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Foreword This dissertation describes the work performed under the supervision of Cláudio M. Gomes in the Protein Biochemistry Folding and Stability Laboratory at the Instituto de Tecnologia Química e Biológica, from September 2006 to October 2010. The studies presented herein aim at understanding the role of metal ions in modulating the conformation and stability of proteins. Two types of model systems have been used: iron-sulfur (FeS) proteins having permanently bound FeS cofactors, and the S100 proteins, which bind calcium, zinc and copper ions reversibly. The first chapter presents the state of the art on fundamental aspects of protein folding. Then, two experimental parts include the studies on iron-sulfur and S100 proteins. Part I includes an overview of the biology of iron-sulfur clusters and their interplay with protein folding and stability followed by three chapters presenting results on the characterization of different FeS proteins (rubredoxin, Rieske ferredoxin and seven iron ferredoxin). Part II first reviews the roles of metal ions as modulators of protein conformations, stability and amyloidogenesis and introduces the S100 proteins. Then, the four following chapters address the modulation of the conformation and stability of S100A2 by metal ions and the newly identified amyloidogenic properties of the S100 family are presented, including the roles of metal ions and the proof of concept for the functional and pathological interplay of S100B and Aβ amyloidogenesis. The last chapter highlights the conclusions of the major findings reported and future perspectives.    
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Dissertation abstract Metal ions are cofactors in about 30% of all proteins, where they fulfill catalytical and structural roles. Due to their unique chemistry and coordination properties they effectively expand the intrinsic polypeptide properties (by participating in catalysis or electron transfer reactions), stabilize protein conformations (like in zinc fingers) and mediate signal transduction (by promoting functionally relevant protein conformational changes). However, metal ions can also exert have deleterious effects in living systems by incorporating in non-native binding sites, promoting aberrant protein aggregation or mediating redox cycling with generation of reactive oxygen and nitrogen species. For this reason, the characterization of the roles of metal ions as modulators of protein conformation and stability provides fundamental knowledge on protein folding properties and is instrumental in establishing the molecular basis of disease. In this thesis we have analyzed protein folding processes using model protein systems incorporating covalently bound metal cofactors – iron-sulfur (FeS) proteins – or where metal ion binding is reversible and associated conformational readjustments – the S100 proteins. The Rieske [2Fe-2S] domain occurs either as part of electron transfer system in respiratory (bc1) or photosynthetic (b6f) complexes or as a component in soluble dioxygenase systems. Despite the functional plasticity, the all-β Rieske fold is highly conserved, being modified by extensions and mutations modulating the cluster redox or pH properties or introducing features like disulfide bridges. In this respect, we have identified a Rieske ferredoxin featuring a cysteine pair present in only a subset of Thermoprotei archaea and unrelated to the conserved cysteines forming a disulfide in the vicinity of the respiratory and photosynthetic clusters. By using a combination of thiol colorimetric quantification and the FeS cluster visible and infrared absorption fingerprints we have determined that in the 
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Acidianus ambivalens protein the cysteines form a disulfide bridge in the as-isolated protein and established the conditions where the disulfide could be selectively reduced (5 mM TCEP) without affecting the overall protein conformation or the redox state of the FeS cluster. Disulfide reduction was found to regulate protein stability (ΔTm = 9°C), FeS cluster reduction potential (ΔE0 = +29 mV) and affect the cluster’s pH-dependent properties, being a putative regulatory element in this protein. The folding properties of the hyperthermostable zinc-containing seven iron ([3Fe-4S][4Fe-4S]) ferredoxin from A. ambivalens (Tm = 122°C in water at pH 7) have been thoroughly studied. Recently, this has revealed the formation of a molten globule conformation upon thermal unfolding at pH 2.5. This conformation was proposed as a candidate for the template upon which the FeS clusters are assembled during protein biosynthesis. Molten globule formation has been shown to include, zinc and FeS dissociation and tertiary structure changes but a detailed description of the conformational changes occurring is missing. By monitoring the thermal denaturation of ferredoxin at pD 2.5 and 12 using singular value decomposition (SVD) of second derivative FT-IR spectra we determined the thermal denaturation profiles of each secondary structure type of ferredoxin. Further, we identified a spectral component describing ferredoxin’s unfolding at acidic and basic conditions. This component was associated with the formation of the molten globule and not of the amorphous unfolded state at basic conditions. The structural state represented by this component undergoes cold unfolding at experimentally accessible temperatures. This is the first description of such event for this protein and constitutes the opportunity of studying cold unfolding of an FeS protein in the absence of external perturbations like co-solvents. We have built on the knowledge of the folding and stability of rubredoxins by studying the thermal denaturation of the Desulfovibrio gigas protein. 
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Despite its mesophilic origin, this protein exhibited a high stability, with only around ~30% of the FeS clusters disintegrating at 95°C, in an EDTA-insensitive process. By monitoring thermal unfolding using FT-IR coupled with spectral band fitting we have described the partial unfolding occurring at 95°C in terms of the secondary structure changes taking place. We have identified two thermal unfolding regimes. In the 25-60°C range α-helices and β-sheets unfold. Starting at 60°C, turns accumulate and β-sheet content increases, forming around 30 and 50% of the protein’s secondary structure at 95°C, respectively. We hypothesize that the highly structured conformation forming at high temperature is correlated with rubredoxin high thermostability. The S100 proteins are major components in the vertebrate Ca2+ signal buffer/transducer network regulating cell cycle, cell growth, differentiation and mobility. S100 proteins are small (10-12 kDa) homo- or heterodimers which bind Ca2+ in EF-hand domains. Zn2+ and/or Cu2+ can also bind elsewhere in some proteins. Ca2+ binding induces a conformational change which exposes a protein docking site.  Human S100A2 is a unique family member because it binds Ca2+ and Zn2+, accumulates in the nucleus, interacts with p53 in a metal-dependent manner and has been assigned a tumor suppression role. The multiplicity of metal binding sites (2 Ca2+ and 2 Zn2+ sites per monomer), metal-dependent activation, and S100A2’s role in human pathology makes this protein a model to study metal-dependent conformational changes and the eventual tuning of conformational stability. We have examined the role of the Zn2+ sites in modulating protein conformation and stability by using S100A2 variants with Zn2+ binding site mutations. Circular dichroism analysis has shown that the protein conformation is prone to subtle readjustments upon Ca2+ and Zn2+ binding, keeping the same α-helical-rich fold. The conformational stability of the S100A2 variants was assessed by CD and FT-IR monitored 
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urea and thermal unfolding in different metallation states (apo, Ca2+, Zn2+). Thermal denaturation experiments indicated that Zn2+ destabilizes and Ca2+ stabilizes the protein conformation. These results suggest an opposite role for Ca2+ and Zn2+ according to which Ca2+ activates and stabilizes the protein, and Zn2+ inhibits and destabilizes S100A2, a mechanism with possible implications in cancer progression. Recently, S100 proteins have been shown for the first time to form amyloid fibrils in proteinaceous inclusions associated with pre-carcinogenic inflammatory foci in the prostate named corpora amylacea. These S100A8/A9 amyloid fibrils could be reconstituted in vitro in the presence of Ca2+ or Zn2+ but not in metal-free conditions. Since S100 family members share sequence and structural homology, we hypothesized that other S100 proteins could also be amyloidogenic. By using the Zyggregator and WALTZ algorithms, equivalent amyloid prone regions were detected in most human S100 proteins. Following this observation, we incubated several S100 family members (S100A2, S100A3, S100A4, S100A6, S100A12 and S100B) in amyloid formation prone conditions (pH 2.5, 57°C) while monitoring amyloid formation by extrinsic thioflavin T (ThT) fluorescence. With the exception of S100A12, all other proteins formed amyloid species. The AFM morphological characterization of the S100 amyloid species revealed that S100A2, S100A6 and S100B formed amyloid oligomers and S100A3 formed amyloid fibrils. For S100B, FT-IR monitored amyloid formation assays revealed that native α-helices and coiled regions convert to β-sheets and turns. S100 proteins exhibit rich metal binding properties. In addition, S100A6, S100A12, S100B accumulate in corpora amylacea in the brain and are overexpressed in neurodegenerative diseases like Alzheimer’s, Parkinson’s and Amyotrophic Lateral Sclerosis. By using a combination of ThT, FT-IR and AFM monitored amyloidogenesis assays we showed that the S100 amyloid formation kinetics and structure is sensitive to the presence of Ca2+, Zn2+ and 
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Cu2+, major players in the chemical biology of the glutamatergic synapse in the central nervous system. Cu2+ promoted S100A12 amyloid formation and had the opposite effect towards S100B. For S100A6, Ca2+ completely inhibited amyloidogenesis, a process which could be reverted by adding EDTA. Additionally, Ca2+ reverted or alleviated the cytotoxicity of apo S100 amyloids. Cytotoxicity of S100 amyloids and the modulator role of metal ions is relevant in the framework of the reported involvement of S100 proteins in neurodegenerative processes. Due to the co-accumulation of S100B and Aβ in Alzheimer’s disease, we analyzed the possibility of cross-talk between the amyloidogenic processes of both proteins. By carrying out cross-seeding experiments we found that preformed Aβ fibrils seed amyloid formation by S100B. Conversely, S100B oligomers, but not fibrils from the unrelated protein lysozyme, seed Aβ amyloid formation. Overall, our data suggest a cross-talk between Aβ and S100 deposition, cytotoxicity and neurodegeneration, a possibility unexplored in the literature and with relevant biomedical implications.   
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Resumo da dissertação Os iões metálicos são cofactores em cerca de 30% de todas as proteínas, desempenhando funções catalíticas e estruturais. Devido às suas propriedades químicas e de coordenação ímpares, alargam as propriedades intrínsecas dos polipéptidos a que se ligam (participando em catálise e reacções de transferência electrónica), estabilizam certas conformações proteicas (como nos dedos de zinco) e servem de mediadores em processos de transdução de sinal (através da promoção de alterações conformacionais funcionalmente relevantes). No entanto, os iões metálicos podem também ter efeitos prejudiciais nos sistemas vivos, ligando-se a locais não nativos, promovendo agregação proteica ou mediando ciclos redox que geram espécies reactivas de oxigénio e azoto. Assim, a caracterização das funções de iões metálicos enquanto modeladores da conformação e estabilidade proteica permite obter conhecimento sobre as propriedades fundamentais do enrolamento e é instrumental na determinação da base molecular de certas doenças. Nesta tese analizámos processos de enrolamento proteico utilizando sistemas modelo que incorporam cofactores metálicos covalentemente ligados – proteínas de ferro-enxofre (FeS) – ou em que a ligação de iões metálicos é reversível e está associada a alterações conformacionais – proteínas S100. O domínio Rieske [2Fe-2S] ocorre quer como integrante de sistemas de transferência electrónica em complexos respiratórios (bc1) ou fotossínteticos (b6f) quer como componente de sistemas dioxigenase solúveis. Apesar da sua plasticidade funcional, a estrutura Rieske β é altamente conservada, sendo modificada por extensões e mutações que modelam as propriedades redox ou dependentes do pH do centro FeS ou que introduzem características como ligações perssulfureto. Neste sentido, identificámos uma ferredoxina Rieske que inclui um par de cisteínas presente apenas num subgrupo de arquea 
Thermoprotei não relacionado com as cisteínas conservadas que formam 
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uma ligação persulfureto próxima dos centros FeS respiratórios e fotossintéticos. Utilizando uma combinação de quantificação colorimétrica de tióis e os espectros de absorção no visível e infravermelho característicos, determinámos que as cisteínas na proteína de Acidianus ambivalens formam um perssulfureto e estabelecemos as condiçõs em que o perssulfureto pode ser reduzido selectivamente (5 mM TCEP) sem afectar a conformação proteica ou o estado redox do centro FeS. A redução do perssulfureto regula a estabilidade proteica (ΔTm = 9°C), potencial redox do centro FeS (ΔE0 = +29 mV) e afecta as propriedades dependentes do pH, sendo um possível elemento regulatório nesta proteína. As propriedades de enrolamento da ferredoxina hipertermostável de sete ferros ([3Fe-4S][4Fe-4S]) com um centro de zinco de A. ambivalens (Tm = 122°C em água a pH 7) foram estudadas em detalhe no passado. Mais recentemente, identificou-se a formação de um molten globule após desnaturação térmica a pH 2.5. Esta conformação foi sugerida como candidata à estrutura em que os centros FeS são incorporados durante a biossíntese da proteína. Mostrou-se igualmente que a sua formação compreende a dissociação do zinco e do centro FeS bem como alterações da estrutura secundária mas a descrição das alterações conformacionais envolvidas está em falta. Através da monitorização da desnaturação térmica da ferredoxina a pD 2.5 e 12 utilizando a decomposição em valores singulares (SVD) da segunda derivada dos espectros de FT-IR determinámos os perfis de desnaturação térmica para cada tipo de estrutura secundária. Além disso, identificámos um componente espectral que descreve a desnaturação da ferredoxina em condições ácidas e alcalinas. Este componente foi associado com a formação do molten globule e não do estado desnaturado amorfo que se forma em condições alcalinas. O estado estrutural representado por este componente sofre desnaturação por frio a temperaturas acessíveis experimentalmente. Esta é a primeira descrição de 
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tal evento para esta proteína e constitui a oportunidade de estudar a desnaturação por frio de uma proteína FeS na ausência de perturbações externas como co-solventes. Contribuímos para o conhecimento do enrolamento e estabilidade de rubredoxinas estudando a desnaturação térmica da proteína de Desulfovibrio 

gigas. Apesar da sua origem mesofílica, a proteína é altamente estável, com apenas 30% dos centros FeS a desintegrarem-se a 95°C, um processo insensível ao EDTA. Monitorizando a desnaturação térmica através de FT-IR juntamente com o ajuste de bandas espectrais, descrevemos a desnaturação parcial que ocorre a 95°C em termos de alterações na estrutura secundária. Identificámos dois regimes de desnaturação. Na gama 25-60°C ocorre a desnaturação de hélices α e folhas β. A partir de 60°C, acumulam-se voltas e folhas β, que constituem aproximadamente 30 e 50% da estrutura secundária da proteína a 95°C, respectivamente. Assim, colocamos a hipótese de que a conformação altamente estruturada que se forma a alta temperatura está correlacionada com a estabilidade térmica da rubredoxina. As proteínas S100 são componentes principais na rede de tamponização e transdução de sinais de Ca2+ em vertebrados, regulando o ciclo, crescimento, diferenciação e mobilidade celulares. As proteínas S100 são pequenos (10-12 kDa) homo ou heterodímeros que ligam Ca2+ em domínios EF-hand. Zn2+ e/ou Cu2+ também se podem ligar em locais distintos em algumas proteínas. A ligação de Ca2+ induz uma alteração conformacional que expõe uma zona de ancoragem de proteínas. A proteína S100A2 humana é um membro ímpar desta família porque liga Ca2+ e Zn2+, acumula-se no núcleo, interage com o p53 numa forma dependente de metais e tem uma função supressora de tumores. A multiplicidade de locais de ligação a metais (2 locais de Ca2+ e Zn2+ por monómero), activação dependente de metais e o papel da S100A2 em patologias humanas tornam esta proteína um modelo para o estudo de 
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alterações conformacionais dependente de metais e o consequente ajustamento da estabilidade. Examinámos o papel dos locais de Zn2+ na modelação da conformação e estabilidade proteica utilizando variantes da S100A2 com mutações ao nível dos locais de Zn2+. Uma análise por dicroismo circular mostrou que a conformação desta proteína é propensa a ligeiros reajustamentos em resposta à ligação de Ca2+ e Zn2+, mantendo a mesma estrutura rica em hélices α. A estabilidade conformacional das variantes de S100A2 em diferentes estados de metalação (apo, Ca2+, Zn2+) foi quantificada através de desnaturação por temperatura e ureia monitorizada através de CD e FT-IR. As experiências de desnaturação térmica indicaram que o Zn2+ desestabiliza e o Ca2+ estabiliza a conformação da proteína. Estes resultados sugerem um papel antagónico para o Ca2+ e o Zn2+ segundo o qual o Ca2+ activa e estabiliza a proteína e o Zn2+ inibe e desestabiliza a S100A2, um mecanismo com possíveis implicações na progressão do câncro. Recentemente, foi mostrado pela primeira vez que as proteínas S100 formam fibras amilóides em inclusões proteicas associadas com focos pré-inflamatórios na próstata denominadas corpora amylacea. Estas fibras amilóides de S100A8/A9 podem ser reconstituidas in vitro na presença de Ca2+ ou Zn2+ mas não em condições livres de metais. Dado que as proteínas S100 partilham homologia estrutural e de sequência, colocámos a hipótese de que outras proteínas S100 também pudessem ser amiloidogénicas. Utilizando os algoritmos Zyggregator e WALTZ, foram identificadas regiões com propensão amiloidogénica na maioria das proteínas S100 humanas. Na sequência desta observação, incubámos vários membros da família S100 (S100A2, S100A3, S100A4, S100A6, S100A12 e S100B) em condições que favorecem a formação de amilóide (pH 2.5, 57°C) enquanto monitorizávamos a formação de amilóide através da fluorescência extrínseca de tioflavina T (ThT). Com a excepção da S100A12, todas as outras proteínas formaram espécies amilóides. A caracterização morfológica das espécies amilóides 
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S100 por AFM revelou que a S100A2, S100A6 e S100B formaram oligómeros amilóides e que a S100A3 formou fibras amilóides. A formação de amilóides de S100B monitorizada por FT-IR revelou que hélices α e regiões desestruturadas nativas se convertem em folhas β e voltas. As proteínas S100 possuem ricas propriedades de ligação a metais. Além disso, a S100A6, S100A12 e S100B acumulam-se em corpora amylacea no cérebro e são sobre-expressas em doenças neurodegenerativas como Alzheimer, Parkinson e Esclerose Lateral Amiotrófica (ALS). Através da utilização da combinação de ensaios de amiloidogénese monitorizados por fluorescência de ThT, FT-IR e AFM, mostrámos que a cinética de formação de amilóides S100 e a respectiva estrutura é sensível à presença de Ca2+, Zn2+ e Cu2+, elementos principais da química biológica da sinapse glutamatérgica no sistema nervoso central. O Cu2+ promoveu a formação de amilóide S100A12 e teve o efeito oposto relativamente à S100B. Relativamente à S100A6, o Ca2+ inibiu completamente a amiloidogénese, um processo que pôde ser revertido pela adição de EDTA. Para além disto, o Ca2+ reverteu ou diminuiu a citotoxicidade dos amilóides S100 apo. A citotoxicidade dos amilóides S100 e o papel modelador dos iões metálicos é relevante no âmbito do anteriormente reportado envolvimento das proteínas S100 em processos neurodegenerativos. Devido à co-acumulação de S100B e Aβ na doença de Alzheimer, analizámos a possibilidade de inter-relação entre os processos amiloidogénicos de ambas. Através de experiências de cross-seeding descobrimos que fibras Aβ pré-formadas funcionam como sementes para a formação de amilódes S100B. Por outro lado, oligómeros S100B, mas não fibras da proteína não relacionada lisozima, são sementes na formação de amilóide Aβ. Globalmente, os resultados sugerem uma inter-relação entre a deposição de Aβ e proteínas S100, citotoxicidade e neurodegeneração, uma possibilidade 
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anteriormente não explorada na literatura e com relevantes implicações biomédicas.  
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1.1. The protein folding problem The biological activity of proteins frequently depends on the ability of the polypeptide to acquire a very defined and unique tree-dimensional structure. This is not surprising as catalysis, signal transduction, ligand binding and molecular interactions – the main functions of proteins – all require a stringent spatial arrangement of the polypeptide chain: the native structure. This structure is attained through protein folding, the physical process by which a polypeptide folds into its characteristic and functional three-dimensional structure from a random coil [1]. Protein folding is a fundamental process in biology due to the high dependence of practically all biological processes on the protein machinery. However, even in the cellular environment, a fraction of all synthesized proteins fail to fold into the native structure [2]. This inability may bring about severe biological consequences such as the so-called misfolding diseases [3] which are associated with degradation prone-conformations (such as in cystic fibrosis [4-5]), misfolded protein with an aberrant activity (like in phenylketonuria [6] or fatty acid metabolism disorders [7]) or protein deposition in the form of insoluble amyloid fibrils (characteristic of neurodegenerative diseases as Alzheimer’s [8], Parkinson’s [9] or Huntington’s [10]). Since Anfinsen’s seminal work on ribonuclease [1] we know that proteins can fold spontaneously to their lowest free energy structure without the intervention of additional entities. This means that all information specifying the three dimensional structure of a protein is encoded solely on its amino acid sequence. This observation has profound implications in biology. It means that the sole knowledge of the amino acid sequence in a protein should be enough for unequivocally determining its folded structure in any given medium and, consequently, its interaction and catalytic properties and the folding mechanism. However, this task is not trivial due to the many degrees of freedom arising from the polymeric nature of proteins, the 
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heterogeneity of amino acid side chains, the multiplicity of interactions stabilizing the folded conformation and an incomplete mechanistic understanding of the protein folding process. Accordingly, this task is referred as the Protein Folding Problem, from which three main questions arise [11]: 1. What is the energetics stabilizing folded proteins? 2. What is the folding mechanism? 3. Can the protein structure be predicted from the sole knowledge of the amino acid sequence? Topics 1 and 2 are discussed in sections 1.2 and 1.3, respectively. The large structural biology data currently available highlights the complexity of the protein fold problem [12]. Although the interactions determining the native state are the same for all proteins and this determines a restricted number of secondary structure elements, there is an enormous number of possible spatial arrangements (Figure 1.1). Moreover, protein size and oligomerization status offer further diversification potential. However, proteins occupy a discrete portion of the conformational space: the number of protein folds – the topological arrangements of secondary structure elements – is restricted (Figure 1.1). Despite the inherent complexity of protein folding, in recent years, computational modeling coupled with single molecule studies have contributed with significant progress to a mechanistic description of protein folding process at the molecular level. In this framework, the experimental contribution has been limited because most experimental determinations rely in ensemble measurements which intrinsically average fine structural information. Useful strategies are single molecule FRET and force spectroscopy. Computational studies have yielded more quantitative information. The great challenge in modeling protein folding is two-fold: first, the large amount of atoms in the simulation with the concomitant large 
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Figure 1.1 – Three-dimensional 
representation of the protein 
conformational space. Each sphere represents a protein fold family among compact globular proteins. The structures were placed in space according to their pair-wise structure alignments. The structures cluster according to SCOP protein fold classes. Representative structures are shown to highlight the structure variability and different secondary structure arrangements using the same restricted number of basic elements. From [12]. 

conformational space; second, the timescale of protein folding requires highly computer intensive calculations. Earlier studies based in minimalistic Gō-type models have been complemented by more realistic off-lattice models. Increasing computer power, including distributed computing projects such as Rosetta@home of the Foldit game [13], allow routine full atomistic molecular dynamics and ab initio structure prediction studies. Currently folding simulations have reached the millisecond timescale [14]. The quality of the protein structure prediction algorithms is assessed periodically in the CASP competition – critical assessment of protein structure prediction – against experimentally determined protein structures. Progress is significant and automatic protein structure prediction is a possibility in a not too distant future. 
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1.2. Stabilization of the folded state 

1.2.1. Overall view The folding status (folded/unfolded) of proteins is dictated by the balance between two energetic parameters. On the one hand, the unfolded state has high conformational entropy because proteins are linear polymers of tens to hundreds of amino acid residues; on the other side, the multiplicity of interactions involving side chains, the backbone and the solvent constitute an enthalpic gradient towards the folded state. Folding is then driven by the enthalpy of interactions forming while interacting groups are brought into proximity. The thermodynamic forces responsible for the folding of proteins to their native conformations were first described by Kauzmann [15]: hydrophobic interactions, hydrogen bonds and electrostatic interactions [16-17]. These interactions are sometimes referred as “weak interactions” in protein folding. This is because of their small nominal magnitude. However, the very significant number of individual interactions in folded proteins accounts for a high overall energetic term which keeps the native protein structure. In some cases, the folded conformation is further stabilized by additional contributions arising from disulfide bridges, oligomerization, cofactor binding or post-translational modifications. Together, all these molecular interactions contribute to building up all levels of protein structure. 
1.2.2. The hydrophobic effect The major contribution to folding comes from the hydrophobic effect, arising from the backbone, aromatic and aliphatic side chains [15, 18]. In the cell, proteins fold in a highly dielectric aqueous environment [19]. Water forms entropically costly “water cages” around hydrophobic areas [20], driving hydrophobic self-association which minimizes the entropic penalty. The outcome is that native protein structures frequently exhibit a highly 
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packed hydrophobic core surrounded by a polar shell facing the solvent [21]. The hydrophobic contribution to protein folding can be determined through mutagenesis [22] or by the free energy change of transferring an amino acid side chain from water to a hydrophobic solute [23]. Average stabilization values are 1.3 kcal/mol per buried methyl group or 1-2 kcal/mol per aromatic ring interaction [22]. The vast hydrophobic areas buried during protein folding account for the stabilizing importance of the hydrophobic effect. 
1.2.3. Hydrogen bonds Hydrogen bonds are also important stabilizing features in protein structures. The backbone and several amino acid side chains have hydrogen bond donor and acceptor groups. Further, the solvent can also be included in hydrogen bonding patterns. The contribution of hydrogen bonds to the overall protein stabilization is very relevant. About two thirds of all residues form peptide hydrogen bonds in the native state [24]. It is the involvement of the backbone in repetitive interactions that drives secondary structure formation [25]. The stabilization by hydrogen bond averages to 1.3 kcal/mol [26-27]. For geometric reasons, the same hydrogen bond donor or acceptor can participate in multiple hydrogen bonds, creating hydrogen bond networks. 
1.2.4. Ion pairs The most individually stabilizing interaction in protein folding is the electrostatic interaction between charged amino acid side chains, called ion pairs. Ion pairs are usually located at the protein surface, being favored by the aqueous polar environment. A single ion pair can contribute with up to 3-5 kcal/mol to stability [28]. This value is close to the typical stability of the native versus the unfolded state (ΔGN-U), meaning that in some proteins breaking a single ion pair may result in protein unfolding. Despite their 
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individual magnitude, the average number of ion pairs in proteins is small. Consequently, they are not major driving forces in protein stabilization [18]. 
1.2.5. Covalent modifications Disulfide bridges are cross-links which effectively restrict the conformational space, decreasing protein conformational entropy and increasing protein stability [29-30]. The most significant effects occur with disulfides bridging distant polypeptide regions. For avoiding the formation of aberrant disulfides – which form off-pathway folding species – organisms have developed specialized enzymatic mechanisms [31]. Prokaryotes produce a family of disulfide bond proteins (Dsb) which assist oxidative protein folding – with the concomitant cysteine thiol oxidation – and correct aberrant disulfides [32]. In eukaryotes, the endoplasmic reticulum is the oxidative cellular compartment where disulfide formation is regulated by protein disulfide isomerase (PDI) and Ero1 [33]. Similarly to disulfide bridges, the binding of cofactors also cross-links different parts of the polypeptide and favors folding. Proteins can bind a broad range of organic or inorganic cofactors in a covalent or non covalent manner. For example, zinc finger domains can only fold to their native structure in the presence of the metal ion [34]. Cytochrome c requires its covalently bound heme for folding and function [35-36]. Calcium is frequently associated with conformational fine-tuning [37]. Also, the contribution from post-translational modifications such as glycosylation, phosphorylation and lysine methylation is relevant well [16]. 
1.2.6. Two state protein folding thermodynamics The native state is then stabilized by the combination of multiple mutually supportive weak interactions. The outcome is that the folded conformations of proteins are only marginally stable even under the most favorable conditions [38-39]: typically ~5-15 kcal/mol, in the range of just a few non 
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Figure 1.2 – Two state unfolding. Denaturing conditions (chemical denaturant or temperature) unfold a two state folder in a cooperative manner. At any condition, only the native (N) and/or unfolded (U) state are detected and interconvert. The native state is a unique state while the unfolded state ensemble groups a broader set of conformations. covalent interactions. No energetic component is preponderant in the overall stabilization. Even the simplest protein folding energetic potentials must include multiple energetic components to reproduce protein folding [17]. Small single domain proteins usually unfold reversibly [1] and according to a simple two state process. This means that the only conformations detectable are the native and the unfolded state. These two interconvert and no intermediately folded state is populated at detectable levels (Figure 1.2). Due to the cooperative nature of protein folding, such a protein is perturbed by an increasingly denaturing environment, the conformation initially changes very little [40]. Then, for a limited range of conditions, the protein unfolds completely. In this simple unfolding scenario, the same unfolding profile will be obtained independently of the technique used to probe it [40]. The thermodynamics of two state reversible unfolding is characterized as a function of the native (N)/unfolded (U) equilibrium constant, : =  from which the free energy variation is obtained ∆ − = − = −  ( − ) 
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where R and T are the gas constant and absolute temperature, respectively. The thermodynamic characterization of lysozyme unfolding at pH 7 carried out by Privalov and co-workers [41] illustrates the complex relationship between the thermodynamic parameters that determine protein stability. The opposing effects of denatured state conformational entropy (TS0) and native stabilizing interactions (H0) individually comprise several hundred kcal/mol. However, both contributions have similar temperature trends and compensate each other, implying marginal protein stability. The Gibbs free energy of folding exhibits a temperature dependence (∆ ( ))  

 
Figure 1.3 – Temperature-dependent thermodynamic folding parameters for lysozyme 
at pH 7. The enthalpic (H) and entropic (TS) contributions are very large and of similar magnitude for the folded (A) and unfolded (B) states. The most populated state is the lowest energy one (C). The energetic difference between the folded and unfolded states is small and results in marginal protein stability (D). At the point where ΔGN-U is null, there is equal amount of protein in both the folded and unfolded states. This temperature is referred to as the midpoint denaturation or melting temperature (Tm). From [41]. 

0 20 40 60 80 100

0

200

400

600

Temperature (ºC)

kc
al

/m
ol

0 20 40 60 80 100

0

200

400

600

Temperature (ºC)

kc
al

/m
ol

0 20 40 60 80 100

-60

-40

-20

0

20

Temperature (ºC)

kc
al

/m
ol

0 20 40 60 80 100

TS0
H0

TS0

H0

Unfolded

ΔG0

ΔG0

Folded
ΔG0

N-U

Temperature (ºC)

kc
al

/m
ol

-10

0

20

10

Tm

A B

C D



Protein folding 

11 

expressed by the Gibbs-Helmholtz equation (Figure 1.3). If the heat capacity (∆Cp ) and apparent enthalpy (∆H ) difference between the native and the unfolded states is assumed temperature-independent, the equation has the following formula: ∆ ( ) =  ∆ 1 − + ∆ ( − ) − ln ( ) The Gibbs-Helmholtz equation expresses the fact that ∆  is maximal at some temperature and that there are two temperatures where it equals zero (i. e. proteins can be denatured by heat or by cold). Heat denaturation occurs because of the enthalpic compensation of stabilizing interactions by temperature. Cold denaturation is due to the decreased hydrophobic contribution at lower temperatures [42]. Experimentally, usually only heat denaturation is observed because the cold denaturation temperature is frequently below the water melting temperature. Nevertheless, this has been observed for a few proteins [43]. 
1.2.7. Engineering protein stability Several studies have shown that the stability of naturally occurring proteins is not optimized and can be improved by mutagenesis [39, 44], sometimes paralleled with function enhancement [44-47]. However, in the extreme case, increased stability may generate a highly compact and stiff, non functional native state [39]. This suggests that marginal protein stability is the evolutionary response to the need to achieve the native state (i. e. to have a minimum energy state [1]) while preserving (i.) the protein dynamics required for catalysis, conformational plasticity, protein recognition and proteolytic susceptibility [39], a key element in cellular protein turnover [48]; and (ii.) an energetic buffer which allows protein evolution [49] (Figure 1.4).  
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Figure 1.4 – Protein evolution. (A) Along evolutionary time, proteins accumulate mutations which impact folding and stability. The marginal conformational stability of proteins implies that only a subset of all allowed mutations are tolerated. Mutations outside this neutral zone may are deleterious because they affect the protein’s ability to fold (destabilizing mutations) or to be functionally dynamic (over-stabilizing mutations). (B) Molecular chaperones rescue the folding of misfolded species and create an enhanced “neutral area” from where new functions may arise. From [49]. 

1.3. Protein folding models Since the discovery that the protein native structure is determined by its amino acid sequence, much effort has been made in elucidating the mechanistics of protein folding. The first milestone in this field was set by Cyrus Levinthal in the late 1960s [50]. He elegantly pointed out that if a small 99 peptide bond protein would randomly sample just three rotamers of each of its 198 phi and psi angles in the typical timescale of molecular rotations – 1 picosecond - it would take 1075 years to fold – much more than the age of the universe. However, proteins fold in a biologically relevant timescale (typically in the microsecond to second timescales [51]). This became known as Levinthal’s Paradox. It encloses a fundamental aspect of protein folding: the range of accessible conformations during folding is restricted. For solving this paradox, Levinthal postulated the existence of a pathway consisting of a well-defined and restricted sequence of protein conformational changes bridging the unfolded to the folded state [52] – the sequential model of protein folding. However, no mechanistic description to describe what the 
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folding pathway could be was put forward. Several models about protein folding have however been conceived since then (Figure 1.5). In the late 1970s Levitt had already identified the caveat in Levinthal’s paradox: the search for the native state is not unbiased. He noted that protein folding could be reproduced in silico as a random search if native-like interactions are considered to be on average more stabilizing than non-native ones. Thus, according to this random search model [53] the folding pathway is analogous to solving a jigsaw puzzle, where the order of the steps is not relevant but the end result is always the same native state [54]. More recently, the kinetics and thermodynamics of the folding of the villin headpiece domain has been successfully modeled using this formalism [55]. Kim and Baldwin proposed the framework model [53]. This model considers that secondary and tertiary structural elements form independently of one another. Secondary structure elements build up in the beginning of the folding reaction and progressively assemble into the native tertiary structure. The hydrophobic collapse model [56] hypothesizes that folding initiates by a rapid polypeptide collapse driven by hydrophobic side chain self-association, resulting in the formation of an intermediate state devoid of secondary structure and with non-native tertiary structure, i. e. a molten-globule-like state. The structural reorganization of the molten globule from the restricted conformational space available – accounting for the folding energy barrier – would give rise to secondary structure and the native fold. The validation of this model is complex because it relies on the structural characterization of early, short-lived folding intermediates. Nevertheless, it appropriately describes the folding kinetics of globular proteins such as myoglobin [57], α-lactalbumin [58], barstar [59] and staphylococcal nuclease [60]. 
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Karplus and Weaver proposed the diffusion-collision model [61-62]. In this case, the folding protein is considered to be composed of several independent marginally stable secondary structure microdomains each one exhibiting fast conformational dynamics. During folding individual microdomains collide and eventually adhere and coalesce to give rise to the native tertiary structure. The classical nucleation model proposes that the folding reaction is guided by the formation of a marginally stable nucleus containing correct secondary and tertiary structural elements. The place of nucleation in the folding reaction was matter of dispute: Wetlaufer proposed that nucleation would comprise the folding onset [63] and Baldwin proposed that nucleation would be the limiting factor [64]. In any case, the nucleus templates formation of further structure around it, restricts the available conformational space and speeds folding without implying the existence of folding intermediate states [65]. In the 1990s Monte Carlo simulations of a lattice model by Shakhnovich and co-workers [66] supported that nucleation limits folding. Once the nucleus is assembled, the native conformation is promptly formed. This discovery permanently associated the study of protein folding with that of the transition state. The nucleation model describes the folding of two state folders but fails to describe folding processes where intermediates accumulate [67]. In the 1990s, Fersht and co-workers established that the folding of chymotrypsin inhibitor 2 (CI2) – a 64 residue two state folder – could only be described by a new folding model: the nucleation-condensation model [68-70]. This model postulates the existence of a marginally stable nucleus composed mainly by adjacent residues early in folding. The rate limiting step is the eventual stabilization of this small nucleus by long range interactions. This extended nucleus is not formed in the transition state but represents the best formed part of the structure at this point [71]. Nucleation is coupled to 
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Figure 1.5 - Protein folding models. condensation of tertiary structure around it. Since the proposal of this model, other proteins were shown to adopt compatible folding kinetics [72]. 

1.4. Protein folding kinetics Protein folding is a structural event. Nevertheless, it can be appropriately described by standard chemical reaction kinetics theory. The starting state – the unfolded state ensemble – is regarded as a “reagent” and the end state – the native state – as a “product”. The reaction mechanism, energetics and kinetics can be described by monitoring the interconversion of the two entities, possibly through some intermediate states. Like a reaction, protein folding is a diffusive process, i. e. an unfolded polypeptide will spontaneously acquire the most stable accessible conformational state given the solvent conditions through a stochastic search. 
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The classical way of studying protein folding in vitro is through temperature-, pressure-, acid- or denaturant-induced renaturation [71]. The folded and unfolded states frequently exhibit distinct spectroscopic properties. Coupling renaturation (by manual or stopped flow mixing, temperature or pressure jumps) to spectroscopic detection allows monitoring the transition between the two states and describing folding [73]. Information about folding can also be obtained by studying the analogous unfolding transition. A summary of the main techniques used in studying protein folding – not just the kinetics – is given in Table 1.1. The conformational search inherent to protein folding implies that only the lowest energy states (typically the native state) are unique and well defined, all others (e. g. the unfolded and transition states) being in fact an 
Table 1.1 – Experimental techniques useful for the study of protein folding. From [73]. 

Technique Timescale Information content Intrinsic tryptophan fluorescence ≥ ns Tryptophan environment Far UV CD ≥ µs Secondary structure content Near UV CD ≥ µs Aromatic residue packing Raman spectroscopy ≥ µs Solvent accessibility, aromatic residues’ conformation Infrared spectroscopy ≥ ns Secondary structure content ANS binding ≥ µs Hydrophobic surface exposure FRET ≥ ps Molecular ruler Fluorescence correlation spectroscopy ≥ ps Diffusion, size and shape Fluorescence anisotropy ≥ µs Shape and size Small-angle X-ray scattering ≥ µs Radius of gyration Absorbance ≥ ns Chromophore environment Real-time NMR ≥ min Structure Native-state hydrogen exchange h Global stability Pulsed H/D exchange by NMR ≥ ms Solvent accessibility Pulsed H/D exchange by ESI-MS ≥ ms Solvent accessibility NMR relaxation ~ms Denatured state structure, conformational changes Protein engineering Probe dependent Residue-specific information 
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ensemble of distinct states. Then, the aforementioned states are accurately named the unfolded state ensemble (USE) and the transition state ensemble (TSE). The reason for the occasional language simplification is due to the fact that these states are most frequently experimentally accessible though their statistically averaged properties. The TSE is defined as the set of conformations such that folding trajectories starting from each one of them have a 50% probability of either reaching to the folded state before unfolding and reaching the unfolded state before folding [74]. Protein folding is a cooperative process [75]: the establishment of native or native-like contacts facilitates further interactions. This speeds folding [76] and stabilizes the native state once it is formed, as full unfolding requires the cumulative loss of the interaction in the cooperative network. In the extreme case, as it is frequently found in small globular proteins, cooperativity leads to two state folding [77] where the only detected populated states are the native and the unfolded ones, which interchange between themselves during folding. In this situation, protein folding kinetics is monoexponential. The surprisingly fast protein folding rates are achieved through a combination of factors: 1. Presence of residual structure in the fully unfolded state which restricts the accessible conformational space during folding; 2. The folding pathway comprises metastable intermediates which work like hubs directing folding to the native state [78]; 3. The funneled energy landscapes biases folding to the native state. There would be no native state search problem if each of the amino acids could find its native conformation independently of the others or if only nearest-neighbor interactions were involved. This would reduce the protein folding problem to an analog of the helix-coil transition. What makes the search problem difficult is that long-range interactions are involved. It is the presence of long-range effects that make the folding transition cooperative 
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(pseudo-first order), an essential element of the stability and kinetics of proteins [75, 79]. In the framework of the success of the nucleation formalism in describing the folding of small globular proteins, the folding transition state has been routinely probed by a protein engineering method named Φ-value analysis [71]. It consists in analyzing the effect of single point mutations in the protein’s folding behavior and determining a thermodynamic parameter – the Φ-value – defined as 
Φ = −  ∆∆ ≈ ∆∆ ‡∆∆  where  and  are the folding rates of the mutant and wild type proteins, respectively, ∆∆  is the change in folding free energy upon mutation and ∆∆ ‡  is the change in activation free energy upon mutation (Figure 1.6). The approximation is valid for non-disruptive (i. e. having a small perturbation) mutations. The Φ-value then accounts for the degree of native-like interactions at the mutated position in the transition state. A unity value means that the perturbation extent is the same in the native and transition states, indicating that the specified residue has all native interactions formed in the native state. A value close to zero means that the residue has the same interactions in the denatured and in the transition state. Structural interpretations of Φ-values have been routinely put forward, identifying residues with Φ-values equal to 1 or 0 as being fully structured or unstructured in the transition state, respectively. However, controversy exists about the interpretation of Φ-values outside these values. Fractional Φ-values have been interpreted as the indication of alternative folding pathways [71] and non-classical Φ-values (Φ<0, Φ>1) have been interpreted as reflecting the differential perturbation of secondary and tertiary structural elements [80]. 
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Figure 1.6 – Φ-value analysis of protein folding. The putative folding energy diagrams for two point mutants are sketched. (A) The mutation does not perturb the interactions and, consequently, the energetics of the selected amino acid residue in the unfolded nor in the transition states. Nevertheless, the mutation is destabilizing. The Φ-value is then zero. (B) The mutation affects a residue which is part of the folding nucleus. The transition state is then destabilized in the same amount as the native state and the Φ-value equals 1. From [71]. Proteins which were selected by evolution to fold into a biologically relevant structure are able to satisfy the local structure propensity of amino acid residues (dictated by their respective rotamers) and intramolecular interactions (responsible for stabilizing the native state) without contradicting each other. Of course this can only occur in native or native-like structures, guiding the folding process. This situation is called the “minimal frustration” of protein folding [81-82]. So, protein folding is a highly complex mechanism. Part of the complexity comes from the definition of the starting point, the unfolded state. Unlike the native state, the unfolded state is a broad collection of conformationally distinct states with high entropy – the denatured state ensemble. It contributes with structural heterogeneity to the starting state, and determines a lot of the random search for the native state. The inherent stochasticity of protein folding results in different parts of the protein being folded at different times in the folding reaction, almost independently of each 
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other. These folding units forming in one single cooperative step are called “foldons” [81-82]. Since every intermediate en route to the native state has a different conformation, it also has a specific energy. The stochastic fluctuation between sequential folding intermediates gives rise to a distorted, rugged funnel, populated by a myriad of energetic basins (or kinetic traps, following a kinetic analysis) which stabilize misfolded intermediates and slow down folding. To overcome these traps, local or global unfolding must occur. Some basins can be transposed within kBT. Deeper ones can become conformational dead-ends from which the protein cannot be rescued without external assistance (e. g. by molecular chaperones), despite the favorable thermodynamics. Folding intermediates have been detected experimentally for many systems including hen lysozyme [83], cytochrome c [84] among others. The extreme case of kinetically-controlled folding is achieved for proteins whose native state – determined by its biological activity – is not the lowest energy one but rather a metastable higher energy state trapped by a large activation energy barrier. This is possible for proteins which include prosegments in the newly-synthesized polypeptide which are subsequently proteolytically excised. Such post-translational processing occurs in insulin [85], α-lytic protease [86], pepsin [87] and the serpins [88]. 
1.5. Protein folding energetics – the landscape view A rigorous solution to Levinthal’s Paradox, describing both the thermodynamics and the kinetics of folding, comes from the statistical analysis of the energetics of the folding mechanism. This consists in considering the energy of the folding protein sampled from the whole set of conformers it can assume – a multidimensional “conformational space”. Proteins can then be viewed as folding according to the dependence of conformation on energetics – the “energy landscape”. The unfolded state ensemble collapses and reconfigures into multiple inter-convertible 
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conformations. The exact sequence of conformational transitions is stochastically determined – like the jigsaw puzzle concept [54]. However, since the Gibbs free energy (ΔG) of each conformation is different and the native state has the lowest energy – Anfinsen’s thermodynamic hypothesis – the energy landscape is biased towards the native state. The formation of stabilizing interactions precludes the sampling of competing conformations greatly restricting the accessible conformational space. On the other hand, incorrect local folds tend to be eliminated by more stable conformations arising in the fluctuations inherent to this diffusive process [82, 89]. The energetic gradient also implies that not all conformations are equally likely in the folding pathway, solving Levinthal’s paradox, and that native-like intermediates may act as hubs guiding folding [90]. This situation has been pictured by Onuchic and co-workers as a funneled energy landscape [91]. The folding funnel determines protein folding kinetics and thermodynamic properties. Its shape is a function of the medium composition. Events such as solvent change, external perturbations (e. g. temperature, pressure), protein association or ligand binding change the shape of the folding funnel and, ultimately, protein conformation. This is the thermodynamic basis for protein allostery, protein association, protein conformational changes and protein unfolding. The bottleneck inherent to the folding funnel acts to speed folding. In small globular proteins this produces a single exponential folding kinetics (Figure 1.7) [77]. However, the many degrees of freedom in protein folding produce a folding funnel which is not smooth but rather rugged, with many energetic – i. e. kinetic – traps. These local minima illustrate the situation where non-native interactions may be locally stabilizing but are not compatible with achieving the global energy minimum. In other words, the folding energy landscape incorporates some “energetic frustration” (Figure 1.8D) [92-94]. However, the fast and cooperative folding of most natural 
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Figure 1.7 - A schematic folding 
funnel of acylphosphatase. The great conformational space accessible to the unfolded state is progressively restricted as the protein lowers its free energy through folding. The energetic gradient progressively biases the conformational search to the native state, although multiple folding pathways are still accessible. Once the folding transition state barrier, depicted as a saddle point, is overcome by the formation of the folding nucleus (depicted as yellow spheres in the structure) folding is fast and productive. From [96]. 

proteins shows that energetic traps have been smoothed by evolution rendering naturally occurring proteins “minimally frustrated” [89, 95]. Growing evidence supports the hypothesis that the folding energy landscape may in fact include additional folding funnels accounting for misfolded species [97]. Due to their simplicity, the folding of naturally occurring small single domain proteins is frequently associated with smooth energy landscapes, giving rise to single exponential folding kinetics. In the framework of landscape theory it is possible to envisage an extreme situation where a determined polypeptide sequence folds to the native state without encountering significant energetic barriers throughout the folding funnel (Figure 1.8B), a situation termed “downhill folding” [98]. In such a scenario, folding kinetics is non-exponential and all conformers are en route to the native state, making them accessible to experimental study, including structural characterization. Downhill folding is a sort of limit situation for real folding [98] as it can be captured theoretically by coarse-grained Gō-type models [99]. Here, the polypeptide is modeled as a string-and-bead structure where amino acid residues – the beads – can only occupy defined positions in a three dimensional cubic lattice and interact if they occupy contiguous positions in space. 
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Figure 1.8 - Protein folding funnels. (A) Levinthal’s funnel. All folding pathways are equally likely and there is no folding cooperativity in the search for the native state. (B) Downhill folding funnel. Smooth energy landscape without kinetic traps. (C) Folding funnel for a protein with an obligatory on-pathway folding intermediate. (D) Highly frustrated folding funnel, with many kinetic traps and alternative folding routes. From [100]. 

