
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Dissertação de Mestrado

Mestrado em Engenharia Informática

Core Language for Web Applications

Miguel Brazão Domingues (28063)

Lisboa
(2010)

Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Dissertação de Mestrado

Core Language for Web Applications

Miguel Brazão Domingues (28063)

Orientador: Prof. Doutor João Costa Seco

Trabalho apresentado no âmbito do Mestrado em
Engenharia Informática, como requisito parcial
para obtenção do grau de Mestre em Engenharia
Informática.

Lisboa
(2010)

Acknowledgements

I’d like to thank ...

... my adviser Prof. João Seco for his support and guidance through the last year.
Also Luísa Lourenço, Hugo T. Vieira, and Jorge Perez for extending the language with
refinement types to express access control policies, which helped to improve the pro-
totype.

... all those who helped in some way during all these years in FCT: friends, col-
leagues, and professors.

... my parents and all my family.

... Patuska for being patuska.

... Dadá for being crazy.

... Baco for bitting my ears.

... Trindade for spoiling my sleeves.

... Brutus for remembering me that at 18h it’s time to eat.

... Dadá, Baco, Trindade and Brutus mom: Diana “Hunting Addicted” Brazão Domingues.

... my sister, who else would take care of all these dogs?

Last but not the least, I’d like to thank ... for the
support and patience showed till today.

THANK YOU ALL

PS: That space is for you to fill your name! Aren’t you feeling important?! :)

v

Abstract

Web applications have a very high demand for rapid development and constant change.
Several languages were created for this kind of applications, which are very flexible but
many times trade the benefits of strongly-typed programming languages by untyped
interpreted languages. With this kind of languages the interaction between different
layers in a web application is usually developed using dialects and programming con-
ventions with no real mechanical verifications between the client and server sides, and
the SQL code within the application and the database.

We present a typed core language for web applications that integrates the typing of
the interface definition, business logic, and database manipulation representing these
interactions at a high abstract level. Using only one language, typed and with its own
instructions to define the interface and the interaction with the database, becomes pos-
sible to make static checks. Thereby, avoiding execution errors caused by the usual
heterogeneity among web applications. We also describe the implementation of a pro-
totype with a highly flexible programming environment for our language that allows
the application development and publishing tasks to be done through a web interface,
interacting directly with the application and without loosing the integrity checks. This
kind of development relies on an agile development methodology. Therefore, the mod-
ifications made to the application are made active using the dynamic reconfiguration
mechanism, avoiding the recompilation of the application and system restart.

Keywords: Web application, database, business logic, interface, three layer integra-
tion, programming language, type system, dynamic reconfiguration

vii

Resumo

As aplicações web estão sujeitas a constantes evoluções e a um ciclo de desenvolvi-
mento rápido. Assim, foram criadas diversas linguagens para este tipo de aplicações,
linguagens flexíveis que trocam os benefícios das linguagens com tipificação forte por
linguagens interpretadas e não tipificadas. Com este tipo de linguagens a interacção
entre as diferentes camadas de uma aplicação web é normalmente desenvolvida com
recurso a protocolos e convenções, e não estão sujeitas a verificações estáticas entre o
código do cliente e do servidor, e entre o código SQL da aplicação e a base de dados.

Neste trabalho apresenta-se uma linguagem tipificada para aplicações web que in-
tegra a tipificação da interface, lógica aplicacional e operações de manipulação de bases
de dados. Com recurso a apenas uma linguagem com um nível de abstracção superior,
tipificada e com instruções próprias para definir a interface e a interacção com a base
de dados, torna-se possível efectuar verificações estáticas, evitando erros comuns cau-
sados pela heterogeneidade existente nas aplicações web. Também se apresenta um
protótipo de um ambiente de desenvolvimento flexível que permite realizar tarefas
de desenvolvimento e publicação de aplicações, através de uma interface web, inte-
ragindo directamente com a aplicação. Este tipo de desenvolvimento de aplicações
baseia-se num desenvolvimento ágil, onde modificações efectuadas na aplicação são
tornadas activas utilizando um mecanismo de reconfiguração dinâmica, evitando as-
sim que seja necessário recompilar a aplicação e reiniciar o sistema.

Palavras-chave: Aplicação web, base de dados, lógica aplicacional, interface, inte-
gração de três camadas, linguagem de programação, sistema de tipos, reconfiguração
dinâmica

ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 3
1.3 Proposed Solution . 4
1.4 Contributions . 5
1.5 Document Structure . 6

2 Core Language for Web Applications 7
2.1 Examples . 8

2.1.1 Phone Book . 8
2.1.2 Simple Blog . 9
2.1.3 Photo Album . 12

2.2 Syntax . 15
2.3 Semantics . 19
2.4 Type System . 24

3 Runtime Support System 29
3.1 Execution Mode . 30
3.2 Development Mode . 32

4 Web Applications Development 35
4.1 Ruby On Rails . 36
4.2 CakePHP . 41
4.3 Scala Lift . 45

xi

xii CONTENTS

4.4 Google Web Toolkit . 49
4.5 Programming Language and Database Integration 51

4.5.1 Hibernate . 54
4.5.2 LINQ . 55
4.5.3 ScalaQL . 56

4.6 Links . 56
4.7 WebDSL . 59
4.8 Ur/Web . 59
4.9 Agile Platform . 61
4.10 Discussion . 62

5 Final Remarks 65
5.1 Future Work . 66

Bibliography 69

List of Figures

1.1 Three Layer Architecture . 2
1.2 Prototype Interaction . 5

2.1 Phone Book directory Screen . 9
2.2 Simple Blog list Screen . 11
2.3 Simple Blog view Screen . 12
2.4 Photo Album userList Screen . 14
2.5 Photo Album viewUser Screen . 16
2.6 Syntax – Definitions, Expressions and Web Page Blocks 17
2.7 Syntax – Values . 18
2.8 Syntax – Types . 18

