5 - Mass spectrometry assays		
5.3.6 - Spectroscopic characterization		
5.3.7 - Experiments with lipase		
5.3.8 - Activities Assays		
5.4- Results and Discussion		
5.3.2.1- Purification and characterization of the		
cytochrome <i>c</i> subunits of ACIII94		
5.3.2.2 - Is monoheme cytochrome <i>c</i> a lipoprotein?		
5.3.2.3 - Within ACIII the mhc subunit is the electron donor		
of <i>caa</i> ₃ oxygen reductase103		
5.5- Conclusions		
5.6- References		

XXIV

The alternative complex III: a different architecture using known building modules

6.1 – Summary
6.2 – Introduction
6.3 – The alternative complex III is a widespread quinol: electron
acceptor oxidoreductase114
6.4 – Structural characterization of the alternative complex III 118
6.5 - Comparison of ACIII with other complexes 121
6.5.1- The iron-sulfur protein- subunit B 123
6.5.2- The membrane quinol interacting proteins - subunits C
and F
6.5.3- <i>c</i> -type heme containing subunits- subunits A and E 127
6.5.3.1- Subunit A 127
6.5.3.2- Subunit E 129
6.5.4- the other membrane bound proteins- subunits D
and G129
6.6 - The alternative complex III is a different complex composed
by "old" modules129

Chapter 7 Concluding remarks

7.1 - Con	cluding	Remarks.		140
-----------	---------	----------	--	-----

XXV

Chapter 8 Supplementary information

XXVI

Electron transfer respiratory chains

1.1 – Electron Transfer respiratory chain
1.2 - Diversity and flexibility of the electron transfer respiratory
chains5
1.3 – Alternative complex III related complexes
1.3.1-Functionally related - Cytochrome <i>bc</i> ¹ complex family11
1.3.1.1- Q-cycle mechanism12
1.3.1.2- Inhibitors
1.3.2-Structurally related - Complex iron-sulfur molybdoenzyme
family16
1.3.2.1- CISM family related complexes
1.4 – References

1.1- Electron transfer respiratory chain [1-7]

Life is only possible with the existence of systems for storage and transmission of information and of mechanism(s) for energy control.

The information is stored in the linear sequence of DNA, in the form of the genetic code, and its replication allows the transmission of this information through generations. The DNA is transcript into RNA which is translated into proteins essential for the cell function.

The mechanisms for control of energy are not so easy to describe and even the definition of energy is not simple. Energy is described as the "capacity to do work" and although a correct measurement of energy is not possible, a difference in energy between a system and its surroundings is. Energy can thus be measured in terms of the heat released during a reaction. In order for living systems to do work they have to change energy from one form to another without using heat as an intermediate, since this means wasting of energy. This issue is achieved by coupling reactions consuming energy and those releasing energy. ATP is considered the energetic currency of cells being its hydrolysis coupled to energy consuming reactions.

Electrons obtained from the catabolism of organic substrates are transferred by electron carriers (such as NADH) to an electron transfer chain. Here the electrons are transported through membrane bound complexes, with increasing redox potentials, to a final electron acceptor (O_2 in the aerobic organisms). However, the redox potential is not the only property determining the transfer of electrons along this sequence of electron transfer complexes. The interaction between the redox components must be specific, since in the absence of specificity the electron transfer would occur directly from the first electron donor

to the final oxidant and all the energy would be released in only one reaction. In fact, in electron transport chains the electron flow between individual components is performed in small steps and with a controlled release of energy from separated redox reactions. Moreover, the possible consumption of the substrates/products of each enzymatic complex by other enzymes outside the main electron transfer chain is another advantage of this electron transfer being preceded in small steps. In order to avoid loss of energy by short circuit reactions (incorrect transfers or back flow of electrons) it is also important that the electron transfer besides being specific is reasonably fast, in the desired direction.

Some of the complexes of the respiratory electron transfer chains couple the transfer of electrons to the translocation of protons across the membrane. This will lead to the formation of a transmembrane electrochemical potential (or proton motive force, *pmf*) composed by two distinct components: one originated by the concentration difference of an ion (in the specific case of a proton, ΔpH), and another due to an electrical potential difference ($\Delta \psi$) between the two sides of the membrane.

The dissipation of the transmembrane electrochemical potential releases energy which is used and transduced into chemical energy by ATP synthase to produce ATP from ADP and phosphate. This enzyme is also able to hydrolyze ATP in order to pump protons against a transmembrane electrochemical difference contributing to its reestablishment [1].

5

Figure 1.1

Generation of a transmembrane electrochemical potential by the mitochondrial electron transfer chain (complexes I-IV) coupled to the production of ATP by ATP synthase.

1.2 - Diversity and flexibility of the electron transfer respiratory chains

In general, electron transfer chains are composed by membrane bound enzymatic complexes with three different activities: electron donor:quinone oxidoreductase, quinol:electron carrier oxidoreductase and electron carrier: final electron acceptor oxidoreductase (figure 1.2). In prokaryotes the latter two complexes can be replaced by a quinol: final electron acceptor oxidoreductase complex. A quinone pool (Q/QH_2) and, in some cases, an electron carrier mediate the transfer of electrons between the enzymatic complexes. The mammalian respiratory chain (figures 1.1 and 1.3) is the most studied electron transfer chain being composed by four different complexes (named complex I to IV) [4, 8]. The complex I and II have NADH: and succinate: quinone oxidoreductase activity, respectively. The dioxygen is the last electron acceptor being reduced to water by the complex IV (cytochrome aa_3 oxygen reductase) while the complex III (cytochrome bc_1 complex) transfers electrons from complexes I and II to complex IV, with quinones and cytochrome *c* as electron carriers. [1] Flavins (FMN or FAD), hemes (*a*, *b*, and *c*), iron-sulfur centers and copper ions are the redox centers present in the mitochondrial complexes.

Figure 1.2

General schematic representation of electron transfer respiratory chains. The quinol: electron carrier oxidoreductase path can be suppressed by the transfer of electrons directly from the quinone/quinol pool to a quinol: final electron acceptor oxidoreductase complex. Adapted from [9].

Although mammalian mitochondria present a simple respiratory chain, some diversity is observed with the presence of several electron donor:quinone oxidoreductases. Besides the complex I and complex II, an electron transfer flavoprotein-ubiquinone oxidoreductase and an α glycero-phosphate dehydrogenase are also responsible for the supply of electrons into the quinone pool [1]. It is worth mentioning that plant mitochondria have an alternative path, in which a so-called alternative 6

7

oxidase (quinol: dioxygen oxidoreductase) may act as the last electron accepting complex; also, plant mitochondria have a type II (or alternative) NADH: quinone oxidoreductase. Both these alternatives complexes do not couple electron transfer to charge translocation/separation, and thus energy is lost in the form of heat [10-12].

Figure 1.3

Schematic representation of the flexibility presented by the mammalian electron transfer respiratory chain. The ubiquinone/ubiquinol pool is the link between the quinone reductases (complex I, complex II, flavoprotein-ubiquinone oxidoreductase and α -glycero-phosphate dehydrogenase) and cytochrome bc_1 complex. The final electron acceptor, dioxygen, is reduced by complex IV which has received the electrons from cytochrome *c*.

The respiratory chains of prokaryotic organisms are more robust than mitochondrial ones since they have several alternative pathways. The ability of these organisms to use different electron donors and final acceptors depending on the growth conditions contributes for the diversity and flexibility observed on their respiratory chains. Therefore, the same organism can present different electron transfer complex composition depending on its growth conditions. The type of quinone and electron carrier expressed may also depend on those conditions. Analogous complexes to the mitochondrial ones are observed in prokaryotes; however, they are simpler having fewer polypeptide chains. The respiratory chain of *Escherichia coli* is the most studied and a good example of the diversity and flexibility of prokaryotic respiratory chains [4, 13, 14]. *E. coli* is one of the cases where a complex with quinol: final acceptor oxidoreductase replaces the quinol: electron carrier oxidoreductase complex (cytochrome bc_1 complex), which is absent. Hence, in this bacterium the quinone/quinol pool is the link

Figure 1.4

Schematic representation of the *Escherichia coli* electron transfer respiratory chain as an example of the high diversity and robustness of respiratory chains. In aerobic conditions NADH dehydrogenase II together with quinol oxidases are expressed and ubiquinone (UQ/UQH₂) mediates the electron transfer. In anaerobiosis the nitrate is the preferred final electron acceptor. MQ, menaquinone; DMQ, dimethylmenoquinone.

between 15 primary dehydrogenases and 10 terminal reductases [14]. *E. coli* is able to grow in diverse oxygen concentrations including total anaerobiosis using nitrate, nitrite, dimethylsulphoxide (DMSO), trimethylamine N-oxide (TMAO) and fumarate as electron acceptors. NADH, succinate, glycerol-3-phosphate, H₂, formate, piruvate, and lactate are the possible electron donors [13, 14]. The expression of the different enzymes is induced by the growth conditions and it was

observed that dioxygen represses the anaerobic respiratory pathways. In anaerobic conditions nitrate is the preferred electron acceptor. The expression of the three types of quinones also depends on the growth conditions being ubiquinone the most abundant quinone in aerobic conditions [15], while in anaerobic growth conditions naphthoquinones are preferred: menaquinone (MK) with fumarate or DMSO as electron acceptors and dimethylmenaquinone (DMK) with nitrate [16].

Additional electron donors can be used such as proline and malate as in the case of *Corynebacterium glutamicum* [17, 18], or sulfide as in the case of *Paracoccus denitrificans* [19]. A surprising aspect of the respiratory chain of the latter bacterium is its capacity to grow on methanol or methylamine as the carbon source, since methanol dehydrogenase and methylamine dehydrogenase transfer the electrons directly to the *aa*₃ oxygen reductase. In the case of methanol dehydrogenase the electron transfer occurs through cytochrome c_{551} , while in the case of methylamine dehydrogenase aminocyanin, a copper protein, mediates the transfer to the cytochrome c_{551} [4, 20].

The presence of different enzymes performing the same reaction is an additional NADH NAD evidence of the NADH NAD NADH н· flexibility of the NDH-2 NAD prokaryotic Q· Q Q NDH-1 OH₂ Nqr QH_2 QH_2 respiratory chains. An example is Na Figure 1.5 the existence of Schematic representation of the different types of NADH dehydrogenase. three enzymes

with NADH: quinone oxidoreductase activity; besides a complex I

analogue (NADH dehydrogenase type I, NDH1) [21], the presence of a so called alternative NADH dehydrogenase (type II, NDH-2), and NADH dehydrogenase type III (or Na⁺⁻ translocating NDH or Nqr) is also observed [22]. In addition to the cytochrome aa_3 oxygen reductase, more types of dioxygen reductases exist, and three different groups can be considered: heme-copper oxygen reductases [23, 24], cytochrome *bd* oxidases [25, 26] and alternative oxidases. The latter is believed to be exclusive of mitochondria; however, it was also found in α -proteobacteria [15, 27, 28].

Despite the large diversity, flexibility and robustness observed in the electron transfer respiratory chains, the cytochrome bc_1 complex was, until now, the only family of enzymes known to perform the quinol: electron carrier oxidoreductase activity (see 1.3.1).

In the work presented in this thesis a complex with quinol:electron carrier oxidoreductase activity which does not belong to the cytochrome bc_1 complex family was, for the first time, identified and characterized. Since this complex, named alternative complex III, is functionally related to the cytochrome bc_1 complex family but structurally related to the complex iron-sulfur molybdoenzymes (CISM) family, in the next section a brief introduction of the two families will be presented.
1.3 – Alternative complex III related complexes

1.3.1- Functionally related complexes - Cytochrome *bc*₁ complex family

Cytochrome bc_1 complexes, complexes III of mitochondria respiratory chain, are integral membrane proteins with quinol: cytochrome *c* oxidoreductase activity. The related cytochrome b_6f complexes are present in cyanobacteria and involved in the photosynthetic pathway

chloroplasts (for in а recent review see [30]). A cytochrome b. а cytochrome \mathcal{C}_1 and а Rieske iron sulfur subunit are the three catalytic subunits of this enzyme family (figure 1.6). The cytochrome b subunit has two *b*-type hemes, named $b_{\rm H}$ and $b_{\rm L}$ (H and L stand for high and low redox potential, respectively), and two quinone/quinol (Q/QH_2) binding sites located towards opposites sides of the membrane.

The prokaryotic enzymes response relat are composed only by [29].

Figure 1.6

the cerevisiae Structure of Saccharomyces cytochrome bc_1 complex with bound cytochrome c in the reduced state at 1.9 Å resolution. One molecule of cytochrome c (green) binds to one of the cytochromes c_1 (*pink*) of the cytochrome bc_1 dimer (light gray). The protein was crystallized with antibody fragments (dark gray). Water molecules are shown in cyan. Lipid and detergent molecules are colored in yellow with oxygen atoms in red. Carbon and oxygen atoms of heme groups and stigmatellin are in black and red, respectively. Yellow horizontal lines indicate the relative position of the membrane. Image from

these three subunits or in some cases have one extra subunit, whereas

the mitochondrial enzymes can have up to eleven subunits. Recently, Kramer, Nitschke and Cooley proposed to term these complexes as Rieske/cyt *b* (RB) complexes since they observed that only the Rieske protein and the cytochrome *b* subunits are conserved, while the cytochrome c_1 is not. This subunit was even considered to be a phylogenetic marker since each phylum has, apparently, its characteristic heme subunit. For example, the "standard" cytochrome c_1 is only present in α -, β - and γ -proteobacteria, whilst the ε proteobacteria branch contains a diheme cytochrome *c* belonging to the cytochrome c_4 family. δ -proteobacteria have a tetraheme cytochrome c_3 and the major difference is observed for cyanobacteria where a cytochrome *f* is present (cytochrome $b_6 f$) [31].

Although related to cytochrome bc_1 complexes, cytochrome b_6f complexes have additional prosthetic groups such as one chlorophyll a, one β -carotene and a heme c_n (also called c_i). The latter heme has a unique property which is the absence of an amino acid side chain as an axial ligand; instead heme c_n is positioned close to heme b_n and a water molecule or a OH⁻ group bridge the iron of c_n and the propionate of b_n [30, 32].

1.3.1.1- Q-cycle mechanism

The cytochrome bc_1 complexes couple the electron transfer to the translocation of protons through a Q-cycle mechanism (figure 1.7), first proposed by Peter Mitchell in the seventies [33, 34] who named it proton-motive Q cycle. Later modified versions were proposed taking into account the data obtained by x-ray and spectroscopic kinetic analysis. This cycle postulates the presence of two quinone binding sites in opposite sides of the membrane: a quinone oxidation site Q_0

(also called Q_P) located towards the outer or positive side of the membrane and a reduction site Q_i (also called Q_N) located close to the inner or negative side of the membrane. One of the most important features of this model is the oxidation of the quinol being proceed in two steps: in the first step one quinol molecule is oxidized in the Q_o site and one of the electrons is transferred to the cytochrome *c* through the FeS center and cytochrome c_1 ("high potential chain"), while the

other electron is transferred through the cytochrome b (b_L and b_H) ("low potential chain") to the Q_i site where a quinone molecule is one electron reduced. In the second step a second quinol molecule is oxidized at the Qo site the electrons and are transferred in a similar The way. quinone molecule at the Q_i site is

Figure 1.7

totally reduced and a second cytochrome c molecule is reduced. In this process two protons are uptaken from the negative side of the membrane and four are delivered at the positive side contributing to the formation of the transmembrane electrochemical potential. Another important property of bc_1 complexes is the mobility of the peripheral arm of the Rieske protein. The available structures of the complex, determined several years after the Q-cycle was proposed, showed that the peripheral arm of the Rieske center is mobile [35] being able to move approximately 20Å. In the oxidized state the Rieske protein is close to the surface of the polypeptide near the Qo site. In the reduced state the interaction becomes weaker and the Rieske protein moves to a new position closer to the cytochrome c_1 . After transferring the electrons to the cytochrome c_1 the Rieske protein returns to the oxidized state and the affinity for cytochrome c_1 becomes lower and thus the position near the Qo site is adopted again [4].

Even though the basic fundaments of the mechanism proposed by Peter Mitchell are still valid and accepted nowadays, several proposals have been made in order to overcome some unexplained details. One of those is that the modified Q-cycle mechanism was proposed considering the bc_1 complex as a one monomer only; however, structural information showed that, in fact, the bc_1 complexes are homodimers [29, 35, 37-44], and also the monomer of the complex is inactive [35, 45-49]. Therefore, it was questioned whether the Q-cycle was viable in the dimer or not. Mechanisms in which the peripheral arm of the Rieske protein of one monomer interacts with the catalytic interface of the other monomer (figure 1.8) and the *b*-type hemes of the two monomers are in close contact and a direct interaction between the active centers of each monomer were proposed [45, 50, 51]. Another issue is related to the formation of reactive oxygen species (ROS, which can lead to the damage of cellular components) due to the high reactivity of the semiquinone intermediates, formed during the Qcycle, with oxygen. Several studies were performed with the intent of detecting the semiquinone radical, but these turned out to be unsuccessful [52-55]. The investigation of how those side reactions are

avoided was also the aim of several studies and different types of mechanism were proposed. The gated and the double gated

Figure 1.8

Structure of the dimeric cytochrome bc_1 from *Rhodobacter capsulatus* and its components. A) Both a side view (top) and a top view (bottom) of the dimeric cyt bc_1 are shown using space-filling representations. Three subunits of one monomer (M2, right) representing the cytochrome b, the cytochrome c_1 , and the Fe/S protein are in slate, cyan, and blue, whereas those of the other monomer (M1, left) are in white and gray. (B) Modified Q-cycle mechanism of cytochrome bc_1 . The three catalytic subunits (cyt b, cyt c_1 , and Fe/S), the cofactors (hemes b_L , b_H , and c_1 , shown as diamonds, and the [2Fe-2S] cluster as a square), and the active sites (Q₀ and Q₁, shown as circles) of the cytochrome bc_1 are represented schematically. Electron transfer (e⁻) steps catalyzed by the enzyme via the bifurcation reaction at the Q₀ site are shown with black arrows on the monomer 1(M1) only. The dashed arrows refer to the mobility of the extrinsic domain of the Fe/S protein. From [36].

mechanisms are based on the allowance or not of an electron transfer to occur depending on the reduction state of the redox partner. For example, in a double gated mechanism the oxidation of the quinol is only allowed when the Rieske protein and the heme b_L are both oxidized. In a concerted mechanism the two electrons from the quinol are transferred to the Rieske protein and to heme b_L at the same time

and therefore the formation of the semiquinone is completely avoided. Another type of proposal takes into account the stabilization of the semiquinone radical making the reaction with oxygen an endoenergetic reaction. However, these mechanisms are difficult to validate since the intermediates of Qo site were never detected [56-59].

1.3.1.2- Inhibitors

Several compounds were described as inhibitors of bc_1 complexes, being associated to the Q_0 site. Antimycin was the only one observed to be associated to the Q_i site. The Q_0 site inhibitors were classified in class I and II according to the distance of their binding position to the heme b_L ; class I (such as stigmatellin and HHDBT) bind to a domain distal from heme b_L and interact with the FeS center, class II (such as mixothiazol and MOA-stilbene) bind to a domain proximal to the heme b_L . The local where NQNO (or HQNO) binds is still controversial, since although it has been described to bind to the Q_i site [60], in the structure of the bovine mitochondrial bc_1 complex this inhibitor was identified in the two quinone sites (Q_0 and Q_i sites) [61].

1.3.2 - Structurally related complexes – Complex iron-sulfur molybdoenzyme (CISM) family

Complex iron-sulfur molybdoenzyme (CISM) is an important family of molybdenum containing enzymes that play a crucial role in supporting respiratory diversity. This family includes enzymes such as DMSO reductase, polysulfide reductase, formate dehydrogenase and nitrate reductase.

The overall composition of the members of this family comprises three subunits: a catalytic subunit, a four cluster protein (FCP) subunit and a membrane anchor protein (MAP) [63]. These subunits are also designated as α , β and γ subunits, respectively [64]. Besides the overall composition, all the CISM family members interact with quinones (or quinols). A remarkable feature of this family is the diversity observed in the orientation of the catalytic and FCP subunits in respect to the membrane. This orientation is dependent of the presence of a twin arginine translocase (*tat*) leader sequence [65, 66] in the N-terminus of the catalytic subunit [63]. In its presence, the catalytic and the FCP subunits are transported across the cytoplasmic membrane into the periplasmic space. In figure 1.9 are represented the structures of two

Figure 1.9

Structures of the CISM family members: nitrate reductase (NarGHI) and formate reductase (FdnGHI) from *Escherichia coli* oriented towards opposite sides of the membrane and therefore creating a redox loop. Adapted from [62].

CISM family members, nitrate reductase (NarGHI) and formate reductase (FdnGHI) that have the catalytic and FCP subunits oriented towards opposite sides of the membrane. In this case, the two enzymes interact by means of the quinol pool creating a redox loop [62, 67] where two protons are translocated across the membrane contributing to the electrochemical membrane potential. Even for the same enzyme, this diversity in the enzyme orientation may exist; for example, it was observed that the nitrate reductase (NarGHI) depending on the organisms, can adopt one or the other orientation [64].

The catalytic subunit has the Mo-*bis*PGD (molybdo-*bis*(pyranopterin guanine dinucleotide) (figure 1.10) and can also have a $[4Fe-4S]^{2+/1+}$ cluster (named FS0) located in the N-terminus of the subunit and close to the Mo-*bis*PGD cofactor. The FCP subunit contains four $[4Fe-4S]^{2+/1+}$ centers named FS1 to FS4 in sequence according to the increasing distance to the catalytic subunit. These Fe-S centers are coordinated by four Cys residues ($C_AxxC_Bx_{2-11}C_CC_DP$). A $[3Fe-4S]^{1+/0}$ center replaces the $[4Fe-4S]^{2+/1+}$ FS4 in NarH of nitrate reductase A [69].

Figure 1.10

Chemical and three dimensional structure of the molybdo-bis(pyranopterin guanine dinucleotide) (Mo-bisPGD). The three dimensional structure is represented in ball and stick presentation (cyan-Mo, grey-C, red-O, yellow- S, brown- Fe, blue-N). Adapted from [68].

The MAP subunit is responsible for the anchoring of the catalytic and FCP subunits to the membrane and also provides a redox quinol/quinone–binding site. This subunit is the one that presents less similarity within the members of this family. The differences reside in the size of the sequence, the number of transmembrane helices, in the presence or absence of two *b*-types hemes and in the amino acid sequence.

The FS0 of the catalytic subunit and FS1-FS4 of the FCP subunit are described to mediate the electron transfer between the Mo-*bis*PGD and the quinone/quinol binding site in the MAP subunit [63].

1.3.2.1- CISM family related complexes

The subunits of the CISM family can be also found as components of other enzymes. The *Rhodovulum sulfidovilum* dimethyl sulfide dehydrogenase (DdhABC) [70, 71] is one example in which the catalytic dimer, formed by the catalytic and FCP subunits, exists without the MAP subunit. Interestingly, DdhC has also two *b*-type hemes but it is not membrane bound. The catalytic subunit can also be found isolated as in the case of TMAO reductase (TorA) [72-74], conjugated with other subunit as a Rieske center containing subunit as in the case of arsenite oxidase (AoxAB)[75], or with a diheme cytochrome *c* as observed for the periplasmatic nitrate reductase (NapAB) [76-78]. In cytochrome *c* Nitrite reductase (NrfABCD) enzyme, the MAP subunit (NrfD) forms a complex with the FCP subunit (NrfC) and with two pentaheme cytochrome c subunits (NrfA and NrfB) [79].

1.4- References

- Saraste, M., Oxidative phosphorylation at the fin de siecle. Science, 1999.
 283(5407): p. 1488-93.
- Nelson, D.L. and M.M. Cox, *Lehninger Principles of Biochemistry*. 4 ed. 2000: W.H. Freeman.
- 3. Cramer, W.A. and G.M. Soriano, *Thermodynamics of energy transduction in biological membranes*. 2002: Cramer and Soriano.
- 4. Nicholls, S.J.F.a.D.G., *Bioenergetics* 3. 2002: Academic Press.
- 5. Morange, M., What history tells us. XI. The complex history of the chemiosmotic theory. J Biosci, 2007. **32**(7): p. 1245-50.
- Rich, P.R., A perspective on Peter Mitchell and the chemiosmotic theory. J Bioenerg Biomembr, 2008. 40(5): p. 407-10.
- 7. Wrigglesworth, J., *Energy and Life*. 1997, London: Taylor and Francis.
- 8. Nelson, M.C.a.D.L., *Lehninger Principles of Biochemistry*. 2005: WH Freeman
- 9. Pereira, M.M., et al., *Respiratory chains from aerobic thermophilic prokaryotes*. J Bioenerg Biomembr, 2004. **36**(1): p. 93-105.
- Rasmusson, A.G., D.A. Geisler, and I.M. Moller, *The multiplicity of dehydrogenases in the electron transport chain of plant mitochondria*. Mitochondrion, 2008. 8(1): p. 47-60.
- 11. Rasmusson, A.G., H. Handa, and I.M. Moller, *Plant mitochondria, more unique than ever*. Mitochondrion, 2008. **8**(1): p. 1-4.
- 12. Richardson, D. and G. Sawers, *Structural biology*. *PMF through the redox loop*. Science, 2002. **295**(5561): p. 1842-3.
- 13. Richardson, D.J., *Bacterial respiration: a flexible process for a changing environment*. Microbiology, 2000. **146 (Pt 3)**: p. 551-71.
- 14. Unden, G. and J. Bongaerts, *Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors.* Biochim Biophys Acta, 1997. **1320**(3): p. 217-34.
- 20

- 15. Suzuki, T., et al., *Alternative oxidase (AOX) genes of African trypanosomes: phylogeny and evolution of AOX and plastid terminal oxidase families.* J Eukaryot Microbiol, 2005. **52**(4): p. 374-81.
- 16. Unden, G., Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport of E. coli and their fnr-independent expression. Arch Microbiol, 1988. **150**(5): p. 499-503.
- 17. Bott, M. and A. Niebisch, *The respiratory chain of Corynebacterium glutamicum*. J Biotechnol, 2003. **104**(1-3): p. 129-53.
- Kalinowski, J., et al., The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartatederived amino acids and vitamins. J Biotechnol, 2003. 104(1-3): p. 5-25.
- Schütz, M., et al., Sulfide-quinone reductase activity in membranes of the chemotrophic bacterium Paracoccus denitrificans GB17. Arch Microbiol, 1998. 170: p. 353–360.
- Baker, S.C., et al., Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol Mol Biol Rev, 1998. 62(4): p. 1046-78.
- Brandt, U., Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem, 2006. 75: p. 69-92.
- 22. Kerscher, S., et al., *The Three Families of Respiratory NADH Dehydrogenases*, in *Bio*. 2007, Springer. p. 185-222.
- Pereira, M.M., et al., Looking for the minimum common denominator in haem-copper oxygen reductases: towards a unified catalytic mechanism. Biochim Biophys Acta, 2008. 1777(7-8): p. 929-34.
- Pereira, M.M. and M. Teixeira, Proton pathways, ligand binding and dynamics of the catalytic site in haem-copper oxygen reductases: a comparison between the three families. Biochim Biophys Acta, 2004. 1655(1-3): p. 340-6.
- 25. Bloch, D.A., et al., *Heme/heme redox interaction and resolution of individual optical absorption spectra of the hemes in cytochrome bd from Escherichia coli.* Biochim Biophys Acta, 2009. **1787**(10): p. 1246-53.