1.6. Conformational states – a unified view of protein folding The highly complex interaction network in proteins coupled with the large conformational space accessible results in a series of conformational states being accessible to proteins. Unlike the classical view of protein folding whereby a polypeptide is synthesized in the ribosome in the unfolded state and eventually attains the monomeric or oligomeric native state, several intermediate or off-pathway states do exist and have been shown to be relevant in the biologic context of protein folding. Partially folded intermediates may expose hydrophobic patches which drive self-aggregation. Misfolded or aggregated protein may be recognized by cellular quality control systems and degraded. It is believed that, given appropriate conditions, every protein has the potential of acquiring the β-sheet rich aggregation-prone amyloid conformation, which may polymerize into fibrils (Figure 1.9) [96]. The exception to this panorama are proteins which, notwithstanding the possibility of having local persistent structure, the majority of the polypeptide chain is in a random coil-like conformation: the so-called intrinsically unstructured proteins or natively unfolded proteins. These proteins are not able to acquire a compact native state because of having a high charge density. These proteins are not without functional significance. 
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Figure 1.9 – Protein conformational states. From the moment a polypeptide is synthesized in the ribosome, it can adopt a multitude of conformations apart from the unfolded and native states. Intermediately folded states may be aggregation- or degradation-prone. The β-sheet rich amyloid state is an aggregated state which is thought to be accessible to all proteins. Artificially, proteins can be superconcentrated and forced to adopt a crystalline state. From [96]. Their high conformational dynamics renders them promiscuous protein binders. So, these proteins fulfill mainly protein network integration roles, working like hubs binding proteins from different signaling pathways and contributing to signal transduction [101-104]. 

1.7. Protein folding in the cell In the biologic context of protein folding – newly synthesized proteins exiting the ribosome – multiple extrinsic factors affect folding. First, protein synthesis is vectorial – the N-terminus is synthesized prior than the C-
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terminus – and the synthesis rate is slow (~2-4 amino acid residues per second in eukaryotic systems [105]), likely constituting the rate-limiting factor in protein folding in vivo. Since protein folding is dictated by long range interactions which may involve interactions between the N- and C-terminus, especially in multidomain proteins (e. g. [106]), and shape the folding energy landscape [107] non-native interactions may occur during protein synthesis. Secondly, protein biosynthesis occurs in the context of densely packed polysomes (Figure 1.10), further favoring interaction of aggregation-prone solvent-exposed hydrophobic residues. To minimize improper interactions, ribosomes are oriented around the mRNA molecule in a pseudohelical arrangement which minimizes the interactions between vicinal nascent chains [108]. The ribosome exit channel is hydrophilic [109] and favors co-translational folding [110] of at least α-helical elements [111-113]. Cell environment is highly crowded, with macromolecular concentrations reaching as much as 400 mg/ml [114-116]. The excluded volume effect favors protein misfolding and aggregation [116-118]. However, it also biases the folding landscape towards compact conformations [119], restricting the accessible conformational space and speeding folding in some situations [116-117, 120-121]. As a response, cells accumulate compatible solutes, also known as osmolytes [122], sometimes up to molar concentrations, which favor protein hydration and, consequently, hydrophobic burial and folding. To cope with the challenges of protein folding, biological systems have evolved a specialized protein quality control machinery (Figure 1.11) aimed at aiding or correcting folding – the molecular chaperones – or, ultimately, degrading terminally misfolded or aggregated proteins [123]. Molecular chaperones recognize and reversibly bind nascent polypeptides or non-native protein conformations (hydrophobic amino acid stretches [125] which are buried in the folded state or unstructured protein regions), 
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Figure 1.10 – Polysomes.Several ribosomes transcribing asingle mRNA molecule (in thecenter). The newly synthesizedpolypeptides are depicted as redor green threads on the exteriorof the polysome. The high proteindensity favors aggregation of themisfolded polypeptides. Toovercome this problem,polypeptides exit the ribosomesat opposing faces. From [108]. 

Figure 1.11 - Protein
quality control systems. Asthe newly synthesizedprotein exits the ribosome,surveillance mechanisms actto detect, correct andultimately degrade misfoldedspecies. Holding chaperonesprevent protein aggregation;folding chaperones assist thefolding and unfoldingchaperones act onaggregated or misfoldedprotein to promote furtherfolding cycles or degradationby proteases. From [124]. 

reduce aggregation propensity and assist folding. They do not integrate the final native structure. Some proteins are facultative or obligatory [125] chaperone substrates needing their assistance to be rescued from intermediate states [67] and fold on biologically relevant timescales [126]. Molecular chaperones act by either stabilizing the nascent chain in the ribosome or by downstream action [127-129]. The first group of chaperones stabilizes cytosolic proteins by binding to the large ribosome subunit and eventually to hydrophobic protein sequences, maintaining an extended non-aggregated protein state until enough polypeptide has been synthesized for productive folding to occur. This group includes the bacterial trigger factor, the eukaryotic RAC (ribosome-associated complex, an Hsp70 system) and the archaeal and eukaryotic NAC (nascent chain-associated complex). 
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Downstream-acting chaperones do not bind the ribosome and assist co- or post-translational folding. These include members of the Hsp70 family (DnaK in bacteria, Hsc70 in higher eukaryotes [125]) and further downstream systems like the chaperonins (Hsp60 family: GroEL in bacteria, thermosome in archaea and TRiC/CCT in eukarya [130-132]) and Hsp90 [133]. Broad-specificity chaperones such as members of the Hsp70 or chaperonin families primarily recognize hydrophobic amino acid side chains and promote their folding through ATP-dependent binding-release-rebinding cycles. If a protein is terminally misfolded and cannot be rescued by chaperone action, the polypeptide is degraded. In archaea, eukaryotes and some bacteria, the most important proteolytic system is the ubiquitin-proteasome pathway [134]. It involves tagging the misfolded protein with multiple ubiquitin chains through the sequential action of three ligases and subsequent proteolytic degradation by the proteasome, a multiprotein complex. 
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2.1. Iron-sulfur clusters: chemistry and function Despite the extraordinary structural diversity of proteins, amino acids are not able to undergo redox transitions (with the notable exception of tyrosine), catalyze certain reactions and provide enough conformational stabilization in certain proteins. For this reason, proteins incorporate cofactors which render them functional versatility and additional stabilization. Iron-sulfur (FeS) clusters are ubiquitous and biologically essential inorganic cofactors of iron and sulfur thought to have been instrumental prebiotic catalysts and one of the oldest protein cofactors [1]. They usually present di- tri- or tetra-iron nuclearities, though more complex ensembles in which a cuboid cluster is bridged to another component such as nitrogenase’s cofactor cluster ([Mo7Fe-9S]) and P-cluster ([8Fe-7S]) are biologically relevant (Figure 2.1) [2]. Protein binding occurs most frequently through cysteine side chains. [2Fe-2S] clusters can also present a mixed coordination where one of the iron atoms is coordinated by two cysteines and the other by two histidine side chains, forming the so-called Rieske cluster [3]. Glutamine, serine or arginine are less common ligands [4]. FeS clusters can be assembled in vitro from the spontaneous reaction of iron salts with thiolates and sulfide [5] at millimolar concentrations. However, these concentrations are toxic for cells. The in vivo assembly and insertion of FeS clusters in the appropriate apoproteins is a highly regulated and still not completely elucidated process involving desulfurase enzymes for the acquisition of sulfur from cysteine, iron chaperones for the delivery of iron, scaffold proteins for the assembly of the cluster and transfer enzymes (reviewed in [6]). There are several biosynthetic machineries including the NIF system of nitrogen fixing organisms like Azotobacter vinelandii, the ISC system of eukaryotic mitochondrial FeS cluster biosynthesis and the bacterial SUF system which operates in bacteria in conditions of iron limitation or oxidative stress, archaea, cyanobacteria and plant chloroplasts. 



Chapter 2 

36 

Figure 2.1 – Structure of iron-sulfur clusters. Iron is shown in orange, inorganic sulfur in yellow and molybdenum as blue/green. The protein ligand atoms are white spheres. The figure contains the mononuclear iron in Desulfovibrio gigas rubredoxin ([1Fe], 2DSX) and the clusters in Synechocystis sp. PCC 6803 ferredoxin ([2Fe-2S], 1OFF), Acidianus ambivalens seven-iron ferredoxin ([3Fe-4S] and [4Fe-4S], 2VKR) and Azotobacter vinelandii nitrogenase ([Mo7Fe-9S and [8Fe-7S], 1N2C). Clusters are drawn approximately on the same scale. Eukaryotes express the cytosol-specific CIA machinery, homologous to the mitochondrial ISC system [7]. FeS clusters are highly versatile protein cofactors. They bind to proteins of different folds and sizes, are present in all cellular compartments and are required for a great variety of protein functions [8-10]. The polypeptide chain modulates the intrinsic properties of the clusters, tuning them for the desired functions. This includes the protection of the FeS cluster from its intrinsic oxygen sensitivity to highly stable forms in some proteins [11]. Clusters from different nuclearities can undergo interconversions. Examples of this situation include the conversion of [3Fe-4S] clusters to [4Fe-4S], the oxidative decomposition of [4Fe-4S] to [3Fe-4S] clusters [12-13] and the proposed assembly of [4Fe-4S] from [2Fe-2S] clusters in the FeS clusters biogenesis scaffold proteins. 
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Table 2.1 – Functions of biological FeS proteins*. From [8]. 
Function Proteins Cluster typeElectron transfer Ferredoxins, redox enzymes [2Fe-2S], [3Fe-4S], [4Fe-4S] Coupled electron/proton transfer Rieske protein [2Fe-2S]  Nitrogenase [8Fe-7S]Substrate binding and activation (de)hydratases [4Fe-4S]  Radical SAM enzymes [4Fe-4S] Acetyl-CoA synthase Ni-Ni-[4Fe-4S], [Ni-4Fe-5S]  Sulfite reductase [4Fe-4S]-sirohemeFe or cluster storage Ferredoxins [4Fe-4S]  Polyferredoxins [4Fe-4S]Structural Endonuclease III [4Fe-4S]  MutY [4Fe-4S]Regulation of gene expression SoxR [2Fe-2S]  FNR [4Fe-4S]/[2Fe-2S] IRP [4Fe-4S] IscR [2Fe-2S]Regulation of enzyme activity Glutamine PRPP amidotransferase[4Fe-4S]  Ferrochelatase [2Fe-2S]Disulfide reduction Ferredoxin:Thioredoxin reductase[4Fe-4S]  Heterodisulfide reductase [4Fe-4S]Sulfur donor Biotin synthase [2Fe-2S]*SAM, S-adenosylmethionine; Acetyl-CoA, Acetyl coenzymeA; FNR, fumarate and nitrate reduction; IRP, iron-regulatory protein; IscR, iron-sulfur cluster assembly regulatory protein; PRPP, phosphoribosylpyrophosphate.  Most biological roles of FeS clusters are based on the ability of iron to accept or donate electrons, cycling between the ferrous (Fe2+) and ferric (Fe3+) oxidation states. FeS clusters may shuttle between two oxidation states, making them one-electron acceptors/donors. The redox potential of FeS clusters is highly sensitive to the ligand environment in the polypeptide and can be tuned for specific functional requirements where they conduct electrons from one active site to another, like the ones in hydrogenases or oxygenases. The most notable example of electron transfer via FeS clusters occurs in respiratory chain complexes. Complex I features a FeS cluster “wire” which couples NADH oxidation to ubiquinone reduction (Figure 2.2) [14]. Similarly, complex II employs three FeS clusters to transfer electrons resulting from the oxidation of succinate to ubiquinone. Complex III includes a single Rieske-type [2Fe-2S] cluster which transfers electrons from 
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Figure 2.2 – FeS 
clusters in the electron 
transfer pathway in 
respiratory complex I. Structure of the Thermus 
thermophilus complex (3M9S). Seven conserved FeS clusters (one [2Fe-2S] and six [4Fe-4S] clusters) in close proximity act as a “wire” transferring electrons originating from the oxidation of NADH to NAD+ at the cytoplasm boundary to the quinone oxidation site near the membrane region. The total electron transfer pathway, in green, is around 8 nm. The two FeS clusters not included in the electron transfer pathway are thought to prevent the generation of reactive oxygen species and perform structural roles. Protein is shown as a surface representation; FeS clusters are depicted as spheres. The flavin mononucleotide cofactor at the NADH oxidation site has been omitted for clarity. From [14]. ubiquinone to cytochrome c1. Electrons coming from the oxidation of fatty acids enter the mitochondrial respiratory chain via the electron transfer flavoprotein:ubiquinone oxidoreductase [15]. Steroid biosynthesis by mitochondrial cytochrome P450 requires electrons from NADPH which are transferred by adrenodoxin, a [2Fe-2S] cluster protein [16]. The exquisite electron transfer properties of FeS clusters are the reason for why they are necessary for enzymes breaking string multiple bonds such as nitrogenase, sulfite and nitrite reductases. Other chemical reactions where FeS clusters are involved do not involve redox transformations. The first step in the tricarboxylic acid cycle, the major source of reducing equivalents in aerobic respiration, is the conversion of citrate to isocitrate, a step catalyzed by the mitochondrial [4Fe-4S] cluster enzyme aconitase. The cluster is bound by three cysteine sulfurs. The fourth coordination position is occupied by an hydroxyl anion in the enzyme’s resting state and is the substrate binding site during the stereo-specific catalysis [17] (Figure 2.3).  
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Figure 2.3 – [4Fe-4S] cluster in human aconitase. (A) In the resting state (3B3X), aconitase binds four of the FeS cluster iron atoms (shown as orange spheres). The remainder coordination position is occupied by a water or hydroxide molecule. (B) During catalysis (1AR3) the substrate binds the fourth iron which provides the scaffold for the stereospecific conversion of citrate to isocitrate (shown as sticks). FeS clusters can also be metabolic precursors. It is believed that the formation of high nuclearity ([3Fe-4S] and [4Fe-4S]) FeS clusters is hierarchic, occurring at the expense of lower nucelarity [2Fe-2S] clusters in the biosynthetic scaffold proteins [8]. Biosynthesis of the molybdenum cofactor (MoCo) present in aldehyde oxidase and xanthine dehydrogenase involves molybdenum cofactor biosynthesis protein 1 (MOCS1), a protein containing a [4Fe-4S] and [3Fe-4S] clusters [18]. It has been suggested that one of the two [4Fe-4S] clusters in lipoate synthase serves as the source of sulfur in the formation of lipoic acid [19]. Nucleic acid metabolism is highly dependent on FeS enzymes. Humans have three FeS enzymes in this pathway: dihydropyrimidine dehydrogenase (DPYD), phosphoribosylpyrophosphate amidotransferase (PPAT) and xanthine dehydrogenase (XDH) [10]. Curiously, the sole [4Fe-4S] cluster in PPAT does not seem to be required for activity but rather for amino-terminal processing and stabilization [20-21]. FeS proteins are also involved in DNA and RNA synthesis and processing. ATP binding cassette protein E1 binds two [4Fe-4S] clusters and is involved in protein translation initiation, rRNA processing, ribosomal assembly [22]. The BACH1 helicase, the PRIM2 DNA primase [23], 
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the ERCC2 helicase, the NTHL1 DNA endonuclease [24] and the MUTYH DNA glycosidase are all [4Fe-4S] proteins. At the level genetic regulation FeS clusters also play a role. The E. coli FNR transcription factor is responsible for the transcription of genes involved in anaerobic energy transduction systems which senses the oxygen concentration through its [4Fe-4S] cluster which converts to [2Fe-2S] in the presence of oxygen, leading to the dissociation of the active FNR dimer and gene transcription inhibition [25]. Iron metabolism requires the action of several FeS proteins: ferrochelatase – the iron chaperone which inserts Fe2+ in protoporphyrin IX to yield heme – has a [2Fe-2S] cluster. The synthesis of the major iron metabolism proteins – ferritin (storage) and transferrin (transport) – is controlled by the amount of iron in the cell which is sensed by the cytosolic aconitase, a bacteria and eukaryotic bifunctional protein containing a [4Fe-4S] cluster like its mitochondrial homolog. In high-iron conditions, the protein is free in the cytosol and ferritin is synthesized by the cell; transferrin mRNA is unstable and is rapidly degraded. Under conditions of low iron, the [4Fe-4S] cluster dissociates from the protein which then binds Iron-responsive elements (IREs) in mRNA. This represses ferritin mRNA translation and stabilizes transferrin mRNA, which drives protein synthesis. 
2.2. Iron-sulfur, protein folds and structural plasticity FeS clusters are harbored in nearly 50 unique protein folds [26]. Over 90% of these folds harbor low-potential [2Fe-2S] or [4Fe-4S] clusters. FeS clusters are highly versatile in the sense that the interaction between the polypeptide and the cluster determines which kind of cluster binds to the protein and the polypeptide determines the redox potential and reactivity of the cluster. Additionally, the biological importance of FeS clusters is based on their ability to cycle between redox states, coordination configurations and nuclearity and stabilize the native conformation of proteins. 
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Figure 2.4 - Rubredoxin fold.
Desulfovibrio gigas rubredoxin (2DSX).The iron atom is shown as a sphere andthe cysteine ligands as sticks. 

Figure 2.5 - [2Fe-2S] ferredoxin. From
Anabaena PCC 7119 (1CZP). 

2.2.1. Rubredoxin Rubredoxin is a ~50 amino acid residue bacterial and archaeal protein containing a single tetrahedrally-coordinated mononuclear iron (Figure 2.4). It is involved in electron transfer, sometimes replacing ferredoxin [27]. The highly conserved fold belongs to the α+β family, with 2 α-helices and 2-3 β-strands. The rubredoxin fold occurs in multidomain proteins like desulforedoxin [28], ruberythrin [29] and superoxide reductase [30] and in the FeS cluster domain of Rieske proteins [31]. In the latter case, the iron binding site accommodates the Rieske [2Fe-2S] cluster without fold distortion. A rubredoxin iron site can be converted into a [2Fe-2S] site and vice versa by specific point mutations [32-33]. 
2.2.2. [2Fe-2S] plant- and vertebrate-type ferredoxin These proteins constitute a functionally diverse group. Plant-type ferredoxins carry electrons resulting from water oxidation at photosystem I to several enzymes. The bacterial (e. g. putidaredoxin) and vertebrate (e. g. adrenodoxin) ferredoxins donate electrons to hydroxylating enzymes like cytochrome P450. The ISC FeS biosynthesis machinery includes a ferredoxin electron transporter of this 
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Figure 2.6 – Rieske fold. Solubledomain of the bovine mitochondrialRieske protein in cytochrome bc1(1RIE). The disulfide bridge connectingthe two cluster binding loops is depictedas sticks. The membrane anchor is notincluded in the structure. 

type. This type of ferredoxins has a low potential cluster (-150 to -450 mV). These proteins are small (~100 residues) belonging to the α+β fold class. The [2Fe-2S] cluster is located close to the surface in a loop region. The opposite side of the protein forms a ubiquitin-like motif with a four stranded β-sheet and helical segments (Figure 2.5). This type of ferredoxin occurs as a domain in larger dehydrogenase, reductase and oxidase enzymes. The apically located [2Fe-2S] cluster is not essential for protein stability. The stabilizing contributions for the polypeptide and the cluster itself are mainly based in the opposite, secondary structure-rich part of the protein [34]. 
2.2.3. Rieske [2Fe-2S] ferredoxin Rieske proteins contain a [2Fe-2S] cluster where one of the iron atoms is coordinated by two cysteine side chains and the other by two histidine side chains. They are obligatory components of the membrane-bound respiratory (cytochrome bc1) and photosynthetic (cytochrome b6f) electron transfer complexes. Soluble Rieske proteins, named Rieske ferredoxins, are components of oxygenase enzymatic systems or electron carriers. Despite having a cluster with the same nuclearity as [2Fe-2S] plant- and vertebrate-type ferredoxins, Rieske proteins have a distinct fold and specific functions. The Rieske fold consists of three stacked β-sheets, of which the upper one contains the cluster ligands in two loops, each one containing a cysteine and a histidine residue. In respiratory and photosynthetic Rieske proteins the cluster binding loops are 
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Figure 2.7 – Thioredoxin-like [2Fe-
2S] fold. From Aquifex aeolicus(11M2D). Dimeric structure. The FeScluster is shown in ball and sticks. Theligands are shown as sticks. 

further cross-linked by a disulfide bridge (Figure 2.6) which is crucial for protein stability and activity, since mutations in the intervening cysteines precludes cluster formation. The cluster histidine ligands are solvent exposed and are responsible for the highly pH-dependent redox potential of the Rieske cluster. Membrane-bound Rieske proteins have an N-terminal hydrophobic extension which is inserted in the membrane. Soluble Rieske proteins have the same fold as the soluble domain of the membrane-bound counterparts with the exception of having an helical segment removed. The fold around the cluster is highly similar to the rubredoxin one. The unique [2Fe-2S] coordination implies upshifted redox potentials (+100 to +400 mV for respiratory and photosynthetic proteins and around -100 mV for dioxygenase components). 
2.2.4. Thioredoxin-like [2Fe-2S] ferredoxin Thioredoxin-like ferredoxins are only found in bacteria as components of hydrogenase and NADH:ubiquinone oxidoreductase [35] and have been proposed to be involved in nitrogen metabolism [36]. Unlike thioredoxin, the β-sheet is wrapped by α-helices on one side (Figure 2.7). The other side of the sheet is involved in homodimerization in the Aquifex aeolicus protein. The redox potential of the [2Fe-2S] cluster is around -300 mV.  
2.2.5. High-potential [4Fe-4S] protein [4Fe-4S] high-potential iron proteins (HiPIP) are mostly found in photosynthetic bacteria [37] where they donate electrons to the tetraheme 
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Figure 2.8 – High Potential Iron-
sulfur protein (HiPIP). From 
Allochromatium vinosum (1B0Y). 

Figure 2.9 - [4Fe-4S] dicluster 
ferredoxin. From Clostridium 
pasteurianum (1CLF). 

cytochrome [38]. Their name is derived from the [4Fe-4S] cluster reduction potential (+100 to +400 mV) [26], resulting from the incorporation of the cluster in the protein’s hydrophobic core. The most distinctive structural feature of these proteins is the little secondary structure content in their globular conformation (Figure 2.8). 
2.2.6. Di-cluster [4Fe-4S] ferredoxin These proteins are involved in anaerobic metabolic pathways and in the most reducing steps of photosynthetic and aerobic electron transport chains due to the low reduction potential of the [4Fe-4S] clusters (distinct for each one, ranging from -150 to -700 mV) [26]. The reference for these proteins is Clostridium 

pasteurianum ferredoxin. The [4Fe-4S] clusters contribute significantly to protein stability because of the tight wrapping of the polypeptide around them. The two clusters make up the protein core in a small protein (55 amino acid residues) and this precludes the necessity of additional stabilizing forces. The structure has a pseudo two-fold symmetry, with each half harboring a cluster. This protein fold is the only one harboring a pair of clusters rather than just one. 
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The ferredoxin fold has been proposed to be one of the most primitive ones due to its simple amino acid composition [39]. The high stability of some fold representatives (e. g. [40]) also agrees with the thermophilic origin of life. The characteristic topology for these proteins, (βαβ)2, is referred to as the ferredoxin fold (Figure 2.9). This fold constitutes a core structure from where several modular variations exist. These include the C-terminal extensions in Pseudomonas aeruginosa [41] and Azotobacter vinelandii [42], the N-terminal extensions of Sulfolobales including an additional Zn2+ site [43-44] or a stabilizing hydrophobic core [45] or bacterial ferredoxins in which one of the clusters has been lost [42, 46-47]. 
2.3. Folding and stability of iron-sulfur proteins One must analyze two aspects when considering the conformational interplay between FeS clusters and proteins. One the one hand, FeS clusters are intrinsically oxygen sensitive [48] and need an appropriate ligand environment to be stabilized; on the other hand, the incorporation of the cluster is frequently a long range polypeptide cross-linker which is essential for protein stability. FeS clusters are usually embedded in a single protein domain, which provides the relatively rigid and stabilizing ligand environment. Solvent exposure of FeS clusters emerges from functional requirements, like in soluble electron carriers or in sensor or regulatory proteins. Despite the significant variety of folds able to accommodate FeS clusters, each fold usually cannot bind different clusters because of strict steric restrictions. The exceptions are the superimposable rubredoxin and Rieske folds around the [2Fe-2S] cluster. Nevertheless, cluster swapping only occurs under mutagenic perturbations. Nitrogenase contains a native [4Fe-4S] cluster [2] which can be cleaved into [2Fe-2S] clusters but as a result of protein denaturation [49] or by glycerol-induced decomposition in the Mg2+-bound state [50]. 
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Apart from their functional role, FeS clusters are key structural elements stabilizing the native protein conformation [40, 51]. Their multi-ligand coordination establishes long range cross-links in the polypeptide, restricts conformational entropy, favors folding and stabilizes the native state. Many FeS proteins are not able to acquire the native or native-like fold in the absence of the cognate FeS clusters [52] or require the conversion between different cluster nuclearities for functional roles [25]. 
2.4. Folding and stability of Acidianus ambivalens FeS proteins One of the most intriguing open topics in the protein folding field currently is the understanding of the molecular determinants of protein stability. That is, what are the amino acid sequence features and the interactions involved in selecting and maintaining the native conformation. In the case of cofactor-binding proteins, this issue is enlarged by considering the effect of the cofactor and polypeptide-cofactor interactions. Three main strategies have been adopted to tackle this issue: 1. Comparative analysis of the folding properties of wild type and single point amino acid mutants; 2. Study of the folding properties of single protein domains or small peptides derived from actual proteins; 3. Study of the folding properties of intrinsically highly stable proteins. Under the framework of the third strategy, proteins originating from extremophiles – organisms thriving at extreme temperature, pH, salinity or pressure conditions – are obvious research models because it is assumed that the organism’s survivability is set by the least stable of its components. The majority of extremophilic organisms are Archaea, which constitute the deepest branch in Woese’s tree of life [53-54]. The adaptation to extreme conditions together with the primordial origin of these organisms has been linked to the origin of life on Earth. In this sense, archaeal FeS proteins are 
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Figure 2.10 – Seven iron ferredoxin
from Acidianus ambivalens. Thestructure includes the [3Fe-4S] and[4Fe-4S] clusters and the Zn2+ site. PDB:3VKR.

unique models for addressing the molecular determinants of protein stabilization because of their primordial origin and features (e. g. the (βαβ)2 ferredoxin fold is considered to be one of the oldest folds), spectroscopically active cofactors and small size of the FeS binging domains. Some organisms such as thermoacidophilic Sulfolobales family members intrinsically express such high amounts of FeS proteins that they can be spectroscopically detected in intact cells [55]. This has allowed the unequivocal identification of [3Fe-4S][4Fe-4S] ferredoxins in vivo and the establishment that [3Fe-4S] clusters are physiologically relevant and not decomposed [4Fe-4S] clusters. Two members of the Sulfolobales family have been extensively studied in terms of the folding properties of their FeS proteins, namely ferredoxins: 
Acidianus ambivalens and Sulfolobus metallicus. These ferredoxins have a fold identical to that of the canonical dicluster [4Fe-4S] ferredoxin, but one of the clusters is replaced for a [3Fe-4S] one (Figure 2.10). The family of seven-iron ferredoxins is intrinsically very stable. For the Thermus thermophilus homolog Tm = 114°C and Cm = 6.5 M GuHCl at pH 7 [56]. Ionic interactions were suggested to be a major stabilization due to substantial decreased stability at lower pH [56-57]. Despite their small size, seven-iron ferredoxins unfold irreversibly. Two mechanisms are thought to contribute to this outcome: first, the clusters constitute a considerable part of the protein hydrophobic core, which is densely packed in thermostable proteins; second, the clusters should decompose after release from the polypeptide, precluding reversibility. 

Acidianus ambivalens is a thermoacidophile growing optimally at 
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Figure 2.11 – Unique features of the Acidianus ambivalens [3Fe-4S][4Fe-4S] ferredoxin. (A) dicluster [4Fe-4S] ferredoxin from Clostridium pasteurianum (1CLF). (B) [3Fe-4S][4Fe-4S] ferredoxin from Acidianus ambivalens (2VKR). The N-terminal extension is shown in orange and the Zn2+ ion as a yellow sphere. (C) Backbone superimposition of the two structures. The 
C. pasteurianum structure is in black and the A. ambivalens is in blue/orange. Only the FeS clusters of the A. ambivalens protein are shown. The clusters from the C. pasteurianum protein are superimposable. 80 °C and pH 2.5 [58]. It expresses a [3Fe-4S][4Fe-4S] ferredoxin whose fold is identical to that of the canonical dicluster [4Fe-4S] ferredoxin, except for the presence of an N-terminal extension harboring a His/Asp Zn2+ site (Figure 2.11). The folding properties of this protein have been extensively studied and a comprehensive view of the unfolding process has been achieved. The relative contribution of the polypeptide versus the clusters has been analyzed taking advantage of the distinct spectroscopic properties of both. At pH 7 the protein is highly stable and remains folded even in 8 M GuHCl [59]. The Tm is ~120°C in the 5.5 to 8 pH range [57]. Changing pH to the protein’s isoelectric point (pH 3.5), in which the electrostatic contributions for protein stabilization are minimized, the protein undergoes a conformational change which does not affect the FeS clusters. The latter then unfold at a higher temperature than the polypeptide (Tm = 72°C versus 52°C). Below pH 2 the FeS clusters disintegrate spontaneously [57]. Overall, these observations 
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show that the FeS clusters in this ferredoxin are essential for the maintenance of the native conformation. Thermal denaturation of the ferredoxin at pH 2.5 yields a FeS- and Zn2+-less stable molten globule conformation which unfolds reversibly and is only marginally less stable than the holo state (ΔΔG ~1.5 kcal/mol) [60]. Much evidence exists in the literature suggesting that molten globule states may be ubiquitous folding intermediates [61] and that FeS protein molten globule like conformations are good candidates for being the acceptors of FeS clusters from the biosynthetic machinery. The association of conformational plasticity with the mechanism of FeS clusters insertion into apoproteins is further highlighted in IscU, the scaffold protein from where pre-formed FeS clusters are transferred to the target apoproteins. It hosts a [2Fe-2S] cluster [62] and adopts a dynamic molten globule-like state which is relevant in the context of protein-protein interactions [63]. Accordingly, and together with the stability of this state, the molten globule state was surmised to be the likely conformational state where the FeS clusters are incorporated in the apoprotein [60]. 
Sulfolobus metallicus was found to express identical amounts of two [3Fe-4S][4Fe-4S] ferredoxins – an observation repeated in A. ambivalens [64] – sharing most biochemical and spectroscopic features [11] but differing in the 

Acidianus ambivalens-like N-terminal extension (Figure 2.12). Ferredoxin A (FdA) includes the His/Asp Zn2+ site also found in the A. ambivalens protein. The ferredoxin B isoforms (FdB) differs in this region by several polar-to-hydrophobic and charged-to-hydrophobic substitutions which create a compact hydrophobic core. The kinetic stability of the two proteins is similar, with no changes after 72 h incubation at 70°C [11]. Surprisingly, the Zn2+-binding isoforms was found to be less temperature stable (105.9°C versus 113.1°C at pH 7), revealing that an evolution-selected hydrophobic contribution can be more stabilizing than the extrinsic Zn2+ cross-linking 
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[45]. This is however uncommon in Archaea, as in A. ambivalens the Zn2+-containing isoform is less stable than the Zn2+-lacking one (108°C versus 116°C, respectively, at pH 7) [57, 64]. 

 
Figure 2.12 – N-terminal extension in Sulfolobus metallicus ferredoxin isoforms. The central figure shows the common fold of FdA and FdB. The square-delimited region is blown up in the lateral panels. In FdA the region comprises the conserved His/Asp Zn2+ ligands. In FdB this region is filled with tightly packed bulky hydrophobic side chains. From [45]. 
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3.1. Summary Rieske proteins and Rieske ferredoxins are present in the three domains of life and are involved in a variety of cellular processes. Despite their functional diversity, these small iron-sulfur proteins contain a highly conserved all-beta fold, which harbors a [2Fe-2S] Rieske center. We have identified a novel subtype of Rieske ferredoxins present in hyperthermophilic Archaea, in which a two cysteine conserved SKTPCX(2-3)C motif is found at the C-terminus. We establish that in the Acidianus 

ambivalens representative, RFd2, these cysteines form a novel disulfide bond within the Rieske fold, which can be selectively broken under mild reducing conditions insufficient to reduce the [2Fe-2S] cluster or affect the secondary structure of the protein, as shown by visible CD, absorption and ATR FT-IR. RFd2 presents all EPR, visible absorption and visible CD spectroscopic features of the [2Fe-2S] Rieske center. The cluster has a redox potential of +48 mV (25°C and pH 7) and a pKa of 10.1 ± 0.2. These shift to +77 mV and 8.9 ± 0.3 respectively upon reduction of the disulfide. RFd2 has a melting temperature near the boiling point of water (Tm = 99°C, pH 7.0) but it becomes destabilized upon disulfide reduction (ΔTm = -9°C, ΔCm = -0.7 M GuHCl). This example illustrates how the incorporation of an additional structural element such as a disulfide bond in a highly conserved fold such as that of the Rieske domain, may fine-tune the protein for a particular function or for an increased stability. 
3.2. Introduction Iron sulfur (Fe-S) proteins are ubiquitous in all life domains and are involved in many fundamental cellular processes, from electron transfer, to catalysis, to regulation of gene expression. The simpler Fe-S proteins, despite their low structural complexity and small size (<150 amino acids), are able to harbor clusters with different nuclearities ([2Fe-2S], [3Fe-4S], [4Fe-4S]), or 
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even combinations of clusters, as in the di-cluster ferredoxins ([3Fe-4S][4Fe-4S] and [4Fe-4S][4Fe-4S]). In these proteins the inorganic moieties are generally found in a single domain, having rather conserved topologies [1]. The protein fold and the Fe-S clusters have an intertwined contribution on the structural stability of these proteins: whereas polypeptide scaffolding provides a relatively rigid and protective ligand environment for cluster binding, the chemical stability of the Fe-S cluster itself plays a key stabilizing effect over the structure.  The conserved folds of simple Fe-S proteins are in some cases decorated by additional structural elements that somehow broaden and shape the structural and functional landscape of these proteins. Examples include N- and C-terminal amino acid extensions within dicluster ferredoxins [2-3], insertion of a structural zinc site [4], and incorporation of a disulfide bond within the fold [5-7]. For instance, di-cluster [3Fe-4S][4Fe-4S] ferredoxins [3] contain a N-terminal extension, which modulates the protein stability either by hosting an additional His/Asp zinc center [4, 8] or by creating a stabilizing hydrophobic core [9]. Also, a disulfide bond has been shown to contribute significantly to the stability of the [2Fe-2S] plant-type ferredoxin from the hyperthermophilic bacterium Aquifex aeolicus, as its presence increases the melting temperature from 113 to 121°C [6]. One last example is given from the respiratory-type Rieske proteins, in which a strictly conserved disulfide in the immediate vicinity of the [2Fe-2S] cluster (within 5 Å) stabilizes the cluster binding loops and modulates the redox potential [10].  In this context, Rieske proteins are interesting examples of the functional and structural diversity within a family of proteins that share the same basic all-beta fold [1, 11]. These proteins have the distinct feature of harboring a [2Fe-2S] cluster coordinated by two cysteine and two histidine residues. Like in other Fe-S proteins, a considerable diversity is allowed at the level of the 
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primary structure without disturbing the structural topology whereas the type of amino acid side chains and the electrostatic environment found around the [2Fe-2S] Rieske cluster modulate the redox potential of the center. This results in a broad range of functional potentials, from around -150 mV for the soluble Rieske ferredoxins from the dioxygenase components [12], to up to +400 mV for the photosynthetic or respiratory Rieske domains [13-14]. Subsequently to a thorough phylogenetic analysis [11, 15], the diversity of Rieske proteins was considerably expanded, in particular in what concerns the soluble Rieske type ferredoxins, as many novel sequences were identified mostly within phyletically distant organisms from the Archaea domain. Subsequent analysis using complete genome data has allowed to establish the existence of evolutionarily related sequences within the 
Thermoprotei, an Archaeal class comprising hyperthermoacidophilic organisms belonging to the Sulfolobus and Caldisphaera genus [16]. The genes identified encode for proteins with the typical Rieske fingerprint, but with very little amino acid identity towards other Rieske proteins. Here we report a novel structural feature within the all-beta Rieske fold, which was identified upon studying one of these as yet uncharacterized archaeal Rieske ferredoxins from Acidianus ambivalens (EMBL FN557298). It consists of a disulfide bond within the Rieske fold, whose redox status influences the properties of the [2Fe-2S] center and simultaneously stabilizes the protein. This particular disulfide is a novel feature within Rieske proteins, and is unrelated to the disulfides described in respiratory and photosynthetic Rieske domains [17] and in the archaeal respiratory-type SoxF [5] and sulredoxin [18] proteins, which have distinct locations in the fold. This finding illustrates how minor structural modifications modulate protein function and stability and is key to rationalize the evolutionary adaption of simple Fe-S proteins to distinct conditions and to understand how relatively 



Chapter 3 

60 

simple folds may be fine tuned for a particular function or for an increased stability. 
3.3. Materials and methods 

3.3.1. Sequence comparison Homologous Rieske amino acid sequences were extracted from the non redundant protein database using BLAST and A. ambivalens Rieske Ferredoxin 1 (Genbank 22204177) and Rieske ferredoxin 2 (RFd2), 
Sulfolobus tokodaii Sulredoxin and S. solfataricus ARF as seeds. All organisms were included in the search. We have considered the hits with E-values of less than 10-10 significant. Sequences were aligned using ClustalX [19], MAFFT (at http://align.bmr.kyushu-u.ac.jp/mafft/online/server/) [20] , GeneDoc [21], and CINEMA (http://www.bioinf.manchester.ac.uk/dbbrowser/CINEMA2.1/) [22]. Dendrograms were calculated using the MAFFT server and displayed using PhyloWidget (http://www.phylowidget.org/). The nucleotide sequence of the rfd2 gene was submitted to the EMBL database and was assigned the accession number FN557298. 