3.1 Prototype Interaction Modes . 30
3.2 System Architecture . 30
3.3 Editing Windows . 32

4.1 Ruby On Rails Request Processing . 37
4.2 CakePHP Request . 41
4.3 Scala Lift Architecture . 45
4.4 Object-Oriented Paradigm and Relational Model Mapping 53
4.5 Hibernate Integration in an Application 54
4.6 LINQ Architecture . 55
4.7 Agile Platform Architecture . 61
4.8 Service Studio . 62

xiii

Listings

2.1 Phone Book Example . 8
2.2 Simple Blog Entity . 10
2.3 Simple Blog list Screen . 10
2.4 Simple Blog and Photo Album title CSS . 11
2.5 Simple Blog view Screen . 11
2.6 Simple Blog saveMessage Action . 12
2.7 Photo Album Entities . 13
2.8 Photo Album userList Screen . 13
2.9 Photo Album register Action . 13
2.10 Photo Album viewUser Screen . 14
2.11 Photo Album addPhoto Action . 15

4.1 Message Model . 37
4.2 Database Migration . 38
4.3 Blog Controller . 39
4.4 “Message List” Interface . 39
4.5 “Add Message” Interface . 40
4.6 “View Message” Interface . 40
4.7 MySQL Table Creation . 42
4.8 Blog Model . 42
4.9 Blog Controller . 43
4.10 “Add Message” Interface . 43
4.11 “Message List” Interface . 44
4.12 “View Message” Interface . 44

xv

xvi LISTINGS

4.13 Blog Model . 47
4.14 “Message List” Interface . 47
4.15 “View Message” Interface . 48
4.16 “Filter Message” Interface . 48
4.17 “Add Message” Interface . 49
4.18 Blog Controler (Snippet) . 50
4.19 JDBC Example . 52
4.20 Hibernate Query Example . 55
4.21 ScalaQL Example . 56
4.22 SQL Query Obtained by ScalaQL From Listing 4.21 56
4.23 Links Suggest Dictionary Example . 58
4.24 WebDSL Compile Errors Example . 60
4.25 Ur/Web Example . 60

1
Introduction

This MSc work aims at designing and implementing a core programming language for
web applications. We design a typed core language for web applications that integrates
the typing of interface definition, business logic and database manipulation, and, at the
same time, represents the interactions between layers at a higher level of abstraction.
We also describe the implementation of a highly flexible development environment
where the developers act directly over the installed application using a web browser.

1.1 Motivation

In the beginning of the World Wide Web in 1989 [8], all web sites were composed just
by static content, i.e., web servers containing several files that could only be modified
on the servers them self. In 1993, the Common Gateway Interface (CGI) [28] revolu-
tionized the way Internet was viewed till then. It made possible to create web sites
with dynamic content by executing small programs on the server that could generate
an HTML page for each request made to the server. In the early times, web applica-
tions were structured in a simple client – server architecture but later, with the use of
databases to store application data, web applications architecture evolved to a three
layer architecture that divides applications into client interface, business logic, and

1

1. INTRODUCTION 1.1. Motivation

Figure 1.1: Three Layer Architecture [32]

data manipulation layers [32].
Figure 1.1 shows the interaction between client and server in a three layer architec-

ture and is processed as follows:

1. The user requests a resource via a URL through the browser;

2. The web server analyzes the request and executes an application and, if needed,
contacts the data layer to collect data;

3. After gathering the data, the server returns the requested resource, often an HTML
page.

In addition to code execution on the server side, it is also possible to execute code
on the client side (client-side scripting). Java Applets, JavaScript and Flash are among
most common technologies used as client-side scripting. More recently the term Asyn-
chronous JavaScript, and XML (AJAX) gained some reputation, through the combi-
nation of several techniques in AJAX it is possible to update a table without need-
ing to reload the entire page. The data required to fill the table is retrieved from the
server asynchronously in the background without interfering with the look and behav-
ior of the current page, after receiving the data, the browser updates the table using
JavaScript. Applications such as GMail or Google Maps are some examples of heavy
AJAX usage.

Making web sites more attractive, interactive and innovative require web applica-
tions to integrate several languages (e.g., HTML, JavaScript, PHP, SQL). Since most
languages do not support the integration between the several web application layers,
static checks between layers are insufficient or do not exist at all. This causes errors
to be detected only during runtime, errors that could be easily detected if the appli-
cation were developed using a language with static checks. Using several languages

2

1. INTRODUCTION 1.2. Context

also makes the development and maintenance tasks more complex due to the need
to integrate several languages and, although the user gains in usability, the developer
work gets harder. Moreover, web applications are usually developed in heterogeneous
environments where different languages interact using dialects and conventions with
no real mechanical verifications of the connection code between client and server sides,
and the SQL code issued within the application and the actual database model [15].

A very high demand for rapid development and constant change in this kind of
applications gave rise to a series of flexible languages that many times trade the bene-
fits of strongly-typed main stream programming languages (e.g., Java, C#) for the ad-
vantages of interpreted languages (e.g., PHP, ASP, Ruby). Some of these main-stream
interpreted languages provide scaffolding frameworks and programming patterns to
improve developers’ productivity, and overcome the most common programming er-
rors [1, 5, 12]. Other approaches introduce extensions to standard typed programming
languages that integrate database manipulation in the typing process [3, 10, 18, 31] or
by designing Domain Specific Languages (DSL) that seek to eliminate programming
errors by construction [4, 13, 35]. Thus, we consider that is advantageous to use a pro-
gramming language that allows to integrate all three layers of a web architecture in a
simple and effective manner and at the same time support static checks.

