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Abstract 

The following thesis subject is based on the identification and dimensioning of the main 

mechanical components of the ground station of Boreas prototype, as well as a three-

dimensional finite element analysis of structural cable that connects the ground station to the 

module's air system. The module powered by a lift force pulls a cable that drives a mechanical 

system which in turn drives a generator during the productive phase of the energy cycle. In 

the other phase, the system inverts the turn and energy is consumed. The production of energy 

should be greater than the energy consume. 

The dimensioning of main mechanical components of ground station includes: flywheel, 

cable, capstan drum and winder drum.  

Structural analysis of the cable is performed with an algorithm based on a three-dimensional 

finite element analysis, which allows the control of cable tension on the end of capstan, 

prevent the rupture of cable, avoid high forces on bearings and the shock between the rope 

and the ground. The results of programme developed with the algorithm, are compared with 

the results obtained by an analytical approach and with commercial software of finite 

elements. 

This thesis contributes to the realization of mechanical components included in the prototype. 
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Resumo 

A presente tese tem como objectivos a identificação e dimensionamento dos principais 

componentes mecânicos da estação terrestre do protótipo Boreas, bem como uma análise 

tridimensional de elementos finitos do cabo estrutural que une a estação terrestre ao módulo 

aéreo do protótipo. O módulo aéreo movido por uma força de sustentação aerodinâmica puxa 

um cabo que acciona um sistema mecânico que por sua vez conduz um gerador durante a fase 

produtiva do ciclo energético. Na outra fase do ciclo, o sistema inverte o sentido do 

movimento, consumindo energia. A produção energética deverá superar o consumo 

energético. 

O dimensionamento dos principais componentes mecânicos da estação terrestre inclui: 

volante, cabo, tambores do cabrestante e enrolador. 

A análise estrutural do cabo é desenvolvida através de um algoritmo baseado numa análise de 

tridimensional de elementos finitos, permitindo o controlo da tensão de cabo no apoio situado 

no cabrestante, previne a ruptura do cabo, evita forças elevadas nos rolamentos e o choque 

entre o cabo e o chão. Os resultados do programa desenvolvido com o algoritmo são 

comparados com os resultados obtidos por um método analítico e por um software comercial 

de elementos finitos. 

Esta tese contribui para a materialização dos componentes mecânicos incluídos no protótipo. 

 

 

Palavras-chave: sistema mecânico, cabo, modulação por elementos finitos 
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Nomenclature 

 Constants of integration  

  Diameter of electric cable 

 External diameter of the ring 

 External diameter of gas tube 

 Diameter of flange 

 Inner diameter of the ring 

  Internal diameter of gas tube 

 Young modules of UHMPE 

 Young modules of steel 

 Force on winder drum 

 Force of unwinding 

 Force on capstan drum 

 Drag force 

  Maximum force of operation  

 Minimum force of operation 

  Weight of their own half of the distributed force  

 Total length of cable 

 Length of winder 

 Results from programmes or analytical solution 

 Results from software 

 Axial force on the vertex of catenary  

  Unitary Volume of electric cable  

 Unitary Volume of gas tube  

 Total weight of cable 

 Weight of catenary cable for unit of length 

 Weight of the electric cable for unit of length 

 Weight of elements 

 Weight of gas tube for unit of length  

 Weight of structural cable for unit of length 

 Vector of total displacements (iteration i) 
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 Vector of total displacements (iteration i+1) 

 Internal forces 

  External forces vector  

  Internal forces vector  

  Initial length (m) 

  Length of cable  

 Length of catenary 

 Length of parabola 

 Length of cable for a certain loop 

  Projection of element  in the three orthogonal axes 

  Number of elements 

 Pressure on capstan drum 

 Pressure on winder drum 

 Inner radius of capstan drum 

 Outer radius of capstan drum 

 Radius of shaft 

 Radius of cable  

  External Radius of capstan drum 

  Inner Radius of capstan drum 

 Radius of the pack (winder drum+ loops of cable)  

 Radius of winder drum 

 External radius of winder drum 

 Internal radius of winder drum 

 Variable radius between  an  

 Thickness of flywheel 

 Thickness of capstan drum 

 Thickness of winder drum 

  Nodal coordinates 

 Radial strain 

 Tangential strain 

 Density of polyamide 

 Density of cooper 
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 Density of steel 

 Principal stresses 

 Stress of service  

 Ultimate stress on cable 

 Ultimate stress on capstan drum 

 Maximum allowable stress on cable 

 Maximum allowable stress on capstan drum 

 Maximum stress on cable 

 Radial stress 

 Tangential stress 

 Tangential stress due external pressure on winder drum 

 Tangential stress due the rotation of winder drum 

 Angular speed of motor 

  Incremental displacement vector 

FEM Finite element method 

UHMPE Ultra high molecular polyethylene 

  Diameter of capstan drum 

 Young modules 

  Energy lost 

  Energy stored 

  Energy stored effectively 

  Energy  

 Approximation error  

  Inertia moment of flywheel  

 Tangent stiffness matrix 

 Minimum breaking force  

  Power 

 Relation of the load side and hold side  

 Maximum relative error 

 Minimum relative error 

  Relative error 

 Relation between  and  

 Safety factor for cable 
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 Safety factor for capstan drum 

 Axial force on a point  

  Constant parameter of the curve  

  Diameter of structural cable 

 Acceleration of gravity 

 Number of turns in section 

  Sub-matrix  

 Deformed length  

 Inner radius of cylinder 

 Tensile stress 

  Time  

 Displacement of the cylindrical surface of radius r 

  Speed  

  Abscissa of a point 

  Ordinate of a point  

  Area of cross section 

 Friction coefficient 

 Lagrange-Green strain 

 Poisson ratio 

  Uniform stress on the element 

  Angular speed of capstan  

 Cylinder external radius of  

 Cylinder inner radius of 
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1. Introduction  

The tendencies for future solutions of wind energy production, in opposition to actual wind 

systems (for example wind turbines), are constituted by aero structures, lighter than air. In this 

way the system, which is described, is an aero structure that work in cycles of high altitudes 

(more than 500 meters) being connected to a capstan on the ground. This system is coupled to 

an electric generator, producing energy during a part of cycle. The system is currently 

patented, [1]. 

The importance of working with the wind of high altitudes is reflected on the electric power. 

The value of wind speed increases with the increasing of altitude and the electrical power 

generated by wind turbines in the process of energy transformation shows a cubic dependence 

on wind speed, so small variations in wind speed represent large variations on value of 

electric power, [2]. The wind speed at 450 meters can be four or five times higher than in the 

ground, [2], and its flow is more stable than the earth surface reducing the problem of 

seasonality. 

The objectives of this thesis are the identification and dimensioning of the main mechanical 

components of the ground station (flywheel, cable, capstan drum and winder drum) of Boreas 

prototype as well as a three-dimensional finite element analysis of structural cable that 

connects the ground station to the module's air system. Under the scientific point of view, the 

modelling of cable structure is studied to allow the determination of stresses and cable 

trajectory. The importance of knowing which is the tension on the rope for the different nodes 

and the angle between cable and ends is to prevent the rupture of cable, avoid high forces on 

bearings and avoid the shock between the rope and the ground (which creates too friction on 

cable). The displacements (due the elasticity of cable and value of loads) are an important 

issue taking into account the limited area of work. 

On the future work other components as the support structure of the drum, the structure of 

anchoring to the ground, the control system, etc, should be studied in order to complete the 

design of prototype. 
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2. Thesis structure 

The thesis is structured in 7 chapters. Chapter 1 consists on an introduction to the general 

environment of wind energies where considerations about the importance of wind of high 

altitudes are mentioned. The chapter continues with a short description of the mechanical 

system and the future work. Chapter 3 presents a state of art of wind technologies where the 

characteristics of wind resource and the technologies that take part of it are in discussion. 

Chapter 4 refers to a description of the characteristics of the “Boreas” prototype, where the 

elements of the mechanical device are mentioned.  

The chapter 5 is related to the energy considerations and with the dimensioning of major 

mechanical components of ground station (flywheel, cable, capstan drum, winder, 

respectively). In this way data is provide for the design of prototype. 

On chapter 6, the methodology and proposed modelling of cable structure is presented 

considering two possible approaches based on analytical equations or the finite element 

method. Later in the chapter an algorithm characterizing the behaviour of cable submitted to 

forces is proposed. This algorithm will be important for the control programme of the device. 

On chapter 7 the thesis conclusion is presented and the future work to be done is proposed. 

Lastly, the thesis has 5 annexes being the first one related to the list of MATLAB file, the 

Annex 2 and 3 represent the input files of programme’s A and programme’s version B, the 

Annex 4 specifies the ANSYS file and on Annex 5 is shown the input file of the structural 

analysis of cable example.  
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3. State of art of wind technologies 

This topic, after an introduction to the thematic of wind resource, describes the major 

technologies that take part from the wind resource in order to produce energy; in particular 

electric energy.  

 

 

3.1. The wind resource 

The wind can be characterized as air in motion with a certain intensity and direction. It is the 

result from displacement of air masses, as a result of pressure differences between two distinct 

regions. The pressure differences are associated with solar radiation and heating processes of 

air masses: the high pressure air descends and departs heating to converge and where the low 

rises, [2]. The heating areas of land and sea are different from the poles to the tropics, causing 

the displacement of heat flows between these zones, being the wind one of carriers of heat 

flows. The wind would always flow perpendicular to the isobars if the influence of rotation of 

the earth does not induced small deviations in the flow of wind through the action of Coriolis 

forces, [2]. 

 

Figure 3.1 - Earth circulation cells, [3]. 

Other important issue are the breezes, which refers to the flow localized wind with lower 

intensity. The breezes result from the unequal heating or cooling of land surfaces, on a certain 

location. The most common breezes are, [2]: 
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 Land breeze - Wind that blows during the night of earth surface into the sea, in that, on 

the earth surface the temperature decreases more quickly in the night, compared with 

sea water, creating a difference of pressure; high pressures on the earth surface and 

low pressures on the sea; 

 Sea breeze -  Wind that blows during the day, from the sea to earth surface and as 

result of the earth surface warm more quickly than sea water during the day, a 

difference of pressure is created; high pressures on the sea and low pressures on the 

earth; 

 Valley breeze - Winds that blows in the morning from the valley to the mountains 

peaks and, as a result of the mountains peaks warm faster than the valleys, a difference 

of pressure is creating; high pressures on the valley and low pressures on the mountain 

peaks. 

The increase of altitude increase the wind speed, due the roughness, orography but also 

because the air is denser on the earth surface, decreasing the density with height, [2]. The 

wind speed don’t increases infinitely with the increase of height from the ground, it can be to 

450 meters four or five times higher than in the ground but at higher levels the relation 

decreases, [2]. 

The knowledge of the wind behaviour is determinate to introduce the technology on a certain 

place in order to adjust parameters, as the height or orientation of structure. 
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3.2. Wind technologies 

The wind technologies are one type of the renewable energies and are characterized specially 

by the wind turbines. 

 

3.2.1. Reference to wind turbines 

The wind energy can be described as the transformation of energy provided by wind on a 

useful energy, generally electricity. The most known way to produce wind energy is the use of 

wind turbines, which drive an electric generator. 

