
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Master Thesis

European Master in Computational Logics

Multiple sequence alignment
correction using constraints

Luciano M. Guasco1

EMCL2

FCT/UNL3

lucianoguasco@gmail.com ()

Lisboa
(2010)

1supervised By Dr. Ludwig Krippahl.
2European Master in Computational Logics
3Faculdade de Ciências e Tecnologia / Universidade Nova de Lisboa, Caparica, Portugal

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157622641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
lucianoguasco@gmail.com

ii

Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Master Thesis

Multiple sequence alignment
correction using constraints

Luciano M. Guasco4

EMCL5

FCT/UNL6

lucianoguasco@gmail.com ()

Orientador: Dr. Ludwig Krippahl

4supervised By Dr. Ludwig Krippahl.
5European Master in Computational Logics
6Faculdade de Ciências e Tecnologia / Universidade Nova de Lisboa, Caparica, Portugal

lucianoguasco@gmail.com

iv

Trabalho apresentado no âmbito do European
Master in Computational Logics, como requisito
parcial para obtenção do grau de Mestre em Com-
putational Logics.

Lisboa
(2010)

To my grandfather, who introduced me in the wonderful
world of science.

vi

Acknowledgements

First of all, I would like to thank my supervisor Dr. Ludwig Krippahl for his guidance,
advises, continue feedback and enthusiasm to answer my doubts about many topics.

I want to express my thanks to all the CENTRIA people, that accompanied me
during my studies in Portugal, specially when we shared many chats at the incredible
open houses.

My thanks to the EMCL consortium, for the scholarship I got to complete this stud-
ies, money without which it would have been impossible for me to study in Europe.

I would like to give thanks to my family and my friends for their continuous sup-
port and the strength transmitted to commit this work.

I also would like to thank my girlfriend. I am really grateful for her continuous
moral support and advises.

I would like to give a special thank to my friend MSc. David Buezas, for all our
brainstormings while tasting the Portuguese pastry.

vii

viii

Abstract

One of the most important fields in bioinformatics has been the study of protein se-
quence alignments. The study of homologous proteins, related by evolution, shows
the conservation of many amino acids because of their functional and structural impor-
tance. One particular relationship between the amino acid sites in the same sequence
or between different sequences, is protein-coevolution, interest in which has increased
as a consequence of mathematical and computational methods used to understand the
spatial, functional and evolutionary dependencies between amino acid sites. The prin-
ciple of coevolution means that some amino acids are related through evolution be-
cause mutations in one site can create evolutionary pressures to select compensatory
mutations in other sites that are functionally or structurally related.

With the actual methods to detect coevolution, specifically mutual information tech-
niques from the information theory field, we show in this work that much of the in-
formation between coevolved sites is lost because of mistakes in the multiple sequence
alignment of variable regions. Moreover, we show that using these statistical methods
to detect coevolved sites in multiple sequence alignments results in a high rate of false
positives.

Due to the amount of errors in the detection of coevolved site from multiple se-
quence alignments, we propose in this work a method to improve the detection effi-
cacy of coevolved sites and we implement an algorithm to fix such sites correcting the
misalignment produced in those specific locations.

The detection part of our work is based on the mutual information between sites
that are guessed as having coevolved, due to their high statistical correlation score.
With this information we search for possible misalignments on those regions due to
the incorrect matching of amino acids during the alignment. The re-alignment part is

ix

x

based on constraint programming techniques, to avoid the combinatorial complexity
when one amino acid can be aligned with many others and to avoid inconsistencies in
the alignments.

In this work, we present a framework to impose constraints over the sequences, and
we show how it is possible to compute alignments based on different criteria just by
setting constraint between the amino acids. This framework can be applied not only for
improving the alignment and detection of coevolved regions, but also to any desired
constraints that may be used to express functional or structural relations among the
amino acids in multiple sequences. We show also that after we fix these misalignments,
using constraints based techniques, the correlation between coevolved sites increases
and, in general, the new alignment is closer to the correct alignment than the MSA
alignment.

Finally, we show possible future research lines with the objective of overcoming
some drawbacks detected during this work.

Keywords: Multiple Sequence Alignment, Molecular Coevolution, Mutual Informa-
tion, Constraints, Amino Acids Correlation

Contents

1 Introduction 1
1.1 Layout of this work . 2

2 Preliminaries 3
2.1 Sequence Alignments . 3
2.2 Algorithms for Sequence Alignment . 4
2.3 Algorithms for Multiple Sequence Alignment 5

2.3.1 Dynamic Programming . 6
2.3.2 Progressive Alignment . 6
2.3.3 Iterative Alignment . 7

2.4 Coevolved sites . 8
2.5 Simulated data sets . 9
2.6 Constraint Programming . 12

2.6.1 Constraint Satisfaction . 12
2.6.1.1 Consistency techniques 13
2.6.1.2 Constraint Propagation 15

2.6.2 Constraint Optimization . 15
2.6.3 Constraints . 16

3 Objectives 19

4 Mutual Information in Sequence Alignments 21
4.1 Mutual Information Definition . 22
4.2 MI Calculation . 23
4.3 Normalization of the MI . 24

4.3.1 Adaptable logarithmic base . 24
4.3.2 Simple Correlation . 25

xi

xii CONTENTS

4.3.3 Entropy division . 26
4.4 Visualization tool . 27
4.5 Results . 27

5 Alignment using Constraints 31
5.1 Motivation . 31
5.2 Preliminary definitions . 32
5.3 Gaps Model . 34

5.3.1 Semantic . 34
5.3.2 Correctness of the model . 37
5.3.3 Aligning with the Gaps Model . 37

5.4 Position Model . 38
5.4.1 Semantic . 38
5.4.2 Correctness of the model . 40
5.4.3 Aligning with the Position Model 40

5.5 Reified constraints . 41
5.6 Defining the search strategy . 43
5.7 Experimental Results and Analysis . 47
5.8 Limitations of the models . 50

6 Using constraints to fix the alignment 53
6.1 General problem and definitions . 54
6.2 Map based detection . 55

6.2.1 Fixing the alignment . 59
6.2.2 Results . 62

7 Conclusions and Future work 69
7.1 Conclusions . 69
7.2 Future Work . 70

7.2.1 Constraint Matching . 71
7.2.2 Avoiding conflicts . 73

List of Figures

2.1 Arc consistent graph, but no solution. 14

4.1 Visualizer tool, Mutual Information and Alignment 27
4.2 Ratio match, mismatch of coevolved sites in Correct and Clustal align-

ment. 29

5.1 Variable based representation of sequences 34
5.2 Gap Model: Position Constraint, variables and expressions. 36
5.3 Position Model:Constraints, variables and expressions. 39
5.4 A simple alignment and order constraints 40
5.5 The search space is totally expanded for the gaps variables 46

6.1 Sequences and coevolution guessing . 55
6.2 Mapping for the sequences in sites I and J 56
6.3 Normalization of the mapping: at left the Map, at right the normalized

one . 57
6.4 Mistake identification and "canFix" checking 58
6.5 Ratio of detections . 63
6.6 Detection using both algorithms for blosum and mapping coevolution. . 65
6.7 Detection using both algorithms for cluster coevolution. 66

7.1 Variable, domains and matchings. 72

xiii

xiv LIST OF FIGURES

List of Tables

2.1 Two sequences aligned. 4
2.2 Coevolution in pairs of sites: (i,n) and (j,m). 8

4.1 Average Pairwise homology score given by Clustal. 28

5.1 Conflict if we want to align A’s, and B’s 42
5.2 Gaps Model, set up and execution times. 48
5.3 Position Model, set up and execution times. 48

6.1 Tests description. Coevolution mutation: blosum, mapping, cluster. . . . 64
6.2 Alignment similarity with correct alignment 67

7.1 Matching between Mati and Mat j. 72

xv

xvi LIST OF TABLES

1
Introduction

Many methods have been proposed to understand the evolutionary dynamics of or-
ganisms using Multiple Sequence Alignments as the main tool.

Of special interest to this work is the coevolutionary relationships among amino
acids in different position of protein sequences, because this relationship shows an
evolutionary dependency between these regions.

The importance of correct sequences alignment that include co-evolved sites, stems
from the fact that conserved correlation between this sites through evolution from a
common ancestor shows a functional or structural relation between them.

During this work we show how the multiple sequence alignment produces mis-
takes when aligning the more variable regions where coevolution might have occurred,
because alignment algorithm tries to optimize the conservation of sequences, based on
static substitution weight matrices, and much of the correlation information is lost after
the alignment.

In this work we also show some techniques to discover coevolution, and we pro-
pose some improved methods to do so.

Based on constraint techniques we also propose some methods to set amino acid’s
position restrictions in the sequences and between different sequences, with the ob-
jective of aligning some parts of the sequences for recover the lost coevolution infor-
mation. To do this, we propose several models to represent the information in the
sequences and constraints to reduce the search space, resulting in an efficient tool for
correcting the alignment errors and search possible solutions that increase the mutual

1

1. INTRODUCTION 1.1. Layout of this work

information between coevolving sites.
Constraint programming is a good technique to solve combinatorial problems, since

constraint propagation can greatly reduce the search space. In our specific problem, we
use constraints to solve many alignment conflicts, pruning the variables’ domains and
reducing the search space of allowed alignments. In this work, a framework for han-
dling protein sequences and alignment constraints is presented, and it can be used in
the future in any problem involving constraints on sequences.

1.1 Layout of this work

In Chapter 2, we give an introduction to the basis and definitions that we use in the
next chapters. We explain some problems and previous works on protein sequence
alignments, multiple sequence alignment, coevolution, constraint programming, and
we also introduce our protein sequences simulator.

In Chapter 3 we present the objectives of this work.
In Chapter 4 we present the mutual information concept, some techniques already

explored, and we present our tool for mutual information visualization and some re-
sults.

In Chapter 5 we model the sequences in a constraint framework, where we propose
some methods for setting constraint and adding dynamic alignment. We also test the
methods and show the results.

In Chapter 6 we present a method to disambiguate the uncertainty of which sites
are coevolved and we specify a technique for using the method of chapter 5 to fix the
alignment. We also test the different algorithms and show the results.

In Chapter 7 we present the conclusions and future work.

2

2
Preliminaries

2.1 Sequence Alignments

A protein sequence is an ordered list of amino acids. The amino acids are biological
entities, that we represent as a set of 20 characters. Each amino acid occupies a position,
called a site in the sequence. In this work, we focus only on the primary structure level
of the proteins, working directly with the amino acids sequences.

Protein and DNA sequencing has become an essential tool in the study of the struc-
tures and functions of proteins in any kind of living organisms, to understand cellular
processes, and even to study such organisms in many scientific areas such as ecology
and species conservation. There are many methods to determine protein sequences,
whether from DNA sequencing or working directly with proteins as is the case of Mass
spectrometry and Edman degradation.

Once the protein sequences are determined, a Sequence Alignment is a way of com-
paring and aligning the sequences according to the amino acids present in the corre-
spondent sites, from which some information can be inferred, such as the functional
and structural importance of conserved regions and relations between sequences.

An alignment is the match of the amino acids of a sequence to corresponding
amino acids in the other sequence or sequences. For this, gaps can be inserted when a
change in position is desired. For instance, in table 2.1 we can see how two sequences,
s1=KLYECNERSA and s2=ECNEERSKA are aligned.

3

2. PRELIMINARIES 2.2. Algorithms for Sequence Alignment

K L Y E C N E - R S - A
- - - E C N E E R S K A

Table 2.1: Two sequences aligned.

In many representations of alignments, also in table 2.1, the sequences are arranged
in rows so that the aligned residues, i.e. aligned positions, appear in successive columns.
The columns with a total match in the amino acid can correspond to a conserved region
in the sequences, information that never changed in the evolution from the common
ancestor.

A mismatch in a column can correspond to a mutation, a replacement of one amino
acid by other during the evolutionary process through the generations of the species,
or it can be a mismatch that can be aligned with the correspondent successive amino
acid in the sequences adding a gap.

We can identify the conserved regions as part of the sequences that are perfectly
conserved through the linages in the evolution history of the common ancestor. These
conserved regions, as proposed in [NH03], suggest that such regions have a structural
or functional importance.

The reason why sequence alignments are so important in bioinformatics, is due to the
identification of sequences similarity that many times is assumed to reflect a degree of
evolutionary change from a common ancestor. So, in this case, if we align sequences
we can see the differences among them as changes in the evolutionary lineage.

The alignments are important, because they can tell how related two sequences are,
and which regions of the sequences they share, generally related to a functional or
structural similarity in two sequences. Biologists usually use these alignments to com-
pare sequences that have a common ancestor from which they inherit this functionality
or structural sections.

Sequence Alignments is a widely used tool in many fields, and many algorithms
have been proposed to solve this problem. In this work, we use them to realize some
experiments.

2.2 Algorithms for Sequence Alignment

Given two protein sequences, which we can suppose share a common ancestor, they
can be aligned according to their amino acid similarity. If a site contains the same
amino acid, it means a match, we can say that the amino acid is conserved through
the linage. Mismatches can be interpreted as mutations, if two amino acid differ in the

4

2. PRELIMINARIES 2.3. Algorithms for Multiple Sequence Alignment

same site, or as an indel introduced in some linage, if one of the sequences contains an
insertion or a deletion mutation.

In this section we mention the basic algorithms for two sequence alignment and
in the next section we analyze what happens when we want to align more than two
sequences (Multiple Sequence Alignment).

Finding the alignment between two protein sequences is a complex task that can be
tackled with many techniques. These approaches in general in two categories: global
alignment and local alignment. Global alignments attempt to align the whole sequences,
a form of global optimization that accounts for all regions wether they match or not.
Local alignments instead, align those regions which are similar in both sequences and
ignore regions that are too divergent.

We mention two approaches based on dynamic programming. One is a global
alignment algorithm, Needleman-Wunsch [NW70], and the other a local alignment
algorithm, Smith-Waterman [SW81]. We invite the reader to follow the correspondent
papers to read more about the algorithms, but in this work it is enough to take into
account that these methods are useful when pairwise alignment is needed, in some
optimized version of quadratic time.

For both algorithms we need the substitution matrix concept. A substitution matrix is
a matrix that, for every pair of amino acids, shows a measurement of how probable is
that one of the amino acid changes to the other. These matrices are useful when we are
aligning, because we should determine if its convenient to proceed over a mismatch
with the insertion of a gap or consider it as a point mutation. The substitution matri-
ces can be constructed from statistical analysis of many well known sequences where
point mutations occur. Actually, many matrices already exist and can be used with this
purpose, as it is the case of BLOSUM matrices [HH92]

2.3 Algorithms for Multiple Sequence Alignment

Given three or more protein sequences or DNA sequences, a multiple sequence align-
ment algorithm is a method to search the best alignment of the sequences. It is usually
assumed that such sequences share an evolutionary relationship and are descendant
of a common ancestor. Also these algorithms can produce a phylogenetic tree with an
evolutionary lineage hypothesis.

These algorithms differ in the way they search for the alignment. Some of them are
global alignment, local alignment or heuristic based search. The complexity of these
algorithms is always bigger than the complexity of pairwise alignment, and that is
why many approaches are based on heuristic rather than in the complete search of the

5

2. PRELIMINARIES 2.3. Algorithms for Multiple Sequence Alignment

optimal alignment.

There exists a classification of these algorithms according to the way they proceed
over the sequences. In the next section we review the most important techniques for
multiple protein sequence alignment, pinpointing the advantages and drawbacks of
each one.

2.3.1 Dynamic Programming

Dynamic programming technique can be used to produce the globally optimal align-
ment. The algorithm receives a set of gap penalties and a substitution matrix assigning
scores according to the alignment of each possible pair of amino acids, based on the
similarity and the probability of change of them.

For n sequences, the algorithm constructs a n-dimensional matrix, equivalent to
the 2-dimensional constructed for 2 sequences as described in previous section. The
complexity of the search space increases exponentially when a new sequence is added,
as this means a new matrix dimension. The multiple sequence alignment algorithm
with dynamic programming technique, tries to minimize the sum of the scores of the
matrix giving a way to traverse backward the matrix and determines which sites align
with each other, according to the direction of the path, that can fall in a decision of add
gap to some of the sequences or leave the partial alignment as it is in that position.

This algorithm has a complexity, governed by the matrix creation step, of O(SN),
where S is the length of the sequences and N the number of sequences. As has been
shown in [WJ94], the problem of finding optimum global alignment for n sequences
using this method, is a NP-complete problem.