3.3.2. Chemicals All reagents were of the highest grade available commercially. Guanidinium hydrochloride (GuHCl) was obtained from Promega and the accurate concentration of its solutions was determined by refractive index measurements. 8-anilino-1-naphthalenesulfonic acid (ANS), Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) and 5,5′-Dithiobis(2-nitrobenzoic acid) (DTNB) were purchased from Sigma. 
3.3.3. Cloning, expression and purification 

Acidianus ambivalens DSMZ 3772 was grown aerobically and anaerobically according to published procedures [23]. The gene encoding the 
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Rieske ferredoxin 2 (RFd2) was PCR-amplified from A. ambivalens genomic DNA using the following N-terminal and C-terminal primers TATTT CATGA TTAAG ACAAT TCTTT ATGAA and AAACA ACTCG AGTGT ACCTT TTCTA GGTAA TTC, respectively. The N-terminal primer swapped the native presumable GTG start codon for an ATG. The 336 bp PCR product was digested with BspHI and XhoI and ligated into the NcoI/XhoI-digested vector pET28a (Novagen, now Merck -Biosciences, Darmstadt, Germany) thus adding two amino acid codons for the XhoI restriction site and a C-terminal His-Tag to the native protein (..LEHHHHHH). The protein was produced after IPTG induction at an OD600nm of 0.6-1 in E. coli BL21 CodonPlus RIL DE3 cells (Stratagene, now Agilent Technologies) grown overnight at 37˚C in LB medium supplemented with 1/1000 vol. of a 100 mM ferric chloride in 100 mM citric acid solution. 40 g of E. coli cells were resuspended after harvesting in a 400 ml of 40 mM potassium phosphate (KPi) buffer pH 8 containing 300 mM NaCl and 10 mM imidazole. The cells were broken using a continous French press (Constant Systems Ltd., Daventry, UK) followed by two centrifugation steps (15 min at 15,000 x g and 60 min at 150,000 x g, respectively). 200 ml of the clear supernatant were applied to a 20 ml Ni-NTA column (Qiagen, Hilden, Germany) equilibrated with the same buffer and connected to an FPLC (Pharmacia, now GE Health Care, Freiburg, Germany). The column was washed with 3 volumes of 50 mM imidazole and finally eluted with 500 mM imidazole, both in the same buffer. The colored fractions were combined and dialyzed against 40 mM KPi pH 8. The sample was subsequently dialyzed against 70 mM Tris-HCl pH 7.7 150 mM NaCl and loaded to a calibrated Sephadex G-50 column (2 x 50 cm) previously equilibrated with the same buffer. Rieske eluted as a pure sample as verified by SDS-PAGE [24] and the typical UV-vis absorption spectrum. This pink stock solution was concentrated to around 1-2 mg/ml by ultrafiltration using a 5 kDa cut-off membrane (Amicon Ultra, Millipore), flash frozen at liquid 
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nitrogen temperature and stored at -20°C for subsequent studies. Protein was quantified using Bradford’s method [25]. 
3.3.4. Disulfide reduction The Rieske ferredoxin was purified in the oxidized state. Full reduction was achieved with excess ascorbate or sodium dithionite at room temperature. Spectra were obtained with 4.6 μM (0.06 mg/ml) (far UV CD) or 15.2 μM (0.2 mg/ml) (near UV/visible CD and absorption) protein concentration in 2 mM KPi pH 7. Low buffer concentrations are required to minimize absorption in the far UV region. Other reduced Rieske samples were obtained by incubating 7.6 μM protein with 5 mM DTT or 5 mM TCEP, during 1 h in 50 mM KPi pH 7 at room temperature. 
3.3.5. Spectroscopic methods UV/Vis spectra were recorded in a Shimadzu UVPC-1700 spectrometer equipped with cell stirring and a Julabo water bath-coupled thermostated cell support. Unless otherwise indicated, UV/Visible absorption spectra were recorded at room temperature. Circular dichroism (CD) measurements were performed on a Jasco J-815 spectrometer and fluorescence measurements were acquired on a Cary Varian Eclipse instrument, both possessing peltier-thermostated cell supports. Attenuated total reflectance Fourier transform-infrared (ATR FT-IR) spectra were acquired in a Bruker IFS 66/S spectrometer equipped with a nitrogen-cooled MCT detector using the water-thermostatized Harrick BioATRcell II cell. EPR spectra were acquired on a Bruker EMX spectrometer equipped with an ESR 900 continuous-flow helium cryostat at 10 K, 9.39 GHz microwave frequency, microwave power 2.4 mW and modulation amplitude 1 mT. 
3.3.6. Conformational stability The conformational stability of Rieske was assessed by performing temperature- or chemical-induced denaturation while following several 
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spectroscopic properties: i. visible absorption, which reports on the [2Fe-2S] cluster integrity; ii. tyrosine fluorescence, which reports on tertiary contacts; and iii. ANS fluorescence, which reports on the exposure of hydrophobic patches. Protein was prepared as 7.6 μM in 50 mM KPi pH 7. Data treatment was performed as described in [26]. For thermal-induced denaturation, we incubated the Rieske ferredoxin with no reductant, 5 mM TCEP or 5 mM DTT plus 0 or 2.5 M GuHCl at 25°C. Then, we performed 1°C/min temperature ramps (25-92°C) while measuring the UV/visible absorption spectrum or tyrosine fluorescence at 304 nm. Fluorimeter was set up to excite at 275 nm using 10 nm excitation and emission slits and 600 V PMT voltage. Refolding was assessed by equilibrating the sample at 4°C overnight (absorption) or 25°C for 5 minutes (fluorescence). GuHCl-induced chemical denaturation curves were obtained by incubating the Rieske ferredoxin with 0 or 5 mM TCEP and different concentrations of GuHCl during at least 3h at room temperature. The denaturation curve corresponds to the normalized variation of fluorescence intensity at 304 nm or absorbance at 330 nm. The chemical denaturation was further dissected by incubating the same samples with 10 fold molar excess ANS for at least 30 min at room temperature. In this case, the folding status was probed by the ANS emission band (λexc = 350nm). 
3.3.7. ATR FT-IR spectroscopy For ATR FT-IR, the Rieske ferredoxin was concentrated by ultrafiltration to 0.8 mM (10.5 mg/ml) in 40 mM Tris-HCl pH 7 and then centrifuged 30 min at 12000 x g to remove aggregates. Spectra were acquired at 20°C and 4 cm-1 resolution with 0 or 5 mM TCEP after 3 h equilibration. The amide I band was deconvoluted by fitting its Fourier self deconvolution with Lorentzian curves centered at the second derivative maxima and minima. Band assignment was 
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Figure 3.1 - UV-Visible absorption
spectrum of RFd2 in the presence and
absence of 5 mM TCEP. 15.2 μM (0.2 mg/ml) RFd2 was incubated in 50 mMKPi pH 7 in the presence or absence of 5mM TCEP for at least 1.5 h at roomtemperature. The 5 mM TCEP samplespectrum remained unchanged for atleast 5 h. 

performed using the reference data in [27]. The secondary structure was estimated by the Lorentzian integrals. 
3.3.8. Redox potentiometry The reduction potential of the [2Fe-2S] Rieske cluster was determined at 20°C and with 7.6 μM protein concentration in 50 mM KPi pH 7 with and without 5 mM TCEP. The redox state of the Rieske [2Fe-2S] cluster was probed by the absorbance change at 490 nm. The following redox mediators were used: 1,2-naphtoquinone-4-sulfonic acid (+215mV, 0.6μM), 1,2-naphtoquinone (+180mV, 0.6μM), trimethylhydroquinone (+115mV, 0.6 μM), phenazine methosulfate (+80mV, 0.6μM), 1,4-naphtoquinone (+60mV, 0.6 μM), 5-hydroxy-1,4-naphtoquinone (+30mV, 0.6μM), methylene blue (+11mV, 0.79μM), menadione (0mV, 0.6 μM), indigo tetrasulfonate (-30 mV, 0.4 μM), indigo trisulfonate (-70mV, 0.55 μM), 2,5-hydroxy-p-benzoquinone (-130mV, 0.23 μM), 2-hydroxy-1,4-naphtoquinone (-152mV, 0.4μM; all potentials are in respect to the standard hydrogen electrode). Additionally, catalase (0.002 mg/ml), glucose oxidase (1.6 U/ml) and glucose (0.86 mM) were added to ensure O2-free conditions. The fully oxidized protein was titrated anaerobically with buffered sodium dithionite. The sample with 5 mM TCEP was incubated 3 h at room temperature, after which time the [2Fe-2S] center had been reduced. The oxidized center was regenerated by bubbling with air. UV-Visible absorption spectra were recorded during the spontaneous re-reduction of the cluster. Several oxidation-reduction cycles were performed and the reduction 
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behavior did not change, despite the progressively lower re-reduction rates (~20-35 mV/min) due to reductant oxidation by oxygen. The titration curve includes datapoints from several reduction cycles. The midpoint reduction potential was determined by fitting a Nernst curve (n=0.7, 0 mM TCEP; n=1, 5 mM TCEP) to the normalized variation of absorption at 490 nm. The lower than unity value for the n value for a one electron acceptor center is within the experimental uncertainty and likely reflects a slight off-equilibrium in that set of measurements since the visible absorption spectrum of both samples is identical (Figure 3.1). 
3.3.9. pH titration The pKa of the Rieske cluster was determined by investigating the pH-associated changes of the visible CD spectrum. 11.4 μM protein samples were prepared in a buffer solution composed of MES, HEPES, tricine, taurine and CAPS (10 mM each) and 50 mM NaCl with and without 5 mM TCEP poised at different pH values. The samples were equilibrated overnight at room temperature before measuring the near UV/visible CD spectrum at 25°C. One pKa was determined by fitting the Hendersson-Hasselbalch formalism to the average normalized CD variation at 338, 378, 417, 434 and 485 nm (0 mM TCEP sample) or 338, 378, 462 and 485 nm (5 mM TCEP sample). 
3.3.10. Iron quantification Fe2+ was quantitated in Rieske ferredoxin samples using the chromogenic ferrous iron chelator TPTZ (2,4,6-tripyridyl-s-triazine) using a protocol adapted from [28]. Briefly, iron was released from Rieske by degradation in 0.9 M HCl. The protein fraction was removed by precipitation in 8% trichloroacetic acid. The remaining iron solution was buffered in 16% ammonium acetate and reduced with 0.9% hydroxylamine hydrochloride. The Fe2+ concentration was then determined by the rise in Abs593 nm upon adding 320 μM TPTZ using a calibration with iron standards. 
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3.3.11. Thiol quantification Four Rieske samples were prepared in 100 mM KPi pH 8: oxidized native, 5 mM TCEP reduced, denatured in 6 M GuHCl plus 2 mM EDTA, and denatured in 6 M GuHCl, 2 mM EDTA and 5 mM TCEP. Protein concentrations ranged from 23-69 μM and samples were incubated between 60 and 90 minutes. After incubation, TCEP-containing samples were desalted (HiTrap Desalting, GE Healthcare) in Argon-saturated 100 mM KPi pH 8-50 mM NaCl buffer. Then, the thiol content was determined by adding 2 mM DTNB and recording the quantitative formation of TNB2- (ε412 = 14150 M-1.cm-1). All procedures were carried at room temperature. 
3.4. Results and discussion 

3.4.1. RFd2 is a representative of a subtype of Rieske ferredoxins The protein used in this study, Rieske ferredoxin 2 (RFd2), was identified from a search on the A. ambivalens genomic data (A. Kletzin et al., unpublished) using Rieske protein sequences as seeds. Among the hits was also the previously characterized Rieske ferredoxin 1 [16]. The native RFd2 is a 106 amino acid protein with a theoretical mass of 12053 Da, and an isoelectric point of 8.9, whereas the length of the recombinant protein is 114 aa, including the His-Tag (13118 Da, pI = 8.6). Subsequent database analysis using BLAST has allowed the identification of 8 significant hits (E-value ≤ 10-17) related to RFd2, all from unannotated hypothetical proteins from the 
Sulfolobales and Caldisphaerales orders within the Archaeal class of the 
Thermoprotei, which comprises hyperthermophilic organisms. Sequence alignment (Figure 3.2 and Supplementary Figure S3.1) and phylogenetic analysis (Figure 3.3) suggest that the latter cluster is a novel subgroup within the Rieske family. This group has two prominent features: one is a N-terminal truncation in a stretch which should include the β1 strand of the Rieske fold, and the other is the presence of an additional cysteine pair in a 
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SKTPCX(2-3)C motif at the C-terminal segment (Figure 3.2), in a position that maps into a loop region in the dioxygenase-type Rieske structures [12, 29]. The sequence conservation and close proximity of these additional cysteines is suggestive of a structural role, which may involve formation of a disulfide bond or involvement in coordinating an additional metal ion, such as zinc for example. The rfd2 gene was cloned, expressed in E. coli and the protein was purified to homogeneity using chromatographic methods. The resulting pink protein elutes as a monomer on gel filtration chromatography and migrates in 15% 

 
Figure 3.2 - Multiple sequence alignment of Rieske ferredoxins and ferredoxin domains. 
Rieske ferredoxins. RFd2, Rieske ferredoxin cluster RFd2; ARF, archaeal Rieske ferredoxins; lines with C-C denote the RFd2 disulfide bridge and the hypothetical disulfide bridge in the Sulredoxins. The latter is homologous to the disulfide from Rieske proteins from membrane-bound electron transport proteins (bc1- and b6f-complexes); numbers with species names denote the Genbank accession numbers. 
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Figure 3.3 - Phylogenetic tree of Rieske ferredoxins calculated from the alignment 
shown in. Supplementary Figure S3.1. GI numbers from Genbank (http://www.ncbi.nih.gov); RFd2, cluster of RFds similar to the protein described in this work; ARF, archaeal Rieske ferredoxin. SDS-PAGE gels as having 14.7 kDa (Figure 3.4). Iron quantitation using the TPTZ methods determined 2.4±0.1 (n=3) iron ions per molecule, which is compatible with the presence of an intact [2Fe-2S] cluster in the purified protein. 

 

Figure 3.4 - Molecular weight and oligomeric state determination of purified RFd2. A: Gel filtration chromatogram (Sephadex G-50). Inset: 15% SDS-PAGE analysis of purified Rieske ferredoxin. The protein migrates as being 14.7 kDa. MW: molecular weight markers. B: molecular weight determination of the native protein using a calibration of the gel filtration column. 
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3.4.2. Spectroscopic characterization of the Fe-S cluster in RFd2 The presence of a [2Fe-2S] Rieske was clearly confirmed by subsequent biophysical analysis using UV-visible absorption, visible circular dichroism and EPR spectroscopies. The identity of the Rieske [2Fe-2S] center was unambiguously revealed by its characteristic EPR spectrum in the reduced form. It consists of a rhombic signal characterized by g values gx = 1.80, gy = 1.90 and gz = 2.01 (Figure 3.5A). The average g-value is 1.905, typical for [2Fe-2S] clusters containing nitrogen ligands and significantly lower than the value around 1.96 for plant type [2Fe-2S] clusters. As expected for an integer spin system, no signal was observed in the as prepared, oxidized protein. The UV-visible absorption spectrum exhibits characteristic bands at 337, 456 and 570 nm, and a shoulder at 490 nm (Figure 3.5B). The circular dichroism spectrum in the visible region denotes positive peaks at 418 and 483 nm and negative peaks at 379, 436, 528 and 569 nm (Figure 3.5C). Altogether, the features observed by these two techniques are typical of Rieske clusters [5-6]. The Rieske center is readily reduced by dithionite (Figure 3.5BC, dotted lines) and partly reduced by ascorbate (Figure 3.5BC, dashed lines), indicating that the redox potential of the center has a positive value (see below). 

 
Figure 3.5 - Spectroscopic analysis of the Rieske cluster. Panel A: EPR spectrum of the dithionite reduced Rieske ferredoxin at 10 K, 9.39 GHz microwave frequency, microwave power 2.4 mW and modulation amplitude 1 mT. Panel B: UV/visible absorption spectrum of the oxidized (—) and ascorbate (----) and dithionite (….) reduced protein; Abs337nm/Abs277nm = 0.64. Panel C: visible CD spectrum of the oxidized and ascorbate and dithionite reduced protein. 
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3.4.3. The cysteines in the C-terminal SKTPCX(2-3)C motif form a 

disulfide bridge In order to address a possible role for the additional pair of cysteines (Cys-74 and Cys-78) from the SKTPCX(2-3)C motif in disulfide formation, we have quantified the free thiols (-SH) in RFd2, under different conditions, using the DTNB assay (Figure 3.6). The protein contains a total of four cysteine residues, two of which are involved in the coordination of the [2Fe-2S] Rieske cluster (Cys-29 and Cys-50). The as prepared protein was found to contain no free thiols (<0.1 SH.mol-1), which shows that under these conditions cysteines are unavailable to the DTNB reagent (Figure 3.6, Scheme 1). On the other extreme, in a preparation in which the RFd2 was unfolded under reducing conditions and cluster disassembly was further promoted by the presence of EDTA, a total of 3.5±0.3 SH.mol-1 were quantified. This corresponds to all cysteines in the protein becoming available to the DTNB reagent (Figure 3.6, Scheme 4). On the other hand, under the same denaturing conditions, if the reductant is omitted, only 1.6±0.2 SH.mol-1 are quantified. This indicates that under these 

 
Figure 3.6 - Thiol quantitation and schematic representation of the different tested 
conditions. 
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Figure 3.7 - Circular dichroism spectra of RFd2. Far-UV (A) and near-UV (B) regions. 

conditions, the cluster binding cysteines become available whereas Cys-74 and Cys-78 are not, thus confirming that they are involved in a disulfide (Figure 3.6, Scheme 3). Additional control experiments were carried out in which the cluster binding cysteines and those from the SKTPCX(2-3)C motif were selectively reduced. This was possible since we have observed that incubation of RFd2 with 5 mM TCEP is enough to reduce the disulfide bond (1.5±0.2 SH.mol-1, Figure 3.5, Scheme 2) without reducing the Fe-S cluster, as the visible absorption spectrum remains unchanged even after 5 h of incubation (Figure 3. 1). This provides a tool to generate a protein form in which this disulfide is selectively broken (RFd2SH). In summary, the cysteines within the C-terminal SKTPCX(2-3)C motif are involved in a disulfide bridge, which is novel within the Rieske fold. The other types of disulfides known in Rieske proteins, further discussed below, are both found in respiratory Rieske domains, namely on the prototypic complex III domains [17] and on the SoxF protein from Sulfolobus acidocaldarius [5, 30]. 
3.4.4. The Rieske fold and secondary structure are not disrupted 

upon disulfide reduction To fully characterize the role of the redox status of the disulfide bridge in the folding and conformation of RFd2, we have carried out a structural analysis using biophysical methods. Circular dichroism spectroscopy was inadequate for such a study as the high content in β sheets of the Rieske fold accounts for a relatively featureless spectrum in the far-UV region, with a minimum around 200 nm, typical of 
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Figure 3.8 - ATR FT-IR analysis of
the Rieske ferredoxin secondary
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proteins with high amounts of random coil and no significant amounts of α-helices, while showing the expected tertiary structure fingerprint on the near-UV region (Figure 3.7). However, the multiple vibrational modes associated with β structures produce highly informative infrared absorption spectra. For the purpose, we have used ATR FT-IR to identify and estimate the relative amounts of each type of secondary structure elements in RFd2 preparations with the disulfide in the oxidized (RFd2SS) and in the reduced states (RFd2SH). This was achieved by deconvoluting the amide I band and carrying out assignments according to established fingerprints. This analysis showed that the spectra are nearly identical in both preparations (Figure 3.8). The secondary structure of the oxidized protein (Figure 3.8A) is composed of 43% β-sheets, 25% random coil, 18% turns and  8% α-helices, 
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Table 3.1 - Assignment and relative contributions of the RFd2 amide I band secondary 

structure components, in the intact (RFd2SS) and broken disulfide (RFd2SH) forms. 

Band  
(cm-1) 

RFd2SS RFd2SH 
Assignment 

Area (%) 1626 8 8 
β-sheets 1632 14 141638 13 121680 6 6.51687 2 2 1691 0.5 1 1644 12 11 Unordered structure (random) 1650 12 121656 8 9 α-helices1661 5.5 5 β-turns 1666 6.5 7 1673 6.0 7 1614 1 1 Intermolecular β-sheets (aggregation) 1621 4.5 4.5 which is in a fair agreement with the calculations made in the available Rieske structures. Around 6% of the secondary structure can be accounted as intermolecular β-sheet contacts, which are usually associated with aggregation. These are, however, not significant in the overall structural content. The secondary structure changes brought about by disulfide reduction (Figure 3.8B) are marginal and are within the deconvolution error (Table 3.1). Therefore, reduction of the disulfide does not result in partial unfolding or in a loss of secondary structure. 

3.4.5. The properties of the Rieske [2Fe-2S] cluster are influenced 

by the redox status of the disulfide Redox potentiometry was used to determine the oxidation-reduction potential of the [2Fe-2S] Rieske cluster, using visible absorption to monitor the reduction state of the center during an anaerobic reductive titration using dithionite. The process was reversible and a redox potential of +48 mV (pH 7) was determined (Figure 3.9, open circles). Taking advantage of the fact that the disulfide bond can be broken while the Rieske cluster remains oxidized, we have tested if the redox properties of the cluster would be 
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influenced by the status of the disulfide. We have therefore carried out a redox titration on the disulfide-reduced RFd2 (RFdSH) and we have observed that the apparent redox potential of the Rieske increases around 30 mV, to an E0= +77 mV (pH 7) (Figure 3.7, closed circles). These redox potentials are intermediate between those of prototypic dioxygenase-type Rieske Ferredoxins (E0 ≈ -180 mV, [31]) and respiratory and photosynthetic Rieske domains (E0 ≈ +300 mV, [17]), and this wide range have been suggested to result from differences in solvent accessibility, hydrogen bonds and spatial distribution of ionizable side chains around the center, among different types of Rieske proteins [29, 32]. The status of the disulfide bond influences also the redox properties of the [2Fe-2S] cluster, as its reduction results in a +30 mV increase in the potential. This effect may arise from a change in the hydrogen bond network around the cluster as a result of disulfide reduction. Further investigation of these factors in RFd2 will be possible when a crystal structure becomes available, as the structural model of the protein produced by I-TASSER [33] does not allow such detailed analysis. 
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Figure 3.10 - Near UV/visible CD monitored pH titration of the Rieske ferredoxin. The pH titration was carried out on Rieske buffered in a complex buffer composed of MES, HEPES, tricine, taurine and CAPS (10 mM each) and 50 mM NaCl set at different pH values in the absence (A) or presence (B) of 5 mM TCEP. Arrows indicate the spectral variation at increasing pH values. pKa values were extracted by fitting Handersson-Hasselbalch equations for a single protonation to the averaged normalized CD signal at 338, 378, 417, 434 and 485 nm (0 mM TCEP, ) or 338, 378, 462 and 485 nm (5 mM TCEP, ) (C). We have also investigated the influence of the redox status of the disulfide on the pKa values of the histidine ligands of the [2Fe-2S] cluster, which can be estimated from the analysis of the pH dependence of the visible CD spectrum of the Rieske center, according to a well established procedure [10]. We have used the variation of the visible CD spectra of RFd2, in the as prepared and in presence of 5 mM TCEP, from pH 6.2 to 11.2 (Figure 3.10). The data could be fit with a single transition at a pKa = 10.1 ± 0.2 (0 mM TCEP sample) or pKa = 8.9 ± 0.3 (5 mM TCEP sample), which are intermediate between the values reported for bc1 Rieske proteins [34] and Rieske ferredoxins [32] in the oxidized [2Fe-2S]2+ state. The determined values probably correspond either to a single or to an average of the two expected transitions from the two protonatable histidines, which could not be resolved. The decreased pKa in the disulfide reduced state reflects the double protonation event following the disulfide cleavage and constitutes additional evidence to the proximity of the intervening cysteines to the [2Fe-2S] cluster which is responsible for the dependence of the cluster properties with the redox status of the disulfide. We have confirmed that the spectral changes observed are due to pH-dependent modifications at the [2Fe-2S] cluster and not by a perturbation in the secondary structure or folding, as the 
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far UV CD spectra in both assays were not altered at the pH extremes (not shown). The presence of the C-terminal hexahistidine could result in a shift of the pKa values compared to the native, tag-less protein. However, this hypothetical perturbation is minimized because the N-terminus and the [2Fe-2S] cluster are located in opposite sides of the Rieske fold. 
3.4.6. The stability of RFd2 is influenced by the redox state of the 

disulfide A role of the disulfide in the protein conformational stability was investigated performing chemical and thermal unfolding experiments under conditions in which the disulfide was formed and broken. We have monitored the RFd2 folding using the intrinsic fluorescence of tyrosine residues as a probe of the conformational state of the protein, as the protein contains no tryptophan. The chemical stability was determined as a function of the concentration of guanidinium hydrochloride (GuHCl) in the disulfide oxidized and reduced states (Figure 3.11). From the difference in the apparent midpoint denaturant concentrations (Cm=3.7 M for RFd2SS versus Cm=3.0 M for RFd2SH) it is clear that the disulfide increases the chemical stability of the protein. We further explored an effect of this bond o n the thermal denaturation of the protein. As many other proteins from hyperthermophilic origin, RFd2 unfolds near or above the boiling point of water, as no transition is observed when the temperature is increased from 25 to 95°C. In order to overcome this problem, a series of thermal denaturation transitions were determined in the presence of GuHCl at different concentrations, all below that of the midpoint chemical denaturation (Cm). Under these conditions, the protein becomes destabilized by the presence of denaturant but the majority of the molecules are in the folded conformation thus allowing the determination of a apparent Tm at different GuHCl concentrations, with the disulfide intact and broken (Figure 11BC). Linearization plots can then be used to extrapolate the Tm in the 
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Figure 3.11 - Conformational stability of RFd2. Panel A: Chemical denaturation with GuHCl.Panel B and C: Determination of the midpoint denaturation temperature ( ) of the Rieskeferredoxin in the absence (B) and presence (C) of 5 mM TCEP, at different GuHClconcentrations. Panel D: Extrapolation plots for determination of the Tm in H2O. 
absence of denaturant, which is determined from the y-axis intercepts (Figure 3.11D). Using this strategy, we have determined that RFd2 has a TmH2O of 99°C, which is lowered to 91°C when the disulfide is broken. The integrity of the Rieske [2Fe-2S] cluster was also monitored upon thermal and chemical perturbation using visible absorption spectroscopy and identical results were obtained indicating that protein unfolding and cluster disintegration are intertwined events. Altogether, the chemical and thermal unfolding data 
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clearly show that the disulfide involving Cys-74 and Cys-78 does play an important contribution in structural stabilization. 
3.5. Conclusions Rieske proteins are present in the three domains of life, and are found to be involved in electron transfer processes associated with different cellular processes, including respiration, photosynthesis and dioxygenase systems [17, 35]. In recent years, studies on Rieske proteins from phylogenetically distant organisms, such as hyperthermophilic Archaea [15] have revealed proteins with particular features which enlarge the structural and functional diversity of Rieske domains. In fact, there are proportionally less Rieske proteins known in Archaea (~100) than in Eukarya (>450) or in Bacteria (>3500), as currently listed in Pfam [36]. Here we report the characterization of a new subtype of soluble Rieske ferredoxin of hyperthermophilic origin: in the essential this protein contains all typical fingerprints of Rieske domains in respect to the biophysical properties of its [2Fe-2S] cluster. However, it harbors a disulfide bond at the C-terminal region which has not yet been identified among the Rieske family, whose redox status affects the stability of the protein fold and of the iron-sulfur cluster, the redox properties of the latter and the pH-associated properties of the cluster ligands. Upon its disruption, a decrease in the chemical (ΔCm = -0.7 M GuHCl) and thermal (ΔTm = -9°C) stabilities is observed, an increase in the redox potential of the [2Fe-2S] center (ΔE0 = +31 mV) and a decrease of the pKa of the histidine ligands (1.2 units), likely as a result of a rearrangement of the electrostatic, hydrogen bonding and covalent network around the metal cluster environment. Rieske proteins are believed to have the same structural fold, which consists of two all-beta subdomains: one conserved small domain which has a rubredoxin-like fold, and a larger domain which consists of 6 beta-stands packed in either sandwich of two 3-stranded sheets or closed barrel [17]. 
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RFd2 typifies a new subtype of Rieske ferredoxins in which the Rieske fold is decorated by a novel disulfide bond which involves a cysteine pair located at the protein C-terminus, within a SKTPCX(2-3)C motif. This motif appears as an insertion within a region that corresponds to a loop in dioxygenase Rieske proteins, and is present in five other sequences from Archaea, which share a rather high amino acid identity (~37-52%) among themselves, but not against other types of Rieske proteins (<15%). The disulfide bond now identified within this family is a novel structural feature in the Rieske fold, and is unrelated to the disulfides described in respiratory and photosynthetic Rieske domains [17] and in the archaeal respiratory-type SoxF [5] whose cysteines are intertwined within the FeS binding motif (CXHXXC…CPCH), and the one presumed to be present of sulredoxin [18]. The novel disulfide described within the conserved Rieske fold may underlie a stabilization strategy complementary to others found in highly thermostable proteins, which include extensive hydrogen bond and salt bridge networks, oligomerization, reduction of loop lengths, formation of tightly packed hydrophobic cores. In fact, the destabilization observed upon disulfide reduction is likely a consequence of the clipping effect exerted by the bond, as the motif containing the disulfide is inserted in a loop, which is also present in a shorter version in the dioxygenase Rieske ferredoxins. Insertion of disulfide bonds to cross-link different parts of the polypeptide chain with stabilizing effects is a frequent stabilizing strategy of local structures, and in fact thermophiles are predicted to contain a higher density of disulfide bonds than mesophiles [37]. Apart from the discussed examples within the Rieske family, other small iron-sulfur proteins also have a disulfide bond included on the protein structure. Those are the cases of the [3Fe-4S] ferredoxin II from Desulfovibrio gigas [7], the [4Fe-4S] ferredoxin from Thermotoga maritima and the plant-type [2Fe-2S] ferredoxin from 
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Aquifex aeolicus [6]. However, with the exception of the latter, the influence of disulfide on the protein stability has not been systematically investigated. Overall, the work here reported illustrates how minor structural modifications modulate protein function and stability, and contributes to an understanding of how relatively simple folds may be fine-tuned. Further, the characterization of a subtype of Rieske proteins present in organisms rooting deeply on the tree of life is determinant to understand the evolutionary aspects of this fold, which is ubiquitous in nature. 
3.6. Supplementary figure 

 
Supplementary Figure S3.1- Multiple alignment of the Rieske ferredoxins and 
ferredoxin domains used for calculation of the dendrogram (Figure 3.3). RFd2, Rieske ferredoxin cluster RFd2; ARF, archaeal Rieske ferredoxins; lines with C-C denote the RFd2 disulfide bridge and the hypothetical disulfide bridge in the Sulredoxins. The latter is homologous to the disulfide from Rieske proteins from membrane-bound electron transport proteins (bc1 and b6f complexes); numbers with species names denote the Genbank GI numbers. 
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4.1. Summary 

Acidianus ambivalens ferredoxin is a model thoroughly studied in respect to the biophysical characterization of the interplay of its iron-sulfur (FeS) clusters and zinc ions with protein conformation and stability. The molten globule state where ferredoxin rests after thermal denaturation at pH 2.5 constitutes a proposed candidate for the template conformation where FeS clusters are incorporated during protein maturation. Here we report a structural analysis of the ferredoxin molten globule. By performing a temperature-dependent FT-IR study of the denaturation of ferredoxin at pD 2.5 and 12 we have described protein denaturation events and molten globule formation in terms of the variation of secondary structure. We have identified a common structural component spectrum describing ferredoxin’s core structure and thermal denaturation at acidic and basic pD. This study also showed that cold unfolding can be accessible to the apo states of ferredoxin, opening new possibilities for the use of this protein as a model for the study of this phenomenon. 
4.2. Introduction Iron-sulfur (FeS) clusters are inorganic protein cofactors occurring in the three domains of life which are required for biological activity, functional regulation and conformational stabilization. The [3Fe-4S][4Fe-4S] ferredoxin (Fd) from Acidianus ambivalens (Figure 2.10) constitutes a system with unique properties for the analysis of the interplay between FeS clusters, protein stability and conformational states. First, its primordial (βαβ)2 fold [1] and cofactors [2] along with its high thermostability (Tm = 122°C at pH 7.0, [3]) should provide insights into basic protein stabilization strategies. Second, the core fold is expanded by a 30 amino acid N-terminal extension containing a structural Zn2+ site which can act as an additional stabilization factor [4]. Third, a high resolution X-ray crystal structure which includes the 
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intact FeS clusters is available (Figure 2.11) [5]. Finally, multiple intrinsic spectroscopic probes have allowed a comprehensive description of the folding and stability properties of this protein [3, 6-9]. Recently it has been shown that the A. ambivalens ferredoxin forms a stable molten globule state at pH 2.5 in vitro [7]. Acidification yields a protein conformation in the holo state with a native-like conformation, which upon thermal denaturation sits in an apo molten globule state with compactness identical to that of the native conformation, similar secondary structure content, no tertiary contacts and enhanced exposed hydrophobic surfaces. The stability of the molten globule was shown by its ability to unfold reversibly upon thermal or chemical denaturation. The accessibility of a stable, partially structured conformation is especially relevant in the context of FeS proteins. FeS clusters are required for correct folding as they are placed in the hydrophobic core of the (βαβ)2 fold [5]. Although excess iron (Fe3+) and sulfide (S2-) can spontaneously be incorporated in ferredoxins in 

vitro resulting in cluster assembly [10-11], the millimolar concentrations required are not physiological and thermally unfolded ferredoxin does not reincorporate the disintegrated clusters [6]. FeS clusters biosynthesis is a tightly regulated process wherein de novo assembled clusters are thought to be transferred from scaffold proteins to the corresponding apo proteins, a process likely involving some binding promiscuity due to the large number of FeS acceptors. In fact, the IscU scaffold protein is a molten globule-like protein [12] and such states have been surmised to be the likely conformation for the acceptor proteins [7]. The high β-sheet content of A. ambivalens ferredoxin [5] is an intrinsic probe that can be used to obtain structural data using Fourier transform infrared spectroscopy (FT-IR), a technique highly sensitive to this type of secondary structures [13]. We have built on the knowledge on the stability and formation of the molten globule of ferredoxin by performing FT-IR 
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monitored temperature denaturation assays at pD 2.5. Equivalent thermal denaturation experiments at pD 12 – where ferredoxin unfolds irreversibly to a non molten globule conformation – were carried out as a control. By deconvoluting temperature-resolved spectral data, we have quantified secondary structure changes taking place during holo ferredoxin unfolding, molten globule formation and during reversible molten globule unfolding. Overall, our results allow proposing a model describing the main conformation changes occurring in a temperature-dependent manner. 
4.3. Materials and methods 

4.3.1. Ferredoxin and chemicals 

Acidianus ambivalens ferredoxin (Fd) was purified as described before [14] and concentrated to 1.09 mM (12.5 mg/ml) by ultrafiltration. Then, the solvent was evaporated under a flow of dry nitrogen and replaced by 20 mM glycine or 50 mM potassium phosphate (KPi) in D2O. pD was adjusted to 2.5 or 12, respectively, using the formula pD = pH + 0.4 (at 25°C) [15]. Any undisolved solutes – which were not visually apparent – were pelleted by centrifuging 25 minutes at 12000 g at 4°C. Final protein concentration was 1.1 mM (12 mg/ml). All chemicals were of the highest grade commercially available. 
4.3.2. Thermal denaturation The thermal denaturation of ferredoxin was monitored by Attenuated Total Reflectance Fourier Transform Infrared spectroscopy (ATR FT-IR) using a Bruker IFS 66/S spectrometer equipped with a nitrogen-cooled MCT detector using the thermostatized Harrick BioATR cell II and recording spectra in the amide I (1600-1700 cm-1) and amide II (1500-1600 cm-1) regions. Temperature was modified in the 20-94°C range in a discontinuous fashion, according to Figure 4.1: spectra were accumulated during 1 minute (97 accumulations), temperature was raised 2°C during around 45 seconds 
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and sample was equilibrated 15 seconds. Overall temperature change rate was 1.1°C/min. Spectral resolution was 2 cm-1, scanner velocity was 20.0 kHz and aperture was 12 mm. To study the molten globule state forming at pD 2.5 after thermally denaturing holo ferredoxin, the sample was re-equilibrated at 20°C and a second temperature ramp was performed immediately with the same sample. The same strategy was employed with the pD 12 sample for comparative purposes. To determine midpoint denaturation temperatures (Tm), the second derivative of FT-IR spectra were calculated and sigmoidal curves were fitted to the temperature trend of local maxima and minima. Alternatively, the normalized variation at specific wavenumbers was fitted to sigmoidal curves or the sum of two sigmoidal curves. Pre- and post-transition baselines were corrected assuming linear dependence on temperature [16]. Assignment of secondary structure elements to wavenumbers was carried out using published reference values [13].  

 
Figure 4.1 – Outline of the temperature denaturation experiments on A. ambivalens 
ferredoxin. Protein solutions at pD 2.5 or pD 12 were sequentially submitted to two 20-94°C temperature ramps (rate = 1.1°C/min) while ATR FT-IR spectra were recorded in a temperature-dependent manner. 

4.3.3. Singular value decomposition The series of spectra obtained during each temperature ramp were deconvoluted using the singular value decomposition (SVD) algorithm implemented in Matlab [17]. This allowed identifying spectral components changing their intensity as temperature was varied as well as their temperature variation profiles. 
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4.4. Results We have studied the thermal denaturation of Acidianus ambivalens ferredoxin (Fd) by recording ATR FT-IR spectra in the amide I (1600-1700 cm-1) and amide II (1500-1600 cm-1) bands during thermal denaturation. These spectral regions are sensitive to protein secondary structure. Most importantly, the amide I band arises due to quantitative contributions from distinct secondary structure features [13]. This implies that absorption variation at specific wavenumbers is associated with secondary structure conversion. To increase sensitivity we have used deuterated buffer solutions. Deuteration shifts the water absorption peak at the amide I/II region and increases the relative contribution of protein absorption to the recorded spectra. Fd was prepared at pD 2.5 or 12 and each preparation was subjected to two sequential temperature ramps (T-ramps, Figure 4.1). Our goal is to analyze the molten globule formation occurring after thermal denaturation at pH 2.5 and its conformational and stability properties. pD 12 preparations are controls, as under these conditions ferredoxin denatures to a non molten globule state. The spectra recorded during temperature ramps are shown in Figure 4.2. This extreme of pH had to be used as a control rather than pH 7 as Fd is a hyperstable protein whose midpoint unfolding temperature (Tm) is above 100°C in the range pH 4.5 to pH 9.5 [9]. At pH 7, ferredoxin thermal unfolding below the boiling point of water requires the use of chemical denaturants such as guanidinium hydrochloride [9] or guanidinium thiocyanate [6], whose contribution to infrared absorption is significant, because of the high concentrations required. During thermal denaturation at pD 2.5, a band at 1625 cm-1 develops (Figure 4.2A). Absorption at this wavenumber is typical for β-sheet structures and is frequently an indication of aggregation. Calorimetric data had previously indicated this possibility [7]. During the second T-ramp (Figure 4.2C), which corresponds to the denaturation of the molten globule, 
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Figure 4.2 – ATR FT-IR monitored temperature ramps of Acidianus ambivalens 
ferredoxin. Spectra obtained along the 20-94°C temperature range at pD 2.5 (A, C) or pD 12 (B, D). The ferredoxin samples at either pD were subjected to two successive temperature ramps.(A, B) first temperature ramp. (C, D) second temperature ramp. no significant spectral changes occur. This indicates that no significant secondary structure changes take place and is in agreement with far UV CD data [7]. Thermal denaturation at pD 12 does not yield significant spectral changes (Figure 4.2CD). The noise in the spectra acquired at 94°C on the first T-ramp precludes more detailed analyses. The major spectral variations can be better assessed in Figure 4.3. In all cases, absorption variations in the amide II region are not discussed in structural terms because of the significant contribution of side chains in this region. 
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Figure 4.3 – Amide I and amide II bands before and after thermal denaturations. (A) pD 2.5. (B) pD 12. The temperature-induced increase in β-sheet structures (1625 cm-1, Figure 4.2A) can be used to quantify protein denaturation. We have used the absorption variation at 1625 cm-1 (pD 2.5) or 1643 cm-1 (amide I maximum absorption wavenumber at pD 12) to determine the overall midpoint denaturation temperature (Tm, Figure 4.4). 

 
Figure 4.4 – Thermal denaturation profiles extracted from absorbance changes in the 
amide I band. (A) Temperature-dependent absorbance changes at 1625 cm-1 (pD 2.5) or 1643 cm-1 (pD 12). (B) Determination of the Tm value from the absorbance change at 1625 cm-1 for the first temperature ramp of ferredoxin at pD 2.5. Raw data (A) was compensated for the slopy pre- and post-transition baselines (see materials and methods). 
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Only the first T-ramp at pD 2.5 yielded a cooperative transition at Tm = 55°C. Due to the intrinsic complex nature of the amide I band, resulting from multiple contributions in this region, difference spectroscopy analysis provided limited information. Alternatively, we have analyzed the second derivatives of the temperature-dependent FT-IR spectra. This technique enhances the fine structure of spectra and enhances low intensity overlapping bands which appear as second derivative minima [18]. By performing this analysis to our set of thermal denaturation experiments, we were able to accurately describe the absorption variation at specific wavenumbers (Figure 4.5). Further, by assigning each wavenumber to a particular type of secondary structure, we were able to interpret in detail the structural changes taking place during thermal denaturation (Table 4.1). Although all temperature profiles indicated in Table 4.1 have structural correlates, direct connections can be established with the profiles derived from negative second derivative peaks (bold in Table 4.1), which correspond to positive peaks in the original spectra. The Tm values for the first thermal denaturation at pD 2.5 group around two distinct values: 43-47°C (for α-helices, coil and turns) and 53-59°C (for β-sheets). Denaturation of β-sheets occurs at the same temperature where aggregation and iron-sulfur cluster loss is reported to occur [7], whereas the denaturation events at lower temperatures were not detected by other spectroscopic techniques. Concentration-dependent effects can be excluded a priori as previous biophysical studies were reported in a broad range of concentrations, from the micromolar (e. g. circular dichroism, [7]) to the millimolar (e. g. NMR, [8]) ranges. The second T-ramp, which corresponds to the denaturation of the molten globule formed after the first thermal denaturation, yields complex denaturation curves arising from the lower signal to noise ratio, as most secondary structure is lost upon molten globule formation (low secondary  
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Figure 4.5 – Second derivative FT-IR spectra for the thermal denaturation of ferredoxin (Left column) Second derivative spectra. (Right column) Normalized temperature-dependent second derivative changes at local maxima and minima. Tm values were extracted from fitting single or the sum of two sigmoidal curves to raw data (Table 4.1). (A-B) pD 2.5, 1st T-ramp; (C-D) pD 2.5, 2nd T-ramp; (E-F) pD 12, 1st T-ramp; (G-H) pH 12, 2nd T-ramp. 
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structure content is a structural feature of molten globule states). At pD 12 denaturation is highly cooperative and involves all secondary structure elements around 50°C. Denaturation is mostly irreversible as judged by the lower absolute values of second derivatives. In the second T-ramp all contributions are not arising from spectral peaks (i. e. are positive second derivative peaks) or are not reproducible (including the aggregation Tm at 48°C, which was detected in only one of three replicates). As FT-IR spectra were acquired as a function of temperature, the succession of spectra can be analyzed by single value decomposition (SVD) [17]. This is an algebraic data reduction procedure which decomposes the succession of spectra into components with distinct temperature variation and the respective temperature profile. Importantly, the algorithm clusters the contribution of noise into separate components. The main components 
Table 4.1 – Midpoint denaturation temperatures (Tm) for different secondary structure 

elements of ferredoxin. Values are extracted from the temperature profile of local spectra second derivative maxima or minima. Secondary structure assignment was performed according to their typical absorption wavenumbers [13].Temperatures are shown as average ± standard deviation of 2 to 4 independent measurements. Arrows indicate positive ( ) or negative ( ) second derivative peaks. Not coop.: transition is not cooperative. 
 1st Temperature Ramp 2nd Temperature Ramp 

Assignment Band 
 (cm-1) 

pD 2.5 pD 12 Band 
 (cm-1) 

pD 2.5 pD 12 Tm (°C) Tm (°C) 
β-sheets  1636 

 1629 
 1625 

49 ± 5 
53 ± 3 
59 ± 1 

47   
1642 1640  1625 

 1625 

 27 + 78  
Not coop. 

52 ± 1 69 ± 7  α-helices  1660 1653 44 ± 147 ± 3 50±247 1659
 1653 

 
43 ± 7 

48 ± 0 
Turns  1699

 1691 
 1678  1673 

46 ± 1
47 ± 3 

43 58 ± 0 
49±1
49±1 

47 58±0  1692  48 
Aggregation  1685 1615 46 ± 257 ± 3 48±1 1685 1614  Not coop. 

48
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Figure 4.6 – Singular value decomposition of A. ambivalens ferredoxin FT-IR monitored 
thermal denaturation. (Left column) Component spectra computed from the temperature-dependent change in FT-IR spectra. (Right column) Temperature profiles of spectral components. (A-B) pD 2.5, 1st T-ramp; (C-D) pD 2.5, 2nd T-ramp; (E-F) pD 12, 1st T-ramp; (G-H) pH 12, 2nd T-ramp. Wavenumber secondary structure assingnment is indicated. α, α-helices; β, β-sheets; T, turns; Agg, intermolecular β-sheets, aggregation fingerprint; Coil, random coil. 
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calculated after SVD analysis were compared with the characteristic spectra of particular types of secondary structure as well as with the temperature profiles. The results of this analysis are shown in Figure 4.6. The structural features being represented by SVD components can be determined by examining local (second derivative) minima. In the original spectra, these represent peak zones which are associated with secondary structure elements. Overall, most temperature-induced secondary structure changes are captured by the first two components. Accordingly, we have simplified further analyses by considering only these components. The structural characterization of each component as well as the Tm values for their unfolding are listed in Table 4.2. Inspection of Table 4.2 reveals that distinct conformational changes are involved in ferredoxin’s thermal unfolding. At pD 2.5 α-helices, β-sheets and turns are involved in all unfolding events. α-helices unfold during holo-ferredoxin denaturation. The second thermal denaturation only involves β-sheet and turn structures and occurs at lower temperatures (44°C versus 51 and 60°C) and with lower cooperativity even though the structural elements involved are the same. This is in accordance with the stabilizing effect of the FeS clusters. Thermal unfolding at pD 12 is more complex, with more 
Table 4.2 – Structural and stability characterization of SVD components. Not coop.: not cooperative. Aggregation: intermolecular β-sheets.   pD 2.5 pD 12  Component Tm (°C) Structure Tm (°C) Structure 

Ramp 1 
1 51 α-helicesβ-sheets Aggregation 51 β-sheets Turns 2 60 β-sheetsTurns 54 α-helicesCoil 

Ramp 2 

1 Not coop. β-sheets Aggregation 60 α-helicesCoil Turns 2 44 β-sheets Turns 48 β-sheetsAggregation Turns 
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structural transitions occurring. Nevertheless, the secondary structures and transition temperatures (Tm) are similar for the first and second temperature ramps. It is clear that some components occur in several conditions. This includes components which occur in the independent assays carried out at pD 2.5 and pD 12. For example, the second component of both thermal denaturations at pD 2.5 are identical among themselves and to component 1 from the first thermal denaturation at pD 12 (Figure 4.6). In fact, this component presents multiple second derivative minima and these occur at wavenumbers characteristic to all secondary structure types occurring in ferredoxin (1617 and 1685 cm-1: intermolecular β-sheets; 1673 cm-1: β-turns; 1653 cm-1: α-helices; 1635 cm-1: intramolecular β-sheets). The different Tm for this common component (44, 51 or 60°C) is then reporting for its pD-dependent stability and the overall conformation of ferredoxin. This common SVD component indicates that the same conformational changes occur in the thermal denaturation assays carried out at dissimilar conditions and may thus be suggested as a fingerprint of ferredoxin core structure.  By performing all pair wise component comparisons we have further identified pairs of components which are not identical but share local similarity in specific spectral regions (Figure 4.7). Although with lower identity than shown before for the fingerprint component, the remaining spectral components are represented partially in many of the experimental conditions assayed. This suggests that the thermal unfolding pathway is not significantly changed between the two pD values assayed and that discrete structural events are responsible for the different nature of the final “denatured” state at the two conditions: the molten globule at pD 2.5 and the featureless unfolded state at pD 12. After establishing a structural rationale for the second SVD component at pD 2.5, one can gain further insight into ferredoxin thermal denaturation by 
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Figure 4.7 – Global SVD results analysis. Line style indicates spectral similarity (judged by second derivative peak position). Solid lines: component spectra are identical; Dashed lines: spectra are similar, with most peaks coinciding. examining its temperature profile, which reports on the relative abundance of the ferredoxin core structure it describes. The temperature profile is not monotonic. Apart from the major transition reported in Table 4.2, at lower temperatures a compensating (i. e. opposite) conformational transition is observed (Figure 4.6), which resembles the cold unfolding transition in other proteins [19]. Protein cold unfolding is a fundamental biophysical phenomenon which is seldom observed because it frequently occurs at temperatures below the freezing point of water. The fingerprint SVD component indicates that the core ferredoxin conformation it represents undergoes both cold and a heat unfolding in experimentally accessible temperatures. The cold unfolding behaviour is also observed at pD 12 (second component, second temperature ramp, Figure 4.6). The component involved in this transition is similar to the one occurring at pD 2.5 but spectral differences indicate it represents a different ferredoxin conformation. 