The main components that constituted the wind turbines are:  

 Blade – Component that is orientated to wind direction in order to rotate; 

 Hub – Joint of blades with the shaft, which will transmit horse power; 

 Nacelle – Component that includes: the anemometer, bearings, rotor, gearbox, 

generator, coupling, disk brake yaw system, etc. 

 Tower – Element that brings height to structure; 

 Foundation – Element that holds the tower and others components to ground.  

 

Figure 3.2 - Main parts of a wind turbine. Adapted from [4]. 
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The principle that allows the transformation of wind energy in electric energy is described as 

a result of using the aerodynamic principles; in particular two primary aerodynamic forces: 

lift force, in the direction perpendicular to wind flow, and drag force in direction parallel to 

wind flow. The turbine blades use an airfoil design, in which one surface is nearly rounded 

and the other is relatively flat. When the wind flows into the rounded surface, the air is forced 

to rise, increasing velocity. The faster moving air tends to rise in the atmosphere due to a 

decrease in pressure just above of the curved surface. On the upwind side of the blade, the 

wind is moving slower,creating an area of higher pressure that pushes on the blade, trying to 

slow it down. This difference in pressure implies that the low-pressure area sucks the blade 

towards the wind flow, creating the lift force that is perpendicular to drag force, [5]. 

 

Figure 3.3 - Illustration of the principle of operation of wind turbines, [5]. 

The aerodynamic principles are not the only parameters on the design of wind turbines. For 

example the size of blade is quite important because the longer be the turbine blades are, 

greater is the diameter of the rotor and more energy can be produced. As a rule, doubling the 

rotor diameter produces a four times more energy. However it must to be taken into account 

that the increase of inertia on the system requires more power to spin the generator and 

therefore a trade should be obtained between these aspects.  

The tower height is also an important parameter in production capacity, heaving in mind that 

higher elevations allow higher wind speed because, at the ground friction and heights of 
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objects interrupt the wind of flow, reducing the wind speed, [5]. In this way higher turbines 

can capture more energy. 

In order to calculate the power of the wind turbine is important to know the wind velocity at 

the place of implementation and nominal capacity of wind turbine (dimensions, rotor diameter 

and other). The major part of turbines reach their maximum power at speeds of wind near 15 

(m/s), and if be considerate stable winds the rotor diameter determinates the quantity of 

energy to produce. At the time that rotor diameter increases, the height of the tower increase 

as well, which allows to access to faster winds, [5]. 

It is important to note that at 15 (m/s) the generality of turbines reach his nominal capacity 

and at 20 (m/s) the system is shut down, [5], because at that wind speeds the structure can 

collapse specially due the large vibrations. 

At a global scale, the installed capacity by the end of 2009 reached 158.505 (MW) and 38.343 

(MW) were added, [6]. The average capacity of wind turbines installed globally in 2007 was 

1492 (kW), [7] , and the largest turbines on the market have now 6 (MW) in capacity, [8]. 
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3.2.2. Mention to MARS project 

At the moment, a new dispositive called MARS (Magenn Power Air Rotor System) is being 

developed and it consists on a rotor device, lighter than air that rotates about a horizontal axis 

due the wind and his rotation is converted into electrical energy. The electrical energy is 

transported down to a transformer at a ground station; being transported to the electricity 

power grid. The air rotor is sustained by helium and the rotor lights to the more adequate 

altitudes taking in account the wind speed, which also causes the Magnus effect creating 

additional lift which keeps the device stabilized and positioned, [9]. 

 

Figure 3.4 - Illustration of the process of produce electric energy by MARS. Retrieved 

from [9]. 

 

Figure 3.5 – MARS project. Retrieved from [9]. 
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4. Structure of Boreas prototype 

The tendencies for future solutions of wind energy production, in opposition to actual wind 

systems, are constituted by aero structures, lighter than air. In this way the system, which is 

described, is an aero structure that work in cycles of high altitudes (more than 500 meters) 

being connected to a capstan on the ground. This system is coupled to an electric generator, 

producing energy during a part of cycle. The cycle consists of two phases, one productive; 

where the aero module is lifted pulling the cable that drives a mechanical system that in turn 

drives a generator. On a second phase, the module comes down by the rewinding the using 

generator that in this cycle is wired to work as an electric engine. Special clutch arrangement 

will be needed in order to change in the mechanical actions. 

 

Figure 4.1 - Illustration of Boreas prototype. 
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4.1. Specifications produced by OMNIDEA 

The initial specifications produced by OMNIDEA established the following items: 

 Length of cable: 750 (m); 

 Typical height range of operation: 150-450 (m); 

 Angle typical operation of cable (surface-winch-module air): 40 to 60 degrees; 

 Maximum power on unwinding: 120 (kW) (typical situation of speed of unwinding 4 

(m/s), tension (30000 (N)); 

 Maximum tension and speed on unwinding: 50000 (N) and 6 m/s (not simultaneous); 

 Maximum power on winding: 80 (kW) (typical situation of speed of unwinding 8 

(m/s), tension (10000 (N)); 

 Maximum tension and speed on winding: 20000 (N) and 12 (m/s), (not simultaneous); 

 Lifecycle of equipment: 20 years (more than 1000 000 cycles); 

 System must be transportable in a TIR container standard; 

 The cable section should be circular and allow the accommodation of gas tubes and 

electric cables.  
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4.2. Description of mechanical components of the ground station 

The mechanical components of the ground station contain the main items represented on 

Figure 4.2. 

flywheel
motor /

generator

clutch / 

brake system
mechanical

system inversion
capstan

 

Figure 4.2 - Schematic representation of the components of the system. 

On the unwinding cycle the system is coupled, producing energy. The winding begins with 

the uncoupling the shaft of capstan and the shaft of generator, by the clutch, and then the 

brake system is actuated to immobilize the capstan. Completed this operation, the mechanical 

system inversion reverses the rotation of capstan and during the period of time that the 

capstan needs to reach the rated speed, the flywheel will provide the needed energy. In this 

way a high pulse of electricity consumption by the system is avoided. Achieved the nominal 

speed the motor/generator switches to the motor mode (mode power consumption). 

Finishing the winding cycle, the clutch is again actuated in order to uncouple the shaft of 

capstan and shaft of motor; the brake is actuated again in order to immobilize the capstan. The 

mechanical system inversion reverses the rotation of capstan and its shaft is again coupled 

with shaft of motor and for then, the motor switches to generator mode.  

The system needs also a winding drum to store the cable. All these components must be 

anchored to the ground and must have the capability of rotation to orient adequately the cable 

as the wind direction varies.  
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5. Dimensioning the main mechanical components of 

ground station of Boreas prototype 

On this chapter is proposed the methodology of dimensioning the equipment of system that 

the development of system should have. Some assumptions are done because is difficult to 

know exactly some project parameters due to impossibility of test the system. The following 

considerations are related to the main mechanical components of ground station of prototype.  

 

 

5.1. Energy considerations 

The energy generated during unwinding can be written by (5.1). 

  (5.1) 

 

Assuming constant speed, the time is given by (5.2). 

  (5.2) 

 

Take into account the specifications of the device for a typical situation, the specifications of 

energy are presented on Table 5.1. 

Table 5.1 – Energy specifications for a typical situation. 

Cycle  (kW)  (m)  (m/s)  (s)  (kJ) 

Winding 80 500 8 62.5 5000 

Unwinding 120 500 4 125 15000 
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5.2. Energy behaviour of system  

For both cycles, the energy has two regimes: transient and stationary taking into account 

parameters as the lift force or the inertia of system. 

In the end of winding cycle, the system already rewound the totality of the cable in operation, 

so the system will reverse the movement and the nominal force on capstan to unwind should 

be 30 000 (N), in order to produce 15000 (kJ) of useful energy. The transition between 

coupling shaft capstan to the motor will produce an overshoot of force, beyond the required 

one as shown on the Figure 5.1. The maximum value depends on the characteristics of the 

mechanical system. 

30 000

50000

0

Fcapstan (N)

Δl (m)

Stationary regimeTransient regime

 

Figure 5.1 - Possible behaviour between the force on capstan and the cable length 

increment on the unwinding cycle. 

At the end of unwinding cycle ends, the motor will be uncoupled from capstan, which is 

locked and rotation of capstan is reversed. The flywheel will provide power to the motor 

during a certain period of time, so that it reaches the nominal winding speed (until the 

nominal force of rewinding reaches nearly 10 000 (N)). Again a transient regime will occur as 

shown on Figure 5.2. In the same manner, the overshoot will depend from the characteristics 

of system. 
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10 000

20000

0

Fcapstan (N)

Δl (m)

Stationary regimeTransient regime

 

Figure 5.2 - Possible behaviour between the force on capstan and the cable length 

increment on the winding cycle. 

The stored energy, it should be added the resultant energy of losing rotation speed of flywheel 

after the stabilization of system due the loose by friction, among other factors. For the 

purposes of this preliminary study it is assumed that about 10% of the total energy to 

accumulate. It is also assumed that efficiency of electric generator to convert kinematic 

energy into electric energy is about 95% and therefore an increase of 5%  to nominal value. 

Table 5.2 - Value of energy to be stored. 

  

(kJ) 

  

(kJ) 
η 

  

(kJ) 

 75 0.95 862.5 

 

The value of energy is stored on unwinding cycle is 862.5 (kJ). To ensure this value should be 

taken into account that the nominal speed of unwinding is 4 (m/s). It is assumed that the 

radius of shaft transmitter power is 150 (mm). 
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5.3. Dimensioning the flywheel 

The value of kinetic energy of flywheel that should be accumulated is given by (5.3): 

  (5.3) 

 

So the inertia moment of flywheel is obtained by (5.4). 

  (5.4) 

 

The angular speed  is related to the angular speed of engine which is assumed 1500 

(rpm). 

Table 5.3 - Considerations to the calculus of inertia moment. 

 

(m) 

 

(rad/s) 

 

(kJ) 

 

(kg m
2
) 

0.325 (*) 157.080 862.5 69.911 

 

The inertia moment for hollow cylinder is described by (5.5). 

  (5.5) 

 

In order to achieve the value of inertia moment, geometry of flywheel is proposed of Figure 

5.3. 
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Figure 5.3 – Flywheel approximate dimensions. 
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5.4. Dimensioning the cable  

This topic is related to specification the section of cable take into account that the cross 

section is not available. 

 

5.4.1. Initial considerations 

The determination of the normal stress that the cable can have during the cycles of operation 

is brought by (5.6). 

  (5.6) 

 

The determination of ultimate stress is given by (5.7). 

  (5.7) 

 

The maximum allowable stress is obtained by (5.8). 

  (5.8) 

According to the specifications, the maximum tension of service on cable is 50000 (N). The 

manufacturer of cable, EURONEEMA, specifies the MBF for a certain value of external 

surrounding diameter. The chosen value for  is 3. The characteristics of cable and the 

variables to the determine the maximum allowable stress are presented on Table 5.4. 

Table 5.4 - Value of maximum allowed stress on the cable. Adapted from [10]. 