2.3.2 Progressive Alignment

The progressive alignment method is a technique in which the main steps can be
clearly identified: First, a guide tree is constructed, representing a hierarchical or topo-
logical order according to the similarity of the sequences. This tree is usually con-
structed with a cluster algorithm such as neighbor-joining, as in [SN87], using a dis-
tance matrix that can be constructed with the pairwise alignment using dynamic pro-
gramming. Second, once the guide tree is constructed, it provides an order in which
the sequences should be aligned. Thus the two most closely related sequences, at the
root of the tree, are aligned fixing an alignment which now will be aligned with the
next sequence in the tree. The algorithm continues aligning each sequence, according
to the tree constructed in the previous step, with the accumulated alignment until all
the sequences are aligned.

6

2. PRELIMINARIES 2.3. Algorithms for Multiple Sequence Alignment

In the way this method works, the alignment may not be globally optimal because
the two most similar sequences are aligned and then this alignment is aligned with
the next sequence, and so on. This process is susceptible to propagating the mistakes
made in the previous steps to all future alignments with the remaining sequences. This
is why in some studies, as [DWFG10], they conclude that the errors in the final result
increase for more dissimilar sequences.

One of the most popular MSA application based on the progressive method is
Clustal[LBB+07]. Clustal works by calculating all the pairwise distance for the se-
quences and constructing the tree from such distances. The pairwise distances can be
calculated with a fast and not so precise method, or with one slower but more accurate
based on dynamic programming algorithms. With this distance information, the tree
is constructed with the cluster algorithms and stored in a dendrogram (a specific guide
tree). Then, with the guide tree defining the order, the progressive alignment strategy
is applied to obtain the final alignment. The performance of Clustal was determined
in [TPP99] and motivate us to test the alignment with the coevolution sequences as we
describe in the objectives section.

2.3.3 Iterative Alignment

If we think in the previous method, the progressive one, but now we relax the con-
cept that every intermediate alignment is fixed, in the sense that we can adjust it in
future alignment steps, we have an iterative method. Mainly we lose efficiency, lack-
ing the straightforward steps of the progressive method, but we gain accuracy because
a correction procedure is accepted after an intermediate alignment is done.

There are many iterative algorithms, as explained in [Bat05], and they have differ-
ent approaches in the way they select the sequence to align and also the correction
procedure after the intermediate alignments.

The iterative methods are also heuristic in the search of the best multiple sequence
alignment. The idea is that many refinements are done when possible to improve the
alignment in each iteration, computing a solution of the problem as a modification of
an existing sub-optimal solution, driving to a good but sometimes not optimal solution
[Bax05]. Anyway, the final alignments obtained by this methods are robust.

Some applications developed using this techniques are DIALIGN [MFDW98] and
MUSCLE [Edg04].

7

2. PRELIMINARIES 2.4. Coevolved sites

2.4 Coevolved sites

In a general biological view, coevolution is the change of some state of a biological en-
tity triggered or pressured by the change of a related entity. In nature this coevolution
appear at many levels, for example in the evolution of two species where a particular
change in one of them makes the other evolve and adapt to that change. It is the case
of many related species that have coevolved for long time, as hummingbirds and or-
nithophilous flowers, or angracoid orchids and African moths. Although coevolution was
also part of Darwin’s work The Origing of the Species [Dar95], where there are many
examples of pair of species evolving and adapting in a race against each other, the def-
inition of the concept is attributed to Ehrlich and Raven, in a study on butterflies and
plants evolution [ER64].

Many techniques have been used to understand the evolutionary dynamics of or-
ganisms through the analysis of multiple sequence alignments. Through these studies,
the importance of conserved residues and correlated residues started to be a popular
topic since the studies focused on protein function and structure.

When performing sequence alignment it is often assumed that a mutation in one
site is independent of the remaining sites. In many cases, however, sites are related to
others and their evolution is dependent on those. For instance, this can occur when
two residues are close in the protein spatial structure and some interaction between
them is established. In this case, the evolution of these sites will depend on each other.
Thus, a mutation on one of them will create a selection pressure for mutants on the
other site, leading to a correlation in their evolution.

In the last few years many studies aimed to uncover coevolutionary relationships
in amino acids in protein sequences and how they were arose because of their evo-
lutionary importance. For instance, in [FT06] we can see many examples of how the
correlations between amino acids are related with the functional role of these residues
and why these correlations appear in the evolution of protein sequences.

i j m n
Seq1 : P E V A L P L G
Seq2 : P E A A L P L G
Seq3 : R E V A L P L A
Seq4 : P F V A G P L G
Seq5 : R F V A G P L A
Seq6 : P F V A G P L G

Table 2.2: Coevolution in pairs of sites: (i,n) and (j,m).

8

2. PRELIMINARIES 2.5. Simulated data sets

To clarify the concept of coevolution, we can see the table 2.2 that there exist cor-
relations between sites i and n, and j and m. We can see how a mutation at site i in
Seq3 and seq5 mutate from amino acid P to R, and force also a mutation in site n for
those sequences, mutating from amino acid G to A. In the site j the mutation produces
a correlated mutation at site m, such that every time an amino acid in the site j mutates,
in this case from E to F, the correlated site m mutates from L to G.

Coevolution appears when some amino acids are related through evolution because
mutations in some sites can cause evolutionary pressures to select compensatory mu-
tations in other sites that are functionally or structurally related.

Prediction of coevolution in protein sequences has been studied in many works as
[GOP07, WP05, NGR10, FHWE04, FT06]. Some of them work directly on the phyloge-
netic analysis, instead of on the alignment itself. Phylogenetic techniques give an idea
about the ancestral relation between the sequences, but this approach of detecting co-
evolution based on the phylogenetic trees has the problem of distinguishing between
what is properly coevolution and what is just the inheritance of conserved amino acids
that differ in different branches of the phylogenetic tree.

Most alignment algorithms use the mutation matrix probabilities and scoring func-
tions to align the sites of the sequences. During this work, we examine how coevolu-
tion information is not taken into account at the moment of the alignment and in many
cases losing this information in the final alignment.

In this work we address the calculation of the coevolution using the approach of
calculating the mutual information for every pair of sites. We estimate the correlation
of sites based on the statistical information in the sequences in a multiple sequences
alignment and we consider these sites as the guide sites to detect mistakes in the align-
ments.

2.5 Simulated data sets

Since we need protein sequences for which we know the correct alignment and the co-
evolved sites to do our experiments with, we developed a protein sequence simulator.

Following the previous definition of a protein sequence as an ordered list of amino
acids, we constructed an application to generate these sequences and provide an evo-
lutionary engine simulator to imitate as best as possible the evolution of sequences in
nature.

We implemented the pairs of coevolving sites as described by Pollock et al. [WP05].
Every pair is in the form (A,B), where A, B are sites and A is the driver and B the
driven. The concept of driver and driven can be easy defined such that for every state

9

2. PRELIMINARIES 2.5. Simulated data sets

on the driver, there is a favored state in the driven that will pressure the transformation
process.

For the representation of the sequence of amino acids we used the List Prolog con-
structor. Each position in the list corresponds to a site, and each element of the list will
correspond to a pair (Amino,Pos), where Amino is one of the possible amino acids,
and Pos corresponds to an identifier of the site. In the beginning of the simulation, Pos
has the value of the position, the site, of the amino acid. But practically this identifier
is maintained for future work on the sequences, specifically in the alignment step and
while dealing with insertions.

A protein sequence will be a triplet (ID,List,Coevolved), where ID represents the se-
quence identifier, List represents the list of pairs (Amino, Pos) in the sequence, and
Coevolved correspond to a list of pairs (P1,P2), such that for this given sequence the
sites P1, P2 are coevolved. We assume that every site in List that doesn’t belong to any
pair in Coevolved, corresponds to an independent site.

The evolution process of the simulator is an iterative transformation of the lists. In
the beginning we create one sequence, the root sequence, and then, from this one, we
create two offspring through a transformation step. In each step of the iteration, one
transformation - as it will be explained later, mutation, insertion or deletion - is applied
to each of the two offspring that will replace the parent sequence.

To generate the first sequence, we compute a random assignment of amino acids for
each site, following a probability distribution corresponding to the relative frequency
of each amino acid, data which is easily available [MB99].

A List of sequences will represent the complete offspring in a certain generation.
For each step, to create the next generation, we transform each sequence on the list re-
placing it by their two offspring. Each generation containing N sequences will generate
in an iteration a population of 2*N sequences.

The insertion in a given position N, corresponds to the insertion of a new amino
acid in that place. For this, we shift all the sites, after the N position, to the right on the
sequence. We use uniform distribution probability for the selection of the new amino
acid to be inserted.

The insertion can cause an incompatibility between the coevolved sites, because
now the sequence has a different size and the amino acids were shifted. So, we should
normalize the coevolved sites as explained:

• Ff N<=A, for every pair (A,B) in the coevolved list for this sequence add 1 to A
and B.

• If N>A, N<=B, for every pair (A,B) in the coevolved list add 1 to B.

10

2. PRELIMINARIES 2.5. Simulated data sets

• Do nothing otherwise.

The deletion in a given position N, corresponds to a deletion of the amino acid in
the site N, so it is a renaming of the amino acid in such position by a ’-’ character (indel).
If the deletion will be done on a coevolved site, it means there exists a pair (A,B) in the
coevolved site list of the actual sequence and A=N, or B=N, then the deletion will not
have any effect on the sequence.

We simulate the mutation used in the evolution along the offspring with changes in
random sites following a BLOSUM62 matrix of transition probabilities [HH92]. BLO-
SUM62 transition probabilities is a matrix that contains for row I, column J, the proba-
bility of I mutating to J.

We handle the mutation of a coevolved site for a given sequence like other re-
searchers do in [GOP07]. As we know, the coevolved sites are pairs (A,B) such that A is
the driver, B is the driven. This means that the driver site will press on the mutation of
the dependent site, and this pressure will correspond to a selection of favored state in
the driven given the state of the driver, with a certain level of pressure corresponding
to a coevolution factor.

We implemented the coevolution method in three different ways. In the Most Prob-
able Cluster method, as specified in the work [GOP07], the amino acids were grouped
into 7 different clusters, corresponding to the evolutionarily most meaningful division
of them. Each site will evolve according to BLOSUM62 matrix index with the actual
amino in the site to mutate (the first element in the pairs of blosum buckets), but the
choice won’t be done over all the possible mutations for this amino acid, but only
for those which are in the same cluster as the driver amino acid. The clusters were
obtained using a non-hierarchical clustering method, k-means, on the matrix BLO-
SUM62 and yielding the evolutionary most meaningful division of amino acids. The
next method, Blosum Coevolution, will be a mutation guided by the Blosum matrix.
The idea, is to get from the Blosum distributions the mutation correspondent to the
driver and also the new amino acid distribution that will pressure on the correspon-
dent coevolved site mutation. The third one is just a strict mapping, from the most
probable evolution of one amino acid to other one, purely experimental for our future
work but that we construct from the probabilistic mutation matrix adding biological
meaning.

As the sequences are generated by simulation, we can postulate that there exists
a way of doing a correct alignment based on evolutionary relations, using the infor-
mation stored during the simulation. This correct alignment is used during this work
as a benchmark for testing the results of other alignment methods and detect some
properties on this result that will conduct our research during the whole work.

11

2. PRELIMINARIES 2.6. Constraint Programming

2.6 Constraint Programming

A constraint can be seen as a logical relation among many entities, each of them taking
some values from their specific domain. The constraints are responsible for restricting
the values the entities can take. One of the flexibilities of the constraints is their hetero-
geneous application to different domains for different type of entities, restricting and
relating many domains of a problem.

In the last years, Constraint Programming has been a really focused research area
in Computer Science and other fields, because it works in a declarative way, providing
tools for specifying the relationship that should be maintained in the system, through
relation over the variables that take values from their domain, without specifying the
computational process through which the relations are assured.

In the same way as we use constraints daily, for instance when we are reasoning or
planning: "I will take the metro. In Cais do Sodre station I have to leave before 1pm,
and then I have to take the boat before 1.30pm", Constraint Programming is a tool for
integrate constraint relating objects in computational systems, assign values to these
objects according to the rules that the constraints define and a search for a respective
solution.

2.6.1 Constraint Satisfaction

A constraint satisfaction problem (CSP) can be defined as:

• a set of variables X = {x1,x2, ...,xn},

• each variable is associated with a domain, so for each xi,Di is a finite set of pos-
sible values xi can take. Depending the framework, the domain of each variable
can be of one of many types as integer,boolean,range,etc., and

• a set of constraints, C, logical relations, that restrict the values the variables can
simultaneously take.

In this definition a constraint can be defined as a subset of the cartesian product of
the domain of the variables that are involved in that constraint.

A solution to this CSP, is an assignment of a value from its domain to every variable
in X, always such that this assignment satisfies all the constraints belonging to set C in
the CSP. We can wish to find all the solutions, any of them, or may be just one with an
optimal condition, or at least one that satisfies an objective function over all or some
variables.

12

2. PRELIMINARIES 2.6. Constraint Programming

The solution can be found by searching systematically, traversing all the possible
assignments of values in the domain to the correspondent variable. Since this is not
the most efficient way of obtaining a solution, many techniques were proposed during
the last years, as many variants of backtracking, consistency techniques, constraint
propagation and optimizations among others.

The classic CSP as described above, defines the satisfaction of each constraint as a
necessary condition to the solution of the CSP. This restriction means that each con-
straint is imperative, each solution satisfies them, and in a total assignment for all the
variables, they must be completely satisfied. But these strict assumptions can be re-
laxed, as in Flexible CSPs, allowing solutions that do not satisfy all the constraints but
only a subset of all constraints.

In this work we work with Max-CSP, where some constraints are allowed to be
violated, and the solution is searched through a qualification over the amount of con-
straints satisfied. Also Weigthed-CSP is considered in this work, a Max-CSP where the
violations of the constraints are weighted according to some criteria and those with
more weight are the ones preferred to satisfy.

2.6.1.1 Consistency techniques

Consistency techniques are approaches to speed up the solution of a CSP, based on
the principle of removing inconsistent values from the variables’ domains, reducing
the search for consistent labellings. The inconsistencies can appear in the labelling of
a variable because the value assigned is inconsistent with such variable, or with the
logical relation over the variables, or with some more complex connection.

This techniques are deterministically computations through which values are re-
moved from the domain of the variables, and any non-deterministic computation is
done once there is no more propagation to do with the consistency techniques.

We will define the different techniques based on unary and binary constraints, due
to the fact that n-ary constraints can be transformed to equivalent binary CSP [BvB98].
So, given the CSP we can define:

• Node-Consistency: It removes values from the variables’ domain that are incon-
sistent with unary constraints defined over such variables. So, for every value
d ∈ Di, such that Xi taking the value d make unsatisfiable an unary constraint U,
Di = Di−{d}. For instance a constraint positive(X) that states that values in the
domain that are below 0 are removed.

• Arc-Consistency: Given a binary constraint arc(Xi,X j), is arc-consistent if and only
if for every value vi in the current domain of Xi which satisfy the unary constraints

13

2. PRELIMINARIES 2.6. Constraint Programming

on Xi, there is some value, called a support for vi, in the domain of X j, such that
Xi = vi and X j = v j is not unsatisfying the constraint arc. The idea of this technique
is that if arc-consistency is entailed by the binary constraint, then the values of
all variables’ domains that have not support on other variables related by the
constraint can be removed from their respective domain. As an example, we can
see figure 2.1 where the nodes represent the variables, labeled with the domains,
and the edges are the constraints and we can see the steps for enforce the arc-
consistency.

Several arc-consistency algorithms were proposed as in [BR97], from AC-1 to AC-
7. They are all based on the same principle, repeated revisions of the arcs, until
a fixed point is reached with a consistent state, or some domain become empty
making the constraint unsatisfiable.

Arc-consistency removes many inconsistencies from the constraint graph, but it
doesn’t mean that if all the constraint in the CSP are arc-consistent, there exist
a solution for such CSP. The idea behind arc-consistency is the reduction of the
domains on those values that will never be part of a solution. This can be seen
in the example of the figure 2.1, where arc-consistency is achieved but there is no
solution for this CSP.

• Path-consistency: Beyond the values removed by node-consistency and arc-consistency,
more values can be remove from the variables’ domain with path-consistency. It
requires for every pair of values, of two variables Xi, X j, satisfying the respective
binary constraint, that should exist some value for each variable along a path
from Xi to X j, such that all binary constraint in the path are satisfied.

There are many algorithms proposed to enforce path-consistency, like revisited
in [Sin95], but in many situations dependent of the problem, the computational
cost to enforce this consistency is not justified against the gain in the speed of the
search for a solution.

Figure 2.1: Arc consistent graph, but no solution.