- Junemann, S., Cytochrome bd terminal oxidase. Biochim Biophys Acta, 1997. 1321(2): p. 107-27.
- 27. Atteia, A., et al., *Identification of prokaryotic homologues indicates an endosymbiotic origin for the alternative oxidases of mitochondria (AOX) and chloroplasts (PTOX).* Gene, 2004. **330**: p. 143-8.
- Stenmark, P. and P. Nordlund, A prokaryotic alternative oxidase present in the bacterium Novosphingobium aromaticivorans. FEBS Lett, 2003. 552(2-3): p. 189-92.
- 29. Lange, C. and C. Hunte, *Crystal structure of the yeast cytochrome bc*₁ *complex with its bound substrate cytochrome c.* Proc Natl Acad Sci U S A, 2002. 99(5): p. 2800-5.
- 30. Baniulis, D., et al., *Structure-function of the cytochrome* $b_6 f$ *complex*. Photochem Photobiol, 2008. **84**(6): p. 1349-58.
- 31. Kramer, D.M., W. Nitschke, and J.W. Cooley, The cytochrome bc1 and related bc complexes: The Rieske/Cytochrome b Complex as the Functional Core of a Central Electron/Proton Transfer Complex, in The Purple Phototrophic Bacteria, C.N. Hunter, et al., Editors. 2009, Springer Science and Business MediaB.V. p. 451-473.
- 32. Stroebel, D., et al., An atypical haem in the cytochrome b(6)f complex.Nature, 2003. 426(6965): p. 413-8.
- 33. Mitchell, P., Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett, 1975.
 56(1): p. 1-6.
- 34. Mitchell, P., *Possible molecular mechanisms of the protonmotive function of cytochrome systems.* J Theor Biol, 1976. **62**(2): p. 327-67.
- 35. Zhang, Z., et al., *Electron transfer by domain movement in cytochrome bc*₁.
 Nature, 1998. **392**(6677): p. 677-84.
- Cooley, J.W., D.W. Lee, and F. Daldal, *Across membrane communication* between the Q(o) and Q(i) active sites of cytochrome bc(1). Biochemistry, 2009. 48(9): p. 1888-99.

- Berry, E.A., et al., A new crystal form of bovine heart ubiquinol: cytochrome c oxidoreductase: determination of space group and unit-cell parameters. Acta Crystallogr D Biol Crystallogr, 1995. 51(Pt 2): p. 235-9.
- Xia, D., et al., Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. Science, 1997. 277(5322): p. 60-6.
- Iwata, S., et al., Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science, 1998. 281(5373): p. 64-71.
- 40. Berry, E.A., et al., *Structure of the avian mitochondrial cytochrome* bc₁ *complex.* J Bioenerg Biomembr, 1999. **31**(3): p. 177-90.
- 41. Iwata, M., J. Bjorkman, and S. Iwata, *Conformational change of the Rieske* [2Fe-2S] protein in cytochrome bc1 complex. J Bioenerg Biomembr, 1999.
 31(3): p. 169-75.
- 42. Berry, E.A., et al., *Crystallographic location of two Zn*(2+)-*binding sites in the avian cytochrome bc*(1) *complex*. Biochim Biophys Acta, 2000. 1459(2-3): p. 440-8.
- 43. Hunte, C., et al., Structure at 2.3 A resolution of the cytochrome bc(1) complex from the yeast Saccharomyces cerevisiae co-crystallized with an antibody Fv fragment. Structure, 2000. 8(6): p. 669-84.
- 44. Solmaz, S.R. and C. Hunte, *Structure of complex III with bound cytochrome c in reduced state and definition of a minimal core interface for electron transfer.* J Biol Chem, 2008. **283**(25): p. 17542-9.
- 45. Covian, R. and B.L. Trumpower, *Rapid electron transfer between monomers when the cytochrome bc*₁ *complex dimer is reduced through center* N. J Biol Chem, 2005. 280(24): p. 22732-40.
- 46. Gong, X., et al., Evidence for electron equilibrium between the two hemes b_L in the dimeric cytochrome bc₁ complex. J Biol Chem, 2005. 280(10): p. 9251-7.
- 47. Huang, D., et al., *Characterization of the chloroplast cytochrome b₆f complex as a structural and functional dimer.* Biochemistry, 1994. 33(14): p. 4401-9.

- Yu, C.A., et al., *Three-dimensional structure and functions of bovine heart mitochondrial cytochrome bc*₁ *complex.* Biofactors, 1998. 8(3-4): p. 187-9.
- 49. Yu, C.A., et al., *Structural basis of functions of the mitochondrial cytochrome bc*₁*complex*. Biochim Biophys Acta, 1998. **1365**(1-2): p. 151-8.
- 50. Covian, R. and B.L. Trumpower, *Regulatory interactions in the dimeric cytochrome bc(1) complex: the advantages of being a twin.* Biochim Biophys Acta, 2008. **1777**(9): p. 1079-91.
- 51. Crofts, A.R., et al., *The Q-cycle reviewed: How well does a monomeric mechanism of the bc*(1) *complex account for the function of a dimeric complex*? Biochim Biophys Acta, 2008. **1777**(7-8): p. 1001-19.
- 52. Cape, J.L., M.K. Bowman, and D.M. Kramer, A semiquinone intermediate generated at the Qo site of the cytochrome bc₁ complex: importance for the Q-cycle and superoxide production. Proc Natl Acad Sci U S A, 2007. 104(19): p. 7887-92.
- 53. de Vries, S., et al., *A new species of bound ubisemiquinone anion in QH*₂: *cytochrome c oxidoreductase.* J Biol Chem, 1981. **256**(23): p. 11996-8.
- 54. Junemann, S., P. Heathcote, and P.R. Rich, *On the mechanism of quinol oxidation in the bc*₁ *complex*. J Biol Chem, 1998. **273**(34): p. 21603-7.
- 55. Zhang, H., et al., *Exposing the complex III Qo semiquinone radical*. Biochim Biophys Acta, 2007. **1767**(7): p. 883-7.
- 56. Cape, J.L., M.K. Bowman, and D.M. Kramer, Understanding the cytochrome bc complexes by what they don't do. The Q-cycle at 30. Trends Plant Sci, 2006. 11(1): p. 46-55.
- 57. Chobot, S.E., et al., Breaking the Q-cycle: finding new ways to study Qo through thermodynamic manipulations. J Bioenerg Biomembr, 2008.
 40(5): p. 501-7.
- 58. Crofts, A.R., et al., Proton pumping in the bc1 complex: a new gating mechanism that prevents short circuits. Biochim Biophys Acta, 2006. 1757(8): p. 1019-34.
- Osyczka, A., C.C. Moser, and P.L. Dutton, *Fixing the Q cycle*. Trends Biochem Sci, 2005. 30(4): p. 176-82.
- 24

- 60. Van Ark, G. and J.A. Berden, *Binding of HQNO to beef-heart submitochondrial particles.* Biochim Biophys Acta, 1977. **459**(1): p. 119-27.
- Gao, X., et al., Structural basis for the quinone reduction in the bc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site. Biochemistry, 2003. 42(30): p. 9067-80.
- 62. Simon, J., R.J. van Spanning, and D.J. Richardson, *The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems.* Biochim Biophys Acta, 2008. **1777**(12): p. 1480-90.
- Rothery, R.A., G.J. Workun, and J.H. Weiner, *The prokaryotic complex iron-sulfur molybdoenzyme family*. Biochim Biophys Acta, 2008. 1778(9): p. 1897-929.
- 64. Martinez-Espinosa, R.M., et al., Look on the positive side! The orientation, identification and bioenergetics of 'Archaeal' membrane-bound nitrate reductases. FEMS Microbiol Lett, 2007. **276**(2): p. 129-39.
- 65. Lee, P.A., D. Tullman-Ercek, and G. Georgiou, *The bacterial twinarginine translocation pathway*. Annu Rev Microbiol, 2006. **60**: p. 373-95.
- 66. Natale, P., T. Bruser, and A.J. Driessen, *Sec- and Tat-mediated protein* secretion across the bacterial cytoplasmic membrane--distinct translocases and mechanisms. Biochim Biophys Acta, 2008. **1778**(9): p. 1735-56.
- 67. Jormakka, M., B. Byrne, and S. Iwata, *Protonmotive force generation by a redox loop mechanism*. FEBS Lett, 2003. **545**(1): p. 25-30.
- 68. Schwarz, G., R.R. Mendel, and M.W. Ribbe, *Molybdenum cofactors*, *enzymes and pathways*. Nature, 2009. **460**(7257): p. 839-47.
- 69. Guigliarelli, B., et al., Complete coordination of the four Fe-S centers of the beta subunit from Escherichia coli nitrate reductase. Physiological, biochemical, and EPR characterization of site-directed mutants lacking the highest or lowest potential [4Fe-4S] clusters. Biochemistry, 1996. 35(15): p. 4828-36.

- 70. Hanlon, S.P., et al., *Dimethylsulfide:acceptor oxidoreductase from Rhodobacter sulfidophilus. The purified enzyme contains b-type haem and a pterin molybdenum cofactor.* Eur J Biochem, 1996. **239**(2): p. 391-6.
- McDevitt, C.A., et al., Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol Microbiol, 2002. 44(6): p. 1575-87.
- 72. Ansaldi, M., et al., *Aerobic TMAO respiration in Escherichia coli*. Mol Microbiol, 2007. **66**(2): p. 484-94.
- 73. Mejean, V., et al., *TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon*. Mol Microbiol, 1994. **11**(6): p. 1169-79.
- 74. Zhang, L., et al., Structure of the molybdenum site of Escherichia coli trimethylamine N-oxide reductase. Inorg Chem, 2008. 47(3): p. 1074-8.
- 75. Ellis, P.J., et al., *Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 A and 2.03 A.* Structure, 2001. 9(2): p. 125-32.
- 76. Coelho, C., et al., *Heterodimeric nitrate reductase (NapAB) from Cupriavidus necator H16: purification, crystallization and preliminary Xray analysis.* Acta Crystallogr Sect F Struct Biol Cryst Commun, 2007.
 63(Pt 6): p. 516-9.
- Potter, L.C., et al., *Competition between Escherichia coli strains expressing either a periplasmic or a membrane-bound nitrate reductase: does Nap confer a selective advantage during nitrate-limited growth?* Biochem J, 1999. 344
 Pt 1: p. 77-84.
- Stewart, V., Y. Lu, and A.J. Darwin, *Periplasmic nitrate reductase* (*NapABC enzyme*) supports anaerobic respiration by Escherichia coli K-12. J Bacteriol, 2002. 184(5): p. 1314-23.
- 79. Clarke, T.A., et al., Purification and spectropotentiometric characterization of Escherichia coli NrfB, a decaheme homodimer that transfers electrons to the decaheme periplasmic nitrite reductase complex. J Biol Chem, 2004. 279(40): p. 41333-9.
- 26

Chapter 2

Rhodothermus marinus electron transfer respiratory chain

2.1 – Rhodothermus marinus	<u>29</u>
2.2 - <i>Rhodothermus marinus</i> respiratory chain	30
2.3 – References	33

2.1- Rhodothermus marinus

Rhodothermus (R.) marinus (figure 2.1) was isolated for the first time from shallow marine springs in Iceland hot by Alfredsson and coworkers [1] and later was also found in shallow marine hot springs in Praia da Ribeira Quente, Azores, Portugal [2]. It is a strict aerobic, (from www.jgi.doe.gov)

Rhodothermus marinus DMS4252 cells

heterotrophic, thermohalophilic Gram-negative bacterium which grows optimally at 65 °C, pH 7 and at 1-2 % of NaCl [1, 2].

Comparison of the 16S rRNA gene sequence placed Rhodothermus close to the root of the Flexibacter-Cytophaga-Bacteroides (FCB) group with affinities to green sulphur bacteria, fibrobacteria and spirochaetes [1]. The recently defined Bacteroidetes phylum substituted the former FBC group and R. marinus was included as member of the Crenotrichacea family within the Sphingobacteria class (figure 2.2) [3]. Within Bacteroidetes, Rhodothermus and Thermonema are the only described thermophilic species while Salinibacter ruber (close relative to R. marinus) is an extreme halophile and Toxothrix trichogenes is a psychrophile.

Chapter 2

Phylogenetic position of Rhodothermus marinus. From [3].

2.2- Rhodothermus marinus respiratory chain

Rhodothermus marinus has been extensively studied and most of the known enzymes of this bacterium were identified during screenings for thermostables enzymes with potential biotechnological application. The electron transfer respiratory chain of *R. marinus* has also been extensively studied, namely the identification, purification and characterization of its components. For that, a non-pigmented strain of *R. marinus*, PRQ-62B strain, is used.

The electrons enter the respiratory chain of *R. marinus* at the level of a typical complex I with NADH:quinone oxidoreductase activity. This 30

complex was isolated with a non-covalently bound FMN and six to eight iron sulfur centers of the $[2Fe-2S]^{2+/1+}$ and $[4Fe-4S]^{2+/1+}$ types were observed by EPR spectroscopy [4, 5]. This complex was, recently, described to have two translocation sites, one of which, translocates sodium ions in the opposite direction of protons [6]. A succinate: quinone oxidoreductase complex (complex II) is another entry point for the electrons. It is composed by three subunits (70, 32 and 18 kDa) and has a covalently bound FAD, 2 *b*-type hemes and three iron sulfur centers ($[2Fe-2S]^{2+/1+}$, $[4Fe-4S]^{2+/1+}$, and $[3Fe-4S]^{1+/0}$) [7, 8]. According to the proposed classification for the succinate: quinone oxidoreductases and quinol:fumarate oxidoreductases, complex II from *R. marinus* is a type B enzyme [9].

Three different oxygen reductases, a *caa*₃ [10, 11], a *ba*₃ [12] and a *cbb*₃ [13] belonging to the A2, B and C families of heme-copper oxygen reductases, respectively, have been also characterized. The *caa*₃ oxygen reductase is composed by four subunits with apparent molecular masses of 42, 35, 19 and 15 kDa. It has a *c*- and two *a*-type hemes with redox potentials of 260, 255 and 180 mV, respectively [10]. The *cbb*₃ oxygen reductase was purified as a five subunits complex with apparent molecular masses of 64, 57, 36, 26 and 13 kDa. Two low-spin *c*-type heme (26 kDa subunit) and one low- and one high-spin *b*-type hemes were observed in this enzyme with redox potentials ranging from -50 to +195 mV [13]. The *ba*₃ oxygen reductase was isolated with two subunits with apparent molecular masses of 42 and 38 kDa. The heme content of the enzyme comprises a low-spin *b*-type heme and a high-spin *a*-type heme [12]. A periplasmatic cytochrome *c* [14] and a membrane-bound HiPIP (high-potential iron-sulfur protein) [15-17]

were described as the electron transfer proteins. The quinone pool is composed in its majority by menaquinone-7 [18].

The three oxygen reductases present in this bacterium are oxidases of

periplasmatic electron carriers, being unable to receive electrons directly from reduced quinones. Therefore, the presence of a bc_1 complex or an analogue with quinol: periplasmatic electron carrier oxidoreductase activity is required to link complex I and II to complex IV. To investigate the presence of a cytochrome bc_1 complex, genomic and for biochemical searches а Rieske centre were performed, without success. Furthermore, the typical inhibitors of bc_1 Figure 2.3 complexes such as antimycin A, mixothiazol DBMIB, and showed to have no effect in R. marinus electron transfer

The redox cofactors of R. marinus complex III Upper- Visible spectra of oxidized (---) and reduced (--) R. marinus complex III with the characteristic fingerprints of cytochromes. Down- EPR spectrum of the [3Fe-4S] center [19].

respiratory chain [15, 19]. In fact, a complex with menadiol:HiPIP oxidoreductase activity [16] was purified from R. marinus membranes [19]. It was proposed to be a multihemic cytochrome complex containing at least five low-spin heme centers (figure 2.3A). Spectroscopic data strongly suggested that two of the hemes are in van 32

der Waals contact, yielding a split Soret band. EPR spectra of the oxidized complex showed resonances of five low-spin ferric heme centers and of a [3Fe-4S]^{1+/0} centre (figure 2.3B), which has a high reduction potential of +140 mV. The hemes have reduction potentials in the range of -45 to +235 mv [20].

The further and deep characterization of this different complex III present in the *Rhodothermus marinus* respiratory chain (figure 2.4) was the aim of the work presented in this dissertation.

Figure 2.4

Rhodothermus marinus electron transfer respiratory chain. The gray and black spheres represent *c*- and *b*-type hemes, respectively, while the smaller spheres represent copper ions. Cubes, pyramids and rectangles represent $[4Fe-4S]^{2+/1+}$, $[3Fe-4S]^{1+/0}$ and $[2Fe-2S]^{2+/1+}$ centers, respectively.

2.3- References

 Alfredsson, G.A., et al., *Rhodothermus marinus, gen. nov., sp. nov., a* thermophilic, halophilic bacterium from submarin hot springs in Iceland. J. Gen Microbiol., 1988. 134: p. 299-306.

- Nunes, O.C., M.M. Donato, and M.S. da Costa, Isolation and characterization of Rhodothermus strains from S. Miguel, Azores. Syst. Appl. Microbiol., 1992. 15: p. 92-97.
- 3. Bjornsdottir, S.H., et al., *Rhodothermus marinus: physiology and molecular biology*. Extremophiles, 2006. **10**(1): p. 1-16.
- 4. Fernandes, A.S., M.M. Pereira, and M. Teixeira, *Purification and characterization of the complex I from the respiratory chain of Rhodothermus marinus*. J Bioenerg Biomembr, 2002. **34**(6): p. 413-21.
- Fernandes, A.S., et al., *Electron paramagnetic resonance studies of the iron-sulfur centers from complex I of Rhodothermus marinus.* Biochemistry, 2006. 45(3): p. 1002-8.
- 6. Batista, A.P., et al., *Energy conservation by Rhodothermus marinus respiratory complex I.* Biochim Biophys Acta. **1797**(4): p. 509-15.
- 7. Fernandes, A.S., et al., *Quinone reduction by Rhodothermus marinus succinate:menaquinone oxidoreductase is not stimulated by the membrane potential.* Biochem Biophys Res Commun, 2005. **330**(2): p. 565-70.
- 8. Fernandes, A.S., M.M. Pereira, and M. Teixeira, *The succinate dehydrogenase from the thermohalophilic bacterium Rhodothermus marinus: redox-Bohr effect on heme b*_L. J Bioenerg Biomembr, 2001. **33**(4): p. 343-52.
- 9. Lemos, R.S., et al., *Quinol:fumarate oxidoreductases and succinate:quinone oxidoreductases: phylogenetic relationships, metal centres and membrane attachment.* Biochim Biophys Acta, 2002. **1553**(1-2): p. 158-70.
- Pereira, M.M., et al., *The caa₃ terminal oxidase of the thermohalophilic bacterium Rhodothermus marinus: a HiPIP:oxygen oxidoreductase lacking the key glutamate of the D-channel.* Biochim Biophys Acta, 1999. 1413(1): p. 1-13.
- 11. Pereira, M.M., et al., *A tyrosine residue deprotonates during oxygen reduction by the caa*₃ *reductase from Rhodothermus marinus.* FEBS Lett, 2006. **580**(5): p. 1350-4.

- Verissimo, A.F., et al., A ba₃ oxygen reductase from the thermohalophilic bacterium Rhodothermus marinus. FEMS Microbiol Lett, 2007. 269(1): p. 41-7.
- Pereira, M.M., et al., *Heme centers of Rhodothermus marinus respiratory chain. Characterization of its cbb₃ oxidase.* J Bioenerg Biomembr, 2000.
 32(2): p. 143-52.
- Stelter, M., et al., A novel type of monoheme cytochrome c: biochemical and structural characterization at 1.23 A resolution of Rhodothermus marinus cytochrome c. Biochemistry, 2008. 47(46): p. 11953-63.
- 15. Pereira, M.M., et al., *A membrane-bound HIPIP type center in the thermohalophile Rhodothermus marinus.* FEBS Lett, 1994. **352**(3): p. 327-30.
- 16. Pereira, M.M., J.N. Carita, and M. Teixeira, *Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: characterization of the iron-sulfur centers from the dehydrogenases and investigation of the high-potential iron-sulfur protein function by in vitro reconstitution of the respiratory chain.* Biochemistry, 1999. **38**(4): p. 1276-83.
- 17. Stelter, M., et al., Structure at 1.0 A resolution of a high-potential ironsulfur protein involved in the aerobic respiratory chain of Rhodothermus marinus. J Biol Inorg Chem, 2009.
- Tindall, B.J., *Lipid-composition of Rhodothermus marinus*. FEMS Microbiol Lett, 1991. 80: p. 65-68.
- Pereira, M.M., J.N. Carita, and M. Teixeira, Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III. Biochemistry, 1999. 38(4): p. 1268-75.
- Pereira, M.M., J.N. Carita, and M. Teixeira, Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III. Biochemistry, 1999.
 38: p. 1268-1275.

Chapter 2

Chapter 3

Characterization of the alternative complex III from Rhodothermus marinus

3.1 - Summary
3.2 - Introduction
3.3 - Materials and Methods
3.3.1 - Bacterial growth and protein purification
3.3.2 – Electrophoresis techniques
3.3.3 – Protein, heme and metal determination
3.3.4 – N-terminal amino acid sequence determination 44
3.3.5 – Amino acid sequence identification
3.3.6 – Mass spectrometry experiments 45
3.3.7 – Prediction of transmembrane topology 45
3.3.8 – Nucleotide sequence accession number
3.4 - Results
3.4.1 – Subunit and prosthetic group composition
3.4.2 – Amino acid sequence comparisons
3.4.3 – Gene cluster organization and gene sequence analysis 48
3.4.4 – Protein complex composition 51
3.5 - Conclusion
3.6 - References

The results presented in this chapter were published in:

Manuela M. Pereira, **Patrícia N. Refojo**, Gudmundur O. Hreggvidsson, Sigridur Hjorleifsdottir, Miguel Teixeira (2007) *The alternative complex III from Rhodothermus marinus – a prototype of a new family of quinol: electron acceptor oxidoreductase* FEBS Letters **481**, 4831-4835

Patrícia N. Refojo, Filipa L. Sousa, Miguel Teixeira, Manuela M. Pereira (2010) *The alternative complex III: A different architecture using known building modules* Biochim Biophys Acta *IN PRESS*

Chapter 3

Acknowledgements:

Dr João Carita is acknowledged for cell growth and Eng. Manuela Regalla for N-terminal sequencing. Dr. Mikhail Yanuyshin, from The Institute of Basic Biological Problems, Pushino, Russia, is acknowledged for the critical reading and discussions.

Dr. Gudmundur O. Hreggvidsson and Dr. Sigridur Hjorleifsdottir performed the partial DNA sequencing of *Rhodothermus marinus*.

3.1 – Summary

Rhodothermus marinus is a thermohalophic bacterium, whose respiratory chain has been extensively studied. The biochemical, spectroscopic and genetic search for a bc_1 complex was always fruitless; however a functional equivalent complex, i.e. having quinol:cytochrome c oxidoreductase activity was purified from the membranes and biochemically and spectroscopically characterized [1]. Now, with the sequencing of *R. marinus* genome it was possible to assign the N-terminal sequences obtained from several proteins of this complex to its coding genes. It was observed that the R. marinus complex III has the same genomic organisation of the so called MFIcc complexes, which have been proposed to be oxidoreductases participating in the respiratory, as well as in the photosynthetic electron transfer chains [2]. Furthermore, it was observed the presence of this complex in several genomes in which the genes coding for the bc_1 complex are absent and in which a quinol:cytochrome c oxidoreductase has to be present. R. marinus alternative complex III is coded by a seven gene cluster. Three of these genes codify for peripheral proteins; two cytochromes c, a pentahemic and a monohemic one, and a large protein containing a [3Fe-4S]^{1+/0} and three [4Fe-4S]^{2+/1+} centres. The other four genes code for transmembrane proteins: two are predicted to have ten transmembrane helices with putative quinone binding motifs and are homologous to each other and to membrane subunits present in several members of the complex iron-sulfur molybdoenzyme family; the two other genes code for one and two transmembrane helices proteins. This is the first time that an assignment of a biochemically characterized alternative complex III to its coding gene cluster is performed.

3.2 – Introduction

The presence of a typical bc_1 complex in the membranes of *Rhodothermus marinus* has been excluded given that the Rieske center EPR signal was never detected, and the typical inhibitors of this family of enzymes were showed to be inefficient. In fact, the presence of a completely different complex III in *R. marinus* has been described [1, 3]. The green non-sulfur bacterium *Chloroflexus aurantiacus* is another organism in which a complex with quinol: mobile electron carrier oxidoreductase activity should exist. Furthermore, when the membrane cytochrome-containing complexes from this bacterium were analyzed, no complex matching the features of a bc_1 complex was found [4].

With the increasing number of prokaryotic genome sequences, it is now possible to identify *in silico* so far unknown respiratory complexes, namely when accompanied with a thorough biochemical characterization at the protein level, which results from the still largely unexplored enormous biodiversity of the microbial world. Based on sequence analysis of the genomes so far sequenced, Yanyushin and coworkers anticipated the presence of a protein complex, proposing it to be an alternative complex III, involved in the respiratory and in the photosynthetic electron transfer chains [2]. Furthermore, it was observed the presence of this complex in several genomes in which the genes coding for the bc_1 complex are absent and in which it is expected to exist a quinol: electron acceptor oxidoreductase, since genes coding for oxygen reductases, oxidizing periplasmatic electron donors are present. The gene cluster identified by those authors is constituted by six genes. Two of those are homologous to genes coding for the three

subunits of molybdopterin containing oxidoreductases of the DMSO reductase family and other two code for *c* type cytochromes [2].

In this report the genes coding for the subunits of the *R. marinus* complex III [1] were identified and it is shown that this complex is a MFIcc complex like the one proposed by Yanyushin and coworkers [2]. It is thus established undoubtedly the existence of a different complex III, named alternative complex III (ACIII), by its identification at the biochemical and genomic levels.

3.3 – Material and methods

3.3.1 - Bacterial growth and protein purification

Rhodothermus marinus strain PRQ62b growth and protein purification were performed as described in [5].

3.3.2 – Electrophoresis techniques

Tricine-SDS-PAGE was carried out as described by Schägger and von Jagow [6] with 10%T, 3%C, and heme staining followed Goodhew *et al* [7].

3.3.3 – Protein, heme and metal determination

Protein concentrations were determined using the bicinchoninic acid (BCA) method [8] and an apparent molecular mass of 266 kDa, determined by Tricine-SDS-PAGE (considering a 1:1 stoichiometry for all subunits) was considered to define metal and heme contents. Heme content was determined by pyridine hemochrome [9], and HPLC analysis after heme extraction as described in [5]. Iron and molybdenum were analyzed by atomic absorption on a graphite

chamber, at the Laboratório de Análises, Instituto Superior Técnico, Lisbon and Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa.

3.3.4 – N-terminal amino acid sequence determination

The enzyme subunits were transferred from the SDS-PAG to a polyvinylidene difluoride (PVDF) membrane. Each transferred sample was submitted to N-terminal protein sequence analysis by automated Edman degradation [10] using an Applied Biosystems Procise 491 HT protein sequencer.

3.3.5 – Amino acid sequence identification

The sequence of the genes coding for the subunits of the ACIII from *Rhodothermus marinus* were partially identified in silico from a local Prokaria genome database of *R. marinus* ITI378 by using the N-terminal sequences determined for the several proteins. The gene library was obtained by Gudmundur O. Hreggvidsson and Sigridur Hjorleifsdottir (Iceland) and it was prepared as follows. DNA was fragmented by nebulization and cloned into pTrueBlue (Stratagene). Plasmids were isolated by high-throughput minipreparation, and sequencing was performed. Contigs were assembled with the Phred–Phrap package [11], and putative open reading frames (ORFs) were identified with the GetORF program from the EMBOSS package [12], followed by BLASTP searches [13] against protein sequence databases. Gaps were closed by PCR amplification using sequences from flanking contigs. Neither the full sequence of gene *F* nor gene *G* were obtained at this stage. In order to obtain the complete gene sequence of the gene

F and taking into account that in some organisms the genes coding for subunits of ACIII are followed by those coding for subunits of the *caa*³ oxygen reductase [2], appropriate primers were designed and PCRs were performed at ITQB. The forward primer (5'-ATG GCC GAA G TG AAA GCG AA -3') was designed to hybridize with the available gene sequence of *AtcF*, while the reverse primer (5'- CCT TTA CCC CAC CAC CGC AT-3') was designed to hybridize with the first gene of the cluster coding for the *caa*³ oxygen reductase. The sequence of the PCR product obtained was translated using an expasy tool (http://www.expasy.org/tools/dna.html).