 (m) 

[10
-3

] 

 (m
2
) 

[10
-4

] 

Weight 

(kg/100 m) 

 

(kN) 

 

(kN) 

 

(MPa) 

 

(MPa) 

6 0.283 2.2 35 50 1768.659 412.687 

8 0.503 4 62 50 994.629 411.113 

10 0.785 6 97 50 636.618 411.680 

12 1.131 9.3 137 50 442.087 403.772 

14 1.539 10.7 184 50 324.886 398.527 

16 2.011 15 244 50 248.633 404.442 

18 2.545 19.6 303 50 196.464 396.857 

20 3.142 23.1 374 50 159.134 396.775 
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The areas expressed in Table 5.4 refer to filled sections, although the section of cable 

expected to be implemented, is a combination of elliptical coils that have voids between them. 

It would be necessary to analyse several samples from different sections of cable in order to 

determinate a medium value of area. The material of the cable is UHMPE with commercial 

name of EURONEEMA. 

 

Figure 5.4 - Sample of cable expected to be use. Retrieved from [10]. 

The value of area is related to a diameter of 14 (mm) because in this section the service stress 

is the nearest of the respective maximum allowable stress. 

The project requires that the cable has a structural hollows section to allow the passage of 

electric cable and gas tubes. The section houses an electrical cable with 8 (mm) of diameter, 

housed in the inner section and two gas pipes with a thickness of 4 (mm) being the inner 

diameter, , of 12.2 (mm). Considering the structural cable, the section of cable has 

geometry of a ring represented on Figure 5.5.  

 

Figure 5.5 - Section of a structural cable with an electric cable and two tubes of gas. 

The external diameter of the ring, ,, takes into account   and the diameter of structural 

cable , being expressed by (5.9). 

  (5.9) 
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In this way the area is obtained by (5.10). 

  (5.10) 

 

5.4.2. Determination of structural cable diameter 

In order to determinate , a 3 (mm) structural cable is tested, being the results on Table 5.5. 

Table 5.5 – Variables to determinate  for a  value of 3 (mm). 

 (m)  

[10
-3

] 

 (m)  

[10
-3

] 

 (m)  

[10
-3

] 

 (m
2
)  

[10
-4

] 

12.2 3 18.2  1.433 

 

For inner diameter, with 12.2 (mm), and a structural cable with 3 (mm) of diameter displayed 

on a ring, the area is less than the reference area value, 1.539x10
-4

(m
2
). In this way a ring with 

the referred inner diameter, with a structural cable of 4 (mm), will be evaluated, being the 

results on Table 5.6  

Table 5.6 - Variables to determinate  for value of 4 (mm). 

 (m)  

[10
-3

] 

 (m)  

[10
-3

] 

 (m)  

[10
-3

] 

 (m
2
)  

[10
-4

] 

12.2  4  20.2 2.036  

 

For a ring with 4 (mm) of thickness, and an inner diameter of 20.2 (mm) the value of area is 

higher than the reference value, so the condition is validated.  

 

5.4.2.1. Determination of the weight of the different cables 

In this topic the weight of structural cable, electrical cable and gas tubes are proposed. 

 

5.4.2.1.1. Weight of structural cable unit of length 

From the Table 5.4, the weight of structural cable can be estimated by the following relation: 
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  (kg/m)  

  (kg/m)  

 

So the value of  is: 

  (kg/m)  

 

The transformation of weight of structural cable in kg/m to N/m is given by (5.11). 

   

 

  (N/m) (5.11) 

 

5.4.2.1.2. Weight of electric cable for unit of length 

The weight of the electric cable for unit of length is given by (5.12). 

  (5.12) 

 

The value of  is given by (5.13). 

  (5.13) 

 

Take into account the considerations; it obtains a value of  shown on Table 5.7. 

Table 5.7 - Variables to determinate . 

 (m)  

[10
-3

] 
 (kg /m

3
)  (m s

-2
) 

 (m
2
)  

[10
-5

] 
 (kg /m)  (N/m) 

8 8910, [11] 9.807 5.027 0.448 4.393 

 

5.4.2.1.3. Weight of gas tube for unit of length  

The weight of gas tube for unit of length is obtained by (5.14). 
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  (5.14) 

The value of  is given by (5.15). 

  (5.15) 

 

Take into account the considerations; it obtains a value of  shown on Table 5.8. 

Table 5.8 - Variables to determinate . 

 (m) 

[10
-3

] 

 (m) 

[10
-3

] 
 (kg /m

3
) 

 (m
2
) 

[10
-6

] 

 (kg/m) 

[10
-3

] 

 (N/m) 

[10
-2

] 

4 2.7 1400, [12] 6.841 9.577 9.393 

 

This weight must be multiply by 2, because there are two tubes. So: 

Table 5.9 - Total value of weight of gas tubes. 

 (kg/m) [10
-2

]  (N/m) 

1.915 0.188 

 

5.4.2.1.4. Total weight of cable 

The total weight of cable is given by (5.16) being the results on Table 5.10. 

  (5.16) 

 

Table 5.10 - Weight of cable and of the different components. 

 (kg /m)  (kg /m) [10
-2

]  (kg/m)  (kg /m)  (N/m) 

0.141 1.915 0.448 0.608 5.963 

 

5.4.3. Real cross section of cable 

The cable is a combination of sections that on a first assumption are considered as circulars, 

existing interstices (voids) between them so it is necessary verify which is the effective area, 

considering an outer diameter of 20.2 (mm). 
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Figure 5.6 – Illustration of the area for a structural cable of 4mm diameter.  

A structural cable with circumferences of 4 (mm), has a value of area, , of 1.557x10
-4

 (m
2
), 

which is bigger than the reference value , 1.539x10
-4

 (m
2
). So the area of reference is checked.  

Considering that the space occupied by ellipses in the ring is greater than circumferences, it is 

estimated that the area is higher than the actual resistance value of a structural cable with 

circumferences of 4 (mm). So it will be used the value of area of 1.539x10
-4

 (m
2
), with the 

weight of cable of 5.963 (N/m), knowing that these values are not overestimated on a large 

scale. 
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5.5. Dimensioning the capstan drum 

On this topic the dimensions of capstan drum is proposed and verified to the loads.  

 

5.5.1. Non-rotating thick cylinder 

Assuming the model of thick cylinder submitted to pressure, the study is based on a static 

approach. The procedure developed elsewhere [13] is used. Further details can be obtained 

there. 

dθ

a1

a
b

b1

dr
dr

σd
σ

r
r

σ

σ r

σ

r

dr

a

a1

b

b1

ri

r0

 

Figure 5.7 –Forces acting on a general element in a rotating disc. Adapted from [13]. 

A constant thick cylinder thickness, where acting internal and external pressures distributed 

on a uniform way. The deformation is symmetric relatively to the cylinder axis and his value 

don´t vary at the length of cylinder. 

An element of the cylinder ab-a1b1, Figure 5.7, with unitary thickness that for symmetric 

reason will not occur shear stress on the focus of the selected element. The  is the tangential 

stress normal to faces aa1 e bb1 and  be the radial stress normal to ab face. This stress is 

function of r and vary . 

The sum of the projections of forces based on the bisector of angle , not considering the 

self weight, gives the equilibrium equation (5.17). 
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  (5.17) 

 

If the higher order infinitesimals were neglected, obtains the equation (5.18). 

  (5.18) 

 

The deformation on the cylinder is symmetric and a radial displacement of all points of the 

wall is the same. The deformation is constant on the circumferential direction, but varies 

radially. If  is the displacement of the cylindrical surface of radius r, for the surface of radius 

, the displacement is given by (5.19) 

  (5.19) 

 

The unit radial strain is brought by (5.20). 

  (5.20) 

 

The unit tangential strain is given by (5.21). 

  (5.21) 

 

In this way the stress equations can be written by the equation (5.22). 

  (5.22) 

 

If these values be substituted on the equilibrium equation, the result is the following 

differential equation (5.23). 

  (5.23) 
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The general solution is given by (5.24). 

  (5.24) 

 

So it obtains the equations (5.25) and (5.26). 

  (5.25) 

 

  (5.26) 

 

The constants  and  are determinate by boundary conditions, which refer to the value of 

external pressure and internal pressure. The value of constants can be written by (5.27) and 

(5.28). 

  (5.27) 

  (5.28) 

 

These expressions when inserted on (5.25) (5.26), allows the achievement of (5.29) and 

(5.30). 

  (5.29) 

 

  (5.30) 

 

The value of +  is constant and the deformation is the same for all the elements, so planar 

sections remains planar after the deformation. For the particular case,  is 0 which means that 

the internal pressure is 0, so it finally obtains the equations (5.31) and (5.32). 

  (5.31) 
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  (5.32) 

 

The value of  is maximum for ,  is maximum for  ,  and these 

stresses are always compressive stresses. 

 

5.5.2. Rotating thick cylinder 

A thin thick-walled cylinder with constant thickness, with an outer radius , an inner radius 

 in rotation with a constant angular speed ω, with a density ρ and a Possion´s ratio µ, has a 

tangential stress, [14]: 

  (5.33) 

 

5.5.3. Pressure on the capstan drum 

The pressure applied by the cable into the drum of capstan can be determinate if we consider 

one half of drum, being the equilibrium given by (5.34). 

Fcapstan

pcapstan

Fcapstan

 

Figure 5.8 - Pressure diagram on capstan. Adapted from [13].  

  (5.34) 

 

Solving equation (5.34),  it is obtained the expression (5.35). 

  (5.35) 
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The length of capstan depends from number of turns that the capstan drum can have. So the 

number of turns take into account the relation of , the load side, and tension that goes 

to winder drum, , hold side, being brought it by (5.36). 

  (5.36) 

 

Establishing a relation , between  and  the value of  is given by (5.37) 

  (5.37) 

 

The length of capstan drum depends from number of turns that the capstan drum can have, 

and the external diameter of cable, being given by (5.38). 

  (5.38) 

 

Bearing in mind that the quotient between the diameter of capstan and diameter of cable 

should, at least, be equal or greater than 30, according to manufacturer of cable 

(LANKHORST EURONETE ROPES, S.A.), so a diameter of capstan of 650 (mm) is chosen.  

Table 5.11 - Variables to determine the external pressure and length of capstan. 

 

(N) 
 

 

(m) 

 

(rad) 

Nº of 

spires 

 

(m) 

 

(m) 

 

(m) 

 

(m) 

50000 0.1 10 69.078 11 0.0041 0.0202 0.65 0.222 

 

Sizing the capstan with one more spire, with 4 (mm) of spacing between the spires and a 

margin of 20 (mm) flanges on each side until the flanges result on a length of capstan of 331.7 

(mm). 
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5.5.4. Results  

Considering a non-rotating cylinder the results are expressed on Table 5.12. 

Table 5.12 - Maximum and minimum values of the radial and tangential stress on the 

drum of capstan considering a non-rotating cylinder. 

   (MPa) 

 0 -172.415 

 -24.485 -147.930 

 

Considering rotation on the cylinder the tangential stress is expressed on Table 5.13. 

Table 5.13 - Maximum and minimum values of the tangential stress on the drum of 

capstan considering a rotating cylinder. 

  (Mpa) 

 -172.296 

 -172.319 

 

So the maximum value of tangential stress of compression of 172.415 (MPa). The maximum 

allowable stress of capstan is obtained by (5.39). 

  (5.39) 

 

The material, ultimate stress the safety of factor chosen, admit the maximum allowable stress 

on capstan, expressed on Table 5.14. 

Table 5.14 - Variables to determine the maximum allowable stress on capstan. 