The motivation behind this work comes from languages like the one developed by
OutSystems [4]. The Agile Platform from OutSystems is based on a single program-
ming language and enables the integration of the three existing layers in a web archi-
tecture. Through this platform the application development process, usually complex
and time consuming, is turned into a process with higher productivity levels. Tasks
like publishing a web application are executed with a single click, therefore in a smaller
amount of time it is possible to develop an entire web application.

This master thesis is also part of a collaboration involving CITI1 and OutSystems,
the Certified Interfaces project (Carnegie Mellon – Portugal). The objective of this re-
search is to study properties related to data security and access control [9, 26, 33] and
related coordination of the several interacting parts [34]. However, the language from
OutSystems is too complex to support this kind of formal studies, so in order to be
possible to perform this kind of studies a smaller and simpler language is required.

1.2 Context

In the context of this work it is important to have a model language for the OutSystems
platform enabling studies about the language. Through a language similar to the one in

1Center for Informatics and Information Technology – DI/FCT-UNL

3

1. INTRODUCTION 1.3. Proposed Solution

the platform developed by OutSystems it is possible to study, in a simple and effective
way, several problems in the design of a language that integrates the three layers from
a common web application architecture.

The language designed in this work aims at offering an integrated programming
environment allowing to define the interface, business logic, and database manipula-
tion operations. Computations are usually specified with general purpose languages
and database operations with specialized query languages, and typically different lay-
ers interact through dialects and programming conventions, and communication code
is not subject to effective mechanical verifications and is highly error prone. Our lan-
guage uses a higher level of abstraction, in comparison to general purpose languages,
avoiding the several mismatches between layers by using static verifications within all
application code, including the communication code between layers.

Rising the level of abstraction allows for checking the basic safety of programs and
elimination of many programming errors. Our language aims at potentiating the ver-
ification of other more sophisticated properties, in particular we refer to properties
related to data security and access control [9, 26, 33], and related to the coordination of
several interacting parts in distributed systems [34].

1.3 Proposed Solution

We present a typed core language for web applications that integrates the typing of
interface definition, business logic and database manipulation operations. Interactions
between layers are represented at a higher level of abstraction providing basic safety
of properties and elimination of many common programming errors.

An application is divided in three kinds of programming elements: entities (Model),
screens (View), and actions (Controller), similar to the Model-View-Controller pattern
[27]. Each application is contained inside a module, that works like a namespace allow-
ing to have several running applications in the same system without having conflicts
among them.

Entities are containers of structured persistent data implemented as database tables.
Entity attributes are defined using types provided by our language, avoiding type mis-
matches between layers, in particular between the database layer and business logic
layer. Also, by using the same type system in all layers is possible to perform static
checks on an entire application code and the communication code between layers. Our
language has native support for querying entities, this query language mimics a subset
of the standard query language (SQL).

Screens allow to define the user interface, i.e., the web pages that are sent to the

4

1. INTRODUCTION 1.4. Contributions

Figure 1.2: Prototype Interaction

user browser. User interface definition is done using abstractions over an interface
definition language that mimics a subset of basic HTML elements (e.g., text fields,
buttons, div containers). Screens may be parameterized and some of the user interface
expressions may contain general purpose expressions to be executed back at the server.

The core of the application is defined by actions that can also be parameterized.
Actions are abstractions over general purpose expressions comprising operations over
entities, screens, and other values allowing to define the application business logic.

Our implementation consists in a web server divided in two parts as depicted in
Figure 1.2: execution mode web server and a web based development environment.
The first part consists in an application browser where users can request web pages
and interact with the application through links and forms. Web based development en-
vironment allows to create and modify existing applications. Through the web based
environment users can save new versions of each definition (entities, screens, or ac-
tions) that are then submitted to the language type checker. When a new definition is
submitted and considered sound by the type checker it becomes immediately active,
i.e., the dynamic reconfiguration mechanism loads the new application definition and
makes it available in execution mode.

1.4 Contributions

Our solution aims at offering an integrated programming language to define interface,
business logic, and database manipulation operations. This work also aims at devel-
oping a prototype for the language that allows us to define an entire application using
a web based development environment and also interact with the applications created.

Integration. The integration of the three layers from a common web architecture is
one of the most important aspects during web applications development. With a pro-
gramming language that integrates all three layers, thus not requiring multiple lan-
guages for a single application, we can provide static checks not only in each layer, but

5

1. INTRODUCTION 1.5. Document Structure

also in the communication code between layers, therefore eliminating many common
programming errors.

Runtime Support System. Our implementation aims to provide a simple and effec-
tive workbench for studies, so we present a web based development environment close
to a Wiki system. Through this web based environment users can create and modify
applications, and then publish them with a single click. Upon publishing an appli-
cation, the code is submitted through the static checks available in the language, and
only if the entire code is considered sound by the type checker, it will be published.

Dynamic Reconfiguration. The dynamic reconfiguration mechanism allows to mod-
ify an existing application without requiring to restart the web server or recompile the
application code. When the application code is submitted, if the entire code passes
through the static checks, the old running application is updated to the new definition.
During this update, entities are updated to match the new definitions, and new actions
or screens definitions are loaded.

Further Studies. One of the goals underlying this work was to provide a working
prototype for a language that could be easily extended to allow further studies, like
data security and access control properties. This has been achieved since the language
is already being extended to demonstrate security related property checking by means
of refinement types [9, 21].

1.5 Document Structure

In the following Chapter 2 we start by describing some practical examples using our
language. Then we present our language by detailing the language syntax, semantic
rules, and type system rules. Chapter 3 describes the implementation done in our pro-
totype. This description includes the prototype architecture, and both modes where
users can interact directly with applications and where users interact with the web
based development environment. In Chapter 4 we present some frameworks that tar-
get at web applications by providing scaffolding features to increase developers pro-
ductivity. We also handle the impedance mismatch between programming languages
and databases integration by describing some extensions to general purpose languages
that include the typing of database operations. At the end of Chapter 4 we describe
some frameworks that use domain specific languages to provide program safety by
construction. Finally, in Chapter 5 we present the final remarks for this work and de-
scribe some features that can be added to our language as future work.