14

2. PRELIMINARIES 2.6. Constraint Programming

Most consistency techniques are not complete, so there is no completeness bound-
aries to increase the efficiency of the algorithms losing some power in the value re-
moval. Some cases of directional arc-consistency, for instance, require that the variables
be ordered for working with efficiency and efficacy for constraints that previously en-
forced this criteria.

2.6.1.2 Constraint Propagation

The consistency techniques explained before, are not always sufficient for finding a
solution or proving any CSP unsatisfiable. Instead these are methods that use each
constraint or set of constraints to satisfy a local consistency between the variables they
are associated with. Instead of using isolated techniques, a combination of local con-
sistency and systematic search is in general used to search for the solution.

There exist many variations of the backtracking algorithms, as backmarking [Pro95]
that reduce the number of redundant checks by remembering previous incompatible
labellings.

Also there are many variations of look ahead approaches, methods that prevent
future conflicts analyzing the actual status and checking possible new states. As ex-
plained in [RBW+] Forward Checking, and Partial Look Ahead are the most common look
ahead techniques and they combine arc-consistency, or directed arc-consistency, dur-
ing the search enforcing that there exist possible values for future variables to be ex-
plored.

Many techniques for increasing the efficiency of constraint propagation are based
on the search strategy, in which the order in which the variables are labeled is defined,
i.e. a deterministic way is imposed. Also, the domain of the variables can be explored
by the labeler in different ways, according to the problem, and extracting the values
to assign with a specific criteria, as the maximum value, minimal value, etc. These
techniques are really dependent on the problem, and how its modeled with constraints,
but they add some efficiency when the solver is searching for a solution.

2.6.2 Constraint Optimization

The goal behind constraint optimization, is not just to find a solution but to find a good
solution, measuring its quality by an application dependent function called objective
function. The solution is searched satisfying the constraints, and also minimizing or
maximizing the objective function.

The common technique for this kind of optimization is branch and bound [RBW+],
which works over a heuristic function that maps the partial labeling to a representative

15

2. PRELIMINARIES 2.6. Constraint Programming

value. It is an under estimation (in case of minimization) of the objective function for
the best solution (complete labelling) that can be obtained from the actual partial la-
belling. The algorithm proceeds reducing the space of possible solutions, and proceed
in a deep search on them. As soon as a value is assigned to a variable, the value of
the objective function is calculated for the new labelling, and if its value exceeds the
bound, then this subtree is pruned immediately. The bound is started as a big number
(in case of minimization), and stores the objective function value for the best solution
found so far. So the main idea is to discard all branches that, from the partial state, we
know will not generate a solution better than one obtained before.

The efficiency of branch and bound is based on the quality of the objective function,
and also on whether a good bound is found early in the search process.

2.6.3 Constraints

There are many type of constraints, and in general, they are classified by the variables
they relate. As explained in the node-consistency, the unary constraint relate one vari-
able. Binary constraints relate pairs of variables. Many binary constraint are already
define with their respective consistency and propagation techniques and in this work
mainly we use:

• eq: x = y. Equality constraint, that forces the two variables to take the same value.
Enforce Arc-Consistency.

• lt: x < y. Strictly less than, forcing variable x to take a value that is strictly smaller
than y. Enforce Arc-Consistency.

.
Global constraints is the class of constraints that relate more than two variables.

In general these constraints enforce arc-consistency, and path-consistency could be en-
forced losing some efficiency. In this work we make reference to three arc-consistent
global constraints:

• allDi f f erent(X1, ...,Xn): states that the arguments have pairwise distinct values:
X1 6= X j; ∀i 6= j, This version of the global constraint, is equivalent to pairwise
comparison but considering all variables at same time, giving rise to better prop-
agation, with specific efficient algorithms. Further in this work we analyze this
constraint for future research in Chapter 7.

• globalCardinality(
−→
X ; low;up) states bounds on the occurrence numbers of any

value v in the vector of variables X (here,offset min is the minimum value over

16

2. PRELIMINARIES 2.6. Constraint Programming

all variables in x) : low[v−min]≤ |{i|Xi = v}| ≤ up[v−min], ∀value v. low and up
are the lower and upper occurrence value arrays for each possible value of the
variables in the vector X.

• increasingNValue(X1, ...,Xn,N): states that the variables X1, ..Xn take increasing val-
ues, and moreover it forces N to be the number of different values taken by the
variables. So, if we impose N equal to n, then X1 < X2, ..,< X3 < Xn. Otherwise,
some consecutive variables can take the same values.

Finally, many user defined constraints can be created using the previously classi-
fication, depending on the framework for the constraint programming. In this work,
the framework permits to create expression over variables, as boolean or arithmetic
expressions, structures, and also relate them through predefined and user defined con-
straints.

17

2. PRELIMINARIES 2.6. Constraint Programming

18

3
Objectives

Our objective is to conceive and implement techniques, integrated as a single tool, to
help in the identification of coevolved sites in Multiple Sequence Alignments (MSA),
improving the detection of these sites and the correction of errors in the MSA, in those
sites that lost the coevolution correlation.

We start by showing that the alignment algorithm produces mistakes on the coe-
volved sites. To do so we need a framework for measuring the information of sites that
a priori we know have coevolved in multiple sequences to which we apply a standar
MSA tool(Clustal). Due to the size and number of sequences and the lack of a tool
to visualize correlation values calculated from the alignment, we need to develop a
framework to systematically analyze where and how the mistakes occur to proceed to
achieve our goals.

We want to detect this lost coevolution information as consequence of the alignment
process. To do this, a protein sequence simulator was developed, which can create a
data set with different types of mutations and coevolution schemes, based on the ideas
proposed in [GOP07], and it can also indicate the correct alignment for the sequences
generated.

Once we can pinpoint the impact of misalignments in the Mutual Information cal-
culation, we estimate that there is a need to fix mistakes in the multiple sequence align-
ment due to the difficulty of aligning variable regions. Many applications, in particular
Clutalx which we use during this work, show an average of 40-60% of accuracy when
aligning [TPP99], and most of these mistakes occur in variable regions, precisely those

19

3. OBJECTIVES

that contain coevolution information, since conserved regions cannot show evidence
of coevolution.

Based on our tool for detection of possible coevolved sites using a statistical method,
we want a better approach to distinguish those sites that have really coevolved from
those that have not but are detected as possible candidates due to correlation that arose
by chance or by misalignment produced by the MSA algorithm during the alignment.
Then, we need a constraint framework that give us the flexibility to set some relations
among the amino acids in the sequences, adding a dynamic method to define our cri-
teria of alignment. This framework can be our tool to test techniques for the correction
of misalignments in variable regions that have coevolved.

Our objective is to find a way to correct the misalignment that hide the coevolution
in the original sequences. With this tool, we want to increase performance in the de-
tection of coevolved sites in multiple sequences alignments with good computational
efficiency, and also produce a better alignment for these regions.

20

4
Mutual Information in Sequence

Alignments

In this chapter we cover the concept of Mutual Information. We use it specifically
to detect apparently coevolved sites, due to the property that indicates coevolution:
correlation. Since we are searching for coevolved sites in multiple sequence alignment,
mutual information is a good measure to realize this task.

During this chapter, we will explain how this measure closely relates the informa-
tion in each site to the coevolution with other sites. Given the difficulties raised bythe
errors in the alignment of variable regions, we introduce in this chapter also some
techniques to overcome these drawbacks and we show their benefits.

This measure is of central importance for the work described in the next chapters,
which focuses on the correction of misalignments to improve the mutual information
between sites that coevolved but which lost correaltion during the alignment process.
We do not test the result of each type of detection over the simulated data set, because
during the next chapters we do not work over the mutual information values them-
selves. Rather, we use them as a tool for filtering some sites. Anyway, many tests
of the normalizations were proposed in [GOP07] and we invite the reader to analyze
those interesting results.

21

4. MUTUAL INFORMATION IN SEQUENCE ALIGNMENTS 4.1. Mutual Information Definition

4.1 Mutual Information Definition

Mutual Information measures the amount of information related between one random
variable to another one. It appeared first as part of Shannon’s work [Sha01] and has
become an important tool inside the Information Theory field.

Mutual Information, over two random variables I,J, MI(I;J), measures in some way
the information that the two variables share. It is an uncertainty measure between
what we know about one variable and the information that is in the other.

If I and J are two independent random variables then our measure of mutual infor-
mation is zero, because even if we know one of them, we do not have any information
about the other. If both variables are identical, and so always take the same values,
our mutual information measure is the uncertainty of one of them, because knowing
I we know J and vice-versa. This, knowing one will give us the information about
the other that is necessary to reduce the uncertainty to zero. As we will see below, the
uncertainty of each random variable is measured by the entropy, so in this case the mu-
tual information between X and Y will be determined by the entropy of any of these
variables.

MI(I,J) = ∑
a∈I

∑
b∈J

PIJ(a,b). log(
PIJ(a,b)

PI(a)PJ(b)
) (4.1)

This equation is equivalent to one based on Shannon Entropy concept, and is part
of the work in [Sha01]

MI(I,J) = E(I)+E(J)−E(I,J) (4.2)

Where E(I),E(J) refers to the entropy of site I and J respectively, and E(I,J) the join en-
tropy of I and J, and what formulated in terms of entropy is,

MI(I,J) =−∑
a∈I

pI(a)log(pI(a))−∑
b∈J

pJ(b)log(pJ(b))+ ∑
a,b∈I,J

pI,J(a,b)log(pI,J(a,b)) (4.3)

In this equation 4.3, we can see the interpretation under the entropy concept. Intu-
itively we can say that the mutual information is relating the amount of uncertainty of
knowing independently I and J, and the uncertainty in the pair I,J.

22

4. MUTUAL INFORMATION IN SEQUENCE ALIGNMENTS 4.2. MI Calculation

4.2 MI Calculation

In our work, mutual information is used to compare two sites in the multiple sequence
alignments, and measure the related information between these sites. It means that
two sites are correlated with a high mutual information value, if the existence of one
specific amino acid in a site determines the existence of another specific amino acid in
the other site, which suggests a functional or structural relation between the sites.

This measure of MI can give us a clue about which sites coevolved in a set of se-
quences that are evolutionary related. One mutation in one site will select for a com-
pensatory mutation in other site and this correlation will be kept in the lineage of the
sequences.

Intuitively we can calculate the probability of each amino acid occurring in a site
I, as the frequency of such amino acid in I over the total amount of amino acids in I
(equivalent to the total amount of sequences).

What we are trying to do in this work, is to detect those sites in the multiple se-
quence alignment that indicate a possible coevolution, and for this we do the N(N−1)

2

calculations of mutual information between the sites I,J.

Algorithm 1 MI Calculation
1: Freq← empty
2: Freqi j← empty . Initialization of the HashMap to count amino acid and pairs
3: for sitei = 0..LongSequence do
4: for j = 0..NumberSequences do
5: Freq(i)← Amino[i][j] . Freq count the aminos in sites i. Amino[i][j] is the amino of

the sequence i, in position j.
6: end for
7: end for
8: for sitei = 0..LongSequence do
9: for j = i+1..LongSequences do

10: for k = 0..NumberSequences do
11: Freq(i, j)← (Amino[i][k],Amino[j][k]) . Freq(i,j) count the pair of aminos in sites i,j
12: end for
13: end for
14: end for
15: for sitei = 0..Longsequence do
16: for site j = i+1...LongSequence do
17: MI[i][j]←MI(i, j)
18: end for
19: end for

As we can see in algorithm 1, for the computation of this information over the
sequences, we use a MultiHash structure to keep the amount of each amino acids in

23

4. MUTUAL INFORMATION IN SEQUENCE ALIGNMENTS 4.3. Normalization of the MI

each site, and other one to keep the amount of amino acids pairs in each pair of sites.
First, we traverse all the sites and for each sequence we extract the amino acid on such
position, adding it to the structure. We do the same for all the pairs i,j of the n(n−1)

2

combinations of different pairs of sites.
With this mutual information matrix, we can guess the coevolved sites over the

evolutionary lineage just by taking the values that are over a threshold T. To use of
this information in the analysis of mutual sequence alignments we also developed a
visualization tool that allows the matrix representation to be displayed on the screen
with a scale of colors representing the amount of MI between each pair of sites and also
a correspondence between each cell in the matrix and the sequence alignment result.

As we show in the section 4.5, the threshold T can be estimated after some ex-
periments with simulated coevolved sites and analyzing the results of the algorithms.
Moreover, we use several normalizations from [GOP07, NGR10] to tune the mutual
information equation 4.1 and get better results in guessing coevolved pairs.

4.3 Normalization of the MI

To detect correlation on sites using the mutual information calculation we have to use
some techniques to normalize equation 4.1. For instance, the wide range of possible
value for the number of different aminoacids in a site, the logarithmic base we use in
the formula, or the calculation of correlation for totally conserved sites, can produce
mistakes of good possible candidates of coevolved sites when they are not.

Some solutions to the normalization problem has been proposed in [GOP07]. In
the next sections we will explain some models to normalize the values, and we will
conduct an analysis of which of the models better solves our problem, showing results
that justify our choice according to our calculations.

4.3.1 Adaptable logarithmic base

In the equation 4.1 we can postulate that the MI value will fall in the range from zero
to one, if we can guarantee three conditions each time we calculate MI between two
sites. First, that there is perfect co-variation in each site, i.e. that every amino in one
site is co-related with other amino in the other site, and there never exists a pair that
does not follow this correlation. Second, the 20 amino acids are present in both sites,
condition needed because of the base used in the logarithm of the formula 4.3. Third,
the 20 different amino acids are present in equal frequencies in both sites.

So, we have the formula that states the values of the MI to be conditioned to the
three previously defined conditions. As [GOP07] argues, the only condition that is

24

4. MUTUAL INFORMATION IN SEQUENCE ALIGNMENTS 4.3. Normalization of the MI

important for the coevolution detection is the first one, and the other two, even though
when present in the formula the detection of coevolution is still working, they also
decrease the quality of the detection of the coevolution if it is not normalized.

One solution to counter the second condition, is known as Mutual Information of
Adaptable Logarithmic Base (MI Adp):

MI(I,J) =
∑a∈I ∑b∈J PIJ(a,b). log(PIJ(a,b)

PI(a)PJ(b)
)

log(sqrt#i.# j)
(4.4)

where #i represents the number of different amino acids occurring in site A and # j

in site B.

With this formula, we can calculate the MI of two sites obtaining results ranging
from zero to one, but independent on the number of different amino acids in each site.

4.3.2 Simple Correlation

With the previous method we can calculate the MI independently of the number of
different amino acid in each site. Now, to add independence of the third condition, in
order to calculate Mutual Information without influence of the amino acid distribution
in the correspondent sites, we apply the following approach.

The influence of the amino acid distribution is due to the entropy calculation, using
the logarithm. As explained in [GOP07], the logarithm equation:

−
n

∑
i
(xlog(x)) (4.5)

has its maximum at x = 1/n with 0 < x < 1. In terms of amino acids and probabilities it
has its maximum when they follow a uniform distribution on the site.

We can use a logarithm independent formula:

MI(I,J) = ∑
a∈I

∑
b∈J

PIJ(a,b)2

PI(a)PJ(b)
(4.6)

This measure has the property of being only dependent on the correlation of the
sites. But it is not perfect at all because it has the drawback of calculating as correlated
sites many that are strictly conserved (not mutating during the evolution). Conserva-
tion of the sites I and J, in terms of entropy means low values for E(I) and E(J), we can’t
say too much about the uncertainty of the sites. Thus, if we use this measure to detect
coevolved sites, we could detect all the coevolved sites plus all the conserved site pairs.

We want to discard the conserved sites, because as we proposed in the coevolution

25

4. MUTUAL INFORMATION IN SEQUENCE ALIGNMENTS 4.3. Normalization of the MI

definition, conserved sites provide no evidence that mutations at one site selected for
particular mutations at the other.

The solution proposed in [GOP07] is just to do the whole calculation of MI for every
pair of sites, and after that check the existence of conserved sites to which the MI value
is modified to zero.

4.3.3 Entropy division

We seek to remove the noise from the first formula 4.1, keeping the scores of coevolu-
tion detection as high as possible and expanding the model to remove the false posi-
tives. In some of the methods stated before we have to increase computation time to
remove false positives and get a better accuracy.

We can still have a better coevolution accuracy without increasing computation
time. We can observe on equation 4.2, that coevolved sites will have similar entropy
individually and also similar to the joint entropy. So, one solution is to normalize the
formula, dividing the equation 4.1 by the maximum entropy in one of the two sites,
obtaining:

MI(I,J) =
E(I)+E(J)−E(I,J)

max(E(I),E(J))
(4.7)

This normalization works well when we know that the number of different amino
acids in the sites is not large. Evolutionarily, it means that the amino acids in such sites
did not mutate many times to different amino acids, but instead they kept within a
small group of amino acids. As proposed in the literature [GOP07, FHWE04, FT06],
if we are doing a multiple sequence alignment with evolved sequences, this is the
behavior we expect to find for coevolved sites.