Designation  (MPa)   (MPa) 

Steel (S355), [11] 355, [11] 2 177.5 

 

The values of  and , allow a thickness on capstan drum presented on Table 5.15. 
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Table 5.15 - Maximum allowable stress, tangential stress and thickness of capstan. 

 (MPa)  (Mpa)  (mm) 

177.5 -172.415 50 

 

The dimensions of capstan are illustrated on Figure 5.9. 

 

Figure 5.9 - Dimensions of drum of capstan. 
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5.6. Dimensioning the winder drum  

In order to determinate the radius of drum, the total length of cable is an important parameter, 

shown on obtained by (5.40), and shown on Figure 5.10. 

 

Figure 5.10 - Illustration of cable length for a certain loop. 

  (5.40) 

 

The length of cable for a certain loop is given by (5.41). 

  (5.41) 

 

The value of  is given by (5.42). 

  (5.42) 

 

The total length of cable is given take into account the length of cable on a certain loop and is given by 

(5.43): 

  (5.43) 

 

The diameter of flanges is given by (5.44). 

   (5.44) 
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Taking into account that the total of length of cable is 750 m, the parameters where adjusted 

in order to reach a value of length of cable near the reference value. 

Table 5.16 - Geometric characteristics of winder. 

 

(m) 
 (m) [10

-3
]  (m) N   (m) 

0.4 20.2 0.75 7 38 1.083 

 

 

The model of shell (curve plate of thin wall), by membrane theory, can be used. It is assumed: 

 Stresses are constant on the thickness of shell; 

 The quotient between the thickness/radius of curvature is less than 1/20; 

 There is a stress plain ( two principal stress); 

 Low deformations, the bigger deformation is less than half of the thickness of shape; 

 Secondary stresses are not evaluated. 

For a cylindrical shell, the tangential stress, also called hoop stress, is given by (5.45), [11]. 

  (5.45) 

 

Due the rotation of the winder, another tangential stress is given by (5.46), [15]. 

  (5.46) 

 

The total tangential stress is given by (5.47). 

  (5.47) 

 

Using the Tresca criterion, this leads to (5.48). 

  (5.48) 

 

Considering plane stress, =0, therefore (5.49). 
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  (5.49) 

 

The value of  for different spires of winding can be approximate to (5.50) , [16]. 

 (5.50) 

 

The value of , is given by (5.51). 

  (5.51) 

 

The tension to apply to cable on the winder should be the minimum possible, ideally null, in 

order to reduce the friction. So the expressions presented represent a methodology for the 

determination of thickness of winder but have in mind that the tension on cable when goes to 

winder is low, the thickness of winder is determinate by the manufacturing process. Knowing 

the lathe process will be used is proposed a value of 30 (mm) to the sheet, that will be curved 

and then welded. 

 

Figure 5.11 - Dimensions of winder drum. 
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6. Modelling the cable structure 

As referred earlier, one of the main objectives of this thesis is the cable modelling, in order to 

determine the stresses involved and the estimation of trajectory of the cable. In this way, two 

approaches are exposed in order to give answers to the control of device. 

 

 

6.1. Analytical equations to study cable structures 

Usually the cable structures are analyzed with simplified analytical equations, such as the 

catenary equation, in which the cable supported on two rigid ends requested by a load 

uniformly distributed along its axis, such as the self-weight of the cable, [17]. 

 

Figure 6.1 - Configuration of equilibrium of catenary. Retrieved from [17]. 

The equations that described the behaviour of catenary are, [17]: 

  (6.1) 

 

  (6.2) 

 

  (6.3) 

 

  (6.4) 
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6.2. FEM  

The finite element method is a numerical method (approximate method), where the domain of 

problem is decomposed into several sub domains. In each of these sub domains, the equations 

that regulate the phenomenon are approximated by a variational method. The approximation 

of a solution into several sub domains allows an easier representation of a complicated 

function by a composition of simple polynomials functions where the error can be as small as 

desired, simply increasing the number of sub domains, [18]. 

 

Figure 6.2 - Example of a function f(x) approximated by a conjunct of functions p
i
(x). 

Retrieved from [18]. 

In Figure 6.2 the function, f(x) depicted as solid line, is approximated by the polynomials 

p
i
(x), represented at red, (p

1
(x), p

2
(x)… p

8
(x)). The polynomials are defined on sub domains, 

d
i
, and at the time that the number of sub domains increase, lesser is the error on the 

approximation. 

The FEM requires the utilization of the variational principles (principle of virtual work, the 

principle of stationary potential energy or the principle of Hamilton, etc) because the problem 

must be formulated as a defined integral in the whole domain, in other words, the sets of 

equations that describe the physical phenomena establish relationships between the variables 

and the parameters of the problem on the neighbourhood of each point, so in order to pass this 

description of the physical phenomenon to the integral description, it is necessary to use the 

variational principles, [18]. 
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The FEM is a stratified methodology: it can be used to solve one-dimensional problems, but 

generally is applied to problems where the solution is an area or a generic tri-dimensional 

volume. In any of these cases the first step is divide on finite number of segments, areas or 

volumes smaller, called finite elements. This process is the discretization, [19]. On the Figure 

6.3 is shown the schematic representation of the process of discretization of the domain by 

finite elements. 

y

xO

Boundary

O

y

x

Domain

Element

Node

 

Figure 6.3 - Schematic representation of the process of discretization of the domain by 

finite elements. Adpated from [19]. 

The finite elements can have different geometric shapes, being one-dimensional, bi-

dimensional or tri-dimensional. 

To solve one-dimensional problems (or consisting of one-dimensional elements) the finite 

elements have the shape of segments. On bi-dimensional problems the elements are frequently 

quadrilaterals or triangles and for tri-dimensional problems the elements can be hexahedral, 

tetrahedral, pentahedral, etc. 
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(a) (b) (c)  

Figure 6.4 - Examples of geometric configurations of finite element. Finite element: a) 

one-dimensional, (b) bi-dimensional and (c) tri-dimensional. Adapted from [19]. 

Considering a linear elastic analysis of general problems in engineering, usually in FEM the 

first step is to determine the field of displacements of a finite number of points in system. 

These points are the nodes of the mesh of finite element, which are on vertex of elements, as 

it shown on and Figure 6.5. Is important note that depending of the type of formulation in 

finite element analysis, the nodes can be on the edges, on their faces or inside them. The 

nodes that belong to the boundary of adjacent elements must be common to all elements that 

exist there. For this reason is not possible the discretization of a solid medium in elements that 

do not coincide on their own nodes. 

(a) (b)
 

Figure 6.5 - Example of a bi-dimensional mesh of finite elements (a) allowed and (b) not 

allowed. Adpated from [19]. 

In this way the numerical analysis done with the finite element method, on a first step, 

calculates the node displacements for a certain load on the domain under analysis. So the 

displacement of each point of the finite element can be determined by the displacements of 
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the nodes on that element, which is, according to the nodal displacements. In this way the 

calculation of the displacements of a finite number of elements (the nodes of the mesh) allows 

the determination of an infinite number of points of a continuous domain. In other words, the 

displacement of any point can be defined according the displacements of the nodes of the 

element that the point belong, [19]. 

For example on a bi-dimensional, the displacement of each node can be decomposed in two 

perpendicular components, one parallel to a reference axis Ox and other parallel to a reference 

axis Oy. These components of displacement are called degrees of freedom. On a bi-

dimensional case each node has two degrees of freedom, concerning the axis Ox and Oy. 

Analogously for a tri-dimensional finite element each node has three degrees freedom, have in 

mind the relationship between that point with the three orthogonal spatial directions. 

x2

x1

x3

uIIuI

vIIvI

wIIwI

 

Figure 6.6 - Tri-dimensional finite element with three degrees freedom. Adpated from 

[18]. 

If a problem is discretized with n of nodes, so the total number of degrees of freedom is the 

product of n by the number of degrees of freedom for node. With the increasing of the total 

number of degrees of freedom of the system, more time is required for the calculus. Besides 

the displacement, the variables can be also nodal degrees of freedom of rotation. 

x2

x1

x3

vIIvI

θIIθI

 

Figure 6.7 - Example of a beam element with a rotation degree of freedom. Adapted 

from [18]. 
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When the displacements are calculated, the numeric simulation software calculates the 

respective deformation and its stresses. Then the information is shown to the programmer in 

order to be analysed. 

 

6.2.1. Methodology of resolution using the FEM 

On a generally approach the tasks that a programmer do when is doing a simulation 

programme by the FEM are insert in three different stages: 

 Pre-processing (i); 

 Analysis (ii); 

 Post-processing (iii). 

 

6.2.1.1. Pre-processing 

The pre-processing phase represents the construction of a geometric model of a system, 

including the loads and conditions of the problem. In commercial software this phase includes 

graphic tools that allow the user, to build easily the model of system to analyze. On this phase 

the user defines the parameters, namely the type of finite element, the mesh, mechanical 

properties, loads (forces, moments, pressure, etc), boundary conditions (constraints), so the 

global quality of the analysis is directly affected by the accuracy of the inputs.  

This information is the input data to the system. In order to reduce the calculation time and 

the information generated, the user defines the set of results needed. When completed, the 

files of input data are submitted to the analysis phase.  

 

6.2.1.2.  Analysis 

The analysis is the phase of process of numeric simulation by the FEM that the calculus is 

done. The phase begins with the verification of the information input on the file data, created 

by the user, and if no errors be detected the numeric simulation is done, being created output 

files with all information that user required.  

6.2.1.3. Post-processing 

The post-processor is the module that outputs the information of the result output files, 

through graphic tools or schedules, and the information displayed should be user-friendly. For 
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example the graphic tools can be coloured distributions of isovalues or isocolours. The post-

processor can be included with the others items of the programme, in order to do the use of 

the programme easily and uniform. The different phases of a typical analysis of finite 

elements, on the point of view of user, can be summarized and systemized on Figure 6.8. 

Definition of concept 

Analysis

Model

Geometry definition, nodes, elements, 

boundary layers, materials, loads.

Definition of parameters and analysis 

control.

Interpretation

Representaion of results

Results evaluation:

Displacements, forces, stresses, 

deformations, etc.

Results representation:

Isovalues, contours, history of 

variables in time, animations, etc.

Pre-processing

End
Post-processing  

Figure 6.8 – Schematic representation of methodology of finite element analysis. 

Adapted from [19].  

 

6.2.2. FEM on cable structures 

In order to study the cable, a finite element the procedure developed elsewhere [17] is used. 

Further details can be obtained there. 
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6.2.2.1. Discretization of the finite element mesh 

The element to use in this study is of cable type. It has two nodes on ends and three 

orthogonal independent displacements, where are a continuous series of elements connected 

by labelled link, submitted to nodal forces and large displacements. 

 

Figure 6.9 - Finite basic element. Adapted from [17]. 

 

Figure 6.10 - Discretization of cable (n+1 nodes and n elements). Retrieved from [17]. 

The initial length, before the deformation, defines the initial configuration, which is calculated 

with the nodal coordinates. The initial length is given by (6.5). 

  (6.5) 

 

The vector of nodal displacements associated to the element, is defined 

by the three independent displacements of the two end nodes defining the element. This 

vector and the initial configuration will define the deformed configuration and the deformed 

length (6.6). 