6

2
Core Language for Web Applications

We present a typed core language for web applications that integrates the typing of in-
terface definition, business logic, and database manipulation operations. Interactions
between layers are represented at a higher level of abstraction providing basic safety
of programs and elimination of many programming errors. Our core language has
three programming elements: entities, screens, and actions. Entities are containers of
structured persistent data implemented in database tables. Operations over entities
mimic a subset of the standard query language (SQL). Screens are abstractions over a
user interface definition language whose values are web pages. Screens may be pa-
rameterized and some of the user interface expressions may contain general purpose
expressions to be executed back at the server. Actions are abstractions over general
purpose expressions comprising operations over entities, screens, and other values.

We explain three web applications examples using our language (Section 2.1) and
also present the language syntax (Section 2.2), semantics (Section 2.3), and type system
(Section 2.4). This formal presentation prepares ground for extending the language
with richer type languages [9] and introducing soundness proofs following standard
techniques, however this deeper work lies out of the scope of this work.

7

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.1. Examples

def ent i ty Person {
i d : Id ,
name : String ,
phone : String

}

def screen d i r e c t o r y {
i t e r a t o r (row in (from (p in Person) select p)) {

label "Name: " + row . name ; br ;
label " Phone : " + row . phone ; br ; br

} ;
label "Name: " ; t e x t f i e l d name ; br ;
label " Phone : " ; t e x t f i e l d phone ; br ;
button "Add" to addPerson (name, phone)

}

def action addPerson (nameIn : String , phoneIn : String) : Block {
inser t {

name = nameIn ,
phone = phoneIn

} in Person ;
d i r e c t o r y ()

}

Listing 2.1: Phone Book Example

2.1 Examples

In this section we describe three applications designed with our language. The first
example shows a simple phone book (Section 2.1.1) to store phone numbers associated
with names. Then a similar example for a simple message blog (Section 2.1.2) that al-
lows anyone to post text messages. The last example describes a photo album (Section
2.1.3) for several users where new photos can be added using the photo album owner’s
password.

2.1.1 Phone Book

Consider the code in Listing 2.1 that implements a phone book directory. It defines
an entity called Person containing names (name) and phone numbers (phone), a screen
directory and an action addPerson.

The screen directory is defined around a from expression (written in a syntax simi-
lar to LINQ [10]) that fetches all values stored in the entity Person. The iterator in the
screen definition expands the query result into a sequence of web page blocks com-
puted by iterating over the elements of the query result. The screen also contains
textfield elements, which bind the user input elements with the local names name and

8

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.1. Examples

Figure 2.1: Phone Book directory Screen

phone. There is also a button element that calls a server action named addPerson us-
ing as arguments the values in the text fields associated to the local names name and
phone. Figure 2.1 displays the resulting HTML screen page, already with two records
in the entity. The header and footer page layout comes directly from the web server,
the middle section contains the result from the screen directory execution.

When the “Add” button is pressed, the action addPerson is executed at the server
adding a new row to the entity Person. The values for this new row are obtained from
the parameters in the action addPerson that were sent in the request made in the previ-
ous screen. After the insertion of the new row, the screen directory is rendered again.

2.1.2 Simple Blog

This Simple Blog example allows any user to post messages without any kind of verifi-
cations. However, security code could be added, e.g., through a User entity and forms
to register and login, we avoided to include such mechanisms in order to keep the ex-
ample simple. Listing 2.2 code fragment displays entity Message where messages are
stored. Each message has a title, author and a body (text).

The list screen presented in Listing 2.3 lists all current messages. The iterator ex-
pression iterates a from query result that selects all messages from the entity Message.
For each row the message title (row.title) and author (row.author) is presented along side
with a View link to the screen view (Listing 2.5). After displaying all message titles, au-
thors and links, a Write Message form is displayed. The label Write Message is formatted
using a div block and a CSS class named title (Listing 2.4). At the screen bottom three

9

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.1. Examples

def ent i ty Message {
i d : Id ,
t i t l e : String ,
author : String ,
t e x t : String

}

Listing 2.2: Simple Blog Entity

def screen l i s t {
div t i t l e {

label " Message L i s t "
} ;
i t e r a t o r (row in (from (m in Message) select m)) {

label row . t i t l e + " (" + row . author + ") " ;
l i nk {

label " View "
} to view (row . i d) ;
br

} ;
br ; br ;
div t i t l e {

label " Wr i te Message "
} ;
label " T i t l e : " ; t e x t f i e l d t i t l e ; br ;
label " Author : " ; t e x t f i e l d author ; br ;
label " Text : " ; t e x t f i e l d t e x t ; br ;
button "Add" to saveMessage (t i t l e , author , t e x t)

}

Listing 2.3: Simple Blog list Screen

textfield and a button are displayed. These elements allow to add a new message by
calling the server action saveMessage and sending the text fields input values by ar-
gument. Figure 2.2 displays the result of rendering the screen list already with two
messages in the entity.

Listing 2.5 contains the view screen definition. In this definition, through a from
query that selects a message using the message identifier (msgId) in a where clause,
an iterator displays the message details. Although the iterator is normally used to
display a set of results (more than one), in this case, the iterator is here used to iterate
only one message, selected by the entity primary key id. Inside the iterator block, after
displaying the message title and author formatted with the div block, the message text

is displayed. Then a link to the list screen is displayed allowing to go back to the main
screen list. Figure 2.3 shows an example of the view screen web page.