3.3.6 – Mass spectrometry experiments

The protein band with an apparent molecular mass of 18 kDa from the Tricine- SDS-PAG of the alternative complex III was excised and submitted to proteolytic digestion with Trypsin and analyzed by mass spectrometry. The mass spectra of the peptides were acquired by MALDI-TOF in the positive reflection mode in the Mass Spectrometry Laboratory, Analytical Services Unit of ITQB/IBET. The identification of the peptides was performed by direct comparison of the molecular masses predicted for the peptides with those experimentally obtained. The molecular masses of the peptides were predicted using PeptideMass at http://expasy.org/cgi-bin/peptide-mass.pl [14].

3.3.7 – Prediction of transmembrane topology

Transmembrane topology was predicted using ConpredII at http://bioinfo.si.hirosaki-u.ac.jp/~ConPred2/ [15].

3.3.8 – Nucleotide sequence accession number

The gene sequence coding for alternative complex III gene cluster of *R. marinus* has been deposited in GenBank under accession no. 924811.

3.4– Results

3.4.1 – Subunits and prosthetic groups composition

The purified *R. marinus* ACIII shows seven bands in a Tricine-SDS-PAGE, corresponding to subunits with apparent molecular masses of 97, 42, 35, 27, 25, 22 and 18 kDa (figure 3.1-A). The bands corresponding to subunits with apparent molecular masses of 27 and 22 kDa have also colored with heme staining, indicating the presence of *c*- type hemes (figure 3.1-B).

The cytochromes of the ACIII from *R. marinus* have been previously characterized by HPLC analysis and UV-visible and EPR
spectroscopies and a total of 5 hemes were showed to be present in the complex [5]. Besides the presence of *c*-type hemes, the presence of a *b*-type heme was reported based on the maximum absorption band at 557 nm for one of the hemes and on HPLC analysis. The heme content was here reanalyzed. The peak at 557 nm is still present, but no hemes were detected by HPLC analysis, meaning that only *c*-type hemes are present in the complex. The complex did not contain molybdenum and the iron content was now determined by atomic absorption and a value of 20 ± 0.5 Fe per protein molecule was obtained.

3.4.2 – Amino acid sequence comparison

The N-terminal sequences for four of the bands have been determined: for the 97 kDa band, RYPVEKILPYV, for the 42 kDa band, AHATKDL, for the 35 kDa band, AEVKANGFPGWLLDP, and for the 25 kDa band, EARDGS. Attempts to sequence the N-terminal of the other bands were always fruitless. Search in *R. marinus* strain ITI378 gene database showed that the first sequence corresponds to the N-terminal sequence of a putative molybdopterin containing reductase which is fused to an iron-sulfur protein. The two sequences obtained for the 42 and 35 kDa bands correspond to two N-terminal sequences of different transmembrane proteins present in several complexes of the DMSO reductase family (eg DmsC; PsrC, NrfD). The last sequence is the N-terminal of a hypothetical protein present in several genomes.

3.4.3 - Gene cluster organization and gene sequence analysis

The genes coding for the above mentioned proteins seem to form a cluster with two other genes coding for two type *c* cytochromes with predicted molecular masses of 27 and 23.5 kDa, which is in agreement with the results of the heme staining of the SDS- PAGE.

The genomic organization of the alternative complex III seems to be the same observed by Yanyushin and coworkers [2], which was proposed to codify for a new class of bacterial membrane bound oxidoreductases involved in the respiratory and in the photosynthetic electron transfer chains. Searching in all genomes so far available the authors observed that these complexes are distributed in almost all bacterial phyla, with special relevance for those in which genes coding for a bc_1 complex are not present, but a quinol: electron acceptor activity has to be present.

Gene *ActA* codes for a protein containing five heme C binding motifs, CXXCH, being the fifth motive one amino acid residue apart from the C-terminal. Seven other histidine and three methionine residues are present in the sequence being candidates for the sixth ligand of the heme irons. A possible signal peptide in the N-terminal region may be present, but the putative cleavage site is inside the predicted transmembrane helix and thus it is possible that this cytochrome is attached to the membrane by that helix. Gene *ActB* is the fusion of two genes, encoding a putative molybdpterin containing protein (N-terminal) and an iron-sulfur protein (C-terminal), whose genes cluster together in several genomes coding for complexes of the DMSO reductase family. Three binding sites for [4Fe-4S]^{2+/1+} clusters and one for a [3Fe-4S]^{1+/0} cluster are observed in the deduced sequence; in the previous characterization of *R. marinus* complex the

[3Fe-4S]^{1+/0} cluster was identified by EPR spectroscopy. This gene, like the ones coding for the molybdpterin containing oxidoreductase of the DMSO reductase family has a twin arginine translocase (Tat) signal peptide [16, 17]. Gene ActC codes for a homologue of nrfD, which as mentioned above is a transmembrane protein of some members of the DMSO reductase family responsible for the interaction with quinones. Topology prediction reveals the possibility of ten transmembrane helices. Two possible quinone binding sites, as proposed by Fisher and Rich [18], are present in the transmembranes helices. Gene ActD codes for a hypothetical protein predicted to have two transmembrane helices. The protein coded by gene ActE contains one CXXCH motif, and several histidines and methionines residues that can be the heme sixth ligand. However, this is most probably a methionine residue in the conserved motive MPA present in other cytochromes (e.g.[19]). No transmembrane helices were predicted to be present. Finally gene ActF codes for a protein homologous to the one coded by gene ActC. However, when comparing the gene sequence of gene *ActF* deposited in the local Prokaria genome database with those from other MFIcc complexes, the R. marinus gene seemed to be incomplete. In order to obtain the complete sequence of ActF, suitable primers were designed taking into consideration that in several organisms the gene cluster conding for MFIcc is followed by that coding for subunits of caa3 oxygen reductase [2] and PCRs were performed. A PCR product with ca 1800 bp was obtained and sequenced. The sequencing revealed the total sequence of the ActF gene and also an ORF which did not correspond to any subunit of the already known subunits of the alternative complex III and of the *caa*₃ oxygen reductase complexes. The protein encoded by this gene, named G, was predicted to have

14.5 kDa and one transmembrane helix. No binding motifs for redox cofactors were observed. The subunit G was assigned to the protein band observed in the SDS-PAG of the alternative complex III with an apparent molecular mass of 18 kDa (figure 3.1). This assignment was confirmed by peptide mass fingerprint analysis.

Table 3.1: Peptide mass fingerprint of in-gel tryptic digest of the band with an apparent molecular mass of 18 kDa in the SDS-PAG of figure 3.1.

Comparision of the molecular masses values experimentaly obtained for the protein band with an apparent molecular mass of 18 kDa in the Tricine-SDS-PAGE of ACIII (fig 3.1) with those predicted for subunit G of the ACIII (accession number YP_003289521). Zero and one possible miss cleavage were considered for the comparison.

Start- End	m/z (Observed)	m/z (predicted)	Miss cleavage	Sequence
7-30	2577.1926	2577.2943	1	KQPAVAEAELPAVQPD EANF EAPR
8-30	2449.1035	2449.1993	0	QPAVAEAELPAVQPDE ANFE APR
70-81	1471.6918	1471.7288	1	YPLREETEAHAR
82-89	1895.8868	1895.9497	0	QLLEGYGVVDAEQGVY R
104- 128	2692.2048	2692.2922	0	AMEEIVEAYGGDSVWT LPQP SAVSR
104- 128	2708.2380	2708.2872	0	AMEEIVEAYGGDSVWT LPQP SAVSR (oxidation M)

The gene cluster of *R. marinus* alternative complex III is thus composed by seven genes organized as in figure 3.2. This cluster has one more gene than the gene cluster of MFIcc proposed by Yanyushin and coworkers.

50

Figure 3.2

Gene cluster organization of the alternative complex III from *R. marinus*. The gene cluster is composed of seven genes (*ActA* - *G*). *ActA* codes for a protein containing five heme *c* binding motifs. *ActB* is the fusion of two genes, a putative molybdopterin containing protein (N-terminal) and an iron-sulfur protein (C-terminal), containing three binding sites for $[4Fe-4S]^{2+/1+}$ clusters and one for a $[3Fe-4S]^{1+/0}$ cluster. *ActC* and *ActF* code for transmembrane proteins with 10 TM helices each and are both homologs of the membrane proteins of some members of the DMSO reductase family responsible for the interaction with quinones. *ActD* and *ActG* code for hypothetical proteins predicted to have two and one transmembrane helices, respectively. *ActE* codes for a monohemic cytochrome *c*.

3.4.4 – Protein complex composition

Based on the genomic organization, on previous biochemical and

functional studies and on the available information for members of the CISM family, the R. marinus alternative complex III may look like schematized in figure 3.3. The order of prosthetic groups is not known; here it is only intended to show that subunits containing the groups prosthetic should be peripheral

Figure 3.3

Schematic representation of the alternative complex III from *R. marinus*. Based on the genomic organization, on our previous biochemical and functional studies and on what is known for members of the DMSO reductase family. The gray spheres represents the *c*-type hemes and cubes and pyramides represents $[4Fe-4S]^{2+/1+}$ and $[3Fe-4S]^{1+/0}$ centers, respectively.

and facing the periplasm, based on the observation of the signal peptides present in the genes coding for these proteins. The presence of *c* type cytochromes and of a $[3Fe-4S]^{1+/0}$ centre has already been established in the previous characterization of *R. marinus* alternative complex III. The presence of three $[4Fe-4S]^{2+/1+}$ centers, besides the similarity with the members of DMSO reductase family, from which several structures are known, is highly supported by the iron content of the sample, considering the presence of five hemes, three $[4Fe-4S]^{2+/1+}$ centers and one $[3Fe-4S]^{1+/0}$ center.

At a first glance it may appear unexpected that having a protein similar to a molybdopterin reductase this complex does not contain molybdenum. This situation is not unique. The structure of the Cterminal part of Nqo3/NuoG, the largest subunit of respiratory chain complex I, is also similar to the family of molybdopterin reductases [20]. In fact it presents the same four structural domains, where domains II and III create a cavity, which in the other members of the family is occupied by the molybdopterin guanine dinucleotide (MGD) prosthetic group. In the case of Nqo3 the cavity is occupied by domain IV. The function of the C-terminal of Nqo3 is not known, being a flexible area and suggested to have a regulatory role [20].

Similarly to what is observed for the nitrate reductases that are members of the DSMO reductase family, coded by the NarGHI operons, for the succinate:quinone oxidoreductase [21, 22] and for the DMSO reductase of *E. coli* engineered with a [3Fe-4S]^{1+/0} cluster [23], this centre should be the one that interacts with the quinone/quinol. In this case, the subunit of *R. marinus* alternative complex III containing the iron-sulfur centers should be the one receiving the electrons from the membrane subunits and transferring these to the *c* type

cytochromes. Also taking into account the structure of the formate dehydrogenase from *Escherichia coli*, the iron-sulfur centers should form a wire for electron transfer [24].

The two transmembrane subunits with the higher molecular mass are homologous to each other and homologous to several membrane proteins of the DMSO reductase family. Interaction studies of 2-nheptyl-4-hydroxyquinoline-N-oxide (HQNO) with DMSO reductase from *E. coli* showed a binding stoichiometry of 1:1, thus indicating the presence of one quinone binding site [25]. As mentioned above, inspection of the amino acid sequences of these subunits reveals the presence of at least two possible quinone binding sites, as proposed by Fisher and Rich [18], and so the presence of more than one quinone binding site can not be excluded. The reason that the alternative complex III from *R. marinus* contains two of such membrane subunits is not known, but again taking the example of complex I this is not unique since in this type of complex it is observed the presence of homologous subunits within the complex, such as Nqo 12, Nqo13 and Nqo14 [26, 27].

The small transmembrane subunits seem to be unique for these alternative complexes and its function is unknown and quinone binding sites seem not to be present.

3.5 – Conclusion

The alternative complex III of *R. marinus* is a newly identified quinol: electron acceptor oxidoreductase complex composed by seven subunits: two *c*-type heme containing subunits (a mono and a pentaheme); four membrane bound subunits, and a peripheral subunit

with three $[4Fe-4S]^{2+/1+}$ and one $[3Fe-4S]^{1+/0}$ centers. Comparing the composition of the alternative complex III here described with the one of the bc_1 it can be observed that, generically, they are not completely different. Both have transmembrane subunits, which interact with quinone/quinols and transfer electrons to an iron-sulfur containing protein, which in its turn promotes the electron transfer to cytochromes.

The existence of two complexes performing the same reaction, i.e. two different complexes III, in this case, is not unique in respiratory chains. For all the other respiratory complexes there are alternatives. In the case of complex I, Type II (NDH-II) and Na⁺-pumping NADH:quinone oxidoreductases are alternatives. Different types of oxygen reductases of the heme-copper family and of the *bd* family are observed as well as succinate:quinone oxidoreductases with different types of membrane attachments. In this report we have established undoubtedly the existence of an alternative complex III by its identification at the biochemical and genomic levels.

3.6 - References

- Pereira, M.M., J.N. Carita, and M. Teixeira, *Membrane-bound electron* transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III. Biochemistry, 1999. 38(4): p. 1268-75.
- Yanyushin, M.F., et al., *New class of bacterial membrane oxidoreductases*. Biochemistry, 2005. 44(30): p. 10037-45.

- 3. Pereira, M.M., J.N. Carita, and M. Teixeira, *Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: characterization of the iron-sulfur centers from the dehydrogenases and investigation of the high-potential iron-sulfur protein function by in vitro reconstitution of the respiratory chain.* Biochemistry, 1999. **38**: p. 1276-1283.
- Yanyushin, M.F., Fractionation of cytochromes of phototrophically grown Chloroflexus aurantiacus. Is there a cytochrome bc complex among them? FEBS Lett, 2002. 512(1-3): p. 125-8.
- Pereira, M.M., J.N. Carita, and M. Teixeira, Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III. Biochemistry, 1999.
 38: p. 1268-1275.
- 6. Schägger, H. and G. Von Jagow, *Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for the Separation of Proteins in the Range of 1 to 100 kDA.* Anal. Biochem., 1987. **166**: p. 368-379.
- Goodhew, C.F., K.R. Brown, and G.W. Pettigrew, *Haem Staining in Gels, a Useful Tool in the Study of Bacterial c-type Cytochromes.* Biochim. Biophys. Acta, 1986. 852: p. 288-294.
- Smith, P.K., et al., *Measurement of protein using bicinchoninic acid*. Anal Biochem, 1985. 150(1): p. 76-85.
- Berry, E.A. and B.L. Trumpower, *Simultaneous determination of hemes a*, *b*, *and c from pyridine hemochrome spectra*. Anal Biochem, 1987. 161(1): p. 1-15.
- Edman, P. and G. Begg, *A protein sequenator*. Eur J Biochem, 1967. 1(1): p. 80-91.
- Ewing, B. and P. Green, *Base-calling of automated sequencer traces using* phred. II. Error probabilities. Genome Res, 1998. 8(3): p. 186-94.
- Rice, P., I. Longden, and A. Bleasby, *EMBOSS: the European Molecular Biology Open Software Suite*. Trends Genet, 2000. 16(6): p. 276-7.

- Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402.
- Wilkins, M.R., et al., Detailed peptide characterization using PEPTIDEMASS--a World-Wide-Web-accessible tool. Electrophoresis, 1997. 18(3-4): p. 403-8.
- Arai, M., et al., ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res, 2004. 32(Web Server issue): p. W390-3.
- Berks, B.C., T. Palmer, and F. Sargent, *Protein targeting by the bacterial twin-arginine translocation (Tat) pathway.* Curr Opin Microbiol, 2005.
 8(2): p. 174-81.
- Palmer, T., F. Sargent, and B.C. Berks, *Export of complex cofactor-containing proteins by the bacterial Tat pathway*. Trends Microbiol, 2005.
 13(4): p. 175-80.
- 18. Fisher, N. and P.R. Rich, *A motif for quinone binding sites in respiratory and photosynthetic systems.* J Mol Biol, 2000. **296**(4): p. 1153-62.
- 19. Srinivasan, V., et al., *Structure at 1.3 A resolution of Rhodothermus marinus caa*(3) cytochrome c domain. J Mol Biol, 2005. **345**(5): p. 1047-57.
- Sazanov, L.A. and P. Hinchliffe, Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science, 2006.
 311(5766): p. 1430-6.
- 21. Iverson, T.M., et al., *Structure of the Escherichia coli fumarate reductase respiratory complex*. Science, 1999. **284**(5422): p. 1961-6.
- 22. Lancaster, C.R.D., et al., *Structure of fumarate reductase from Wolinella succinogenes at 2.2 A resolution*. Nature, 1999. **402**: p. 377-385.
- Rothery, R.A. and J.H. Weiner, *Interaction of an engineered [3Fe-4S]* cluster with a menaquinol binding site of Escherichia coli DMSO reductase. Biochemistry, 1996. 35(10): p. 3247-57.
- 24. Jormakka, M., et al., *Molecular basis of proton motive force generation: structure of formate dehydrogenase-N.* Science, 2002. **295**(5561): p. 1863-8.
- 56

- Zhao, Z. and J.H. Weiner, Interaction of 2-n-heptyl-4-hydroxyquinoline-N-oxide with dimethyl sulfoxide reductase of Escherichia coli. J Biol Chem, 1998. 273(33): p. 20758-63.
- 26. Mathiesen, C. and C. Hagerhall, *The 'antiporter module' of respiratory chain complex I includes the MrpC/NuoK subunit -- a revision of the modular evolution scheme.* FEBS Lett, 2003. **549**(1-3): p. 7-13.
- 27. Friedrich, T. and B. Bottcher, *The gross structure of the respiratory complex I: a Lego System.* Biochim Biophys Acta, 2004. **1608**(1): p. 1-9.

Chapter 3

Chapter 4

The structural and functional association of Alternative complex III and caa3 oxygen reductase

4.1 - Summary				
4.2 - Introduction				
4.3 - Materials and Methods				
4.3.1 – Bacterial growth and protein purification				
4.3.2 – DNA techniques 65				
4.3.3 – Fluorescence spectroscopy				
4.3.4 – Electrophoresis techniques				
4.3.5 – Mass spectrometry assays				
4.3.6 – UV-Visible absorption spectroscopy				
4.3.7 – Activity assays 67				
4.4 - Results				
4.4.1 - The genomic organization				
4.4.2 - Interaction of alternative complex III with menadiol. 68				
4.4.3 - Interaction between alternative complex III and				
<i>caa</i> ³ oxygen reductase				
4.4.3.1 - Structural association				
4.4.3.2 - Functional association				
4.5 - Discussion				
4.6 - References				

The results presented in this chapter were published in:

Patrícia N. Refojo, Miguel Teixeira and Manuela M. Pereira (2010) *The alternative complex III from Rhodothermus marinus and its structural and functional association with caa*₃ *oxygen reductase* Biochim Biophys Acta **1797**, 1477-1482

Chapter 4

Acknowledgments:

Dr. João Carita is acknowledged for cell growth.

Dr. Ana Coelho and Ana P. Batista are acknowledged for the Peptide Mass Fingerprint identifications.

Dr. Eurico Melo is acknowledged for all the help with the Fluorescence measurements.

4.1 – Summary

An alternative complex III (ACIII) is a respiratory complex with quinol: electron acceptor oxidoreductase activity. It is the only example of an enzyme performing complex III function that does not belong to the *bc*₁ complex family. ACIII from *Rhodothermus* (*R.*) marinus was the first enzyme of this type to be isolated and characterized, and in this work we deepen its characterization. We addressed its interaction with the quinol substrate and with the caa3 oxygen reductase, whose coding gene cluster follows that of the ACIII. There is at least, one quinone binding site present in R. marinus ACIII as observed by fluorescence quenching titration of HQNO, a quinone analogue inhibitor. Furthermore, electrophoretic and spectroscopic evidence, taken together with mass spectrometry revealed a structural association between ACIII and caa3 oxygen reductase. The association was also shown to be functional, since quinol: oxygen oxidoreductase activity was observed when the two isolated complexes were put together. This work is thus a step forward in the recognition of the structural and functional diversities of prokaryotic respiratory chains.

4.2- Introduction

Until now the bc_1 complexes were considered to be the only complexes involved in the aerobic respiratory chains to have quinol: cytochrome *c* oxidoreductase activity. The alternative complex III from *Rhodothermus marinus* was the first purified and characterized example of an enzyme with the equivalent function but showing a completely different constitution [1, 2].

In the study performed by Yanyushin and coworkers [3] it was observed that in several genomes the gene cluster coding for ACIII (called MFIcc in the cited reference) is followed by the gene cluster coding for oxygen reductases. The clustering between the genes coding for subunits of complex III and complex IV have been also observed for *Mycobacterium smegmatis* [4] and *Corynebacterium glutamicum* [5]. In the two cases the gene cluster coding for subunits of the *aa*₃ oxygen reductase is preceded by that coding for subunits of the cytochrome *bc* complex and a functional association between the two complexes of *Mycobacterium smegmatis* [4, 6] and *Corynebacterium glutamicum* [8] have an extra domain with a *c*-type heme binding motif (CxxCH), proposed to replace the soluble cytochrome *c* [4-7] (showed to be absent [7, 9]).

Functional associations of complex III and IV were also observed in other bacteria where the gene clusters of these complexes are not consecutive namely in *Thermophilic bacterium PS3* [10], *Paracoccus denitrificans* [11] and *Thermus thermophilus* [12].

In this work we address the structural and functional association of the ACIII of *R. marinus* with the *caa*₃ oxygen reductase and also the interaction with menadiol (analogue of the *R. marinus* physiologic quinol).

4.3 - Materials and Methods

4.3.1 – Bacterial growth and protein purification

Growth of *Rhodothermus marinus* strain PRQ62b was performed as described before [1]. Solubilised membranes (prepared according to

[1]) in 20 mM Tris-HCl, 1 mM PMSF, 0.05% n-Dodecyl β –D-maltoside (DDM) pH8 were applied into a Q-Sepharose High Performance column. The sample was eluted applying a gradient from 0 to 0.5 M of NaCl in the same buffer. A fraction eluted with approximately 0.35 M of NaCl, called D5, and containing both the ACIII and the *caa*₃ oxygen reductase was obtained. This fraction was used for further studies, including a Blue Native (BN)-PAGE and a Tricine-SDS-PAGE. The same fraction was also submitted to further chromatographic procedures in order to isolate the ACIII and the *caa*₃ oxygen reductase as described before [1, 13].

4.3.2 – DNA techniques

R. marinus genomic DNA was extracted from a liquid grown culture using GenElute Bacterial Genomic DNA kit (Sigma). In order to confirm that the gene clusters coding for the ACIII and for the caa3 oxygen reductase were consecutive, appropriate primers were designed. The forward primer (5'-ATG GCC GAA G TG AAA GCG AA -3') was designed to hybridize with the last gene of the cluster coding for ACIII while the reverse primer (5'- CCT TTA CCC CAC CAC CGC AT-3') was designed to hybridize with the first gene of the cluster coding for the caa3 oxygen reductase. The sequence of the PCR obtained was translated using product an expasy tool (http://www.expasy.org/tools/dna.html).

4.3.3 – Fluorescence spectroscopy

The binding of HQNO (2-heptyl-4-hydroxyquinoline-N-oxide) to the ACIII was measured on a Cary Varian Eclipse fluorescence spectrophotometer. The excitation wavelength was set at 341 nm and

the emission spectra were recorded between 370 and 600 nm. These measurements were performed considering the quenching of the HQNO fluorescence by the addition of ACIII. The complex was added to a 6 μ M HQNO solution in small aliquots to a maximum concentration value of 4.4 μ M. The fluorescence of the ACIII at the mentioned wavelengths was also measured and subtracted. The number of binding sites (n) and the binding constant (K) were determined from the following equation, $log (F_0-F)/F = log K + nlog [Q]$ (equation 1) [14], where the values F and F₀ are the fluorescence intensities of HQNO in the presence and absence of the ACIII (quencher), respectively.

4.3.4 – Electrophoresis techniques

The BN-PAGE was performed as in [15] and the Tricine-SDS-PAGE was carried out as in [16] with 10% T, 3% C. Heme staining was done as in [17] to identify the protein bands of the complex having covalently bound hemes. The bands of BN-PAGE were also stained for cytochrome c oxidase activity according to [18].

4.3.5 – Mass spectrometry assays

The protein bands present in the Tricine-SDS-PAGE having as sample the D5 lane of the BN-PAGE were excised from the gel and submitted to proteolytic digestion with Trypsin or Chymotrypsin. The mass spectra of the peptides were acquired by MALDI-TOF in the positive reflection mode in the Mass Spectrometry Laboratory, Analytical Services Unit of ITQB/IBET. The identification of the peptides was performed either by searching in the data bases with

Mascot software (http://www.matrixscience.com, [19]) or by direct comparison of the molecular masses predicted for the peptides with those experimentally obtained. The molecular masses of the peptides were predicted using PeptideMass at http://expasy.org/cgi-bin/peptide-mass.pl [20].

4.3.6– UV-Visible absorption spectroscopy

UV-visible absorption spectroscopy was performed using a Shimadzu UV-1603 spectrophotometer. The ACIII (0.28 μ M) spectra were measured under anaerobic conditions using a mixture of glucose (3 μ M), glucose oxidase (4U/mL) and catalase (132U/mL). HQNO (used three times more concentrated than ACIII) was used as inhibitor.

4.3.7– Activity assays

The menaquinol: oxygen oxidoreductase activity was determined by the oxygen consumption measured polarographically with a Clarktype oxygen electrode, YS Model 5300, from Yellow Springs. The assays were carried out at 30 °C in 20 mM potassium phosphate pH6.5 buffer. Menadiol, obtained by reducing menadione with sodium dithionite [21], was used as the electron donor for the menaquinol: oxygen oxidoreductase activity measurements. The ACIII and the *caa*₃ oxygen reductase were used in a 1:1 ratio. KCN (\approx 0.7 mM) and HQNO (the same ratio as before) were used as inhibitors of *caa*₃ oxygen reductase and ACIII, respectively. The activity values were calculated per milligram of *caa*₃ oxygen reductase. HiPIP, when used, was six times more concentrated than ACIII and *caa*₃ oxygen reductase.

4.4 - Results

4.4.1 – The genomic organization

In the genome of several organisms the gene cluster coding for the ACIII precedes the gene cluster coding for oxygen reductases [3, 22]. In most genomes in which this type of organization is observed the oxygen reductases genes code for a *caa*₃, nevertheless examples of genes coding for other oxygen reductases, such as *cbb*₃ oxygen reductases are also observed [22].

In order to investigate whether *R. marinus* genome contains such a gene organization, suitable primers were designed to amplify the region between the two clusters. A PCR product with ca 1800 bp was obtained and sequenced. The N-terminal and C-terminal part of this sequence corresponded to those of the *ActF* and *SCOI* (codes for a protein involved in the incorporation of copper) gene sequences, showing that indeed in *R. marinus* the gene clusters coding for the ACIII and for the *caa*₃ oxygen reductase were consecutive (figure 4.1).

Rhodothermus marinus genomic organization of the genes coding for the alternative complex III (black boxes) and those coding for the *caa*₃ oxygen reductase (grey boxes).

4.4.2 – Interaction of alternative complex III with menadiol

The interaction of ACIII with menadiol, a menaquinol analogue, was investigated by UV-Visible absorption spectroscopy. It was observed that the oxidized ACIII was approximately 60 % reduced by menadiol (figure 4.2-A).

Figure 4.2

UV-Visible Absorption Spectra of the alternative complex III in the oxidized state (—) and reduced by menadiol (—) or by sodium dithionite (---). In the absence (A) and presence (B) of HQNO.

The fully reduced state of the complex was achieved by the addition of sodium dithionite. In order to check the specificity of menadiol reduction, HQNO, a menadiol structural analogue and an inhibitor of several quinone interacting enzymes, was used. In its presence the reduction by menadiol was 25

reduction by menualor was

% inhibited (figure 4.2-B).

Several studies showed that the fluorescence intensity of HQNO is quenched upon its binding to a protein (e.g. DMSO reductase [23] and nitrate reductase [24]). HQNO has a maximum of fluorescence at 479 nm when excited at 341 nm. А decrease in its fluorescence intensity with the

Figure 4.3

ACIII (concentrations ranging between 0.5 and 4.4 μ M) quenching effect on HQNO fluorescence. Emission spectra with excitation at 341 nm.

increasing concentration of the ACIII was observed (figure 4.3). The

fluorescence quenched titration data were analyzed considering the quenching of HQNO fluorescence intensity by ACIII as a static process [25]. A binding constant of 159 nM and the presence of 1 binding site (n=1.1) were calculated from the fitting of equation 1 (figure 4.4).