  (6.6) 
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The direction of the displacement of each element is calculated by (6.7), (6.8) and (6.9). 

  (6.7) 

 

  (6.8) 

 

  (6.9) 

 

6.2.2.2. Equilibrium conditions 

The equilibrium on the three orthogonal directions, in which node of structure, is defined by 

equation (6.10).  

  (6.10) 

 

The incremental vector is the unknown variable to be determinate. Due to the large 

displacements, the geometry is not constant, the stiffness coefficients and the internal forces 

depend on the geometry and therefore on the deformed configuration, [17]. 

The methodology of resolution of problem consists on an iterative strategy, and when the 

convergence is achieved, the deformed configuration and internal forces can be calculated. 

 

6.2.2.2.1. Internal and external forces 

Due to equilibrium the resultants of external forces and internal forces must be equal. The 

components of internal forces on a node are a function of the axial load acting on element, 

which depends from the deformed configuration (Figure 6.11), so the initial configuration and 

a vector of displacements are needed to obtain the internal forces. The six components of 

internal forces in the element are: , where, (6.11) : 

  (6.11)  
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Figure 6.11 - Cartesian coordinates of internal forces. Retrieved from [17]. 

The global axial force F on the element is obtained by (6.12): 

  (6.12) 

 

The stress is a function of the field of displacements and is calculated by the constitutive law 

of material. The elastic linear (Hook’s) law is given by (6.13). 

  (6.13) 

 

Taking into consideration that large displacements are considered, the Lagrangian formulation 

was used. The stiffness coefficients and internal forces where calculated with the definition of 

Lagrange-Green strain, (6.14). 

  (6.14) 

 

The external forces allocated on the nodes of extremity are defined by the vector: 

. 

 

Figure 6.12 - Equilibrium of forces on node i. Adapted from [17]. 
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The equilibrium conditions should be satisfied in each direction and for all nodes. The 

conditions of equilibrium for the three directions are given by (6.15), (6.16) and (6.17). 

  (6.15) 

 

  (6.16) 

 

  (6.17) 

 

6.2.2.2.2. Stiffness matrix 

The stiffness matrix coefficients of the cable element are not linear because the geometry is 

not constant; so the tangent matrix stiffness  characterizes 

the stiffness. The global tangent stiffness at cable, , has a dimension  

and is obtained by the assembly of the tangent stiffness of each element, , (a matrix with 

dimension ), obtained by (6.18). 

  (6.18) 

 

 - Sub-matrix  is given by  

  (6.19) 

Knowing that: 

  (6.20) 

 

The matrix elements can be obtained by (6.21) and (6.22). 

  (6.21)  
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  (6.22) 

where  

Therefore the six coefficients of tangent stiffness matrix are obtained by equation (6.23) to 

(6.28): 

  (6.23) 

 

  (6.24) 

 

  (6.25) 

 

  (6.26) 

 

  (6.27) 

 

  (6.28) 

where: 

  (6.29) 

 

  (6.30) 

 

  (6.31) 
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  (6.32) 

 

  (6.33) 
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6.2.3. Newton-Raphson method 

In order to resolve (6.10), an iterative process based on the Newton-Raphson method is 

implemented. The calculation begins with the input the initial values of stiffness and internal 

forces; so initial values of the vector of displacements must be given; in this way an initial 

geometry and deformed geometry must be defined. 

Assuming the equilibrium and linear behaviour, the equation (6.34) is valid in all nodes. 

  (6.34) 

 

This equation is resolved and the vector increment of displacement  is calculated and a new 

vector of total displacements is obtained by: (6.35). 

  (6.35) 

di di+1 di+2

fi

fi+1

fi+2

d

f

Δi Δi+1

Δ
f i

Δ
f i

+
1

Δ
f i

+
2

 

Figure 6.13 - Newton-Raphson method Adapted from [17]. 

This new vector of displacements and the constant vector of initial geometry together define 

the deformed configuration on the next step. 

For an iterative process, in particular to the Newton-Raphson, the better the initial estimation 

of the vector of displacements, more quickly will converge to final solution.  The incremental 
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process ends when the vector of internal forces is close enough of the vector of external 

forces, (6.36). 

  (6.36) 

 

Or when the increment vector of displacement of iteration  +1 is sufficiently close to the 

vector obtained in iteration , (6.37). 

  (6.37) 

 

6.2.3.1. Computational implementation 

The computational implementation is based on the numeric description, based on the finite 

element analysis. The calculus begins with an initial configuration, a vector of initial node 

displacements and parameters in order to calculate an increment vector of displacements. The 

initial deformation and a new vector of displacements define the deformed configuration in 

the next iteration. The process can be described as follows: 

 The initial configuration for the cable, allows the determination of the initial position 

of nodes; 

 A vector of initial deformations is defined, considering a geometry slightly different;  

 The initial tangent stiffness and initial internal forces are calculated by (6.11) (6.21) 

and (6.22);  

 The total equilibrium conditions (6.10) are imposed and  is calculate; 

 A new vector of displacements is calculated using (6.35); 

 The step 2 is repeated until the convergence is achieved. 
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6.3. Programme evaluation 

To use the FEM applications on cable, a programme based on the Lagrangean formulation 

and Newton-Raphson method are developed, in order to obtain a solution by finite element on 

a two-dimensional cable (the programme also allows the study of a three-dimensional cable). 

On Annex 1 is presented the list of programme developed. 

To evaluate the performance of the programme, two solutions were compared. One using a 

standard example calculated with catenary equation and the other one using the “ANSYS R11 

Academic Edition” software. 

100 (m)

2
0

 (
m

)V T

U

 

Figure 6.14 – Illustration of a cable with two fixed ends. 

Without deformation the cable has the characteristics exposed on Table 6.1. 

Table 6.1 - Characteristics of cable. 

Material 
  

(kg/m
3
) 

 

(GPa) 
 

 

(m)  

[10
-3

] 

 (m
2
)  

[10
-4

] 

  

(m) 

 

(m/s
2
) 

 

(N/m) 

Steel 

(S235) 

7850, 

[11] 

210, 

[11] 
0.3 15  7.069  109.975 9.810 54.437 

 

The analysis took into account: 

 Analytical solution; 

 Bi fixed system; 

 One extremity fixed and other cantilever with the correspondent reaction. 
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6.3.1. Analytical solution 

The analytical equation of catenary follows the procedure presented on [20]. The origin of 

coordinate system, 0, is allocated below the lowest point of the catenary, U, to a distance c. 

y
T

V T

U xT

c

0 x

y

 

Figure 6.15 - Illustration of the coordinates of point T. 

The coordinates of the point T are: 

   

 

   

 

If these values were substituted on the equation (6.1), it is obtained: 

   

 

The value of c is determined by iteration and its value is, c= 65.590, with an approximation 

error of 0.1 % which is acceptable. The coordinates of deformed geometry are: 
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Table 6.2 - Coordinates of deformed geometry. 

 (m)  (m)  (N) 

-50 85.590 4659.289 

-40 78.170 4255.349 

-30 72.571 3950.583 

-20 68.663 3737.826 

-10 66.354 3612.122 

0 65.590 3570.543 

10 66.354 3612.122 

20 68.663 3737.826 

30 72.571 3950.583 

40 78.170 4255.349 

50 85.590 4659.289 

 

The maximum stress on cable is obtained by (6.38). 

  (6.38) 

 

For this particular case the length of cable, ,  is determinate by (6.39). 

  (6.39) 

 

The values of minimum and maximum tension on cable (obtained by (6.3) and (6.4)), 

maximum stress and cable length are presented on Table 6.3. 

Table 6.3 - Values of tension, stress and length obtained by the model of catenary. 

(N) (N) (MPa) (m) 

3570.543 4659.289 6.059  
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6.3.2. Programme’s solution 

The programme has two versions, one refers to a cable with two fixed ends supporting its self 

weight (A version) and in the other one, an end was released and the respective reaction was 

allocated on referent node (B version). On Annex 2 and Annex 3 are presented the list of 

input files of programme’s A and B version respectively.  

 

6.3.2.1. Programme’s A version  

The initial geometry proposed is based on the catenary solution. A difference is the position 

of the reference, comparably to analytical solution, which is allocated on the left end. 

0 x

y

 

Figure 6.16 - Illustration of the initial configuration proposed and position of the 

reference of coordinates of cable on programme. 

The coordinates of points for the programme are given by (6.40) and (6.41). 

  (6.40) 

 

  (6.41) 

 

The coordinates of nodes of the initial geometry are presented on Table 6.4. 
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Table 6.4 - Coordinates of nodes of the initial geometry. 

 (m)  (m)  (m)  (m) 

-50 85.590 0 0.000 

-40 78.170 10 -7.419 

-30 72.571 20 -13.018 

-20 68.663 30 -16.926 

-10 66.354 40 -19.235 

0 65.590 50 -19.999 

10 66.354 60 -19.235 

20 68.663 70 -16.926 

30 72.571 80 -13.018 

40 78.170 90 -7.419 

50 85.590 100 0.000 

 

The incremental weight of elements is obtained by (6.42): 

  (6.42) 

 

The number of elements chosen was 10, and takes in account the values of  and , 

the weight of elements is: 

   

 

At the end of 38 iterations, with an error of 2.252 x 10
-16

, the deformed geometry is presented 

on Figure 6.17. 
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Figure 6.17 - Illustration of the deformed geometry for programme’s A version. 

The displacements on nodes and the global coordinates of deformed nodes for programme’s A 

version, are presented on Table 6.5. 

Table 6.5 - Displacements on nodes and global coordinates of deformed nodes for 

programme’s A version. 

Node Δx (m) Δy (m)  (m)  (m) 

1 3.670E-10 -2.365E-11 -50 85.590 

2 8.256E-02 1.119E-01 -39.917 78.282 

3 6.674E-02 8.311E-02 -29.933 72.654 

4 2.656E-02 -1.896E-02 -19.973 68.644 

5 2.965E-03 -1.200E-01 -9.997 66.234 

6 -2.700E-15 -1.610E-01 0 65.429 

7 -2.965E-03 -1.200E-01 9.997 66.234 

8 -2.656E-02 -1.896E-02 19.973 68.644 

9 -6.674E-02 8.311E-02 29.933 72.654 

10 -8.256E-02 1.119E-01 39.917 78.282 

11 -3.670E-10 -2.365E-11 50 85.590 
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The internal forces on the elements for programme’s A version are presented on Table 6.6.  

Table 6.6 -Internal forces on the elements for programme’s A version. 

Element  (N)   (N)   (N)  

1 3717.300 -2694.000 4590.900 

2 3717.300 -2095.300 4267.200 

3 3717.300 -1496.700 4007.300 

4 3717.300 -898.010 3824.200 

5 3717.300 -299.340 3729.300 

6 3717.300 299.340 3729.300 

7 3717.300 898.010 3824.200 

8 3717.300 1496.700 4007.300 

9 3717.300 2095.300 4267.200 

10 3717.300 2694.000 4590.900 

 

6.3.2.2. Programme’s B version  

On programme’s B version takes the same features of programme’s A version, but the right 

end is released and the reaction on element 10 (from programme’s A version) is inputted on 

the node 11. So a value of  3717.3 (N),  2694 (N) are inputted. At the end of 35 iterations, 

with an error of 1.233x10
-13

, the deformed geometry is presented on Figure 6.18. 