4.5. Discussion In the current study we have used SVD decomposition of second 
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derivative FT-IR spectra to perform a structural characterization of Acidianus 

ambivalens ferredoxin thermal unfolding. This methodology enabled us to describe temperature-induced conformational changes which would not be detectable otherwise. Our analysis identified a fingerprint component spectrum describing a conformational involved in ferredoxin’s thermal denaturation at acidic and basic pD. The formation of the ferredoxin molten globule has been described in detail [7] and provides the structural framework for the nature of the fingerprint SVD component. The molten globule is a semi-compact structure with tertiary structural similarity with the native state. The fingerptint component describes these conformational changes accurately, by being represented in the thermal denaturation of holo-ferredoxin (irrespectively of pD) and of molten globule ferredoxin but not in the denaturation of the protein previously unfolded at pD 12. Moreover, several SVD components describing thermal unfolding at pD 2.5 and pD 12 were found to be common or similar, showing conservation of unfolding pathways at the two pD conditions. A previously unknown aspect in ferredoxin thermal denaturation is the involvement of a structural subset undergoind cold denaturation. This component – occurring at pD 2.5 and pD 12 – exhibits a complex, multi-stage temperature profile which is strikingly similar to the ones arising in cold denaturing proteins [19]. Cold unfolding is a general feature of protein folding. However, frequently it cannot be experimentally monitored because it occurs at temperatures below the freezing point of water. This phenomenon has been probed in vitro frequently using alcohols, which stabilize the cold unfolding transition. However, the perturbation introduced by the co-solvents may affect the protein’s intrinsic stability properties and does not constitute a general strategy, suitable for all proteins. In this sense, the accessibility of the cold and heat unfolded states in ferredoxin – at least at acidic conditions – make it a unique model for describing protein folding 
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and unfolding thermodynamics in experimental conditions not involving external perturbations. The conformational plasticity of ferredoxin illustrated by the possibility of a conformational subset undergoing cold and heat unfolding at experimentally amenable conditions and in a reversible manner – the same component is observed in successive thermal denaturation assays – may thus be the biophysical basis for stable molten globule formation. 
4.6. Conclusions We have extended the biophysical characterization of Acidianus 

ambivalens ferredoxin folding properties by using an FT-IR approach. We have associated the previously identified aggregation step in ferredoxin unfolding with intramolecular β-sheet formation and have described a previously undetected low temperature α-helical and β-turn conformational transition. Additionally, we have carried out SVD analysis describing ferredoxin’s thermal denaturation behavior in acidic and basic conditions. Our results suggest that the apo molten globule state of ferredoxin arising upon thermal denaturation at pD 2.5 may be a useful model for addressing cold protein unfolding, a phenomenon which cannot be studied in most proteins without the presence of additives like alcohols. 
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Rubredoxin was purified and supplied by Isabel Pacheco (ITQB). 
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5.1. Summary Rubredoxins are good models for the biophysical study of metalloprotein folding due to their structural simplicity and amenability to spectroscopic analysis. We have characterized the folding and stability properties of the rubredoxin from Desulfovibrio gigas using a toolbox of conformation-sensitive spectroscopic techniques which allow describing secondary and tertiary structure changes complementarily: UV/visible absorption, circular dichroism (CD) and Fourier transform infrared spectroscopy (FT-IR). We show that the mononuclear iron site is thermodynamically and kinetically stable, withstanding high temperature and iron sulfur cluster disruption by EDTA stripping. We present a temperature-resolved model for the conformational changes occurring during rubredoxin unfolding derived from FT-IR spectra deconvolution: in the 20-60°C range α-helices and β-sheets unfold; above 60°C, aberrant turn structures and β-sheets buildup. The dual regime of rubredoxin unfolding with residual structure present at high temperature may account for this protein’s high thermostability. 
5.2. Introduction Rubredoxins are the smallest and simplest iron-sulfur (FeS) proteins, containing a single iron atom coordinated by four cysteine sulfurs occurring in the consensus sequence CXXCG–()n–CXXCG, where X indicates any amino acid residue. These proteins function as electron carriers in multiple metabolic processes, a process where the solvent exposed FeS cluster accommodates one electron. Due to their thermostability, [1] simplicity and incorporation of a simple metal cofactor, rubredoxins are useful models for the study of the molecular determinants of protein thermostability and the cross-talk between metal cofactors, protein folding, stabilization and function. For these purposes, two rubredoxins have been instrumental: the 

Pyrococcus furiosus (a hyperthermophilic archaeon) and the Clostridium 
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Figure 5.1 – Rubredoxin from
Desulfovibrio gigas. The iron ion is shown as a sphere and the cysteineligands as sticks. PDB: 2DSX. 

pasteurianum (a mesophilic bacteria) proteins. The different stability of both proteins together with high resolution crystal structures has allowed establishing correlations between the molecular and stability features of both proteins. In the current report we carried out a preliminary characterization of the folding and stability properties of the rubredoxin (Rd) from the mesophilic sulfate reducing bacteria Desulfovibrio 

gigas (Uniprot P00270-1). This is a 5.7 kDa protein whose structure is known from crystallography (Figure 5.1) [2] and NMR spectroscopy [3]. Also, theoretical [4] and spectroscopic [5] data are available from the literature, including the description of the stabilization of this protein by diglycerol phosphate [3]. However, a conformational characterization of the folding properties of this protein is lacking. To this purpose we have performed thermal denaturation of rubredoxin while monitoring its conformational status using absorption, circular dichroism and FT-IR spectroscopies. By combining these secondary structure sensitive techniques to spectral deconvolution we have observed high polypeptide and iron site thermostability and we propose a model describing the conformational changes occurring in the thermal unfolding of D. gigas rubredoxin. 
5.3. Materials and methods 

5.3.1. Rubredoxin 

Desulfovibrio gigas rubredoxin was purified as previously described [2]. Protein concentration was determined spectrophotometrically using the 
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visible absorption extinction coefficients ε376nm = 8450 M-1.cm-1 and ε493nm = 6970 M-1.cm-1 [6]. Purity was verified by the absorption ratio between 377 and 278 nm equaling 0.45. Buffer was 50 mM potassium phosphate at pH 7. 
5.3.2. UV/visible absorption UV/visible absorption spectra were recorded using a Shimadzu UV-1700 spectrophotometer at room temperature. 
5.3.3. Circular dichroism CD measurements were recorded in a Jasco J-815 spectropolarimeter equipped with a Peltier-controlled thermostated cell support. 0.1 cm (far UV) and 1 cm (near UV/visible) pathlength cuvettes were used. Thermal denaturation experiments were carried out increasing the temperature from 25 to 95°C at a heating rate of 1°C/min. Every 5°C spectra were acquired. Thermal denaturation was assessed by the CD signal variations at local spectra maxima and minima. Midpoint denaturation temperatures (Tm) were obtained from sigmoidal fits to the normalized signal variation. Protein concentration was 0.1 mg/ml (17.6 µM, far UV) or 0.62 mg/ml (109 µM, near UV/visible). Temperature denaturations performed in the presence of EDTA (0.5 mM) were carried out at 0.1 mg/ml (17.6 µM, far UV) or 0.47 mg/ml (83 µM, near UV/visible) rubredoxin. Far UV CD spectra were accumulated 4 times at 200 nm/min scan rate and 1 s time response. Near UV/visible spectra were accumulated 5 times at 1000 nm/min scan rate and 0.5 s time response. 
5.3.4. ATR FT-IR spectroscopy Attenuated total reflectance Fourier transform infrared spectroscopy (ATR FT-IR) measurements were performed using a Bruker IFS 66/S spectrometer equipped with a nitrogen-cooled MCT detector using the thermostatized Harrick BioATR cell II. Protein was concentrated to 10 mg/ml and centrifuged at 12000 g before the temperature ramp to pellet any 
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aggregates forming while concentrating. FT-IR spectra in the amide I (1600-1700 cm-1) and amide II (1500-1600 cm-1) regions were recorded while temperature was increased from 20 to 94°C in a discontinuous fashion: spectra were accumulated during 1 minute (97 accumulations), temperature was raised 2°C during around 45 seconds and sample was equilibrated 15 seconds. Overall temperature change rate was 1.1°C/min. Spectral resolution was 4 cm-1, scanner velocity was 20.0 kHz and aperture was 12 mm. Spectra were analyzed after vector normalization. Spectral variations at specific wavenumbers within the amide I band were assigned to secondary structure changes [7]. Thermal denaturation was assessed by the temperature dependence o absorption of absorption second derivative. Midpoint denaturation temperatures were determined from sigmoidal fits to the signal variation at local maxima or minima. Spectra deconvolution was performed as previously described [7]. Briefly, the amide I band was reconstituted as the sum of Gaussian curves centered at second derivative minima. Secondary structure content was estimated from gaussian curve integration and band assignment [7]. 
5.4. Results 

5.4.1. Spectroscopic fingerprint of rubredoxin Rubredoxin has multiple spectroscopic probes, many of those arising from the FeS cofactor. In the current study we have employed a toolbox composed of UV/visible absorption, circular dichroism and FT-IR spectroscopies. Far UV CD and FT-IR provide quantitative information about distinct secondary structure elements and are thus excellent methodologies to describe protein conformational changes and unfolding processes. By combining these techniques with the examination of the tertiary structure (near UV CD) and FeS cofactor integrity (visible absorption and visible CD) of Desulfovibrio 

gigas rubredoxin we provide a complete, multi-probe analysis of the stability 
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Figure 5.2 – Spectroscopic fingerprints of native Desulfovibrio gigas rubredoxin. (A) UV/Visible absorption spectrum. (B) Circular dichroism spectra. Left scale: far UV region (<250 nm). Right scale: near UV/visible region (>250 nm). of this simple protein. The combination of visible absorption and visible CD spectroscopies to monitor the FeS cluster is especially powerful as the absorption signal relates to the FeS cluster integrity and the visible CD signal is rich in features and very sensitive to small changes in the cluster micro environment. In accordance, we have determined this protein’s spectral fingerprints (Figure 5.2). The UV-Visible absorption spectrum (Figure 5.2A) is typical for rubredoxin, with two bands in the visible region at 376 and 493 nm. Due to the chirality of the iron site, these bands are also CD active and give rise to multiple bands (Figure 5.2B), typical for the structural environment of the mononuclear iron site. The far UV CD spectrum shows two minima: one at 200 nm, characteristic of random coil-rich proteins and another at 223 nm, typical of β-sheet structures. This is in accordance to the native protein structure (Figure 5.1, [8]). 

5.4.2. The rubredoxin fold is highly thermostable To quantify the thermal stability of rubredoxin we have performed thermal denaturation assays monitoring protein unfolding by CD in the far UV, near UV and visible regions in the 25-95°C range (Figure 5.3). There 
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Figure 5.3 – Thermal denaturation of rubredoxin. (A) Far UV and (B) near UV/visible CD spectra recorded while increasing temperature from 25 to 95°C. Arrows indicate spectral changes with temperature. (C) Temperature-induced CD signal variation at specific wavelengths. A sigmoidal fit to the 298 nm signal change yields Tm = 57.0°C. (D) UV/visible absorption spectra before and after the near UV/visible-monitored thermal denaturation. The absorption change at 376 nm suggests a loss of 30% of the iron content. were no temperature-induced changes in the far UV CD spectra (Figure 5.3A), indicating that secondary structure is kept. Tertiary contacts affecting the microenvironment around the single tryptophan side chain in this protein (CD signal at 298 nm) were disrupted at Tm = 57°C (Figure 5.3C). Nevertheless, some of the FeS clusters degraded, as noted by the decrease in the visible CD and absorption intensities (Figure 5.3BD). This process was irreversible even after extended incubation at room temperature. The protein is in fact highly thermostable: FeS cluster disintegration, as assessed by the variation in visible CD intensity (Figure 5.3C), is not complete at 95°C. The variation in absorption at 376 nm corresponds to a 30% FeS cluster disruption. To examine the stability of the iron site and its contribution to the overall 
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Figure 5.4 – Thermal denaturation of rubredoxin in the presence of EDTA. 0.5 mM EDTA was included in the buffer. (A) Far UV and (C) near UV/visible CD spectra recorded while increasing temperature from 25 to 95°C. Arrows indicate spectral changes with temperature. Temperature-induced CD signal variation at specific wavelengths in the (B) far UV and (D) near UV/visible regions. Sigmoidal fit to the 298 nm signal change yields Tm = 52.4°C. (E) UV/visible absorption spectra before and after the near UV/visible-monitored thermal denaturation. The absorption change at 376 nm suggests a loss of 33% of the iron content. protein stability, we have carried out identical thermal denaturation experiments in the presence of 0.5 mM EDTA (Figure 5.4). This chelator should facilitate iron removal from rubredoxin, which constitutes an opportunity to assess its stabilizing role. EDTA destabilizes rubredoxin’s secondary structure: the far UV CD bands at 202 and 213 nm are progressively lost at high temperature (>75°C, Figure 5.4AB). Since these bands are associated with random coil structures, this suggests full unfolding yielding highly dynamic and isotropic conformations. However, the destabilizing effect does not seem to be associated with destabilization of the iron site. There are no important changes in near UV/visible CD spectra apart from the slight destabilization of the 298 nm transition to Tm = 52.4°C (ΔTm = 4.6°C, Figure 5.4CD). More importantly, FeS cluster loss estimation from visible absorption yields 33% (Figure 5.4E), close to the value obtained in the 
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Figure 5.5 – Temperature stability of the rubredoxin iron site. Pairwise comparison of the visible CD signals obtained during thermal denaturation of rubredoxin in the presence and absence of EDTA. Data compiled from Figure 5.3C and Figure 5.4D. absence of EDTA. The inefficiency of EDTA to affect the iron site during unfolding can be established by observing the thermal denaturation profiles of the visible CD signals in the presence and absence of EDTA (Figure 5.5). The pairwise analysis shows that in most cases the unfolding behavior is independent of EDTA. The conclusion is that under the conditions tested, the FeS cluster does not contribute significantly to protein stability. 

5.4.3. Rubredoxin undergoes CD-undetectable unfolding To have a more comprehensive view of rubredoxin’s stability, we have monitored its thermal denaturation using FT-IR (Figure 5.6). Like CD, FT-IR can provide a quantitative estimation of protein secondary structure content. In comparison, FT-IR is more sensitive than CD to the conformation of 
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Figure 5.6 – FT-IR monitored thermal denaturation of rubredoxin. (A) FT-IR spectra in the amide I/amide II region. The trend of spectra recorded in the 20-94°C range is shown as arrows. (B) Second derivative of absorption spectra. (C) Temperature profile of second derivative peaks. (D) UV/visible absorption spectra obtained before and after thermal denaturation. Spectra were normalized so that Abs278 = 1. Quantification of iron loss from the absorption loss at 276 nm yields 29%. proteins containing low helical content and β-sheets, which is the case of rubredoxin. The FT-IR spectrum of native rubredoxin has a single maximum at 1639 cm-1 (Figure 5.6A, Figure 5.7AΒ), a wavelength characteristic of β-sheet containing proteins [7]. Upon incubation at high temperature, this single maximum gives rise to a peak at 1653 cm-1 and a shoulder at 1633 cm-1. To extract information about the secondary structure types involved in the conformational transitions revealed by the FT-IR absorption spectra, we have considered the second derivative spectra (Figure 5.6B). This 
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mathematical manipulation enhances the detection of superimposed local peaks originating from different secondary structure contributions [7]. We can determine the order of unfolding of each secondary structure element by studying the thermal denaturation of the contributions of local maxima and minima (Figure 5.6C) and assigning them the secondary structure type with characteristic absorption at their wavenumber (Table 5.1). The most significant data are the ones originating from second derivative minima as they correspond to local maxima in the absorption spectra (i. e. reveal components with significant contribution to the overall spectra). All secondary structure components undergo thermal transitions in the 68-79°C range, indicating that unfolding is multi state. The most relevant components (second derivative minima, Table 5.1 bold) correspond to α-helices (1654 cm-1) and β-sheets (1624 cm-1). These results then indicate that α-helical loss is the first event in the thermal denaturation of rubredoxin. This result is unlike the one obtained using CD, which revealed no significant secondary structural changes in the absence of EDTA. The iron loss percentage extracted from UV/visible absorption spectra is 29%, in the same range as the ones obtained during CD-monitored denaturation. This is an indication that the end conformation in all experiments is similar. In this way, the extra information provided by FT-IR is related to its enhanced 
Table 5.1 – Thermal stability of secondary structure elements in rubredoxin as assessed 

by FT-IR. The temperature profiles of absorption at second derivative maxima and minima were fitted with sigmoidal curves to extract Tm values. Secondary structure assignments were preformed as in [7]. Second derivative minima (in bold) correspond to peak areas in the absorption spectra. Mix: in this zone there are contributions from β-sheet structures and tyrosine side chains. Aggregation: intermolecular β-sheets, frequently associated with aggregation. 
 (cm-1) 1704 1654 1641 1624 1611 

Assignment Mix α-helices Coil β-sheets Aggregation 
Tm (°C) 73 68 79 77 71 
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 sensitivity for this protein’s conformation relatively to CD. To have a complementary assessment of secondary structure changes occurring during rubredoxin denaturation, we have deconvoluted the FT-IR spectra. We have fitted the amide I band with sigmoidal curves centered at amide I maxima and minima and have assigned each band to the secondary structure element originating it (Table 5.2). By performing band fitting in a temperature-dependent manner, we can obtain a detailed temperature-resolved model of the conformational changes occurring along rubredoxin’s thermal unfolding. To benchmark our deconvolution procedure, we have compared the structural deconvolution of the spectra at 24 and 94°C with the protein’s crystal structure (Figure 5.7AΒ, Table 5.3). Overall, the deconvolution yields secondary structure contents compatible with the crystal structure, albeit with an overestimation of β-sheets and an underestimation of coiled regions. From the temperature profile of individual components (Figure 5.7D) one can immediately identify the major structural rearrangements during thermal unfolding: increase of β-sheet (1643 cm-1) and turns (1661 cm-1). Other components have more irregular behaviors. This analysis indicates with accuracy the kind of secondary structure remodeling. For example, one can distinguish intermolecular from intramolecular β-sheets based in the absorption wavenumber. To have a global understanding or protein 
Table 5.2 – Band assignment for the deconvolution of FT-IR spectra. β-sheets and amino acid side chains absorb in this region. Discarded for secondary structure quantification. 

Wavenumber (cm-1) Structure 1684 β-sheets1661 Turns1643 Coil1639 Coil1644 α-helices1625 β-sheets1603 mixed
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Table 5.3 – Deconvolution of rubredoxin’s FT-IR spectra. Comparison of the secondary structure content obtained from FT-IR spectra deconvolution with the one in the protein’s crystal structure (2DSX [8]). n.a. not discriminated in pdbsum.  Structural content (%) Crystal 
structure 24°C 94°C Helix 12 5 0β-sheets 15 36 48 Turns n.a. 1 31 Coil 73 57 21  

 
Figure 5.7 – Deconvolution of temperature-dependent FT-IR spectra. Spectra recorded at 24°C (A) and 94°C (B). The thick solid lines correspond to the spectral whose components were identified as gaussian bands (thin lines) whose sum (dashes) reconstitute the original spectra. By using the band assignment in Table 5.2, and the temperature profiles of each component band (D), the secondary structure changes with temperature were determined (C). 
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unfolding, one can sum the contributions arising from equivalent secondary structure types and study their temperature profiles (Figure 5.7C). This pictorial view confirms the results obtained with the second derivative approach. The first event in rubredoxin thermal denaturation is α-helical loss. At the same time, β-sheet content also decreases with concomitant buildup of random coil. Beginning at around 60°C, the trend changes with unfolding proceeding according to a distinct regime. Turns accumulate (~30%) as well as β-sheets, which return to native-like amounts at 94°C. These structures are formed from previously unstructured regions. The endpoint conformation is completely devoid of α-helices. 
5.5. Discussion In this work we have taken advantage of the combination of multiple spectroscopic techniques that probe similar molecular features to characterize the thermal unfolding of D. gigas rubredoxin. The dissimilar results originating from CD and FT-IR experiments occur because of the different sensitivities of each technique. CD spectroscopy is highly sensitive to α-helical elements because of their high far UV CD extinction coefficient [9]. The sensitivity for random coil structures or β-sheets is lower. In the case of rubredoxin this implicated that subtle conformational changes involving α-helical loss and gain in turns was undetectable. There is the possibility that the optimal (and different) protein concentrations for each technique influence results. However, aggregation was not observed in any condition. For this possibility, the FeS cluster percentage loss serves as an internal control. The similar iron loss in all assays suggests that the end conformation is similar, excluding the concentration artifact. FT-IR deconvolution allowed a temperature-dependent description of the conformational changes composing the thermal unfolding of rubredoxin. This included the description of two regimes in the unfolding pathway: a lower temperature one (<60°C), wherein α-helices and β-sheets are lost; and 
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a high temperature one (>60°C), where turns and β-sheets accumulate. The additional information from CD-monitored thermal denaturation indicated that these are not global conformational transitions, as at 94°C far UV CD spectra report native-like structure and visible CD spectra indicate that the remaining FeS clusters are in an environment spectrally undistinguishable from that of the native protein. Nevertheless, a partial unfolding was simultaneous to FeS cluster degradation, an irreversible damage. Altogether, all data indicate a multi stage unfolding process. Curiously, Clostridium pasteurianum rubredoxin seems to have similar unfolding properties to the D. gigas protein. It was reported that it undergoes major but reversible structural changes below FeS cluster dissociation temperatures, including lower compaction and local unfolding in the 50-70°C temperature range, the same where the D. gigas protein exhibits the unfolding regime change [10]. It has been shown that for the Pyrococcus 

furiosus rubredoxin FeS cluster release is rate determining in protein unfolding, unfolding only occurring after this step [11]. The possibility that the same process may occur in the D. gigas protein was left unaddressed. However, the fact that we have observed modest unfolding transitions and incomplete iron dissociation does not exclude this possibility. The slight conformational destabilization of rubredoxin due to EDTA is likely the outcome of the enhanced iron release during unfolding or direct rubredoxin-EDTA binding. Thermal denaturation assays in the presence of increasing EDTA concentrations (to detect the concentration thresholds where the iron stripping effect would become significant) coupled to the examination of the effect of salt (a competitor for EDTA binding to rubredoxin) would clarify this issue. In any case, the fact that EDTA does not significantly increase iron release from holo-rubredoxin is an indication of high kinetic stability of bound iron. 
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Protein thermostability is the outcome of multiple evolutionary adaptations [12]. In the case if rubredoxin, a metal-containing protein, contributions can be attributed to the polypeptide itself and to the FeS cluster. Probably because of their small size and compact fold, rubredoxins are quite stable proteins. Regarding the FeS cluster, in the C. pasteurianum protein, the Tm for iron release in thermal ramp experiments is 69°C for Fe2+-Rd and 83°C for Fe3+-Rd [10]. The importance of stabilizing the FeS cluster site is highlighted in the P. furiosus protein, which contains an extended hydrogen bond network around this region as part of its stabilization strategies which enable cell growth at 100°C [13]. In other organisms similar adaptations exist. C. pasteurianum encodes a rubredoxin with an increased number of hydrogen bonds stabilizing the β-sheet [13]. 
5.6. Conclusions In the present report we have described the thermal unfolding of D. gigas rubredoxin using UV/visible absorption, CD and FT-IR spectroscopies. Rubredoxin is a highly thermostable protein, retaining a significant amount of native-like secondary structure at high temperatures. The thermodynamic and kinetic stability of the iron mononuclear site seems to be significant as judged from the low thermal lability and insensitivity to EDTA. By deconvoluting FT-IR spectra obtained along thermal ramps, we have described unfolding as a two regime process, wherein at low temperatures (<60°C ) α-helices and β-sheet unfold and at higher temperatures (>60°C) non-native β-sheets (48%) and turns (31%) buildup. The significant residual structure at high temperature may account for some of the protein’s thermostability. 
5.7. References 1. LeMaster DM, Tang J, Paredes DI & Hernandez G (2005) Contribution of the multi-turn segment in the reversible thermal stability of hyperthermophile rubredoxin: NMR thermal chemical exchange analysis of sequence hybrids. Biophys Chem 116, 57-65 
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6.1. Metals in biology Although being highly versatile macromolecules, proteins could not fulfill all their required functions relying only on the properties of the polypeptide chain. Cofactors are frequently involved in protein stabilization, catalysis, signal transduction and ligand binding. Transition metal ions work as superacids in enzyme active sites and can increase the electrophilicity or nucleophilicity of reacting species, increase the acidity of a reacting species and promote heterolysis [1]. More importantly, without cofactors polypeptides are not able to perform oxygen transport or proper electron transfer. In this case, biological systems have evolved to harness and control the unique properties of bioavailable metal ions [2-4]. Reciprocally, the polypeptide chain fine tunes the cofactor’s properties according to functional requirements. Special relevance can be given to metal ion cofactors. More than 30% of all proteins incorporate metal ions in their polypeptide chains [5-6]. 47% of all enzymes incorporate metals, the majority at the respective active sites [1, 7]. Iron-containing compounds have been proposed to be primordial energy sources, instrumental in the development of the first cell, 
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which then became the first protein cofactors upon amino acid ligand coordination [8-9].  Redox-inert transition metal ions are selected by proteins because of their structural stabilization properties. Mg2+ and Zn2+, which are by far the most common metal cofactors, fulfill this role (Figure 6.2A). Distinct from Zn2+, which is sometimes found permanently bound to proteins, Mg2+ is often bound to phosphate groups of substrates for electrostatic reasons and interacts with proteins only transiently. Comparatively, Ca2+ is less used. The redox-active metal ion most commonly found in redox centers is iron, followed by manganese, cobalt, molybdenum, copper and nickel (Figure 6.2B) [1]. Organic moieties sometimes associate with metal ions as a way of controlling their redox properties. This happens with iron and nickel, and most frequently with cobalt and molybdenum. Wolynes and coworkers have estimated that around 10% of the interactions in native proteins are frustrated, meaning that they enclose a latent stabilization potential which is not used because of competing interactions. The frustrated interactions tend to cluster in the protein surface, being associated with protein-protein interaction [11-12] or ligand 

 
Figure 6.2- Metal ions used in catalysis. (A) Proportion of each metal used by all enzymes. Only one enzyme uses cadmium. Grey color indicates elements with no biological role. (B) Metal utilization among Enzyme Commission (EC) classes: oxidoreductases (blue), transferases (yellow), hydrolases (purple), lyases (pink) and ligases (grey). Counts are normalized so that the sum of the frequency for all classes equals 100% for each metal. From [7]. 
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Figure 6.3 - Escherichia
coli metallome. Totalconcentration of selectedmetal ions in cells grownin rich culture medium.Cells accumulate theappropriate amount ofeach metal ion. From [26]. 

binding regions. Consequently, the underlying energetics is the driving force for protein structuring related to these specific associations. The unique properties of metal ions make them indispensable for living organisms, which however keep metal ion homeostasis through a complex machinery which constantly adjusts the metal ion concentration and availability according to needs (Figure 6.3). This task is of the utmost importance as metal ions have promiscuous binding properties and can be engaged in uncontrolled redox reactions. These might lead to oxidation of cellular constituents with broad consequences, ranging from inhibition of essential enzyme activities, destruction of cellular compartmentalization to, ultimately, cell death. Sodium, magnesium and potassium are bulk metal ions, present in millimolar concentrations in the free state which keep the physiological electrolytic balance. Compartmentalization of each ion ensures an appropriate composition of the intracellular and extracellular fluids. The free concentration of all other metal ions is kept very low. For example, the total intracellular copper concentration in yeast is 70 µM. However, copper delivery to SOD1 relies on specialized machinery because free copper concentration is not high enough for spontaneous binding to occur despite the high binding affinity (Kd ~ 10-15 M) [13]. Similarly, cellular free zinc concentrations are on the order of 10-13 – 10-9 M [14] and free calcium concentrations around 10-7 M [15-16]. Zinc or calcium are intracellular second messengers [17-18], that are released from cellular storage upon extracellular stimulus. Dedicated 
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transport and delivery systems exist to insert metal ions in their specific proteins – the metallochaperones [19]. For copper, there exist the Atx1-like chaperones, the CCS chaperones for superoxide dismutase and the copper chaperones for cytochrome c oxidase [19]. Iron is chaperoned by ferrochelatase or several scaffold proteins for iron-sulfur cluster assembly [20-21]. There is no zinc chaperone system. However, practically all cellular zinc is kept bound to metallothioneins, reduced glutathione and other proteins. Metallothioneins do also regulate the homeostasis of other physiological (e. g. copper, selenium) and xenobiotic (such as cadmium, mercury, silver and arsenic) metals which bind cysteine thiol groups (~30% of its amino acidic residues) [22]. Other redundant and non-specific metal ion homeostatic mechanisms like ion exchange or pumping to specific cellular compartments couple the control mechanisms of several metal ions. The outcome is that cellular metal homeostasis is a complex mechanism wherein the responses to the fluctuation of the concentration of one metal ion are coupled to some extent to the response regarding other metal ions (Figure 6.4) [23]. In the absence of metal delivery systems, metal incorporation is determined by free metal concentration [24] and the stability of the metal complex, which is generalized by the Irving-Williams series [25]:  Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ > Zn2+ 

 

**

**

**

*

*

Cu adequate
Cu deficient

0

ng
/g

 we
t w

ei
gh

t t
iss

ue

1000

750

250

200

150

100

50

0
Ca Cu Fe Zn

10

20

µg
/g

 we
t w

ei
gh

t t
iss

ue

Al

Figure 6.4 - Intertwined
homeostasis between
different metal ions.Metal ion amounts in CD-1mice fed for 3 months witha Cu-adequate or a Cu-deficient diet. All metal ionlevels are significantlyaffected by the dietarycopper deficiency. * p-value < 0.05, ** p-value<0.01 versus control. From[23]. 



Metal ions and protein folding 

127 

6.2. Shaping the conformational space: metal ions The role of metal ions in protein folding is complex. The first step to understand this relationship is addressing how metals bind to proteins in the first place. Several binding modes have been described (Figure 6.5). Some metalloproteins are able to fold in the absence of the metal ion, which is necessary for functional conformational readjustments or catalytical purposes, like most calcium-binding proteins (e. g. calmodulin and S100 proteins). In other cases, the newly synthesized apo protein is not able to acquire its native fold. Zinc finger domains can only fold to the native structure in the presence of zinc. On the other hand, metal ions may bind to the nascent polypeptide chain as it emerges from the ribosome. In fact, heme binds to the unfolded state of cytochrome b562 [27-28] and copper remains bound after unfolding of azurin [29-30] and the CuA domain of cytochrome c oxidase [31]. Tightly binding metals can be permanently bound and be crucial for the acquisition of the native protein structure. Loosely bound metals can bind and rebind to proteins according to the metal concentration gradient. In this case, binding may be associated with conformational changes, dependent of the ligand bridging role of the metal. The concept of metal-induced folding or metal-induced conformational changes is associated with the mechanism of metal ion insertion into proteins. When they are synthesized in the ribosome, proteins emerge to the cytosol as unfolded or partially folded species. In some cases, in the absence of the metal ligand the newly-synthesized protein rests in a native-like fold (e. g. S100 proteins); metal ligation then determines conformational changes, being reversible in signaling-related proteins (Figure 6.5, blue pathway). In other situations metal ion incorporation is required for folding (e. g. Zinc fingers). It may occur either cotranslationally (Figure 6.5, green pathway) or posttranslationally (Figure 6.5, red pathway). Metal ion selection is determined either by the Irving-Williams binding 



Chapter 6 

128 

 
Figure 6.5 – Routes for the folding of metalloproteins. From [32]. stability series and metal ion concentration or by the action of metallochaperones. In the next sections we will address the issue of the interplay of metal ions in protein folding by focusing in the most relevant metal ions – iron, zinc, copper and calcium – and illustrating this subject with representative examples. 

6.2.1. Iron Iron is the most abundant transition metal ion in the human body. Iron is a very versatile element due to its two stable oxidation states (Fe2+/Fe3+) which allow it to mediate redox reactions in a broad potential range and its several spin states which catalyze reactions involving molecular oxygen [10]. Iron is incorporated in proteins in the form of a heme, iron-sulfur clusters, mixed metal centers, di-iron or mononuclear centers. One of the best studied models of the interplay between iron and protein folding is cytochrome c, an electron transfer protein operating in the mitochondrial respiratory chain. In 
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Figure 6.6 - Cytochrome c folding energy landscape. (A) Two dimensional cross-section of the folding energy profile for the cobalt, iron and zinc-substituted proteins. The folding reaction coordinate (R-RN) represents the size (R) difference to the native protein size (RN). Besides the native state, one can identify energy basins for expanded (E, E’) and collapsed (C, C’) intermediates. The metal substitution has a significant influence on the folding energy barrier. (B) Three-dimensional representation of the folding energy landscape for the native (iron-bound) protein. From [5, 34-35]. cytochrome c the iron is inserted in a heme group which is covalently bound to the polypeptide. The coordination is octahedral, the equatorial positions corresponding to the heme ligands and the two axial sites being filled by amino acid side chains. Cytochrome c is a highly stable protein, with a Tm close to 100°C [33]. The metal ion in the heme can be replaced in vitro with important consequences to protein folding (Figure 6.6). Substitution of Fe3+ by Zn2+ lowers the folding energy barrier but, of course, renders the protein redox inactive. Substitution by Co2+ raises the activation energy. Heme removal is associated to secondary and tertiary structure loss [36]. Hence, heme binding is thought be a prerequisite for cytochrome c folding. However, this conception has been challenged by the recent observation of spontaneous folding of the Aquifex aeolicus apo cytochrome c555 [37]. An intermediate situation occurs with apo cytochrome c551 from Pseudomonas 

aeruginosa. This protein unfolds reversibly and acquires a compact, though marginally stable, conformation [38]. 
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Figure 6.7 – Fe3+-dependent conformational changes in human transferrin. The apo form (1BP5, top) adopts an open conformation. When Fe2+ (shown as a sphere) binds, the two protein domains close around the inter-domain hinge enclosing the metal ion in the protein core (1A8F, bottom). The transport of iron in the blood is carried out by transferrin. Transferrin binds Fe3+ with an unusually high affinity (Kd = 10-22 M) [39]. Upon Fe3+ binding, the two transferrin domains undergo a conformational change which compacts the protein structure and buries the Fe3+ ion in the protein (Figure 6.7). Iron binding greatly stabilizes the protein and alters the unfolding pathway from an apparent three state (Tm,1 = 58°C, Tm,2 = 69°C) to a simple two state process (Tm = 87°C) [40]. Mutation of the Asp63 ligand decreases the Fe3+ binding affinity by approximately 5-6 orders of magnitude, with a concomitant destabilizing of ΔTm ~12°C for the holo protein and ~3°C for the apo protein [41]. 

6.2.2. Zinc Zinc is essential for life and the second most abundant transition metal ion in living organisms. Zinc is a redox-inactive metal ion due to its filled d 
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shell, 3d104s2, valence electronic configuration. However, it binds to proteins very tightly and fulfills structural roles in proteins. The most common coordination number for zinc is four. In proteins, three ligands are enough for ensuring tight binding, the fourth one being water. A recent survey has revealed that zinc-binding proteins are a significant part of all genomes (4-10%) [42]. The percentage of zinc binding proteins correlates with growth temperature: organisms thriving at higher temperatures make more extensive use of zinc-binding proteins. Underlying this preference may be the stabilizing role of zinc. The most notable example of zinc-associated folding occurs in proteins containing zinc finger domains. Zinc fingers are the most abundant structural domain in the human proteome (present in 3% of all proteins) and the most abundant zinc binding motif [43-44]. [44] The classical zinc finger domain has a ββα fold, where the Zn2+ ion is coordinated by two cysteine ligands near the turn of the antiparallel β-sheet, and two histidine ligands in the C-terminal part of the α-helix (Figure 6.8A). Although the domain contains a small hydrophobic core [45], the apo form is unstructured. The structure can only fold and be brought into close proximity upon zinc binding (Figure 6.8B). Moreover, the zinc-bound domain is stabilized and becomes 

 
Figure 6.8 – Folding of a zinc finger domain. (A) Structure of a metallated Cys2His2 type zinc finger. (B) Far UC CD spectra of Xenopus transcription factor IIIA in the absence and presence of zinc, indicating the secondary structure occurring upon metal binding. From [46]. 
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competent in DNA binding [46]. The zinc binding affinity to zinc finger domains is high (Kd = 10-11 to 10-9 M) [47], rendering them sensitive to transient Zn2+ concentration rises. In this manner, zinc finger domains couple zinc concentration variation to transcriptional responses and interaction with multiple proteins [48]. Zinc is one of the cofactors of the cytosolic Cu,Zn-superoxide dismutase (SOD1), the main protection against the highly oxidant superoxide radical. It does not take part in catalysis but is determinant for the acquisition of the protein’s native β sheet-rich fold [49] and high thermostability. Yeast alcohol dehydrogenase is a tetrameric enzyme incorporating two Zn2+ ions in each subunit. One ion sits in the catalytic site; the other one has a structural role. Apart from activity, the incorporation of Zn2+ has been described as essential for proper folding, as it confers higher pH stability, higher stability towards chemical denaturation [50] and higher folding cooperativity [51-52]. The catalytical zinc ion is thought to have a more important effect in stability [50]. 
6.2.3. Copper Azurin contains a single copper ion, which can be substituted in vitro by zinc. The protein structure is identical in the apo and metallated (Cu/Zn) states [53-54]. However, metal ions have a significant effect in the protein’s thermodynamic stability. The stability of the apo protein is 6.9 kcal/mol. The binding of either Cu+ or Zn2+ raise the stability to ~9.5 kcal/mol, and Cu2+ to 12.4 kcal/mol [55]. Both calcium and zinc bind the native as well as the unfolded state of azurin. This has important consequences in the folding kinetics: Cu2+ binding before folding greatly accelerates the kinetics (milliseconds) relatively to metal binding after apo protein folding (minutes to hours) [55]. This has been proposed as a mechanism to ensure fast folding and selective binding of copper over zinc (which binds ~17000 fold less tightly). 
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Ceruloplasmin is the major copper protein in the blood and an essential regulator of iron homeostasis. It binds six copper ions, three forming a trinuclear cluster and all others in mononuclear sites. Holo ceruloplasmin is more stable than the respective apo protein (ΔTm = 15 to 20°C). The metal load also influences the denaturation kinetics. In physiological-like conditions the apo protein unfolds is <2 days to a molten globule-like state [56], while the holo protein forms an intermediate state lacking one copper ion which is active and remains stable for more than two weeks, that was proposed to be relevant in vivo [57]. Ceruloplasmin also binds Ca2+ and Na+. Na+ is thought to restrict the mobility of surface loops creating an entry point for substrate to the active site [58]. 
6.2.4. Calcium Like magnesium, calcium is an inert and labile ligand. Evolution has exploited this property and rendered calcium an important second messenger, which is released from intracellular stores upon stimulation and binds reversibly to several proteins producing a transient signal. After release, calcium is rapidly sequestered by calcium-binding proteins or actively pumped outside the cell or to storage organelles. This is equivalent to say that calcium works as a trigger, activating the proteins it binds to. There are a variety of calcium binding motifs but the most abundant is the helix-loop-helix EF-hand (Figure 7.3), present in calmodulin, troponin C, the S100 proteins, among others [10]. Upon binding to EF-hands, calcium induces a large conformational change, shifting the position of one of the EF-hand helices and exposing a hydrophobic surface for protein-protein interactions (Figure 6.9A). Moreover, the electrostatic neutralization at the binding site upon cation binding is frequently responsible for protein stabilization (Figure 6.9B). One of the most well studied EF-hand protein is calmodulin, a ubiquitous protein found in all eukaryotes which regulates enzyme activities, 
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Figure 6.9 – Calcium-dependent conformation and stability of EF-hands. (A) Overlay of the apo (1K9P, grey) and Ca2+-bound (1K9K, blue) S100A6 structures. The C-terminal EF-hand is highlighted to show the helix displacement occurring upon the binding of calcium (shown as yellow spheres). The inter-helical surface is hydrophobic and upon exposure becomes the docking site for downstream-acting proteins. (B) Thermal stability of S100A6 monitored by far UV CD in the apo and Ca2+-bound states (0.1 mg/ml protein, 5mM KPi pH 7, 98 µM Ca2+, λ=222 nm). Upon calcium binding the protein is significantly stabilized (ΔTm = 10°C) (unpublished observations). neurotransmitter release, cell proliferation and DNA repair. Most of these activities require interaction with other proteins in a calcium-dependent manner. Many of these proteins do not bind calcium themselves; they rely on calmodulin as a calcium sensor and signal transducer. Upon calcium binding calmodulin binds to nitric oxide synthase (NOS) and activates the electron transfer pathway necessary for catalysis [59], binds to microtubule-associated proteins, favoring microtubule depolymerization [60], interacts with kinases responsible for neurite outgrowth [61]. The archetypical EF-hand is the one in parvalbumin [62], where it was identified. Calcium has important relevance in the folding of this protein [10]. In the calcium-bound state the protein rests in a compact globular state, with the EF-hand in the open state (e. g. Figure 6.9A). Calcium release induces a fast (~60 ps) conformational rearrangement resulting in a decrease in the native helical content (>20%, [63]) and enhanced residue solvent accessibility. The apo state has been described as natively disordered [64-
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Figure 6.10 – Bovine α-
lactalbumin thermal stability
as a function of metal
substitution. Thermaldenaturation curves fromintrinsic tryptophanfluorescence. Binding of Ca2+ tothe apo protein brings about arise in the Tm of about 30°C. Na+has no effect. K+ and Mg2+ haveintermediate effects. From [10]. 
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65]. A subsequent structural analysis revealed a calcium-induced hydrophobic core repacking [66]. Regarding the protein dynamics, the calcium-bound protein becomes highly resistant to trypsin proteolytic cleavage [67]. Bovine α-lactalbumin is another EF-hand protein. It regulates lactose synthesis though calcium-dependent conformational changes. Calcium increases its folding rate by three orders of magnitude [68-70] and couples refolding to the generation of the native disulfide bridge [71], which suggests a calcium regulation of lactose synthesis through controlling α-lactalbumin folding. A more careful examination of the process revealed that calcium accelerates the folding of α-lactalbumin by decreasing the energy barrier between the molten globule and the transition states, by decreasing the difference of entropy between the two states [70]. The metal binding properties of α-lactalbumin are promiscuous and it also binds other metal ions apart from Ca2+. Metal binding translates into specific protein stability (Figure 6.10). Unlike hen egg white lysozyme, equine lysozyme binds calcium [72-73]. At acidic pH and in the absence of calcium the α and β domains unfold at distinct temperatures. The calcium-binding β domain is stabilized by the metal ligand. [74]. At neutral pH the protein unfolds in one cooperative 
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transition in a calcium dependent melting temperature. 
6.3. Expanding the conformational space: amyloidogenesis Despite the solid evidence underlying it, Anfinsen’s thermodynamic hypothesis of protein folding has been shown not to be completely valid. Namely, the postulate that the native state is unique and represents the most thermodynamically stable conformation is challenged by amyloid-forming proteins. These structures were first identified depositing as β-sheet rich aggregates at specific organ locations in association with disease (Figure 6.11A). These structures, could be selectively stained with a starch (amylose) selective dye, Congo Red (Figure 6.15), and were accordingly named as amyloid. Amyloid is a fibrillar conformation characterized by a cross-β structural motif emerging from X-ray fibril diffraction patterns [75-77]. Even though very distinct proteins are now known to form amyloid, they all exhibit a remarkably similar amyloid structure (e. g. Figure 6.11BC) wherein β-strands running nearly perpendicular to the fibril axis are stacked through hydrogen bond contacts. Structural polymorphism occurs at the detailed β-strand alignment and the stacking stabilizing interactions [78]. The amyloid state represents an “alternative” protein conformation and can be considered an extreme case of protein conformational change. Indeed, for all amyloid-forming proteins a “classic” native state exists – even though for many proteins it is a natively disordered one – which, under determined conditions can interconvert to amyloid (Table 6.3). In the cellular context, amyloid fibrils form spontaneously, although as a “rare” event associated with ageing and diseases including Alzheimer’s, type 2 diabetes, prion diseases, Parkinson’s, systemic amyloidosis and Huntigton’s. Nevertheless, amyloid fibrils are remarkably stable, resisting proteolytic cleavage, chaperone-mediated disaggregation and, in some cases, even physicochemical denaturation. Thus, they must populate the bottom of the folding funnel. The “rare” amyloid formation in physiological context points 
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Figure 6.11 - Structure of Aβ amyloid structures. (A) Brain senile plaque stained with anti-Aβ antibodies. (B) Transmission electron microscopy image of Aβ fibrils. (C) Structural model of Aβ fibril ultrastructure. The fibril is formed by β-turn-forming monomers stacked along the fibril axis. The slight lateral offset between adjacent monomers introduces a twist in the fibril. From [78-79]. to amyloidogenesis being represented by a folding funnel concurrent with the native one, from which it is separated by a large energy barrier [80] (Figure 6.12). In this framework, the native state must be considered a kinetically trapped state which can only convert to amyloid under specific conditions. Amyloid forming proteins were once viewed as a rare occurrence in biology, frequently associated with disease and not always reproduced in physiologically accessible conditions. Dobson and coworkers have shown otherwise. In fact, they have described amyloid formation by the SH3 domain of p85α subunit of bovine phosphatidylinositol 3-kinase, a artificial protein construct not involved in disease [82]. This discovery was the first evidence that, given the appropriate conditions, all proteins could, given adequate 
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Figure 6.12 – Expanded protein folding funnel, considering aggregation processes. The “classical” folding scenario consists in the acquisition of the native conformation from the unfolded state, through a series of intermediates (blue funnel). Partially folded intermediates may expose hydrophobic patches which, especially at high protein concentration like the crowded cellular milieu, may drive aggregation of these misfolded proteins. Growing evidence supports the proposal that these partially folded species may facilitate the structural conversion and polymerization of amyloid structures of the oligomeric or fibrillar type (purple funnel). From [81]. conditions, adopt the amyloid conformation [82-83]. Much data has strengthened this view, of which one of the strongest ones is that all amyloids display a set of common structural features independently of the protein identity, pointing that at least some amyloidogenesis factors should be associated with the protein backbone rather than with amino acid side chains. In this scenario, the initial association of amyloid with a few proteins involved in disease results from the fact that amyloidogenic conditions for these proteins are in the physiologically-accessible range. The infrequent amyloid formation in vivo as opposed to the postulate that the amyloid conformation should be accessible to all proteins suggests that evolution must have designed protein sequences for structure, fast folding kinetics, dynamics, stability, activity as well as for minimizing the amyloid-formation propensity. The latter must be a strong driving force because, owing to their high temperature [84] and proteolysis [85] resistance, 
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Table 6.1 - Functional amyloids. From [87-88]. 