Figure 4.4

Double-log plot of the quenching effect on HQNO fluorescence by the alternative complex III monitored at 479 nm. The data were fitted using equation 1.

Our results indicate that the ACIII of *R. marinus* has one binding site for HQNO, which nevertheless does not exclude the presence of more quinone binding sites, as observed for the bc_1 complex.

4.4.3 – Interaction between alternative complex III and *caa*₃ oxygen reductase

4.4.3.1- Structural association

The structural association of the ACIII and the *caa*₃ oxygen reductase was investigated by native gel electrophoresis (figure 4.5). For this process, i-the fraction D5, obtained after the first chromatographic step; ii- the isolated ACIII and iii- the *caa*₃ oxygen reductase were applied in independent lanes in a BN-PAG. The result of this electrophoresis showed that ACIII migrated with an apparent molecular mass of 361 kDa, while the *caa*₃ oxygen reductase showed an apparent molecular mass of 210 kDa. Bands corresponding to these

masses could not be observed in the lane of the D5 fraction. Instead, a band with an apparent molecular mass of 550 kDa was detected, which suggested that D5 fraction contained an association of ACIII and *caa*₃ oxygen reductase. Replicates of the gel were submitted to other staining procedures. Heme staining (figure 4.5B) revealed that the 550 kDa band was the only band which stained for covalently bound hemes in the lane of D5 (figure 4.5B, lane 2). This result was consistent with the presence of an association of ACIII and *caa*₃ oxygen reductase, respectively, as expected, stained both under this procedure. The *in gel* cytochrome *c* oxidase activity assays (figure 4.5C) showed a positive result for the *caa*₃ oxygen reductase and in the case of D5 fraction the activity marker was spread in the first half of the lane but it was absent

Figure 4.5

Blue Native-PAGE of D5 fraction (lane 2), alternative complex III (lane 3) and caa_3 oxygen reductase (lane 4). Molecular mass protein markers are present in lane 1. The native gel was stained with Coomassie (A), with Heme-staining procedures (B) and cytochrome *c* oxidase in gel activity (C).

in the 200 kDa region. The results from the two staining procedures corroborated the association of the ACIII and *caa*₃ oxygen reductase.

The upper part (669-232 kDa) of the D5 lane of the BN gel lane was submitted to a Tricine-SDS-PAGE (2D) (figure 4.6). Several bands were observed in this denaturant second dimension. Nevertheless, in the lane corresponding to the band with the apparent molecular mass of 550 kDa only subunits with apparent molecular masses compatible with subunits of the complexes III and IV were observed. It was not possible to assign the bands to each subunit just by analysing the migration profiles of the subunits because two of the subunits of ACIII [26] and two of the *caa*₃ oxygen reductase [13] show the same apparent molecular masses upon electrophoresis. The protein bands were further identified by MS analysis: bands 1, 3 and 4 were assigned to

Figure 4.6

Tricine SDS-PAGE of the lane of the D5 fraction obtained after its subjection to BN-PAGE. Left Lane – molecular mass protein markers.

subunits B, F and E (monohemic cytochrome *c*), respectively, of the ACIII; band 5 was identified as subunit III of *caa*₃ oxygen reductase (see tables 4.1-4.4). These results unequivocally showed that both, ACIII and *caa*₃ oxygen reductase were present in the complex observed at 550 kDa in the BN gel.

Table 4.1: Peptide mass fingerprint of in-gel tryptic digest of the band 1. Comparision of the molecular masses values experimentaly obtained for the protein band 1 in the Tricine-SDS-PAGE of the lane D5 (fig 4.6) with those predicted for subunit B of the ACIII (accession number ABV55245). Zero and one possible miss cleavage were considered for the comparison.

Start- End	m/z (Observed)	m/z (predicted)	Miss cleavage	Sequence
81-86	760.4097	760.4716	0	ILPYVR
87-106	2305.9522	2306.1889	0	QPEEIIPGIPLYYATAMPFR
135-153	2065.8349	2066.0189	0	GATGVFEQASLLNLYDPDR
160-174	1694.6764	1694.8285	1	KGEPASWGDFVQFAR
247-261	1617.8482	1617.6747	0	VIVSLDADFLGPTDR
334-345	1358.6003	1358.7215	0	FAGHPYVVEIAR
527-535	1092.4279	1092.5221	0	GAFEQAWQR
914-922	1296.5487	1296.6636	1	RFNWFNWVK
915-939	3031.5610	3032.0200	1	FNWFNWVKTLPIQVQMAQNP DVTVR

Table 4.2: Peptide mass fingerprint of in-gel tryptic digest of the band 3.

Comparision of the molecular masses values experimentaly obtained for the protein band 3 in the Tricine-SDS-PAGE of the lane D5 (fig 4.6) with those predicted for subunit F of the ACIII (accession number ABV55249). Zero and one possible miss cleavage were considered for the comparison.

Start- End	m/z (Observed)	m/z (predicted)	Miss	Sequence
6-21	1809.5911	1809.9758	0	ANGFPGWLLDPLRPTR
28-35	1047.3486	1047.5581	1	YRLPEDVR
92-99	928.3425	928.5363	0	AQWVVAVR
183-186	1565.4198	1565.7554	0	QDVDPDPSIPAQQR
256-264	995.4024	995.6108	1	RGPLQGIVR
400-412	1527.4330	1527.7372	0	HSLVPQNDPYMAR
400-412	1543.4287	1543.7322	0	HSLVPQNDPYMAR (oxidation M)

59-71

59-71

60-71

60-71

72-84

94-105

164-177

178-185

1433.8068

1449.7962

1277.7105

1293.7033

1514.7863

1264.7692

1568.7833

977.5670

E of the ACIII (accession number ABV55248). Zero and one possible miss cleavage were considered for the comparison. m/z Miss m/z Start- End Sequence cleavage (Observed) (predicted) 46-58 1583.7494 1582.7421 0 KFEAQELNPFFADRR 46-59 1739.8518 1738.8445 KFEAQELNPFFADRRA 1

1

1

0

0

1

0

0

0

RRAMRPPVPGTVPRG RRAMRPPVPGTVPRG

RAMRPPVPGTVPRG RAMRPPVPGTVPRG

RGLLKEDTPFYFGKT

RNMPAYGHQIPVADRW

RIPVAVTPELVARG

oxidation (M)

oxidation (M)

RWAIVAYVRA

Table 4.3: Peptide mass fingerprint of in-gel tryptic digest of the band 4.

1432.7995

1448.7889

1276.7032

1292.6960

1513.7790

1263.7619 1568.7760

976.5597

Comparision of the molecular masses values experimentaly obtained for the protein band 4 in the Tricine-SDS-PAGE of the lane D5 (fig 4.6) with those predicted for subunit

Table 4.4 : Peptide mass fingerprint of in-gel chymotryptic digest of the band 5.
Comparision of the molecular masses values experimentaly obtained for the protein
band 5 in the Tricine-SDS-PAGE of the lane D5 (fig 4.6) with those predicted for subunit
III of the caa3 oxygen reductase (accession number CAC08533). Zero and one possible
miss cleavage were considered for the comparison.

Start- End	m/z (Observed)	m/z (predicted)	Miss cleavage	Sequence
34-41	891.292	891.921	0	DAAKLGMW
44-51	947.852	947.5812	0	LVTEILLF
116-124	904.5502	903.816	0	LTIALAGVF
184-193	1088.341	1088.6574	0	VALKAQRGVF
199-207	991.921	992.5292	0	TPVEISALY

4.4.3.1- Functional association

The functional association of the ACIII and the *caa*₃ oxygen reductase was addressed by investigating the direct oxidation of the former by the oxygen reductase. Figure 4.8 shows the UV-Visible spectra of the

ACIII in the oxidized state and reduced by sodium dithionite. In the presence of oxygen, sub-stoichiometric amounts of *caa*₃ oxygen reductase could reoxidise the ACIII.

Figure 4.7

UV-Visible absorption spectra of the alternative complex III in the oxidized and reduced state, and re-oxidized by the *caa*₃ oxygen reductase.

Moreover, if the ACIII receives electrons from quinol and gives electrons to the *caa*₃ oxygen reductase, a complex formed by the two enzymes should have quinol: oxygen oxidoreductase activity. This activity was determined by measuring oxygen consumption by a 1:1 mixture of the two complexes upon addition of menadiol and a value of 77.3 μ M O₂ .min⁻¹.mg⁻¹ was obtained. Addition of KCN (the typical oxygen reductases inhibitor) completely abolished O₂ consumption, while the addition of HQNO inhibited this activity by 45 % (34.8 μ M O₂ .min⁻¹.mg⁻¹).

Chapter 4

Example of the menadiol: oxygen oxidoreductase activity measurements of the structural and functional association of the ACIII and the *caa*₃ oxygen reductase. Inhibitory effect of KCN in oxygen consumption.

HiPIP was described as being one of the electron acceptors of the ACIII [1]. Therefore, in order to investigate its effect on the menadiol: oxygen oxidoreductase activity, the same experiment was performed in its presence. An increase of 20% in the activity (97 μ M O₂ .min⁻¹.mg⁻¹) was observed. This result can be interpreted as HiPIP being able to mediate the electron transfer but not being essential.

4.5 – Discussion

In the electron transfer respiratory chain of the bacterium *R. marinus* the ACIII is the only enzyme which accepts electrons directly from reduced quinones. As previously shown, it is capable of performing the same function as the cytochrome bc_1 complex, although it does not belong to its family.

Here we addressed the interaction of ACIII with quinol and *caa*³ oxygen reductase. We observed that the complex is reduced by menadiol, the analogue of *R. marinus* physiologic quinone, and that this reduction is inhibited by HQNO. The presence of at least one quinol binding site in the ACIII was determined by fluorescence 76

quenching titration of HQNO. In the case of cytochrome bc_1 complexes the HQNO binds only to one (Qi) of the two quinone binding sites [27]; therefore, the presence of two or more quinol binding sites in the ACIII could not be excluded.

In several organisms, including *R. marinus*, ACIII coding genes are followed by those coding for *caa*₃ oxygen reductase. This observation led to the hypothesis of a direct interaction between the two complexes. The findings here presented showed that the ACIII and *caa*₃ oxygen reductase are structurally and functionally associated into a 550 kDa complex (figure 4.9).

Figure 4.9

Schematic representation of the structural and functional association between the alternative complex III (subunits A-G) and the *caa*₃ oxygen reductase (catalytic subunits I and II). The gray spheres represent *c*-type hemes, the smaller gray and black spheres represent copper ions while cubes and pyramids represent [4Fe-4S]^{2+/1+} and [3Fe-4S]^{1+/0} clusters, respectively.

The functional association of the ACIII and the *caa*₃ oxygen reductase was further demonstrated by the observation of menadiol: oxygen

oxidoreductase activity, upon mixing the two purified complexes, which was KCN and HQNO inhibited. In cytochrome bc_1 complexes, and according to the Q-cycle mechanism, the cytochrome c_1 is the last electron acceptor within the complex, transferring electrons to the periplasmatic cytochrome c [28, 29]. The monohemic subunit of the ACIII is proposed to perform an equivalent role. In the case of direct interaction with caa_3 oxygen reductase this subunit is also proposed to replace the role of the periplasmatic electron carriers (such as cytochrome c and HiPIP).

4.6 - References

- Pereira, M.M., J.N. Carita, and M. Teixeira, Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III. Biochemistry, 1999. 38(4): p. 1268-75.
- 2. Pereira, M.M., J.N. Carita, and M. Teixeira, *Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: characterization of the iron-sulfur centers from the dehydrogenases and investigation of the high-potential iron-sulfur protein function by in vitro reconstitution of the respiratory chain.* Biochemistry, 1999. **38**(4): p. 1276-83.
- Yanyushin, M.F., et al., *New class of bacterial membrane oxidoreductases*. Biochemistry, 2005. 44(30): p. 10037-45.
- 4. Matsoso, L.G., et al., Function of the cytochrome bc₁-aa₃ branch of the respiratory network in mycobacteria and network adaptation occurring in response to its disruption. J Bacteriol, 2005. **187**(18): p. 6300-8.

- Niebisch, A. and M. Bott, Purification of a cytochrome bc-aa₃ supercomplex with quinol oxidase activity from Corynebacterium glutamicum. Identification of a fourth subunity of cytochrome aa₃ oxidase and mutational analysis of diheme cytochrome c₁. J Biol Chem, 2003. 278(6): p. 4339-46.
- 6. Megehee, J.A., J.P. Hosler, and M.D. Lundrigan, *Evidence for a cytochrome bcc-aa*₃ *interaction in the respiratory chain of Mycobacterium smegmatis*. Microbiology, 2006. **152**(Pt 3): p. 823-9.
- Niebisch, A. and M. Bott, Molecular analysis of the cytochrome bc₁-aa₃ branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c₁. Arch Microbiol, 2001. 175(4): p. 282-94.
- 8. Sone, N., et al., A novel hydrophobic diheme c-type cytochrome. Purification from Corynebacterium glutamicum and analysis of the QcrCBA operon encoding three subunit proteins of a putative cytochrome reductase complex. Biochim Biophys Acta, 2001. **1503**(3): p. 279-90.
- Sakamoto, J., et al., Cytochrome c oxidase contains an extra charged amino acid cluster in a new type of respiratory chain in the amino-acid-producing Gram-positive bacterium Corynebacterium glutamicum. Microbiology, 2001. 147(Pt 10): p. 2865-71.
- Sone, N., M. Sekimachi, and E. Kutoh, Identification and properties of a quinol oxidase super-complex composed of a bc1 complex and cytochrome oxidase in the thermophilic bacterium PS3. J Biol Chem, 1987. 262(32): p. 15386-91.
- Berry, E.A. and B.L. Trumpower, Isolation of ubiquinol oxidase from Paracoccus denitrificans and resolution into cytochrome bc1 and cytochrome c-aa3 complexes. J Biol Chem, 1985. 260(4): p. 2458-67.
- Janzon, J., B. Ludwig, and F. Malatesta, *Electron transfer kinetics of soluble fragments indicate a direct interaction between complex III and the caa₃ oxidase in Thermus thermophilus.* IUBMB Life, 2007. **59**(8-9): p. 563-9.

- Pereira, M.M., et al., *The caa₃ terminal oxidase of the thermohalophilic bacterium Rhodothermus marinus: a HiPIP:oxygen oxidoreductase lacking the key glutamate of the D-channel.* Biochim Biophys Acta, 1999. 1413(1): p. 1-13.
- Gok, E., C. Ozturk, and N. Akbay, Interaction of thyroxine with 7 hydroxycoumarin: a fluorescence quenching study. J Fluoresc, 2008. 18(5): p. 781-5.
- 15. Schagger, H., *Membrane Protein Purification and Crystallization 2/e: A Practical Guide.* 2003, New York: Elsevier Science.
- 16. Schagger, H. and G. von Jagow, *Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa.* Anal Biochem, 1987. **166**(2): p. 368-79.
- Goodhew, C.F., K.R. Brown, and G.W. Pettigrew, *Haem staining in gels, a useful tool in the study of bacterial c-type cytochromes.* Biochem. Biophys. Acta, 1986. 852: p. 288-294.
- 18. Molnar, A.M., et al., Evaluation by blue native polyacrylamide electrophoresis colorimetric staining of the effects of physical exercise on the activities of mitochondrial complexes in rat muscle. Braz J Med Biol Res, 2004. **37**(7): p. 939-47.
- Perkins, D.N., et al., Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 1999.
 20(18): p. 3551-67.
- 20. Wilkins, M.R., et al., *Detailed peptide characterization using PEPTIDEMASS--a World-Wide-Web-accessible tool.* Electrophoresis, 1997. **18**(3-4): p. 403-8.
- 21. Fieser, L.F., *Convinient procedures for the preparation of antihemorragic compounds*. The Journal of Biological Chemistry, 1940: p. 391-396.
- 22. Refojo, P.N., et al., *The alternative complex III: a different architecture using known building modules. in press*, 2010.

- Cheng, V.W., et al., Investigation of the environment surrounding ironsulfur cluster 4 of Escherichia coli dimethylsulfoxide reductase. Biochemistry, 2005. 44(22): p. 8068-77.
- 24. Bertero, M.G., et al., *Structural and biochemical characterization of a quinol binding site of Escherichia coli nitrate reductase A.* J Biol Chem, 2005. **280**(15): p. 14836-43.
- 25. Lakowicz, J.R., *Principles of Fluorescence Spectroscopy*. second edition ed. 1999: Kluwer Academic/ Plenum Publishers.
- 26. Pereira, M.M., et al., *The alternative complex III from Rhodothermus marinus - a prototype of a new family of quinol:electron acceptor oxidoreductases.* FEBS Lett, 2007. **581**(25): p. 4831-5.
- 27. Cooley, J.W., T. Ohnishi, and F. Daldal, *Binding dynamics at the quinone reduction (Qi) site influence the equilibrium interactions of the iron sulfur protein and hydroquinone oxidation (Qo) site of the cytochrome bc*₁ complex. Biochemistry, 2005. 44(31): p. 10520-32.
- 28. Mitchell, P., Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett, 1975. 56(1): p. 1-6.
- 29. Mitchell, P., *Possible molecular mechanisms of the protonmotive function of cytochrome systems*. J Theor Biol, 1976. **62**(2): p. 327-67.

Chapter 4
Chapter 5

Characterization of the c-type cytochromes subunits of ACIII from Rhodothermus marinus

The results presented in this chapter will be published in:

Patrícia N. Refojo, Miguel Teixeira and Manuela M. Pereira (2010) *The lipid bound monoheme cytochrome c subunit of alternative complex III is the electron donor of caa*₃ *oxygen reductase in Rhodothermus marinus membranes* **In preparation**

Chapter 5

Acknowledgements

Lara Paulo is acknowledged for the growths of *E. coli* cells expressing the pentaheme cytochrome *c*.

5.1- Summary

The alternative complex III of *Rhodothermus marinus* has two subunits with *c*-type hemes: a monoheme and a pentaheme. The objective of the work presented was to structurally and functionally characterize these subunits. Thus, their coding genes were cloned and expressed in *Escherichia coli*. The UV-Visible spectra of the monoheme cytochrome *c* subunit and of the partially purified pentaheme cytochrome *c* showed characteristic features of low-spin hemes. For the monoheme subunit, a reduction potential of +160 mV was determined at pH 7.5.

Previously, alternative complex III and *caa*³ oxygen reductase were reported to be structural and functionally associated. This work allowed the identification of the monoheme cytochrome *c* as the electron donor of *caa*³ oxygen reductase which presented an oxygen consumption of 459 μ M O₂.min⁻¹.mg⁻¹ in the presence of the cytochrome. A lipobox observed at the N-terminus of the amino acid sequence of the monoheme cytochrome *c* led to the prediction of the presence of lipids covalently bound to a conserved cysteine residue, which was here investigated.

5.2 – Introduction

Cytochromes (meaning cellular pigment [1]) are heme (ironprotoporphyrin IX) containing proteins involved in electron transfer reactions. Cytochromes differ from each other according to the type of incorporated heme (heme b, c, d, a, o), which have distinct porphyrin substituents or even a different degree of porphyrin reduction. The modifications occur at the level of carbon 2 and/or 4 (Fisher

numbering system) with heme d as the exception since the modifications are at the carbons 5 and 6.

In cytochrome *c*, in contrast to the other cytochromes, the *c*-type heme is covalently bound to the protein via two thioether bonds between the heme and two cysteine residues in a characteristic heme

Chemical structure of *c*-type heme. The Fisher numbering system for the heme substituints is shown. binding motif CXXCH. The histidine residue serves as axial ligand to iron and X represents any amino acid residue (except cysteine) (figure 5.1). Although CXXCH is the most observed *c*-type heme binding motif some deviations were observed. A higher number of X amino acid residues were observed for several multihemes cytochromes c_3 [2], for cytochrome c_{552} [3] (CXXXCH), and also for the multiheme cytochrome *c* MccA from *Wolinella succinogenes* (CX₁₅CH) [4]. The catalytic heme of the pentaheme nitrite

reductase (NrfA) has a lysine residue as the axial ligand to the iron (CXXCK) instead of the histidine [5]. The hemes can also be bound to only one cysteine residue as in the case of some cytochromes fromf *Euglena gracilis* and *Crithidia oncopelti* [6, 7].

The covalent binding of *c*-type hemes to the protein requires the existence of maturation systems. So far, three different systems have been identified namely system I, II and III [1, 8, 9]. System I, also called cytochrome *c* maturation (Ccm), is found mostly in Gram-negative bacteria and in plant mitochondria and has up to nine different proteins (CcmABCDEFGHI). System II or cytochrome *c* synthesis (Ccs) 88

can be found in Gram-positive bacteria, cyanobacteria, chloroplasts of plants and algae, and some β -, δ -, and ϵ -Proteobacteria. System III is a cytochrome *c* heme lyase (CCHL) and is just found in mitochondria.

The number of *c*-type hemes in a single polypeptide chain ranges between one and 45 [10]. While monoheme cytochromes *c* function in its majority as electron transfer proteins within redox chains, multiheme cytochromes *c* are able to perform a larger number of biochemical roles, including enzymatic activity [11]. One example is the already mentioned NrfA in which the heme bound to the CXXCK motif is the active site of the enzyme. The close proximity of the hemes in the multiheme cytochromes *c* allows a fast transfer of electrons through relatively long distances [10]. This can be further improved by the interaction between two or more multiheme cytochromes *c*.

This chapter describes the cloning, expression and characterization of the cytochrome c subunits (monoheme cytochrome c –mhc and pentaheme cytochrome c- phc) of the alternative complex III from *Rhodotherimus marinus*.

5.3 - Materials and Methods

5.3.1. - Cloning and expression of the cytochrome c subunits of the alternative complex III

Rhodothermus marinus genomic DNA was extracted from a liquid growth culture using GenElute Bacterial Genomic DNA kit (Sigma). The gene encoding the mhc subunit (*ActE*) of ACIII was amplified by a PCR using the genomic DNA of *R. marinus* as template and the following oligonucleotides: 5'AAT <u>GGA TCC</u> AAT GCA GAA CAT CAC AGC A 3' and 5' <u>GAA TTC</u> TTA CTC TCC CT GAA GCC GAG-

3' with restrictions sites (underlined) for BamHI and EcoRI, respectively. A truncated form of the gene coding for the pentaheme cytochrome *c* (*ActA*) was also constructed in order to express the protein without the N-terminal region which corresponds to a transmembrane helix. The same procedure was performed using the oligonucleotides: 5'- AT<u>CCAT GG</u>A CTT TTC GCC C -3'and 5' AA<u>C</u> TCG AGT CAA TAG TGG CAG 3' with restrictions site (underlined) for NcoI and XhoI, respectively.

In order to express also a *pelB* signal sequence for potential periplasmatic localization of the target proteins, the amplified fragments were cloned into a pET22b(+) vector (Novagen), previously digested with the appropriate restriction enzymes for each case. The cloning result was confirmed by nucleotide sequencing of the entire coding region. *E. coli* C41 (DE3) cells harboring a plasmid with auxiliary genes for heme *c* maturation (pEC86- ccmABCDEFGH) [12] were used to express the cytochromes *c*.

Monoheme cytochrome *c* expressing cells were grown at 37 °C (180 rpm), in LB medium containing ampicilin (100 μ g/mL) and chloramphenicol (34 μ g/mL), until an OD_{600nm} of approximately 0.6. At this point, 0.5 mM of IPTG was added to the medium and the culture was harvested after 16 hours. The cells for the expression of the truncated form of the pentaheme cytochrome *c* were grown at 30 °C (150 rpm), in TB medium containing the same antibiotics used for the mhc expression. The culture was harvested after, approximately, 45 hours.

5.3.2 - Protein purification

The same procedures were followed for obtaining the soluble fraction with the monoheme cytochrome *c* and that of the pentaheme cytochrome c. The cells were harvested by centrifugation and the pellet resuspended in 20 mM Tris-HCl, 1 mM EDTA, 1 mM PMSF pH 7.5. These were then disrupted by passing through a French Press at 19000 psi and the unbroken cells were separated by centrifugation at 22000 g for 15 min at 4 °C. Soluble and membrane fractions were separated by centrifugation at 200000 g, for 45 min at 4 °C. The soluble fraction, containing the mhc subunit, was applied into a Q- Sepharose Fast Flow column using 20 mM Tris-HCl, 1 mM PMSF and pH 7.5 as buffer (buffer A). The sample was eluted applying a linear gradient from 0 to 0.5 M of NaCl. The mhc subunit, eluted with approximately 0.1 M NaCl, was concentrated and loaded into a gel filtration chromatographic column S200 using buffer A with 150 mM NaCl. The soluble fraction containing the truncated form of pentaheme cytochrome *c* was applied also a into a Q- Sepharose Fast Flow column using buffer A.

5.3.3 - Protein and heme quantification

Protein concentrations were determined by the bicinchoninic acid (BCA) method [13]. Heme content was determined by the pyridine hemochrome method [14].

5.3.4 - Electrophoretic techniques

The purity of the samples was investigated by SDS-PAGE [15]. Tricine-SDS-PAGE of ACIII was carried out as in [16] with 10 % T, 3 % C. Heme staining was done as in [17], previously described to identify the covalently bound hemes.

5.3.5- Mass spectrometry assays

The protein bands observed in the SDS-PAG of the mhc were excised and submitted to proteolytic digestion with trypsin. The mass spectra of the peptides were acquired with positive reflection MS and MS/MS modes using MALDI-TOF/TOF MS instrument (4800plus MALDI TOF/TOF analyzer) in the Mass Spectrometry Laboratory, Analytical Services Unit of ITQB/IBET. The collected MS and MS/MS spectra were analysed in combined mode using Mascot search engine and NCBI database. The identification of the peptides was also performed by direct comparison of the molecular masses predicted for the peptides with those experimentally obtained. The molecular masses of the peptides predicted **PeptideMass** using at were http://expasy.org/cgi-bin/peptide-mass.pl [18].

5.3.6 - Spectroscopic characterization

UV-Visible absorption spectra were recorded in a Shimadzu UV-1603 spectrophotometer at room temperature. The anaerobic potentiometric titration of the mhc ($\approx 2.5 \ \mu$ M in 40 mM Tris-HCl pH 7.5) was monitored by visible absorption spectroscopy in a glass cuvette of 1 cm path-length and 2.5 mL working volume continuously flushed with argon. By stepwise addition of buffered sodium dithionite, spectra from 380 to 700 nm were obtained at each solution redox potential, after attaining equilibrium. The mixture of redox mediators, at a final concentration of $\approx 16 \ \mu$ M, used was: N,N-dimethyl-p-phenylenodiamine (E'o=+340 mV), p-benzoquinone (E'o=+240 mV), 92

1,2-naphtoquinone-4-sulphonic acid (E'o=+215 mV), 1,2naphtoquinone (E'o=+180 mV), trimethylhydroquinone (E'o=+115 mV), phenazine methosulfate (E'o=+80 mV), 1,4-naphtoquinone (E'o=+60 mV), duroquinone (E'o=+5 mV), menadiona (E'o= 0 mV), plumbagin (E'o= -40 mV) and phenazine (E'o=-125 mV). The redox mediators were chosen in order to minimize spectral overlaps and to cover the relevant redox potential range. The experimental data was analyzed using MATLAB (Mathworks, South Natick, MA) for Windows, and were fitted with a single-electron Nernst curve.

5.3.7 – Experiments with lipase

The mhc (15 μ M) and the ACIII (15 μ M) were incubated with 5 μ M of lipase from *Rhizopus arrhizus* in 20 mM Tris-HCl pH 7.5 at 37 °C for 24 h. The incubated and not incubated mhc and ACIII were subjected to SDS-PAGE (Tricine-SDS-PAGE in the case of ACIII). The protein bands of mhc with apparent molecular masses of 18 and 20 kDa and that of the ACIII with an apparent molecular mass of 22 KDa were excised from the gel and analyzed by mass spectrometry.