The final part of the list screen (Listing 2.3) displays a form to add messages. When
the button from that screen is clicked, the action saveMessage (Listing 2.6) is executed

10

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.1. Examples

. t i t l e {
fon t−s ize : 24 p t ;
fon t−weight : bold ;
co l o r : #515151;
border−bottom : 1px dashed #9A9A9A ;

}

Listing 2.4: Simple Blog and Photo Album title CSS

Figure 2.2: Simple Blog list Screen

def screen view (msgId : I n t) {
i t e r a t o r (msg in (from (m in Message) where m. i d == msgId select m)) {

div t i t l e {
label " ’ " + msg . t i t l e + " ’ by " + msg . author

} ; br ;
label msg . t e x t

} ;
br ; br ;
l i nk {

label " Message L i s t "
} to l i s t ()

}

Listing 2.5: Simple Blog view Screen

in the server with the arguments from the input text fields values. This saveMessage

action only adds a new message to entity Message and then displays the full message
list, by rendering the screen list.

11

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.1. Examples

Figure 2.3: Simple Blog view Screen

def action saveMessage (t i t l e I n : String , au thor In : String , t e x t I n : String) : Block {
inser t {

t i t l e = t i t l e I n ,
author = author In ,
t e x t = t e x t I n

} in Message ;
l i s t ()

}

Listing 2.6: Simple Blog saveMessage Action

2.1.3 Photo Album

Photo Album application allows users to browse photos from all users, and also allows
each user to add new photos to their own album. The code fragment in Listing 2.7
defines two entities (User and Photos). User entity contains details for each user, it
includes the user name, password and email address. The second entity, Photos stores
photos details for all users where each photo is identified by its owner (user), a title and
the photo url.

The userList screen (Listing 2.8) displays a list of all users in the system. First, the
label User List is formated with a div element and the CSS class title (Listing 2.4). Us-
ing an iterator expression, the query that selects all user’s names is expanded. In each
expanded row, a link to each user’s album is created, i.e., a link to the viewUser screen.
After displaying the user list though links, a simple register section is presented, con-
taining three textfield elements and a button element to call the register action at the
server. Figure 2.4 shows the resulting screen, already with two users in the system.

The register action (Listing 2.9) adds a new row to the User entity based on the pa-
rameters values, and after the row is inserted the userList screen is shown again.

12

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.1. Examples

def ent i ty User {
i d : Id ,
username : String ,
password : String ,
emai l : String

}

def ent i ty Photos {
i d : Id ,
user : String ,
t i t l e : String ,
u r l : String

}

Listing 2.7: Photo Album Entities

def screen u s e r L i s t {
div t i t l e {

label " User L i s t "
} ;
i t e r a t o r (row in (from (u in User) select {uname = u . username })) {

l i nk {
label row . uname

} to viewUser (row . uname) ; br
} ; br ;

div t i t l e {
label " Reg is te r "

} ;
label " Username : " ; t e x t f i e l d username ; br ;
label " Password : " ; t e x t f i e l d password ; br ;
label "E−mai l : " ; t e x t f i e l d emai l ; br ;
button " Reg is te r " to r e g i s t e r (username , password , emai l)

}

Listing 2.8: Photo Album userList Screen

def action r e g i s t e r (uname : String , pwd : String , em: String) : Block {
inser t {

username = uname ,
password = pwd ,
emai l = em

} in User ;
u s e r L i s t ()

}

Listing 2.9: Photo Album register Action

13

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.1. Examples

Figure 2.4: Photo Album userList Screen

def screen viewUser (uname : String) {

div t i t l e {

label uname + " ’ s Photos "

} ;

i t e r a t o r (photo in (from (p in Photos)

where p . user == uname

select { t i t l e = p . t i t l e , u r l = p . u r l })) {

label photo . t i t l e ; br ;

image photo . u r l ; br ; br

} ; br ; br ;

div t i t l e {

label "Add Photo "

} ;

label " Password : " ; t e x t f i e l d password ; br ;

label " Photo T i t l e : " ; t e x t f i e l d t i t l e ; br ;

label " Photo URL: " ; t e x t f i e l d photo ; br ;

button "Add" to addPhoto (uname , password , t i t l e , photo) ; br ; br ;

l i nk {

label " Back to User L i s t "

} to u s e r L i s t ()

}

Listing 2.10: Photo Album viewUser Screen

14

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.2. Syntax

def action addPhoto (uname : String , pwd : String , t i t l e : String , u r l : String) : Block {

l e t q = from (u in User)

where u . username == uname and u . password == pwd

select u in

(i f (count (q) == 1) then {

inser t {

user = uname ,

t i t l e = t i t l e ,

u r l = u r l

} in Photos

} else {

fa lse

}) ;

viewUser (uname)

}

Listing 2.11: Photo Album addPhoto Action

After clicking in a user name link in the userList screen, the viewUser (Listing 2.10)
screen is displayed. This screen executes a from query selecting all photos for a given
user (parameter uname) using a where clause. The query result is iterated and for each
value, the photo title and image are displayed. After displaying all photos, an Add Photo

form is displayed. Through this form it is possible to add new photos, with the user’s
password and the new photo title and URL. The Add button calls the server action
addPhoto (Listing 2.11) with text fields input values as arguments. Figure 2.5 displays
the viewUser screen for the user Miguel with one photo.

When the button in the userList screen is clicked, the addPhoto action (Listing 2.11) is
executed at the server. The action checks if the username and password are valid, if the
query result contains exactly one row (case where the user details are correct), then the
new photo is inserted in the entity Photos. After that, the viewUser screen for the given
user name uname is displayed again.

2.2 Syntax

Our language comprises three language fragments to define entities, web page blocks,
and expressions according to the syntax in Figure 2.6. The definition of language val-
ues is in Figure 2.7 and the definition of the type language is in Figure 2.8.