 

Figure 6.18 - Illustration of the deformed geometry for programme’s B version. 
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The displacements on nodes and the global coordinates of deformed nodes for programme’s B 

version, are presented on Table 6.7  

Table 6.7 - Displacements on nodes for programme’s B version. 

Node  (m)  (m)  (m)  (m) 

1 1.203E-12 -1.109E-11 -50.000 85.590 

2 8.225E-02 1.115E-01 -39.918 78.282 

3 6.621E-02 8.229E-02 -29.934 72.653 

4 2.590E-02 -2.011E-02 -19.974 68.643 

5 2.243E-03 -1.214E-01 -9.998 66.233 

6 -7.314E-04 -1.625E-01 -0.001 65.428 

7 -3.698E-03 -1.215E-01 9.996 66.233 

8 -2.733E-02 -2.031E-02 19.973 68.643 

9 -6.760E-02 8.200E-02 29.932 72.653 

10 -8.359E-02 1.111E-01 39.916 78.281 

11 -1.299E-03 -4.419E-04 49.999 85.590 

 

The internal forces on the elements for programme’s B version, are presented on Table 6.8  

Table 6.8 - Internal forces on the elements for programme’s B version. 

Element  (N)   (N)   (N)  

1 3717.000 -2694.000 4590.600 

2 3717.000 -2095.400 4266.900 

3 3717.000 -1496.700 4007.000 

4 3717.000 -898.030 3823.900 

5 3717.000 -299.350 3729.000 

6 3717.000 299.320 3729.000 

7 3717.000 897.990 3823.900 

8 3717.000 1496.700 4007.000 

9 3717.000 2095.300 4266.900 

10 3717.600 2694.400 4591.300 
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6.3.3. Software solution 

The coordinates of nodes of the initial geometry for the software are the same of Table 6.4, 

the constants inputted are the , ,  present on Table 6.1. The non linear analysis for 

large displacements is used. The displacements on nodes and the global coordinates of 

deformed nodes for software are presented on Table 6.9. 

 

Figure 6.19 - Illustration of the deformed geometry according to ANSYS software. 

Table 6.9 - Displacements on nodes for software. 

Node  (m)  (m)  (m)  (m) 

1 0 0 -50.000 85.590 

2 0.080 0.109 -39.920 78.279 

3 0.066 0.083 -29.934 72.654 

4 0.026 -0.019 -19.974 68.644 

5 0.003 -0.118 -9.997 66.236 

6 -1.452E-12 -0.159 0 65.431 

7 -0.003 -0.118 9.997 66.236 

8 -0.026 -0.019 19.974 68.644 

9 -0.066 0.083 29.934 72.654 

10 -0.080 0.109 39.920 78.279 

11 0 0 50.000 85.590 
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The internal forces on the elements for software are presented on Table 6.10. 

Table 6.10 - Internal forces on the elements for software. 

Element  (N)   (N)   (N)  

1 3718.000 -2694.500 4591.716 

2 3717.400 -2095.500 4267.339 

3 3718.000 -1497.000 4008.059 

4 3717.400 -898.060 3824.340 

5 3717.300 -299.340 3729.333 

6 3717.300 299.340 3729.333 

7 3717.400 898.060 3824.340 

8 3718.000 1497.000 4008.059 

9 3717.400 2095.500 4267.339 

10 3718.000 2694.500 4591.716 
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6.3.4. Analysis of results 

On this topic the results are analysed from the point of view of the difference between the 

results and the value that are expectable to obtain. The value that is considerate more reliable 

is the value obtained by the commercial software of finite element because is software that is 

dedicated to structure analysis and have internal algorithms which can have into account 

coefficients adapted to reality.  

The relative error between the results from programmes or analytical equation with software 

results, take into account the displacements and forces, are given by (6.43). 

  (6.43) 

 

6.3.4.1. Deformed geometry 

The initial deformed configuration proposed for programmes and for software was the 

configuration of catenary and the relative error between the software/analytical equation and 

software/programmes for the displacements is small, so the initial geometry is close from the 

final one.  

Table 6.11 – Comparison of deformed geometry between the analytical equation and 

software. 

 
Analytical equation Software 

  
Node  (m)  (m)  (m)  (m) 

1 -50 85.590 -50.000 85.590 0 0.000 

2 -40 78.170 -39.920 78.279 0.200 0.139 

3 -30 72.571 -29.934 72.654 0.220 0.114 

4 -20 68.663 -19.974 68.644 0.130 0.028 

5 -10 66.354 -9.997 66.236 0.030 0.178 

6 0 65.590 0 65.431 0 0.243 

7 10 66.354 9.997 66.236 0.030 0.178 

8 20 68.663 19.974 68.644 0.130 0.028 

9 30 72.571 29.934 72.654 0.220 0.114 

10 40 78.170 39.920 78.279 0.200 0.139 

11 50 85.590 50.000 85.590 0 0.000 
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The value of relative error shown on Table 6.11, is less than 0.25 % showing that the model 

of catenary and the software of finite element produce nearly the same results of 

displacements. The law level of tension, do that the results of FEM are less influenced by the 

geometric nonlinearity, [17]. 

The relative error for the displacements between programme’s A version and the software is 

presented on Table 6.12. 

Table 6.12 - Relative error for displacements between programme’s A version and 

software. 

Node 

Programme’s A 

version  
Software 

  

 (m)  (m)  (m)  (m) 

1 -50 85.590 -50 85.590 0 0 

2 -39.917 78.282 -39.920 78.279 0.008 0.004 

3 -29.933 72.654 -29.934 72.654 0.003 0 

4 -19.973 68.644 -19.974 68.644 0.005 0 

5 -9.997 66.234 -9.997 66.236 0 0.003 

6 0 65.429 0 65.431 0 0.003 

7 9.997 66.234 9.997 66.236 0 0.003 

8 19.973 68.644 19.974 68.644 0.005 0 

9 29.933 72.654 29.934 72.654 0.003 0 

10 39.917 78.282 39.92 78.279 0.008 0.004 

11 50 85.590 50 85.590 0 0 

 

The value of relative error shown on Table 6.12 is nearly 0 % showing that the programme’s 

A version and the software of finite element produce nearly the same results of displacements. 

The relative error for the displacements between programme’s B version and the software is 

presented on Table 6.13. 
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Table 6.13 - Relative error for displacements between programme’s B version and 

software. 

Node 

Programme’s B 

version  
Software 

  

 (m)  (m)  (m)  (m) 

1 -50 85.590 -50 85.590 0 0 

2 -39.918 78.282 -39.92 78.279 0.005 0.004 

3 -29.934 72.653 -29.934 72.654 0 0.001 

4 -19.974 68.643 -19.974 68.644 0 0.001 

5 -9.998 66.233 -9.997 66.236 0.010 0.005 

6 -0.001 65.428 0 65.431 0 0.005 

7 9.996 66.233 9.997 66.236 0.010 0.005 

8 19.973 68.643 19.974 68.644 0.005 0.001 

9 29.932 72.653 29.934 72.654 0.007 0.001 

10 39.916 78.281 39.92 78.279 0.010 0.003 

11 49.999 85.590 50 85.590 0.002 0.000 

 

The results of programme’s B version are almost the same of programme’s A version, which 

demonstrates that the programme’s B version keeps the key characteristics of programme 

relatively to displacements.  

 

6.3.4.2. Internal forces 

The relative error for the internal forces between the analytical equation and the software 

results is presented on Table 6.14. 

Table 6.14 . Relative error for internal forces between analytical equation and software. 

Analytical equation Software 

  
(N) (N) (N) (N) 

3570.543 4659.289 3729.233 4591.716 4.258 1.472 
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The relative error for the internal forces between the analytical equation and the software 

results is 4.258 % for the minimum force and 1.472 % for the maximum force. It would 

expect that the relative error was smaller because the cross section area is large enough to 

obtain a small value of stress and finite element analysis is little affected by the low level of 

stress, [17]. Perhaps the determination of the weight of cable can induce errors. However for 

situations where large deformations occur, the change in geometry changes the deformed and 

the FEM can be more realistic, [17]. 

The relative error between internal forces between programme’s A version and programme’s 

B version with software are shown on Table 6.15 and Table 6.16 respectively. 

Table 6.15 - Relative error for internal forces between programme’s A version and 

software. 

Programme’s A version  Software 

  
(N) (N) (N) (N) 

3729.300 4590.900 3729.233 4591.716 0.001 0.018 

 

Table 6.16 - Relative error for internal forces between programme’s B version and 

software. 

Programme’s B version  Software 

  
(N) (N) (N) (N) 

3729.000 4590.6 3729.233 4591.716 0.009 0.024 

 

The result of the programme’s A version and the software have a relative error of 0.018% for 

the maximal force and 0.001% for the minimal force. The results of the programme’s B 

version and the software have a relative error of 0.024% for the maximal force and 0.009% 

for the minimal force. Considering that the relative error between programmes and the 

software is nearly 0%, is possible to conclude that the programmes developed are coherent 

with the numerical analysis provided by the software confirms that it is adequate to resolve 

structural analysis of cables. 

The results of programme’s B version are almost the same of programme’s A version, which 

demonstrates that the programme’s B version keeps the key characteristics of programme’s A 
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version and for the specific case of the lift force that is variable, the programme’s B version 

has the advantage of the one end can be removed which allows the input of a variable lift 

force. The solution obtained by the analytical equation assumes a rigid geometrical 

configuration, in other words, the deformation is formulated assuming that the cable is 

inextensible. The stress distribution and geometry of cable follow that function. The referred 

to equations are valid only for elastic domain, with small deformations, to approximate the 

model condition of inextensible cable.  

The catenary model cannot be implemented to the present case, because there are horizontal 

distributed forces, produced by the wind and in order to achieve equilibrium it is necessary to 

have horizontal forces at fixed ends, which do not exist on the catenary model.  

Perhaps a model of catenary with modifications, that takes into account the increase in length, 

and neglecting wind forces on cable could be envisaged. However, the variable height 

continuing changing, as well as the variable drag on the aero module, results very complex to 

implement. If we consider drag on cable the model is no longer valid. For situations where 

large deformations occur, the geometry isn’t constant, so the internal strains depended from 

the geometry and are function of configuration of deformed, [17].  

 

6.4. Structural analysis of cable 

The purpose of this topic is to show an example of the influence that the developed 

programme can have on the control of the system. The goal is to adjust the lift force in order 

to set the value of force at the lower end (element 1) nearly constant. Taking into account that 

rigorous results for the aerodynamics forces are unknown, the values of forces in a bi 

dimensional situation are given as example, which take into consideration the maximum force 

that cable can support and energy specifications provided. For the solution, the following data 

must be input: 

 Initial geometry - the corresponded nodes and elements. The number of iterations will 

be lower if the initial geometry be closer from the deformed geometry; 

 Sections properties - Variables as the cross section area and Young modules of 

material; 

 Loads - Cable weight which is applied ate the nodes of cable, lift force (force of 

unwinding) and the drag forces on cable. 
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6.4.1. Initial geometry 

The initial geometry proposed is a parabola, considering that the cable will be nearly as 

parabolic geometry. The parabola equation is given by (6.44). 