5.3.8 - Activities Assays

The mhc: oxygen oxidoreductase activity was determined by the oxygen consumption measured polarographically with a Clark-type oxygen electrode, YS Moldel 5300, from Yellow Springs. The assays were carried out at 30 °C using 20 mM potassium phosphate pH 6.5 as buffer. The mhc (2.2 μ M) was reduced during the assay by sodium ascorbate (\approx 300 μ M) and used as electron donor of *caa*₃ oxygen reductase (80 nM). Potassium cyanide (0.7 mM) was used as oxygen reductase inhibitor. As a control, the oxygen consumption by *caa*₃

oxygen reductase with sodium ascorbate as electron donor was measured.

5.4 - Results and Discussion

5.4.1- Purification and characterization of the cytochromes *c* subunits of ACIII

In order to structurally and functionally characterize the cytochromes c subunits of the alternative complex III of R. marinus, the genes coding for the mhc (ActE) and for the phc (ActA) were cloned and expressed in E. coli. For the phc, a truncated form (phcT) was constructed to express the protein without the N-terminal region which corresponds to a transmembrane helix. The expression cells also harbored the pEC86 plasmid with the auxiliary genes for the maturation of the *c*-type hemes in *E. coli* and thus allowing the expression of c-type cytochromes in aerobic conditions. The UV-Visible spectrum of the as isolated mhc showed a typical oxidized *c*type heme cytochrome with a Soret band maximum at 410.5 nm and a broad band between 500 and 600 nm (figure 5.2A). A band with a maximum at 695 nm was also present indicating a histidinemethionine-Fe coordination. After reduction with sodium dithionite, typical features of low-spin ferrous hemes were observed in which the Soret band maximum shifted to 417 nm and the α and β bands became visible with maxima at 553.5 and 523 nm, respectively (figure 5.2A). The difference between the spectrum of the reduced protein and that of the as isolated protein (oxidized) showed a Soret band with maximum at 418 nm and a α band with maximum at 553.5 nm (figure 5.2B). The Visible spectra of the soluble fraction containing phcT

(figure 5.3A) and of this partially purified cytochrome (figure 5.3B) showed also typical features of an oxidized cytochrome *c* with a Soret band maximum at 409 nm and a broad band between 500 and 600 nm; when in the reduced state the Soret band shifted to a maximum of 419 nm and the α - and β -bands became visible with maxima at 552.5 and 524 nm, respectively.

Figure 5.2

UV-Visible absorption spectra of the mhc of ACIII. A) Absolute spectra in the oxidized (--) and reduced (---) state, B) difference between the spectrum of the reduced and that of the oxidized protein. In the spectrum of the reduced protein, the absorbance between 250 and 375 nm was omitted due to the interference of sodium dithionite.

Chapter 5

Visible absorption spectra of the soluble fraction containing the truncated pentaheme cytochrome c (A) and of a partially purified sample of the protein (B) in the oxidized (—) and reduced (- -) state. In the spectrum of the reduced protein, the absorbance between 250 and 375 nm was omitted due to the interference of sodium dithionite.

The *c*-type heme content of mhc subunit was determined to be 0.95 mol per mol of protein, which is in agreement with the presence of one CXXCH binding motif in the amino acid sequence and meaning that most protein has heme incorporated. The UV-Visible spectrum and the heme content indicated that mhc sample has a high level of purity; 96

however, the SDS-PAG showed three protein bands with apparent molecular masses of 44, 20 and 18 kDa (figure 5.4B). Heme staining

that the two smallest protein bands have covalently bound hemes. The 44 kDa protein band also stained under this procedure but with less intensity. In order to identify the proteins present in these bands, mass spectrometry analyses (MALDI-TOF/TOF) were performed, and, in fact,

(figure 5.4A) indicated clearly

the three protein bands were identified as the mhc protein subunit (see tables 5.1-5.3). Therefore, the 44 kDa

Figure 5.4

Heme (A) and coomassie (B) stained SDS-PAG of the monoheme cytochrome c of the ACIII from *R. marinus*.

protein band is proposed to be a homodimeric form of the mhc protein while the two other protein bands are proposed to be different structural conformations, since peptides with molecular masses compatible with N- and C- termini were observed.

190-203

1509.757

C	comparison.								
	Start- End	m/z (observed)	m/z (predicted)	Miss cleavage	Sequence				
	72-84	1514.790	1514.7889	1	GLLKEDTPFYFGK				
	94-105	1264.772	1264.7623	0	IPVAVTPELVAR				
	164-177	1568.792	1568.7638	0	NMPAYGHQIPVADR				
	164-177	1584.773	1584.7587	0	NMPAYGHQIPVADR (oxidation M)				
	178-185	977.566	977.5567	0	WAIVAYVR				

1509.7292

Table 5.1: Peptide mass fingerprint of in-gel tryptic digest of the band with an apparent molecular mass of 40 kDa in the SDS-PAG of figure 5.3B.

Comparision of the molecular masses values experimentaly obtained for the protein band with an apparent molecular mass of 40 kDa in the SDS-PAGE of mhc of ACIII (fig 5.3B) with those predicted for this subunit (accession number ABV55248). Zero and one possible miss cleavage were considered for the

Table 5.2: Peptide mass fingerprint of in-gel tryptic digest of the band with an apparent molecular mass of 20 kDa in the SDS-PAG of figure 5.4B.

0

SQHATAADVPEEVR

Comparision of the molecular masses values experimentaly obtained for the protein band with an apparent molecular mass of 20 kDa in the SDS-PAGE of mhc of ACIII (fig 5.4B) with those predicted for this subunit (accession number ABV55248). Zero and one possible miss cleavage were considered for the comparison.

Start- End	m/z (observed)	m/z (predicted)	Miss cleavage	Sequence
72-84	1514.802	1514.7889	0	GLLKEDTPFYFGK
76-84	1103.505	1103.5044	0	EDTPFYFGK
85-105	2227.219	2227.2080	0	TADGAYVERIPVAVTPELVAR
94-105	1264.7603	1264.7625	0	IPVAVTPELVAR [§]
110-130	2285.187	2285.0260	0	YNIYCAVCHGQAGDGQGIIMR (M oxidation)
148-163	1819.882	1819.8973	0	NVEDGYIFDVISHGVR
164-177	1568.766	1568.7639	0	NMPAYGHQIPVADR
164-177	1584.759	1584.7587	0	NMPAYGHQIPVADR (M oxidation)
164-185	2543.317	2543.2987	0	NMPAYGHQIPVADRWAIVAYV R
178-575	977.575	977.5567	0	WAIVAYVR
186-203	1977.94	1978.0100	0	ALQRSQHATAADVPEEVR

§ - Peptide identified by MS/MS

Table 5.3: Peptide mass fingerprint of in-gel tryptic digest of the band with an apparent molecular mass of 18 kDa in the SDS-PAG of figure 5.4B.

Comparision of the molecular masses values experimentaly obtained for the protein band with an apparent molecular mass of 18 kDa in the SDS-PAGE of mhc of ACIII (fig 5.3B) with those predicted for this subunit (accession number ABV55248). Zero and one possible miss cleavage were considered for the comparison.

Start- End	m/z (observed)	m/z (predicted)	Miss cleavage	Sequence
60-71	1293.685	1293.7096	0	AMRPPVPGTVPR
72-84	1514.7206	1514.7889	1	GLLKEDTPFYFGK
76-84	1103.4857	1103.5044	0	EDTPFYFGK
85-93	981.4451	981.4636	0	TADGAYVER
85-105	2227.2063	2227.1885	1	TADGAYVERIPVAVTPELVA R
94-105	1264.7422	1264.7625	0	IPVAVTPELVAR §
148-163	1819.863	1819.8973	0	NVEDGYIFDVISHGVR
164-177	1568.7527	1568.7639	0	NMPAYGHQIPVAVR
164-177	1584.789	1584.7587	0	NMPAYGHQIPVAVR (M oxidation)
178-185	977.5207	977.5567	0	WAIVAYVR
186-203	1977.96	1978.0100	0	ALQRSQHATAADVPEEVR

§ - Peptide identified by MS/MS

A redox titration performed at pH 7.5 was monitored by visible absorption spectroscopy revealing a mid-point reduction potential of +160 mV (figure 5.5), which is different from the reduction potential determined for the hemes within the ACIII (235, 80 and -45 mV) [19]. Nevertheless, it should be stressed that the value obtained for the isolated mhc may not reflect the redox potential of the subunit inside the ACIII, since when present in the complex mhc experiences a different environment.

Chapter 5

Figure 5.5

Reductive titration of the monoheme cytochrome *c* subunit of the ACIII of *R. marinus* at pH 7.5. Data collected at the α -band maximum 553.5 nm (•). The solid line was obtained fitting a single electron Nernst curve with E=160 mV.

5.4.2 – Is monoheme cytochrome *c* a lipoprotein?

Lipids covalently bound to proteins constitute a possible way to associate proteins to the membrane since it provides the protein with a hydrophobic anchor.

The monoheme cytochrome *c* is predicted to be a lipid modified protein due to the presence of a signal peptide, lipobox, in its N-terminal amino acid sequence. According to Babu and coworkers [20] a typical signal peptide for lipid incorporation is composed by three distinct regions: a n-region containing five to seven amino acid residues including two positively charged residues (lysine or arginine); a hydrophobic region constituted by seven to twenty two amino acid residues, and a c-region with the consensus [LVI][ASTVI][GAS]C. The consensus in the c-region is the, so called, lipobox and the last cysteine residue is the amino acid to which the lipid molecules are bound (figure 5.6). In the case of mhc, the n-region

has nine amino acids residues with an arginine as the positively charged residue, the hydrophobic region is composed by eleven amino acid residues and LAGC form the lipobox (figure 5.6).

The prediction of mhc as a lipid modified protein was corroborated by several informatics programs available online such as: i) A database of bacterial lipoproteins (DOLOP) (http://www.mrclmb.cam.ac.uk/genomes/dolop/analysis.shtml) [20] and ii) LipoP 1.0 Server (http://www.cbs.dtu.dk/services/LipoP/) [21].

Typical lipoprotein Signal peptide

Figure 5.6

Usually, the covalent binding of the lipid to the protein occurs in three steps catalyzed each one by a different enzyme [22]. In the first step, a diacylglycerol molecule is bound to the conserved cysteine residue by a thioether linkage in a reaction catalyzed by the

Lipoproteins signal peptide. Upper: Typical lipoprotein signal peptide with the three different regions. The n-region is composed by five to seven amino acid residues including two positively charged residues; the hydrophobic region has seven to twenty two amino acid residues mainly hydrophobic and uncharged; the c-region contains the consensus sequence [LVI][ASTVI][GAS] and the conserved lipid modified cysteine (lipobox). Lower: Lipoprotein signal peptide present in the monoheme cytochrome *c* subunit.

phosphatidylglycerol:pre-lipoprotein diacylglycerol transferase (Lgt). In the second step, the prolipoprotein signal peptidase/ signal peptidase II (LspA) catalyzes the cleavage of the N-terminus signal peptide at the level of the cysteine residue. The last step was only observed in Gram negative bacteria and consists in the amino acylation of the conserved cysteine and is catalyzed by the phospholipid: apolipoprotein N-acyltransferase (Lnt). In order to analyze if the presence of lipoproteins is viable in *Rhodothermus marinus*, searches were performed to identify genes coding for the three needed enzymes. Indeed, homologous enzymes were found in its genome. Therefore, it is possible that the mhc is lipid modified.

In order to investigate the presence of a lipid molecule bound to the mhc a peptide mass fingerprint approach was used with the subunit expressed in *E. coli* and the native cytochrome *c* (part of the ACIII). If a lipid was present the first 22 amino acid residues of the N-terminus would be absent and a difference in the molecular masses predicted for the peptides would be expected. Thus, the mhc expressed in *E. coli* and the ACIII were treated with a lipase which catalyzes the hydrolysis of an ester bond. The incubated and non-incubated mhc expressed in E. coli and the ACIII were subjected to SDS-PAGE and the protein band with apparent molecular mass of 22 kDa of the ACIII lanes and the 18 and 20 kDa protein bands of the mhc were excised from the gel and analyzed. However, the obtained results were not conclusive since the observed molecular masses for the peptides of the N-terminal of the protein only matched the predicted values if several modifications were considered. Namely, the peptide composed by the first nine amino acid residues (MQNITAMPR) would be considered if two or three modifications have occurred (the oxidation of one 102

methionine residue and one deamidation¹ reaction or the oxidation of the two methionine residue plus deamidation). This makes the identification of the N-terminus uncertain.

5.4.3 - Within ACIII the mhc subunit is the electron donor of *caa*₃ oxygen reductase

The moneheme cytochrome *c* subunit was proposed to be the last electron acceptor within the ACIII (as cytochrome c_1 in the bc_1 complex) and also to mediate the electron transfer between ACIII and the *caa*₃ oxygen reductase (equivalent role to the periplasmic electron carrier, such as cytochrome *c* and/or HiPIP) (see chapters 1 and 4). In order to test this hypothesis, dioxygen consumption measurements were performed using the mhc as substrate. The assay was started by

Figure 5.7

Example of the assay done to measure the oxygen consumption by *caa*₃ oxygen reductase using the monoheme: cytochrome c subunit of the alternative complex III as electron donor. Sodium ascorbate was used to reduce the electron donor.

the addition of the mhc and a average value of 459 μ M O₂. min⁻¹. mg⁻¹ was obtained (figure 5.7). This O₂ consumption ceased completely

¹ Deamidation- glutamine (Q) modified to glutamate (E)

upon addition of KCN to the assay which demonstrated the specificity of the reaction. The activity corresponded to a turnover value of 99 min⁻¹. It is important to mention that the obtained value is most probably underestimated since it was determined at 30 °C (due to technical constrains of the oxygen electrode) and the optimal temperature for the activity of the enzyme was determined to be 70 °C [23]. HiPIP and the soluble monoheme cytochrome *c* of *Rhodothermus marinus* were also proposed to be electron donors of the *caa*₃ oxygen reductase and turnovers of 208 and 26 min⁻¹, respectively, have been obtained [24]. Although the activity determined with mhc was lower than that with HiPIP it should be noticed that physiologically the mhc is not isolated. In fact, it is integrated into the ACIII and the affinity and the interaction between the subunits and even between the complexes should have a strong influence.

5.5- Conclusions

The expression of the cytochromes c subunits of ACIII in *E. coli* allowed the spectroscopic, biochemical and functional characterization of the monoheme subunit and the spectroscopic characterization of the pentaheme cytochrome c. The two subunits showed UV-visible spectra with the typical features of low-spin hemes. For the mhc subunit, a reduction potential of +160 mV was determined by UV-visible absorption spectroscopy at pH 7.5.

In this work, the functional role of the monoheme cytochrome c was addressed and it was showed that, indeed, this subunit is an electron donor of the oxygen reductase in the structural and functional association established between the ACIII and the caa_3 oxygen

reductase. Therefore, the monoheme cytochrome c is the last electron acceptor within the ACIII. In conclusion, the monoheme cytochrome c of ACIII is able to perform an equivalent functional role of the cytochrome c_1 in the bc_1 complexes and of a periplasmic electron carrier. The attachment of the mhc to the membrane, due to the eventual presence of covalently bound lipids in its N-terminus, could provide some mobility to the subunit facilitating its function as an electron carrier between the complexes.

5.5 - References

- 1. Stevens, J.M., et al., *C-type cytochrome formation: chemical and biological enigmas.* Acc Chem Res, 2004. **37**(12): p. 999-1007.
- Aragao, D., et al., Structure of dimeric cytochrome c3 from Desulfovibrio gigas at 1.2 A resolution. Acta Crystallogr D Biol Crystallogr, 2003. 59(Pt 4): p. 644-53.
- Jungst, A., et al., The nirSTBM region coding for cytochrome cd₁dependent nitrite respiration of Pseudomonas stutzeri consists of a cluster of mono-, di-, and tetraheme proteins. FEBS Lett, 1991. 279(2): p. 205-9.
- 4. Hartshorne, R.S., et al., *A dedicated haem lyase is required for the maturation of a novel bacterial cytochrome c with unconventional covalent haem binding.* Mol Microbiol, 2007. **64**(4): p. 1049-60.
- Einsle, O., et al., *Structure of cytochrome c nitrite reductase*. Nature, 1999.
 400(6743): p. 476-80.
- Ikegami, I., S. Katoh, and A. Takamiya, Nature of heme moiety and oxidation-reduction potential of cytochrome 558 in Euglena chloroplasts. Biochim Biophys Acta, 1968. 162(4): p. 604-6.

- 7. Pettigrew, G.W., et al., *Purification, properties and amino acid sequence of atypical cytochrome c from two protozoa, Euglena gracilis and Crithidia oncopelti.* Biochem J, 1975. **147**(2): p. 291-302.
- 8. Bowman, S.E. and K.L. Bren, *The chemistry and biochemistry of heme c: functional bases for covalent attachment.* Nat Prod Rep, 2008. **25**(6): p. 1118-30.
- Kranz, R.G., et al., Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev, 2009. 73(3): p. 510-28, Table of Contents.
- Sharma, S., G. Cavallaro, and A. Rosato, A systematic investigation of multiheme c-type cytochromes in prokaryotes. J Biol Inorg Chem, 2010. 15(4): p. 559-71.
- 11. Mowat, C.G. and S.K. Chapman, *Multi-heme cytochromes--new structures, new chemistry*. Dalton Trans, 2005(21): p. 3381-9.
- Arslan, E., et al., Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb₃ oxidase in Escherichia coli. Biochem Biophys Res Commun, 1998. 251(3): p. 744-7.
- Smith, P.K., et al., *Measurement of protein using bicinchoninic acid*. Anal Biochem, 1985. 150(1): p. 76-85.
- Berry, E.A. and B.L. Trumpower, *Simultaneous determination of hemes a*, *b*, *and c from pyridine hemochrome spectra*. Anal Biochem, 1987. 161(1): p. 1-15.
- 15. Laemmli, U.K., *Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4.* Nature, 1970. **227**: p. 680-685.
- 16. Schagger, H. and G. von Jagow, *Tricine-sodium dodecyl sulfatepolyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa.* Anal Biochem, 1987. **166**(2): p. 368-79.
- Goodhew, C.F., K.R. Brown, and G.W. Pettigrew, *Haem staining in gels, a useful tool in the study of bacterial c-type cytochromes.* Biochem. Biophys. Acta, 1986. 852: p. 288-294.

- Wilkins, M.R., et al., Detailed peptide characterization using PEPTIDEMASS--a World-Wide-Web-accessible tool. Electrophoresis, 1997. 18(3-4): p. 403-8.
- Pereira, M.M., J.N. Carita, and M. Teixeira, Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III. Biochemistry, 1999. 38(4): p. 1268-75.
- Babu, M.M., et al., A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J Bacteriol, 2006. 188(8): p. 2761-73.
- 21. Juncker, A.S., et al., *Prediction of lipoprotein signal peptides in Gramnegative bacteria.* Protein Sci, 2003. **12**(8): p. 1652-62.
- 22. Hayashi, S. and H.C. Wu, *Lipoproteins in bacteria*. J Bioenerg Biomembr, 1990. **22**(3): p. 451-71.
- 23. Pereira, M.M., et al., *The caa*₃ *terminal oxidase of the thermohalophilic bacterium Rhodothermus marinus: a HiPIP:oxygen oxidoreductase lacking the key glutamate of the D-channel.* Biochim Biophys Acta, 1999. **1413**(1): p. 1-13.
- 24. Pereira, M.M., J.N. Carita, and M. Teixeira, *Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: characterization of the iron-sulfur centers from the dehydrogenases and investigation of the high-potential iron-sulfur protein function by in vitro reconstitution of the respiratory chain.* Biochemistry, 1999. **38**(4): p. 1276-83.

Chapter 5

Chapter 6

The alternative complex III: a different architecture using known building modules

6.1 – Summary 113			
6.2 – Introduction			
6.3 – The alternative complex III is a widespread quinol: electron			
acceptor oxidoreductase114			
6.4 – Structural characterization of the alternative complex III 118			
6.5 - Comparison of ACIII with other complexes 121			
6.5.1- The iron-sulfur protein- subunit B 123			
6.5.2- The membrane quinol interacting proteins - subunits C			
and F 126			
6.5.3- <i>c</i> -type heme containing subunits- subunits A and E 127			
6.5.3.1- Subunit A 127			
6.5.3.2- Subunit E 129			
6.5.4- The other membrane bound proteins- subunits D			
and G 129			
6.6 - The alternative complex III is a different complex composed			
by "old" modules 129			
6.7 – References			

The results presented in this chapter were published in:

Patrícia N. Refojo, Filipa L. Sousa, Miguel Teixeira, Manuela M. Pereira (2010) *The alternative complex III: A different architecture using known building modules* Biochim Biophys Acta *IN PRESS*

Chapter 6

Acknowledgments:

Dr. Inês Cardoso Pereira is acknowledged for the critical reading. Filipa L. Sousa contributed to the bioinformatics analysis.

6.1 – Summary

Until recently cytochrome bc1 complexes were the only known enzymes able to transfer electrons from reduced quinones to cytochrome c. However, a complex with the same activity and with a unique subunit composition was purified from Rhodothermus marinus biochemical, membranes and spectroscopic and genetically characterized. This complex was named alternative complex III (ACIII). Its presence is not exclusive of R. marinus being the genes coding for this novel complex widespread in the Bacteria domain. In this work, a comprehensive description of the current knowledge on ACIII is presented. The relation of ACIII with members of the complex iron-sulfur molybdoenzyme family is investigated by analyzing all the available completely sequenced genomes. It is concluded that ACIII is a new complex composed by a novel combination of modules already identified in other respiratory complexes.

6.2 – Introduction

Cytochrome bc_1 complexes are part of the respiratory chains and have quinol: cytochrome *c* oxidoreductase activity (see chapter 1). Besides this family, several other enzymes are able to oxidize quinols, namely quinol oxidases from the heme-copper oxygen reductases superfamily [1], and DMSO reductase, nitrite and nitrate reductases from the complex iron-sulfur molybdoenzyme (CISM) family [2]. However, and until recently, the cytochrome bc_1 complex family was the only one described to receive electrons from quinols and transfer them to cytochrome *c*. The alternative complex III (ACIII), purified for the first

time from *Rhodothermus* (*R.*) *marinus* membranes and structural and functionally characterized [3-5], was the first example of a complex performing the same function as the bc_1 complex but not belonging to its family.

6.3- The alternative complex III is a widespread quinol: electron acceptor oxidoreductase

The *R. marinus* respiratory chain has been extensively studied [1, 3-13] and the presence of three different oxygen reductases, a *caa*₃ [11, 12], a *ba*₃ [13] and a *cbb*₃ [10] was observed. These enzymes are unable to receive electrons from reduced quinones and therefore a complex which transfers electrons from quinols to periplasmatic electron carriers is required. A cytochrome *bc*₁ complex was never observed at the protein level and its absence has now been corroborated by the analysis of the recently sequenced *R. marinus* genome [14], in which genes coding for such a complex are not present. Instead, a seven subunits complex (chapter 3 and [15]) with quinol: HiPIP oxidoreductase activity was isolated from the membranes of *R.marinus* [3-5]. This complex is structurally different from the cytochrome *bc*₁ complexes, even though it performs the same function. By this reason the complex was named alternative complex III (ACIII) [5, 16].

The presence of ACIII is not exclusive of *R.marinus*. A homologous complex was also isolated from the membranes of the green non-sulfur proteobacterium *Choroflexus (C.) aurantiacus* [16-18] and was recently shown to have menaquinone: aurocyanin oxidoreductase activity [16]. As in the case of the *R. marinus* enzyme [5], it was not inhibited by the typical inhibitors of the cytochrome bc_1 complex, such as antimycin A. 114

The genes coding for ACIII were also identified in the δ -Proteobacterium *Myxococcus xanthus* and the same function for the complex was proposed [19]. Furthermore, Yanyushin and coworkers observed that the new complex was widespread and related to the complex iron-sulfur molybdoenzyme (CISM) family [18]. Due to the similarity with the members of that family, the name MFIcc (<u>molybdopterin, FeS, integral membrane subunits, with two *c*-type heme subunits) has been proposed. This designation may be misleading since the complex does not contain molybdenum [5, 18], and thus the name alternative complex III was adopted [5, 16].</u>

In this work, we performed an exhaustive search for ACIII coding genes in organisms with a completely sequenced genome, by September 2009. We confirmed that ACIII is a widespread enzyme in the Bacteria domain (figure 6.1). The genes coding for the complex may be present in genomes that do not contain coding genes for bc_1 complex subunits and in which genes coding for a quinol: cytochrome c oxidoreductase should exist, but there are also examples of genomes where ACIII genes coexist with those coding for the classical complexes III (figure 6.1).

Chapter 6

116

The genes encoding ACIII form a cluster composed by six to eight genes (*ActABCDEFG*); in some cases *ActG* is absent, while in others *ActB* is splitted into two different genes *ActB*₁ and *ActB*₂, which correspond to the two domains of the gene *ActB* product (see below). A gene cluster with a similar organization but in which the *ActD*, *ActE* and *ActF* are absent was also earlier identified and its product named MFIc complex [18]; in this gene cluster the gene *ActB* is also splitted in two. The presence of MFIc complexes is only predicted for δ -Proteobacteria (figure 6.1), and their function has not been established yet¹.

The analysis of the gene clusters coding for ACIII in the sequenced genomes, in relation to their neighboring genes revealed that they may be isolated, ie, without any obvious functional relationship with preceding and following genes or gene clusters; or they may be followed by a gene cluster coding for a heme-copper oxygen reductase. This latter situation presents four possibilities; illustrative examples of each one are represented in figure 6.2. *R. marinus* is one example of the most observed organization in which the following gene cluster codes for subunits of the *caa*₃ oxygen reductase. *Salinibacter ruber* represents a similar example but in this case the SCOI gene (whose product is involved in copper incorporation [20]) is absent. The presence of a following gene cluster coding for subunits of *cbb*₃ oxygen reductases can also be observed in *Opitutu terreae*), as well

¹ After the publication of this work and during the writing of this thesis the work of Venceslau *et al* (2010, *in press*) showed that the MFIc of *Desulfovibrio vulgaris* Hildenborough have cytochrome c_3 : quinone oxidoreductase activity and therefore, it was renamed Qrc (quinone reductase complex).

¹¹⁷

as genes coding only for subunits I and II of other oxygen reductases (*Flavobacterium psychrophilum*). *Thermus thermophilus* exemplifies a situation in which the gene cluster coding for ACIII is isolated. In

Figure 6.2

Organization of the gene clusters coding for alternative complex III subunits (dark grey) and those coding for the different heme-copper oxygen reductases (light grey). *SCOI* gene product is involved in the incorporation of copper. I, II, III and IV represent the different subunits of oxygen reductases while *FixN*, *FixP* and cyt *c* are the genes coding for subunits of *cbb*₃ oxygen reductase. An example of an organism for each organization is indicated. In eight of the sixteen cases exemplified by *Thermus thermophilus*, *ActG* is absent.

figure 6.1, the type of oxygen reductase (A1, A2, B and C-type, [21]) encoded by the gene cluster that follows the genes coding for ACIII is indicated.

6.4- Structural characterization of the alternative complex III

The first gene of the cluster (*ActA*) codes for a 27 kDa protein with five *c*-type heme binding motifs (CXXCH); the fifth motif is one amino acid residue apart from the C-terminus. Three methionine and seven other histidine residues are present in the sequence and are thus candidates for the sixth ligand of the hemes. However, the alignment 118
of the amino acid sequence of the subunits A of all ACIII showed that four histidine (H54, H57, H129, H132, *R. marinus* enzyme numbering) and one methionine (M160) residues are strictly conserved and are thus the most probable sixth heme ligands. A possible signal peptide in the N-terminal region is present, but its putative cleavage site is inside a predicted transmembrane helix, which suggests a membrane attachment mode for subunit A.