An application is composed by a set of definitions for entities, actions, and screens.
Entities are containers of structured persistent data implemented in database tables.
Each defined entity is identified by an entity name (t), an auto-increment integer pri-
mary key and a list of typed attributes. Operations over entities mimic a subset of

15

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.2. Syntax

Figure 2.5: Photo Album viewUser Screen

the standard database query language (SQL). The core of the application, i.e., business
logic, is defined by actions which are abstractions over general purpose expressions
comprising operations over entities, screens, and other values. Each action can be pa-
rameterized and must have a declared return type. Application interface is defined in
pre-designed screens, which are abstractions over a user interface definition language
whose values are web page blocks. This approach allows us to define user interfaces in
a clean separate way, which is distinctive from other languages that mix both concepts
in the same language.

Basic types used in entity attributes are integers (Int), strings (String), and booleans
(Bool). We also define, for each entity an identifier type (entity.Id) whose internal rep-
resentation is a foreign integer key, i.e., another entity integer primary key. In addition
to basic types, our language has structure, list, and block types. Structures are labeled
product types that describe instances of entities (or rows of database tables) and list
types describe homogeneous sequence of values. The Block type represents web page
blocks, i.e., screen elements.

Available expressions comprise all common binary and unary operators. It also

16

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.2. Syntax

t, a, s ∈ I, set of definition identifiers
id ∈ V , set of variable identifiers
label ∈ L, set of labels

A ::= D (Application)
D ::= (Definitions)

def entity t { label : Id, label : BT } (Entities)
| def action a (x : T) : T { e } (Actions)
| def screen s (x : T) { b } (Screens)

O ::= (Binary Operators)
;

| and | or
| + | − | ∗ | /
| < | > | <= | >= | == | ! =

U ::= not | − (Unary Operators)

e ::= (Expressions)
e O e (Binary Operation)

| U e (Unary Operation)
| v (Values)
| let x = e in e (Variable Declaration)
| if e then e else e (Condition)
| a (e) (Action/Screen Call)
| [e] (List)
| foreach x in e do e (List Iterator)
| { label = e } (Structure)
| e.label (Structure Field)
| insert e in t (Entity Insert)
| update x in t with e where e (Entity Update)

| from (x in t) where e select e (Entity Select)
| count (e) |max (e) |min (e) (Aggregation Functions)

b ::= (Web Page Blocks)

b (Sequence of Blocks)
| br (Line Break)
| label e (Label)
| div label { b } (Div)
| image e (Image)
| link { b } to e (Link)
| iterator (x in e) { b } (Iterator)
| textfield x with e (Text Field)
| button e to e (Button)

Figure 2.6: Syntax – Definitions, Expressions and Web Page Blocks

17

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.2. Syntax

w ::= (Web Page Blocks Values)
w | br | label v | div label { w } | image v

| link { w } to e | iterator (x in v) { w }
| textfield x with v | button v to e

v ::= string | int | false | true | id | [v] | {l = v} (Expressions Values)

Figure 2.7: Syntax – Values

BT ::= (Basic Types)
String (Strings)

| Int (Integers)
| Bool (Booleans)
| entity.Id (Entity Identifier)

T ::= (Types)
BT (Basic Type)

| Block (Web Page Block)

| { label : T } (Structure)
| List〈T 〉 (List)

Figure 2.8: Syntax – Types

contains the standard conditional and function call expressions, and a functional frag-
ment that contains let declarations. The language works with primitive list values for
which we define a list constructor by evaluating a list of expressions and a foreach ex-
pression that iterates a given list of values, and executes its inner expression for each
value producing a list of return values. Structures are also primitive values in our
language, so we have the standard structure constructor and field access expressions.

Database manipulation adds an imperative flavor to the language and is incorpo-
rated in the expression language by the insert, update, and from expressions that
mimic a subset of the standard SQL queries in a syntax similar to LINQ [10]. The
from expressions fetch a list of rows from a set of entities, corresponding to a relational
join, and a conditional where expression. The insert expression adds a new row to
a given entity, while the update expression replaces values of fields in one or more
rows in the entity. The available aggregate functions count, min, and max take an ex-
pression and applies the function to that expression value. Although these operations
usually correspond to primitive database operations, it is not yet supported in our core
language.

A web page is composed by a non-empty set of web page blocks where each kind
of block represents a different sort of HTML element. The web page block language

18

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.3. Semantics

comprises line breaks (br), text labels (label), named div blocks, which are used to give
structure and custom look to blocks based on classes defined in the Cascading Style
Sheet (CSS). There are also blocks to introduce images (image) and links (link) for a
given URL. The iterator block expands a list of values to a set of blocks for each value
in the list. Input elements (textfield) declare local variable names that can be used in
expressions that pass the control flow from the browser back to the web server through
actuator elements (button). Web page blocks may contain expressions and actually a
web page is defined by web page blocks containing values or delayed expressions in
the case of buttons.

2.3 Semantics

We define our language semantics in a big-step rule system where the successful eval-
uation of an expression e, with relation to a program state S and a program definition
P , is given by a valid judgment of the form:

S; e ⇓ S ′; v

Where S and S ′ are the program states before and after the evaluation. The program
state is a mapping between entity names and mutable collections of structured values.
We write S(t) = [v1, · · · , vn] to express that the entity t has n rows, v1 to vn without any
specific order. The expression e in the judgment is the expression to be evaluated in
the context of program P . We say that the evaluation of the expression e in the state
S results in a value v and a changed state S ′. We also write P (x) = y to fetch the
definition y of name x in program P and, e{w/x} to mean the substitution of variable
x by value w in the expression e.

Binary operators semantic rules perform a left to right evaluation. First the left-
hand side expression e1 evaluates to a value v1 and then the right-hand side expression
e2 evaluates to v2. The resulting value corresponds to the operation denoted by the
binary φ operator. Sequence operator (;) has a special evaluation, since the resulting
value corresponds only to the value associated to the right-hand side expression e2.
However, both expressions, e1 and e2 are evaluated, also from left to right.