Amyloid protein Source FunctionChaplin Streptomyces coelicor Aerial hyphae formation Hydrophobin EAS Neurospora crassa Aerial hyphae formation Curlin Escherichia coli Biofilm formation, cell adhesion, invasion eRF3 Saccharomyces cerevisiae Polyamine regulation ([PSI+] phenotype) Rnq1 Saccharomyces cerevisiae Cytoprotection ([RNQ+] phenotype) HET-s Podospora anserina Heterokaryon formation Ure2p Saccharomyces cerevisiae Promote the uptake of poor nitrogen sources ([URE3+]) CPEB Aplysia californica Long-term memory Silk moth chorion protein Lepidoptera Protection Fish egg Austrofundulus limnaeus Resistance to dehydration Eggshell chorion proteins Bombyx mori Protection Pmel17 Mammals Regulation of melanin biosynthesis Fibrin Mammals Activation of haemostatic factors Spidroin Nephila edulis Spider web silk  amyloids are not easily removed from biological systems and tend to accumulate. Insulin fibrils have strength and stiffness comparable to those of steel and silk, respectively. The amyloidogenic process is avoided by sequence design (i. e. by avoiding amyloid-prone sequence stretches), fast folding (minimizing aggregation), folding cooperativity (by disfavoring extensive conformational changes) and several cellular surveillance systems. Thorough investigations have further revealed that some amyloids do have physiological importance. Some organisms make use of their mechanical performance or conformational templating properties to fulfill specific requirements (Table 6.1). Remarkable examples of these functional amyloids are spider silk – whose strength is higher than steel – and the yeast prions eRF3 and Ure2p – whose amyloidogenesis is associated with alteration in their native nucleic acid processing properties and constitutes an epigenetic, protein-only phenotypic inheritance mechanism [86]. 
6.3.1. Mechanisms of amyloid formation Being a polymerization process, amyloid formation must be considered in the general framework of protein oligomerization and aggregation (Figure 
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6.13). Because of the gradual conformational changes occurring en route to the amyloid state, the intermediate oligomeric species also contain some amyloid features. One interesting aspect is that many of the proteins undergoing aggregation and deposition in amyloid diseases are globular and stable under physiological conditions. Nevertheless, the amyloid state in which they are found in disease situations is a highly stabilized state with a near universal structure, distinct from the native conformation, which is thus expected to occupy a disjoint space in the folding energy landscape. Then, the intriguing question is which conformational changes take place in this 

 
Figure 6.13 - Schematic representation of protein self-association processes. The same or distinct proteins can self-associate into oligomer structures with different structural features. Structured oligomers may actually constitute the native protein structure or be associated with signaling processes. The structural conversion from globular to amyloid conformations occurs through a series of intermediates. Once a nucleus is formed, fibrillization promptly proceeds by polymerization extending from these sites. Actual oligomerization processes are more complex and different structures and interconversions can occur. From [79, 97]. 
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extensive structural conversion and how can the energetic barrier between the native and amyloid funnels be overcome. Chiti and Dobson have suggested that partial protein unfolding as a result of mutations, pH fluctuations, metal binding or imbalancement in cell protein quality control systems are responsible for the appearance and/or not elimination of partially unfolded/misfolded intermediates which may be at the beginning of the amyloidogenesis pathway [89]. More importantly, this hypothesis does not require extensive, energy costly, global conformational changes, as the misfolded state is still native-like. Acidic organelles like the endosomes and the lysosome have been associated with pH-induced generation of amyloid-like precursors of Aβ1-42 [90], the prion protein [91] and transthyretin [92] but the opposite, clearance effect was observed for α-synuclein [93]. In the case of natively unfolded proteins similar mechanisms may apply. The structures of such intermediates have been pursued by theoretical and experimental methods [94-96]. The mechanisms of amyloid formation have been extensively studied in 

vitro for a variety of proteins, with the main focus on those involved in pathology. Five different types of mechanisms have been proposed (reviewed in [98]): 1. Subsequent monomer addition mechanism, where fibril elongation occurs by successive addition of monomers to a preformed fibril; 2. Reversible association mechanism, which considers the interaction between all kinds of species (instead of just the monomer and fibril) and aggregation reversibility; 3. Prion aggregation mechanisms, which explain prion infectivity by considering that the conformational transition of the native to the amyloid-prone conformational is thermodynamically unfavorable but aggregation is highly favorable and drives amyloid polymerization; 
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4. “Occam's razor”/minimalistic model (or Finke–Watzky 2-step model), which simplifies the analysis by considering separate contributions from nucleation and polymerization and representing all aggregation steps as simple kinetic steps; 5. Quantitative structure activity relationship models, which rationalize amyloid aggregation rates as a function of the physico-chemical properties of the aggregating protein. Being an aggregation process, amyloid formation is based on three fundamental physical processes: 1. A critical concentration below which the frequency of molecular collisions is not enough for promoting aggregation; 2. A critical nucleus, which forms at the beginning of amyloid formation and seeds further fibril elongation; 3. Lag phase, which corresponds to a delay in apparent polymerization due to conformational changes and nucleus formation time. The critical nucleus is defined as the least thermodynamically stable species in solution, which is the oligomer of minimal size capable of initiating further growth [99]. Fragmentation of existing aggregates also supplied nucleus-like structures [100-101]. The addition of preformed amyloid structures enhances the polymerization rate of the native protein. This is called amyloid seeding. The analysis of amyloidogenesis kinetics with mechanistic models allows extracting quantitative data which describe the fibrillization process: thermodynamic parameters, rate constants, cooperativity and nucleus size, among others [98].  For Aβ, a model was proposed according to which fibrils elongate by addition of monomeric Aβ at the edges following a “dock-and-lock” mechanism [96]. According to this mechanism, monomers are added to the growing fibril in several steps: first the monomer interacts with the fibril tip in a readily reversible manner; next conformational changes convert the 
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Figure 6.14 - Dock and lock mechanism of amyloid fibril growth. A: preformed amyloid; S: soluble precursor. According to this model, amyloid propagation from a preformed nucleus involves an initial fast step where the soluble precursor exchanges between the free state and a docked state where it is associated to the nucleus in a native-like conformation. The docked precursor then undergoes a conformational transition to an amyloid-like state which is prone to converting to the amyloid state by nucleus templating. From [96]. peptide to the amyloid conformation and the monomer is integrated into the fibril (Figure 6.14). 

6.3.2. Detecting amyloids Amyloid formation is a structural modification accompanied by changes in spectroscopic and other physical properties. The process can be probed and amyloid species detected using the same methodologies used for any type of protein aggregation (Table 6.2). The classical methods for unambiguously determining if a protein aggregate is of the amyloid type are the characteristic apple-green birefringence under a polarized light microscope after staining with Congo red – the standard method in 

 
Figure 6.15 – Structure of thioflavin T and Congo red. 
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Table 6.2 - Physical methods to analyze protein aggregation. “Concentration dependent” techniques are those which can provide in situ analysis if aggregation conditions are within detection limits. [98]. 
Method Information In situ/ex situ Kinetics

? Absorbance Direct Concentration dependent YesAtomic force microscopy Direct In situ YesCalorimetry Direct In situ YesCircular dichroism Direct Concentration dependent YesDyes Indirect Concentration dependent YesElectron microscopy Direct Ex situ NoEPR Indirect Concentration dependent YesFlow birefringence Direct In situ YesFluorescence spectroscopy / intrinsic fluorophore Direct Concentration dependent YesFluorescence spectroscopy / extrinsic fluorophore Indirect Concentration dependent YesFT-IR Direct Concentration dependent YesLight scattering Direct In situ YesMass spectrometry Direct Ex situ NoNMR Direct Concentration dependent YesQuartz crystal oscillation Direct Concentration dependent YesTurbidity Direct In situ YesViscosity Direct In situ YesX-ray diffraction Direct Concentration dependent No immunohistochemistry – the characteristic thioflavin T fluorescence enhancement at 182 nm (Figure 6.15) or the cross-β fibril diffraction pattern. The insoluble, heterogeneous, high molecular weight nature of amyloid fibrils poses great challenges to conventional structural characterization by X-ray fibril diffraction or NMR [102]. However, recent breakthroughs in fibril X-ray diffraction [102-104], solid-state NMR, neutron diffraction, microscopy and structural modeling have provided some evidence for the structure of amyloid fibrils. Still, only limited information is available about the structural conversion of natively folded proteins to amyloid structures. This is because despite the similarity of the amyloid fibrils formed by different proteins, the formation mechanism seems to be unique for each protein and the identity and structure of the intermediate conformational states is inherently 
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 heterogeneous, transient and masked by the multimolecular polymerization mechanism. To tackle these problems, Kayed and co-workers have raised conformation-dependent antibodies (reviewed in [105]), which detect the universal structure features of amyloid-like structures [106-107]: fibril structures (OC antibody) or amyloid oligomeric structures (A11 antibody) (Figure 6.16). These antibodies have revealed that the same structural features are observed on oligomeric or amyloid structures formed by very distinct proteins. Conformation-sensitive antibodies are privileged tools for identifying specific conformations in mixtures, the role of each type of structure in disease and for structural characterization of conformers in the amyloidogenesis pathway. 
6.4. Metal ions and amyloid formation in disease Protein aggregation in general and amyloid fibrillization in particular are very specific processes, involving orchestrated conformational transitions. Consequently, proteinaceous deposits associated with disease are found at specific organism locations and involving well defined proteins. Protein aggregation increases with aging and this can change the proteostasis network and enhance further aggregation [108] resulting in diseases (Table 6.3). Protein fibrillization can be induced in vitro by mild destabilizing 

A11

OC

Figure 6.16 – Conformation-
sensitive antibodies. Dot blotanalysis of Aβ1-42 and and a 36-merpolyglutamine peptide in the fibrillaror oligomeric forms detected with thefibril-specific OC antibody or theamyloid oligomer-specific A11antibody. From [106]. 
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Table 6.3 – Representative human amyloid diseases. Including the information about the disease related polypeptide. From [109]. 
Disease Protein/Peptide Native structure

Neurodegenerative diseasesAlzheimer’s disease Aβ peptide Natively unfolded Spongiform encephelopathies Prion protein Natively unfolded & α-helicalParkinson’s disease α-synuclein Natively unfolded Dementia with Lewy bodies α-synuclein Natively unfolded Frontoremporal dementia with Parkinsonism Tau Natively unfolded 
Amyotrophic lateral sclerosis Superoxide dismutase 1 Immunoglobulin-like Huntington’s disease Huntingtin, polyQ expansion Mostly natively unfoldedSpinocerebellar ataxias Ataxins with polyQ expansion All β 
Nonneuropathic systemic amyloidosisAL amyloidosis Ig light chain or fragments Immunoglobulin-like AA amyloidosis Serum amyloid protein A All α Senile systemic amyloidosis Wt transthyretin All β Familial amyloidotic polyneuropathy Transthyretin mutants All β Hemodialysis-related amyloidosis β2-microglobulin Immunoglobulin-like Apolipoprotein amyloidosis Apolipoprotein fragments Natively unfolded/unknownLysozyme amyloidosis Lysozyme mutants α+β 
Nonneuropathic localized diseasesType II diabetes Islet amyloid polypeptide Natively unfolded Atrial amyloidosis Atrial natriuretic factor Natively unfolded Injection-localized amyloidosis Insulin All α Corneal amyloidosis Lactoferrin α+β Cataract γ-crystallins All- β  conditions like low pH, detergents or elevated temperature. However, the complex conformational changes involved and the concomitant protein fold perturbation have challenged our understanding of the mechanism responsible for in vivo amyloid formation. For some proteins, mechanisms for the amyloid conversion from the native conformation have been put forward [110]: intrinsic propensity for acquiring the amyloid conformation, which increases with age (e. g. α-synuclein in Parkinson’s disease [111] or transthyretin in familial amyloid polyneuropathy [112]), increased protein 
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expression (e. g. α-synuclein gene locus triplication [113-114], hemodialysis-associated β2-microglobulin accumulation [115], reduced insulin clearance from injection sites [116]), amyloid-favoring point mutations (including glutamine extension in polyQ amyloidosis), abnormal post-translational protein processing (e. g. tau hyperphosphorylation in Alzheimer’s disease), altered proteolytic processing of the precursor protein (e. g. Aβ peptides in Alzheimer’s disease) and environmental hazards capable of inducing conformational changes in the precursor protein (e. g. oxidative agents, heavy metals, pesticides). However, for the majority of amyloid diseases the causative reasons for amyloid aggregation are not known and most cases are sporadic. In amyloid diseases protein misfolding is coupled to cellular degeneration, revealing that amyloid species are toxic. Several toxicity mechanisms have been uncovered: tissue integrity and function destruction by bulk invasion [110, 117], membrane destruction [118-119], induction of apoptosis by interacting with specific receptors [120], inhibition of neuronal calcium currents [121], impaired autophagosome maturation [122], autophagy dysfunction [123], oxidative stress induced by metal ion coordination by amyloid fibrils [124-128], exhaustion of cellular chaperoning capacity [129-130] and proteasome inhibition [131]. Systems biology approaches analyze the multiple perturbations associated with amyloid diseases as an imbalancement in the cellular proteostasis network [123]. In this sense, the accumulation of the toxic amyloid species can be understood as perturbing complex cellular systems and originating the several unexpected toxicity mechanisms associated with disease. Metal ions are central players in amyloid formation. High affinity metal binding sites have been described in many amyloid-forming proteins, including β2-microglobulin [132-134], Aβ [135-138], α-synuclein [139-141], superoxide dismutase [49] and mammalian prion protein [142]. Metal ion 
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Figure 6.17 - Aβ plaques and tau
neurofibrillary tangles. From [147]. 

coordination may influence the conformational conversion of the native to the amyloid state or promote toxic reactivity. Iron and copper catalyze the generation of reactive oxygen species by cycling between their two accessible oxidation states. This can happen either in the free state or when bound to proteins. In either case, oxidative modifications can destabilize the native protein fold and contribute to amyloid formation. Even in the absence of any reactivity, metal ions can induce conformational changes which can determine the amyloid conversion. In the following sections we will illustrate the relevant role of metal ions in physiological amyloidogenic processes involved in disease focusing on neurodegenerative amyloid diseases. 
6.4.1. Metal ions and Alzheimer’s disease Alzheimer’s disease (AD) is the most common form of dementia. The major neuropathological lesions in AD patients are two kinds of amyloid deposits in the brain: amyloid-β (Aβ) peptide-containing neuritic plaques [143] outside neurons in limbic structures and association neocortex [144] and intracellular neurofibrillary tangles composed of hyperphosphorylated, polyubiquitinated tau protein [145] (Figure 6.17). Aβ and tau deposition seem to be driven by independent mechanisms as tau deposits occur in several other neurodegenerative diseases where no Aβ neuritic plaques are observed. This suggests that tau deposition is downstream from Aβ plaque formation but is an essential process in degeneration [146]. Aβ is produced by the proteolytic processing of Amyloid Precursor Protein (APP, Figure 6.18), an integral membrane 
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Figure 6.18 - In vivo generation of the Aβ peptide
from Amyloid Precursor Protein (APP). Cleavage ofAPP by β-secretase forms the C-terminal membrane-bound APP fragment which is then cleaved by γ-secretase to yield the soluble Aβ peptide. γ-secretasecleavage is unspecific and can produce 39 to 43 aminoacid long Aβ peptides. 

protein mostly expressed in the synapses of neurons involved in synapse formation [148], neural plasticity [149] and copper metabolism [150]. Unspecific APP processing produces distinct Aβ peptides. The major forms are the peptides with 40 (Aβ1-40) and 42 (Aβ1-42) amino acid residues [143, 151-153]. Aβ1-42 is significantly more amyloidogenic than Aβ1-40, initiating amyloid formation at lower concentrations, with higher rates [154], resulting in different structures [155] and whose metabolism imbalancement is closely related to disease [156]. The most accepted hypothesis for the origin of the disease is the amyloid cascade hypothesis, which postulates that the disease is primarily the outcome of the toxicity and physiological imbalancement originating from amyloid formation and deposition: oxidative stress, calcium homeostasis imbalancement [157], apoptosis [158], mitochondrial enzyme dysfunction [159], inflammation [160], neurovascular dysfunction and cell cycle abnormalities. Even though insoluble Aβ amyloid plaques are the most characteristic pathological hallmark of the disease, accumulating evidence suggests that the disease-causing agent are not Aβ fibrils but rather oligomers formed during the amyloidogenesis pathway [107, 161]. Aβ oligomers trigger specific neuronal dysfunction [162-164], disrupt long-term potentiation [165] and impair memory [166]. The highest toxicity is 
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associated with Aβ oligomers formed by 2-50 monomers [157].The relevance of Aβ1-42 has been consistently associated with its propensity of forming a diverse range of oligomeric structures which are stable, unlike those forming from Aβ1-40 [167-171]. Nevertheless, both peptides eventually polymerize into structurally indistinguishable fibrils [172-173]. Aβ coordination chemistry is rich and it can bind different metal ions which influence its structure and amyloidogenic properties (Figure 6.19). Copper and zinc – two metal ions released during neuronal activity – bind Aβ plaques directly [128, 174]. Iron accumulates in the vicinity, in plaque-associated neuritic processes containing ferritin [175-176]. Overall, in the brain regions where amyloid deposition occurs Alzheimer’s and Parkinson’s disease (cortex in Alzheimer’s and substantia nigra in Parkinson’s, respectively) iron and zinc levels are found increased [177-178] while  

 
Figure 6.19 – Metal-dependent Aβ1-42 conformational changes. Apo Aβ1-42 is predominantly fibrillar. Incubation with iron, copper or zinc produces different types of amorphous oligomeric-like structures. Aluminum stabilizes small oligomeric forms, known to be the toxic species associated with Alzheimer’s disease. From [23]. 
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copper levels are decreased [179]. Copper-derived oxidative stress contributes significantly to disease onset [180]. Iron-related reactive oxygen species generation has been reported in vitro [181]. This may involve modifications of Aβ itself at methionine [182], histidine [183], glutamate [184] and tyrosine [185] residues. In the case of tyrosines, a frequent modification involves the formation of protease-resistant dityrosine cross-links, which favor further oligomerization [186]. Zinc binding inhibits redox reactions but induces Aβ aggregation [14]. The zinc-associated Aβ aggregates are especially relevant in the physiological context of Aβ deposition. Glutamatergic synapses – one of the sites of Aβ accumulation – release up to micromolar zinc transients (millisecond timescale) in response to upstream neurotransmission-associated stimuli, the so-called “zinc bursts”. In vitro, these concentrations conditions induce fast Aβ aggregation in the form of prefibrillar oligomers – the putative toxic species in Alzheimer’s disease – precluding proper fibril formation (Figure 6.20). Accordingly, it has been proposed that zinc homeostasis imbalancement contributes to disease onset by triggering an “amyloid cascade” of perpetuating self-seeding toxic oligomers [135]. Disease progression correlates with an increase in overall zinc levels which suggests enhanced metal-induced amyloid formation [178]. The chemical biology of glutamatergic synapse features the simultaneous availability of free zinc and copper, a unique coincidence at least in humans [179] which may explain the initial aggregation of Aβ at this site in Alzheimer’s disease (Figure 6.21). The zinc in the cytoplasm of glutamatergic neurons is pumped by the ZnT3 zinc transporter to intracellular vesicles which also store glutamate. Upon stimulation, the secretory vesicles fuse with the pre-synaptic membrane and release its content into the synaptic space [187]. Zinc seems to prevent excess stimulation by glutamate by inhibiting the post-synaptic glutamate NMDA receptor (NMDAR). NMDAR 
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Figure 6.20 - Zn2+-induced fast Aβ oligomerization. (A) Aβ aggregation kinetics as determined by stopped-flow light scattering measurements in the presence of different Zn2+ concentrations. Even sub maximal zinc bursts (which reach hundreds µM in vivo) promote fast Aβ aggregation. 25 µM Aβ. (B) Aβ aggregate morphology time course from transmission electron microscopy imaging. The fast Zn2+-induced aggregation is associated to oligomeric structure assembly, dissimilarly from the fibrils forming with apo Aβ. From [135]. activation triggers post-synaptic copper secretion involving the Menkes ATPase [188]. In the synapse, copper can function as an electron acceptor promoting the reaction of nitric oxide with thiols, thus controlling NMDAR nitrosylation, a mechanism modulating NMDAR function [188]. Metallothionein-3 (MT3) released by astrocytes removes the metals from the synapse [189]. Metal ions like zinc copper and iron fulfill neurotransmission roles in neurobiological processes. In addition, neurodegenerative diseases like 
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Alzheimer’s and Parkinson’s are characterized by perturbations in metal homeostasis: iron levels are increased and copper and zinc are sequestered in amyloid deposits. The copper and zinc flux in the glutamatergic in the cortex and hippocampus is especially relevant because this is the site of long-term potentiation – the physiological basis of memory – and also the first amyloid deposition site in Alzheimer’s disease. In neurotransmission events, free ionic or weakly protein bound (thus exchangeable) zinc and copper are released into the synaptic cleft. Labile intracellular iron modulates the expression of amyloid precursor protein [190]. In mouse models of ALS, knock-out of the metallochaperone donating copper to SOD1, CCS, has no effect on pathology. However, overexpression accelerates disease progression, pointing to a complex relationship of copper with the disease [191]. Metal mis-homeostasis has been suggested to trigger amyloid formation, as assessed by the significant reduction in amyloid plaques in mice deficient for zinc transporter ZnT3 [192]. Metal homeostatic mechanisms are affected by age. In animals, copper levels decrease from middle age onwards, affecting 

 
Figure 6.21 - Zinc, copper and Aβ in the glutamatergic synapse. From [179]. 
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metal incorporation in copper-dependent proteins like cytochrome c oxidase, superoxide dismutase 1 – an important oxidative defense protein – and ceruloplasmin. Similarly, all animal species show increased iron levels in older ages, which affect proteins like ferritin and frataxin, whose misregulation is associated with neurodegeneration [179]. Although Aβ does not bind calcium, calcium-associated toxicity is one of the characteristics of Alzheimer’s disease (Figure 6.22). Calcium homeostasis is essential for several signaling processes which are disrupted by Aβ. Aβ modulates the conductance of several membrane calcium channels [157, 193] including voltage-gated calcium channels, nicotinic acetylcholine channels and glutamate, dopamine, serotonin and intracellular inositol trisphosphate receptors through mechanisms mostly unknown. The calcium signaling perturbation induces excitotoxicity, neurotransmission perturbation, downstream signaling inhibition or aberrant stimulation. Aβ can also interact with membranes, partially disrupting their integrity and permeabilizing them to small molecules [194] or by forming integral membrane pores [195]. Sub-physiological calcium concentrations can favor 

 
Figure 6.22 - Association of Aβ aggregation and calcium-associated cellular toxicity. From [157]. 
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further Aβ generation [157] or bind Aβ and induce oligomerization and fibrillization processes [196-197]. 
6.4.2. Metal ions and Parkinson’s disease Parkinson’s disease is characterized by the loss of dopaminergic neurons in the substantia nigra of the brain where intracellular amyloid deposits named Lewy bodies composed mainly of α-synuclein form in the surviving neurons. α-synuclein is a natively unstructured protein [198-200] involved in presynaptic vesicle homeostasis which can bind di- and trivalent metal ions. The affinity for Cu2+ and Fe3+ binding is relatively high. Protein function, including membrane association and interaction with cytoskeletal proteins is regulated by Ca2+ [201-202]. Most data on the roles of metal ions in α-synuclein amyloid formation come from in vitro experiments rather than from direct examination of living specimens. Although the mechanisms underlying α-synuclein fibrillization in vivo are not known, high temperature [203], low pH [203], polyamines [204] and metal ions can induce amyloid formation in vitro. Like in Alzheimer’s, Parkinson’s disease is characterized by altered metal homeostasis. The substantia nigra has increased iron and zinc levels and decreased copper levels [205-206]. Specifically in Lewy bodies, iron and aluminum are accumulated [207]. Iron accumulation perturbs its homeostatic mechanisms [208] and has been related to oxidative stress-related neurodegenerative damage in the disease [209], which is additionally relevant because of the decreased concentration of oxidative defense systems such as glutathione [206], as well as increased toxicity of α-synuclein amyloid oligomers [210]. Cu2+ and, to a less extent, Al3+ induce α-synuclein aggregation [211]. α-synuclein fibrillization is significantly accelerated in the presence of metal ions, namely Al3+, Fe3+, Cu2+. Non-physiological metal ions like Co2+ and Cd2+ also have the same effect. To a small extent even Mn2+ also accelerates fibrillization and induces di-tyrosine cross-linking, pointing to a the capacity 



Chapter 6 

156 

of promoting oxidative modifications [139]. These effects should be based on the capacity of metal ions induce partial folding of natively unfolded α-synuclein [139]. However, Al3+ but not Zn2+ and Cu2+ induce a fibrillar structure distinct from the one of apo α-synuclein with higher β-sheet content and which does not favor iron Fenton reactivity [212]. The interest in assessing the effects of aluminum comes from the correlation of environmental exposure to aluminum and the accumulation of iron as well as aluminum in Lewy bodies [207]. The Al3+-bound α-synuclein acquires a protease resistant conformation [213]. Upon fibrillization, aluminum is entrapped in a-synuclein amyloid fibrils [139]. Magnesium has a dual effect in α-synuclein fibrillization. Millimolar concentrations promptly trigger amyloid formation [214]. However, lower concentrations inhibit fibril formation, suggesting a conformational stabilizer role [215]. Despite the similar amyloid favoring properties, metal ions bind at distinct sites of α-synuclein. The C-terminus is the most common metal binding region because of the local residual structure. The site involving Asp119, Asp121, Glu126 and possibly phospho-Tyr125 binds Fe2+, Mn2+, Co2+ and Ni2+ with submillimolar affinity [216]. Copper binds at the N-terminus (Kd ~0.1 µM) [217] involving two binding site [218]. Methionine oxidation inhibits α-synuclein fibrillization, an effect which can be reverted by zinc binding [140]. Like Aβ, α-synuclein fibrillization pathways include a wide variety of oligomer structures [219-220], some of the molten globule type [203]. Metal ions induce distinct oligomeric structures [221]: Cu2+, Fe3+ and Ni2+ yield apo-like 0.8-4 nm spherical oligomers; Mg2+, Cd2+ and Zn2+ yield larger 5-8 nm spherical structures; Co2+ yields 22-30 nm wide annular oligomers; Ca2+ yields larger 70-90 nm wide annular oligomers. All oligomer types are toxic [220]. The toxicity of annular oligomers is derived, at least in part, to pore formation in membranes. Calcium binding occurs in the C-terminus of α-
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synuclein with a Kd around 2-300 µM [202]. Ca2+ binding affects α-synuclein interaction with cytoskeletal proteins and favors oligomerization. α-synuclein deposition affects calcium homeostasis, activating voltage-gated calcium channels [222] and calcium-dependent proteases and determining mitochondrial dysfunction [223]. Like in Alzheimer’s disease, the altered calcium homeostasis sets a feed-forward loop, unbalancing α-synuclein metabolism and favoring more aggregation [197]. 
6.4.3. Metal ions and prion diseases Prions (proteinaceous infectious particles) are protein infectious agents responsible for transmissible spongiform encephelopathies (TSEs), which are amyloid neurodegenerative diseases affecting sheep, goats (Scrapie), cows (bovine spongiform encephalopathy), humans (Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia) and other animals. The cellular prion protein (PrPC) is a normal constituent of the brain, being most expressed at synapses [224], where it binds membranes through a glycophosphatidylinositol anchor. The native PrPC conformation is monomeric, mostly unstructured and protease sensitive. It can spontaneously convert to an amyloidogenic – or scrapie [225] – conformation (PrPSC) which is β-sheet rich, amyloid-prone, has low solubility and is highly protease resistant which initiates the autocatalytic amyloid formation process [226]. The prion protein has ~210 amino acid residues, its accurate size depending on the species. The C-terminus contains two short β-strands and three α-helices but the N-terminus is unstructured [227] and includes several PHGGSWGN octarepeats which bind copper in a pH dependent stoichiometry: two Cu2+ ions at pH 6 and four at pH 7.4. The binding at lower pH has a Kd in the low micromolar range. At higher pH the binding cooperativity is high and binding of the last two ions has a Kd < 100 nM [228]. The dissociation constants approach the cerebrospinal fluid copper 
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concentrations [229] (0.3 to 500 µM) [230] and binding is observed in vivo [231]. It induces PrPC endocytosis. The octarepeat region can also accommodate Zn2+ in a competitive way. According to the Irving-Williams series, copper is the preferred ligand. It can be displaced by Zn2+ at nanomolar Cu2+ concentrations and high millimolar Zn2+ concentrations [232]. Other metal ligands are Fe2+, Ni2+ and Mn2+ [233-234]. Upon conversion to the PrPSC state, the octarepeat undergoes a conformational change where it becomes more compact [235]. Iron, copper and manganese levels are affected in the brains infected by PrPSC and this is associated with prion protein conformational changes or increased oxidative stress generation [236-237], which may also perturb protein folding (Figure 6.23). Brain copper levels are lower in PrPSC infected subjects [238]. Copper binding promptly and reversibly promotes a conformational change wherein prion protein becomes detergent insoluble and protease resistant without acquiring the scrapie amyloid conformation [239] and inhibiting fibrillization [240] and disease progression [241]. Copper chelation delays onset of disease [242]. Copper-bound PrPC has superoxide dismutase (SOD)-like activity [243-244]. Infection with PrPSC – with the concomitant conversion of PrPC – is associated with a decrease in superoxide dismutase activity and increased oxidative stress. On the other hand, once PrPSC is formed, copper greatly stabilizes it against proteinase K digestion [245]. Iron induces the formation of the protease-resistant state [246]. Zn2+ critical for PrP 106-126 aggregation and neurotoxicity [142]. Manganese is one of the most important modulators of PrPC aggregation because it greatly enhances aggregation [238, 247] into the protease-resistant state [246, 248]. Like in other amyloid diseases, cytotoxicity is mostly associated with oligomeric structures [107]. 
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Figure 6.23 – Metal-induced conformational changes in the prion protein. PrPC and PrPSC may exist in equilibrium with each other. Most of the time PrPSC is degraded and remains undetectable. PrPSC levels can increase due to proteasome activity inhibition by metal ions like Mn2+, Cd2+ or Zn2+, by binding of amyloid-favoring Mn2+ to PrPSC or by conformational fluctuations of PrPC to β-sheet enriched conformations which can convert to PrPSC. Cu2+ binding stabilizes the non amyloidogenic state. Once a PrPSC nucleus is formed, recruitment of more prion protein to the amyloid deposits proceeds through conformational templating. From [233]. 
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Figure 7.1 – Sequence alignment of human S100 proteins. The sketch depicts theconsensus location of helices (cylinders) and random coil (line). Red letters indicate thecalcium ligands. 

7.1. Family description The S100 protein family represents the largest subgroup within the Ca2+-binding EF-hand superfamily. They are only found in vertebrates. The name of the protein family has derived from the fact that the first identified S100 proteins were obtained from the soluble (S) bovine brain fraction upon fractionation with saturated (100%) ammonium sulfate [1]. The genes encoding the large majority of human S100 proteins are organized in a gene cluster located in chromosomal region 1q21 [2-3]. This region harbors the genes of S100A1 to S100A16, which are the result of several gene duplication events. The genes of other S100 proteins like S100B, S100P or S100Z are located in humans in chromosomes 21, 4 and 5, respectively. In humans, 21 different S100 proteins are identified up to date (Figure 7.1) and similar numbers have been found in other mammalia based on genomic analysis. Further diverse branches of S100 proteins were found in other vertebrates. The level of sequence identity among the S100 proteins within one species varies considerably, e. g. for human proteins the identity ranges between 22% and 57%. Noteworthy, many S100 proteins exhibit very distinctive expression patterns in different tissues and cell types, as well as specific subcellular localization, underlining the high degree of specialization among them. Corresponding to their diversity in primary structure and localization, the S100 proteins are involved in the regulation of a multitude of 
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cellular processes like cell cycle control, cell growth, differentiation and motility. Considering the diverse S100 protein functions, it is no surprise to find that these proteins are implicated in numerous human diseases, like different types of cancers characterized by altered expression levels of S100 proteins [4], neurodegenerative disorders such as Alzheimer’s disease [5-6], inflammatory and autoimmune diseases [4]. The conformational properties and function of S100 proteins are modulated by metal ion binding. Most S100 proteins are Ca2+ signal transducers. The binding of Ca2+ to EF-hand type domains triggers conformational changes allowing interactions with other proteins. The exception is S100G, which acts as a Ca2+ buffer, sequestering free Ca2+ in the cytoplasm after a concentration raise without significant conformational changes [7]. In many S100 proteins, additional binding of Zn2+ fine tunes protein folding and function [8-9]. Intracellularly, S100 proteins act as Ca2+ sensors, translating intracellular Ca2+ level increase into a cellular response. An increasing number of S100 proteins is also reported to occur extracellularly binding to the Receptor for Advanced Glycation Endproducts (RAGE) [10-13] or Toll-like receptor 4 [14]. Recently, a new property among S100 proteins was unveiled: S100A8/A9 proteins can form amyloids in a metal ion mediated fibrillization process in the ageing prostate [15]. In the following sections these aspects and the possible functional and biological implications of physiological amyloid formation by S100 proteins will be addressed. 
7.2. Structural properties of S100 proteins Most S100 protein family members form homo- and heterodimers, but with largely different preferences. Recently, it was shown that some S100 proteins might exist as monomers at very low concentrations in the cell, although the physiological function of the monomers is unclear [16]. It was proposed that equilibrium between monomers and homodimers might 
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facilitate the formation of heterodimers in the cell [16-17]. Several heterodimeric S100 proteins have been reported, but only the S100A8/A9 heterodimer is well characterized [14, 18-21]. The list of S100 heterodimers is steadily growing: S100B forms heterodimers with S100A1 [22], S100A6 [23-24] and S100A11 [24]; S100A1 with S100A4 [25] and S100P [26]; and S100A7 with S100A10 [27]. Non-covalent multimers were observed for S100A12 [28], S100A8/A9 [18, 29], S100B [12], S100A4 [30] and a Zn2+-dependent tetramer for S100A2 [31]. Comparison of the structure of S100A8/A9 with those of the corresponding homodimers revealed that the solvent exposed area is reduced in the heterodimer, which might represent the driving force of heterodimer formation [18]. It is proposed that heterodimer formation apart from homodimeric assembly might lead to further diversification of S100 protein functions [17, 32].  
7.2.1. EF-hand Ca2+ binding To date there is ample 3D structural information available for individual S100 proteins in both the inactive Ca2+-free and active Ca2+-loaded states [33]. Despite the variation in amino acid sequence, the 3D structures of S100 proteins exhibit key structural features common to all members of the family. Each S100 monomer is about 10-12 kDa in size and composed of two EF-hand helix-loop-helix structural motifs, which are arranged in a back-to-back manner and connected by a flexible linker. The C-terminal EF-hand contains the classical Ca2+-binding motif, common to all EF-hand proteins. The loop has a typical sequence signature of 12 amino acids flanked by helices HIII and HIV (Figure 7.2B). Ca2+ is coordinated mainly by amino acid side chains. The N-terminal EF-hand exhibits a slightly different architecture and contains a specific 14 amino acid motif flanked by helices HI and HII (Figure 7.2A) where Ca2+ is mainly coordinated by backbone carbonyls (Figure 7.3) [33]. This motif is characteristic for S100 proteins and therefore it is often called “S100-specific” or “pseudo EF-hand”. In both EF-hands, Ca2+ is 
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heptacoordinated in a pentagonal bipyramidal geometry. In S100 proteins, the ligands are denoted by X, Y, Z, −Y and –Z (Figure 7.3) [33-34]. The position –X is occupied by a water molecule. The glutamate or aspartate residue at position –Z binds Ca2+ in a bidentate manner. It is the displacement of this amino acid residue that determines the EF-hand opening and Ca2+/Mg2+ selectivity [35]. The S100 protein dimer interface is formed by helices HI and HIV from both monomers, building a compact four helix bundle as core structure of the S100 protein dimer (Figure 7.2C-D). Typically, S100 proteins bind two Ca2+ ions per monomer (Kd = 20-500 µM) with strong positive cooperativity [33]. In the absence of Ca2+, EF-hands 

 
Figure 7.2 - Structure of S100 Proteins. (A-B) Calcium-driven conformational changes at the EF-hands in S100 proteins. Structure of the N-terminal, S100-specific EF-hand (A) and the C-terminal, canonical EF-hand (B) in the metal-free (lighter) and Ca2+-bound (darker) form of S100A6. The EF-hand flanking helices (HI-HIV) are identified. (C-D) Structure of the human S100B homodimer loaded with Ca2+ and Zn2+ (Ostendorp, T., Diez, J., Heizmann, C.W., Fritz, G., unpublished work, 3D10). (C) Side view; (D) Top view. The monomers are shown in blue and green respectively. The N-terminal S100 specific EF-hand (EF-hand 1) is shown in dark color, the C-terminal canonical EF-hand in brighter color (EF-hand 2). The hinges connecting both EF-hands are shown in magenta and orange. The four bound Ca2+ ions are shown as red spheres. The two Zn2+ bound at the dimer interface of S100B are shown as yellow spheres. (E-G) Multimeric states of S100 proteins. S100B octamer, 2H61 (E), S100A12 hexamer, 1GQM (F) and S100A8/A9 tetramer, 1XK4 (G). Each dimer in S100B or S100A12 is shown in individual color. S100A8 is shown in red, S100A9 in blue. Bound Ca2+ ions are shown as spheres; intersubunit Ca2+ ions are shown as magenta spheres. 
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Figure 7.3 – Ca2+-bound EF-hands in S100A6. (A) N-terminal S100-specific EF-hand (B) C-terminal canonical EF-hand. Ca2+-coordinating residues are shown as lines and bead. Coordination bonds are depicted as dashed lines. From [33]. are occupied by water [36-37], Na+ [38] or Mg2+. The much lower Mg2+ affinity (Kd = 1-125 mM) [39-40] does not interfere with Ca2+ binding at physiological Mg2+ concentrations (0.5 mM) [39, 41-43]. Due to amino acid substitutions in the critical Z position, the EF-hands in S100A16 are not able to bind Ca2+ [44]. 

7.2.2. Zn2+ binding sites Many S100 proteins are reported to bind Zn2+ with high affinity (Kd = 4 nM to 2 mM) [9]. The Zn2+-binding S100 proteins can be subdivided into two subgroups. One group involves Cys residues in Zn2+ coordination, whereas the second group binds Zn2+ exclusively via the side-chains of His, Glu and Asp residues. The first group has been characterized so far by spectroscopic analysis in combination with molecular modeling, showing e. g. for S100A2 that Zn2+ is coordinated by residues from different monomers [31]. For the second group, encompassing S100A7, S100A8/A9, S100A12 and S100B, detailed structural information mainly by X-ray crystallography is available. 
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S100A7, S100A12 and S100B bind two Zn2+ ions per homodimer at the dimer interface. The Zn2+ ions are coordinated by residues originating from both subunits, thereby additionally stabilizing the dimer [45-47]. 
7.2.3. Cu2+ binding sites Some S100 proteins like S100A5 [48], S100A12 [49], S100A13 [50] and S100B [51] also bind Cu2+. This happens in the same binding sites as Zn2+ but with different affinity (Kd = 0.46 – 55 µM) [48, 51-52]. 