When one site mutates at a higher rate than the other and changes to different
amino acids, it has a higher entropy. Thus, the division by the maximum entropy of
the two correspondent sites will maximize the MI when the sites have similar entropy
and are correlated, and will decrease the MI when they have different entropy values.
This method adds some noise when the entropies differ in an almost related coevolved
site. We show in section 4.5 how this measure is used to classify pair of sites as possibly
coevolved ones through a highest scores selection.

In terms of computation this normalization is cheap, because we need also the en-
tropy for the MI’s computation. Indeed, the entropy calculation for a site is needed
when we want to know if the site is fully conserved because no mutations in a site
result in zero entropy.

26

4. MUTUAL INFORMATION IN SEQUENCE ALIGNMENTS 4.4. Visualization tool

4.4 Visualization tool

Once we apply the Clustal alignment and we calculate the MI for all the sites in the
MSA, we need a tool to visualize the MI score and the sequences alignment.

This motivated us to develop a visualizer during this work, to pinpoint character-
istics in the misalignments over which we drive our work in next chapters.

As we show in figure 4.1, the tool shows the pair of sites in a symmetric matrix
representation, where each (i,j) cell correspond to the MI value for the sites i and j. We
calculate for any MSA, the n∗(n−1)

2 different combination of sites (i,j) and we store in the
matrix the MI(i,j) with any of the methods presented above. In the visualization we
can see a value scale, from 0 to the maximum value the MI can take (according to the
method). Also the tool provides a direct visualization of the sequences, and if one pair
(i,j) is selected in the MI matrix, then in the sequences visualization these sites are also
highlighted for fast identification.

Figure 4.1: Visualizer tool, Mutual Information and Alignment

4.5 Results

In this section we test the mutual information detection with multiple sequence align-
ments. We want to detect if there are mistakes in the coevolved sites as a consequence
of the multiple sequence alignment tool. In this case, we generate random sequences
with our simulator. We can see the description of these sequences in the table 4.1. The
Test Nr correspond to the identifier of each test (each test is an average of 5 runs under

27

4. MUTUAL INFORMATION IN SEQUENCE ALIGNMENTS 4.5. Results

same conditions.) Generations indicate number of iterations for the simulation, and
AVGsimilarity the average similarity score correspondent to the Clustal pairwise score
average, which represent the average sequences homology for each test. The genera-
tion was done with the coevolution method mapping, as described in Section 2.5. In
each sequence we have 20 pairs of coevolved sites, each sequence is 100 amino acids
long and we keep 70 sequences, randomly selected from the last generation of the sim-
ulation.

Test Nr Generations AVGsimilarity(%)
1 18 79
2 20 73
3 25 67
4 30 52
5 35 41

Table 4.1: Average Pairwise homology score given by Clustal.

We proceed by calculating the Mutual Information for all the pair of sites, in the
correct alignment and in the Clustal alignment. Then for each pair of coevolved site in
the test, we compare the MI score marking a match if in both alignments the score is
the same and as a mismatch otherwise. Of course, in the correct alignment we get the
original information, so if the sites are coevolved and this is reflected in the mutations,
the site has a large MI score. If the sites are never mutated, and just conserved, the
MI score is really low event if they were marked as coevolving sites in the simulation.
But in this experiment we do not pay attention to the MI score itself but only on the
differences between correct alignment and the Clustal alignment for the coevolved
sites.

We can see in the figure 4.2 a graph with the respective average of the tests. It is
clear that many misalignments occur in the Clustal on coevolved sites. If we see the
results, even for homologous sequences the number of errors is large. This shows that
Clustal is making many mistakes, and that some correction is needed. In the test with
fewer generations, it is more likely that coevolving sites never mutate, i.e. they remain
conserved along all the simulated evolution, or mutate very few times, producing a
match in the result because Clustal tends to align conserved regions correctly. When
we increase the number of generations, the probability of a mutation occurring in a
coevolved pair of sites increases, producing less similar sequences and increasing the
number of misalignments. The reader can also refer to the results in Section 6.2.2,
where many tests over the Clustal alignment show a high number of False Positives

28

4. MUTUAL INFORMATION IN SEQUENCE ALIGNMENTS 4.5. Results

Figure 4.2: Ratio match, mismatch of coevolved sites in Correct and Clustal alignment.

and False Negatives for sites detected as coevolved sites, showing also that many mis-
takes are done over the alignment in such sites, and that the statistical method for co-
evolution detection are too sensitive to such noise to be used for detecting coevolution
without further corrections.

With these results we can claim that misalignments appear on the coevolved sites
when the multiple sequence alignment is done, if the coevolving pairs mutate signif-
icantly during evolution. In the next chapters we compare methods for deciding if a
pair of sites are coevolved, and we show why a more accurate method than the MI
alone is necessary, and how we can correct the alignment mistakes in the coevolved
sites.

29

4. MUTUAL INFORMATION IN SEQUENCE ALIGNMENTS 4.5. Results

30

5
Alignment using Constraints

In this chapter, we propose two models that can be used to align sequences with im-
posed constraints. These alignments are based on desired criteria, for instance, for ev-
ery sequence each amino acid in a site should match, if possible, the same amino acid
in the next sequence at the same site. Moreover, we establish an alignment framework
to work with on the next chapter.

We explore the use of constraints to define possible situations on the alignment and
discard unsatisfied states in the search for a solution. We also identify the problems
each model has in the alignment process, extending some features to avoid these ob-
stacles. Since many constraints can be unsatisfied due to conflict with other constraints,
we adapt the models as MaxCSP problems obtaining a system that can handle viola-
tions on the constraints, i.e. in the alignment specifications, getting the best possible
alignment corresponding to the maximum amount of satisfied constraints.

We also present some experiments with multiple sequences and we evaluate the
models introduced in this chapter with the goal of detecting the drawbacks and ad-
vantages of each of them leading to our selection of a framework.

5.1 Motivation

We are not proposing a MSA algorithm, but a constraint based alignment over se-
quences as a tool for correcting alignment errors in a MSA. We need to propose a

31

5. ALIGNMENT USING CONSTRAINTS 5.2. Preliminary definitions

framework where we can align the sequences using constraints because with the ex-
istent algorithms for sequences alignment, we do not have the flexibility to relate the
positions where coevolution occurs and force those positions to align not following
the typical score matrix but a particular correlation instead. For instance, in Dynamic
Programming MSA, the search for the best solution is done expanding the values in
the table in an incremental manner, but if we find a state that conditions the change
of some state previously calculated, we can not go back and then go forward again as
often neded without paying a computational cost and without changing the algorithm
to handle any specific optimization alignment.

Having a framework to set constraints in the alignment provides a flexible tool to
experiment with the sequences adding dynamical properties that they have to main-
tain according to our desire. We need to add this flexibility because we want to deal
with the correlations present in the coevolved sites.

5.2 Preliminary definitions

As we want to formalize the models and compare them, we need to establish a com-
mon language to talk about the amino acids, sequences, alignments, mismatches, and
so forth. We discussed about many of these concepts in the chapter 2, but we need to
organize them with more formal specific definitions.

Definition 1. We call Σ to the alphabet, a finite set of characters. We can define also ΣG, an
extension such that ΣG = Σ∪{−}, where − represents a gap in the alignment.

In this work, and from now on, the alphabet corresponds to the set of amino acids
because we work over protein sequences, but it can correspond, for instance, to the
nucleotides in DNA sequencing.

Definition 2. We define as protein sequence s, during this work also called just sequence,
to a finite string or finite ordered list of elements over an alphabet Σ. More formally, s = (Σ)∗.

Definition 3. We define as alignment sequence sA, to a finite string or finite ordered list of
elements over an alphabet ΣG. More formally, sA = (ΣG)

∗. We define this as an extension of the
protein sequences where gaps are added in order to align with other sequences.

Definition 4. Let s be a protein sequence, s = a1,a2, ...,an where ∀0 < i < n, ai ∈ Σ. Let sA be
an alignment sequence, sA = b1,b2, ...,bn where 0 < i < n, ai ∈ ΣG We can define the following
operations over s, and over sA:

• s(i) = ai. With this operation we obtain the element of s at ith position, that belongs to
Σ.

32

5. ALIGNMENT USING CONSTRAINTS 5.2. Preliminary definitions

• sA(i) = bi. The i-th element for an alignment sequence, that belongs to ΣG.

• lg : (Σ)∗→ N. Given the protein sequence s, lg(s) calculate its length.

• lg : (ΣG)
∗→ N. Given the alignment sequence sA, lg(sA) calculate its length.

Definition 5. Given an alignment sequence sA, sA ∈ Σ∗G, the projection of sA w.r.t Σ, noted as
sA|Σ, is defined as sA with the deletion of all the occurrences of ’-’.

Definition 6. Given two or more protein protein sequences, s1,...,sn, we can define a multiple
sequence alignment as a n-tuple (s1A,...,snA), such that:

• s1A, ..., snA ∈ (ΣG)
∗. i.e., they are n-alignment sequences.

• s1A|Σ = s1,..., snA|Σ = sn

• lg(s1A) = ...= lg(snA)

• @i 0 < i < lg(s1A) = ...= lg(snA) s.t. s1A(i) = ...= snA(i) =′ −′.

Definition 7. From now on, when we talk about multiple sequences (multiple sequence align-
ment), MS (MSA) of size m, we are making reference to a collection of m protein sequences
(alignment sequences). MS = s1,s2,s3, ...,sm

We have a formalization of the the multiple sequence alignment, that helps guide
our description of the methods for alignments using constraints. Moreover, we need to
formalize some concepts in each respective model that we present in this chapter, with
a specific semantic.

Definition 8. We can define a set of variables, V , whose elements are variables in the domain
[0..N]. When we work on particular domain we specify the meaning of the value N.

Definition 9. A sequence of variables, or Variables, is defined as a succession of different
variables of V. Formally: Variables = X1,X2, ...,Xn such that, Xi ∈V .

Then, we need to map the multiple sequences onto a set of variables. We can do it
in the following way:

Definition 10. A mapping, Vars, from a protein sequence to a collection of variables, is defined
as Vars : Sequence→Variables such that ∀i ,0< i< n, if ai ∈ Sequence, then ∃Xi ∈Variables.
The idea is that for different sequences, we will have different set of variables, such that V =⋃

iVi ,∀Vi ∈Variables, and ∀i 6= j ,Vi∩V j = /0.

33

5. ALIGNMENT USING CONSTRAINTS 5.3. Gaps Model

In other words, if we have a multiple sequence MS, we have as many sets of vari-
ables as sequences in the MS, and all the variables in all the sets are different. So, every
variable represents univocally one amino acid in one sequence.

Actually what we define is a way of representing the elements of the sequences
as variables over which we work in the next sections. In other words, we can have a
mapping from the sequences to sequences of variables, as shown in the figure 5.1. This
representation is useful for the next section where we give the correspondent semantic
for such variables.

Figure 5.1: Variable based representation of sequences

5.3 Gaps Model

5.3.1 Semantic

The goal of this model is to assign the correspondent semantic to some elements de-
fined above, with the objective of represent gaps between the amino acid of an align-
ment sequence and do an alignment based on constraint over such gaps.

First we need to add the semantic to the set of variables V. In this model we use
the variables to represent the amount of gaps in a certain position. Given the set of
variables, from now on, gap variables V with their respective domain [0...N], we can
represent gaps between any pair of amino acids ai−1 and ai with the correspondent
variable Xi, assigning values from the domain to this variable. N is a constant defining
the maximum-length of gaps between consecutive amino acids. For the first element
of the sequence, a1, the meaning of the value of X1 is the gap length in the beginning of
the sequence, i.e. before the first amino acid.

To clarify these concepts, we can see again the figure 5.1, where the variable U2

represents the gaps between the 1st and 2nd amino acids in the sequence seq3, i.e. the
gaps between M1 and K2.

34

5. ALIGNMENT USING CONSTRAINTS 5.3. Gaps Model

Before we proceed with the definition of the constraints for the position of the ele-
ments in the sequence, we need to define the concept of position.

Definition 11. We can define a position offset of an amino acid with respect to the beginning
of a sequence s, as a function Poss : ΣG− > Expression, i.e. a function with domain in all
the possible amino acids and image in Expression, that corresponds to a constraint Expression,
defined recursively as:

• Poss(a1) = X1, X1 ∈ Vars(s), i.e. ai is the first amino acid in the sequences s and the
equivalent expression is the first variable in Vars.

• Poss(a j) = Poss(ai)+X j + 1 iff s(j) = a j, s(i) = ai, i < j. i.e., for any amino acid that
is not the first one, we calculate the expression as the position of the previous amino acid
plus the variable corresponding to this amino acid plus 1.

Note that this function is defined only for the elements of the sequence s. The idea
of this function is that, given an amino acid in a sequence, we can get an arithmetic
expression that is based on some gaps variables and that locates an amino acids in a se-
quence, when the gaps variables take values. Any amino acid position in the sequence
is in function of the gaps variables that identify such amino acid and the amount of
previous variables and amino acids.

What motivates us to define this position function is the necessity to formalize the
concept of the expressions, because this is what we want to constraint when we search
for an alignment. When we want to align an amino acid with another located in other
sequence, we can force their position expressions to be equal. As we explain later, we
write all the alignment desires as a set of constraints.

Definition 12. We define a Position Constraint, PC, over two amino acids at position i and j
in two sequences respectively s1 and s2 as a constraint on the position of the amino acids. This
Position Constraint relates with an operator the position of the two amino acids.

PC(s1(i),s2(j)) : Poss1(i) = Poss2(j),

Now, we can use the amino acids in the multiple sequences to create Position Con-
straints, according to the alignment desired between any amino acids in any subse-
quence. Intuitively what we are doing with the Position Constraints is creating an
expression that should be valid, relating the position of two amino acids, and forcing
an assignment of natural numbers to the variables involved which corresponds to the
gaps in different sites of the sequences.

35

5. ALIGNMENT USING CONSTRAINTS 5.3. Gaps Model

Once we have defined all the constraints on the position variables corresponding
to the desired alignment, we can solve the constraints over the variables’ domains and
get a solution for that alignment.

We can see graphically in Figure 5.2(a) some position constraints that we can require
for an alignment. In this case we want to align the amino acid P1 with P2 or P3, and
P4 with P2 or P3. We also show some possible alignments, in 5.2(b)(c), that satisfy our
intended alignment defined by constraints. We can see the expressions obtained when
applying pos(Pi). In this figure we do not show how we solve the constraints nor the
labelling process because these topics are explained further on.

Figure 5.2: Gap Model: Position Constraint, variables and expressions.

To transform back the values of the variables into a multiple sequence alignment,
we have to add the corresponding value for each variable to the position they repre-
sent. The main idea is that from protein sequences we create alignment sequences, i.e.
the same protein sequences plus the gaps in the corresponding positions according to
the value of the variables. To do so, we can define the following function:

Definition 13. We define a function Trans f orm : Sequence x V→Alignment Sequence, such
that:

• Trans f orm(s,V) = sA s.t s′ = val(V1)a1...val(Vn)an ∀ ai ∈ s, where Vi is the variable
associated with the amino acid ai, and val(Vi) is k times ’-’, if k is the value that the solver
gives to this variable.

In other words, what the last definition does is a replacement of each variable value
by the specific amount of gaps between the amino acids the variable represents.

36

5. ALIGNMENT USING CONSTRAINTS 5.3. Gaps Model

In the next sections we show an intuitive sketch of proof about the correctness of
the model, we show the method in which we set the constraints and we propose a test
for the models.

5.3.2 Correctness of the model

When we set the Position Constraints, and we relate the expressions that represent the
amino acid positions to force such amino acids to be aligned, we are setting condi-
tions that we try to solve according to the variables’ domain values assignment using
a solver.

The variables values add to the aligned sequences a defined amount of gaps. After
we apply the Transform function, we get a new alignment sequence with the same
amino acids as the original one, but with gaps (’-’) added between some amino acids,
and as many as the specific value each variable takes after solving the constraints. So,
there is no adding of new amino acids nor any transformation of the original ones, but
just a shift of the amino acid with gaps insertion.

5.3.3 Aligning with the Gaps Model

In this section we propose a way to approximate an alignment using the Gaps Model.
The goal is just to set some constraints and to test the performance of this algorithm to
detect advantages or drawbacks of using it. We have the bases of the model, and now
we want to obtain an alignment using a specific criteria and setting some constraints
to achieve it.