φ ∈ {and,or,==, ! =, >,>=, <,<=,+,−, ∗, /}

S; e1 ⇓ S ′; v1 S ′; e2 ⇓ S ′′; v2
S; e1 φ e2 ⇓ S ′′; v1 φ v2

S; e1 ⇓ S ′; v1 S ′; e2 ⇓ S ′′; v2
S; (e1; e2) ⇓ S ′′; v2

(Binary Operation)

Unary operators semantic rule is straight forward: expression e evaluates to value

19

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.3. Semantics

v and then the unary operator θ is applied.

θ ∈ {not,−} S; e ⇓ S ′; v

S; θ e ⇓ S ′; θ v
(Unary Operation)

Variable declaration allows to associate a value with an identifier. Expression e1

evaluates to a value v1 and then the second expression e2 is evaluated after replacing
all occurrences of label x by the value v. This last evaluation returns a value v2, the
same value for the whole let expression.

S; e1 ⇓ S ′; v1 S ′; e2{v1/x} ⇓ S ′′; v2
S; let x = e1 in e2 ⇓ S ′′; v2

(Variable Declaration)

The conditional expression if takes three expressions, the condition ec, the then ex-
pression e1, and the else expression e2. Expression ec must evaluate to true or false. If
ec evaluates to true, expression e1 is evaluated to the value v. Otherwise, if ec evaluates
to false, expression e2 is evaluated to the value v. In either cases, only one of the branch
expressions, e1 or e2, is evaluated.

S; ec ⇓ S ′; true S ′; e1 ⇓ S ′′; v

S; if ec then e1 else e2 ⇓ S ′′; v

S; ec ⇓ S ′; false S ′; e2 ⇓ S ′′; v

S; if ec then e1 else e2 ⇓ S ′′; v
(Condition)

The rule for action call follows a call-by-value strategy, where expressions f used
as arguments are evaluated to obtain values g. The body expression e is evaluated to
value v with the parameters xi replaced by the values gi.

P (a) = a(x){e} Si; fi ⇓ Si+1; gi Sn+1; e{g/x} ⇓ S ′; v i = 1, · · · , n
S1; a (f) ⇓ S ′; v

(Action Call)

The semantics for the screen call is similar to action call. The difference remains in
the definition body, the screen body is a block b that is evaluated to a web page block
value w.

P (s) = s(x){b} Si; fi ⇓ Si+1; gi Sn+1; b{g/x} ⇓ S ′;w i = 1, · · · , n
S1; s (f) ⇓ S ′;w

(Screen Call)

The list constructor takes a set of expressions e and evaluates each expression ei

to a value vi, and as result we obtain a sequence of values in the same order as the
expressions.

Si; ei ⇓ Si+1; vi i = 1, · · · , n
S1; [e] ⇓ Sn+1; [v]

(List)

The rule for the foreach expression evaluates a given expression e to a list of values
and then repeatedly evaluates the expression f for each element in the list replacing all

20

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.3. Semantics

occurrences of x by the value vi from the list.

S; e ⇓ S1; [v1, · · · , vn] Si; f{vi/x} ⇓ Si+1;wi i = 1, · · · , n
S; foreach x in e do f ⇓ Sn+1; [w1, · · · , wn]

(List Iterator)

A structure is created based on an association between a set of labels l and a set
expressions e, where each label li is associated to the expression ei. Each expression ei
evaluates to a value vi and is associated to the same label li that the expression ei was
associated. The result is a set of values, each associated with a single label.

Si; ei ⇓ Si+1; vi i = 1, · · · , n
S1; { l = e } ⇓ Sn+1; { l = v }

(Structure)

To access a structure field, first expression e is evaluated to a structure value, and
then the value associated with the specified label is returned.

S; e ⇓ S ′; { · · · , label = v, · · · }
S; e.label ⇓ S ′; v

(Structure Field)

The rule for insert evaluates an expression e to a structure and adds a new row
to an existing entity t. The resulting value is true if the new value was successfully
appended. If there is a conflict between the new value v to be inserted and any existing
value vi, the entity is not modified, i.e., S ′(t) = S(t) and the insert expression returns
false.

S(t) = [v1, · · · , vn] S; e ⇓ S ′; v S ′(t) = [v1, · · · vn, v] ∀i, v 6= vi
S; insert e in t ⇓ S ′; true

(Entity Insert – 1)

S(t) = [v1, · · · , vn] S; e ⇓ S ′; v S ′(t) = S(t) ∃i, v = vi
S; insert e in t ⇓ S ′; false

(Entity Insert – 2)

The update expression modifies a set of values in the entity t. For each existing
value in the entity that the condition f holds, expression e is evaluated, modifying the
existing value vj and obtaining a new value wj . For the values vk that the condition f is
false, that value remains unmodified. The update expression result is the set of values
that were modified plus the values that were not modified. The number of records in
the entity before and after the whole expression is the same.

21

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.3. Semantics

S(t) = [v1, · · · , vn] I = {1, · · · , n}
S; f{vj/x} ⇓ S; true S; e{vj/x} ⇓ S;wj j ∈ J ⊆ I

S; f{vk/x} ⇓ S; false k ∈ I\J
S ′(t) = [vk1 , · · · , vkq , wji , · · · , wjp]

S; update x in t with e where f ⇓ S ′; true
(Entity Update – 1)

S(t) = [v1, · · · , vn] I = {1, · · · , n}
S; f{vj/x} ⇓ S; true S; e{vj/x} ⇓ S;wj j ∈ J * I

S; f{vk/x} ⇓ S; false ∀k. k ∈ I
S ′(t) = [v1, · · · , v2]

S; update x in t with e where f ⇓ S ′; false
(Entity Update – 2)

For the sake of simplicity we present a rule for from expression with only one entity.
For each value that expression e yields true, that value (wj) is selected. The result value
for the whole select expression is the set of values that the condition e yield true.