7.3. Metal ions as modulators of S100 conformation and stability The metal binding properties of S100 proteins have a pivotal influence as modulators of their conformation, folding, oligomerization state and ultimately, function. As outlined above, S100 proteins are able to bind different metal ions, among Ca2+, Zn2+ and Cu2+. Generally, the dimeric S100 proteins bind four Ca2+ ions per dimer with micromolar to hundreds micromolar binding constants and strong cooperativity. In the Ca2+-free state the helices of both EF-hands in each monomer adopt an antiparallel conformation masking the target protein interaction site. Upon Ca2+ binding, the C-terminus undergoes a major conformational change involving motions of the two helices which flank the Ca2+ binding residues (Figure 7.2B). Helix HIII of the canonical EF-hand makes a 90° movement, opening the structure, whereas the N-terminal EF-hand exhibits only minor structural changes (Figure 7.2A-B). This Ca2+-induced structural change leads to the exposure of a wide hydrophobic cleft which mediates target recognition. This surface is formed by residues of the hinge region, helix HIII, and the C-terminus, the regions exhibiting the largest variation in amino acid sequence throughout the S100 family. The dimer interface is built by residues of helices HI and HIV and is well conserved across the different S100 proteins. Also, these helices barely move during Ca2+ binding, maintaining the dimeric state of the S100 proteins during signaling. The invariability of the residues and the conserved 
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spatial arrangement of the helices at the dimer interface are the basis for the formation of the different observed heterodimers.  Structural studies on apo S100A2 have shown that in the absence of Ca2+, a Na+ ion resides in the N-terminal S100-specific EF-hand [38]. In contrast to the classical EF-hand that coordinates Ca2+ through four acidic side chains originating from Asn, Asp or Glu residues, the N-terminal EF-hand provides only one strictly conserved Glu side chain for Ca2+ coordination. Therefore, the Na+ ion can compensate partially for the negative charge in the Ca2+-free state. Ca2+ binding to the N-terminal EF-hand causes a movement of this Glu residue towards the bound ion, pulling helix HII slightly towards the Ca2+ site. Similar to many other EF-hand proteins, S100 proteins bind also Mg2+ ions into their EF-hand sites but the reported affinities for Mg2+ ions are rather low having only a minor effect on Ca2+ binding. Next to Ca2+, many S100 proteins (S100B, S100A2, S100A3, S100A6, S100A7, S100A8/9, S100A12) bind Zn2+ in specific sites, whose metallation state also influences protein conformation, folding and presumably function. Binding of Zn2+ occurs invariably at interfaces, involving coordinating residues from different subunits that are close to the dimer interface. One of these proteins is S100A7, that is upregulated in the keratinocytes of patients suffering from the chronic skin disease psoriasis, and that has been hypothesized to account for the microbial resistance of skin [53]. The structure of this protein has elicited two identical high affinity Zn2+ binding sites formed by His/Asp residues from different monomers that “clip” together the two subunits. A substantial stabilization of the dimer is expected to arise from Zn2+ binding, as it promotes head-to-tail interactions between the two monomers, although in this particular case Zn2+ does not seem to be essential for protein stability [46]. There is evidence for an interesting cross talk between Ca2+ and Zn2+ binding to S100 proteins, illustrating how binding of different metal ions 
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results in conformational adjustments and modulation of protein folding and function. In S100B and S100A12 Zn2+ binding leads to an increase of the Ca2+ affinity [54-55], whereas in S100A2 the opposite effect was observed, i. e. Zn2+ decreased Ca2+ affinity pointing to interplay of the metal ions in the activation of S100 proteins [31]. For S100A12 and S100B, the molecular mechanism of increase of Ca2+ affinity by Zn2+ can be deduced from the structural information available (Ostendorp, T., Diez, J., Heizmann, C.W., Fritz, G., unpublished work) [45]. In both proteins there is one Zn2+-coordinating His residue located in the Ca2+-binding loop, which might help to stabilize the Ca2+bound conformation, thereby increasing Ca2+ affinity. The structure of S100A12 with only bound Zn2+ shows also that Zn2+ alone already can induce structural changes similar to those induced by Ca2+, which will also lead to an increase in Ca2+ affinity. Other Zn2+ coordinating residues are located in the C-terminus of the S100 proteins. Zn2+ coordination leads to a stabilization and extension of the of the C-terminal helix, changing the orientation of residues involved in target binding. As expected from these structural changes, Zn2+ binding modulates target binding properties of the different S100 proteins. e. g., Zn2+ prevents S100A8/A9 binding to arachidonic acid [56]. On the other hand, Zn2+ and Ca2+ binding to S100A9 are both required for interaction with receptors like RAGE or Toll-like receptor 4 [10, 14]. Similarly, Zn2+ increased the Ca2+ dependent interaction of S100A12 with RAGE [57]. In the case of S100B, Zn2+ alone already could trigger binding to tau [58-59], or IQGAP1 [60]. Moreover, Zn2+ binding enhanced Ca2+ dependent interaction with the AHNAK [61] or the target protein derived peptide TRTK-12 [62].  Recent work on the S100A2 protein, a cell cycle regulator which binds and activates p53 in a Ca2+ dependent manner, has shown that metal ion binding influences the protein conformation and stability [8]. S100A2 binds two Ca2+ and two Zn2+ ions per subunit, known to be associated with activation (Ca2+) 
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or inhibition (Zn2+) of downstream signaling. Zn2+ binds at distinct sites which have different metal binding affinities, and physiologically relevant Zn2+ concentrations decrease the affinity for Ca2+ binding, resulting in a blockage of p53 activation. It has been recently elicited that the S100A2 conformation is sensitive to the metallation state, although rearrangements resulting from metal binding preserve the overall fold of the protein: S100A2 is destabilized by Zn2+ and stabilized by Ca2+, suggesting a synergistic effect between binding of the different metals. Thus, the decrease in Ca2+ affinity through Zn2+ is presumably a result of the general destabilization of the protein. Further contributions might come from the exposure of a hydrophobic surface on Zn2+ binding, making additional exposure of the hydrophobic surface induced by Ca2+ less favorable. The antagonistic effect of Zn2+ and Ca2+ in the control of S100A2 stability provides a molecular rationale for the action of both metal ions: hypothetically, in tissues expressing S100A2, the Zn2+ imbalance, which may arise in some types of cancers as a result of the upregulation of Zn2+ transporters [63-64], may contribute to enhanced cell proliferation through destabilization of S100A2. That would impair the interaction with p53 and disrupt subsequent downstream cell cycle regulation. This further illustrates how binding of different metal ions to S100 proteins has the potential to result in conformational adjustments and modulation of protein folding and functions. A number of S100 proteins also bind Cu2+ (S100B [51], S100A5 [48], S100A12 [49] and S100A13 [50]) and this frequently occurs at the same sites to which Zn2+ binds. That is for example the case of S100A12, an important protein in the inflammatory response and a factor in host/parasite defenses, which binds Cu2+ and Zn2+ at the same site and corresponds to the Zn2+ binding site in S100A7, evoking a possible similar structural and functional role. S100B, one of the most abundant proteins in the human brain also binds Cu2+, and in this case a putative neuroprotective role was suggested. 
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7.4. S100 functional oligomers  Metal ions play also a crucial role in the formation of larger oligomeric species of S100 proteins, namely tetramers, hexamers and octamers. These are in many cases essential for biological function and signaling: tetrameric S100B [12] and hexameric S100A12 [65] bind RAGE with higher affinity than the dimeric counterparts, only multimeric S100A4 promotes neurite outgrowth [66], and microtubule formation is only promoted by the Ca2+ induced S100A8/A9 tetramer [18]. Ca2+-loaded S100A12 forms a functional hexamer whose quaternary structure is maintained by additional interdimer bridging Ca2+ ions, which are coordinated by residues from the C-terminal EF-hand and helix HIII from two adjacent dimers. This arrangement of ligands for the interdimer Ca2+ “crosslinker” is only possible when the C-terminal EF-hand is in the Ca2+ bound state [49]. Similarly, two S100A8/A9 heterodimers can assemble into a heterotetramer in a strictly Ca2+-dependent manner [18]. However, the initial S100A8/A9 heterodimer can be formed in the presence or absence of Ca2+. By contrast, the formation of S100B tetramers is not dependent on Ca2+ and the tetramer remains stable in the absence of the metal ion [12]. This difference may result from the additional hydrophobic moieties found in interfaces of S100B, which are essentially polar in S100A12 and S100A8/A9 [12]. Nevertheless, the presence of Ca2+ enhances the oligomerization of S100B into hexamers and octamers, and the octameric crystal structure reveals intersubunit Ca2+ ions. The oligomerization role is not restricted to Ca2+, as in S100A2 binding of Zn2+ to the low affinity site triggers formation of a tetramer via the assembly of two S100A2 dimers [31]. Altogether these results point to a very clear role of metal ions in the formation of functional S100 oligomers. However, novel roles for non-functional S100 oligomers are emerging with the recent finding of metal-dependent amyloid formation processes by S100A8/A9, which will be addressed further. 
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7.5. Functional diversity of S100 proteins To date a great number of distinct functions have been attributed to S100 proteins in both the intra- and extracellular milieu. Though S100 proteins appear to lack enzymatic activity themselves, they play biological roles through binding to other proteins and changing the activity of their targets. As we discussed above, the conformation and even oligomerization state of S100s are responsive to Ca2+ and consequently they mediate Ca2+ signals by binding to other intracellular target proteins and modulating their conformation and activity in a Ca2+- and possibly also in a Zn2+- and Cu2+-dependent manner. Indeed, the assembly into multiple complexes is considered in general as a significant generic mechanism of protein functional diversification via varying their conformational states and associated ligands [67]. Several S100 proteins exhibit Ca2+-dependent interactions with metabolic enzymes (S100A1 and S100B with aldolase C) [68], with kinases (S100B with Ndr or Src kinases) [69-70], with cytoskeletal proteins (S100A1 with tubulin, S100B with CapZ and S100P with ezrin) [71-76] or with DNA binding proteins (S100A2, S100A4 and S100B interact with p53) [77-79]. As a result, intracellularly S100 proteins are involved in the regulation of cell cycle, cell growth and differentiation, apoptosis, migration, calcium homeostasis, protein phosphorylation, cellular motility and other important processes. Some S100 proteins including S100A4, S100A7, S100A8/A9, S100A11, S100A12, S100B and others can be secreted, exhibiting cytokine-like and chemotactic activity. When S100A7, S100A8, S100A9, S100A12 or S100B are secreted in response to cell damage or activation, they become danger signals, activating other immune and endothelial cells. Accordingly, they were defined as damage-associated molecular pattern (DAMP) molecules in innate immunity [80-81]. The S100A8/A9 complex accounts for up to 40% of total cytosolic proteins in neutrophils and secreted S100A8/A9 as well as 
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S100A12 are found at high concentrations in inflamed tissues, producing strong pro-inflammatory effects. S100B is highly expressed in the human brain and actively secreted by astrocytes, neurons, microglia, glioblastoma or Schwann cells [82]. Its extracellular concentration reaches micromolar levels after traumatic brain injury and in neurodegenerative disorders such as Alzheimer’s disease or Down’s syndrome. The action of S100B is strongly dependent on its concentration: at nanomolar levels it is neuroprotective, while at the micromolar concentration range it promotes apoptosis [83]. Both trophic and toxic effects of extracellular S100B are mediated by RAGE, the multi-ligand Receptor for Advanced Glycation Endproducts [21]. A large number of S100 proteins have been shown to interact with RAGE, including S100A1, S100A2, S100A4, S100A5, S100A6, 100A7, S100A8/A9, S100A11, S100A12 and S100B [20]. For example, S100A8/A9 interacts with a subpopulation of RAGE carrying carboxylated glycans and triggers RAGE-dependent NF-κB activation and cellular proliferation [84]. However the interaction with RAGE does not exclude that S100A8/A9 can act via different mechanisms. It was reported that S100A8/A9 proteins exert apoptosis-inducing activity causing cell death via the mitochondrial pathway [85] as well as that the S100A8/A9-induced cell death occurs via apoptosis and autophagy-like mechanisms including ROS-mediated cross-talk between mitochondria and lysosomes: increasing ROS production by mitochondria is followed by mitochondrial damage and lysosomal activation [86]. In addition, Viemann et al. [87] have reported that S100A8/A9 induce cell death via caspase-dependent and caspase-independent programmes which have features of both apoptosis and necrosis.  S100A8 and S100A9 were found to activate also Toll-like receptor 4, acting as innate amplifiers of inflammation and cancer [88-89]. Specifically, it was suggested that S100A8/A9, Toll-like receptor 4 and SAA3, an important 
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downstream target for S100A8/A9, represent a paracrine positive-feedback cascade, which is critical for inducing an inflammatory response in pre-metastatic tissues and thus, rendering them susceptible for tumor cell immigration and metastasis formation [89]. Recently it was demonstrated in a mouse model that via activation of Toll-like receptor 4 S100A8 and S100A9 induce the development of systemic autoimmunity [88]. Due to their deregulated expression, response to stress and association with neoplastic, degenerative and autoimmune disorders, S100 proteins gain significant interest as potential therapeutic targets. In a view of the large number of tertiary and quaternary structures adopted by S100s and the complex structure-functional relationship affecting their interactions with the target proteins, it is tempting to speculate that this variability may account for the promiscuity of S100 proteins. Therefore, systematic studies of the conformational changes and oligomerization of S100 proteins will be of critical importance in the development of potential therapeutics.  
7.6. Amyloid formation by S100A8/A9 proteins Recently we have found a new amyloidogenic property of S100A8/A9 proteins, implicating them in another degenerative process in the ageing prostate, specifically, in amyloid formation [15]. The conversion of functional proteins and peptides into insoluble amyloid structures and their deposition in a variety of tissues and organs is a hallmark of a growing number of age-related degenerative disorders, including Alzheimer's and Parkinson’s diseases, type II diabetes and systemic amyloidoses. Prostate amyloid deposits known as corpora amylacea belong to the type of localized amyloidoses. They are associated with age-related prostate tissue remodeling and occur frequently in middle-aged and elderly men. These inclusions can vary in size from sub-millimeter to a few millimeters diameter (Figure 7.4A) and can in some instances constitute up to a third of the prostate gland bulk weight. Despite of their high prevalence in later life 
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[90], their role in prostate benign and malignant changes is still disputed. The fact that pro-inflammatory S100 proteins contribute to corpora amylacea formation elevates their role as potential cancer risk factors. There is a growing body of evidence indicating that inflammation is a crucial prerequisite in prostate pathogenesis, as it is found to be associated with 40−90% of benign prostatic hyperplasia and with 20% of all human cancers [91]. Prostate cancer is the most common non-cutaneous malignant neoplasm in men in Western countries, affecting several million men in the Western world, and its incidence is rising rapidly with population ageing. Therefore, cancer risk assessment is of critical significance in its preventing strategies. 

 
Figure 7.4 - Amyloid formation by S100A8/A9 proteins in the ageing prostate. (A) 
Corpora amylacea deposits extracted as result of prostatectomy (ruler is shown in centimeters). (B) Co-immunostaining of corpora amylacea with anti-S100A8 (shown in purple) and anti-S100A9 antibodies (shown in brown). (C) Immunostaining of corpora 
amylacea by antibodies towards amyloid fibrils (shown in purple). AFM images of (D) ex vivo amyloid oligomers; (E) ex vivo amyloid fibrillar network and (F) amyloid fibrils produced in 
vitro at pH 7.4, 37 °C with agitation. The fibril height analysis corresponds to the cross-section marked as a red line. Scale bars represent 250 nm. 
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By using mass-spectrometry, gel electrophoresis and Western blot analyses, we have found that proinflammatory S100A8/A9 proteins are persistently present in all specimens obtained as a result of prostatectomy in prostate cancer patients [15]. Immunohistochemical analysis of corpora 

amylacea revealed that they are stained positively with both anti-S100A8 and anti-S100A9 antibodies (Figure 2B). Positive foci of S100A8 and S100A9, including glandular epithelial cells and tissue macrophages, were observed in the tissues adjacent to corpora amylacea inclusions, indicating that the latter infiltrate inflamed glands and ultimately lead to raising local concentrations of S100A8/A9. Proteinaceous compounds constitutes up to 30-40 % of 
corpora amylacea deposits as revealed by X-ray photoelectron spectroscopy and FTIR, while the rest corresponds to inorganic components consisting of hydroxylapatite (Ca5(PO4)3OH) and whitlockite (Ca2(PO4)3), containing high concentration of Zn2+ ions. The calcification of protein deposits leads effectively to their further stabilisation in the protease-rich prostate fluid. The mineral content of corpora amylacea is rather uniform in all seven studied patients, indicating that calcification can be a regulated process. A recently reported function of S100A9 is associated with promoting calcification [92], suggesting that dystrophic calcification of corpora 

amylacea deposits could be influenced by the activities of S100A8/A9. Remarkably, all corpora amylacea specimens were also stained with anti-amyloid fibril antibodies [93] (Figure 7.4C) and Congo red dye, used as a marker for the presence of the amyloid form of proteins, demonstrating that the amyloid material constitutes a significant mass of these specimens. Indeed, atomic force and transmission electron microscopy analyses revealed a variety of highly heterogeneous aggregates in the corpora 

amylacea extracts (Figure 7.4D-E), ranging from oligomeric species to extensive networks of mature fibrils, which is typical for the amyloid assemblies [94], as well as larger scale supramolecular assemblies, reaching 
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a few microns in length. Similar amyloid forms of S100A8/A9 were produced 
in vitro, providing further insight into their amyloidogenic properties. The S100A8/A9 complexes, extracted from granulocytes and produced recombinantly from Escherichia coli, were each incubated under the native conditions of pH 7.4 and 37 °C with agitation and at pH 2.0 and 57 °C without agitation. Under both conditions the proteins were assembled into heterogeneous fibrillar species. At pH 7.4, species resembling ex vivo oligomers and short protofilaments were formed after 2 weeks and thick bundles of fibrils with heights of 15−20 nm and a few microns in length constituted the major population of fibrillar aggregates after 8 weeks of incubation (Figure 7.4F). In the S100A8/A9 samples incubated at pH 2.0, oligomeric species and protofilaments also emerged in 2 weeks and flexible fibrils with height of ca. 4−5 nm and microns in length together with straight and rigid fibrillar structures a few hundred nanometers in length after 4 weeks, all closely resembling the ex vivo species.  It is important to note that Ca2+ and Zn2+ play a critical role in promoting amyloid assembly of S100A8/A9 proteins. As ex vivo corpora amylacea deposits are calcified and contain zinc salts, these ions can play a critical role in S100A8/A9 amyloid formation in vivo. Indeed, after 2 weeks of incubation the S100A8/A9 amyloid protofilaments of ca. 2 nm height were assembled in the presence of 10 mM ZnCl2 and in a suspension of Ca3(PO4)2 [15], but not when EDTA was added in solution. These species were converted into the fibrillar assemblies after 4 weeks of incubation, and again no filamentous structures were developed in the presence of EDTA.  The bundles of amyloid fibrils of S100A8/A9 proteins, formed both in vivo and in vitro (Figure 7.4F), are amongst the largest reported amyloid supramolecular species. The lateral association and thickening of the fibrils is likely to be a contributing factor to their stability in the prostate gland. It has been suggested that the various functions of the S100A8/A9 hetero- and 
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homo-oligomers may be regulated by their differential protease sensitivity [20]. The hetero-oligomeric complexes of S100A8/A9 are characterized by significant stability and protease resistance comparable to that of prions. In the protease rich environment of the prostate gland, and especially at sites of inflammation, where proteases are present at even higher levels, protease resistance of the S100A8/A9 proteins could favour their accumulation and conversion into amyloid structures. If so, the amyloid structures formed by the S100A8/A9 can be at the extreme end of the scale of resistance to proteolysis. As prostatic fluid is very rich in protein content, small quantities of other proteins were also found in the corpora amylacea inclusions, presumably being trapped in the aggregating and growing deposits. Among them, the finding of Escherichia coli DNA and Escherichia coli proteins indicates that 
corpora amylacea formation may be associated with bacterial infection, causing consequently inflammation in surrounding tissues during the course of corpora amylacea establishment and growth. The identification of the highly amyloidogenic bacterial co-chaperonin GroES can be related not only to the fact that bacterial infection is a contributory factor to inflammation, but also suggests the potential role of bacterial infection in the initiating of the amyloid depositions via seeding [95]. As a result, a self-perpetuating cycle can be triggered in the ageing prostate, leading ultimately to amyloid growth. The increasing concentration of aggregation-prone proteins in the sites of inflammation would favor their amyloid assembly and deposition, as amyloid formation is a concentration-dependent process. This can be further promoted by the presence of calcium and zinc salts abundant in corpora amylacea and S100A8/A9 in turn can themselves regulate their own calcification. In the course of corpora 

amylacea growth, neighboring acini are obstructed, exacerbating inflammation and enhancing the risk of neoplastic transformation. Thus, the 
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direct involvement of pro-inflammatory S100A8/A9 proteins in corpora 

amylacea biogenesis emphasizes their role in the age-dependent prostate remodeling and accompanied ailments. 
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8.1. Summary The EF-hand protein S100A2 is a cell cycle regulator involved in tumorigenesis, acting through regulation of the p53 activation state. Metal ion free S100A2 is homodimeric and contains two Ca2+ binding sites and two Zn2+ binding sites per subunit, whereby the Zn2+ ion binding to one of the sites is coordinated by residues from two homodimers. The effect of selective binding of these metal ions was investigated using site specific mutants which lack one or both zinc sites. Circular dichroism analysis of secondary structure changes upon metallation have shown that Zn2+ binding is associated with a decrease in the secondary structure content, whereas Ca2+ has the opposite effect in two of the three S100A2 mutants studied. The energy of unfolding (ΔGU) of the apo wild type S100A2 was determined to be 89.9 kJ/mol, and the apparent midpoint transition temperature (Tmapp) 58.4°C. In addition, a detailed study of the urea and thermal unfolding of the S100A2 mutants in different metallation states (apo, Zn2+ and Ca2+) has been performed. Thermal denaturation experiments showed that Zn2+ acts as a destabilizer and Ca2+ as a stabilizer of the protein conformation. This suggests a synergistic effect between metal binding, protein stability and S100A2 biological activity, according to which Ca2+ activates and stabilizes the protein, the opposite being observed upon Zn2+ binding. 
8.2. Introduction S100A2 is a member of the S100 protein family, the largest subgroup within the superfamily of Ca2+-binding EF-hand proteins. Human S100A2 is a 22 kDa homodimer, expressed mainly in the kidney, liver, heart and skeletal muscle [1]. Notably, the cellular localization of S100A2 is restricted to the nucleus [2-3]. S100A2 was found to be a tumor suppressor protein [4], which is down-regulated by promoter hypermethylation in breast and prostate cancers [5-6]. Its tumor suppressor activity is directly linked to p53, which is 
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Figure 8.1 - S100A2 subunit topology, including
the location of cysteines and other Zn2+-
coordinating residues [8, 12]. Boxes represent α-helices and arrows represent β-strands. 

activated by binding of S100A2, in a Ca2+-dependent manner [7] (Kd(Ca2+) ~ 100 μM). Each S100A2 protomer is composed of two tandem Ca2+-binding helix-loop-helix EF-hands [8], of which the N-terminal one has a consensus sequence that is specific to S100 proteins (Figure 8.1). Like in other cases, the binding of Ca2+ to S100 proteins is known to induce structural changes: helix III rotates approximately 90º, exposing an inter-helical hydrophobic protein interaction site [9-11]. Zn2+ ions bind in two surface sites [12]. Site 1 has higher affinity and is composed of Cys21 and very likely His17, Gln22 and a solvent molecule. Site 2 comprises Cys2 and involves two S100A2 dimers. Both Ca2+ and Zn2+ are able to bind simultaneously to S100A2 as two Ca2+ binding events are detected when titrating the Zn2+ saturated protein [12]. Within the S100 family, Zn2+ has unique roles in S100A2 whose molecular basis remains to be established: i. Zn2+ binding is not common to family members and S100A2 exhibits the second highest Zn2+ affinity (Kd = 25 nM, close to S100A3, with Kd = 4 nM [13]), making S100A2 a more sensitive sensor for Zn2+, rather than for Ca2+ ; ii. Zn2+ binding to the low affinity Cys2 site triggers dimerization of dimers, which is exclusive to S100A2; iii. physiologically relevant Zn2+ concentrations decrease the Ca2+ affinity, upon binding to the same Cys2 site [12]. The latter regulatory mechanism suggests that Zn2+-loaded S100A2 (Kd,1(Ca2+) = 832 μM Kd,2(Ca2+) = 17 mM [12]) cannot activate p53, as physiological free Ca2+ concentrations do not exceed 100-300 μM [14-16]. This indicates that down-regulation of S100A2 takes place also at the 
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post-translational level. In order to further explore the interplay between Zn2+ and Ca2+ binding to S100A2 and to address how metallation affects the protein conformation and stability we have investigated the effects of metal ions on the wild type protein and on mutants lacking one or both Zn2+-binding sites. A detailed knowledge on how Zn2+ ions modulate the conformation and stability of S100A2 by will contribute to a better understanding of the regulation of protein function by metal ions, in particular as a putative Zn2+ sensor. 
8.3. Materials and methods 

8.3.1. Proteins Wild type human S100A2 and mutants C2S and ΔCys (C2S-C21S-C86S-C93S) were expressed in E. coli and purified to homogeneity, as described elsewhere [12]. 2 mM Tris/HCl pH 7.0 was used throughout. All solutions were prepared in Chelex (Sigma, Steinheim, Germany) treated water and buffers were oxygen-free. Noteworthy, previous studies have determined that the cysteine to serine substitutions do not compromise the overall fold [12, 17].  
8.3.2. Preparation of apo and metal loaded mutants The proteins containing cysteines were reduced prior to all experiments as described elsewhere [12] and quantified spectrophotometrically (ε275, wt = 3050 M-1.cm-1; ε280, C2S = 3105 M-1.cm-1 and ε280, ΔCys = 2980 M-1.cm-1). Zn2+ was added as 1 or 2 molar equivalents to the S100A2 monomer in order to fill only the high affinity or both sites. Ca2+ was added as 10 molar equivalents. Metal chloride salts were used (Fluka, Steinheim, Germany). For CD and fluorescence measurements in the presence of metals, the protein samples were equilibrated 1 h at 4°C, after the addition of the metal. 



Chapter 8 

200 

8.3.3. Circular dichroism spectroscopy CD measurements were recorded in a Jasco J-815 spectropolarimeter equipped with a Peltier-controlled thermostated cell support. Thermal denaturation experiments were carried out increasing the temperature from 25 to 95°C at a heating rate of 1°C/min. Changes of the CD signal at 222 nm were plotted as a function of temperature and the Tmapp was determined from fitting to single or the sum of two sigmoidal curves. Protein concentration was 0.1 mg/ml. Thermal denaturation was irreversible. However, no kinetically controlled steps affected protein unfolding as the Tmapp was independent of the heating rate for S100A2-ΔCys (not shown), like observed in a system undergoing reversible unfolding. Therefore, the determined Tmapp are those of a pseudo-equilibrium and are suited for comparative purposes between the mutants studied. The thermal denaturation kinetics (25-65°C temperature jumps) of the single Zn2+ site mutant S100A2-C2S was investigated in the apo and Zn2+-loaded (1:1) state, following the decay of the CD signal at 225 nm. This mutant preserves Zn2+ site 1, present in all S100A2 mutants, and does not tetramerize because it lacks site 2. Protein concentration was 0.2 mg/ml.  
8.3.4. Fluorescence spectroscopy Intrinsic tyrosine fluorescence measurements were performed on a Varian Cary Eclipse instrument. Temperature was kept at 25°C by a Peltier-controlled cell support. Emission spectra upon 275 nm excitation were recorded using 10 nm excitation and emission slits. 
8.3.5. ATR FT-IR spectroscopy ATR FT-IR measurements were performed in a Bruker IFS 66/S spectrometer equipped with a nitrogen-cooled MCT detector using the thermostatized Harrick BioATRcell II. Spectra were acquired at a 4 cm-1 resolution. Difference spectra were calculated after vector normalization of 
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the absorbance in the amide I – amide II region. Different metallated forms of S100A2 mutants were prepared by in situ dialysis using the manufacturer’s accessory. Apo protein samples (~10 mg/ml) were dialysed at 20°C against 5 mM Tris/HCl pH 7 23 mM NaCl. 10 molar equivalents of Ca2+ were added in the same buffer with NaCl concentration adjusted to equalize the ionic strength. Thermal denaturation experiments consisted of increasing the cell temperature from 20 to 94°C. The heating rate was discontinuous (average ~1.3°C/min) as a result of stepwise spectrum acquisition (every 2°C, acquisition time: 1 min). Denaturation curves were obtained by plotting spectra 2nd derivative values at local maxima or minima as a function of temperature. 
8.3.6. Chemical denaturation Protein unfolding was studied by monitoring the variation of CD at 222 nm or fluorescence intensity at 305 nm, at 25°C, as a function of urea concentration. Fresh urea (Riedel-de Haën, Seelze, Germany) solutions were used for every assay and the rigorous concentration was determined using refractive index measurements [18]. Apo or metallated protein samples (0.1 mg/ml) were incubated 2 h at room temperature for complete chemical denaturation. The influence of protein concentration on the Cm was assessed in the 0.08-0.25 mg/ml range. Denaturation was reversible for all cases as urea dilution of the completely denatured protein yielded protein with native state spectra. 
8.3.7. Dynamic light scattering The molecular diameter of S100A2 mutants in different metallation conditions (0.1 mg/ml) was assessed using a Malvern Instruments Zetasizer Nano ZS instrument equipped with a 633 nm laser. Temperature was kept at 25°C using a Peltier-controlled thermostatized cell support. Before each 
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measurement, samples were filtered through a 0.22 μM membrane. For each time measurement, the backscattered light (173°) from fourteen 10 s accumulations was averaged. Results were analyzed with Malvern Instruments DTS software using a multimodal fit with quadratic weighting and 0.01 regulariser. Size results are from the Mie theory derived volume distribution of sizes. When available, error bars are the standard deviations from at least 3 replicate measurements. 
8.4. Results and discussion 

8.4.1. Structural changes upon Ca2+ and Zn2+ binding In order to investigate the effect of Ca2+ and Zn2+ ions on the structure of S100A2, two previously characterized mutants [12] were studied together with the wild type protein. Cysteine residues, which are part of the two S100A2 Zn2+ sites (Figure 8.1), have been replaced by serines in mutants C2S and ΔCys (all 4 cysteines in each subunit are replaced by serines). Each mutant has therefore a different number of available Zn2+ sites: whereas S100A2-wt has two sites, S100A2-C2S only preserves one high affinity site and S100A2-ΔCys is devoid of specific Zn2+ sites. These mutations do not affect the Ca2+ affinity [12], thus allowing analyzing the Zn2+ role upon binding to the available sites. These S100A2 mutants were investigated in the apo and in holo forms corresponding to different metallated states at 25°C using far-UV circular dichroism (CD) (Figure 8.2). The CD spectra of all protein preparations are typical of α-helix proteins, with local minima at 208 and 222 nm and local maxima at 195 and 215 nm, in agreement with the ΔCys-S100A2 crystal structure [8] and other structural data [12, 17, 19-21]. This observation also corroborates the previous observation that the cysteine replacements do not affect the overall protein fold [12]. 
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Figure 8.2 - CD spectra of S100A2 wt (A), C2S (B) and ΔCys (C) in several metal load conditions: apo (thick solid line), 1 Eq Zn2+ (dot), 2 Eq Zn2+ (dash), 10 Eq Ca2+ (thin solid line), 1 Eq Zn2+ plus 10 Eq Ca2+ (dash dot) and 2 Eq Zn2+ plus 10 Eq Ca2+ (dash dot dot). Binding of Zn2+ to S100A2-wt and S100A2-ΔCys does not elicit significant secondary structure changes (Figure 8.2AC). In the latter case, this is justified by the absence of Zn2+ sites, although the far-UV CD spectrum is sensitive to unspecific Zn2+ binding to this mutant (data not shown). On the other hand, Zn2+ binding to the S100A2-C2S mutant produced a concentration-dependent decrease of secondary structure (Figure 8.2B) upon addition of 1 and 2 Zn2+ equivalents, respectively. Binding of Ca2+ to S100A2-wt and S100A2-ΔCys results in an increase in the α-helical content (Figure 8.2AC). An opposite effect is observed in the S100A2-C2S mutant (Figure 8.2B). The highest increase in secondary structure occurs when both Ca2+ and Zn2+ are added to the wild type protein (Figure 8.2A). In order to investigate the possibility that the observed variations in secondary structure resulting from metallation with Ca2+ and Zn2+ are due to a change in the oligomeric state of the proteins or aggregation, we carried out dynamic light scattering (DLS) studies. We have detected average molecular diameters around 5-5.5 nm, irrespectively of mutation or metal load (Figure 8.3), consistent with the structure of apo S100A2 [8]. The 
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Figure 8.3 - Molecular 
diameter of the apo and 
metallated S100A2 variants as 
assessed by DLS. When available, results are average ± standard deviation of at least 3 replicate measurements. Sizes are derived from the volume-averaged distribution of sizes. There is no measurement of S100A2-ΔCys +2 Eq Zn2+because the protein aggregates. 

diameter of S100A2-wt +2 Eq Zn2+ is slightly higher (6.4 nm), reflecting partial tetramerization. 
8.4.2. Chemical stability of holo and apo S100A2 proteins The conformational stability of S100A2-wt and mutants, in the apo and distinct metallated states was investigated by performing urea denaturation experiments. For all proteins, the far-UV CD spectra obtained at increasing urea concentrations denoted a transition from α-helix to random conformations, apparently via intermediate β-sheet structures (Figure 8.4A). To extract thermodynamic information from protein denaturation curves the unfolding mechanism has to be known. For single domain dimeric proteins like S100A2, this process may be hypothesized to comprise two steps: the dissociation of the native dimer into folded monomers which in turn undergoes denaturation. However, the chemical denaturation of S100A2 could be rationalized using a simple two state unfolding mechanism, where the unfolding of the folded dimer (F2) yields denatured monomer (U) directly: F2  2U  (1) 
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Figure 8.4 - Circular dichroism-monitored urea chemical denaturation curves of
S100A2. Representative spectra of Ca2+-loaded S100A2-wt at increasing urea concentration(0 - 7.5 M), as indicated by the arrow (A). Displacement: 0.1 M-1.cm-1. Denaturation curves ofwt (B), C2S (C) and S100A2-ΔCys (D) in several metal load conditions: apo ( ), 1 Eq Zn2+ ( )and 10 Eq Ca2+ ( ). 

This mechanism is supported by several criteria: i. No intermediate species were detected in none of the denaturation curves (Figure 8.4); ii. The Cm of apo wt and S100A2-ΔCys increased with protein concentration (not shown), and; iii. Denaturation curves of the latter mutant obtained by CD and intrinsic tyrosine fluorescence were superimposable (not shown) [22]. Accordingly, the mechanism in equation 1 was used to derive the thermodynamic parameters, using the formalism established by Grant et al. [23] (Figure 8.4B-D, Table 8.1, Table 8.2). 
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Table 8.1 - Thermodynamic stability parameters for the apo S100A2 variants 

 [Urea]1/2
(M) 

ΔGU 

(kJ/mol) 
m  

(kJ.mol-1 M-1)
ΔΔGUa 

(kJ/mol) 

Wt 4.7 89.9 13.0 - 
C2S 4.5 78.9 11.2 -2.3 
ΔCys 4.2 71.8 10.3 -5.8 aΔΔGU = Δ�[Urea]1/2 × maverage [18]  

Table 8.2 - Thermodynamic stability parameters for the S100A2 variants in the apo, 

Zn2+ (1:1) and Ca2+ (10:1) metallated states. 

 S100A2-wt S100A2-C2S S100A2- ΔCys 

 [Urea]½ (M) ΔGU (kJ/mol) m  (kJ.mol-1.M-1) ΔΔGUa(kJ/mol) [Urea]½(M) ΔGU (kJ/mol) m  (kJ.mol-1.M-1) ΔΔGUa(kJ/mol) [Urea]½ (M) ΔGU (kJ/mol) m  (kJ.mol-1.M-1) ΔΔGUa(kJmol)
Apo 4.7 89.9 13.0 - 4.5 78.9 11.2 - 4.2 71.8 10.3 - 
Zn2+ 2.5 35.1 3.5 -14.2 4.0 50.1 5.3 -3.9 4.1 68.2 9.7 -0.8 
Ca2+ 3.9 40.3 2.9 -5.2 4.8 62.4 7.0 +2.4 4.3 51.8 5.3 +0.8 aΔΔGU = Δ�[Urea]1/2 × maverage [18]    A two state unfolding mechanism has also been reported for human S100B [24] and porcine S100A12 [25]. All stability parameters extracted from denaturation curves (Figure 8.4B-D, Table 8.1, Table 8.2) were found to be within the typical range for small dimeric proteins [26] and, in particular, in accordance to thermodynamic data reported on human S100B [24] and porcine S100A12 [25]. The ΔGU of the apo S100A2-wt was 89.9 kJ/mol and S100A2-C2S and ΔCys were destabilized by -2.3 and -5.8 kJ/mol in respect to the wild type (Table 8.1). The data suggest identical unfolding mechanisms for all three apo proteins as neither the transition cooperativity (m index) nor the shape of the far-UV CD spectra at different urea concentrations (not shown) were significantly affected. Thus, meaningful information on the thermodynamic stability of the Ca2+- or Zn2+- loaded mutants can be retrieved from analyzing 
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metallation effects within the background of the same mutation (Table 8.2). With the exception of Zn2+-loaded S100A2-ΔCys, which is devoid of Zn2+ sites, the metallated states exhibit a decreased cooperativity of the unfolding transition. This suggests that in such cases the amount of surface area being exposed during urea unfolding is lower than in the apo state and/or that metal binding increases the subpopulations of native protein with slightly different conformations.  However, occupation of the metal sites by Zn2+ or Ca2+ ions has a distinct effect on the protein stability. Metallation of the high affinity Zn2+ site of S100A2-C2S has a destabilizing effect of -3.9 kJ/mol, while the same stoichiometric Zn2+ amount destabilizes the wild type protein by -14.2 kJ/mol. This large destabilization probably arises from residual binding of Zn2+ to the low affinity site, which is known to promote exposure of hydrophobic surfaces [12]. In contrast, binding of Ca2+ stabilizes the mutants by +0.8 or +2.4 kJ/mol, while destabilizing the wild type protein by -5.2 kJ/mol. Some point mutations are known to exert long range effects in S100 proteins because of their effect in hydrogen bond networks [27]. It is reasonable to hypothesize that the same applies to the S100A2 mutants under study. The lower unfolding cooperativity of the Ca2+-loaded samples suggests a concurrent opening of the EF-hands, resulting in a decreased exposure of the surface area during unfolding.  
8.4.3. Thermal stability of holo and apo S100A2 proteins We have complemented the chemical denaturation study by performing analogous temperature-induced unfolding assays. For all proteins, increasing the temperature results in a progressive α-helix to random coil transition (Figure 8.5A). No notorious protein precipitation was observed, suggesting that other non-reversible modification may occur at high temperatures. This differed from the urea unfolding, precluding a detailed thermodynamic analysis, and is suggestive of distinct pathways for chemical and thermal 
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unfolding. Nevertheless, a comparison of the apparent midpoint transition temperature (Tmapp) obtained for the different metallated states is very informative in respect to the effect of each metal in the stability of each protein mutant (Table 8.3). Apo S100A2-wt and S100A2-ΔCys have a very similar Tmapp of 58.4°C and 59.5°C, respectively, which are lower than the Tmapp value of 66.6°C of S100A2-C2S. The outlying behavior of apo S100A2-C2S may result from long 

 
Figure 8.5 - Circular dichroism-monitored thermal denaturation of S100A2. Representative spectra of apo S100A2-wt at increasing temperatures (25-85°C), as indicated by the arrow (A). Displacement: 1.2 M-1.cm-1. The native and denatured form spectra are representative for all thermal denaturations. Thermal denaturation curves of wt (B), C2S (C) and S100A2-ΔCys (D) in several metal load conditions: apo ( ), 1 Eq Zn2+ (+), 2 Eq Zn2+ (×), 10 Eq Ca2+ ( ) and 1 Eq Zn2+ plus 10 Eq Ca2+ ( ). 
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Table 8.3 - Apparent Tm values determined from CD-monitored thermal denaturation curves of S100A2 variants. The aggregation of S100A2-ΔCys incubated with 2 Eq Zn2+ occurs during the temperature ramp. 
 Tmapp (°C)  Apo +Zn2+  

(1:1) 
+Zn2+ 
(2:1) 

+Ca2+ 
(10:1) 

+Zn2+

+Ca2+ 
(1:10:1)

+Zn2+

+Ca2+ 
(2:10:1)

wt 58.4 56.6 56.6 68.1 65.0 n. d. 
C2S 66.6 53.9 50.6 ~42> 80 n. d. 76.8 
ΔCys 59.5 58.1 Aggregates ~75> 85 ~65> 81 Aggregates range mutation effects [27], which are not observed in the other mutants. Considering these aspects, the relevant comparisons will relate with differences observed upon selective metallation, within the same mutant. Interestingly, Ca2+ and Zn2+ metallation showed antagonistic effects in thermal stability (Figure 8.5B-D). Zn2+ ions had a destabilizing effect, which was concentration dependent in S100A2-C2S, in agreement with the observed decrease in secondary structure content. The destabilization arose from the metal-induced conformational change because no kinetic distortions affected the Zn2+-induced conformational destabilization. Binding of Zn2+ to the unfolded state could have caused cause a shift in the equilibrium, but this effect is only significant at a large excess of Zn2+ [28], which is not the case in our experiments (a maximum of 1 or 2 Zn2+ equivalents were used). Also, the kinetics of thermal denaturation did not vary significantly between apo, and Zn2+-loaded S100A2-C2S (see methods). The Ca2+-loaded proteins exhibit an increased Tmapp, although the mutants have at least one unfolding intermediate in the denaturation curves. The increased stability of Ca2+-loaded proteins likely resides in the electrostatic compensation at the negatively charged Ca2+-binding sites. The opposite effect of both metals on the thermal stability prompted us to study Ca2+ and Zn2+ ions in combination. In S100A2-wt, where all binding 
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sites are available, metal ion effects are dominated by the Ca2+ contribution. In fact, an intermediate stability in respect to the Zn2+ destabilization (ΔTmapp= -1.8°C) and Ca2+ stabilization (ΔTmapp= +9.7°C) is determined when Zn2+ and Ca2+ are combined (ΔTmapp= +6.6°C) (Figure 8.5B). It can be hypothesized that the two thermal transitions of Ca2+-loaded S100A2-C2S correspond to unfolding of different structural regions, the transition at ~ 42°C (Figure 8.5C) corresponding to unfolding at the N-terminal EF-hand, as it is stabilized by Zn2+ binding at the adjacent site 1 (Figure 8.1). Such stabilization is not observed in S100A2-ΔCys (Figure 8.5D), which has no specific Zn2+ sites. In this case, unspecific Zn2+ binding is likely to result in destabilization without changing the shape of the denaturation curve. Complementarily to the CD experiments, the thermal denaturation of S100A2-ΔCys was followed by FT-IR. The absorbance change at the amide I (1600-1700 cm-1) and amide II (1500-1600 cm-1) bands was used to probe the unfolding, monitoring secondary structure elements. As shown above, this mutant does not bind Zn2+, so we have carried out a study of the apo and Ca2+-loaded forms of ΔCys-S100A. In both conditions, denaturation consisted of transition from α-helical (~1650 and 1550 cm-1) to random (1525 cm-1) and β structures (~1622 cm-1) (Figure 8.6AC). The latter vibration is associated with intermolecular β-sheets and aggregation. The formation of insoluble β-sheet containing aggregates is most certainly an important contributor to the irreversibility of the thermal denaturation. The denaturation curves of the above-mentioned structural elements are compatible with the CD results, and further corroborate a two-state unfolding process. All secondary structure elements of apo S100A2-ΔCys exhibit similar profiles, with Tmapp ranging from 67-71°C. The unfolding of the secondary structure elements of Ca2+-loaded S100A2-ΔCys also occurs  
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Figure 8.6 - ATR FT-IR-monitored thermal denaturation of S100A2-ΔCys in the apo (A,B) and Ca2+-loaded forms (C,D). Representative difference spectra at increasing temperature (20-94°C), as indicated by the arrows (A and C). Thermal denaturation curves for the apo (B) and Ca2+-loaded protein (D) are derived from the 2nd derivative trend with temperature. simultaneously, and at a Tmapp > 80°C. Again, a very good agreement with the far-UV CD data is observed. 