This criteria for instance, can be measured after the alignment with respect to the
final position of the amino acids in the sequence, determining a quality of the align-
ment. But we do not focus now on optimizing the alignment but just on testing the
tool to fulfill the basis for comparing it with other methods and choose one to use in
the next chapter.

The criteria we test for is a successive matching, where for every site j, each amino
acid in a sequence k matches with the same amino acid in the sequence k+1 whenever
possible. With the models we can apply other criteria, such as for instance, one follow-
ing a substitution matrix [HH92] as explained in chapter 2, aligning each amino acid
in a site with another amino acid, such that this match corresponds to a meaningful
mutation.

The idea is to traverse all the sequences and to define constraints over the gap vari-
ables. In this method, we just align the amino acids in a sequence with those in the next
sequence, trying to get the best alignment possible under such criteria, as we show in

37

5. ALIGNMENT USING CONSTRAINTS 5.4. Position Model

the algorithm 2 where we set all the constraints. Position is the function described pre-
viously that returns the respective expression with gaps variables for an amino acid in
sequence i and site j.

Algorithm 2 Setting alignmnet constraints
1: for i = 0..NroSubsequence−1 do
2: for j = 0..LengthSubsequences do
3: for k = 0..LengthSubsequences do
4: if aminoacid[i, j] = aminoacid[i+1,k] then
5: newConstraint(eq(Position(i, j),Position(i+1,k)))
6: end if
7: end for
8: end for
9: end for

Before we show the results of the experiment, we introduce other model in the next
section and finally we compare them.

5.4 Position Model

5.4.1 Semantic

For this model, the mapping of the amino acids to the variables is the same as in the
previous model as shown in figure 5.1, to which we give in this section a different
semantic.

The semantic for the variables and the values they can take from the domain, now
is defined as the position of the respective amino acid in a sequence, taking values
from the domain [0..NP], where NP is a constant meaning the maximum new position
in the aligned sequence. The way in that we define the maximum new position, NP,
determines the possible gaps between the position of the amino acids.

In this model, the gaps are implicit in the variables values in the sense that if two
consecutive variables do not take consecutive values (i.e. consecutive positions), the
difference between them corresponds to the gap length between their respective amino
acids. So, the difference to the first model is that in this model the variables take values
representing the positions themselves, instead of gaps that determine the final posi-
tions of the amino acids. Thus, to define the position of an amino acid in this model,
we just assign the desired value to the corresponding variable.

For instance, we can see the figure 5.3 with the respective constraints for that se-
quences and where we define NP = N +N ∗ 3, where N is the length of the original

38

5. ALIGNMENT USING CONSTRAINTS 5.4. Position Model

sequences.

Figure 5.3: Position Model:Constraints, variables and expressions.

Under this model, we have to define constraints that restrict the order of the amino
acids in a sequence. If we do not do this, we allow values in the variables that may
switch the position of two amino acid in a sequence, a result that should be avoided.
Also we set constraints to align, meaning that if an amino acid has to be aligned with
another one in another sequence, we constraint both variables to take the same value
over their domains.

The constraints to define the order in a sequence s, can be defined as:

Xi < Xi+1 ∀0 < i < n

where n is the length of s, and Xi ∈Vs, the set of the variables for this sequence.
These constraints are necessary to maintain the semantic of the sequences. For-

mally, we should include this necessary constraint for all the sequences in any multiple
sequence MS.

Once the sequences order constraints are defined, any other kind of constraint over
the amino acids can be imposed. We use the equality binary constraint = (also eq)
between two variables, Xi in a sequence and Y j in another one, to force the value of
both to be the same. The semantic of this is that the position of the amino acids that
each of them represent in their respective sequences should be aligned, i.e. in the same
site.

After the constraints are solved, the variables keep the position for the respective
amino acids and we have to transform such assignment in new sequences. We can
define a Transform function for a sequence s and a set of variables V as follow:

Definition 14. Transform is a function, Trans f orm : Sequence x V−> AlignmentSequence,
such that:

• Trans f orm(s,V) = s′ s.t. ∀ai ∈ s, then ai ∈ s′ and s′(Vi) = ai, and for all Vj, Vi, i f j > i

39

5. ALIGNMENT USING CONSTRAINTS 5.4. Position Model

and @Vk. s.t. i < k < j, then Vj−Vi−1 is the amount of ’-’ between amino acids ai, a j.
i.e. every amino acid in s appears also in s′ in the position that the variable associated
with it indicates, and for every consecutive amino acids the amount of gaps between them
is the distance of their positions minus 1 (if their positions are adjacent then no gaps are
added).

5.4.2 Correctness of the model

In this model we directly set the constraints as a relation between the variables that
represent the amino acid positions. In this model we do not have any expression,
as in the previous one, but just a variable whose value represents the position in the
sequence.

The correctness of this model can be justified as the satisfiability of the ordering
constraints for all the amino acids in the sequence, forcing them to keep their order,
and that only gaps are added. Any sequence of variables that represent a sequence of
amino acids takes values for such variables in incremental order. Any variable takes a
larger value than a previous one in the sequence.

When we apply the Transform function, we obtain from the original sequence of
amino acids and the set of variables, a new alignment sequence that preserves the
order in the amino acids as the original one and also conserves the same amino acids
without introducing any new amino acid. Only some gaps can be added between the
amino acids, as many as X j−Xi−1, for any consequent amino acids ai, a j.

5.4.3 Aligning with the Position Model

A simple alignment in this model can be done asserting binary equality constraint
between the variables of different sequences, enforcing two amino acids to take the
same site.

In the figure 5.4, we can see a simple alignment of the Qs of the sites 5 and 6.

Figure 5.4: A simple alignment and order constraints

40

5. ALIGNMENT USING CONSTRAINTS 5.5. Reified constraints

The constraints for the multiple sequences of the figure 5.4 can be generalized as:

• Fixed constraints for a sequence s: ∀i, j0 < i < n, if ai,ai+1 ∈ s, then Xi < Xi+1 is a
constraint that should be satisfied.

• Alignment Constraints: S5 = T5 =U5 =V6 =W5...Z5 if we want to align all Qs with
ohter Qs between sites 4 and 6.

To test the method, the general procedure to create the constraints is similar to the
one presented in the previous model. We show in this part an equivalent algorithm that
aligns an amino acid in a sequence k, with those equal amino acids in the sequence k+1.

In the algorithm 3, we show the creation of the alignment constraints. The variables
are represented in the matrix vars, such that each row correspond to a sequence and
each column to the sites, thus, var[i][j] correspond to the position of the amino acid a j

in the sequence i.

Algorithm 3 Setting alignment position constraints
1: for i = 0..NroSubsequence do
2: for j = 0..LengthSubsequences−1 do
3: newConstraint(vars[i, j]< vars[i, j+1]);
4: end for
5: end for
6: for i = 0..NroSubsequence−1 do
7: for j = 0..LengthSubsequences do
8: for k = 0..LengthSubsequences do
9: if aminoacid[i, j] = aminoacid[i+1,k] then

10: newConstraint(vars[i, j] = vars[i+1,k])
11: end if
12: end for
13: end for
14: end for

5.5 Reified constraints

We have to extend the use of constraints, because in the models presented in the section
5.3 and section 5.4, we can easily detect that if two constraints are in conflict they
can not be solved simultaneously and then the whole process fails without finding
a solution. With those models we have not yet a robust solution to align multiple
sequences because problems arise when two or more constraints are in conflict. In
the alignment problem this means that there is no possible alignment, which must be
solved as a search of the best feasible solution that allow an alignment.

41

5. ALIGNMENT USING CONSTRAINTS 5.5. Reified constraints

We can think in the possible constraints present in the figure ??, and how the con-
flicts can occur if not all constraints can be satisfied simultaneously. In the Gaps Model
as well in the Position Model described before, we can not find any solution to this
alignment.

seq1: A D
seq2: D A

Table 5.1: Conflict if we want to align A’s, and B’s

One solution is based on reified constraints and, before proceeding with it, we have
to introduce the following definition:

Definition 15. A Reified Constraint, for a boolean variable b and a Constraint C, states that
b is true if and only if constraint c holds:

• b = 1⇔C.

• b = 0⇔¬C.

Specifically in the constraint solver package that we are using, Choco Library [Cho],
the behavior of a reified constraint is the following:

• if b is instantiated to 1 (respectively to 0), then c (respectively ¬c) is propagated.

• otherwise:

– if c is entailed, b is set to 1

– else b is set to 0.

One approach to solve this inconsistency in the constraints system is to use reified
constraints implementing a MaxCSP problem. We can try to maximize the amount of
satisfied constraints, even though not all of them are satisfied. On the one hand, we
have the model of gaps variables, and a solution to the inconsistency problem in this
model can be obtained using reification for each constraint keeping its satisfiability sta-
tus. On the other hand, we have the model of position variables, where the constraints
to be reified are only those that refer to the alignment criteria and not those constraints
that keep the sequence order. These last ones should always be satisfied because we
can not lose the meaning of the amino acid order in the sequences.

So, in summary we have the following constraint in each model:

42

5. ALIGNMENT USING CONSTRAINTS 5.6. Defining the search strategy

• Gaps Model: variables represent gaps between amino acids, relating them with
position expressions.

– Reified Constraints: Expr1 = Expr2⇔ bm, where Expr1 and Expr2 are arith-
metic expression relating some gap variables and defining the position of an
amino acid, and bm ∈

−→
B is a boolean variable for this constraint stored in

a vector of boolean variables
−→
B . All the constraints of position over gap

variables are reified.

• Position Model:

– Normal Constraints: Xi < Xi+1 ∀i, 0 < i ≤ n− 1 where n is the size of the
sequences. This constraints are forced to be satisfied, we do not allow amino
acid switching their position in the same sequence.

– Reified Constraints: Xi = Yj ⇔ bm, where Xi represents amino acid ai in a
sequence s1 and Yj represents amino acid a j in a sequence s2, and bm ∈

−→
B is

a boolean variable for this constraint, stored in a vector of boolean variables
−→
B .

The idea of using Reified Constraints is to maximize the number of constraints that
can be simultaneously satisfied. So, we can use a value function sum, sum(

−→
B) that we

try to maximize.

5.6 Defining the search strategy

One way to decrease, at least in the average case, the execution time for the solution
of the constraints is to address the search of the solution for the constraint solver. The
main advantage of guiding the exploration of the search space is that we can define
a strategy in the order in which the variables are selected by the labeler and also the
order in which the values from the domain are obtained.

When we use reified constraints, for instance, we can start labeling the boolean
variables. Moreover, if the strategy is to maximize the sum of such variables, we can
start to take the upper bound values from such domain. With this strategy, the reified
variables will be all 1, meanwhile the constraints attached to such reified one can be
simultaneously satisfied with the actual propagated constraints.

To proceed, we can add an strategy for the labeling of the variables in the alignment
constraints. In both models we can define the strategies as starting from the variables
that are used in the constraint positions, and then following to the others. In both cases
the results show a better execution time when the variables are labeled by columns, i.e.

43

5. ALIGNMENT USING CONSTRAINTS 5.6. Defining the search strategy

first all the variable in the first position of all the sequences, then the variables in the
second position, and so on.

To do this in Choco, we can create a data structure, precisely an array to maintain
the static order of the variables and then define the strategy as static variable, proceeding
according to their appearance in such array. Also the increasing domain, or decreasing
domain options are allowed when we define the strategy to select the values from the
domain in certain order.

We describe now the importance of the search strategy showing some short exam-
ples for both models, that reflect the impact it has when mapped to a problem of bigger
magnitude. To do this, we describe a little alignment for two sequences as follows:

1 2 3
seq1 : A D A

seq2 : D A D

• Position Model:

– Order Constraints:

∗ A11 < D12 < A13

∗ D21 < A22 < D23

∗ We mention as
−→
V to this position variables.

– Alignment reified Constraints:

∗ A11 = A22⇔ b1

∗ D12 = D21⇔ b2

∗ A13 = A22⇔ b3

∗ D12 = D23⇔ b4

∗ We keep all the variables in a vector: bi ∈
−→
B

So, let us analyze how the constraint propagation occurs if we consider different
strategies.

We start labeling the boolean variables,
−→
B , and we try to maximize the sum of

−→
B ,

propagating the respective reified constraints. First of all, the labeling process takes a
variable in

−→
B , and propagated the corresponding reified constraint Ci, that in case of

satisfied constraint this bi boolean takes the value of 1. The propagation of Ci, causes a
pruning of the domain of the variables that Ci relates to and also a propagation of the
< constraints for those variables. Then the next variable in

−→
B is labeled and the consis-

tency check is done. If the propagation of the constraint Cj for the selected variable bj

44

5. ALIGNMENT USING CONSTRAINTS 5.6. Defining the search strategy

is satisfied, it continues with the next one, otherwise bj takes the value of 0. At the end
of the labeling of all

−→
B , it has a solution with a value for sum (sum = ∑i bi ∈

−→
B). When

we try to maximize the sum of
−→
B , we can start labeling them with the maximum value

of their domain (1), when it finds a solution it has the solution found so far, and the
algorithm can start searching for an assignment that maximizes this value.

Following we can see the search tree for this strategy, using the Position Model
representation. Here the boolean variables are labeled, with the respective constraint
propagation, and the solution of sum equal to 2 is found in the first spanning, pruning
instantly other search that does not lead to a better solution. Also the final domain
for the variables is shown and the labeling for Vars and Boolean (position and boolean
variables).

..[2] down branch b1:?==1 branch 0

...[3] down branch b2:?==1 branch 0

...[3] up branch b2:?==1 branch 0

...[3] down branch b2:0==0 branch 1

....[4] down branch b3:?==1 branch 0

....[4] up branch b3:?==1 branch 0

....[4] down branch b3:0==0 branch 1

.....[5] down branch b4:?==1 branch 0

......[6] down branch a11:?==1 branch 0

.......[7] down branch d12:?==2 branch 0

........[8] down branch a13:?==3 branch 0

- Solution #1 found. Objective: 2, 1 Solutions, 0 Time (ms), 8 Nodes, 2 Backtracks, 0 Restarts.

a11:1, d12:2, a13:3, d21:0, a22:1, d23:2, b1:1, b2:0, b3:0, b4:1, sum:2,

- Restarting search - 1 Restarts

..[2] down branch b1:?==1 branch 0

...[3] down branch b2:?==1 branch 0

...[3] up branch b2:?==1 branch 0

..[2] up branch b1:?==1 branch 0

- Search completed

Maximize: sum:2

Solutions: 1

Nodes: 10

Backtracks: 4

Restarts: 1

Vars:

a11: {1...1}

d12: {2...2}

a13: {3...3}

d21: {0...0}

a22: {1...1}

d23: {2...2}

Boolean

b1: [1,1]

b2: [0,0]

b3: [0,0]

b4: [1,1]

If instead of starting to label the variables from
−→
B , we start labeling the position

45

5. ALIGNMENT USING CONSTRAINTS 5.6. Defining the search strategy

variables, the constraint lt (< constraint) is propagated first. This removes some val-
ues from the domain of the variables by enforcing arc-consistency, and when nothing
else can be done the reified constraints of

−→
B are propagated and the possible value

of the boolean variables calculated, resulting in the respective sum for these boolean
variables, according to the labeling of the lt related variables. But as the

−→
B values are a

consequence of the
−→
V propagation, we have to calculate all the possible labeling for

−→
V

if we want to maximize the sum of
−→
B . So, a strategy that starts labeling the

−→
V , but that

maximize the sum of
−→
B , does not prune much of the search space because each time it

finds a solution for a value sum all the possible labellings of
−→
V are explored searching

for a larger value of sum, although possibly in vain.
In the next figure5.5, we can see the space search and the labeling process as de-

scribed before. In this case, the whole labeling starts with the variables of the gaps,
and then follows with the boolean variables. All the possible assignments are done
first to the gap variables, and then the boolean varaibles to get the actual sum.

Figure 5.5: The search space is totally expanded for the gaps variables

The result size of the search space is the next one, with the respective solution:

Vars:

a11: {0...0}

d12: {1...1}

a13: {2...2}

d21: {1...1}

a22: {2...2}

d23: {3...3}

Boolean

b1: [0,0]

b2: [1,1]

b3: [1,1]

b4: [0,0]

- Search completed

Maximize: sum:2

46

5. ALIGNMENT USING CONSTRAINTS 5.7. Experimental Results and Analysis

Solutions: 3

Time (ms): 63

Nodes: 53

Backtracks: 70

Restarts: 3

We can compare the amount of backtracks and restarts done by the solver and the
nodes created for the tree. In the first search strategy that we define, the tree is smaller
and the solution is instantly detected because all the violations are propagated and
values removed after the boolean assignment of the reified variables.