  (6.44) 

 

The length of cable  is determined by (6.45). 

  (6.45) 

 

In this is obtained (6.46). 

  (6.46) 

 

Considering a range between 0 and , the length of parabola is given by (6.47). 

  (6.47) 

 

6.4.2. Section properties 

The material to implement is a UHMPE; has a low Young modulus leading to large elastic 

displacements. The properties are presented on Table 6.17. 

Table 6.17 - Section properties of cable. 

 (GPa)  (m
2
) [10

-4
] 

0.483 1.539 
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6.4.3. Loads 

As an example if we consider the unwinding cycle, after the transient regime, considering that 

15 seconds passed since the initial moment, at a speed of unwinding of 4 (m/s), the amount of 

cable unwound is about 210 (m). Taking into account the geometry of the parabola, a value of 

225 (m) for y is chosen, corresponding to a cable length of 226.149 (m). The weight of cable 

for unit of length is 5.963 (N/m), the force of unwinding is 30000 (N) with a  60º 

orientation, and due to the fact that wind velocity changes with height there is a gradient in 

the horizontal forces, which varies in the range of 10 to 1000 (N). 

W cable

F Drag

FUnwinding

 

Figure 6.20 – Schematically diagram of external forces applied on structure. 

The coordinates, incremental length of cable and forces on nodes are presented on Table 6.18. 

The description of elements and corresponding nodes are presented on Table 6.19. 
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Table 6.18 - Coordinates of nodes incremental length of cable and forces on nodes. 

Node  (m)  (m)   (N)  (N) 

1 0 0 0.000 10.000 0.000 

2 1 1 1.479 76.000 8.819 

3 2 4 4.647 142.000 18.890 

4 3 9 9.747 208.000 30.413 

5 4 16 16.819 274.000 42.168 

6 5 25 25.874 340.000 53.999 

7 6 36 36.920 406.000 65.864 

8 7 49 49.958 472.000 77.748 

9 8 64 64.992 538.000 89.644 

10 9 81 82.021 604.000 101.546 

11 10 100 101.047 670.000 113.454 

12 11 121 122.071 736.000 125.365 

13 12 144 145.093 802.000 137.279 

14 13 169 170.113 868.000 149.194 

15 14 196 197.131 934.000 161.111 

16 15 225 226.149 16000.000 26153.792 

 

Table 6.19 - Description of elements and corresponding nodes. 

Nodes Elements Nodes Elements 

1  2 1 8  9 8 

2  3 2 9  10 9 

3  4 3 10  11 10 

4  5 3 11  12 11 

5  6 5 12  13 12 

6  7 6 13  14 13 

7  7 7 14  15 14 

8  9 8 15  16 15 
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At the end of 1995 iterations, with an error of 8.162x10
-10

, the deformed geometry is 

presented on Figure 6.21. 

 

Figure 6.21 - Illustration of the deformed geometry. 

The displacements on nodes and the global coordinates of deformed nodes for the example 

are presented on Table 6.20. 

Table 6.20 - Value of displacements on nodes. 

Node  (m)  (m) Node  (m)  (m) 

1 6.029E-08 6.744E-08 9 52.045 10.186 

2 0.351 0.601 10 66.116 12.883 

3 2.366 1.182 11 81.610 16.006 

4 6.206 1.965 12 98.405 19.598 

5 11.877 3.000 13 116.360 23.702 

6 19.351 4.314 14 135.320 28.370 

7 28.580 5.932 15 155.090 33.655 

8 39.503 7.880 16 175.480 39.617 

 

The internal forces on the elements are presented on Table 6.21. 
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Table 6.21 - Value of forces on elements. 

Element  (N)  (N)  (N) 

1 23070 27329 35765 

2 22994 27320 35709 

3 22852 27302 35603 

4 22644 27271 35447 

5 22370 27229 35240 

6 22030 27175 34983 

7 21624 27109 34677 

8 21152 27031 34324 

9 20614 26942 33923 

10 20010 26840 33478 

11 19340 26727 32990 

12 18604 26601 32461 

13 17802 26464 31895 

14 16934 26315 31293 

15 16000 26154 30660 

 

Is possible to note that the tension on element 1 is greater than 30 000 (N), so the lift value 

should lesser in order to keep as possible the value nearly constant on 30000 (N).  

The intention of example is to show that the algorithm is capable to determine the tension on 

cable, in particular at the ends, and in this way to control the lift force. This control can be 

done if data be available of known and similar conditions. Tests should be done for different 

heights, cable lengths, meteorological conditions, orography and roughness of places in order 

to create a phenomenological analysis of the process.  
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7. Conclusions and future work 

From this work several conclusions can be drawn: 

 The prototype uses a lift force in order to produce work that is transformed into 

electric energy. This is a new and patented concept competing with other existing 

ones, like the traditional wind turbine and de MARS concept; 

 The energy production cycle must be analyzed taking into account the transient regime 

that occurs during the transitions winding-unwinding, due to the inertia of the 

kinematic chain between the capstan and the motor/generator;  

 A flywheel should be used to accumulate energy that can be used in the transient 

periods of the up-down cycle, being the energy to store 862.5 (kJ) and the inertia 

moment of 69.911 (kg m
2
); 

 The cable dimensioning done required some estimated data, namely the cross section 

area. This is due to the fact that the cable must be designed and manufactured and only 

after this one can have the actual data of the cable; 

 The cable winding and unwinding must be done using a capstan in order to reduce the 

tension on the cable being wound on the storing drum; 

 The results of the algorithm are consistent with the results of software of finite 

elements, demonstrating that it is adequate to resolve structural analysis of cables; 

 In order to have credible data to develop the design and construction of the device, 

tests on prototype are required to get data for different heights, cable lengths, 

meteorological conditions, and characteristics of the implementation site. 

Future work is necessary as to complement the information necessary:  

 Control system development  (hardware e software); 

 Aerodynamic studies around the prototype; 

 Development of a platform to hold the overall system to the ground; 
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 Breaking systems; 

 Platform rotational system to provide the right orientation; 

 Untwisting device for the cable. 
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Annex 1 – List of MATLAB mfile 

% Finite element programme 

% The input file, '*.inp', should have: 

% - Coordinates of nodes, 

% - Definition of elements, 

% - Material constants, 

% - Sections constants, 

% - Loads, 

% - Ends, 

% 

disp('Programa BARRA_3D'); 

% 

% Open of input file 

% 

tipo={'*.inp'}; 

titulo='Barra_3D: Seleccione o ficheiro de dados'; 

[nome,caminho]=uigetfile(tipo,titulo); 

ficheiro=[caminho,nome]; 

disp(nome); 

if nome == 0 % Verify if file is found 

    warndlg('File not found','Barra_3D'); 

else 

    % 

    % Lecture of inputs 

    % 

    fid= fopen(ficheiro,'r'); 

    nnos= fscanf(fid,'%d',1); 

    fprintf('numero de nos= %3d\n',nnos) 

    nos= fscanf(fid,'%f',[3 nnos]); 

    nelementos= fscanf(fid,'%d',1); 

    fprintf('numero de elementos= %3d\n',nelementos) 

    elementos= fscanf(fid,'%f',[4 nelementos]); 

    nmateriais= fscanf(fid,'%d',1); 

    fprintf('numero de materiais= %3d\n',nmateriais) 

    materiais= fscanf(fid,'%f',[1 nmateriais]); 

    nseccoes= fscanf(fid,'%d',1); 

    fprintf('numero de seccoes= %3d\n',nseccoes); 

    seccoes= fscanf(fid,'%f',[1 nseccoes]); 

    nforcas= fscanf(fid,'%d',1); 

    fprintf('numero de forcas= %3d\n',nforcas) 

    forcas= fscanf(fid,'%f',[4 nforcas]); 

    napoios= fscanf(fid,'%d',1); 

    fprintf('numero de apoios= %3d\n',napoios) 

    apoios= fscanf(fid,'%f',[4 napoios]); 

    fclose(fid); 

    %  

    % Change the extension of input file for '*.des' 

    % 

    dim=size(ficheiro); 
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    ficheiro(dim(2)-2)='d'; 

    ficheiro(dim(2)-1)='e'; 

    ficheiro(dim(2))='s'; 

    fid= fopen(ficheiro,'w'); 

    fprintf(fid,'Displacements on nodes\n'); 

    % 

    % Change the extension of input file for '*.esf' 

    % 

    dim=size(ficheiro); 

    ficheiro(dim(2)-2)='e'; 

    ficheiro(dim(2)-1)='s'; 

    ficheiro(dim(2))='f'; 

    fie= fopen(ficheiro,'w'); 

    fprintf(fie,'Forces on elements \n'); 

    % 

    % Initial calculus 

    % 

    ll= zeros(nelementos,1); % Lengths 

    ff= zeros(nelementos,1); % Axial forces 

    nos_actuais= nos;        % Nodes position 

    ug= zeros(3,nnos);       % Displacements 

    % 

    for i=1:nelementos 

        % Calculate the initial length of elements 

        no1= elementos(1,i); 

        no2= elementos(2,i); 

        dx= nos(1,no2)-nos(1,no1); 

        dy= nos(2,no2)-nos(2,no1); 

        dz= nos(3,no2)-nos(3,no1); 

        ll(i)= sqrt( dx * dx + dy * dy + dz * dz) ; 

        % Assigns a value to the initial axial force 

        ff(i)= 10; 

    end 

    % 

    % Parameters of control of the Newton-Raphson procedure 

    % Maximum number of iterations 

    max= 20000; 

    % Maximum error 

    tolerancia= 1e-9; 

    % 

    iter= 1; 

    erro= 9999; 

    while erro > tolerancia && iter <= max 

        % calculs of internal forces 

        fprintf('*** iteração %d *** \n',iter); 

        % 

        f= zeros(nnos*3,1); 

        K= zeros(nnos*3); 

        % 
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% On first iteration the internal forces are not calculate 

because they are zero 

        % 

        if iter > 1 

            %fprintf('calculate the internal forces in which 

element\n'); 

            fprintf(fie,' Iter= %d\n',iter); 

            % 

                fprintf(fie,... 

            ' Iter= %d\n  EL ,      FX      ,      FY      ,      

FZ     ,   Teta    ,      F    \n',... 

            iter); 

            for i=1:nelementos 

                % 

                no1= elementos(1,i); 

                no2= elementos(2,i); 

                dx= nos_actuais(1,no2)-nos_actuais(1,no1); 

                dy= nos_actuais(2,no2)-nos_actuais(2,no1); 

                dz= nos_actuais(3,no2)-nos_actuais(3,no1); 

                l= sqrt( dx * dx + dy * dy + dz * dz) ; 

                mat= elementos(3,i); 

                sec= elementos(4,i); 

                ae= seccoes(1,sec)*materiais(1,mat); 

                ff(i)= ae*(l-ll(i))/ll(i); 

                faxial= zeros(2,1); 

                ffx(i)=(dx/l)*ff(i); 

                ffy(i)=(dy/l)*ff(i); 

                ffz(i)=(dz/l)*ff(i); 

                teta(i)=(atan(ffy(i)/ffx(i)))*(180/pi); 

                

                faxial(1,1)= -ff(i); 

                faxial(2,1)= ff(i); 

                % 

                

            fprintf(fie,' %3d , %12.4e, %12.4e, %12.4e, 

%12.4e, %12.4e \n',... 

                i,ffx(i),ffy(i),ffz(i),teta(i),ff(i)); 

                 

                % Matrix of transformation 

                t= zeros(2,6); 

                t(1,1)= dx/l; 

                t(1,2)= dy/l; 

                t(1,3)= dz/l; 

                t(2,4:6)= t(1,1:3); 

                % 

                fe= t' * faxial; 

                % Adds the vector of internal forces to global 

forces  

                % 

                f(no1*3-2:no1*3)= f(no1*3-2:no1*3)-fe(1:3); 

                f(no2*3-2:no2*3)= f(no2*3-2:no2*3)-fe(4:6); 
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                % 

            end % for i=1:nelementos 

        end % if iter > 1 ... 