ActB codes for a 115 kDa protein with two distinct domains: domain B1, located in the N-terminus, is similar to molybdopterin containing proteins, while domain B2, located towards the C-terminus, has three binding motifs for [4Fe-4S]^{2+/1+} clusters and one for a [3Fe-4S]^{1+/0} cluster [5]. As mentioned before, the isolated complex does not have molybdenum [5, 18]. The ActC gene encodes a 55 kDa protein predicted to have ten transmembrane helices, where two conserved possible quinone binding sites as those proposed by Fisher and Rich [22] can be detected [5]. However, this prediction should be considered with caution due to the variability of the quinone binding sites. ActD codes for a 25 kDa protein with two predicted transmembrane helices. The 22 kDa protein encoded by ActE has a single *c*-type heme binding motif (CXXCH). Several methionine residues present in its sequence may act as the sixth ligand of the heme; however, the most probable is the methionine residue in the conserved motif MPA, as observed in many other cytochromes [23]. Subunit E is predicted to be a lipoprotein since in the N-terminal region a probable lipoprotein signal sequence (lipobox) [24] is present. ActF codes for another integral membrane protein (48kDa), also predicted to have ten

transmembrane helices. Finally, the product of *ActG* is a small 15 kDa protein predicted to be membrane bound by a single transmembrane helix.

The subunits of ACIII can be divided in two groups according to the proposed function: i) membrane attachment and quinone interaction modules, subunits C, D, G and F, and ii) electron transfer modules composed by subunits A, B and E (figure 6.3).

Figure 6.3

Schematic representation of the alternative complex III. The subunits (modules) of the complex may be separated according to their proposed function. The membrane attachment and quinone interacting modules correspond to subunits C, D, F and G, while subunits A, B and E are electron transfer modules. The spheres represent *c*-type hemes, cubes and pyramids represent [4Fe-4S]^{2+/1+} and [3Fe-4S]^{1+/0} clusters, respectively.

Despite the presence of the gene cluster coding for ACIII in many genomes, so far *R. marinus* and *C. aurantiacus* enzymes are the only complexes that were isolated. The presence of *c*-type hemes is the only 120

structural information available for ACIII from *C. aurantiacus* [17, 18]. On the other hand, the ACIII from *R. marinus* has been extensively investigated [4, 5, 15]. All the subunits coded by the respective genes were identified in the isolated complex and the redox centers were analyzed [4, 5, 15]. Besides the presence of low-spin *c*-type hemes detected by EPR and UV/visible absorption spectroscopies, a [3Fe-4S]^{1+/0} center was also observed by EPR spectroscopy. Three redox transitions at -45, +80 and +235 mV were determined for the *c*-type hemes and a reduction potential of +140 mV was obtained for that iron-sulfur center [4].

6.5 - Comparison of ACIII with other complexes

In order to obtain the amino acid sequences of the subunits of the ACIII from other organisms a blast search using the sequences from *R. marinus* subunits as queries was performed. The amino acid sequences of each subunit of ACIII were aligned and the respective dendograms were constructed. It was observed that the sequences of each subunit showed high similarities among themselves (see below). The highest divergence was observed for subunit A, in which some members of the flavobacteriaceae family have an extra *c*-type heme binding motif (CXXCH) at the N-terminal region.

Despite the unique gene organization and subunit composition of the ACIII, the different subunits have homology with subunits of enzymatic complexes already characterized. In order to determine the most related proteins, the output number of sequences obtained by blast searches was enlarged. The sequences with the lower E-values

obtained, excluding those of ACIII, were the subunits of the MFIc complex, followed by the sequences of subunits of complexes belonging to the complex iron-sulfur molybdoenzyme family (CISM family) [2].

A relation between subunits B and C of ACIII and three subunits of those complexes had already been observed [5, 18]. The CISM family is characterized by the presence of three subunits [2]. A catalytic subunit which has a molybdo-bis(pyranopterin guanine dinucleotide) (MobisPGD) cofactor and in some cases an iron-sulfur center (named FS0), a protein with four iron-sulfur clusters (FS1-FS4) named four cluster protein (FCP), and a membrane anchor protein (MAP). This family includes complexes such as DMSO reductase (DmsABC), polysulfide reductase (PsrABC), formate dehydrogenase (FdnGHI), and nitrate reductase (NarGHI). Also related to this family are the complexes nitrite reductase (NrfABCD), arsenite oxidase (AoxAB), TMAO reductase (TorCA), formate dehydrogenase (FdhAB), nitrate reductase

Figure 6.4

Comparison of the gene cluster of the alternative complex III with the gene clusters of the complexes iron-sulfur molybdoenzyme (CISM) family. The correspondence between genes and respective encoded domains or subunits is indicated

(NapAB), ethylbenzene dehydrogenase (EbdABC), and selenate reductase (YnfEFG). Schematic representations of some of these enzymes are presented further ahead in figure 6.5 and the respective gene cluster organization is shown in figure 6.4.

To obtain the amino acid sequence of each subunit of the complexes of this family, a new blast search against all genomes deposited at Kegg server (http://www.genome.jp/kegg/) [25-27] was performed using as initial query a sequence from a model organism, generally *Escherichia coli*. Also, when orthology information was available, all genes annotated as coding for proteins of the CISM family or for related proteins were retrieved. The gene organization of each complex within an organism was automatically inspected, and dubious gene organizations were manually inspected. All retrieved sequences were then mapped on NCBI Taxonomy using the BioSQL package available to download at ftp://ftp.ncbi.nih.gov/ from April 2009.

6.5.1- The iron-sulfur protein - Subunit B

Domain I of subunit B showed similarity with the catalytic subunit of the members of the CISM family, while domain II presented similarity with the four cluster protein. Since the two domains observed in subunit B are homologous to different proteins, the sequence was divided (800 amino acid residues from the N-terminal- Domain I and 240 amino acid residues from the C-terminal-Domain II) and the two parts analyzed separately. For the analysis of subunit B, the subunit NuoG (or Nqo3) of the complex I (NADH: quinone oxidoreductase)

was included, since this subunit is also related to the CISM family. Furthermore, this subunit is another example of a protein that has a molybdopterin-like domain, but lacks any molybdenum cofactor, and

Figure 6.5

Dendogram obtained from the analysis of the domain B1 of the subunit B (15-32) of alternative complex III, subunit B of MFIc (1-14), NuoG (C-terminal sequence) (155-188), and related subunits of the members of the CISM family: DmsA and YnfEF (33-45), TorA (46-54), NarG and Ebda (55-80), PsrA (81-91), NapA (92-113), FdhA (114-129), FdnG (130-145), AoxB (146-154). Each branch is indicated by a number, which corresponds to subunits whose information can be consulted in the table 8.1 of chapter 8. For clarity only some of the numbers are indicated; however, the branches are numbered consecutively.

has an iron-sulfur domain [28]. As in the case of subunit B of ACIII, the NuoG amino acid sequence was also separated in two parts (NuoG_1, N-terminal and NuoG_2, C-terminal). Interestingly, subunit NuoG has the domains in a reverse order: the molybdopterin domain is located in the Cterminus while the ironsulfur centers binding motifs are at the N-terminus, thus suggesting independent fusion processes. NuoG_1 and NuoG_2 were analyzed with B2 and B1 domains of subunit B, respectively.

The amino acid sequence of

domain I of subunit B was compared with sequences of catalytic subunits of complexes of the CISM family. From the dendogram obtained (figure 6.5) eleven different clades are observed, each clade being composed by subunits of the same enzymatic complex. The 124 similarity between the subunits of the members of the CISM family is in agreement with previous analyses [2, 29]. Domain I of subunit B of ACIII, subunit B1 of MFIc and NuoG are clearly related to those members. The subunits of ACIII and of MFIc are clustered together

and seem to have a common origin. Besides the absence of molybdenum, the domain B1 of ACIII does not have the FS0 cluster, present in some catalytic subunits of the CISM family members.

The amino acid sequences of domain II of subunit B of ACIII

were aligned with those of the FCP subunits of the CISM family and related members and the respective dendogram was constructed (figure 6.6). In contrast to domain I, NuoG is the less similar protein. The ACIII

Figure 6.6

Dendogram obtained from the analysis of the domain B2 of subunit B of alternative complex III (127-138), subunit B2 of MFIc (107-126), NuoG (N-terminal sequence, 1-35), and subunits of the members of the CISM family:, FdnH (36-52), FdhB (53-67), DmsB and YnfG (68-79), EbdB (80-85), NarI (86-106) and PsrC and NrfD (139-158). Each branch is indicated by a number, which corresponds to subunits what is observed for the whose information can be consulted in the tables 8.2 of chapter 8. For clarity only some of the numbers are indicated; however, the branches are numbered consecutively.

and MFIc subunits are closely related, being NrfC and PsrB their closest member of the CISM family and related complexes.

6.5.2- The membrane quinol interacting proteins- Subunits C and F

Subunits C and F are homologous to each other and to the subunits NrfD, DmsC and PsrC, although having a higher number of predicted

Figure 6.7

Dendogram obtained from the analysis of the subunit C (39-58) and F (59-76) of ACIII, subunit C of MFIc (27-38), NrfD and PsrC (13-26) and DmsC (1-12). Each branch is indicated by a number, which corresponds to subunits whose information can be consulted in the table 8.3 of chapter 8. For clarity only some of the numbers are indicated; however, the branches are numbered consecutively.

transmembrane helices. NrfD, DmsC and PsrC have eight transmembrane segments. Subunits NarI and FdnI are also membrane anchor proteins of members of the CISM family. These subunits contain 5 and 6 transmembrane helices. respectively and 2 *b*-type hemes. Narl, FdnI and NrfD, DmsC and PsrC seem constitute different to subfamilies of membrane anchor proteins of the members of the CISM

family [2]. Thus, only the amino acid sequences of subunits NrfD, DmsC and PsrC were included in the sequence alignment with subunits C and F of ACIII. As expected, this alignment revealed a low similarity between all the proteins. Nevertheless, it was possible to conclude that the subunits C and F are also related to the subunits NrfD, DmsC and PsrC of the CISM family. In contrast to what was observed for the domains of subunit B, the membrane subunits of the 126

ACIII and MFIc complex seem to have had different origins (Figure 6.7).

6.5.3- *c*-type heme containing subunits- A and E

6.5.3.1- Subunit A

Although the typical CISM family members do not have *c*-type heme cytochrome subunits, variations of the subunit composition of complexes related to the family have been identified and subunits

Figure 6.8

Dendogram obtained from the analysis of the subunit A of alternative complex III (76-95), subunit A of MFIc (64-75) and related subunits of the members of the CISM family: NapC and TorA (1-24), NrfH (25-31, 42-44), NrfB (32-41) and NrfA (45-63). Each branch is indicated by a number, which corresponds to subunits whose information can be consulted in the table 8.4 of chapter 8. For clarity only some of the numbers are indicated; however, the branches are numbered consecutively.

containing *c*-type hemes have been observed [2, 30, 31]. Therefore, the sequence of the pentahemic cytochrome c of the alternative complex was compared with that of other multi-hemes subunits of the CISM family and related complexes such as NrfA, NrfB, NrfH, NapC and TorC. All these proteins belong to the Napc/NrfH family of cytochromes [32] with the exception of NrfA and NrfB. That family plays an important role in the electron transfer between the quinone/quinol pool and

oxidoreductases located outside the cytoplasmatic membrane [32, 33]. NapC and NrfH are typical examples of the family, which have four *c*type hemes and a membrane helix at the N-terminus; both are involved in the transfer of electrons to other cytochrome domains. NapA transfers electrons to the di-heme protein NapB from the NapAB complex [32], while NrfH transfers electrons to NrfA [34]. NrfA and NrfB are also pentaheme *c*-type cytochromes but the transmembrane anchor is absent [30, 35]. TorC belongs also to the NapC/NrfH family [36, 37]; it contains at the C-terminus an additional domain with a c-type heme described to be responsible for the interaction with the molybdenum-containing TMAO reductase [36]. Three different clades can be considered in the dendogram represented in figure 6.9: one formed by NapC, TorC, NrfH and NrfB, a second one formed only by NrfA and a last one formed by subunits A of the alternative complexes III and of the MFIc complexes. Within their clade, NapC and TorC are clustered together as expected, since both proteins belong to the same family; NrfH formed a sub-group inside of this clade, as previously observed [38]. NrfA is the only one of the analyzed proteins with an intrinsic catalytic activity; its catalytic heme is bound through an unconventional binding motif where a lysine replaces the typical histidine residue (CXXCK) [39, 40]. The specific properties of NrfA are in agreement with its place as an individual clade. The subunits A of the ACIII and of the MFIc complex were found to be part of the same clade, being closely related, and appear to have had the same evolutionary origin.

6.5.3.2- Subunit E

There are multiple examples of monoheme *c*-type cytochromes. The amino acid sequence of subunit E of ACIII was aligned with sequences from diverse *c*-type cytochromes, cytochrome c_1 from cytochrome bc_1 complex and also with monohemic domains of the oxygen reductases (*c*-domain of subunit II of *caa*₃ oxygen reductase and *c* domain of FixP subunit of *cbb*₃ oxygen reductase). A dendogram was constructed (data not shown); however, it was not possible to determine any closer protein since the bootstrap values obtained for the different branches of the dendogram were extremely low. Yet, it was possible to conclude that the subunit E of ACIII formed an independent clade. These observations suggest that the monoheme *c*-type subunit of ACIII is another example of a subfamily of *c*-type cytochromes.

6.5.4- The other membrane proteins- Subunits D and G

We were unable to identify any protein homologous of these two proteins; their presence seems to be restricted to the ACIII.

6.6 - The alternative complex III is a different complex composed by "old" modules

The ACIII has a unique subunit composition. However, the different constituting subunits show similarities with subunits of complexes already known, namely those of the CISM family. The subunits of the different complexes can be divided in several modules according to their function: 1-electron transfer, 2- catalytic and 3- membrane attachment and quinone interacting modules (Figure 6.9). These

Chapter 6

Figure 6.9

Schematic representation of complexes of the complex iron sulfur molybdenum (CISM) family and related complexes, including ACIII (A), and separation of the complexes in the three different types of modules: membrane attachment and quinone interaction, electron transfer and catalytic modules (B). The spheres represent *c*-type heme, and bipyramids corresponds to the molybdopterin cofactor. Cubes and pyramids represent [4Fe-4S]^{2+/1+} and [3Fe-4S]^{1+/0} clusters, respectively.

modules can be observed in complexes combined in multiple ways. The type of function performed could have influenced the different

combinations of those subunits. This idea of modularity in the construction of respiratory complexes has been proposed before, and respiratory complex I and hydrogenases are examples of such type of construction [41-43]. Furthermore, the existence of a redox protein construction kit has been even proposed, with enzymes being constructed from the limited set of modules present in that kit [44].

In conclusion, ACIII is a different complex composed by already known modules, and another example of how nature uses the same structural modules in different contexts according to the metabolic needs.

6.7- References

- Pereira, M.M., et al., Looking for the minimum common denominator in haem-copper oxygen reductases: towards a unified catalytic mechanism. Biochim Biophys Acta, 2008. 1777(7-8): p. 929-34.
- Rothery, R.A., G.J. Workun, and J.H. Weiner, *The prokaryotic complex iron-sulfur molybdoenzyme family*. Biochim Biophys Acta, 2008. 1778(9): p. 1897-929.
- 3. Pereira, M.M., J.N. Carita, and M. Teixeira, *Membrane-bound electron transfer chain of the thermohalophilic bacterium Rhodothermus marinus: characterization of the iron-sulfur centers from the dehydrogenases and investigation of the high-potential iron-sulfur protein function by in vitro reconstitution of the respiratory chain.* Biochemistry, 1999. **38**(4): p. 1276-83.

- Pereira, M.M., J.N. Carita, and M. Teixeira, *Membrane-bound electron* transfer chain of the thermohalophilic bacterium Rhodothermus marinus: a novel multihemic cytochrome bc, a new complex III. Biochemistry, 1999. 38(4): p. 1268-75.
- 5. Pereira, M.M., et al., *The alternative complex III from Rhodothermus marinus - a prototype of a new family of quinol:electron acceptor oxidoreductases.* FEBS Lett, 2007. **581**(25): p. 4831-5.
- 6. Fernandes, A.S., et al., *Quinone reduction by Rhodothermus marinus succinate:menaquinone oxidoreductase is not stimulated by the membrane potential.* Biochem Biophys Res Commun, 2005. **330**(2): p. 565-70.
- Fernandes, A.S., M.M. Pereira, and M. Teixeira, *The succinate dehydrogenase from the thermohalophilic bacterium Rhodothermus marinus: redox-Bohr effect on heme b*_L. J Bioenerg Biomembr, 2001. 33(4): p. 343-52.
- 8. Fernandes, A.S., M.M. Pereira, and M. Teixeira, *Purification and characterization of the complex I from the respiratory chain of Rhodothermus marinus.* J Bioenerg Biomembr, 2002. **34**(6): p. 413-21.
- Fernandes, A.S., et al., Electron paramagnetic resonance studies of the iron-sulfur centers from complex I of Rhodothermus marinus. Biochemistry, 2006. 45(3): p. 1002-8.
- Pereira, M.M., et al., *Heme centers of Rhodothermus marinus respiratory chain. Characterization of its cbb*₃ oxidase. J Bioenerg Biomembr, 2000.
 32(2): p. 143-52.
- Pereira, M.M., et al., *The caa₃ terminal oxidase of the thermohalophilic bacterium Rhodothermus marinus: a HiPIP:oxygen oxidoreductase lacking the key glutamate of the D-channel.* Biochim Biophys Acta, 1999. 1413(1): p. 1-13.
- 12. Pereira, M.M., et al., *A tyrosine residue deprotonates during oxygen reduction by the caa₃ reductase from Rhodothermus marinus.* FEBS Lett, 2006. **580**(5): p. 1350-4.

- Verissimo, A.F., et al., A ba₃ oxygen reductase from the thermohalophilic bacterium Rhodothermus marinus. FEMS Microbiol Lett, 2007. 269(1): p. 41-7.
- 14. Lucas, S., et al., *The draft genome of Rhodothermus marinus DSM 4252*.2009.
- 15. Refojo, P.N., M. Teixeira, and M.M. Pereira, *The alternative complex III from Rhodothermus marinus and its structural and functional association with caa₃ oxygen reductase.* BBA-Bioenergetics, 2010. *In press*.
- Gao, X., Y. Xin, and R.E. Blankenship, *Enzymatic activity of the alternative complex III as a menaquinol:auracyanin oxidoreductase in the electron transfer chain of Chloroflexus aurantiacus.* FEBS Lett, 2009. 583(19): p. 3275-9.
- Yanyushin, M.F., Fractionation of cytochromes of phototrophically grown Chloroflexus aurantiacus. Is there a cytochrome bc complex among them? FEBS Lett, 2002. 512(1-3): p. 125-8.
- Yanyushin, M.F., et al., *New class of bacterial membrane oxidoreductases*. Biochemistry, 2005. 44(30): p. 10037-45.
- Goldman, B., S. Bhat, and L.J. Shimkets, Genome evolution and the emergence of fruiting body development in Myxococcus xanthus. PLoS One, 2007. 2(12): p. e1329.
- 20. Santana, M., et al., Gene cluster of Rhodothermus marinus high-potential iron-sulfur Protein: oxygen oxidoreductase, a caa(3)-type oxidase belonging to the superfamily of heme-copper oxidases. J Bacteriol, 2001. **183**(2): p. 687-99.
- Pereira, M.M., M. Santana, and M. Teixeira, A novel scenario for the evolution of haem-copper oxygen reductases. Biochim Biophys Acta, 2001. 1505(2-3): p. 185-208.
- 22. Rich, P.R., *The quinone chemistry of bc complexes*. Biochim Biophys Acta, 2004. **1658**(1-2): p. 165-71.

- 23. Stelter, M., et al., A novel type of monoheme cytochrome c: biochemical and structural characterization at 1.23 A resolution of rhodothermus marinus cytochrome c. Biochemistry, 2008. 47(46): p. 11953-63.
- 24. Babu, M.M., et al., *A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins.* J Bacteriol, 2006. **188**(8): p. 2761-73.
- 25. Kanehisa, M. and S. Goto, *KEGG: kyoto encyclopedia of genes and genomes*. Nucleic Acids Res, 2000. **28**(1): p. 27-30.
- Kanehisa, M., et al., From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res, 2006. 34(Database issue): p. D354-7.
- 27. Kanehisa, M., et al., *KEGG for linking genomes to life and the environment*. Nucleic Acids Res, 2008. **36**(Database issue): p. D480-4.
- Sazanov, L.A. and P. Hinchliffe, Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science, 2006.
 311(5766): p. 1430-6.
- 29. McDevitt, C.A., et al., Molecular analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its place in the dimethyl sulphoxide reductase family of microbial molybdopterin-containing enzymes. Mol Microbiol, 2002. 44(6): p. 1575-87.
- Clarke, T.A., et al., The role of multihaem cytochromes in the respiration of nitrite in Escherichia coli and Fe(III) in Shewanella oneidensis. Biochem Soc Trans, 2008. 36(Pt 5): p. 1005-10.
- 31. Simon, J. and M. Kern, *Quinone-reactive proteins devoid of haem b form widespread membrane-bound electron transport modules in bacterial respiration.* Biochem Soc Trans, 2008. **36**(Pt 5): p. 1011-6.
- 32. Gross, R., R. Eichler, and J. Simon, *Site-directed modifications indicate differences in axial haem c iron ligation between the related NrfH and NapC families of multihaem c-type cytochromes.* Biochem J, 2005. **390**(Pt 3): p. 689-93.

- Rodrigues, M.L., et al., X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination. EMBO J, 2006. 25(24): p. 5951-60.
- Simon, J., et al., A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes. Mol Microbiol, 2000. 35(3): p. 686-96.
- 35. Einsle, O., et al., *Cytochrome c nitrite reductase from Wolinella succinogenes. Structure at 1.6 A resolution, inhibitor binding, and heme-packing motifs.* J Biol Chem, 2000. **275**(50): p. 39608-16.
- Gon, S., et al., Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli. J Biol Chem, 2001. 276(15): p. 11545-51.
- 37. Ansaldi, M., et al., *TorC apocytochrome negatively autoregulates the trimethylamine N-oxide (TMAO) reductase operon in Escherichia coli*. Mol Microbiol, 1999. **33**(2): p. 284-95.
- 38. Simon, J., *Enzymology and bioenergetics of respiratory nitrite ammonification*. FEMS Microbiol Rev, 2002. **26**(3): p. 285-309.
- 39. Darwin, A., et al., Regulation and sequence of the structural gene for cytochrome c_{552} from Escherichia coli: not a hexahaem but a 50 kDa tetrahaem nitrite reductase. Mol Microbiol, 1993. **9**(6): p. 1255-65.
- 40. Eaves, D.J., et al., Involvement of products of the nrfEFG genes in the covalent attachment of haem c to a novel cysteine-lysine motif in the cytochrome c_{552} nitrite reductase from Escherichia coli. Mol Microbiol, 1998. **28**(1): p. 205-16.
- 41. Mathiesen, C. and C. Hagerhall, *The 'antiporter module' of respiratory chain complex I includes the MrpC/NuoK subunit -- a revision of the modular evolution scheme.* FEBS Lett, 2003. **549**(1-3): p. 7-13.
- 42. Friedrich, T., *Complex I: a chimaera of a redox and conformation-driven proton pump*? J Bioenerg Biomembr, 2001. **33**(3): p. 169-77.

Chapter 6

- 43. Vignais, P.M., B. Billoud, and J. Meyer, *Classification and phylogeny of hydrogenases*. FEMS Microbiol Rev, 2001. **25**(4): p. 455-501.
- Baymann, F., et al., *The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes*. Philos Trans R Soc Lond B Biol Sci, 2003. 358(1429): p. 267-74.

Chapter 7

Concluding Remarks

Despite the large diversity and flexibility observed in the enzymatic complexes composition of electron transfer respiratory chains, the cytochrome bc_1 complex family was thought to be the only one able to perform the quinol: electron acceptor oxidoreductase activity. However, another family of complexes, named alternative complexes III (ACIII), able to catalyze the same reaction was identified. The enzyme from *Rhodothermus marinus* was the first member to be purified and characterized. *Chloroflexus aurantiacus* was also described to have this complex; however, the characterization of the heme proteins is the only structural information available for this enzyme.

In this work, it was observed that ACIII is widespread in the Bacteria domain being mostly present in genomes where the genes coding for the subunits of a typical complex III are absent and for which the presence of a quinol: electron carrier oxidoreductase complex is predicted. *R. marinus* ACIII is composed by three peripheral and four transmembrane proteins (figure 7.1). One of the latter is predicted to have quinone binding sites, while the largest peripheral subunit has one binding motif for a [3Fe-4S]^{1+/0} cluster and three binding motifs for [4Fe-4S]^{2+/1+} clusters. Two other subunits, one with five and another with one *c*-type heme binding motifs are also part of the complex.

The interaction of ACIII with its electron donor, menadiol (menaquinol-7 analogue), was demonstrated and the presence of, at least, one quinone binding site was established.

In several genomes, the gene cluster coding for ACIII is followed by genes coding for subunits of oxygen reductases. In *R. marinus*, the following genes were identified as those coding for the *caa*₃ oxygen

Chapter 7

reductase. Furthermore, it was showed that ACIII and the caa_3 oxygen reductase are structural and functionally associated (figure 7.1) and that the monoheme cytochrome *c* is the electron donor of the oxygen reductase within ACIII.

Although functionally related to the bc_1 complexes, alternative complexes III have a different structural composition. However, the architecture of the ACIII family members is not completely new; these complexes are composed by structural modules already identified in members of the CISM family and related enzymes, also described as quinone/quinol interacting enzymes.

The electron transfer and energy conservation mechanisms of ACIII are not known. However, the absence of redox cofactors in the membrane bound subunits makes the presence of a Q-cycle mechanism unlikely. The possible existence of proton channels like in the heme-copper oxygen reductases or the formation of redox loops are possibilities to be considered.

According to what is known regarding the electron transfer mechanism operating in the structural modules which compose ACIII and, also that the monoheme cytochrome c subunit is, in *Rhodothermus marinus* enzyme, the last electron acceptor within the complex, the following order of electron transfer event is proposed: the quinol is oxidized in the quinone binding site at subunit C, the two electrons are then transferred to: 1) the iron sulfur centers at subunit B, 2) pentaheme cytochrome c (subunit A), 3) monoheme cytochrome c (subunit E). Since subunit F showed similarity to subunit C, the existence of a second quinone binding site cannot be excluded. The

apparent absence of redox cofactors in subunit D and G may indicate a structural and stabilizing role for those subunits.

For *Rhodothermus marinus* in particular, a further step in the identification and characterization of the complexes involved in its respiratory chain was achieved. This bacterium represents another example of the prokaryotic electron transfer chain diversity and flexibility. The three different oxygen reductases, the unusual presence of the HiPIP as an electron carrier protein, the complex I which is able to translocate sodium in opposite direction of protons and the existence of the alternative complex III confers the respiratory chain distinctive features. In figure 7.1 is presented a schematic representation of the *R. marinus* electron transfer respiratory chain.

Figure 7.1

Schematic representation of the electron transfer respiratory chain of *Rhodothermus marinus*. The gray and black spheres represent *c*- and *b*-type hemes, respectively, while the smallest spheres represent copper,. Cubes, pyramids and rectangles represents [4Fe-4S]^{2+/1+}, [3Fe-4S]^{1+/0} and [2Fe-2S]^{2+/1+} centers, respectively.

In general, a family of enzymes with quinol: electron acceptor oxidoreductase activity, which is structurally unrelated to the cytochrome bc_1 complex, was identified for the first time and members of this family were observed to be widespread in the Bacteria domain. The identification of these enzymes was an important step for the recognition of the diversity and flexibility observed in the prokaryotic electron transfer respiratory chains.