In the second example instead, the whole search space is explored (we can see the
number of nodes), and the larger number of backtracks and restarts when the partial
labelling does not lead to a solution.

So, defining the search strategy according to the constraints that are set in the prob-
lem and the way these constraints are propagated can determine drastically the result
of our algorithms.

5.7 Experimental Results and Analysis

To test the two models presented above we prepared some data sets, extracted from the
protein sequence simulation, that contain different sizes and number of sequences and
also different distributions of amino acids to ensure that many distinct and sometimes
contradictory constraints appear as part of the alignment.

In the next chapter, we work over subsequences of small length. This determines
our selection of the size of the sequences for the data sets to test our methods in this
chapter, obtaining a result with an impact on the future chapters.

In the table 5.2 and table 5.3 we can see the results for the experiments with the Gaps
Model and Position Model respectively. The columns are labeled as Nr Seq, meaning
the number of sequences, Length meaning the amount of amino acids, Constr the num-
ber of constraints according to each model, Conflicts describe the number of constraints
that are in conflict, Set Up is the time in milliseconds it takes to set the constraint and
the creation of the model before the solution search, and finally Solve represent in mil-
liseconds the execution time to find a solution.

The contradictory (Conflicts, called in the tables) are those constraints that cannot
be satisfied simultaneously, which implies that some of them make the reified vari-
able takes the value 0, and to generate some pruning in the domain of the variables.
We show first the results, we explain them and finally we show some analysis on the
advantages of using constraints.

47

5. ALIGNMENT USING CONSTRAINTS 5.7. Experimental Results and Analysis

All the algorithms were implemented in Java, using the Choco Solver library [Cho]
and run on an Intel Pentium Core 2 duo 1.6Ghz, 2gb RAM.

Nr seq Length Constr Conflicts Set Up (ms) Solve(ms)
10 8 39 5 200 941
8 6 20 6 178 532
7 5 24 3 160 604
20 5 54 12 184 1568
50 5 159 8 297 3458
50 6 45 14 260 1653

Table 5.2: Gaps Model, set up and execution times.

Nr seq Length Constr Conflicts Set Up (ms) Solve(ms)
10 8 123 5 168 98
8 6 72 4 153 75
7 5 60 5 170 42
20 5 143 13 210 103
50 5 449 15 350 352
50 6 290 14 287 324

Table 5.3: Position Model, set up and execution times.

As we can observe in the tables 5.2 and 5.3, the Position Model shows a better
performance compared with the Gaps Model in the search of the solution. Though
it requires more constraints, the first advantage of the Position Model is its pruning
power. The maximization of the boolean variables, specifying a MaxCSP problem, has
the advantage of solving the contradictory constraints problem and always finding a
solution to the alignments.

The number of constraints is linear with respect to the number of sequences and
size, because we are just aligning each sequence with the next one. In the way we use
this model in the next chapter, this type of alignment is enough. If it is the case of
all sequences being aligned with all other sequences, we have a number of constraints
that grow exponentially with the number of sequence and, in this case, the execution
time increases exponentially (we did not test this case here). A timeout is set for the
search, for 10 minutes, so if a criteria of setting the constraints impose an exponentially
increase of their number, we can still handle the problem. Of course, if all the solutions
to find involve an exponentially growing number of constraints, the solution found
within the time limit will not be the best at all.

48

5. ALIGNMENT USING CONSTRAINTS 5.7. Experimental Results and Analysis

The execution times as we can see in the result tables, are linear for the position
constraints, and they do not increase too much when the number of conflicts increases.
The Position Model shows a better performance due to the pruning also when there
are conflicting constraints, but is not the case of the Gaps Model. In the Gaps Model,
as we show later, the pruning system is not as effective as in the Position Model and
thats why the execution time is so susceptible to conflicts in the constraints.

We are not proposing a MSA, because we focus on a tool to solve the eventual
errors done by a MSA on variable regions that coevolve, and to re-aling those particular
mistakes. The tractability is reasonable for sequences of considerable length according
to the problem presented in the next chapter, and we can see in the results how this
tool can help to solve our main goal.

In the Position Model, based on variables representing the amino acid positions,
we propose two different ways for representing the sequence order constraints, and
we choose the best one to realize the experiments:

• Solution 1: ∀0 < i < N−1 Constraint: vars[i]< vars[i+1].

• Solution 2: Global constraint increasing_nvalue(N,vars). This global constraint en-
forces the increasing order for the positions, and also enforces that at least N
values be distinct.

Solution 2, is not the best approach because this constraint is enforcing arc-consistency
but also is checking N-Value. Choco does not provide a strictly increasing global con-
straint and although we fix N as a constant, to be the amount of variables to label
incrementally without repetitions, the filter is still managing huge data structures and
complex algorithms. Although we can indicate to the constraint increasing_nvalue to
use an option that force the approximation from the lower bound, that can be com-
puted in polynomial time, as explained in [Cho], using this constraint is not as efficient
as solution 1.

Solution 1 shows the better approach to use in the order sequence constraints. This
is due to the fact that the constraint ’<’, in Choco lt, enforce arc-consistency and since
we relate all the variables with this constraint, lt(Xi,Xi+1), lt(Xi+1,Xi+2),lt(Xi+2,Xi+3)

and so on, during the constraint propagation starting by lt(Xi,Xi+1), the values in the
domain of the variable Xi that have no support in the variable X j through this constraint
are removed, and also the other way around. So, every time the labeler assigns a value
to any of these variables and propagates the constraints that enforce arc-consistency,
some pruning is done if it is possible.

Clearly the Position Variables model is the best, as our experiments show, and its
due to the efficacy of pruning against the less effective pruning of the Gaps model as

49

5. ALIGNMENT USING CONSTRAINTS 5.8. Limitations of the models

explained in the next section. We also searched for the best approach in the Position
Variable, according to the possible constraints to use and we got a robust model after
some adjustments. The efficiency of the alignment is reduced if we want to add the
flexibility of having constraints. In the case of sequences, just for a pure alignment, or
a best alignment, many algorithms were introduced as we explained in the preliminar-
ies chapter. But when we need to link some positions and restrict them according to
the values they take, strict algorithms like Dynamic programming based on the scor-
ing matrix are not as flexible as a model with constraints. Solving an alignment with
some criteria, such as our tests with the constraint framework is an upper bound with
respect to the complexity of the task that we realize in the future to fix misalignment in
coevolving regions, as shown in the next chapter. We can claim that this method works
well to set constraint on the sequences and align under specific criteria.

Also we showed how the efficiency changes when a different search strategy is
selected, and we proposed the best one according to our results. If any extension to the
model is done, for instance adding external constraints to the variables, these strategies
should be reconsidered again to obtain the most efficient method to find the solutions.

5.8 Limitations of the models

In the case of the gap variables model, we found a big problem in the pruning system.
When the solver calls the pruning, initially we expect that all those reified constraint
that are labeled with 1 and that force a constraint C to be satisfied, force the pruning
of values in the domain of variables linked by C, and also variables related with the
constraints that are in conflict with C.

Explicitly, we have b1⇔ C1, and b2⇔ C2, where b1 and b2 are two boolean vari-
ables, and C1 and C2 two constraint over the expression that define position for the
amino acids.

And now, let us suppose that the constraints try to align are like this:

A P

P A

So C1 align the A’s and C2 align the P’2, which implies that C1 : X1 = Y 1+Y 2+1 and
C2 : Y 1 = X1+X2+1.

If we search for a labeling of the boolean variables that maximize the sum of the
values (as explained before for the MaxCSP), we can get b1=1, and b2=0 because both
constraints simultaneously result in an unsatisfiable problem. But b2=0 implies that
C2 cannot be satisfied, which implies a restriction in the domain of the variables of

50

5. ALIGNMENT USING CONSTRAINTS 5.8. Limitations of the models

such expression. The problem is that the constraint solver does not go farther with the
propagation, and does not resolve this kind of algebraic equations. So to solve that
equation the solver has to start the labeling of the variables and then decide which
values are in a solution.

Clearly this limitation of the Gaps Model makes it the worst of the two models
when we measure the execution time. Anyway, this model is more flexible than the
position one when we care about the gaps between the amino acids, and we want to
work directly on that information, i.e. the assignment of the values to the variables is
directly reflected as gaps insertions. The Position Model instead, gives more flexibility
when we want to work directly on the position of the amino acid, but the gap length
are then a consequence of the amino acid positions.

51

5. ALIGNMENT USING CONSTRAINTS 5.8. Limitations of the models

52

6
Using constraints to fix the alignment

In this chapter we explore some heuristics to improve the identification coevolution
sites, once we calculate all the sites containing more than a certain amount of correla-
tion.

As we described in section 4.5, Multiple Sequence Alignments obscures the coevo-
lution information because of mistakes in aligning variable regions, resulting on many
misalignment in the locations of coevolved sites.

We propose a method for checking the information in the potentially coevolved
sites and determine if they have actually coevolved according to the possible misalign-
ments around such site produced by the aligner. During this chapter we present some
approaches to proceed and decide, from the set of pairs of sites that are candidates as
possibly coevolved, which of them give sufficient information to satisfy our claim.

Moreover, in this chapter we show the results to support the claim that the existent
methods to detect candidates for coevolved sites present a high failure rate. These facts
are the grounds of our motivation for improving the detection, reducing the failure
rates and trying to fix mistakes in the alignment.

We also propose techniques for fixing the alignment using the method described
in 5.4 and correct errors in the sites that we determine are actually coevolved. We also
measure the impact of re-aligning such sites to correct the misalignments and we check
the impact of this on the mutual information measures.

In the end of the chapter we also show experimental results on which we base our
analysis of the advantages and drawbacks of this approach.

53

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.1. General problem and definitions

6.1 General problem and definitions

Since we detected a loss of coevolution information after the sequences are aligned, as
described in section 4.5 because the aligner does not take coevolution into account or
because the variation in coevolving sites produces scores that are not so good for the
optimal alignment, we are searching now a method to detect these mistakes and correct
them by aligning these regions with the model introduced in the previous chapter.

After we align the sequences with some of the multiple sequence alignment tools,
we want to identify such coevolved sites. The first step is then, to exclude pairs of sites
that have no correlation, which suggest they did not coevolve. To do this, we use the
method of mutual information to determine those sites that are above certain threshold
of mutual information.

When we talk about a naïve algorithm to detect coevolved sites, we are just defin-
ing the algorithm that checks the mutual information between a pair of sites (i,j) and
concludes that the sites have coevolved if their mutual information, MI(i,j) is over a
threshold T.

We consider the n(n−1)
2 pairs of sites, and we calculate the MI(i, j) as described in

previous sections. Keeping these sites above a given threshold T we can define:

• MI(i, j)>= T , (i,j) a pair of sites that we guess as coevolved sites.

– If (i, j) are really coevolved sites, we can say that this pair is a true positive
(TP).

– If (i, j) are really not coevolved sites, we can say that this pair is a false
positive (FP).

• MI(i, j)< T , a pair of sites that we discard as unlikely coevolved sites.

– If (i, j) are really coevolved sites, we can say that this pair is a false negative
(FN).

– If (i, j) are really not coevolved sites, we can say that this pair is a true neg-
ative (TN).

Under this classification, we need a method to obtain a better fraction of true pos-
itives and true negatives than the naïve algorithm, decreasing the false positives and
false negatives. With such method we expect to detect more precisely which sites are
coevolved and extend the detection to the correction of the sequences if a misalignment
was done in such site.

54

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

6.2 Map based detection

This approach focuses on the information present in a pair of sites (i,j), and tries to
guess the coevolution mapping. This mapping is the selection pressure that one site
generates on the other, as explained in previous sections and presented in [WP05]. In
other words, the mapping are the instances of amino acids in the correlation from one
site to the other along the multiple sequences.

We are proposing a way of detecting errors in the alignment of coevolved sites,
extracting this mapping from the sites in question and checking along the sequences
the amino acids present for those sites.

Once we assume a mapping for these sites, we can search the sequences where
the mistakes occur for those sites according to the guessed mapping, and we analyze
if in the alignment it is possible to increase the coevolution information, doing some
correction to set in the coevolved sites a pair that belongs to such mapping.

This definition stems from the nature of coevolution. One change in one of the sites,
forces the other to change and forces that the new amino acid to follow the previous
one through a bijection.

Definition 16. A mapping between sites i and j, from now on Map(i,j), is a set of different
pairs of amino acids present along the sequences for the sites i and j. We keep the appearance
time of each pair.

Figure 6.1: Sequences and coevolution guessing

55

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

To understand this concept better, we can see the sequences in figure 6.1 from where
we analyze the sites i and j and we extract the mapping show in the figure 6.2.

Figure 6.2: Mapping for the sequences in sites I and J

The next step is to normalize the mapping, in a way that we obtain a bijection
between keys of the mapping and values, because we base our approach on the next
definition:

Definition 17. Two sites i,j, are coevolved if and only if columns i and j satisfy a bijection over
the amino acids they have along the sequences.

The normalization we present, is a compression and grouping of the elements of
the Map, in the sense that we group elements of the map with the following criteria:

• We sort the Map from the most to the least frequent elements. So, if A->B is the
first element of the Map (A is the key, B the value), this means that is the most
repeated pair in the sites i,j.

• We iterate for all the elements of Map, from the least frequent pair to the most
frequent pair. For each iteration, we iterate again from the current pair, say M-
>N, to the most frequent pair, and if there exists a pair K->V that appears more
times than the current pair M->N, and M==K or N==V, then the number of pairs
M->N is added to the total of pairs K->V, and we remove the pair M->N (M->N
are included are counted now as if they were K->V pairs). We repeat this process
until no more compression can be done.

This normalization will give us a bijection in the mapping. For instance, and follow-
ing the example of figure 6.1, the normalized mapping for the sites i,j of the example
can be seen in the figure 6.3. With this bijection we obtain the most probable exact
matching for different pairs, between one site and the other based on the information
in the sites.

With this bijection, we can check if the pairs are always preserved in the corre-
sponding sites along the sequences or in those in which the bijection does not hold,
we cam check if there is a way to fix the misalignment and preserve this mapping.
The method is an heuristic to proceed after the aforementioned MI detection, because
the bijection is not perfect an can add mistakes because the misalignments, and also

56

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

because we are assuming that in the coevolved sites there are no random mutations
other than those in the coevolution mapping we assume.

Figure 6.3: Normalization of the mapping: at left the Map, at right the normalized one

Algorithm 4 CoevolveDetection
1: for i = 0..M do . M are the sites
2: for j = i+1..M do
3: if MI(i, j) = K then
4: Coev←Coev∪ (i, j);
5: else
6: if (MI(i, j)>= T then . T is the Threshold
7: Map← getMapping(i, j);
8: NMap← Normalize(Map);
9: if cardinality(NMap)> 1 then

10: ListPos← getMistakes((i, j),NMap); . ListPos get all sequences number
where we detect mistakes based on NMap in sites (i,j).

11: Can← T RUE
12: for all pos ∈ ListPos do
13: if notcanFix(pos,NMap,(i, j)) then
14: Can← FALSE . canFix check if we can shift obtaining in position

i,j elements of the mapping
15: break; . break stop considering this site as a possible coevolution
16: end if
17: end for
18: else
19: Can← FALSE; . NMap only one element, Not Coevolution.
20: end if
21: if Can = T RUE then Coev←Coev∪{(i, j)};
22: end if
23: end if
24: end if
25: end for
26: end for
27: return Coev;

In the algorithm 4 we can see how to proceed for every pair of sites. First we start
by guessing the coevolved sites, and discarding the others below the threshold. With
the remaining ones, those above a threshold T, we continue to get the mapping and
normalize as explained previously. Since the normalized mapping, NMap, can have

57

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

only one element, we have to make a decision in such cases. If there is only one ele-
ment, it means that we can correct mistakes and probably get the same amino acid a
for all the sequences in site i and the same amino acids b for site j. In this case there is
no evidence for coevolution at all, but only for simply conserved sites through all the
evolutionary generations, so we can discard this pair of sites from the candidates for
coevolved.

If it is not the case explained above for only one element in NMap, then the can-
Fix function is called. This function considers two subsequences si,s j of the sequence
to be analyzed, width a length of window W and with center point the sites i, and
j respectively. The main part of the check consist in comparing the amino acids in
those subsequences, with those in the mapping, and determining if the sites have pos-
sibly coevolved if there exists a pair of sites (ai,b j), such that ai ∈ si and b j ∈ s j, and
(ai,b j) ∈ NMap. This checking is explained in the algorithm 5

As an example of this checking, we can see for each mistake in the Figure 6.4 the
window in the site i and j, which whom we check the condition explained before. In
this case, all the elements in site i in the window considered and in the position where
the mistakes occur have an element in the key of the normalized mapping. Of course,
we check also for site j if the element belongs to the values of the normalize mapping,
though in this case this is not necessary because there are no mistakes in j.