        % 

        % Assembly of matrix K and the solution of equation 

system        % 

        for i=1:nelementos 

            % 

            no1= elementos(1,i); 

            no2= elementos(2,i); 

            mat= elementos(3,i); 

            sec= elementos(4,i); 

            dx= nos_actuais(1,no2)-nos_actuais(1,no1); 

            dy= nos_actuais(2,no2)-nos_actuais(2,no1); 

            dz= nos_actuais(3,no2)-nos_actuais(3,no1); 

            l= sqrt( dx * dx + dy * dy + dz * dz) ; 

            ae= seccoes(1,sec)*materiais(1,mat); 

            l2= l*l; 

            ll2= ll(i)*ll(i); 

            ll3= ll2*ll(i); 

            % 

            % Stiffness matrix according extension of 

Lagrange-Green  

            ke= zeros(6); 

            ke(1,1)= ae*dx*dx/(ll2*l)+ff(i)*(l2-dx*dx)/ll3; 

            ke(2,2)= ae*dy*dy/(ll2*l)+ff(i)*(l2-dy*dy)/ll3; 

            ke(3,3)= ae*dz*dz/(ll2*l)+ff(i)*(l2-dz*dz)/ll3; 

            ke(1,2)= ae*dx*dy/(ll2*l)-ff(i)*(dx*dy)/ll3; 

            ke(1,3)= ae*dx*dz/(ll2*l)-ff(i)*(dx*dz)/ll3; 

            ke(2,3)= ae*dy*dz/(ll2*l)-ff(i)*(dy*dz)/ll3; 

            ke(2,1)= ke(1,2); 

            ke(3,1)= ke(1,3); 

            ke(3,2)= ke(2,3); 

            % 

            ke(1:3,4:6)= -ke(1:3,1:3); 

            ke(4:6,1:3)= -ke(1:3,1:3); 

            ke(4:6,4:6)= ke(1:3,1:3); 

            % 

            in=no1*3-2; 

            jn=no2*3-2; 

            K(in:in+2,in:in+2)= 

K(in:in+2,in:in+2)+ke(1:3,1:3); 

            K(in:in+2,jn:jn+2)= 

K(in:in+2,jn:jn+2)+ke(1:3,4:6); 

            K(jn:jn+2,in:in+2)= 

K(jn:jn+2,in:in+2)+ke(4:6,1:3); 

            K(jn:jn+2,jn:jn+2)= 

K(jn:jn+2,jn:jn+2)+ke(4:6,4:6); 

            % disp(K); 

        end 

        % 
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        % Calculate the contribution of applied forces to the 

global vector of forces  

        % 

        for i= 1:nforcas 

            no= forcas(1,i); 

            in=no*3-2; 

            f(in:in+2,1)= f(in:in+2,1) + forcas(2:4,i); 

        end 

        % 

        % Penalizes the stiffness matrix due the existence of 

ends  

        % 

        for i= 1:napoios 

            no= apoios(1,i); 

            in=no*3-2; 

            for j=2:4 

                if apoios(j,i) == 1 

                    K(in+j-2,in+j-2)= K(in+j-2,in+j-2)*1e10; 

                end 

            end 

        end 

        % 

        % Resolve the equation system 

        % 

        u= K\f; 

         

        % 

        % Print the displacements and refresh several vectors 

and matrixes        % 

        fprintf(fid,... 

            ' Iter= %d\n  No ,      X      ,      Y      ,     

Z   \n',... 

            iter); 

        for i=1:nnos 

            % 

            % Refresh the global translations            % 

            ug(1:3,i)= ug(1:3,i)+u(i*3-2:i*3); 

            % 

            % Print the displacements 

            % 

            fprintf(fid,' %3d , %12.4e, %12.4e, %12.4e\n',... 

                i,ug(1,i),ug(2,i),ug(3,i)); 

        end 

        % 

        % Refresh the nodes coordinates 

        % 

        nos_actuais= nos + ug;  

        for a=1:nnos 

        coordenadasx(a)=nos_actuais(1,a); 

        coordenadasy(a)=nos_actuais(2,a); 

        end 
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        % Calculates the error 

        % 

        erro= u'*u; 

        fprintf(fid,'erro= %e\n',erro); 

        % 

        % Increments the counter of iterations        % 

        iter= iter + 1; 

        % 

    end % while ... 

    

     plot(coordenadasx,coordenadasy,'--rs','LineWidth',2); 

             title('Cable trajectory'); 

             xlabel('x (m)'); 

             ylabel('y (m)'); 

end 
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Annex 2 – Input file of programme’s A version 

11 

000 

10-7.4190 

20-13.0180 

30-16.9260 

40-19.2350 

50-19.9990 

60-19.2350 

70-16.9260 

80-13.0180 

90-7.4190 

10000 

10 

 1  2 1 1 

 2  3 1 1 

 3  4 1 1 

 4  5 1 1 

 5  6 1 1 

 6  7 1 1 

 7  8 1 1 

 8  9 1 1 

 9   10 1 1 

 10  11 1 1  

1 

210E9 

1 

7.069E-4 
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9 

2  0 -598.671   0 

3  0 -598.671   0 

4  0 -598.671   0 

5  0 -598.671   0 

6  0 -598.671   0 

7  0 -598.671   0 

8  0 -598.671   0 

9  0 -598.671   0 

10 0 -598.671   0 

2 

1  1 1 1 

11 1 1 1 

 

 



Annex 3 – Input file of programme’s B version  

 

85 

Annex 3 – “Input” file of programme’s B version 

11 

000 

10-7.4190 

20-13.0180 

30-16.9260 

40-19.2350 

50-19.9990 

60-19.2350 

70-16.9260 

80-13.0180 

90-7.4190 

1000       0 

10 

 1  2 1 1 

 2  3 1 1 

 3  4 1 1 

 4  5 1 1 

 5  6 1 1 

 6  7 1 1 

 7  8 1 1 

 8  9 1 1 

 9   10 1 1 

 10  11 1 1  

1 

210E9 

1 

7.069E-4 
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10 

2  0 -598.671   0 

3  0 -598.671   0 

4  0 -598.671   0 

5  0 -598.671   0 

6  0 -598.671   0 

7  0 -598.671   0 

8  0 -598.671   0 

9  0 -598.671   0 

10 0 -598.671   0 

11 3.717e+003 2.694e+003 0 

1 

1  1 1 1 
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Annex 4 –ANSYS log file 

! 

! Exemplo Catenária 

! 

/PREP7 

N, 1,   0,    0 

N, 2,  10,  -7.419 

N, 3,  20,  -13.018 

N, 4,  30,  -16.926 

N, 5,  40,  -19.235 

N, 6,  50,  -19.999 

N, 7,  60,  -19.235 

N, 8,  70,  -16.926 

N, 9,  80,  -13.018 

N, 10, 90,  -7.419 

N, 11, 100,    0 

! 

! Elemento Barra 2D 

!ET,1,LINK1 

!R,1,6.4928e-4 

! 

! Elemento Viga 2D 

!ET,1,BEAM3 

!KEYOPT,1,6,1 

!KEYOPT,1,9,0 

!R,1,6.4928e-4,3.349e-8 

! 

! Elemento Viga 3D (BEAM4) 
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!ET,1,BEAM4 

!KEYOPT,1,2,1 

!KEYOPT,1,6,0 

!KEYOPT,1,7,0 

!KEYOPT,1,9,0 

!R,1,6.4928e-4,3.3537e-8,3.3537e-8 

! 

! Elemento Viga 3D (BEAM188) 

ET,1,BEAM188 

SECTYPE,   1, BEAM, CSOLID, cabo, 0  

SECOFFSET, CENT  

SECDATA,0.015,0,0,0,0,0,0,0,0,0   

! 

MP,EX,1,210E9              !Módulo de Young 

MP,PRXY,1,0.3              !Coeficiente de Poisson 

! 

E,  1,  2 

E,  2,  3 

E,  3,  4 

E,  4,  5 

E,  5,  6 

E,  6,  7 

E,  7,  8 

E,  8,  9 

E,  9, 10 

E, 10, 11 

! 

! Forcas concentradas nos Nós 

F,2,FY,-598.671 
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F,3,FY,-598.671 

F,4,FY,-598.671 

F,5,FY,-598.671 

F,6,FY,-598.671 

F,7,FY,-598.671 

F,8,FY,-598.671 

F,9,FY,-598.671 

F,10,FY,-598.671 

! 

! Densidade e aceleração da Gravidade 

!ACEL,0,9.81,0,   

!*   

!MPTEMP,,,,,,,,   

!MPTEMP,1,0   

!MPDATA,DENS,1,,7850  

! 

D,1,UX 

D,1,UY  

D,1,UZ 

D,11,UX 

D,11,UY 

D,11,UZ       

! 

FINISH                     !Exits normally from a processor. 

! 

/SOLU                      !*** SOLUÇÃO *** 

SOLCONTROL,0 

ANTYPE,STATIC              !Tipo de análise: estática 

NEQIT,150 
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NLGEOM,ON                  !Grandes deslocamentos 

SOLVE                      !Resolve sistema 

/POST1                     !*** PÓS-PROCESSAMENTO *** 

PRRSOL                     !Mostra reacções nos apoios 

PRNSOL,DOF                 !Mostra deslocamentos e rotações 

FINISH                     !Exits normally from a processor. 
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Annex 5- Input file of programme for the structural 

analysis of cable example 

16 

000 

110 

240 

390 

4160 

5250 

6360 

7490 

8640 

9810 

10 100     0 

11      121     0 

12      144     0   

13      169     0 

14      196     0 

15      225     0 

 

 

15 
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 1  2 1 1 

 2  3 1 1 

 3  4 1 1 

 4  5 1 1 

 5  6 1 1 

 6  7 1 1 

 7  8 1 1 

 8  9 1 1 

 9   10 1 1 

 10  11 1 1  

 11  12 1 1 

 12  13 1 1 

 13  14 1 1 

 14  15 1 1 

 15  16 1 1 

 

1 

0.483e9 

1 

1.539E-4 

 

 

15 
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276.0008.8190.000 

3142.00018.8900.000 

4208.00030.4130.000 

5274.00042.1680.000 

6340.00053.9990.000 

7406.00065.8640.000 

8472.00077.7480.000 

9538.00089.6440.000 

10604.000101.5460.000 

11670.000113.4540.000 

12736.000125.3650.000 

13802.000137.2790.000 

14868.000149.1940.000 

15934.000161.1110.000 

1616000.00027254.6480.000 

 

1 

1  1 1 1 
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