8.5. Conclusions In this work we have characterized how the conformation and stability of S100A2 is influenced by specific metal ions, Zn2+ and Ca2+. In particular, considering the unique role of Zn2+ in S100A2, we have dissected the contribution arising from Zn2+ binding using two mutants, which selectively 
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disrupt the low and the high affinity Zn2+-binding sites, as models. We have observed that the S100A2 conformation is sensitive to the metallation state, although it retains essentially an α-helical structure. Chemical denaturation suggests that both Zn2+ and Ca2+-associated conformational changes facilitate the accessibility of urea to the protein core, leading to destabilization. Thermal denaturation suggest that Zn2+ and Ca2+ regulate protein thermal stability antagonistically, being Zn2+ a destabilizer and Ca2+ a stabilizer. Similarly, Ca2+ stabilizes and Cu2+ destabilizes S100A13 towards thermal perturbation [29]. Other studies highlight distinct regulatory mechanisms of S100 proteins by metals ions. For example, Ca2+ was shown to stabilize human S100B towards denaturation by guanidinium hydrochloride [23] and porcine S100A12 was shown to be stabilized by Ca2+ and Zn2+ towards thermal denaturation [25]. The behavior of Zn2+-Ca2+-loaded S100A2 in the thermal unfolding experiments indicates that Ca2+ can at least partially revert the conformational destabilization triggered by Zn2+ binding to the high affinity site. These effects of metal ions on S100A2 folding and stability contribute to a better understanding to the Ca2+ and Zn2+ dependent regulation of the protein. In the Ca2+-loaded state S100A2 binds and activates p53 [7]. However, Zn2+ negatively regulates the affinity of S100A2 for Ca2+ binding [12], which might disable the Ca2+ signal, resulting in a blockage of p53 activation. The mechanism of how Zn2+ may decrease the Ca2+ affinity remained unresolved in our previous study [12]. The results of the present work reveal that the decrease in Ca2+ affinity through Zn2+ is presumably a result of the general destabilization of the protein. Further contributions might come from the exposure of a hydrophobic surface on Zn2+ binding [12], making additional exposure of the hydrophobic surface induced by Ca2+ less favourable. 
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Zn2+ binding to close homologues of S100A2, such as S100A3 [13] and S100A4 (G. Fritz and M. Koch, unpublished data), also occurs mainly via cysteine residues. It remains to be shown whether Zn2+ binding to S100A3 and S100A4 also results in a decrease in protein stability. In S100A3, Zn2+ binding causes the loss of approximately 40% of the a-helical structure [13], supporting destabilization of the protein. In contrast with S100A2, other S100 proteins, such as S100A12 and S100B, display an increased Ca2+ affinity on Zn2+ binding [30-31]. Future investigations might show whether, in these S100 proteins, Zn2+ increases the conformational stability, thereby facilitating the Ca2+ conformational change. Together, the data presented here provide new insights into the mechanism of Zn2+- and Ca2+- dependent activation of S100 proteins. The antagonistic effect of Zn2+ and Ca2+ in the control of S100A2 stability provides a molecular rationale for the action of both metal ions. Our results allow the formulation of the following hypothesis: in tissues expressing S100A2, the Zn2+ imbalance which arises in some cancers may contribute to enhanced cell proliferation through destabilization of S100A2. This mechanism would impair the interaction with p53, and disrupt subsequent downstream cell cycle regulation. Indeed, Zn2+ transporters are upregulated in breast carcinoma and pancreatic tumours [32-33] leading to elevated Zn2+ levels [34-36], which may impair Ca2+ binding to S100A2 [12]. Current work in our laboratories will allow the testing of this hypothesis. 
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9.1. Summary S100 proteins constitute a protein family with structurally homologous elements exhibiting a high degree of conformational plasticity. They are signaling proteins coupling calcium binding to conformational changes and interaction with other proteins, sometimes requiring functional oligomerization. In this respect, the recently identified amyloid forming properties of S100A8/A9 raised the possibility of a new level of conformational regulation in these proteins. We have assessed the amyloidogenic potential of selected human S100 proteins using thioflavin T fluorescence enhancement and FT-IR spectroscopy and found that apo S100A2, S100A3, S100A4, S100A6 and S100B promptly form amyloid structures under acidic conditions. Atomic force microscopy imaging has revealed distinct amyloid structures for each protein: oligomeric (S100A6, S100B), protofibrilllar (S100A2) and fibrillar (S100A3). S100A12, which did not form ThT-reactive species, nevertheless formed aggregates. Here, we dissect the amyloidogenic processes of S100A6 and S100B using FT-IR, thioflavin T fluorescence and circular dichroism. These results are framed in respect to the phylogeny of S100 proteins and in the computed amyloidogenic potential. We propose that members of the S100 family are intrinsically amyloidogenic, a phenomenon with possible implications in human pathology. 
9.2. Introduction The S100 protein family is a remarkable example of conformational plasticity, wherein the binding of metal ions, most frequently calcium, triggers conformational transitions rendering the protein capable of binding other signaling polypeptides and fulfill distinct functions depending of the partner. Subtler effects occur when metal binding at specific sites influences binding properties elsewhere (e. g. positive calcium binding cooperativity or 
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the influence of zinc on calcium binding affinity). Within specific S100 proteins, dimerization may be promiscuous, with S100A1, S100A4, S100A6, S100A7, S100A8, S100A9, S100A10, S100A11, S100B and S100P accommodating heterodimerization partners. Moreover, the dimeric S100 building block may also form higher order assemblies, namely tetramers, hexamers and octamers. Recently, novel conformational properties of S100 proteins were uncovered as S100A8/A9 were implicated in amyloidogenic processes in the prostate [1]. Calcium and zinc-rich amyloid deposits named corpora amylacea were shown to be mainly composed of S100A8 and S100A9 in the amyloid form. The co-deposition of bacterial proteins and macrophage recruitment suggested that S100 amyloidogenesis could be associated with inflammatory processes, associated with prostate cancer onset. The importance of metal ions in the amyloidogenic conversion was established as pathological-like protein fibrils could be assembled in vitro in the obligatory presence of calcium or zinc. Importantly, corpora amylacea exist in the normal brain and are mainly composed of S100 proteins, raising the possibility of S100 fibrillization being a general process with possible implication in other pathologies. The S100 protein family is composed of more than 20 members in humans. Despite remarkable sequence and structural similarities [2], S100 proteins exhibit a high degree of functional specialization, including specific cell and tissue expression patterns. Due to their altered expression level changes, they are frequently used as clinical markers for cancer, although mis-regulation is also common in cardiomyopathy, inflammation and neurodegeneration [3]. In accordance, if the amyloidogenic properties of S100A8/A9 were shared by other family members, there would be putative implications in these diseases. Fibrillization in amyloid structures has been suggested to be a general feature of all proteins [4]. The distinct amyloid-permissive conditions for 
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each protein are then responsible for the different amyloid propensities among different proteins. Structural studies have revealed a staggering similarity of fibrils built by different proteins at the microscopic as well as at the molecular level. These observations have allowed understanding the ubiquitous fibrillization accessibility as the outcome of being the backbone and not the amino acid side chains the responsible for the interactions polymerizing individual polypeptides in the fibril. Nevertheless, like all biophysical properties of proteins, the amyloidogenic propensity depends on the overall protein chemistry, set up by its sequence. No single physicochemical property can account for the amyloidogenic propensity of a protein [5]. Currently, the best assessments of amyloidogenic potential are based either on the physicochemical amino acid properties (e. g. TANGO [6]), the combination of amyloid-prone pattern recognition with physicochemical properties and homology modeling (e. g. WALTZ) or the correlation of aggregation rate changes upon mutation and polypeptide physicochemical properties (e. g. Zyggregator [7]). For the characterization of amyloid processes, numerous biochemical, biophysical and spectroscopic methodologies can be used to probe the varying properties of proteins during the amyloid assembly process. Based on published data on the biology of S100 proteins and the recently described amyloidogenic properties of S100A8/A9 we have analyzed the amyloid formation propensity of the human S100 proteins, finding widespread amyloid-prone regions in several family members. From this initial result, we have screened several S100 family members with distinct biochemical and functional properties for their amyloidogenic potential at acidic pH. We have observed that several S100 proteins promptly form amyloid structures with very distinct morphologies. We report a structural characterization of the tested S100 amyloids. We discuss the putative 
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widespread amyloidogenic nature of the S100 family and its implications in disease. 
9.3. Materials and methods 

9.3.1. Chemicals and proteins All reagents were of the highest grade commercially available. Thioflavin T was obtained from Sigma. Trace metals were removed from all solutions by solution treatment with a chelex resin. S100 proteins (S100A2, S100A3, S100A4, S100A6, S100A12 and S100B) were expressed in E. coli and purified to homogeneity as described previously [8]. Molar protein concentrations refer to the S100 subunit. Hen egg white lysozyme was obtained from Fluka. 
9.3.2. Amyloid propensity assessment Amyloid formation propensities of human S100 proteins at pH 7 were assessed using the Zyggregator (http://www-vendruscolo.ch.cam.ac.uk/zyggregator_test.php) [7, 9] and Waltz (http://waltz.vub.ac.be/) online servers. In Zyggregator, both the intrinsic amyloid aggregation propensity (Zagg) and the oligomerization tendency (Ztox) were retrieved. In Waltz, best overall performance settings were selected. For data comparing, S100 sequences were aligned in ClustalX [10] and GeneDoc [11]. 
9.3.3. Amyloid formation assays S100 proteins were placed in 50 mM Glycine buffer pH 2.5 by repeated dilution and re-concentration. Sample temperature was kept at 4°C at all times before amyloid formation assays. Protein concentration was set at 3 mg/ml using Bradford’s method [12]. Due to spontaneous and extensive aggregation in aerobic conditions, S100A3 (4 mg/ml) was previously reduced with 25 mM TCEP overnight. Any pre-existing aggregates were pelleted and removed by centrifuging at 12000 g for 10 minutes. Amyloid 
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formation was promoted by quiescent incubation at 57°C. The positive control for amyloid formation was hen egg white lysozyme, at 10 mg/ml in the same buffer and incubated at 57°C, a previously validated assay [13]. The structural characterization of S100B amyloid formation was carried out at 10mg/ml protein concentration.  
9.3.4. Thioflavin T fluorescence ThT binding assays were performed according to [13]. Briefly, 5 µl of protein sample were mixed with 65 µM ThT in 10 mM potassium phosphate (KPi), 150 mM NaCl, pH 7.0 at room temperature to a final volume of 1 ml. Samples were incubated under stirring for 2 min and ThT fluorescence at 482 nm was recorded with a Cary Varian Eclipse instrument with temperature set at 25°C using a peltier-thermostated cell support. Excitation wavelength was 440 nm, PMT voltage 600 V, and excitation and emission slits 10 nm.  
9.3.5. Circular dichroism spectroscopy The folding and stability of S100A6 (0.1 mg/ml) at pH 7 (50 mM KPi) and pH 2.5 (50 mM glycine) were compared through far UV CD spectroscopy. Measurements were recorded in a Jasco J-815 spectropolarimeter equipped with a Peltier-controlled thermostated cell support. Thermal denaturation experiments were carried out increasing the temperature from 20 to 95°C at a heating rate of 1°C/min. The normalized Changes of the CD signal at 222 nm was plotted as a function of temperature and the Tmapp was determined from a sigmoidal fit. Denaturation was irreversible. Spectra in the 180-260 nm wavelength range were acquired at 25°C before and after heating, as well as at 95°C. Spectra were deconvoluted with CDNN. 
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9.3.6. Atomic force microscopy After reaching the plateau phase in amyloid formation kinetics, S100 samples were stored at 4°C and morphology was analyzed by AFM on a PICO PLUS 5500 microscope (Agilent) as previously described [14]. 
9.3.7. Dynamic light scattering For monitoring molecular size variations during amyloid formation at 57°C, S100 proteins (3 mg/ml in 50 mM glycine pH 2.5) were filtered through a 0.22 μM membrane and analyzed with a Malvern Instruments Zetasizer Nano ZS instrument equipped with a 633 nm laser. Temperature was kept using a Peltier-controlled thermostatized cell support. Kinetic data was obtained from continuously repeated measurements. In each measurement, the backscattered light (173°) from fifteen 10 s accumulations was averaged. Amyloid formation was assessed from light scattering intensity and the average particle size obtained from the intensity distribution. Results were analyzed with Malvern Instruments DTS software using a multimodal fit with quadratic weighting and 0.01 regulariser. 
9.3.8. ATR FT-IR spectroscopy Secondary structural changes occurring during S100B amyloid formation were monitored by ATR FT-IR measurements performed in a Bruker IFS 66/S spectrometer equipped with a nitrogen-cooled MCT detector using the thermostatized Harrick BioATR II cell. 10 mg/ml S100B in 50 mM glycine pH 2.5 were incubated at 57°C while spectra were continuously acquired (1 min accumulation time, 12 mm aperture, 20 kHz scanner velocity). Spectral resolution was 4 cm-1. Amyloid formation was assessed by the absorption ratio between the intermolecular β-sheet characteristic band at 1618 cm-1 and the amide I absorption maximum, occurring between 1642 and 1652 cm-1. Secondary structure quantification was based in the spectral deconvolution of the amide I band with lorentzian curves centered at second derivative 
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maxima of the self-deconvoluted spectra. Assignment of each lorentzian to secondary structure features took into consideration typical absorption regions [15]. Curve integration yielded the secondary structure estimations. 
9.4. Results 

9.4.1. Amyloidogenic potential of S100 proteins The amyloidogenic potential of a protein can be estimated at the amino acid residue level using different algorithms. We have used the WALTZ [16] and Zyggregator [7, 9] algorithms to calculate the intrinsic aggregation propensity of human S100 proteins. WALTZ computes the amyloid formation probability (as a percentage). Zyggregator can compute the fibrillization potential (Zagg score) as well as the propensity to form toxic β-rich oligomers (Ztox score). If the difference between the amyloidogenic potential of the query sequence and the one of a random sequence is expressed and the standard deviation, its value is the Zyggregator score. Accordingly, significant scores are the ones larger than the unity. In addition, Zyggregator scores can be averaged to yield an overall propensity. We have set up our calculations at pH 7.0 to assess the amyloidogenic at near physiological conditions (Figure 9.1).  

 
Figure 9.1 – Overall amyloid formation propensity of S100 proteins. Sequence-averaged scores, computed at pH 7.0. (A) Intrinsic aggregation propensity (Zagg). (B) Oligomeric assembly formation propensity (Ztox). Bars represent the score error. 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Z a
gg

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

Z t
ox

A B



Chapter 9 

226 

Figure 9.2 – Position-specific amyloidogenic potential of S100 proteins. Alignment ofhuman S100 protein sequences, showing the intrinsic aggregation propensity (Zagg) (A), theoligomeric assembly formation propensity (Ztox) (B) or the WALTZ high score regions (C) atpH 7.0. Zyggregator results (A-B) are color coded: values above the significance threshold (>1)are in shades of green. WALTZ scores (C) either equal zero or are above 92% (red shadedsequences). Shades of grey highlight sequence consensus. Cartoons represent the canonicallocation of secondary structure elements in S100 proteins. Cylinders represent helices andspheres represent the position of EF-hand calcium binding loops. 

Interestingly, for most S100 family members the fibrillization propensity (Zagg) is comparable with the one of Aβ peptides, forming amyloid deposits in Alzheimer’s disease: the overall aggregation scores for Aβ1–40 and Aβ1–42 at 
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pH 7.0 are 0.97 and 0.94, respectively [9]. These results thus evidence a rather high fibrillization propensity in the S100 family. The overall Ztox scores are low. To determine which protein sequences are contributing to this amyloidogenic propensity, we determined the position-specific Zyggregator and WALTZ scores (Figure 9.2). The position-specific Zyggregator scores (Figure 9.2AΒ) reveal that amyloidogenic regions are segregated at helices HI and HIV, which form the hydrophobic core of S100 proteins. Every family member displays a distinct location of amyloidogenic regions, not all of them being located at HI and HIV sites, but all family members display highly amyloidogenic regions. Interestingly, in contrast with the low overall values, almost all S100 proteins display regions with highly significant oligomerization propensities (Ztox >> 1). Exceptions are S100A8 and S100G. The overall low Ztox values are thus the consequence of the highly clustered oligomerization-prone regions in a mostly non-amyloidogenic context. The WALTZ score in S100 sequences was found to be either 0% or above 92%. Accordingly, we have defined WALTZ amyloidogenic and non-amyloidogenic sequences (red zones in Figure 9.2C), which are found in most S100 proteins: S100A1, S100A2, S100A3, S100A6, S100A8, S10A9, S100A10, S100A11, S100A12, S100A13, S100A16. More importantly, the Waltz amyloidogenic sequences also cluster around helix HI and HIV, in accordance with the Zyggregator analysis. 
9.4.2. S100 proteins form amyloid-like species in vitro Building on these initial observations and considering the fact that S100 proteins share a rather high chemical and structural identity, we have further addressed the hypothesis that amyloid formation could be a generalized property among the members of the S100 protein family. For this purpose, we have carried out a series of preliminary experiments in conditions identical to those assayed for S100A8/A9 (pH 2.5 and 57°C) to test if other S100 proteins (S100A2, S100A3, S100A4, S100A6, S100A12 and S100B) 
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would form thioflavin-T (ThT)-reactive amyloid species (Figure 9.3). These proteins are representative of the overall biological roles of S100 proteins: cell proliferation control /cancer (S100A2, S100A4, S100A6, S100B) [17], inflammation (S100A12, S100B) [18], cell motility (S100A4, S100B) [2], chemotaxis (S100A2, S100A12, S100B) [19-21] and RAGE activation (S100A2, S100A4, S100A6, S100A12, S100B) [22]. Lysozyme, a well studied amyloid-forming protein [13] was used as a positive control. After prolonged incubation (≥50 h) all tested S100 proteins – with the exception of S100A12 – promptly formed ThT-binding amyloid structures that resulted in increase of fluorescence intensity of ThT, comparable to that observed upon dye interaction with the lysozyme amyloids used as a positive control. The kinetics of amyloidogenesis was similar in all amyloid-forming S100 proteins. Near endpoint fluorescence values were reached within the first hours of incubation. Three kinds of behavior are observed: the ThT negative S100A12; the proteins forming amyloid from a ThT negative state, putatively native-like (S100A4, S100A6, S100B); and proteins exhibiting a 
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ThT positive signal even before thermal treatment (S100A2, S100A3). The latter case suggests that S100A2 and S100A3 are highly amyloidogenic, being particularly susceptible to pH acidification which can induce amyloid formation by itself. No lag phase was detected in any of the amyloid-forming samples, an indication of the highly amyloidogenic nature of these proteins. 
9.4.3. Morphology of S100 amyloids The characterization of amyloid structures requires a morphological description which complements the ThT information on enhanced β-sheet content. After reaching the plateau phase in the amyloid formation assays (Figure 9.3), S100 samples were adhered to mica and analyzed by atomic force microscopy (AFM), which allowed the detection of amyloid and other precursor structures (fibrils, protofibrils and disordered aggregates) (Figure 9.4). 

 
Figure 9.4 – Atomic Force Microscopy analysis of S100 amyloid morphology. 
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Surprisingly, despite the similar amyloid formation kinetics, all S100 proteins form quite distinct amyloid structures. S100A2 and S100A3, which had a high initial ThT fluorescence exhibit dissimilar structures: S100A2 presents an oligomeric/protofibrillar morphology and S100A3 is highly amyloidogenic, forming proper amyloid fibrils. S100A6 and S100B, which exhibit similar amyloid formation kinetics, rather than forming fibrillar structures, assemble in β-sheet rich oligomeric structures. Most striking is the morphology of S100A12. This protein did not bind ThT even after prolonged incubation at amyloid formation prone conditions but assembled in thin protofilaments. This indicates that despite the microscopic morphological resemblance to amyloid species, the ultrastructural details are distinct, with lower β-sheet content. This morphological analysis indicates that the conformational plasticity of S100 proteins is further evidenced by their amyloidogenic properties, leading to the formation of remarkably different structures despite sequence similarity within the same protein family. 
9.4.4. Structural characterization of S100B amyloidogenesis To gain further structural knowledge of S100 amyloidogenesis we have selected S100B, one of the most abundant proteins in the brain and thus naturally present in high concentration, which is one of the prerequisites for amyloidogenesis. Further, this protein is secreted at micromolar concentrations under particular conditions [23]. To this purpose, we have monitored S100B amyloid formation by Attenuated Total Reflectance Fourier Transform-Infra Red spectroscopy (ATR FT-IR), a particularly adequate technique for describing amyloidogenic processes due to its high intrinsic sensitivity to β structures (Figure 9.5). Due to sensitivity requirements, for this study we have increased the protein concentration to 10 mg/ml (versus 3 mg/ml in the ThT-derived amyloidogenesis kinetics), keeping all remaining experimental parameters unchanged. 
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Figure 9.5 – Structural characterization of S100B amyloid formation. (A) FT-IR spectra in the amide I and amide II regions obtained throughout S100B amyloidogenesis. Deconvoluted FT-IR spectra obtained before (B) and after a 6 min incubation (D) at 57°C. Component band assignment is shown in the plots: α-helices (α), β-sheets (β), β-turns (T), random coil (R) and intermolecular aggregation β-sheets (Agg). The FT-IR spectrum is shown as black dashes. The sum of the component bands is shown as a continuous grey line. (C) S100B amyloid formation kinetics monitored through the ThT fluorescence assay and absorption enhancement at FT-IR intermolecular β-sheet characteristic 1618 cm-1 wavenumber normalized by the amide I absorption maximum. Experimental points are fitted to a monoexponential decay equation. Protein concentration was 10 mg/ml in 50 mM glycine pH 2.5 and amyloid formation was promoted by incubating at 57°C. The spectral maximum around 1650 cm-1 is characteristic of S100 proteins [24] for their high helical content. The spectra obtained before incubation at the amyloidogenic temperature (57°C) also exhibits a local maximum at 1618 cm-1 (Figure 9.5A), which is characteristic of intermolecular β-sheets, occurring in aggregation processes. This indicates that acidic pH alone can induce some S100B aggregation. During incubation 
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at the amyloidogenic temperature, the relative contribution of the 1618 cm-1 band to the overall absorption increases rapidly, revealing amyloid formation, which is well described as a monoexponential decay with a rate constant of 3.51 min-1 (Figure 9.5C). Probing the same process by the ThT fluorescence assay yields similar results. We have taken advantage of the quantitative absorption of specific secondary structure types in the amide I spectral region (1600-1700 cm-1) to deconvolute the FT-IR spectra before thermal incubation and at the beginning of the kinetic’s plateau phase into individual component bands (Figure 9.5BD). We have assigned each band to the secondary structure element absorbing at each specific wavenumber and quantified structural content by curve integration (Table 9.1). By comparing the content of each type of secondary structure at the two time points one can assess the conformational changes occurring (Table 9.2). The low helical content is a consequence of solution acidification, which is used to facilitate amyloid generation by enhancing the intrinsic protein aggregation propensity. Throughout amyloid generation 11% of the α-helical and coil content is converted to β-sheets and β-turns, a conformational change typical of amyloidogenic processes. The end state is thus β-sheet rich, as the ThT fluorescence assays also indicate.  
Table 9.1 – Assignment of component bands from FT-IR spectra deconvolution. 

 0 min 6 min 
Structure Type 

Wavenumber (cm-1) % Structure Wavenumber (cm-1) % Structure 
α-helix 1654 17 1652 11 1661 11 1658 7 
β-sheet 

1626 9 1622 11 1637 15 1637 19 1675 6 1678 9 1684 8 1691 4 
Β-turns 1668 7 1667 10 
Random 1646 15 1645 16 
Aggregation sheets 1617 11 1615 12  
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Table 9.2 – Secondary structure changes occurring during S100B amyloidogenesis. From FT-IR spectra decomvolution. 
 % Structure   0 min 6 min Variation (%)α-helices 28 18 -10β-sheets 38 44 +6β-turns 7 10 +3Random coil 15 16 -1Intermolecular β-sheets 11 12 +1 

9.4.5. Folding and stability of S100A6 Our amyloid formation screening is based on the observation that the amyloid state is accessible to multiple protein folds [25] and may be attained 
via a destabilized, slightly misfolded native-like state [26]. This observation is crucial to the understanding of pathology-related amyloidogenic properties, since the extensive conformational rearrangement occurring in the proteins involved are thus more likely to happen in the mild physiological milieu. To assess the structural and stability changes occurring in S100 proteins upon lowering the pH we have selected S100A6 as a model. From all the S100 proteins included in our screening, this is the only one whose folding properties were not yet addressed in the literature, so this approach further contributes to the biophysical characterization of S100 protein folding. We have performed thermal denaturation assays on S100A6 placed either on 50 mM KPi pH 7 or 50 mM glycine pH 2.5 while monitoring the far UV CD spectral signal (Figure 9.6). Like other S100 proteins, the thermal unfolding of S100A6 is irreversible. At pH 7 (Figure 9.6A) S100A6 is rather stable but the high Tmapp precludes the detection of the unfolding post-transition. From the accessible temperature range, the Tmapp was estimated at 81.4°C. Upon acidification the characteristic α-helical spectra is kept (Figure 9.6B), though with lower intensity, revealing a partially misfolded state of S100A6. We have quantified 
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Figure 9.6 – Thermal unfolding of S100A6. Denaturation curves correspond to the normalized CD variation at 222 nm of the apo protein in 50 mM KPi pH 7 (A) or 50 mM glycine pH 2.5 (B). Insets are the far UV CD spectra recorded at 25°C before the temperature ramp, at 95°C and after recooling the sample to 25°C. The sigmoidal fit yields a Tmapp = 81.4°C. this conformational change by deconvoluting the spectra (Table 9.3), estimating the amount of each secondary structural element in this protein. This further indicates that at pH 2.5 there is a minor conversion of helical and turn elements to β-sheets and random coil. However, acidification has significant effects in the stability of S100A6. Unfolding proceeds through a multistate mechanism, with two clearly distinguishable transitions, the first being uncooperative and occurring around 30°C and the second occurring around 95°C in a highly cooperative manner. The Tmapp of this second transition could not be determined 
Table 9.3 - Deconvolution of the far UV CD spectra of S100A6 at pH 7 and 2.5 before 
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accurately due to the lack of the post-transition zone. According to these measurements, the incubation at 57°C in the amyloid screening assay yielded a misfolded state, though with residual structure. The fast amyloid formation kinetics could be then attributed to the helical-to-sheet transition brought about by acidification alone, raising the possibility that amyloid formation may be readily accessible at higher pH values. 
9.5. Discussion Even before of the association of S100 proteins with amyloidogenic processes in the prostate it was known that that several S100 proteins accumulate in the brain in benign corpora amylacea [27], the etiology of which is unknown and the possible implications in brain inflammatory or other pathologies still unaddressed. On the other hand, the control of S100 amyloid deposition is related to the development of prostate adenocarcinoma wherein prostate corpora amylacea abundance is lower than in the healthy population [28]. A correlation between prostate S100A8/A9 corpora amylacea and cancer onset through inflammation has been suggested on the basis of co-deposition of bacterial proteins and macrophage activation in situ [1]. Following these observations and taking into consideration the sequence homology among S100 proteins, the high expression level of some S100 proteins, their frequent extracellular localization and expression mis-regulation in many pathologies we screened several S100 proteins for amyloid formation in acidic conditions and found widespread amyloidogenic propensity associated with morphological polymorphism. We have deliberately chosen acidic pH conditions for our amyloid formation screening because these are known to facilitate the amyloidogenic conversion of native proteins [13], which would otherwise be seldom reached at more physiological conditions through thermal fluctuations [26]. The “rare” formation of amyloids in vivo is partially based in this phenomenon. In this sense, low pH enhances the intrinsic 



Chapter 9 

236 

amyloidogenic potential of proteins and is a useful tool in the characterization of amyloidogenesis. The high amyloid formation propensity assigned to the hydrophobic core-forming helices (HI and HIV) suggests that S100 dimerization can work as a mechanism to prevent or minimize amyloidogenesis. All members of the S100 family are homo or heterodimers (with the notable exception of S100G, a smaller family member which functions as a calcium buffer rather than as a calcium signal transducer). Unlike helix HIII, which undergoes the EH-hand calcium-induced conformational change, helices HI and HIV maintain their relative position during calcium binding and keep the dimeric state throughout signaling events. The importance of dimerization as a amyloidogenic protection mechanism has been highlighted in the S100A8/A9 heterodimer [1], where the overall aggregation propensity of the individual subunits decreases upon heterodimer formation. Remodeling of the hydrophobic core in the all helical S100 proteins may thus be an important step in the amyloidogenic conversion of S100 proteins.  The first step in amyloid fibril assembly is the formation of a nucleus – the least stable identifiable species on the aggregation pathway – which is elongated through the polymerization of monomeric or oligomeric soluble proteins. Frequently, the nucleation step is rate-limiting in the amyloidogenesis pathway and gives rise to a lag phase preceding amyloid formation. Still, some proteins do not present such delay and promptly form amyloid when placed in permissive conditions. This is the case of Aβ peptide mutants [29-30]. Contrary to the wild type form, D23N-Aβ1-40 fibrillization shows no obvious lag period at 100 µM peptide concentration, with a rate constant of 3.77 x 10-3 min-1. For wt-Aβ1-40 the rate constant is 1.07 x 10-4 min-1 [29]. Despite the experimental conditions in our survey (57°C pH 2.5) are outside the physiological range, they nevertheless reveal an intrinsic amyloid propensity widespread in the S100 protein family. These 
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experimental conditions have allowed establishing a proof-of-concept for amyloid formation in this protein family, an approach which has been used previously in the literature for distinct proteins (e. g. [13]). Further investigations will address amyloid formation under physiological conditions (pH ~7.0, 37°C) and the effects of molecular crowding, which is known to promote nucleation in amyloid formation [31]. From an evolutionary point of view, the proteins included in our amyloid formation screening represent distinct branches of the S100 family (Figure 9.7) which are thought to have evolved through multiple gene duplication events from a common ancestor protein [3].This suggests that, instead of being a peculiarity of a subgroup of S100 proteins, amyloidogenic behavior may be shared by other family members. Such generality is further based in the S100 family sequence analysis, where amyloid propensity was predicted by distinct algorithms. Concerning corpora amylacea, the protein content is in fact only around 4% (w/w) [32-33]. The major component in these inclusions are hexoses (~88% w/w) in a glycogen-like form [34]. The presence of the abundant 

 
Figure 9.7 – Phylogenetic tree of human S100 proteins. Computed from S100 protein sequences. From [3]. 
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glycan portion may be relevant in the amyloidogenic processes as it is established that macromolecular crowding accelerates the nucleation step of amyloidogenesis and promotes fibrillization of distinct proteins [31]. Further investigations will address the possibility of S100 proteins forming amyloid at physiological-like conditions and the identification of other factors modulating amyloidogenesis. A priori candidates are metal ions, macromolecular crowding, oxidant species, amyloid seeds and point mutations, all of which have been associated either with S100 folding or amyloid deposition in general. Also, the correlation of the conditions where amyloid formation is accessible with a more thorough characterization of the structure of amyloid species (oligomers, protofibrils, fibrils) will provide insight on the feasibility of S100 amyloid formation in physiological conditions. Last, the association of S100 amyloids with putative pathologies will require the in vivo detection of such species. By including a comprehensive spectroscopic description of amyloid formation by S100A6 and S100B in our experimental approach, combined with AFM imaging of S100 amyloids as a function of the metallation status, we have indirectly excluded the possibility that the metal-influenced amyloid formation kinetics could be due to the Hoffmeister effect alone: distinct morphologies were observed as a function of metallation. 
9.6. Conclusions Altogether, the above described findings suggest that amyloid-like conformations (β-rich oligomers, protofibrils and fibrils) might be accessible to S100 proteins under particular conditions. The involvement of S100 proteins in several pathologies (including inflammatory processes in the prostate associated to S100A8/A9 amyloids), their deposition in corpora 

amylacea in the healthy brain and the here reported amyloidogenic propensity of several family members points to a new and relevant biomedical research field wherein S100 proteins are hypothesized to form 
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amyloid deposits associated to several pathologies. The extensively reported overexpression of several S100 proteins in multiple pathologies like cancer, cardiomyopathies, inflammatory conditions and neurodegeneration [3] provides the candidates for putative disorders where S100 fibrillization can be involved. Future research on this field will determine the exact conditions where S100 fibrillization is accessible and if it has pathological relevance apart from the already reported one [1]. 
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Part of this chapter was published in Fritz G, Botelho HM, Morozova-Roche LA, Gomes CM (2010) Natural and amyloid self-assembly of S100 proteins: structural basis of functional diversity. FEBS J, 277(22) 4578-4590  Proteins were purified by Gunter Fritz (Freiburg University, DE). AFM analysis was performed by Kiran Yanamandra and Ludmilla A. Morozova-Roche (Umeå University, SE). Cytotoxicity measurements were performed jointly by Hugo M. Botelho, Kiran Yanamandra and Ludmilla A. Morozova-Roche at Umeå University. 
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10.1. Summary Amyloid deposition constitutes the cytological hallmark of several diseases, where metal ions are important players, either because they favor fibrillization or act as toxic agents. We have assessed the role of metal ions as modulators of the amyloidogenesis pathways of representative members of the S100 protein family (S1002, S100A3, S100A4, S100A6, S100A12 and S100B). We have observed that S100 amyloid structure is highly sensitive to metallation. Further, in most cases S100 amyloid species are oligomeric. In S100A6 Ca2+ binding induces a non-amyloid and non-toxic off-pathway conformation which nevertheless has an increased β-sheet content. The oligomeric nature of most S100 amyloids is associated with cytotoxicity of S100A6 oligomers, S100B mature amyloids and S100A12 oligomers and mature fibrils. These proteins are overexpressed in ALS and Alzheimer’s disease and cytotoxicity may be relevant in the understanding of the associated neurodegenerations if S100 fibrillization has physiological relevance. 
10.2. Introduction S100 proteins constitute a family of metal signaling buffers or transducers. At the protein level, metal ions regulate protein conformation and/or oligomerization, therefore determining function. Ca2+ binding triggers the characteristic EF-hand conformational change whereby helix HIII moves around 90° [1], exposing a hydrophobic patch responsible where downstream signaling partners bind to [2]. Zn2+ and Cu2+ are usually associated to subtle conformational changes. On the other hand, metal-bound S100 proteins frequently exhibit differential stability. Both Ca2+ and Zn2+ are S100 oligomerization modulators. Ca2+ functions as a dimer cross-linker in the assembly of the S100A8/A9 heterodimer [3], S100A12 hexamer [4] and S100B octamers [5]. Zn2+ drives the assembly of the S100A2 tetramer [6]. 
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Moreover, S100A8/A9 oligomerization into amyloid fibrils is dependent of Ca2+ or Zn2+ in vitro [7]. At the cellular level, metal homeostasis and S100 metallation are responsible for determining protein compartmentalization. This exposes S100 proteins to distinct interacting partners and medium compositions. S100B is secreted from astrocytes upon elevation of cytosolic Ca2+ concentration or decrease in intracellular Zn2+ concentration [8]. In smooth muscle cells S100A1, S100A4 and S100A6 relocate from the sarcoplasmic reticulum to perinuclear vesicles [9]. Our analysis of S100 amyloid-forming propensity revealed that helices HI and HIV, forming the S100 hydrophobic core, are highly amyloidogenic (Figure 9.1). From our demonstration that S100 proteins form amyloid species (Chapter 9) and the knowledge of the α-helical S100 fold, one may hypothesize that hydrophobic core remodeling yielding enhanced β-sheet content is an early step in S100 amyloidogenesis. In this sense, metal ions can be hypothesized to be important modulators of S100 amyloidogenesis. The calcium-induced conformational change which enhances the solvent exposure of the hydrophobic core could then facilitate S100 amyloidogenesis. Similarly, other metal ions could fulfill similar roles. Here we have screened for the effect of calcium and zinc in the amyloidogenesis kinetics and amyloid oligomeric structure of S100A2, S100A3, S100A4, S100A6, S100A12 and S100B. We have found a strong influence of metallation on the kinetics and endpoint morphology. Remarkably, S100A6 amyloidogenesis was completely inhibited by Ca2+. A detailed analysis of amyloid formation kinetics by S1006 revealed that Ca2+-S100A6 formed oligomeric structures with increased β-sheet content which nevertheless lacked the amyloid-specific cross-beta core, as shown by the absence of ThT fluorescence. The potential cytotoxicity of S100 oligomers was assessed the quantification of SHSY-5Y neuroblastoma cell viability. S100A6 oligomers, S100A12 oligomers and mature amyloids and S100B 
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mature amyloids were found to be cytotoxic. Apart from the structural importance, Ca2+ is also relevant in modulating the cytotoxic potential of S100 amyloids as it reverts the cytotoxicity of S100A6 and S100B structures, as well as of S100A12 mature amyloids. This is particularly relevant considering that S100 proteins are overexpressed in Amyotrophic Lateral Sclerosis, Alzheimer’s and Parkinson’s diseases [10-13]. 
10.3. Materials and methods 

10.3.1. Chemicals and proteins All reagents were of the highest grade commercially available. Thioflavin T was obtained from Sigma. Trace metals were removed from all solutions by solution treatment with a chelex resin. Metal ion solutions were prepared in chelex-treated water. S100 proteins (S100A2, S100A3, S100A4, S100A6, S100A12 and S100B) were expressed in E. coli and purified to homogeneity as described previously [6]. Molar protein concentrations refer to the S100 subunit. Hen egg white lysozyme was obtained from Fluka. 
10.3.2. S100 fibrillization S100 proteins were placed in 50 mM Glycine buffer pH 2.5 by repeated dilution and re-concentration. Sample temperature was kept at 4°C at all times before amyloid formation assays. Protein concentration was set at 3 mg/ml using Bradford’s method [14]. Due to spontaneous and extensive aggregation in aerobic conditions, S100A3 (4 mg/ml) was previously reduced with 25 mM TCEP overnight. S100 proteins were prepared in the apo state or in the presence of 10 fold molar excess over the S100 monomer (~2.6-2.8 mM) of known metal ion ligands, as the ZnCl2, CaCl2 or CuSO4 forms. Binding was promoted by incubating from 15 min to 2 h at 4°C. Any pre-existing aggregates were pelleted and removed by centrifuging at 12000 g for 10 minutes. Amyloid formation was promoted by quiescent incubation at 57°C. For S100A6 samples containing EDTA, an excess amount was added 
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at before incubation (apo-S100A6) or at a selected time point (Ca2+-S100A6). The positive control for amyloid formation was hen egg white lysozyme, at 10 mg/ml in the same buffer and incubated at 57°C, a previously validated assay [15].  
10.3.3. Thioflavin T fluorescence ThT binding assays were performed according to [15]. Briefly, 5 µl of protein sample (15 µg) was mixed with 65 µM ThT in 10 mM potassium phosphate (KPi), 150 mM NaCl, pH 7.0 at room temperature to a final volume of 1 ml. Samples were incubated under stirring for 1-2 min and ThT fluorescence at 482 nm was recorded with a Cary Varian Eclipse instrument with temperature set at 25°C using a peltier-thermostated cell support. Excitation wavelength was 440 nm, PMT voltage 600 V, and excitation and emission slits 10 nm. 
10.3.4. ATR FT-IR spectroscopy Secondary structural changes occurring during S100A6 amyloid formation were monitored by ATR FT-IR measurements performed in a Bruker IFS 66/S spectrometer equipped with a nitrogen-cooled MCT detector using the thermostatized Harrick BioATR II cell. 3 mg/ml S100A6 in 50 mM glycine pH 2.5 were prepared in the apo state, in the apo state with excess EDTA and in the presence of mM Ca2+ (i. e. 10 molar equivalents). Samples were incubated at 57°C while spectra were continuously acquired (3 min accumulation time, 12 mm aperture, 20 kHz scanner velocity). Spectral resolution was 4 cm-1. Amyloid formation was assessed by the absorption ratio between the intramolecular β-sheet characteristic band at 1626 cm-1 and the amide I absorption maximum, 1655 cm-1. 
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10.3.5. Atomic force microscopy After reaching the plateau phase in amyloid formation kinetics, S100 samples were stored at 4°C and morphology was analyzed by AFM on a PICO PLUS 5500 microscope (Agilent) as previously described [16]. 
10.3.6. Dynamic light scattering For monitoring molecular size variations during amyloid formation of S100A6, 3 mg/ml protein solutions were prepared in the apo state or in the presence of 10 molar equivalents (2.9 mM) of Ca2+ or Zn2+ in the form of chloride metal salts in 50 mM glycine pH 2.5. Samples were then filtered through a 0.22 μM membrane and analyzed with a Malvern Instruments Zetasizer Nano ZS instrument equipped with a 633 nm laser while the temperature was kept at 57°C by a Peltier-controlled thermostatized cell support. Kinetic data was obtained from continuously repeated measurements. In each measurement, the backscattered light (173°) from fifteen 10 s accumulations was averaged. Amyloid formation was assessed from light scattering intensity and the average particle size (diameter) obtained from the intensity distribution. Results were analyzed with Malvern Instruments DTS software using a multimodal fit with quadratic weighting and 0.01 regulariser. 
10.3.7. Amyloid cytotoxicity For cytotoxicity measurements S100A6, S100A12 and S100B samples were prepared at 3 mg/ml in 50 mM glycine pH 2.5 and incubated at 57°C. Distinct samples were prepared in the presence of 10 molar equivalents relatively to the S100 subunit. Several species in the amyloid formation pathway could be obtained by varying the incubation time: native protein (no incubation), oligomeric structures (0.5 or 1 h incubation for S100A6; 2 h for S100A12 and S100B) or endpoint structures (~3 days incubation). S100 cytotoxicity towards the human neuroblastoma SH-SY5Y cell line was 
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assessed using the WST-1 assay. In viable cells, WST-1 is reduced by mitochondrial reductases, forming formazan dyes, which serves as an indicator of the amount of metabolically active cells. The amount of WST-1 can be quantified by its characteristic absorption around 450 nm [17]. Cells were cultured in Dulbecco's modified Eagle's medium supplemented with 10% (v/v) fetal bovine serum and antibiotics in a 5% CO2 humidified atmosphere at 37 °C. Measurements were performed on cells seeded overnight in 96 well plates (104 cells/well). Before starting the measurement, culture medium was replaced by 100 µl fresh medium without fetal bovine serum and S100 samples were added. Cytotoxicity was determined 24 and 48 h after placing S100 samples by adding 10 μl WST-1 reagent solution (Roche) at each well. Cells were further incubated for 4 h and absorbance was measured with an ELISA plate reader (Labsystem Multiscan RC) at 450 nm after cell shaking. Cell viability was expressed as the absorption percentage relatively to control cells which were incubated with buffer alone (50 mM glycine pH 2.5). Statistical differences were assessed with double-tailed, two sample unequal variance Student’s t-test. For metallated S100 samples, additional control wells were prepared which did not contain protein but metal ions alone at the same concentration. 
10.4. Results 

10.4.1. Metal ions modulate S100 amyloidogenesis To determine the effect of metallation in S100 amyloid formation kinetics, we have built on our observation of amyloid formation by several S100 proteins at acidic pH (Chapter 9). We have prepared S100 samples (S100A2, S100A3, S100A4, S100A6, S100A12 and S100B) as in the previous assay (3 mg/ml, 50 mM glycine pH 2.5) and included 10 molar equivalents of known metal ion ligands. Samples were incubated quiescently at 57°C and time  
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Figure 10.1 – Metal ions and S100 amyloidogenesis. (Left) Amyloid formation kinetics of S100A2, S100A3, S100A4, S100A6, S100A12 and S100B at 57°C as assessed by the thioflavin T fluorescence assay. S100 proteins were prepared in 50 mM glycine pH 2.5 in the apo state or in the presence of 10 fold molar excess of Ca2+, Zn2+ or Cu2+. Lysozyme is the positive control for amyloid formation. (Left) AFM images of protein samples after the kinetic assay. Scale bar: 1 µm. resolved amyloid formation was quantified using the Thioflavin T (ThT) fluorescence assay. In amyloidogenesis kinetics after a plateau was reached, the morphology of endpoint structures was analyzed by atomic force microscopy (AFM) (Figure 10.1). This complementary approach provides information about the overall secondary (ThT) and quaternary structure (AFM) of S100 oligomers. However, AFM is not a quantitative technique, precluding such kind of image analysis. Data from apoprotein preparations was used as reference. S100A2 amyloid formation kinetics are unaffected by metal load. All S100A2 preparations show enhanced fluorescence before incubation, an indication that low pH alone can induce an amyloid-like state and reach near final signal values after ~1 h, an indication that low pH alone is able to induce a β-sheet rich conformation in S100A2, suggesting an amyloidogenic potential of this protein, in line with theoretical calculations (Figure 9.2). Whereas apo-S100A2 amyloid species are protofibrilllar, the presence of Ca2+ or Zn2+ results in the formation of large oligomeric assemblies, which are irregularly shaped in the presence of Ca2+ or spherical in the presence of Zn2+. Specifically for S100A2, the starting point for the Zn2+ sample should be the homotetramer [6] because of the metal ion concentration (2.7 mM, 10 fold excess. However, this must not be the only factor determining the distinct morphology of Ca2+- and Zn2+-S100A2 as the binding sites for each metal are distinct [6]. Like S100A2, S100A3 seems to rest in a β-sheet enriched state at low pH, as seen by the high ThT fluorescence before the amyloid formation assay. ThT-derived amyloidogenesis kinetics is similar for the three metallated 
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states. Fluorescence intensity at the plateau phase is higher than the standard lysozyme curve, which was obtained with a higher protein concentration (10 mg/ml lysozyme versus 3 mg/ml S100A2). The reason for this is that S100A3 is highly amyloidogenic, forming long amyloid fibrils in all metallated states. S100A4 forms ThT-reactive species independently of the presence of Ca2+ and with a similar kinetics. Nevertheless, structures of apo- and Ca2+-S100A4 amyloid species are distinct, as assessed by the higher ThT fluorescence emission in the latter. The morphological analysis of Ca2+-S100A4 endpoint structures revealed small oligomers. S100A6 exhibited an extreme case of metal-modulated amyloidogenesis. Apo-S100A6 promptly formed ThT-reactive species, the process not being affected by the presence of Zn2+. Notably, Ca2+ completely inhibited the process. However, after extensive incubation, all S100A6 species are of the oligomeric type, irrespectively of metal load. Both Ca2+ and Zn2+ induced S100A6 aggregation into large structures, unlike the small oligomers seen in the apo protein preparation. The amyloid formation kinetics and the ultrastructural details of the different metallated forms of S100A6 were addressed more thoroughly in Section 10.4.2. In S100A12, metal ions also exerted a significant influence in the amyloidogenic process. Neither apo-, Ca2+- nor Zn2+-S100A12 formed amyloid species. However, Cu2+-S100A12 promptly assembled in amyloid species, which nevertheless exhibited lower ThT fluorescence than other S100 ThT-reactive preparations. The AFM analysis revealed that all metallated S100A12 forms formed oligomeric species. In the Zn2+-S100A12 sample some protofibrils were also visible. Regarding S100B, amyloid species were formed from the apo and all metallated forms. Cu2+-S100B exhibited a lower fluorescence intensity, which suggests lower amyloid formation efficiency or an alternative conformation. 
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In the presence of Ca2+ S100B forms oligomeric and protofibrilllar assemblies, unlike the small oligomers originating in the apo protein preparation. 
10.4.2. Reversible control of S100A6 amyloidogenesis by Ca2+ The distinct roles of metal ions in S100A6 amyloidogenesis – Zn2+ affecting morphology without modifying the formation kinetics and Ca2+ inhibiting amyloid formation – have prompted us to investigate this aspect in more detail. To determine the reversibility of the inhibition of S100A6 amyloidogenesis by Ca2+ we placed a Ca2+-S100A6 sample in amyloidogenic conditions for 3 h, at which time an excess of EDTA was added (Figure 10.2A). Promptly, ThT-positive species built up, with a plateau ThT fluorescence similar to the one of S100A6 incubated with EDTA alone. Moreover, at the end of incubation the AFM-assessed morphology of EDTA-S100A6 and Ca2+-EDTA-S100A6 was of the oligomeric type, similar to the one of apo-S100A6 but unlike the ones obtained in the presence of Ca2+ alone, which were much larger. These results indicate that amyloid formation by S100A6 can be controlled – even at low pH and moderate temperature – by the availability of Ca2+. Because amyloid formation is a process wherein β-sheet content increases, Fourier transform infrared spectroscopy (FT-IR) is one of the best suited technique to study it, due to its high sensitivity to such structural features [18]. FT-IR absorption at the amide I band (1600-1700 cm-1) arises from distinct secondary structure elements in a quantitative manner, implying that absorbance changes can be assigned to specific conformational changes. Of particular interest to fibrillization processes is the fact that characteristic absorption peaks for α-helices (~1654 cm-1), intramolecular β-sheets (~1684 and 1633 cm-1) and intermolecular β-sheets (~1620 cm-1) are well established [18]. In particular, intermolecular β-sheets are characteristic of amyloid species. To dissect the mechanism of Ca2+-induced inhibition of 
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Figure 10.1 – Modulation of S100A6 amyloidogenesis kinetics by Ca2+. (Left) S100A6 amyloid formation kinetics at 57°C assessed by the thioflavin T fluorescence assay as [15]. For analyzing the amyloidogenesis suppression by Ca2+, excess EDTA was added to apo-S100A6 before incubation ( ) or to Ca2+-S100A6 after 3 h incubation ( ). (Right) AFM pictures of the EDTA-S100A6 and Ca2+-EDTA-S100A6 obtained after the kinetic’s plateau phase. Scale bar: 1 µm. S100A6 fibrillization, we have prepared apo-S100A6, EDTA-S100A6 and Ca2+-S100A6 samples as before and followed amyloidogenesis by FT-IR (Figure 10.3). We observed that amyloid formation was accompanied by the development of a new spectral band at 1626 cm-1 which, by its intermediate position, we have assigned to a mixture of intra and intermolecular β-sheets. The amide I absorption maximum occurs at 1655 cm-1, a typical value for S100 proteins [19] due to the α-helical fold. We have expressed the amyloidogenesis kinetics by the absorbance ratio between these two wavenumbers (Figure 10.3D). FT-IR data are adequately described as single or double exponential decays. In accordance, we computed kinetic rate constants which describe the amyloidogenic processes (Table 10.1). Apo- and EDTA-S100A6 traces were virtually superimposable in the first 1.5 h. Apo-S100A6 amyloidogenesis kinetics was double exponential, with rate 
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Figure 10.3 – ATR FT-IR monitored amyloid formation by S100A6. Spectral changes in the amide I/II bands during incubation of 3 mg/ml S100A6 in 50 mM glycine pH 2.5 in the apo state (A), in the apo state with excess EDTA (B) and in the presence of 2.9 mM Ca2+ (C). (D) Kinetic traces correspond to the absorbance variation at 1626 cm-1 (associated with intramolecular β-sheets) normalized by the absorbance at 1655 cm-1 (spectral maximum). constants 0.51 and 1.71 h-1. The fastest rate constant is similar to the one obtained for the single decay of EDTA-S100A6 (0.36 h-1), suggesting that the slowest process could be due to a small amount of contaminant metal ions. For Ca2+-S100A6, the FT-IR derived kinetics was overall faster. The other characteristic biophysical feature of amyloid formation apart from β-sheet accumulation is protein particle size increase. We have assessed size variation of apo- and Ca2+-S100A6 in real time by dynamic light 
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scattering (Figure 10.4). Apart from the increasing light scattering intensity due to aggregation processes, we have also analyzed the particle size obtained through autocorrelation analysis of Brownian light scattering intensity fluctuations, which complements AFM measurements with time-resolved size information. The kinetic information extracted from all techniques is similar, reporting full amyloid conversion around 10 h of incubation in amyloidogenic conditions. Light scattering intensity yields slower kinetics. This occurs because light scattering is proportional to the inverse square of particle size. Consequently, light scattering intensity is biased to higher particle sizes like the ones of endpoint S100A6 structures. We observed that amyloidogenesis rate constants obtained through different techniques (Table 10.1) are similar for apo- and Ca2+-S100A6. This means that Ca2+ does not inhibit amyloid formation by S100A6 by locking it in a native-like conformation but by inducing an alternate aggregated, β-sheet rich conformation off the amyloidogenic pathway. The different morphology can be appreciated by the different oligomer size for apo-S100A6 (~14.5 nm) and Ca2+-S100A6 (15.5 nm). 