Figure 6.4: Mistake identification and "canFix" checking

With the algorithm 4 we have a procedure for checking all the pair of sites guessed
as coevolved using the MI threshold T, to determine which of them are most likely to

58

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

Algorithm 5 canFix
1: Subi← subsequence(pos, i,window)
2: Sub j← subsequence(pos, j,window)
3: Map← getMapping((i, j));
4: NMap← Normalize(Map); . NMap is the normalized mapping
5: Can← FALSE
6: for all AminoacidAi ∈ Subi do
7: for all AminoacidA j ∈ Sub j do
8: if (Ai,A j) ∈ NMap then
9: Can← T RUE);

10: break; . break because we know we can align for some amino acids
11: end if
12: end for
13: end for
14: return Can

have coevolved based on this idea of the mapping. The method is totally based on the
assumption that the normalized mapping for a pair of sites is the correct coevolution
map for those sites. Of course, this assumption can be wrong, and can insert mistakes
when the assumed mapping is not the correct one, but, in this approach, we are work-
ing under the assumption of coevolution with perfect matching as we generate the
sequences. Furthermore, this feature can be extended considering a minimization of
the mistakes in the mapping if other mutations can occur in the coevolved sites.

Once the coevolved sites are detected with this method, we can fix those sites which
the normal aligner misaligned and lost the information about the coevolution. We pro-
ceed with the alignment correction, as explained in the next section, using the method
of alignment with constraint explained previously in Chapter 5.

6.2.1 Fixing the alignment

Once we have the candidate sites identified as having coevolved, with their respective
normalized mappings, we can start to fix the misalignments in these sites to get the
correctly aligned sequences that show the coevolution for these sites.

As explained in Chapter 5, we can use variables for the gaps or variable that rep-
resent the positions of the amino acids. No matter which method we use to align, the
important thing is to clarify how the constraints are created.

Given the pair of sites (i,j), we consider a window W such that two regions are
determined: R1= [i−W, i+W] and R2= [j−W, j+W]. These regions define the window
of sites over which we try to fix the alignment, and also correspond to the window used
to disambiguate the coevolved sites with the mapping method as explained before.

We need to set a precondition, and it is that we fix the alignment of a pair of sites

59

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

(i,j) if there exists other pair (k,l) that has been fixed, then (i,j), (k,l) are not in conflict.
We define two pair of sites to be in conflict if some of their regions intersect. With
this precondition we avoid shifts in the amino acid to correct one site, that damage the
coevolution for other pair of sites. Also we skip to fix a pair of sites (i,j) if the distance
between i and j is smaller than two times the window W.

With the regions R1,R2 we can create two matrices MatposI and MatposJ , where the
columns are the sites in R1 and R2 respectively and the rows are the subsequences
aforementioned. In these matrices we store the amino acids for such sequences in the
respective sites.

We work now with the matrices MatposI and MatposJ , setting the constraints on them
based on the mapping extracted previously. As we can see in the algorithm 6, the
general procedure is, for each sequence we check the pairs (ai,b j) in the sites i and j it-
erating along the sequences. If (ai,b j)∈NMap(i, j), then the sequence number is added
to the list ListCorrect, otherwise the sequence number is added to the list ListMistakes,
where NMap(i, j) is the normalized mapping for the sites i and j.

During this search, we also set the constraints for those amino acids that can be
aligned with amino acids in the next subsequence. So it can happen that one amino
acid can be aligned to the coevolved site, or also with another amino acid from other
site, giving two possibilities that are resolved using the reified constraints. Indeed,
all the constraints that we set with the function addConstraint are reified constraints,
and we try to maximize their satisfiability. To give a higher priority to the alignment
with the coevolution, we can just increase the weight of those reified variables related
to constraints with the anchor variables, by a constant factor, obtaining a maximized
value if the constraints related to the anchor variables are set, plus all the other align-
ment constraints. The anchor variables keep the position of the coevolved sites when
the constraint produce some shift.

For those positions such that the pairs (ai,b j) ∈ NMap(i, j) that we get iterating the
ListCorrect, we set the constraints to preserve the correct alignment of the amino acids
in the coevolved site (i,j), and we force these positions to be some anchor variables I
and J respectively. Iterating the list ListMistakes we get those pairs (ai,b j) /∈ Map(i, j),
because ai andor bi are misaligned, and we search inside the window all the possi-
ble combinations of (ai,b j), i ∈ R1 and jinR2, such that (ai,b j) ∈ NMap(posI, posJ) and
we set the constraints such that if it is the case that ai is in the position of the anchor
variable I, then b j is in the position of the anchor variable J and viceversa. With this
constraint we force the variables to align according to the mapping, in the position
of the coevolved sites. Note that we use a different addConstraintWeighted for the co-
evolved site, giving more priority to this by increasing the weight of the reification

60

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

Algorithm 6 setConstraints(siteI,siteJ)
1: posI← siteI
2: posJ← siteJ
3: NMap(posI, posJ)← previouslycomputednormalizedmapping f or(posI, posJ)
4: MatposI← subMatrix(posI,window)
5: MatposJ← subMatrix(posJ,window)
6: N← amounto f sequences
7: for seqK = 1..N do
8: if (MatposI[seqK][PosI],MatposJ[seqK][posJ]) ∈ NMap(posI, posJ) then
9: ListCorrect.insert(seqK)

10: else
11: ListMistake.insert(seqK)
12: end if
13: for i = 1..(Window∗2+1) do
14: for j = 1..(Window∗2+1) do
15: if (MatposI[seqK][i] == MatposI[seqK +1][j]) then
16: addConstraint(eq(VAR(seqK, posI + i),VAR(seqK +1, posI + j))) .

alignment for any amino in the window of site I with the next sequence
17: end if
18: end for
19: end for
20: for i = 1..(Window∗2+1) do
21: for j = 1..(Window∗2+1) do
22: if (MatposJ[seqK][i] == MatposJ[seqK +1][j]) then
23: addConstraint(eq(VAR(seqK, posJ+ i),VAR(seqK +1, posJ+ j))) . alignment

for any amino in the window of site J with the next sequence
24: end if
25: end for
26: end for
27: end for
28: for k = 1..ListCorrect.size()−1 do
29: seqK = ListCorrect[k]
30: addConstraint(eq(VAR(seqK,posI),I)
31: addConstraint(eq(VAR(seqK,posJ),J) . Anchor variables constraints.
32: end for
33: for k = 1..ListMistake.size()−1 do
34: seqK = ListMistake[k]
35: for i = 1..(Window∗2+1) do
36: for j = 1..(Window∗2+1) do
37: if (MatposI[seqK][i],MatposJ[seqK][j]) ∈ NMap(posI, posJ) then
38: addConstraintWeighted(eq(VAR(seqK, i), I)⇔ eq(VAR(seqK, j),J)) . constraint

to set a valid pair in the coevolved sites.
39: end if
40: end for
41: end for
42: end for
43: return solve(); . solve the constraint and return the matrices with the corrections.

61

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

variables corresponding to this constraint.
In the algorithm we use VAR(sequence,pos) to designate a variable corresponding

to the amino acid that we are taking into account in a window W for a site I. This
function just gives us the corresponding variable for the amino acid in question.

Once we extract the matrices for all sites that we guessed as coevolved, and we
set these constraints, the alignment is done solving them iteratively. Then the whole
alignment is reconstructed again, replacing the matrices in the correspondent places.

We can integrate the algorithms in a general procedure, that we test in future sec-
tions, as Fix algorithm and described in algorithm 7.

Algorithm 7 Fix
1: for all (i, j) ∈CoevolveDetection do . This algorithm returns the canFix checking for

pair of sites over T.
2: if notCon f lict((i, j), listCon f lict) then
3: listCon f lict.Add((i, j))
4: Matrixi,Matrix j← SetConstraints(i, j)
5: Alignment←Replace Matrix i, Matrix j.
6: end if
7: end for

6.2.2 Results

To test this approach, we generated a set of sequences, we aligned them and we com-
pared these alignments with the coevolved sites generated. All the test are done taking
a window of size 2 to each side of the site because it produce the best results in all the
cases.

First we test our method, the mapping based one proposed in this chapter. We
generate a set of sequences with different mutation, insertion and deletion ratios. For
this set of sequences we run the algorithm that tries to detect, in the pool of pairs of
sites with value MI over a threshold T, which of them are really coevolved and which
ones can be discarded. To measure the effectiveness of this algorithm we identify the
correct coevolved sites from the sequences generation step and we can compare that
information against the result of this method.

In the figure 6.5, we can see the results for a constant threshold T. As we can see
in this graphic, our method is discarding many sites as possible coevolved sites (the
True Negatives,TN) that under the naïve algorithm fall in the assumption of coevolved.
Also many True Positives (TP) are detected which means that there are candidates to be
re-aligned increasing their MI. All the TN detected are False Positives (FP) in the naïve
algorithm. This result shows that our mapping method to identify those possible pairs

62

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

of sites works better than the naïve method and we can proceed to use it to determine
which sites can be re-aligned.

Figure 6.5: Ratio of detections

First we showed how effective was our method, and now we can show how it
helps fixing the sites that are detected as coevolved against the naïve algorithm. To
realize these tests, we generated many sequences with different coevolution methods
and different generation steps. As we can see in the table 6.1, we generated 5 tests of
each type and we grouped them. Each test consists of 100 sequences obtained from the
offspring set after the simulation process.

The generations are the times we evolve our simulation generating the child se-
quences. The different coevolution methods are those as explained in section 2.5. The
Blosum method produces a mutation in the driver position (i-site) according to the blo-
sum matrix. For this new amino acid there exists a favored state for the mutation of
the driver, also following the Blosum probability matrix. The mapping method follow
a strict mapping mutation and for each amino acid that mutate in a site, there is only
one amino acid to which the driven site mutates. The mapping is constructed with a
mutation probability matrix before the simulation, generating a presumed biologically
significant correlation between the amino acids. The last method, Cluster, assigns for
each amino acid a cluster of favored states. Each cluster contains a set of most probable
amino acids to which the driven can mutate, producing a partition of the amino acid
set and allowing mutation only within each subset.

The AVGsimilarity column shows the average of pairwise similarity score(%) for all
the sequences in the correspondent group of tests, where higher values indicate more
similarity, i.e. more homology of the sequences, and lower values more divergence

63

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

in their similarity. The pairwise similarity values are calculated by Clustal when the
alignment is done.

TestID Range Mutation Generations AVGsimilarity(%)
1-5 blosum 20 71

6-10 blosum 25 62
11-15 blosum 30 52
16-20 mapping 20 72
21-25 mapping 25 61
26-30 mapping 30 54
31-35 cluster 20 68
36-40 cluster 25 55
41-45 cluster 30 45

Table 6.1: Tests description. Coevolution mutation: blosum, mapping, cluster.

In the figure 6.6, we can see a graphic of the tests for sequences generated with
the Blosum(left) and mapping(right) coevolution methods. The horizontal axis corre-
spond to the number of generations of the tests and the vertical axis to the amount
of coevolved sites detected in the top 25% of MI value site calculation over the align-
ment. Each point represents the average of detection of 5 tests and also the standard
deviation is shown for each point.

For generating the tests, we first create the sequences and then we calculate the MI
over the sites to find those over a threshold T. We sort the results by their MI value in
decreasing order and we get the top 25 percent of that list. From this list we count the
number of coevolved sites detected (knowing them from the sequence generation). So,
in this way we have the number of coevolved sites detected by the naïve algorithm.
Also, with the same sequences and all the pairs of sites over the threshold T, we run
our mapping algorithm to determine the possible coevolved sites and re-align the se-
quences using the constraint method. Then we measure again the MI for all the sites
and from this new calculation we take the list of the top 25 percent and we count the
number of coevolved sites on this list giving the result for the mapping algorithm.

We count in the 25 percent because with a smaller sample we do not have enough
information to disambiguate between the two alogrithms results and more percentage
we do not obtain any change in the results. So, 25 percent is a good amount to analyze
the results and compare the two algorithms.

The result here shows that the Fix algorithm that we propose detects more coe-
volved sites than the naïve algorithm, in both coevolved method of generation. We

64

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

Figure 6.6: Detection using both algorithms for blosum and mapping coevolution.

can see that the differences of the result of both algorithms are similar in the differ-
ent generations for the mapping methods, and this is because this method mutates the
coevolved sites with a strict mapping. There are no noise associated to insertions dur-
ing the simulation on the coevolved sites, and gaps appear only because of the Clustal
alignment.

In the Blosum method instead, there are some mutations different from those in the
mapping. During the generation, the driven site is taken under a certain probability
(according to the Blosum matrix and as explained in the Chapter 2, and the reason why
the naïve algorithm approximates the Fix algorithm in the results is due to the fact that
the noise can cause mistakes in our canFix check because probably we can not find a
possible bijection for a pair of sites that we detect as mistake and we discard it from
the candidates to coevolved sites.

In both methods, the graph shows that the Fix algorithm has a better average effi-
cacy for detection against the naïve algorithm.

Now, with the same number of generations, we tested both algorithms for se-
quences simulated with the cluster coevolution method. The results are shown in the
figure 6.7, and we can detect that often the naïve algorithm is better detecting coe-
volved sites against the Fix algorithm. The reason is that the cluster method of co-
evolution produce in the coevolved sites of the simulated sequences, frequent pairs of
amino acids that violate a bijection. Under this type of simulation coevolved sites show
a many-to-many correlation of amino acids according to the clusters. This increases the
probability of a wrong mapping prediction in our method of detection of coevolved
sites because this many frequent pairs of amino acids, that violates the bijection, are
normalized obtaining a bijection that we use during this detection and increment the
wrongly discarded pair of sites as not coevolved. This lack of a probable correlation of

65

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

the coevolved sites, produce this false negatives that impact in the results. Moreover,
when this coevolution method is used in the simulation, and we fix the coevolved
sites, many misalignments appear in other sites prompting a poor whole alignment
compared with the Clustal one as shown in the alignment results.

Figure 6.7: Detection using both algorithms for cluster coevolution.

We show in the table 6.2 a result of a re-alignment after fixing some of the coevolved
sites detected. Here the fields Clustal and After Fix show the percentage correction of
the alignment compared with the correct one.

The measure is done counting for the alignment fixed and for the Clustal alignment,
how many amino acid are preserved in each site as in the correct alignment (that one
that we can do from the generation of the sequences). In general after fixing, explained
previously, we repair some of the coevolved sites and these sites are similar as in the
correct alignment. Our method of constraints sometimes adds noise, in the sense that
to obtain the mapping and the coevolved sites, it may result in switches that are not
penalized by the distance or the amount of gaps to be introduced, producing an incor-
rect alignment for those sites close to the coevolved ones compared with the correct
alignment.

In the last 15 tests, we can see how the similarity decreases, and also many times
after fixing gives worst results. This is due to the fact that often for this type of tests we
got many false positives and false negatives, and fixing those that are not coevolved
sites or discarding those that are really coevolved sites and contain mistakes, we are
not improving the alignment overall.

The good point is that we can work independently from the detection of coevolved
sites to the correction of the alignment and, as proposed in the future work, improve
each of these goals for a final integration of them in a whole technique that maximizes

66

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

Test Range Mutation Clustal After Fix
1-5 blosum 65 72

6-10 blosum 61 63
11-15 blosum 57 59
16-20 mapping 64 68
21-25 mapping 61 66
26-30 mapping 58 59
31-35 cluster 49 44
36-40 cluster 42 45
41-45 cluster 38 36

Table 6.2: Alignment similarity with correct alignment

the detection given some alignment boundaries.
From the previous tests, we can conclude that the gain of using our method over

the naïve algorithm sometimes is not so high with respect to re-aligned coevolved sites,
but this gain with the combination of the power to discard True Negatives, makes the
method a robust tool to detect coevolved sites with considerable efficacy and efficiency
using the mutual information as a first step, the mappings to disambiguate and the
constraints model presented in the previous chapter to produce the re-alignment. Also
the correction of the misalignments show an improve over the Clustal alignment.

67

6. USING CONSTRAINTS TO FIX THE ALIGNMENT 6.2. Map based detection

68

7
Conclusions and Future work

7.1 Conclusions

During this work we covered the backgrounds of an important field of bioinformat-
ics, the sequence alignment tools, and we related the concept of coevolution with the
alignment process.

We showed that often the multiple sequence alignment tools lose the information
in coevolved sites and that the straightforward procedure for such alignments showed
to not take into account the possible correlations between mutation on specific sites as
consequence of natural pressure.