Chapter 8

Supplementary information

Supple	mental table 8	.1: Proteins whose	amino acid seque	nce was used to construct the dendog	gram from figure 6.6.
Number	kee g_D	Type of protein	Accession	s pe cies	o rde r
1	Gmet_1810	Subunit B L_MF k	YP_384764.1	Geobactermetallireducens	Desulfuromonadales
2	ZP_01451016.1	Subunit B L_MF k	ZP_01451016.1	M ariprofundus ferro o xydans	Maripro fundales
3	Dvul_2269	Subunit B L_MF k	YP_967712.1	De sulfovibrio vulgaris	Des ulfo vibrio nale s
4	DVU0694	Subunit B L_MF k	I. 91 00 99 16. 1	De sulfovibrio vulgaris	Des ulfo vibrio na le s
5	DvMF_MFk	Subunit B L_MF Ic	YP_002437096.1	De sulfovibrio vulgaris	Des ulfo vibrio nale s
9	Dde_2933	Subunit B l_MF k	YP_389422.1	Desulfovibrio desulfuricans	Des ulfo vibrio nale s
L	DMR_18020	Subunit B L_MF k	YP_002953179.1	Des ulfo vibrio magneticus	Des ulfo vibrio nale s
8	Dbac_3391	Subunit B L_MF L	YP_003 I59879.1	Desulfomicrobium baculatum	Des ulfo vibrio nale s
6	Desal_1043	Subunit B L_MF L	YP_002990647.1	Desulfovibrio salexigens	Des ulfo vibrio nale s
10	Dret_0271	Subunit B l_MF k	YP _003 197 15 1.1	Desulfohalobium retbaense	Des ulfo vibrio na le s
11	HR M2_18940	Subunit B l_MF k	YP_002603159.1	Desulfo bacterium auto tro phic um	Desulfo bacterales
12	Dole_2547	Subunit B l_MF k	YP_001530428.1	Desulfococcus oleovorans	Desulfo bacterales
13	Dalk_1268	Subunit B L_MF L	YP_002430439.1	Desulfatibacillum alkenivorans	Desulfo bacterales
14	S fum_06 10	Subunit B L_MF k	YP_844744.1	Syntropho bacter fum aro xidans	S yntro pho bac tera les
15	A c t B	Do main B1_ACII	ABV55245	R ho do the m us m arinus	S phingo bacteriale s
16	SRU_2106	Domain B1_ACII	YP_446212.1	S alin ibac ter ruber	S phingo bacteriales
17	Oter_3934	Do main B1_ACII	YP_001820808.1	Opitutus terrae	
18	A2cp1_0848	Do main B1_AC II	YP_002491266.1	A na ero m yxo bac ter de halo genans	M yxo c o c c a le s
19	Ac id345_3003	Do main B1_ACⅢ	YP_592078.1	A cido bacte ria bacte rium Ellin 345	Ac ido ba cte ria le s
20	Acid_0490	Do main B1_AC II	YP_82 1785.1	S o libacter us itatus	So liba cterales
21	$Noc_{-}1238$	Do main B1_AC II	YP_343269.1	Nitrosococcus oceani	Chromatia les
22	Cagg_3386	Do main B1_AC II	$\rm YP_002464666.1$	Chlo ro flexus aggregans	Chloro flexales
23	Reut_B4428	Do main B1_AC II	YP_298623.1	Cupriavidus pinatubonensis	Burkho lderiales
24	M446_5824	Do main B1_ACⅢ	$\rm YP_{-}001772545.1$	Methylobacterium sp. 4-46	R hizo bia les

R hodos pirilla le s		B dello vibrio na le s	S piro chae tales	Flavobacteriales	Sphingo bacteria les	Gem matimo nada les	Thermales	P asteure llales	P asteure llales	Entero bacteriales	Neis seriales	Vibrionales	Entero bacteriales	P asteure llales	Entero bacteriales	De sulfo vibrio na le s	Thermoanaero bacterales	Actino mycetales	C a mpylo bac tera les	Altero monadale s	Aeromonadales	P asteure llales	Rho do bacterales	R ho do s pirilla le s	Rhizobiales
Gluconace to bacter diazo tro phicus	M e thyla c idip hilum infe mo rum	B dellovibrio bacteriovorus	Lepto spira interro gans	Flav o bacterium psychrophilum	Cyto phaga hutchinsonii	Gemmatimonas aurantiaca	The musthermophilus	A ctinobacillus pleuropneum oniae	A ctinobacillus succinogenes	Escherichia co li	Laribac ter hongkongens is	Vibrio fis cheri	Escherichia co li	A ctinobacillus succinogenes	Escherichia co li	Desulfovibrio vulgaris	M 0 0 rella therm 0 a c etic a	Propionibacterium acnes	Campylo bac ter jejuni	S hewane lla halifaxens is	A e ro m o nas hydro phila	A ctino bacillus pleuropneum o niae	R ho do bac ters phae ro ides	R ho do spirillum rubrum	R ho do pseudo mo nas palus tris
YP_001602862.1	YP_001940612.1	NP_968492.1	NP_713447.1	YP_001295304.1	YP_678817.1	YP_002761548.1	YP_005373.1	YP_001652701.1	YP_001344816.1	YP _851991.1	YP_002796487.1	YP_002157663.1	YP_852686.1	YP_001344817.1	YP_852687.1	$YP_{-}002436028.1$	YP_430242.1	YP_055228.1	YP_001001225.1	YP_001672638.1	YP_858474.1	YP_001651699.1	YP_002520152.1	YP_426375.1	YP_530549.1
Do main B 1_ACII	Do main B1_AC II	Do main B1_AC II	Do main B1_AC II	Do main B1_AC II	Do main B1_AC II	Do main B1_ACII	Do main B1_ACII	DmsA	ynfEF	DmsA	DmsA	DmsA	ynfEF	ynfEF	ynfEF	DmsA	DmsA	DmsA	DmsA	DmsA	torA	torA	torA	torA	torA
GDI2620	Minf_1961	Bd 1608	LA3267	FP 0373	CHU_2212	GAU_2036	TTC 1404	APJL_1705	Asuc_1523	APEC01_1195	LHK_02496	VFMJ 11_A0106	APECOL670	As uc_1524	APECOL_671	$DvMF_{-}1612$	Moth_1386	P P A0517	CJJ81176_1570	$Shal_0404$	$AHA_{-}4049$	APJL_0686	R S KD 131_3219	Rru_A1287	RPC_0658
25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50

Chapter 8

51	CPS_1833	torA	YP_268563.1	C o lwe llia ps yc hre rythrae a	Altero monadale s
52	P B P R A 1467	torA	YP_129680.1	P ho to bacte rium profundum	Vibrionales
53	$PsycPRwf_02H$	torA	YP_001279123.1	Psychrobactersp.PRwf-1	P s eudo monada les
54	APEC01_90	torA	YP_852 108.1	Escherichia co li	Entero bacteriales
55	P ars _0499	FdhA	YP_001152746.1	P yro baculum ars enaticum	Therm o pro teales
95	AP E_1288.1	e bdA	NP_147849.2	A eropyrum pernix	Desulfurococcales
57	M 1425_0828	NarG	YP_002828931.1	Sulfo lobus is landicus	Sulfo lo bales
85	AB C0715	NarG	YP_174215.1	B ac illus c laus ii	Bacillales
65	DSY0334	NarG	YP _5 16567.1	De sulfito bac terium hafniens e	Clos tridiales
60	LAF_1062	NarG	$\rm YP_001843878.1$	Lacto bac illus fem entum	Lacto bac illa le s
61	CE 1296	NarG	NP_737906.1	Corynebacterium efficiens	A ctino myc etales
62	R xy1_1205	NarG	YP_643983.1	R ubro bacter xylano philus	Rubro bacterales
63	Maqu_3086	NarG	YP_960347.1	M arino bacter hydro carbo no clasticus	Alteromonadales
64	ABO_0546	NarG	YP_692266.1	A lcanivorax bo rkum ens is	Oc eanos pirilla le s
65	APECOL341	NarG	YP_852355.1	Escherichia co li	Entero bacteriales
99	$\rm PA14_13780$	NarG	YP_789246.1	Pseudomonas aenuginosa	P s eudo monada les
67	Smal_2236	NarG	YP_002028623.1	Stenotrophomonas maltophilia	Xantho monada les
68	Aave_0661	NarG	YP_969038.1	A c ido v o rax av e na e	B urkholde riale s
69	Mlg_1003	NarG	YP_741846.1	A lka lilim nico la ehrliche i	Chro matiales
70	CV_2543	NarG	NP_902213.1	Chromobacterium violaceum	Neisseriales
71	Caul_3864	NarG	$YP_{-}001685488.1$	Caulobactersp. K31	Caulo bacterales
72	HNE_1560	NarG	YP_760271.1	Hyphomonas neptunium	Rhodo bacterales
73	AZC_H25	NarG	YP_001524341.1	A zo thizo bium caulino dans	Rhizo bia les
74	Acry_1581	NarG	$\rm YP_{-}001234706.1$	A c idiph ilium cryptum	R ho do s pirilla le s
75	$COSY_0649$	NarG	YP_001219486.1	Calypto gena o kutanii thio auto tro phic	
76	Tbd_1403	NarG	YP_315161.1	Thiobacillus denitrificans	Hydro geno philales

n aticum Rhodocyc lales	is m o nui Halo bacte riale s	<i>le o vo rans</i> De sulfo bac terales	Rhodocyclales	ra e	<i>sp. Fw109-5</i> Myxo co c ales	v yellowstonii Nitro spirales	n ic o la Chlo ro biales	idens is Altero monadales	oncisus Campylobacterales	<i>ro geno form ans</i> Thermo anaero bacterale s	vo geno form ans Thermo anaero bacterale s	fulgidus Archae o glo bale s	<i>lidifont is</i> Therm o proteales	ut ro philus Therm o pro teales	sp. M C-1	ers hibae Rhodo bac terales	<i>tro phila</i> Aero mo na dale s	co li Entero bacteriales	<i>no matica</i> Rhodocyclales	<i>z sythrae a</i> Altero monadale s	vo fundum Vibrio na le s	his eptica Burkholde riale s	ens is Oceanos pirillales	<i>u a facian</i> e Rhizo hia la s	nejariens la craine
A romatole um aro	Halo arcula m ari	Desulfococcus ol	A romatoleum aro	Opüutus ter	Anaerom yxo bacter	The m o de sulfo vibrio	Chlorobium lin	She wane lla o ne	Campylo bacterc	Carboxydothemus hydi	Carboxydothemus hydi	A rchaeoglobus .	P yro baculum ca	The mo pro teus ne	Magnetococcus	Dino roseo bacte	A ero m o nas hyc	Escherichia	De chlo rom o nas c	C o lwe llia p s yc hre	Photobacterium p	B o rde te lla bro nc	Hahella cheju	A grobacterium tur	-
YP_160621.1	YP_135852.1	YP_001528081.1	YP_158333.1	YP_001818350.1	YP_001381272.1	YP_002248981.1	YP_001944400.1	NP_719592.1	YP_001467234.1	YP_361367.1	YP_359334.1	NP_071207.1	YP_001056385.1	YP_001793749.1	YP_865506.1	YP_001534499.1	YP_856122.1	YP_853313.1	YP_286714.1	YP_267801.1	YP_129068.1	NP_889336.1	YP_434542.1	NP_356246.1	_
NarG	ebdA	e bdA	e bdA	psrA	FdhA	psrA	psrA	psrA	psrA	psrA	NapA	psrA	psrA	NarG	NapA	NapA	NapA	NapA	NapA	NapA	NapA	NapA	NapA	NapA	
ebA6286	rmAC1199	Dole_0194	c 1A65	Ote r_ 1466	Anae 109_4110	THEYE_A 1157	$Clim_2400$	SO_4062	CCCI3826_0389	CHY_2574	CHY_0476	AF2384	Pcal_1500	Tneu_0353	Mmc1_1591	Dshi_3165	AHA_1586	APEC01_4353	Daro_3515	CPS_1057	P B P R A0853	BB 2800	HCH_03364	Atu4408	
77	78	79	80	81	82	83	84	85	86	87	88	89	06	91	92	93	94	95	96	76	98	66	100	101	

150

103	AP J L_ 1461	NapA	YP_001652457.1	A ctino bacillus pleuropneum o niae	P asteure lla les
104	$P ERMA_0298$	NapA	YP_002730091.1	P ers ephone lla marina	Aquificales
105	NAMH_0556	NapA	YP_002606972.1	Nautilia profundico la	Na utilia le s
106	Abu_0358	NapA	YP_001489302.1	A rco bacter butzleri	Campylo bac tera les
107	Glo v_1056	NapA	YP_001951299.1	Geobacter lovleyi	Des ulfuro mo nada les
108	sce4702	NapA	YP_001615345.1	S o rangium c ellulo s um	M yxo coccales
109	DS Y4078	NapA	YP_520311.1	De sulfito bac te rium hafnie ns e	C lo s tridia le s
110	Dde s_06 16	NapA	YP_002479203.1	De sulfo vibrio de sulfuricans	De sulfo vibrio na le s
111	CV_2229	NapA	NP_901899.1	Chromobacterium violaceum	Neis seriales
112	XC V2095	NapA	YP_363826.1	Xanthomonas euves icato ria	Xantho monada les
113	P S P H_2070	NapA	YP_274289.1	Pseudomonas savastanoi	P s eudo mo nada les
114	Mthe_1339	FdhA	YP_843754.1	M ethanos a eta the mophila	Methanosarcinales
115	TGAM_0065	FdhA	YP_002958431.1	Thermococcus gammatolerans	Thermococcales
116	Mhun_1833	FdhA	YP_503272.1	M ethano s pirillum hungatei	Methano mic robia les
117	AHA_3063	FdhA	YP_857565.1	A ero m o nas hydro phila	Aeromonadales
118	P B P R A 1862	FdhA	YP_130068.1	P ho to bacte rium profundum	Vibrionales
119	Csal_1915	FdhA	YP_573966.1	Chromo halo bacters alexigens	Oceanospirillales
120	SO_4509	FdhA	$NP_{-}720029.1$	She wane lla o ne idens is	Altero monadale s
121	Mlg_1286	FdhA	YP_742125.1	A lka lilim n ico la eh riiche i	Chro matiales
122	amb2671	FdhA	YP_422034.1	Magnetospirillum magneticum	R ho do s pirilla le s
123	Ajs_3464	FdhA	YP_987654.1	A c ido vo rax s p. JS42	B urkho lde ria le s
124	azo 3482	FdhA	YP_934984.1	A zo arc us sp. BH72	R ho do c yc la le s
125	M446_3087	FdhA	YP_001769931.1	M ethylobacterium sp. 4-46	Rhizo bia les
126	Dshi_0504	FdhA	YP_001531853.1	Dino rose o bacters hibae	Rho do bacterales
127	Abu_1498	FdhA	YP_001490422.1	A rco bacter butzleri	C a mpylo bac tera les
12.8	NAMH_1307	FdhA	YP_002607700.1	Nautilia profundico la	Na utilia le s

151

DP 1769	L	FdhA	YP_065505.1	Desulfotale a psychrophila	De sulfo bac terales
DvMF_1217 FdnG YP_002	FdnG YP_002	YP_{-002}	435636.1	Des ulfo vibrio vulgaris	De sulfo vibrio na les
GM21_2638 FdnG YP_003	FdnG YP_003	YP_{003}	022432.1	Geobactersp. M21	Des ulfuro mo nada les
BAV3142 FdnG YP_7	F dnG YP_7	YP _78	87637.1	B o rde te lla avium	B urkho lde ria le s
Daro_18.18 FdnG YP_25	FdnG YP_28	YP _28	35034.1	De chlo rom o nas aromatica	Rhodocyclales
Smal_3261 FdnG YP_002	FdnG YP_002	YP_{-002}	029643.1	Stenotrophomonas maltophilia	Xantho monadales
A2cp1_3894 FdnG YP_002	FdnG YP_002	YP_{002}	2494283.1	A naero m yxo bacter dehalo ge nans	M yxo co c c a le s
MCA1210 F dnG YP	FdnG YP	$^{-}$ AF	113674.1	Methylococcus capsulatus	Methylococcales
AP EC01_25712 F dnG YP_8	FdnG YP_8	$^{-}$ AF	359487.1	Escherichia co li	Entero bacteriales
Avin_03810 FdnG YP_00	FdnG YP_00	$\rm YP_{-}00$	2797616.1	A zo to bacter vine landii	P s eudo mo nada les
CV_3839 FdnG NP_9	FdnG NP_9	$^{-}$ NP $^{-}$ 0	03509.1	Chromo bacterium vio lace um	Neisseriales
APJL_0905 FdnG YP_00	FdnG YP_00	$PP_0 = 00$	165 1907.1	A ctinobacillus pleuropneumoniae	P asteure lla les
AZC_1159 FdnG YP_001	FdnG YP_001	YP_{-001}	524075.1	A zo rhizo bium caulino dans	Rhizo bia les
P de n_2829 F dnG YP_9	F dnG YP_9	$PP_{-}9$	16609.1	P arac o c c us denitrificans	Rhodo bacterales
SO_0101 FdnG NP_7	FdnG NP_7	NP_{-7}	15743.1	She wane lla o ne idens is	Altero monadale s
Acid_0837 FdnG YP_8	FdnG YP_8	YP_{-8}	22121.1	S o libac terus itatus	S o libacte rales
aq_1039 FdnG NP_2	FdnG NP_2	NP_{-2}	13709.1	A quifex ae o lic us	Aquificales
trd_1974 FdnG YP_00	FdnG YP_00	YP_00:	2523172.1	The momic robium roseum	Thermo microbia les
B M ULJ_05810 A 0 xB YP_00	AoxB YP_00	$PP_0 = 00$	1941609.1	B urkho lde ria m ultiv o rans	B urkho lde ria le s
Nham_4427 Ao xB YP_5	AoxB YP_5	YP _5	71843.1	Nitrobacter hamburgens is	Rhizo bia le s
Cagg_0377 AoxB YP_002	AoxB YP_002	YP_{-002}	461759.1	Chlo roflexus aggregans	C hlo ro fle xa le s
TTHB 127 Ao xB YP_14	AoxB YP_H	YPM	5366.1	The mus thermophilus	Thermales
Clim_0382 Ao xB YP_0019	AoxB YP_00F	YP_{001}	942454.1	Chlo ro bium limic o la	Chlo ro bia les
AP E_2556.1 A0 xB NP_1	AoxB NP_1	NP_{-1}	48692.2	A e ro pyrum pe rnix	Desulfurococcales
P cal_1369 Ao xB YP_00	Ao xB YP_00	$\rm YP_{-}00$	1056256.1	P yro baculum calidifont is	Therm o pro teales
ST2391 AoxB NP_	AoxB NP_	NP	378391.1	Sulfo lo bus to ko daŭ	Sulfolobales

152

	, ,			
$AHA_{-}I777$	NuoG_2	YP_856313.1	A ero m o nas hydro phila	Aeromonadales
SO_1016	NuoG_2	NP_716644.1	She wane lla o neidens is	Altero monadale s
APEC01_4282	Nuo G_2	YP_853385.1	Escherichia coli	Entero bacteriales
Csal_3127	Nuo G_2	YP_575170.1	Chromo halo bacters alexigens	Oc eano s pirilla le s
A IS_0757	Nuo G_2	YP_001083799.1	A cine to bacter baum ann ii	P s eudo monada les
MCA1354	Nuo G_2	YP_113815.1	M ethylococcus capsulatus	Methylococcales
Ac ry_1115	Nuo G_2	YP_001234246.1	A c idiph ilium c ryp tum	R ho do s pirilla le s
R S KD 131_1421	$Nuo G_2$	YP_002525782.1	R ho do bacters phae roides	Rhodo bacterale s
S fum_1954	Nuo G_2	YP_846074.1	Syntro pho bac ter fum a ro xidans	Syntro pho ba cterales
DMR_13380	NuoG_2	YP_002952715.1	Desulfovibrio magneticus	De sulfo vibrio na le s
GM21_0157	Nuo G_2	YP_003020000.1	Geobactersp.M21	Des ulfuro mo nada les
GAU_1656	Nuo G_2	YP_002761168.1	Gemmatimonas aurantiaca	Gemma timo nada les
Ace1_0273	Nuo G_2	YP_872033.1	A c ido the m us c ellulo lyticus	Actino mycetales
DR_H99	$NuoG_2$	NP_295222.1	De ino c o c c us radio durans	Deinococcales
TTC 1914	Nuo G_2	YP_005883.1	The musthermophilus	Thermales
NQO3	Nuo G_2	ΝQO3	Rhodothemus marinus	Sphingo bacteria les
Ctha_2011	Nuo G_2	YP_001996910.1	Chlo ro he rp eto n tha las s ium	Chlo robiales
Am uc_16 11	Nuo G_2	YP_001878212.1	A kke mans ia muciniphila	Verruco microbia les
A IC_06150	Nuo G_2	YP_001493971.1	R icketts ia akani	Ricketts iales
P X0_01293	Nuo G_2	YP_001914619.1	Xanthomonas oryzae	Xantho monada les
Hha l_ 1759	Nuo G_2	YP_001003325.1	Halo tho do s pira halo phila	Chro matiales
AFE_{2624}	Nuo G_2	YP_002427002.1	A c idithio bac illus ferro o xidans	Ac idithio ba cilla le s
NE 1771	Nuo G_2	NP_841801.1	Nitro somo nas europaea	Nitrosomonadales
Tbd_1148	Nuo G_2	YP_314906.1	Thio bac illus denitrificans	Hydro geno philales
Tmzlt_1748	Nuo G_2	YP_002355396.1	$Thauera\ sp.MZII$	R ho do c yc la le s
Ajs_0963	$NuoG_2$	YP_985279.1	A c ido vo rax s p. JS42	B urkho lde ria le s

153

M ethylo phila le s	Neisseriales	Legionellales	C hlo ro fle xales	He rpeto s ipho na le s	Chla mydia le s	S o libacte rales	A cido bacteriales
M ethylo bac illus flage llatus	Neisseria gonorrhoeae	Le gio ne lla pne um o phila	Chlo roflexus aggregans	Herpetosiphon aurantiacus	Candidatus P ro to chlam ydia am o ebo phila	S o libac ter us itatus	A c ido bacte rium caps ulatum
YP_546163.1	YP_002002772.1	YP_001252303.1	YP_002462393.1	YP_001545853.1	YP_007564.1	YP_82 H H.1	YP_002753433.1
Nuo G_2	Nuo G_2	Nuo G_2	Nuo G_2	Nuo G_2	Nuo G_2	Nuo G_2	NuoG_2
Mfla_2055	NGK_2H7	LPC_{3069}	Cagg_1043	Haur_3087	pc 0565	Acid_0114	ACP_0290
181	182	183	184	185	186	187	188

Chapter 8

Supple	mental table 8.	.2: Proteins whose	amino acid seque	nce was used to construct the dendo	gram 6.7.
Number	kee g_ID	Type of protein	Accession	Species	Order
1	Acid_0114	Nuo G_1	YP_821414.1	S o lib acte r us itatus	S o liba ctera les
2	ACP_0290	NuoG_1	YP_002753433.1	A cidobacterium capsulatum	Ac ido bacte riale s
3	Cagg_1043	$NuoG_1$	YP_002462393.1	Chloroflexus aggregans	C hlo ro fle xa le s
4	Haur_3087	$NuoG_1$	YP_001545853.1	Herpetos iphon aurantiacus	Herpeto s iphonales
5	pc 0565	Nuo G_1	YP_007564.1	Candidatus Protochlam ydia amoebophila	C hlam ydia le s
9	Ace1_0273	$NuoG_1$	YP_872033.1	A cido the mus cellulo lyticus	Actino mycetales
L	DR_1499	Nuo G_1	NP_295222.1	Deino co ccus radio durans	Deinococcales
8	TTC 1914	$NuoG_1$	YP_005883.1	The musthe mophilus	Thermales
6	RHE_CH03742	$NuoG_1$	YP_471224.1	R hizo b ium etli	R hizo bia les
10	P X0_01293	Nuo G_1	YP_00 19146 19.1	Xanthomonas oryzae	Xantho monada les
П	Hha1_1759	NuoG_1	YP_001003325.1	Halo tho do s pira halo phila	Chro matiales
12	LPC_{3069}	$NuoG_1$	YP_001252303.1	Le gionella pneumophila	Le gio ne lla le s
13	NE 1771	$NuoG_1$	NP_841801.1	Nitro s o m o nas e uro pae a	Nitrosomonadales
14	Tbd_1148	$NuoG_1$	YP_3 14906.1	Thio bacillus denitrificans	Hydro ge no philale s
15	Tmzlt_1748	$NuoG_1$	YP_002355396.1	Thauera sp. MZIT	R ho do c yc la le s
16	Ajs_0963	$NuoG_1$	YP_985279.1	A cido vo rax sp. JS 42	Burkholderiales
17	NGK_2147	$NuoG_1$	YP_002002772.1	Ne is se ria go no rrho e ae	Neisseriales
18	Mfla_2055	$NuoG_1$	YP_546163.1	M ethylo bac illus flage llatus	M ethylo phila les
19	AFE_2624	$NuoG_1$	YP_002427002.1	A cidithio bacillus fe mo o xidans	Acidithio bacillales
20	A IC_06150	$NuoG_1$	YP_001493971.1	R ic ketts ia akari	Rickettsiales
21	Amuc_1611	$NuoG_1$	YP_00 18782 12.1	A k k e m ans ia m uc iniphila	Verruco microbia les
22	GAU_1656	$NuoG_1$	YP_002761168.1	Gem matimo nas aurantiac a	Gemma timo nada les
23	NQ03	$NuoG_1$	NQ03	R ho do them us marinus	Sphingo bacteriales
24	Ctha_2011	$NuoG_1$	YP_{-00} 19969 10.1	Chlo ro he rpeton thalas sium	Chlo ro bia les

155

FIC_0160		Nuo G_1	YP_003096172.1	Flavo bacteriaceae bacterium 3519-10	Fla vo bacte ria le s
AHA_17	<i>LL</i>	NuoG_1	YP_856313.1	A erom o nas hydrophila	Aeromonadales
SO_101	16	Nuo G_1	NP_7 16644.1	S he wane lla o ne idens is	Alteromonadales
AP EC 01_	4282	NuoG_1	YP_853385.1	Es cherichia co li	Enterobacteriales
Csal_3L	12.7	$NuoG_1$	YP_575170.1	C hrom o ha lo bacters alexigens	Oceano spirilla le s
Acry_11	115	$NuoG_1$	YP_001234246.1	A c idiphilium c ryptum	R hodo s pirilla le s
MCA13;	54	NuoG_1	YP_113815.1	Methylo coccus capsulatus	Methylococcales
RSKD 131	421	Nuo G_1	YP_002525782.1	R ho do bacters phaeroides	Rhodobacterales
S fum_19	54	Nuo G_1	YP_846074.1	Syntro pho bacter fum aro xidans	Syntrophoba ctera les
DMR_133	380	Nuo G_1	YP_002952715.1	Des ulfo vibrio m agneticus	Des ulfo vibrio nales
GM21_01	157	NuoG_1	YP_003020000.1	Geobactersp.M21	Desulfuro mo nada les
BAV34	44	FdnH	YP_787638.1	Bordetella avium	Burkholderiales
Smal_32	262	FdnH	YP_002029644.1	S teno trophomonas maltophilia	Xantho monada les
Daro_18	8 17	FdnH	YP_285033.1	Dechloromonas aromatica	Rhodocyclales
MCA12(60	FdnH	YP_113673.1	Methylo coccus capsulatus	Methylococcales
A2cp1_3{	895	FdnH	YP_002494284.1	A na ero myxo bac ter dehalo ge nans	M yxo c o c c a le s
CV_384	40	FdnH	NP_903510.1	Chromobacterium violaceum	Neisseriales
Avin_038	820	FdnH	YP_002797617.1	A zo to bac tervine landii	P seudo monadales
AP ECOL:	2572	FdnH	YP_859486.1	Es chenchia co li	Enterobacteriales
APJL_05	906	FdnH	YP_00 165 1908.1	A c tino bac illus pleuro pneumo niae	P as teurellales
AZC_1Ľ	58	FdnH	YP_001524074.1	A zo rhizo bium caulino dans	R hizo bia le s
P den_28	328	FdnH	YP_916608.1	Paracoccus denirificans	Rhodobacterales
Acid_08	36	FdnH	YP_822120.1	S o libacte r us itatus	S o liba ctera les
SO_010	02	FdnH	NP_7 15744.1	Shewanella one idens is	Alteromonadales
aq_104	.9	FdnH	NP_2 137 10.1	A quifex ae o licus	Aquificales
GM21_26	639	FdnH	YP_003022433.1	Geobactersp.M2I	Desulfuro mo nada les