 
Figure 10.4 - S100A6 amyloidogenesis kinetics. Kinetic traces obtained through ThT 
fluorescence at 482 nm, FT-IR absorbance change at 1626 cm-1, light scattering intensity and particle size variation. Data points were fitted to mono or double exponential decay equations. (A) Apo-S100A6. (B) Ca2+-S100A6. 
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Table 10.1 - Rate constants for S100A6 amyloidogenesis. n/a: not applicable, Ca2+-S100A6 does not form ThT-reactive species. n.d.: not determined. *Values for ThT fluorescence-derived kinetics are estimations due to the low data point number.  Rate constants (h-1) Apo-S100A6 Ca2+-S100A6 EDTA-S100A6ThT fluorescence* 0.70 n/a n.d.FT-IR 0.51 1.71 0.5017.29 0.36 Light scattering intensity 2.55 2.24 n.d.Particle size 0.69 0.56 n.d. 
10.4.3. Cytotoxicity of S100 amyloid structures Noteworthy, most S100 amyloid structures are of the oligomeric type. Oligomers have been proposed as a general cytotoxic species [20]. Specifically, in Alzheimer’s disease, cognitive impairment is associated with oligomeric Aβ buildup than with senile plaque formation. Accordingly, it is relevant to examine the toxicity of S100 amyloid oligomers. Due to the specific cell expression pattern of S100 proteins, we have selected a subgroup composed of S100A6, S100A12 and S100B to examine their cytotoxic effects. All these proteins are expressed in the brain, some of them at high levels (S100B represents 0.5% of total brain protein and S100A12 constitutes about 5% of total cytosolic protein in resting neutrophils [21]) and are involved in amyloid neurodegenerative diseases: S100A6 is overexpressed in Amyotrophic Lateral Sclerosis (ALS) [11] and Alzheimer’s disease [10]; S100A12 and S100B are overexpressed in Alzheimer’s disease [12-13]. To assess cytotoxic effects we have selected the human neuroblastoma SHSY-5Y cell line, a well established model for these studies. We have quantified cell viability in the presence of S100 native and amyloid species – oligomers obtained at early stages of the amyloid formation pathway and endpoint structures – by measuring the reduction of the artificial chromogenic electron acceptor WST-1. To examine the role of metal ions in modulating S100 cytotoxicity, we have analyzed S100 species in the 
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Figure 10.5 – Cytotoxicity of native and amyloid S100 species. S100 proteins at distinct points in the amyloid formation pathway (57°C, pH 2.5) in the apo or Ca2+-bound states were added to SHSY-5Y cell cultures and cellular viability relatively to unperturbed controls was assessed by the WST-1 reduction assay. (A) Cytotoxicity of 5 µM S100A6 species after 48 h incubation. (B) Cytotoxicity of 5 µM S100B species after 24 h incubation. (C-D) Cytotoxicity of S100A12 species after 24 h incubation at 5 µM (C) or 25 µM (D) protein concentration. Error bars represent the standard deviation (n=3).*: p<0.05. **: p<0.1. apo and calcium-bound states (Figure 10.5). Zinc and copper were excluded from our screening because of their inherent toxicity at the concentration range for this assay. Protein concentration and incubation time were selected so that the native protein was not toxic itself. In the sole presence of buffer or calcium at the maximal tested concentration, cell viability was identical to unchallenged controls after 24 and 48 h (not shown). 
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Apo-S100A6 oligomers were found to be cytotoxic but toxicity decreased as higher order oligomeric structures formed at the expense of these (Figure 10.5A). Apart from inhibiting amyloid formation, Ca2+ also induced a non-toxic conformation, effectively reverting toxicity. S100B mature amyloid species exhibited low cytotoxicity (~80% cell viability versus control, Figure 10.5B), but the remaining species were not significantly toxic irrespectively of metal load. The cytotoxicity profile of S100A12 (Figure 10.5C) was concentration dependent. At 5 µM, the oligomeric and endpoint structures were equally toxic (50-60% cell viability), independently of metal load. At 25 µM, oligomeric and mature apo-S100A12 species were cytotoxic. Ca2+-S100A12 oligomers exhibited enhanced toxicity, which is fully abolished in as mature species form. Interestingly, no ThT binding was observed for apo- of Ca2+-S100A12. Differential toxicity then reveals that incubation at amyloid prone conditions is responsible for a conformational transition distinct from amyloid β-sheet buildup. The protofibrilllar structures of the mature apo-S100A12 misfolded conformation compared to the oligomers formed by Ca2+-S100A12 (Figure 10.1) is probably the molecular basis for the differential toxicity. 
10.5. Discussion The results presented herein constitute novel evidence bridging S100 conformational control, misfolding and molecular neurobiology. For this study we have chosen S100 proteins representative of different family evolutionary branches to reveal the potential for metal ion modulation of S100 amyloidogenic processes. Our results show that despite the amyloidogenic potential being shared by all proteins, the actual structure is frequently oligomeric rather than fibrillar. S100A3 is an exception in the sense that it forms archetypal amyloid fibrils. In almost all proteins analyzed Ca2+ promotes the formation of ticker aggregate structures. 
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Amyloid oligomers, i. e. oligomeric structures with enhanced β-sheet content, are intermediates in the amyloid formation pathways where they precede fibril formation and disappear after fibrils have formed. Despite sharing the β-sheet component which is responsible for ThT intercalation and fluorescence, they are most unlike short fibrils. In fact, amyloid oligomers from different proteins share morphological features which can be identified using conformation-sensitive antibodies [22]. They are relevant in neurodegenerative processes like Alzheimer’s disease, where disease severity correlates better with the amount of oligomeric Aβ than with the amount of fibrillar deposits [23-24]. Our cytotoxicity assessment was focused in brain proteins overexpressed in neurodegenerative diseases because toxicity has already been described in such cases the origin of which is not yet fully established. Moreover, S100 proteins are present in corpora amylacea in the normal brain [25] and these structures have been associated with S100 amyloidogenic conversion in the prostate, involving locally abundant calcium, iron and copper [7]. In Alzheimer’s disease (AD), Aβ hexamers or tetramers are thought to insert in membranes [26] forming pores [27-29] which disturb calcium homeostasis [30]. Larger species are less toxic because inter-subunit contacts outcompete peptide-membrane interactions [26]. It is not clear at the moment if a similar mechanism may apply to S100 amyloids. Such determination will require a thorough analysis of the structure of S100 oligomers’ structure as well as the consideration of other cytotoxicity mechanisms (e. g. via RAGE activation). Nevertheless, in the presence of calcium, the S100A12 homodimer may spontaneously form hexamers and S100B is known to assemble into octameric structures. As our results further support, amyloid-associated toxicity is strongly associated to oligomeric-type structures [20]. Indeed, even after prolonged incubation in amyloidogenic conditions, most S100 protein preparations exhibit an oligomer-like morphology. It is possible that 
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toxicity is detected in some endpoint preparations because of residual amounts of more toxic oligomeric-like species. However, the amounts of such oligomers should be low as all endpoint preparations were collected at the plateau phase of the ThT fluorescence-monitored amyloid formation kinetics trace. Toxicity induced by S100 proteins is established in the literature. S100B is known for its concentration-dependent cellular effects in the central nervous system, being neurotrophic at nanomolar levels [31] and inducing apoptosis in a RAGE-dependent manner [32] and exacerbating Aβ neurotoxicity [33] at micromolar concentrations. The novelty in our results is the description of increased toxicity associated solely with the amyloid conversion of S100 proteins.  Metal ion binding affects the protein folding energy landscape. Regarding amyloid formation, metal ions may facilitate the conformational change resulting in the amyloid state, stabilize partially unfolded and amyloid-prone states or stabilize the amyloid conformation. This cross-linking effect is akin to a covalent modification. An artificial cross-linking between Asp23 and Lys28 side chains, stabilizing the β-turn in the amyloid conformation of the Aβ1-40 peptide eliminated the lag phase present in the wild type peptide and increased the formation rate constant 1000 fold [34], suggesting that local conformational constraining accelerates fibril nucleation or fibril growth. On the other hand, zinc promptly induces Aβ fibrillization and stabilizes toxic oligomeric forms [35]. Regarding S100B, Zn2+ and Cu2+, which bind to the same site, have quite distinct effects in the amyloid formation by this protein (Figure 10.1): Zn2+ has no influence but Cu2+ greatly decreases ThT reactivity, implying a structure with lower β-sheet content. It is known that Cu2+ drives the oxidation of the two cysteines in the S10B sequence to the disulfide form [36]. This modification is found in vivo and is a prerequisite for S100B’s neurite extension function [31]. We can hypothesize that the conformational 
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restriction coupled to disulfide formation partially/completely inhibits the amyloidogenic conversion or induces an alternative conformation. Similar effects may apply to S100A6. Ca2+ induced a β-sheet rich aggregated conformation which was not productive for amyloid species and reversed apo-S100A6 cytotoxicity. In the framework of putative S100 cytotoxicity in 

vivo, this finding represents a possibility for the modulation of S100 cytotoxicity by metal ions or other ligands. Apart from metal ions, other relevant modulators of S100 amyloidogenic processes can be interaction with other proteins, some of which occurring even in the absence of calcium and frequently involving the amyloidogenic helices HI and HIV, or S100 heterodimerization [2]. The reported amyloid formation by S100A8/A9 has been connected with heterodimerization, as the homodimeric counterparts exhibited lower amyloidogenic propensity [7]. In future studies, a systematic and comprehensive description of amyloid formation by S100 proteins will combine the spectroscopic description of amyloidogenesis kinetics (FT-IR, dynamic light scattering, circular dichroism, intrinsic fluorescence) and secondary structure changes (FT-IR and far UV CD spectra deconvolution) to the immunological description of the native-oligomer-fibril transition. 
10.6. Conclusions Here we have described the modulation of amyloidogenesis and amyloid structure of S100A2, S100A3, S100A4, S100A6, S100A12 and S100B by metal ions. All proteins exhibited metal-dependent amyloid endpoint morphologies, even though the formation kinetics is not affected in such a sensitive manner. Amyloid formation by S100A6 was analyzed in more detail, revealing that inhibition of amyloidogenesis by Ca2+ was associated to a distinct off-pathway conformation which nevertheless had increased β-sheet content. We quantified the cytotoxicity of native, oligomeric and endpoint amyloid structures of s100A6, S100A12 and S100B, proteins 
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overexpressed in ALS and Alzheimer’s disease [10-13], finding that Ca2+ can also revert the cytotoxicity apo-S100A6 oligomers and S100A12 amyloid endpoint structures. From our results, a precise structure-toxicity relationship cannot still be established. This will require future studies which, on the one hand, determine the detailed, molecular level structure of S100 amyloids and, on the other hand, pinpoint the interaction potential of these structures with diverse cell components and the cell signaling pathways being triggered. It is established that Ca2+, Zn2+ and Cu2+ promote conformational changes within the S100 fold which have an impact in protein stability (as in S100A2 [19]), in the formation of functional oligomers (as in S100B [5]) and in the formation of amyloid fibrils (as in S100A8/A9 [7]). Considering the latent propensity encoded in the primary sequence of S100 proteins to form β-rich oligomers and fibrils, it is reasonable to envisage that factors like an imbalance in metal homeostasis and anomalous protein-metal interactions, inflammation, oxidative stress or/and genetic mutations may provide conditions in the cellular milieu that affect any of the functional states of S100 proteins (Figure 10.6) and result in the formation of amyloid structures or of its precursor oligomers in a physiological context. One interesting aspect, which remains to be addressed and may even suggest a toxic gain of function characteristic to amyloid oligomers in general [37], is if S100 amyloids would exacerbate the apoptoptic activity of the S100A8/A9 complex [38-40] or interact with the RAGE receptors further contributing or abrogating the toxic effects. The latter are already known to be involved in Aβ peptide amyloid transport and recognition processes in the context of Alzheimer’s disease. A contrasting perspective can also be hypothesized: considering that most of the S100 proteins have upregulated expression patterns in inflammatory, neurodegenerative and malignant proliferation processes, could amyloid formation serve as a sink for 
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dangerous or somehow harmful proteins promoting inflammation or involved in cancer? Now that even Aβ plaques are viewed from a positive side [41], is it possible that the amyloid formation of S100 proteins may potentially play some "positive" role? Future research in the coming years will certainly contribute to clarify some of these and other questions and will ultimately bring us to higher level of understanding the biology of tumor and degeneration and enable to use our acquired knowledge of S100 structure and functions in developing strategies to modulate their activity for therapeutic purposes.  

 
Figure 10.6 - Native states and oligomerization pathways in S100 proteins. Scheme outlining interconversion pathways of S100 proteins, evidencing Ca2+ and other metal (M2+) binding sites, and possible routes for oligomerization pathways. 
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11.1. Summary The recently identified amyloidogenic properties of S100 proteins related to corpora amylacea formation combined with the presence of numerous S100 proteins in corpora amylacea in the brain raises the possibility of the involvement of other S100 proteins in pathological processes. In particular, the association of S100B with Alzheimer’s disease and accumulation in the synaptic cleft support the hypothesis that amyloid cross-seeding between oligomers of these proteins may be relevant in disease. Here we carry out S100B and Aβ1-40 cross-seeding experiments to address this possibility. Our results show that Aβ1-40 fibrils – but not oligomers or other amyloid fibrils – seed S100B amyloidogenesis. Conversely, S100B amyloids specifically seed Aβ1-40 fibrillization. Overall, our data supports the hypothesis of correlation between Aβ and S100B amyloid formation including seeding effects facilitating cytotoxicity onset and neurodegeneration. 
11.2. Introduction Protein deposition as amyloid oligomers in the brain is the cytological hallmark of several neurodegenerative diseases including Alzheimer’s (AD), Parkinson’s (PD) and Amyotrophic Lateral Sclerosis (ALS). The identification of cellular modulators of protein deposition, either proteinaceous or not, remains a challenging issue. In this respect, the recently identified amyloid forming properties of S100 proteins opens new possibilities in regard to the involvement of these proteins in neurodegenerative processes [1]. Due to their cell- and tissue-specific expression patterns, S100 proteins are frequently used as disease markers. This includes the above mentioned neurodegenerative conditions: S100A6 [2], S100A12 [3] and S100B [4] are overexpressed in the brains of Alzheimer’s disease patients; S100A6 is found overexpressed in astrocytes located near impaired axons of motor neurons 
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of ALS patients [5]; and the serum levels of S100B correlate with PD severity [6-7]. S100B is highly abundant in the brain, constituting about 0.5% of all brain protein [8]. It is abundantly expressed in astrocytes and released constitutively [9], although other cell types also express S100B [10]. Schwann cells release S100B following RAGE activation [11-12]. Astrocytes release S100B via activation of metabotropic glutamate receptor 3 in a neural- and synaptic-activity-dependent manner [13]. Numerous modulators of astrocytic S100B secretion are known. Stimulation by Ca2+ [14], antioxidants [15], branched-chain α-keto acids [16], 5-HT1A [17], lysophosphatidic acid [18], glutamate [19] and TNF-α [20], and during metabolic stress [21] enhance S100B release. High glucose [22] or glutamate [23] concentrations, inhibition of Src kinase [24] or cell confluency [9, 14] inhibit S100B secretion. Extracellular S100B concentration determines protein function in vivo. At the physiological nanomolar level, S100B is a neurotrophic agent promoting neuronal survival and differentiation [25]. Micromolar concentrations are pro-apoptotic [26]. Enhanced release of S100B into the brain extracellular space is associated with inflammatory foci including traumatic cortical injury or focal cerebral ischemia, some psychiatric disorders [27] or Down’s syndrome [28], the latter being due to the extra copy of the S100B gene in chromosome 21. The connection of S100B with Alzheimer’s disease involves the two main proteins implicated in the pathology: Aβ and Tau. These two interactors represent the two cellular locations for S100B: intracellular (Tau) and extracellular (Aβ). The formation of extracellular Aβ amyloid deposits induces astrogliosis – a general response of the central nervous system (CNS) to neuronal injury [29-30] which consists in the enhancement of the size and number of GFAP-expressing astrocytes (i. e. reactive astrocytes) – around Aβ amyloid deposits [4] and local accumulation of S100B. S100B increases 



Interplay between S100B and Aβ amyloidogenesis 

271 

amyloid precursor protein (APP) expression [31], it is implicated in the formation of dystrophic neurites in Aβ amyloid plaques [32] and exacerbates Aβ neurotoxicity [33]. Overexpression of S100B alone accelerates the onset of AD-like pathology in transgenic mouse models [34] through increasing the levels of the Aβ peptide and of brain parenchymal and cerebral vascular Aβ deposits. On the other hand, Aβ stimulates S100B synthesis [35]. The recent discovery of amyloid formation by S100A8/A9 within corpora 

amylacea in the prostate [1] established the proof of principle for the correlation of such structures and S100 amyloidogenesis. Notably, the healthy brain contains corpora amylacea [36] which contain numerous S100 proteins: S100A1, S100A2, S100A3, S100A4, S100A5, S100A6, S100A8, S100A9 and S100A12 as well as APP [37]. The structure of these proteins in 
corpora amylacea is currently unknown. S100B is not detected in corpora 

amylacea but is found in the nearby tissue due to astrocytosis. Corpora 

amylacea become more abundant in Alzheimer’s [38] and ALS [39] patients’ brains. Their functions and what triggers their appearance is not clear. All these evidences strongly suggest that S100B is directly involved in the process of amyloid formation by Aβ. In fact, S100 proteins have intrinsic amyloidogenic potentials similar to Aβ peptides [40] and S100A8/A9 have been found to form amyloid in vivo [1]. Here we report groundbreaking data regarding amyloid formation by the S100 proteins which are overexpressed in the brain in AD and ALS: S100A6, S100A12 and S100B [2-5]. Building on our findings that these S100 proteins form amyloid structures, we correlate this behavior with the amyloidogenic properties of the Aβ1-40 peptide, forming the senile plaques in AD. Preformed Aβ1-40 fibrils seed amyloid formation by S100B. More interestingly, Aβ1-40 fibrillization is enhanced specifically by preformed S100B fibrils in physiological-like conditions, as lysozyme fibrils had an effect similar to an 
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unseeded control. The possible implications of the involvement of S100B in AD through modulating Aβ fibrillization are discussed. 
11.3. Materials and methods 

11.3.1. Chemicals and proteins All reagents were of the highest grade commercially available. Thioflavin T was obtained from Sigma. Trace metals were removed from all solutions by solution treatment with a chelex resin. S100B was expressed in E. coli and purified to homogeneity as described previously [41]. S100B molar concentrations refer to the subunit. Hen egg white lysozyme was obtained from Fluka. Aβ1-40 was obtained from Alexotech (Umeå, Sweden). 0.5 mg were carefully dissolved in 10 mM NaOH pH 7.5, quickly frozen at liquid nitrogen temperature and stored at -80°C until usage. 
11.3.2. Protein fibrillization Protein fibrillization was promoted at different conditions, dependent on the intrinsic amyloidogenic potential of each protein. S100B solutions were prepared in 50 mM glycine pH 2.5 and set at 3 mg/ml using Bradford’s method [42]. Amyloidogenesis was promoted by quiescent incubation at 42°C, 52°C or 57°C. Aβ1-40 fibrillization was promoted by incubation at 25°C in 10 mM NaOH pH 7.5. In either case, samples were kept at 4°C at all times before amyloid formation assays. Two cross-seeding experiments were carried out: (i) incubating S100B in 50 mM glycine pH 2.5 at 42°C in the presence of 5% (w/w) preformed Aβ1-40 fibrils; (ii) incubating Aβ1-40 in 10 mM NaOH pH 7.5 at 25°C in the presence of 5% (w/w) preformed fibrils of S100B or lysozyme [43]. Before each assay, any pre-existing aggregates were pelleted and removed by centrifuging at 12000 g for 10 minutes. Lysozyme amyloid seeds were obtained by incubating 10 mg/ml protein in 50 mM glycine pH 2.5 at 57°C for two weeks [43]. Aβ1-40 amyloid seeds were 
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obtained by incubating 2 mg/ml Aβ1-40 in 10 mM NaOH pH 7.5 at 25°C for 3 days. 
11.3.3. Thioflavin T fluorescence ThT binding assays were performed according to [43]. Briefly, 5 µl of protein sample (15 µg) was mixed with 65 µM ThT in 10 mM potassium phosphate (KPi), 150 mM NaCl, pH 7.0 at room temperature to a final volume of 1 ml. Samples were incubated under stirring for 1-2 min and ThT fluorescence at 482 nm was recorded with a Cary Varian Eclipse instrument with temperature set at 25°C using a peltier-thermostated cell support. Excitation wavelength was 440 nm, PMT voltage 600 V, and excitation and emission slits 10 nm. 
11.3.4. Atomic force microscopy After reaching the plateau phase in amyloid formation kinetics, samples were stored at 4°C. Before analysis, S100B (3 mg/ml) samples were diluted 100 fold and Aβ1-40 (2 mg/ml) samples were diluted 50 fold in water and deposited on a mica surface. Morphology was analyzed by AFM on a PICO PLUS 5500 microscope (Agilent) as previously described [44].  
11.3.5. ATR FT-IR spectroscopy Secondary structural changes occurring during amyloid formation were monitored by ATR FT-IR measurements performed in a Bruker IFS 66/S spectrometer equipped with a nitrogen-cooled MCT detector using the thermostatized Harrick BioATR cell II. 3 mg/ml S100 proteins in 50 mM glycine pH 2.5 were incubated at 57°C while spectra were continuously acquired (2 min accumulation time, 12 mm aperture, 20 kHz scanner velocity). Spectral resolution was 4 cm-1. Amyloid formation was assessed by the absorption variation at β-sheet associated wavenumbers (1628 cm-1 for S100B, 1627 cm-1 for Aβ1-40) normalized by the absorption at the amide I spectral maximum (1653 cm-1 for S100B, 1649 cm-1 for Aβ1-40). To identify 
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the spectral components changing over time, spectra where deconvoluted using singular value decomposition implemented on Matlab [45]. 
11.4. Results 

11.4.1. Lower temperatures slow S100B amyloidogenesis without 

changing the morphology of oligomers To explore the hypothesis that the amyloidogenic processes of S100B and Aβ1-40 may be correlated, we have devised an in vitro experimental approach combining amyloid formation assays detected by thioflavin T (ThT) fluorescence, FT-IR and atomic force microscopy (AFM). This approach is based on cross-seeding assays, a methodology currently employed to detect proteins interacting with Aβ and regulating fibrillization [46]. More importantly, seeding is a fundamental characteristic of amyloidogenic processes [47] and allows analyzing the mechanism of amyloid formation. Our hypothesis is that spontaneous formation of amyloid species by S100B or Aβ – which are both overexpressed in the synaptic milieu in Alzheimer’s disease – may cross-seed amyloid formation, a process with potential implications in disease progression.  Amyloid seeding is a methodology wherein the lag phase preceding amyloid formation is shortened by the addition of pre-formed amyloid nuclei. We have previously determined that S100B rapidly forms oligomer or protofibrilllar amyloid species at 57°C and pH 2.5 (Chapters 9, 10). This limits the sensitivity of cross-seeding assays, which rely on the possibility of the amyloidogenesis kinetics being accelerated. Since amyloid formation is dependent on temperature, we have analyzed amyloid formation by S100B at lower temperatures than the one previously selected (Figure 11.1). By lowering the temperature from 57 to 42°C the kinetics of amyloid formation by S100B is significantly slowed down without important differences in the steady state ThT fluorescence intensity. More importantly, structural 
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Figure 11.1- Temperature dependence of S100B amyloidogenesis at pH 2.5. (Left) Kinetic traces from ThT fluorescence assays. S100B was 3 mg/ml in 50 mM glycine pH 2.5. Lysozyme 10 mg/ml in 50 mM glycine pH 2.5 is the positive control for amyloid formation. (Right) AFM images of S100B amyloid samples after incubation at the respective temperature. Scale bar: 1 µm. analysis of S100B samples at the end stage amyloid state revealed identical morphologies of the oligomers formed by S100B, independently of incubation temperature. 

11.4.2. Aβ1-40 fibrils seed S100B amyloidogenesis Using the conditions previously optimized for S100B amyloidogenesis (3 mg/ml S100B, 50 mM glycine pH 2.5), we have assessed the seeding effects of Aβ1-40. Taking into account the structural diversity of Aβ amyloid structures [48], we have seeded S100B with oligomeric and fibrillar Aβ1-40. Lysozyme fibrils were used in a control assay. By monitoring S100B amyloidogenesis using ThT fluorescence, we observed that Aβ1-40 fibrils (5% w/w) specifically accelerated amyloidogenesis onset (Figure 11.2A), unlike oligomeric Aβ1-40 or lysozyme fibrils. Examination of the amyloid morphology after the seeding assay revealed that the oligomeric structure of S100B was kept irrespectively of the presence of seeds (Figure 11.3). This is direct evidence that amyloidogenesis seeding by Aβ1-40 is a purely kinetic effect and not an artifact arising from a distinct final structure in seeded S100B. 
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Figure 11.2 - Seeding of S100B amyloidogenesis with Aβ1-40. S100B 3 mg/ml in 50 mM glycine pH 2.5 was incubated at 42°C alone or in the presence of 1 or 5% (w/w) preformed Aβ1-40 fibrils, Aβ1-40 amyloid oligomers or lysozyme fibrils. Amyloidogenesis kinetics assessed by ThT fluorescence (A) or ThT fluorescence and FT-IR signal variation at 1628 cm-1, normalized by the absorption at 1653 cm-1 (B). Time-resolved FT-IR spectra of unseeded S100B (C) and S100B seeded with 5% Aβ1-40 fibrils (D). Nevertheless, the seeding effect is modest. To gather information about the secondary structure changes occurring in S100B during amyloidogenesis, we have examined the amyloidogenesis of S100B seeded with 5% Aβ1-40. In seeded and unseeded S100B, amyloid formation can be monitored by the increasing absorbance at 1628 cm-1 (Figure 11.2CD), arising by the buildup of intra and intermolecular β-sheet content. When amyloidogenesis assays were allowed to progress until a plateau phase was reached, higher ThT and FT-IR signals were recorded in the seeded sample (Figure 11.2B), which is an indication of enhanced β-sheet content. Since the endpoint morphology is not 
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Figure 11.3 - Morphology of seeded S100B amyloid oligomers. From AFM imaging. S100B was prepared at 3 mg/ml in 50 mM glycine pH 2.5 and incubated at 42°C in the absence and presence of 1 or 5% (w/w) preformed lysozyme fibrils, Aβ1-40 amyloid oligomers or Aβ1-40 amyloid fibrils. Images were taken at the plateau phase of amyloid formation kinetics. Scale bar: 1 µm. affected (Figure 11.3), this result can be interpreted as an indication of enhanced amyloid oligomerization efficiency. We have obtained further information from FT-IR spectra using singular value decomposition (SVD) deconvolution [45]. This algebraic algorithm rearranges the succession of FT-IR spectra we have recorded during S100B amyloidogenesis into the temporal variation of its components. The relative intensity of each component indicates which ones contain data representative of the experimental result and which ones represent noise. From our analysis, only the first three SVD components of the unseeded and seeded S100B amyloidogenesis assays contained significant information (Figure 11.4AB). Using SVD we could obtain additional structural information. The first component is representative of the final amyloid state. The second component of both experiments contains a peak at a wavenumber associated with intermolecular β-sheets (1617 cm-1 unseeded, 1623 cm-1 seeded), which are characteristic of protein aggregates and particularly amyloid [49]. The kinetic analysis of this component revealed 
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Figure 11.4 - Singular value analysis of FT-IR monitored S100B amyloidogenesis 
seeding by Aβ1-40. The spectra acquired during S100B amyloidogenesis (Figure 11.2CD) were deconvoluted using SVD and the spectral components changing with time were identified. Main spectral components of unseeded S100B (A) and S100B seeded with 5% Aβ1-40 fibrils (B). (C) Normalized variation of component 2, which contains a significant contribution at the β-sheet associated peak around 1620 cm-1 (arrows). that its intensity increased with time and that buildup of intermolecular β-sheets is faster when fibrillar Aβ1-40 seeds are present (Figure 11.4C). 

11.4.3. S100B is a specific seed of Aβ1-40 fibrillization in vitro The seeding of S100B amyloidogenesis with Aβ1-40 fibrils is an indication of the interaction between these two proteins. In the case of amyloid formation, this interaction can be assumed to be based on the existence of a specific template provided by the seed. Accordingly, a comprehensive analysis of the interaction potential of S100B and Aβ1-40 requires the assessment of the converse seeding experiment: seeding Aβ1-40 amyloidogenesis with preformed S100B fibrils. Following the same approach, we have monitored Aβ1-40 fibrillization at optimized conditions (2 mg/ml, 10 mM NaOH pH 7.5, 25°C) using ThT fluorescence and FT-IR. After fibrillization, samples were imaged using AFM. Aβ1-40 was seeded with 5% (w/w) preformed fibrils of S100B or lysozyme. Like S100B, Aβ1-40 fibrillization results in the development of an FT-IR absorbance band at 1627 cm-1 (Figure 11.5A-C), typical of intra and intermolecular β-sheets. AFM analysis of the wither sample after amyloid seeding assays did not allow an unequivocal structural characterization 
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Figure 11.5 - Aβ1-40 amyloidogenesis seeding. 5% (w/w) fibrils of S100B or lysozyme were used as seeds. (A-C) FT-IR spectra recorded during amyloid formation. (D-F) AFM images obtained after the seeding assays. (A,D) Unseeded Aβ1-40; (B,E) Aβ1-40 seeded with 5% S100B fibrils; (C,F) Aβ1-40 seeded with 5% lysozyme fibrils.  
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 because of sample heterogeneity, with fibrillar and aggregate structures around 1 nm in height in all samples. AFM is not a quantitative technique, as the detected proteins are those which bind the negatively charged mica surface, possibly not accurately representing the whole solution ensemble. This excludes the possibility of a quantitative appreciation of the images. Heterogeneity also precludes the immediate identification of the identity of the proteins composting the fibrillar and the aggregate structures. Significant seeding effects occur in the amyloid formation kinetics (Figure 11.6): S100B seeds both accelerate Aβ1-40 fibrillization and increase the β-sheet content of the sample ensemble, as judged by the higher signal at the plateau phase. More importantly, comparing with the results obtained using lysozyme seeds, the effect is S100B-specific. 
11.5. Discussion The results reported herein show that S100B and Aβ1-40 amyloids can cross-seed the amyloid formation by the other protein, establishing the proof of concept for the possible functional implications of the interaction of the two proteins in vivo. We have based our analysis of S100B-Aβ interaction on cross-seeding assays because seeding requires specific structural templating. 
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Such approach has already been pursued in the literature for identifying Aβ interacting partners. Stefin B was recently shown to modulate Aβ fibrillization [46]. Substoichiometric amounts of stefin B dimers, tetramers and high order oligomers inhibit Aβ fibrillization, while other oligomeric forms are not. Similar effects exist for Aβ1-40 and Aβ1-42 cross-seeding. Monomeric Aβ1-40 and Aβ1-42 can be seeded by fibrils of either peptide. However, Aβ1-42 protofibrils selectively seed amyloid formation by monomeric Aβ1-42 but not monomeric Aβ1-40. On the other hand, monomeric Aβ1-40 alters the kinetic stability, solubility, and morphology of Aβ1-42 aggregates and prevents fibril assembly [50]. Accordingly, the ratio of Aβ1-40 to Aβ1-42 influences the amyloidogenic and, consequently, toxic properties of Aβ. This demonstrates that seeding effects are not related to protein identity but to stringent structural determinants. Apart from the extensive data correlating S100B and Aβ in Alzheimer’s disease, reports also exist on the seeding effects of Aβ. Murine cortical neurons and human neuroblastoma cells (SHSY-5Y) can uptake Aβ1-42 (≥1 nM) from the extracellular medium and concentrate it in late endosomes or lysosomes to micromolar levels, where aggregates with monomeric Aβ1-42 seeding capacity assemble [51]. Such intracellular accumulation of Aβ1-42 in AD-sensitive brain areas precedes disease onset, suggesting an early role in AD neurodegeneration [52]. The importance of the regulation of fibrillization lag phase has been highlighted by the work of Eaton and co-workers in sickle cell anemia in the 1970s. The aggregation of mutant hemoglobin which underlies disease is formally dependent on approximately the 30th power of the soluble precursor concentration [53], implying that even small variations in protein concentration or temperature have very significant effects in the aggregation kinetics. The still unaddressed kinetic description of S100B and Aβ1-40 cross seeding thus encloses important information about the relevance of such 
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effects. Of particular interest is the putative deregulation of S100B signaling by Aβ-related amyloid seeding. RAGE binds Aβ [54], S100B [55] and other S100 proteins [56]. In the case of Aβ, the RAGE interaction is involved in the translocation of circulating Aβ to the brain [57]. Also, RAGE binding potentiates Aβ-induced neuronal dysfunction [58]. Nanomolar S100B concentrations protect neurons against Aβ toxicity in a RAGE-dependent manner [59], involving the overexpression of anti-apoptotic protein Bcl2 and, possibly, Aβ scavenging by enhanced soluble RAGE (sRAGE) secretion [60]. However, Aβ senile plaques initiate an inflammatory response leading to the local overexpression of proteins like S100A6, S100A8/A9, S100A12 and S100B [56]. Micromolar S100B concentrations are characteristic of this condition and present additional toxicity relatively to Aβ alone [59]. In the same way that overexpression and extracellular co-localization of amyloidogenic S100B and Aβ in Alzheimer’s disease suggested us that the amyloidogenic processes of both could be correlated, similar inferences can be drawn for other S100 proteins with pathological relevance. In ALS, another neurodegenerative disease where intraneuronal Cu/Zn Superoxide Dismutase (SOD1) aggregation is associated with motor neuron loss [61]. In mice [36] and humans [5], ALS is accompanied by astrogliosis and overexpression of S100A6 in astrocytes. Like the normal population, ALS patients have corpora amylacea in the spinal cord [62-63] and brain stem [64-65], but present unique deposits in intramuscular nerves [63, 66], the composition of which is currently unknown. Alzheimer’s disease is characterized by an imbalancement in metal ion homeostasis. Specifically, zinc transporters co-localize with amyloid plaques of Alzheimer’s disease brain [67] and zinc induces Aβ amyloid formation. Like Aβ, S100B is also a zinc-binding protein. The other S100B metal ion ligands – calcium and copper – are abundant in the synaptic space where Aβ deposits form in AD. Similarly to the strictly metal-dependent amyloid 
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formation by S100A8/A9, metal ions may be relevant in this protein’s amyloid processes. Structural characterization of S100B and Aβ cross-seeded species was incomplete in this work. The elucidation of the structure of the seeded amyloid samples was hampered by structural heterogeneity because of the multiple species in solution. A detailed characterization of S100B and Aβ1-40 cross-seeded amyloids will thus require characterization and identification of individual oligomeric and fibrillar species. Finally, the validation of our hypothesis on the cross-talk between S100 and Aβ amyloidogenesis in Alzheimer’s disease will require the investigation of the formation of S100B amyloids at physiological or physiological-like conditions and the examination of AD brain samples to determine if S100B deposition is observed in patients. 
11.6. Conclusions S100B has been recurrently implicated in Alzheimer’s disease. Our results suggest that a possible connection could consist in the direct involvement of this protein in Aβ fibrillization. By using a series of amyloid cross-seeding assays we have showed that Aβ1-40 fibrils speed amyloid formation by S100B and that fibrils of S100B – but not of the unrelated protein lysozyme – were able to eliminate the lag phase preceding amyloid formation by Aβ1-40. These observations support the hypothesis that spontaneous formation of amyloid species by either S100B or Aβ may establish a cross-seeding catalytical cycle promoting amyloid formation and disease progression. This may also apply with S100A6, S100A12 and S100A8/A9, which are overexpressed in Alzheimer’s disease as a consequence of the astroglial inflammatory response to the deposition of Aβ plaques. The currently proposed hypothesis will be tested in the future with the determination of the conditions where S100B is prone to amyloid formation, with the search of S100B/Aβ co-deposition in vivo and with the identification of modulators of S100B 
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amyloidogenesis. Regarding the latter, zinc, which is an S100B ligand and promotes Aβ fibrillization is an a priori candidate (Figure 11.7).   

 
Figure 11.7 - S100 proteins in Alzheimer’s disease. Alzheimer’s disease is characterized by abundant deposition of extracellular plaques in the central nervous system. These recruit glial cells which secrete S100 proteins to the same extracellular space [56]. Zinc and copper, which are released as µM transients in the glutamatergic synapse [68], enhance fibrillation Aβ fibrillization [69] and bind to S100B. Co-localization of high concentrations of amyloidogenic Aβ and S100 proteins supports the hypothesis that the amyloidogenic processes of these proteins may be related. Thus, formation of Aβ or S100 amyloids may cross-template further fibrillization and favor disease progression. 
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12.1. Iron-sulfur proteins The studies presented in this thesis resorted mainly to biophysical, biochemical and spectroscopic techniques to perform a characterization of the interplay of metal ions with protein conformation and stability. In the case of iron-sulfur (FeS) proteins, research was focused on elucidating fundamental aspects of protein folding whereas in the study of S100 proteins our experimental approach was framed in the context of S100 biology and allowed formulating hypothesis regarding pathological processes involving these proteins. In the studies described herein, we have exploited the many spectroscopic probes available in iron-sulfur (FeS) proteins to assess protein folding properties using complementary methodologies. For the Acidianus 

ambivalens Rieske ferredoxin, the combination of fluorescence-monitored thermal unfolding, visible absorption-monitored redox titrations and visible CD-monitored pH titrations allowed us to correlate the redox status of a disulfide bridge with other properties. In the Desulfovibrio gigas rubredoxin and A. ambivalens seven iron ferredoxin, the deconvolution of temperature-resolved FT-IR spectra allowed a quantitative description of the conformational events taking place during protein unfolding. For the rubredoxin, this included a model describing protein conformation as a function of temperature. For the ferredoxin, we were able to follow the thermal unfolding of distinct structure subsets depicted as spectral components and identify distinct unfolding behaviors. The cold unfolding occurring in ferredoxin represents an uncommon event which is experimentally accessible through our deconvolution methodology. 
12.2. Amyloid formation by S100 proteins The description of amyloidogenic properties of S100 proteins and the in 

vitro amyloid cross-seeding between S100B and Aβ enclose relevant 
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biomedical implications and are the most relevant findings presented herein. At the moment, the studies on S100 amyloidogenesis are preliminary. Due to the fully uncharacterized amyloidogenic properties of the S100 proteins in this study, we have restricted our studies to acidic pH. Although these conditions do not allow prompt assumption that S100 amyloid formation occurs in vivo, it nevertheless establishes the proof of concept for future studies. S100A6 [1], S100A12 [2] and S100B [3] are overexpressed in Alzheimer’s disease accumulating in the synaptic space as response to Aβ deposition. In this milieu there are high concentrations of metal ions which may facilitate amyloid formation by S100 proteins (e. g. Cu2+-induced S100B amyloidogenesis). Based on this possibility, we assessed the cytotoxicity of S100 amyloid species. Indeed, we detected cytotoxicity arising from S100A6 oligomers as well as S100A12 and S100B mature amyloids, an indication of the pathological relevance of these species if they form in vivo. The molecular basis for cytotoxicity was not investigated, but membrane disruption is a common mechanism among different amyloid species. Specifically for S100 proteins, the transduction of the extracellular protein accumulation into intracellular events may involve the Receptor for Advanced Glycation Endproducts (RAGE), a known S100 ligand [4]. Interestingly, RAGE also binds Aβ oligomers and fibrils, enclosing the possibility for RAGE-Aβ-S100 cross-talk in cytotoxic events.  Based on the abundant secretion of S100A12 and S100B and, to a lesser extent, S100A6, in the synaptic metal-rich milieu where Aβ oligomeric and fibrillar structure accumulate, we have hypothesized that S100-Aβ cross-seeding could be instrumental in disease progression. If S100 proteins are amyloidogenic at physiological conditions, this interaction could constitute a mechanism facilitating onset of fibrillization. The imbalancement in metal ion homeostasis occurring in Alzheimer’s disease could act as a further factor 
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facilitating amyloidogenesis. Further, metal ions are known to influence Aβ amyloidogenesis [5]. Our results on the modulation of S100 amyloidogenic pathways by metal ions support this hypothesis. Subsequent studies on the biomedical implications of S100 amyloid formation should establish the conditions where S100 proteins are amyloidogenic and determine if amyloid formation is accessible under physiological conditions. This knowledge will allow formulating hypothesis on the conditions where the amyloidogenic process of S100 proteins and Aβ can be correlated. An identical approach may apply to the involvement of S100A6 in ALS [6]. Overexpression of this mainly intracellular protein in a disease characterized by aggregation of the also intracellular protein superoxide dismutase 1 (SOD1) may be analyzed in an analogous manner. The determination of the potential implication of S100 proteins in neurodegenerative diseases will build on the knowledge of the molecular basis of disease and be useful in the design of novel prophylactic therapeutic strategies. 
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