During the development of this work, the visualization tool implemented was very
useful when we wanted to understand the impact of the MSA on the coevolved sites
with respect to the original sequences and the correct alignment. Also this tool helped
while testing different Mutual Information techniques for coevolved sites prediction
and when we pinpointed how the dynamics of protein sequence evolution produce dif-
ferences in the MI scores. One pending task is to analyze with real data, with previous
tagged coevolved sites, if the multiple sequence alignment methods modify such sites.
We expect that the results will be quite similar to the obtained in this work because
we approximated the natural sequences with simulated ones and with the coevolution
methods.

We think that the introduced constraint framework, including the two models for

69

7. CONCLUSIONS AND FUTURE WORK 7.2. Future Work

represent sequences with gap and position variables, is a great utility for future re-
search on protein structural and functional studies, specifically when particular con-
straints have to be applied to preserve some relations between the amino acids at dif-
ferent sites and also in different sequences. Also the drawbacks presented for each of
them in Chapter 5, should be taken into account as possible optimizations and perhaps
as starting point of new methods.

The mapping method showed good results with the conditions established for the
sequences. We believe that with more research time it can be tuned up and also a new
method can be proposed to relate, using the same constraint system, all the coevolved
sites integrating a detection and alignment process.

In this work we showed some improvements for the information theory techniques
as a first step in the detection of coevolved sites, and also the use of constraint pro-
gramming to proceed on the sequences alignments. We showed how the bioinfor-
matics field can extend its resources to new methodologies towards the discovery of
protein dynamics of evolution to finally understand the molecular process of biological
organisms.

As possible future work, we would like to pinpoint some features that can be stud-
ied in deep to continue this research.

7.2 Future Work

One drawback of this work is that, during the process of detecting possible coevolved
sites, we discard all those sites below the threshold T, so once we are checking the
possible re-alignments we already discarded many pair of sites that may be involve
some coevolved sites. This is because this model is based on the mutual information
technique. Some other approach could be explored to avoid discard coevolved sites
with correlated information lost because of misalignments and that present low MI
score.

The main drawback of the mapping method deciding whether a pair of sites have
coevolved or not is the possible uncorrect predicted mapping. Many times the frequent
pairs of amino acid that looks like a perfect correlation are product of the misalignment
of the alignment methods. When this is the case and we are checking for possible
corrections on this sites according to this mapping, can occur that we decide that such
re-alignment is not possible because a wrong predicted mapping, producing a False
Negative if the sites were coevolved. This is the main reason why we say the method
is not complete and is an heuristic that, as we showed in the result, is more efficient
than the nïve method.

70

7. CONCLUSIONS AND FUTURE WORK 7.2. Future Work

Other clear drawback of this method is the lack of re-alignment for those pairs of so
close sites because, as we impose in the consistency checking, we do not re-align those
sites that are not farther apart than a window W. The problem is that if we proceed
re-aligning this sites, some mistakes can be introduced being detrimental to the final
alignment. The same happens when two pairs of sites have some conflict in the align-
ment because some of the elements between the pairs are not enough distant. This is
another drawback to overcome in future work, because this model just consider itera-
tively pairs of sites to re-align and when one site is the candidate we check for inconsis-
tency into the window W with the already aligned pairs of sites, not re-aligning those
that are in conflict. We think that the method should be extended to handle possible
conflicts during the re-alignment because some pairs that are detected by our method
as in conflict with other sites, are not sharing amino acids in the coevolved sites but in
a not relevant site inside the window W.

Also some study is necessary to skip the limitations of analyzing just the primary
protein structure, and try to use some information from the second and tertiary protein
structure in the coevolution detection. With this information, we can get more features
that can help to disambiguate with more precision those uncertain coevolved sites.
To do this, a deeply study should be done in the biological field to understand the
intramolecular relation and the amino acid evolution with respect to higher structures.

In the next subsection we pinpoint some ideas to address a possible solution to
some of this drawbacks.

7.2.1 Constraint Matching

We want to address some solutions to the problem of the Chapter 6 with the wrong
guessing of the mapping. Often the MSA algorithm switches amino acids from the
coevolved sites to the neighbor sites and in the way our method work, it can happen
that we do not consider such amino acids in the guessed mapping.

Lets consider an example in the table 7.1, as a result of a multiple alignment for
sites I and J with a window of 2 sites.

And lets assume that the correct correlation coevolved amino acids for site i and
j, are those pairs (P,D),(G,N). We see the Mati for sites (i-1,i, i+1) and Mat j for sites
(j-1,j,j+1).

If we proceed with the model of Chapter 6, the guess mapping is (P,M),(C,N),(E,D).
When we search for the mapping in the 3rd sequence, we found (F,-,B) in Mati and
(D,D,-) in Mat j with no combination for any pair of the mapping, discarding as possible
coevolved giving a false negative. Many of the mistakes in the result alignment of the

71

7. CONCLUSIONS AND FUTURE WORK 7.2. Future Work

I-1 I I+1 J-1 J J+1
E P - A M D
E P - A M D
F - P D D -
F C G A N N
F C G A N N
F E G - D N

Table 7.1: Matching between Mati and Mat j.

last chapter, are due to this fact, and in the detection of the coevolved sites are the false
positive results, mostly appearing with the cluster coevolution method.

What we can do is to give a chance to those amino acids that were switched by the
aligner in the same way we give the chance to those that actually appear in sites i and
j.

One way to handle all the combinations of possible values, when variable size re-
gions should be checked for a possible correlation, is to search for a matching between
the amino acids in Mati and those in Mat j. With this matching we have all the combi-
nations of pairs between the two columns, i.e. all the tuples that can be aligned in sites
I and J wether a corrections in the amino acid position is needed or not. So, from all
different amino acid in the Mati we create a variable with a domain in the Mat j, such
that if ai in a sequence in Mati and b j in the same sequence in Mat j then b j is a value in
the possible domain of ai. Graphically, we can see this in figure 7.1(a) for the sequences
described above, and we show the variables and the domains. In figure 7.1(b), we can
see the bipartite graph, created from the variables to the domains and all the possible
matchings.

Figure 7.1: Variable, domains and matchings.

We have to relax a bit the matching according to our necessities. We can use weighted
matchings to weight the distance between the elements in the matching, in the sense
that if one amino acid in Mati matches the correlation with one in Mat j, and we have
to move them to the i and j position, we can measure the distance (in term of gapst)

72

7. CONCLUSIONS AND FUTURE WORK 7.2. Future Work

necessary to achieve a correct position of both of them in the coevolved sites. Also, we
can have repetition of elements in the matching, in the sense that two amino acids can
be matched with the same one, in case of mutations from the correlation.

This matchings can help, because for every amino acid in a variable regions close
to a probable coevolved site, we can have a range of amino acids in the correlated
site. In some way, we can think in a constraint system where the labelling of variables
representing amino acids of the possible coevolved sites, takes value from the possible
tuples of the matching, pruning values because each time a variable in a site is fixing an
amino acid this condition the variable in the correlated site to take the correspondent
value in the matching. Also we can measure the impact of one matching as the distance
of the elements of the matching from the correlated sites.

The matchings can be generated with constraints. If we think about the amino acids
in Mati as the variables, and those amino acids in Mat j as the domain, we apply some
constraint over the variables to get a matching. A common constraint to do this, is
AllDifferent that we force all the variables to get a different value from the domain.
For a relaxation of the strict matching, we can use the soft AllDifferent propagation
algorithms, as proposed in [vH01]. The maximum matching using constraints, can be
obtained if there exist a matching. But can be the case that the maximum perfect match-
ing does not exist, and we have repeated elements in the domains, or many solutions
to the matching. Many solutions means that we can choose a the value for that vari-
able, and repetitions that we can give priority to some matchings. Many approaches
with weighted matchings have been studied for combinatorial problems, for instance
in [CL00]. The idea, is to have measure of the repetitions allowed in the matching, in
our case a threshold in the amount of possible mistakes for each amino acid.

This technique can be also useful if we want to search for possible matchings in re-
gions that are not at all conserved and that also the MI is too low. In this situations, with
the method of Chapter 6 we discard them, obtaining some false negatives. But can be
of interest to search possible coevolved sites in regions that are totally misaligned, and
does not show any statistical signal of correlation, or in those site where the matching
is spread among the neighbors sites.

More research work is needed to adapt this constraints with the alignment con-
straints, but we believe that this ideas can conduct to a better efficacy in the coevolution
detection, working over the first protein structure.

7.2.2 Avoiding conflicts

For the conflict checking during the re-alignment process, when we can fix some co-
evolved site, we can try to increment the reliability of the system with a method that

73

7. CONCLUSIONS AND FUTURE WORK

realize a complete re-alignment, in which we set implicit constraints that relate the
different variable regions to re-align. In some way this constraints should not allow
re-alignments in a site if such corrections are affecting negatively other pair of coe-
volved sites, and also this constraints should allow corrections only when the MI for
the coevolved sites increase or a measure of the whole alignment is maximized.

We can try to get an objective function for the whole alignment and the correlation
measure for the probable coevolved sites, such that we can take the decision of re-
align some pair of sites if we get an increment of that function. This, added to the
conflict avoidance constraints, can produce a robust system that do a whole alignment
maximizing the alignment and coevolved pair of sites, against our iteratively method
of taking pair by pair.

One problem to work on, is an approximation of the coevolutionary best alignment
we can get for a pair of sites. In the Chapter 6, we used the mapping as an heuris-
tic of possible re-alignment in the sites to get more correlation. But now, a function
measuring the partial solution for a pair of sites and the best possible correlation from
that partial solution according to the amino acid present in the windows, should be
calculated without exploring the whole search space.

If such function exists, we can measure the impact of re-aligning according to the
constraint that we set and the impact on the whole alignment, deciding to discard
such re-alignment if nothing better can be obtained from the partial correction in such
sites. This technique, is a branch and bound approach, as explained in section 2.6.2
and requires the study of a good objective function that measure the impact both in the
case of whole alignment and in the case of correlation among the sites.

74

Bibliography

[Bat05] Serafim Batzoglou. The many faces of sequence alignment. Brief Bioinform,
6(1):6–22, January 2005.

[Bax05] Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Wiley-
Interscience; 1 edition (July 14, 1998), ISBN-10: 0471191965, 3rd edition,
2005.

[BR97] Christian Bessiere and Jean-Charles Regin. Arc consistency for general
constraint networks: Preliminary results, 1997.

[BvB98] Fahiem Bacchus and Peter van Beek. On the conversion between non-
binary constraint satisfaction problems. In Proceedings of the fifteenth na-
tional/tenth conference on Artificial intelligence/Innovative applications of artifi-
cial intelligence, AAAI ’98/IAAI ’98, pages 311–318, Menlo Park, CA, USA,
1998. American Association for Artificial Intelligence.

[Cho] Choco: an open source Java constraint programming library, version 2.1.1.
http://sourceforge.net/projects/choco/.

[CL00] Yves Caseau and Francois Laburthe. Solving various weighted matching
problems with constraints. Constraints, 5:141–160, January 2000.

[Dar95] Charles Darwin. The Origin of Species. Gramercy, May 1995.

[DWFG10] Russell J. Dickson, Lindi M. Wahl, Andrew D. Fernandes, and Gregory B.
Gloor. Identifying and seeing beyond multiple sequence alignment errors
using intra-molecular protein covariation. PLoS ONE, page e11082, 2010.

[Edg04] Robert C. Edgar. MUSCLE: a multiple sequence alignment method with
reduced time and space complexity. BMC Bioinformatics, 5:113, 2004.

75

http://sourceforge.net/projects/choco/

BIBLIOGRAPHY

[ER64] Paul R. Ehrlich and Peter H. Raven. Butterflies and Plants: A Study in
Coevolution. Evolution, 18(4):586–608, 1964.

[FHWE04] Hunter B. Fraser, Aaron E. Hirsh, Dennis P. Wall, and Michael B. Eisen.
Coevolution of gene expression among interacting proteins. Proceedings of
the National Academy of Sciences of the United States of America, 101(24):9033–
9038, June 2004.

[FT06] Mario A. Fares and Simon A. A. Travers. A novel method for detecting
intramolecular coevolution: Adding a further dimension to selective con-
straints analyses. Genetics, 173(1):9–23, May 2006.

[GOP07] Rodrigo Gouveia-Oliveira and Anders Pedersen. Finding coevolving
amino acid residues using row and column weighting of mutual infor-
mation and multi-dimensional amino acid representation. Algorithms for
Molecular Biology, 2(1):12, 2007.

[HH92] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from
protein blocks. Proceedings of the National Academy of Sciences of the United
States of America, 89(22):10915–10919, November 1992.

[LBB+07] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan,
H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thomp-
son, T. J. Gibson, and D. G. Higgins. Clustal w and clustal x version 2.0.
Bioinformatics, 23(21):2947–2948, November 2007.

[MB99] S. Harrell M. Beals, L. Gross. Amino Acid Distribution.
http://www.tiem.utk.edu/bioed/webmodules/aminoacid.htm, 1999.
[Online; accessed 2010].

[MFDW98] Burkhard Morgenstern, Kornelie Frech, Andreas W. M. Dress, and Thomas
Werner. DIALIGN: finding local similarities by multiple sequence align-
ment. Bioinformatics, 14(3):290–294, 1998.

[NGR10] Scott L. Nuismer, Richard Gomulkiewicz, and Benjamin J. Ridenhour.
When is correlation coevolution? The American Naturalist, 175(5):525–537,
May 2010.

[NH03] Pauline C. Ng and Steven Henikoff. SIFT: predicting amino acid changes
that affect protein function. Nucleic Acids Research, 31(13):3812–3814, 2003.

76

BIBLIOGRAPHY

[NW70] Saul Ben Needleman and Christian Dennis Wunsch. A general method
applicable to the search for similarities in the amino acid sequence of two
proteins. Journal of Molecular Biology, 48(3):443–453, 1970.

[Pro95] Patrick Prosser. Forward checking with backmarking. In Constraint Pro-
cessing, Selected Papers, pages 185–204, London, UK, 1995. Springer-Verlag.

[RBW+] Francesca Rossi, Peter Van Beek, Toby Walsh, Thom Fruhwirth, Laurent
Michel, and Christian Schulte. Handbook of constraint programming.

[Sha01] C. E. Shannon. A mathematical theory of communication. SIGMOBILE
Mob. Comput. Commun. Rev., 5:3–55, 2001.

[Sin95] Moninder Singh. Path consistency revisited. In In Proceedings of IEEE
ICTAI-95, Washington D.C, 1995.

[SN87] N. Saitou and M. Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular biology and evolution, 4(4):406–
425, July 1987.

[SW81] T. F. Smith and M. S. Waterman. Identification of common molecular sub-
sequences. Journal of molecular biology, 147(1):195–197, March 1981.

[TPP99] Julie D. Thompson, Frederic Plewniak, and Olivier Poch. A comprehen-
sive comparison of multiple sequence alignment programs. Nucleic Acids
Research, 27(13):2682–2690, 1999.

[vH01] Willem-Jan van Hoeve. The all_different constraint: A survey. CoRR,
cs.PL/0105015, 2001.

[WJ94] L. Wang and T. Jiang. On the complexity of multiple sequence alignment.
Journal of computational biology : a journal of computational molecular cell biol-
ogy, 1(4):337–348, 1994.

[WP05] Zhengyuan O. Wang and David D. Pollock. Context dependence and co-
evolution among amino acid residues in proteins. Methods in enzymology,
395:779–790, 2005.

77

	Introduction
	Layout of this work

	Preliminaries
	Sequence Alignments
	Algorithms for Sequence Alignment
	Algorithms for Multiple Sequence Alignment
	Dynamic Programming
	Progressive Alignment
	Iterative Alignment

	Coevolved sites
	Simulated data sets
	Constraint Programming
	Constraint Satisfaction
	Consistency techniques
	Constraint Propagation

	Constraint Optimization
	Constraints

	Objectives
	Mutual Information in Sequence Alignments
	Mutual Information Definition
	MI Calculation
	Normalization of the MI
	Adaptable logarithmic base
	Simple Correlation
	Entropy division

	Visualization tool
	Results

	Alignment using Constraints
	Motivation
	Preliminary definitions
	Gaps Model
	Semantic
	Correctness of the model
	Aligning with the Gaps Model

	Position Model
	Semantic
	Correctness of the model
	Aligning with the Position Model

	Reified constraints
	Defining the search strategy
	Experimental Results and Analysis
	Limitations of the models

	Using constraints to fix the alignment
	General problem and definitions
	Map based detection
	Fixing the alignment
	Results

	Conclusions and Future work
	Conclusions
	Future Work
	Constraint Matching
	Avoiding conflicts