Chapter 8
rd 1973	FdnH	YP 002523171.1	The momic robium roseum	The rmo mic robia les
	FdhH	YP_002435635.1	Desulfovibrio vulgaris	Des ulfo vibrio na les
	FdhB	YP_857564.1	A erom onas hydrophila	Aeromonadales
	FdhB	YP_130067.1	P ho to bacterium profundum	Vibrionales
	FdhB	NP_720030.1	Shewanella one idens is	Alteromonadales
	FdhB	YP_573967.1	C hrom o halo bacters alexigens	Oc e a no s pirilla le s
	FdhB	YP_987653.1	A cido vo rax sp. JS 42	Burkholderiales
	FdhB	$YP_{-}934983.1$	Azoarcus sp. BH72	Rhodocyclales
	FdhB	YP_001769932.1	Methylo bacterium sp. 4-46	Rhizobiales
	FdhB	YP _00 153 18 54.1	Dinoroseobactershibae	Rhodobacterales
	FdhB	YP_422035.1	M agneto s pirillum magnetic um	R hodo s pirilla le s
	FdhB	YP_742126.1	A Ikalilim nico la ehrlichei	Chro matiales
	FdhB	YP_065504.1	Des ulfo tale a ps yc hro phila	Des ulfo bactera les
	FdhB	YP_001490421.1	A rc o bac ter butzle ri	Campylo bacterales
80	FdhB	$YP_{002607701.1}$	N autilia p rofundic o la	Nautiliales
~	FdhB	YP_843753.1	M ethano s ae ta the m o phila	Methanosarcinales
	FdhB	NP_127152.1	Pyro coccus abyssi	Thermococcales
	DMSB	YP_055227.1	Pro pionibac terium acnes	Ac tino myc etale s
11	DMSB	YP_002436027.1	Desulfovibrio vulgaris	Des ulfo vibrio nales
<u>1</u> 94	DMSB	YP_851992.1	Es cherichia coli	Entero bacte riales
572	ynfG	YP_852688.1	Es cherichia co li	Entero bacte riales
90	DMSB	YP_001652702.1	A c tino bac illus pleuro pne um o niae	P as te urella le s
2	ynfG	YP_001344815.1	A ctinobacillus succinogenes	P as te ure lla le s
105	DMSB	YP_002157662.1	Vibrio fis cheri	Vibrio na les
2	DMSB	YP_001672640.1	Shewane lla halifaxens is	Alteromonadales
7	DMSB	$YP_{-}002796488.1$	Laribacter hongkongens is	Neis seria les

157

JJ81176 1571	DMSB	YP 001001226.1	Cam pylo bac ter je juni	Campylobacterales
1385	DMSB	YP_430241.1	M o o re lla therm o ac e tica	The rmo anaero bac terales
_1331	DMSB	YP_001319192.1	A lkaliphilus metalliredigens	C lo s tridia le s
1200	ebdB	YP_135853.1	Halo arcula m aris m o rtui	Ha lo bacteria les
A_0658	ebdB	YP_002730447.1	P e 15 e pho ne lla m arina	Aquific ales
.63	ebdB	YP_158332.1	A rom ato leum arom aticum	Rhodocyclales
0196	ebdB	YP_001528083.1	Desulfococcus oleovorans	Des ulfo ba cte rales
0498	FdhB	YP_001152745.1	P yro bac ulum ars e natic um	Therm o pro tea les
1294.1	ebdB	NP_147850.2	A e ro pyrum pe mix	Desulfurococcales
3865	NarH	$\rm YP_{-}001685489.1$	Caulo bactersp. K31	Caulo bacterales
_1561	NarH	YP_760272.1	Hyphom on as neptunium	Rhodo bactera les
_ 1426	NarH	YP_001524342.1	A zo hizo bium c aulino dans	Rhizobiales
1582	NarH	YP_001234707.1	A cidiphilium cryptum	Rhodospirilla les
1_0648	NarH	YP_0012 19485.1	Calypto ge na o kutanii thio auto tro phic	
-3085	NarH	$YP_{-}960346.1$	M arino bacter hydroc arbono clasticus	Altero mo nada les
_13800	NarH	YP_789247.1	Pseudomonas aeruginosa	P seudo mo nadale s
_0545	NarH	YP_692265.1	A lcaniv o rax bo rkum e ns is	Oceanospirilla les
_2235	NarH	YP_002028622.1	Steno trophom on as maltophilia	Xantho mo nadales
-0662	NarH	YP_969039.1	A cido vo rax av ena e	Burkho lderia les
2542	NarH	NP_902212.1	Chromobacterium violaceum	Neis seriale s
_1002	NarH	YP _74 1845.1	A lk alilim nico la ehrlichei	Chro matiales
01_342	NarH	YP_852356.1	Es che richia coli	Entero bacteria les
_1404	NarH	YP_315162.1	Thio bacillus denitrificans	Hydro geno philales
6285	NarH	YP_160620.1	A rom at ole um arom at ic um	Rhodocyclales
0716	NarH	YP_174216.1	Bacillus c laus ü	Bacillales
_1061	NarH	YP_001843877.1	Lac to bacillus femn entum	Lacto bac illales
1206	NarH	$YP{-643984.1}$	Rubro bacter xylan o philus	Rubro bacterales

158

104	DSY0335	NarH	YP_5 16568.1	Desulfitobacterium hafniense	C lo s tridia le s
105	CE 1295	NarH	NP_737905.1	Corynebacterium efficiens	Ac tino myc etales
106	M 1425_0829	NarH	YP_002828932.1	Sulfo lo bus is landic us	S ulfo lo ba le s
107	Reut_B4428	Domain B2_ACII	YP_298623.1	Cupriavidus pinatubonens is	Burkholderiales
108	A2cp1_0848	Do main B2_AC II	YP_002491266.1	A na ero m yxo bac ter dehalo ge nans	M yxococcales
109	Acid345_3003	Domain B2_ACII	YP_592078.1	A c ido bacte ria bacte rium Ellin345	Ac ido bacte riales
110	$Acid_0490$	Do main B2_AC II	YP_821785.1	S o libacte r us itatus	S o liba ctera les
III	Cagg_3386	Do main B2_AC II	$YP_{-}002464666.1$	Chloroflexus aggregans	Chloroflexales
112	Noc_1238	Do main B2_AC II	YP_343269.1	Nitrosococcus oceani	Chro matiales
113	M446_5824	Do main B2_AC II	YP_001772545.1	Methylo bacterium sp.4-46	Rhizo bia les
114	GDI2620	Domain B2_ACII	YP_001602862.1	Gluc o na c e to bac ter diazo tro phic us	Rhodo spirillale s
115	Oter_3934	Do main B2_AC II	YP_001820808.1	Opitutus te mae	
116	Minf_1961	Do main B2_AC II	YP_001940612.1	M ethylacidiphilum infernorum	
117	A c t B	Do main B2_AC II	ABV55245	R ho do the m us marinus	Sphingo bacteriales
118	SRU_2106	Domain B2_ACI	YP_446212.1	S alinibac ter rube r	Sphingo bacteriales
119	TTC 1404	Do main B2_AC II	YP_005373.1	The musthem ophilus	Thermales
120	Bd 1608	Do main B2_AC II	NP_968492.1	B de llovibrio bacteriovorus	Bdello vibrio nales
121	LA3267	Do main B2_AC II	NP_7 13447.1	Le pto s pira inte rro gans	Spirochaetales
12.2	FP 0373	Do main B2_AC II	YP_001295304.1	Flavo bacterium ps ychro philum	Fla vo bacte ria le s
123	CHU_2212	Do main B2_ACII	YP_678817.1	Cytophaga hutchins onii	Sphingo bacteriales
124	Gmet_1811	Subunit B2_MFIc	YP_384765.1	Geo bacterm etallireducens	Desulfuro mo nada les
125	GAU_2036	Subunit B2_MFIc	YP_002761548.1	Gem matimo nas aurantiac a	Gemmatimo nada les
126	ZP_0 145 10 15.1	Subunit B2_MFIc	ZP_01451015.1	M ariprofundus ferro o xydans	Mariprofundales
12.7	Dvu1_2270	Subunit B2_MFIc	YP_967713.1	Desulfovibrio vulgaris	Desulfo vibrionales
128	DVU0693	Subunit B2_MFIc	YP_009915.1	Desulfovibrio vulgaris	Desulfo vibrionales
130	Dde_2934	Subunit B2_MFIc	YP_389423.1	Desulfovibrio desulfuricans	Desulfo vibrionales
131	DMR_18030	Subunit B2_MFk	YP _002953 180.1	Desulfovibriom agneticus	Des ulfo vibrio nales

160

Supple	mental table 8.	3 : Proteins whose	amino acid sequer	ice was used to the construct dendo	gram 6.8.
Number	keeg_D	Type of protein	Accession	Species	Order
1	DS Y0 188	DMSC	YP_5 1642 1.1	Desulfito bacterium hafniense	C lo s tridia le s
2	Moth_1384	DMSC	YP_430240.1	M o o rella the m o ac etic a	Thermo anaero bacterale s
3	DvMF_1610	DMSC	YP_002436026.1	Desuffovibrio vulgaris	Desulfo vibrio na les
4	AP EC 01_1193	DMSC	YP_851993.1	Es cherichia coli	Entero bacteriales
5	APECOL_673	ynfH	YP_852689.1	Es cherichia co li	Entero bacteriales
9	AP J L_ 1707	DMSC	YP_001652703.1	A ctino bacillus pleuropneum o niae	P as teure lla les
7	As uc_1521	ynfH	YP_001344814.1	A ctino bacillus succino genes	P asteurellales
8	VFMJ 11_A0104	DMSC	YP_002157661.1	Vibrio fis ch e ri	Vibrionales
6	LHK_02498	DMSC	YP_002796489.1	Laribacter hongkongensis	Neisseriales
10	Shal_0405	DMSC	YP_001672639.1	S he wane lla halifaxe ns is	Alteromonadales
11	CJJ81176_1572	DMSC	YP_001001227.1	Cam pylo bac te r je juni	Campylo bacterales
12	P P A05 15	DMSC	YP_055226.1	Propionibacterium acnes	Actino mycetales
13	Oter_1464	ps rC	YP_001818348.1	Opitutus te rrae	
14	Anae 109_4 106	nrfB	YP_001381268.1	A naero myxo bacter sp. Fw109-5	Myxococcales
15	C lim_2402	ps rC	$YP_{-001944402.1}$	Chlo ro bium limic o la	Chlo ro biales
16	Cag_0618	nrfD	YP_378934.1	Chlo ro bium chlo ro chro matii	Chlo ro bia les
17	THEYE_A 1155	ps rC	YP_002248979.1	The mo de sulfovibrio ye llows to nii	Nitro s pira le s
18	AHA_2467	nrfD	YP_856981.1	A eromonas hydrophila	Aeromonadales
19	P B P R A 1261	nrfD	YP_129474.1	P ho to bacte rium profundum	Vibrio na le s
20	AP ECO1_2382	nrfD	YP_859678.1	Es cherichia coli	Entero bacteria les
21	AP J L_0 103	nrfD	YP_001651153.1	A ctino bacillus pleuropneum o niae	P as teure lla les
22	Sama_2904	nrfD	YP_928776.1	She wane lla am azo ne ns is	Alteromonadales
23	SO_{-4060}	ps rC	NP_719590.1	Shewane lla one idens is	Alteromonadales
24	CCC13826_0387	ps rC	YP_001467232.1	Campylo bacter concisus	Campylo bacterales

Supplemental table 8.3- Subunit C

25	Pcal_H98	psrC	YP_{-00} 1056383.1	Pyrobaculum calidifontis	Therm o pro teales
26	P ars_0936	nrfD	YP _00 1153 168.1	Pyrobac ulum ars enaticum	Therm o pro teales
27	Dvul_2271	Subunit C_MFIc	YP_967714.1	Desulfovibrio vulgaris	De sulfo vibrio nales
28	DVU0692	Subunit C_MFIc	YP_009914.1	Desulfovibrio vulgaris	De sulfo vibrio nales
30	Dde_2935	Subunit C_MFIc	YP_389424.1	Des ulfovibrio des ulfuricans	De sulfo vibrio nales
31	Desal_1045	Subunit C_MFIc	YP_002990649.1	Desulfovibrios alexigens	De sulfo vibrio na le s
32	Dret_0273	Subunit C_MFIc	YP _003197153.1	Desulfohalobium retbaens e	De sulfo vibrio na le s
33	Dbac_3393	Subunit C_MFIc	YP_0031598811	Desulfomicrobium baculatum	De sulfo vibrio na le s
34	DMR_18040	Subunit C_MFIc	YP_002953 181.1	Desulfovibriom agneticus	De sulfo vibrio nales
35	S fum_0608	Subunit C_MFIc	YP_844742.1	Syntro pho bacter fumaro xidans	S yntro pho ba cterales
36	HRM2_18960	Subunit C_MFIc	YP_002603 161.1	Desulfo bacterium auto trophicum	Des ulfo bac tera les
37	Do le_2549	Subunit C_MFIc	YP_001530430.1	Desulfococcus o leovorans	Des ulfo bactera les
38	Dalk_1270	Subunit C_MFIc	$YP_{-0024304410}$	Desulfatibac illum alken ivo rans	Des ulfo bac tera les
39	Ge ne_C	Subunit C_AC II	AB V55246	Rhodo thermus marinus	Sphingo bacteriales
40	SRU_2105	Subunit C_ACII	YP_446211.1	S alinibacter ruber	Sphingo bacteriales
41	Bd 1609	Subunit C_ACII	NP_968493.1	B de llovibrio bacteriovorus	B de llo vibrio na les
42	LA3266	Subunit C_ACII	NP_7 I3446.1	Le pto s pira inte rro gans	S piro chae ta le s
43	FP 0374	Subunit C_ACII	YP_001295305.1	Flavo bacterium ps ychro philum	Flavo bacte riale s
44	CHU_2211	Subunit C_ACII	YP_678816.1	Cytophaga hutchins onii	Sphingo bacteriales
45	Oter_3933	Subunit C_ACII	YP_00 1820807.1	Opitutus te rrae	
46	Minf_1960	Subunit C_ACII	YP_00 1940611.1	M ethylac idiphilum infe mo rum	
47	A2cp1_0849	Subunit C_ACⅢ	YP_002491267.1	A naero myxo bac ter dehalo ge nans	M yxo co cc a le s
48	Acid345_3002	Subunit C_ACⅢ	YP_592077.1	A c ido bacteria bacterium Ellin345	Ac ido bacte riale s
49	Acid_0491	Subunit C_ACⅢ	YP_821786.1	S o libacter us itatus	S o libacte rales
50	Cagg_3385	Subunit C_ACⅢ	YP_002464665.1	Chloroflexus aggregans	Chlorofle xales
51	Reut_B4429	Subunit C_ACⅢ	YP_298624.1	Cupriavidus pinatubonens is	Burkholderiales

				-				_									_							-
Chro matiales	Thermales	Gemmatimonadales	Rhizo bia les	R ho do s pirilla le s	M aripro funda le s	Des ulfuromo nadales	Gemmatimonadales	Sphingo bacteriales	Sphingo bacteriales	B dello vibrio na les	S piro chae tale s	Flavobacteriales	Sphingo bacteriales			M yxo co cc a les	Solibacterales	Chro matiales	Acidobacteriales	C hloroflexales	Rhizo bia les	R ho do s pirilla le s	Burkholderiales	Thermales
Nitros o co c cus o c e ani	The musthe mophilus	Gemmatimonas aurantiaca	M e thylo bac te rium sp. 4-46	Gluc o na c e to bac ter diazo tro phicus	M ariprofundus fe rro o xydans	Geo bac ter m etallired ucens	Gemmatimonas aurantiaca	Rhodothermus marinus	S alinibacter ruber	B de llovibrio bacteriovorus	Le pto s pira inte rro gans	Flavo bacterium ps ychro philum	Cytophaga hutchins onii	M e thylac idiphilum infe mo rum	Opitutus te mae	A na ero m yxo bac ter dehalo ge nans	S o libacterus itatus	Nitros o co ccus o ce ani	A c ido bacteria bacterium Ellin345	Chloroflexus aggregans	Methylo bacterium sp. 4-46	Gluc o nace to bac ter diazo trophicus	Cupriavidus pinatubonens is	The must he mophilus
$YP_{-}343270.1$	YP_005372.1	YP_002761547.1	$YP_{-00}1772544.1$	YP_001602861.1	ZP_01451014.1	YP_384766.1	YP_002761544.1	ABV55249	YP_446208.1	NP_968496.1	NP_7 I3443.1	YP_001295308.1	YP_678813.1	$YP_{-00}1940608.1$	YP_00 1820 804.1	YP_002491270.1	YP_821789.1	YP_343273.1	YP_592074.1	YP_002464662.1	YP _00 1772541.1	YP_001602858.1	YP_298627.1	YP_005369.1
Subunit C_ACⅢ	Subunit C_ACII	Subunit C_ACII	Subunit C_ACII	Subunit C_ACII	Subunit C_ACII	Subunit C_ACII	Subunit F_AC II	Subunit F_AC II	Subunit F_AC II	Subunit F_AC II	Subunit F_AC II	Subunit F_AC II	Subunit F_ACⅢ	Subunit F_ACⅢ	Subunit F_AC II	Subunit F_AC II	Subunit F_AC II	Subunit F_AC II	Subunit F_AC II	Subunit F_ACⅢ	Subunit F_ACⅢ	Subunit F_ACⅢ	Subunit F_AC II	Subunit F_ACⅢ
Noc_1239	TTC 1403	GAU_2035	M446_5823	GDI2619	ZP_01451014.1	Gmet_18 12	GAU_2032	$Gene_{-}F$	SRU_2102	B d 16 12	LA3263	FP 0377	CHU_2208	Minf_1957	Oter_3930	A2cp1_0852	Acid_0494	Noc_1242	Acid345_2999	Cagg_3382	M446_5820	GDI2616	Reut_B4432	TTC 1400
52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76

gram 6.9.	order		R ho do bacterales	Aeromonadales	Vibrio na le s	Alteromonadales	P seudo mo na da le s	Oceanos pirilla les	B urkho lde ria le s	R ho do s pirilla le s	Rhizobiales	Entero bacteria les	P as teurella le s	Rhodocyclales	Rhizobiales	Neisseriales	R ho do bacterales	R ho do s pirilla le s	Entero bacteria le s	Aeromonadales	P as teure lla le s	Alteromonadales	Vibrionales	P seudo mo na da le s	Desulfo vibrio na les
ce was used to construct the dendo	species	Magnetococcus sp. MC-1	Dino ro s e o bacter s hibae	A eromonas hydrophila	P ho to bacte rium profundum	Co lwe llia ps ychre rythrae a	Pseudomonas aeruginosa	Hahella chejuens is	B o rde te lla bro nc his e ptic a	R ho do spirillum centenum	A gro bacterium tum efaciens	Escherichia coli	A ctino bacillus pleuro pneum o niae	Dechloromonas aromatica	R ho do ps e udo m o nas palus tris	Laribacter hongkongens is	R ho do bacters phaero ides	R ho do s pirillum rubrum	Es cherichia co li	A eromonas hydrophila	A ctino bac illus pleuro pneum o niae	Co lwe llia ps ychre rythrae a	P ho to bacte rium profundum	Psychrobactersp.PRwf-1	Desulfovibrio desulfuricans
amino acid sequen	Accession	YP_865502.1	YP_001534495.1	YP_856126.1	YP_129070.1	YP_267799.1	NP_249863.1	YP_434544.1	NP_889338.1	YP_002296711.1	NP_356244.1	YP_853309.1	YP_001652453.1	YP_285780.1	YP_530547.1	YP_002796078.1	YP_002520150.1	YP_426371.1	YP_852107.1	YP_858473.1	YP_001651700.1	YP_268562.1	YP_129681.1	YP_001279122.1	YP_002478680.1
4: Proteins whose	Type of protein	NapC	NapC	NapC	NapC	NapC	NapC	NapC	NapC	NapC	NapC	NapC	NapC	NapC	torC	NapC	torC	torC	torC	torC	torC	torC	torC	torC	NapC
mental table 8.	keeg_D	Mmc 1_1587	Dshi_3161	AHA_1590	P B P R A 0855	CP S_1055	P A 1172	HCH_03367	BB 2802	RC1_0459	Atu4410	AP EC 01_4357	AP JL_ 1457	Daro_2579	RPC_0656	LHK_02085	RSKD131_3217	R ru_A 1283	AP ECO1_89	AHA_4048	AP J L_0687	CP S_1832	PBPRA1468	$\rm PsycPRwf0213$	Ddes_0082
Supple	Number	1	2	3	4	5	9	L	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

Supplemental table 8.4- Subunit A

25	THEYE_A0192	nrfH	YP_002248042.1	The m o de sulfo vibrio yello ws to nii	Nitro s pira le s
26	DMR_06510	nrfH	YP_002952028.1	Corynebacterium diphtheriae	Actino mycetales
27	BDL0108	nrfH	YP_001301525.1	Parabactero ides distas onis	Bacteroidales
28	Coch_1100	nrfH	YP_003141216.1	Capno cyto phaga o chracea	Flavo bacteria le s
29	DP 0343	nrfH	YP_064079.1	Desulfotalea psychrophila	Desulfobacterales
30	Abu_0348	nrfH	YP_001489292.1	A rc o bac ter butzle ri	Campylo bacterales
31	CHY_0242	nrfH	YP_35914.1	Carboxydothermus hydrogenoformans	Thermo anaero bacterales
32	CK0_03812	nrfB	YP_001455324.1	Citro bacter koseri	Entero bacteriales
33	ECBD_3961	nrfB	YP_003038132.1	Es cherichia co li	Entero bacteriales
34	AHA_2465	nrfB	YP_856979.1	A e ro m o nas hydro phila	Aeromonadales
35	AHA_2762	nrfB	YP_857270.1	A e ro m o nas hydro phila	Aeromonadales
36	AP $P7_0100$	nrfB	YP_001967894.1	A ctino bac illus ple uro pne um o niae	P as teure lla les
37	NT05HA_0038	nrfB	YP_003006573.1	A ggre gatibac te r aphro philus	P as teure lla les
38	PBPRA1259	nrfB	YP_129472.1	P ho to bacterium profundum	Vibrionales
39	VF_1553	nrfB	YP_204936.1	Vibrio fis cheri	Vibrionales
40	$Sama_2902$	nrfB	YP_928774.1	Shewane lla am azo ne ns is	Alteromonadales
41	Sbal_0181	nrfB	YP_001048584.1	S hewane lla baltic a	Alteromonadales
42	Oter_4607	nrfB	YP_001821478.1	Opitutus terrae	
43	Bd2824	nrfB	NP_969613.1	B de llo vibrio bacterio vo rus	B de llo vibrio na le s
44	A2cp1_0964	nrfB	YP_002491381.1	A nae ro m yxo bacter de halo ge nans	Myxococcales
45	B d2825	nrfA	NP_969614.1	B de llo vibrio bacterio vo rus	B de llo vibrio na le s
46	A2cp1_0963	nrfA	YP_002491380.1	A nae ro m yxo bacter de halo ge nans	Myxococcales
47	Oter_4608	nrfA	YP_001821479.1	Opitutus terrae	
48	RB 11165	nrfA	NP_869819.1	R ho do pire llula baltica	P lancto m yceta le s
49	S YN_02616	nrfA	$YP_{-462876.1}$	Syntro phus aciditro phicus	S yntro pho ba c te ra le s
50	CHY_0243	nrfA	YP_359115.1	Carbo xydo the mus hydro genofo mans	Thermo anaero bacterales

Chapter 8

Chro matiales	Aeromonadales	Entero bacteriales	Vibrionales	Alteromonadales	P as teure lla le s	Campylo bacterales	Desulfobacterales	Bacteroidales	F la vo bacteria le s	Desulfo vibrio nales	Nitro s pira le s	Corio bacteria les	Desulfo vibrio nales	Desulfo vibrio nales	Desulfo vibrio nales	Desulfo vibrio nales	Desulfo vibrio nales	Desulfo vibrio nales	Desulfo vibrio nales	Desulfo vibrio nales	Syntro pho bacterales	Desulfo bacterales	Desulfo bacterales	Desulfobacterales	Sphingobacteriales
Halo rho do s pira halo phila	A e ro m o nas hydro phila	Escherichia coli	P ho to bacte rium profundum	S he wane lla o ne idens is	A ctino bacillus pleuro pneum o niae	A rc o bacter butzle ri	Desulfo tale a ps ychro phila	Parabacteroides distasonis	Capno cyto phaga o chracea	Desulfovibrio magneticus	The rm o de sulfovibrio ye llows to nii	Crypto bacterium curtum	Desulfovibrio vulgaris	Desulfovibrio vulgaris	Desulfovibrio vulgaris	Desulfovibrio desulfuricans	Desulfohalobium retbaense	Desulfomicrobium baculatum	Desulfovibrio salexigens	Desulfovibrio magneticus	S yntro pho bac te r fum aro xidans	Desulfobacterium autotrophicum	Desulfococcus oleovorans	Desulfatibac illum alkenivorans	R ho do the mus marinus
YP_001002943.1	YP_856978.1	YP_859675.1	YP_129471.1	NP_7 195 10.1	YP_001651150.1	YP_001489291.1	YP_064080.1	YP_001301526.1	YP_003141217.1	YP_002952029.1	YP_002248043.1	YP_003151700.1	YP_967711.1	*	YP_002437097.1	YP_389421.1	YP_003197150.1	YP_003159878.1	YP_002990646.1	YP_002953178.1	YP_844745.1	YP_002603158.1	YP_001530427.1	YP_002430442.1	ABV55244
nrfA	nrfA	nrfA	nrfA	nrfA	nrfA	nrfA	nrfA	nrfA	nrfA	nrfA	nrfA	nrfA	SubunitA_MFIc	SubunitA_MFIc	SubunitA_MFIc	SubunitA_MFIc	SubunitA_MFIc	SubunitA_MFIc	SubunitA_MFIc	SubunitA_MFIc	SubunitA_MFIc	SubunitA_MFIc	SubunitA_MFIc	SubunitA_MFIc	Subunit A_ACII
Hha1_1374	AHA_2464	APECOL2385	PBPRA1258	SO_3980	APJL_0100	Abu_0347	DP 0344	BDL_0109	Coch_1101	DMR_{06520}	THEYE_A0193	Ccur_13420	Dvul_2268	DVU0695	$DvMF_2690$	Dde_2932	$Dret_0270$	Dbac_3390	Desal_1042	DMR_18010	S fum_0611	HRM2_18930	Do le_2546	Dalk_1267	A ctA
51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	99	67	68	69	02	71	72	73	74	75	76

Supplemental table 8.4- Subunit A

Sphingobacteriales	Chlo ro fle xa le s			Ac ido bacteria le s	Solibacterales	Chromatiales	Rhizobiales	R ho do s pirilla le s	B urkho lderia les	Myxococcales	Thermales	S phingo bacteriales	B de llo vibrio na le s	Spirochaetales	F la vo bacteria le s	Desulfuromonadales	M aripro funda le s	Gemmatimonadales
S alinibacter ruber	Chlo roflexus aggregans	Opitutus terrae	M ethylacidiphilum infernorum	A cido bacteria bacterium Ellin345	S o libacter us itatus	Nitrosococcus oceani	M ethylo bacterium sp. 4-46	Gluc o nac eto bacter diazo tro phicus	Cupriavidus pinatubo nens is	A naero myxo bacter dehalo genans	The musthe mophilus	Cyto phaga hutchins o nii	B de llo vibrio bacterio vo rus	Le pto s pira interro gans	Flavo bacterium psychrophilum	Ge o bacte r m e tallire duc e ns	M ariprofundus ferro o xydans	Gemmatimonas aurantiaca
YP_446213.1	YP_002464667.1	YP_001820809.1	YP_001940613.1	YP_592079.1	YP_821784.1	YP_343268.1	YP_001772546.1	YP_001602863.1	YP_298622.1	YP_002491265.1	YP_005375.1	YP_678818.1	NP_968491.1	NP_7 13448.1	YP_001295303.1	YP_384763.1	ZP_01451017.1	YP_002761549.1
Subunit A_ACII	Subunit A_ACⅢ	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII	Subunit A_ACII
SRU_2107	Cagg_3387	Oter_3935	Minf_1962	Ac id345_3004	Ac id_0489	No c_1237	M446_5825	GDI2621	Reut_B4427	A2cp1_0847	TTC 1406	CHU_2213	B d 1607	LA3268	FP0372	Gmet_1809	ZP_01451017.1	GAU_2037
77	78	6 <i>L</i>	80	81	82	83	84	85	86	87	88	68	06	91	92	63	94	95

Chapter 8