S(t) = [v1, · · · , vn] I = {1, · · · , n}
S; e{vj/x} ⇓ S; true S; f{vj/x} ⇓ S;wj j ∈ J ⊆ I

S; e{vk/x} ⇓ S; false k ∈ I\J
S; from (x in t) where e select f ⇓ S; [w]

(Entity Select)

The count expression rule evaluates an expression e to a list of values and returns
the total number of values in that list.

S; e ⇓ S ′; [v1, · · · , vn]

S; count (e) ⇓ S ′;n
(Count Function)

The min and max functions allow to calculate the minimum and maximum value of
a list. Expression e evaluates to a list of values and then the resulting value corresponds
to the minimum or maximum value in the list depending on the function applied.

S; e ⇓ S ′; v ∀x ∈ v : v ≤ x v ∈ v
S; min (e) ⇓ S ′; v

(Minimum Function)

S; e ⇓ S ′; v ∀x ∈ v : v ≥ x v ∈ v
S; max (e) ⇓ S ′; v

(Maximum Function)

Where v = [v1, · · · , vn].
For a given sequence of blocks, each block bi evaluates to a block value wi and the

22

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.3. Semantics

result is the set of values obtained, w.

Si; bi ⇓ Si+1;wi i = 1, · · · , n
S1; b ⇓ Sn+1;w

(Sequence of Blocks)

The line break (br) rule is straight forward, since it does not contains any expres-
sions or blocks that require evaluation.

S; br ⇓ S; br
(Line Break)

The label block evaluates an expression e to a value v resulting in a block value that
shows the value obtained.

S; e ⇓ S ′; v

S; label e ⇓ S ′; label v
(Label)

The div block allows to define custom look to a block through a CSS class named
label. The inner block b evaluates to a block value w and the result is the formated
div containing w.

S; b ⇓ S ′;w

S; div label { b } ⇓ S ′; div label { w }
(Div)

The image block displays an image based on a given URL v evaluated from the
expression e.

S; e ⇓ S ′; v

S; image e ⇓ S ′; image v
(Image)

The link block links a block to a given URL. The inner block b evaluates to a block
value w and the expression e, which corresponds to the URL, evaluates to v. As result
we have a link element linking the block value w to the URL value v.

S; b ⇓ S ′;w S ′; e ⇓ S ′′; v

S; link { b } to e ⇓ S ′′; link { w } to v
(Link)

The iterator block is similar to the foreach expression. It evaluates an expression
e to a list of values and iterates that list. For each value vi in the list, the block b is
evaluated to wi with x replaced by vi. The result is a set of all blocks values obtained.

S; e ⇓ S1; [v1, · · · , vn] Si; b{vi/x} ⇓ Si+1;wi i = 1, · · · , n
S; iterator (x in e) { b } ⇓ Sn+1;w

(Iterator)

The textfield block binds user input to a local name x. This input can then be used
to send data back to the server with the button block. Expression e evaluates to a value

23

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.4. Type System

v that corresponds to the initial value in the HTML input element.

S; e ⇓ S ′; v

S; textfield x with e ⇓ S ′; textfield x with v
(Text Field)

The button block creates an input button element with the label v1 and when clicked
executes the value associated to the expression e2. This expression e2 is used to call
an action or screen in the server, sending input from text fields as argument to an
action or screen, like a submit button in an HTML form. The execution of the web
page interaction is not defined in this semantics so, the value associated to expression
e2 is simplified as much as possible (e.g. expression 1 + 2 is simplified to 3) and con-
verted to JavaScript to be included in the web page source. When the button is clicked,
JavaScript code executes and solves open names from text fields and then issues a new
request for the desired action or screen. Only JavaScript code is executed in the client,
the code regarding the action or screen that is called is executed at the server.

S; e1 ⇓ S ′; v1
S; button e1 to e2 ⇓ S ′; button v1 to e2

(Button)

2.4 Type System

We now define the type system for our language by a rule system for the judgment
with the standard form:

∆ ` e : T

Where T is a type, defined by the syntax in Figure 2.8, which is assigned to expres-
sion e with relation to the typing environment ∆. The type language comprises basic
types, integers (Int), booleans (Bool), and strings (String). Composite types like lists
(List〈T 〉), structures ({· · · }), and web page blocks (Block). List types describe homo-
geneous sequences of values, and structure types are labeled product types describing
instances of entities (or rows of database tables).

The following rules describe the typing system for binary operators (logic, arith-
metic, compare, and sequence). Logic operators require that both expressions have
type Bool and results in a type Bool

γ ∈ {and,or} ∆ ` e1 : Bool ∆ ` e2 : Bool

∆ ` e1 γ e2 : Bool
(Logic Operators)

Arithmetic operators are only available to Int type expressions, so both expressions

24

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.4. Type System

must have type Int and also result in a type Int.

φ ∈ {+,−, ∗, /} ∆ ` e1 : Int ∆ ` e2 : Int

∆ ` e1 φ e2 : Int
(Arithmetic Operators)

Compare operators are divided in two groups. First group (θ) can be applied to
any type of expressions and result in a Bool type. The second group of operators (σ)
require that both expressions have type Int and result in a type Bool.

θ ∈ {==, ! =} σ ∈ {>,>=, <,<=}

∆ ` e1 : T ∆ ` e2 : T
∆ ` e1 θ e2 : Bool

∆ ` e1 : Int ∆ ` e2 : Int

∆ ` e1 σ e2 : Bool
(Compare Operators)

The sequence operator (;) is similar to the binary operators above except the result
type T2 corresponds to the type associated with the right-hand side expression e2.

∆ ` e1 : T1 ∆ ` e2 : T2
∆ ` e1; e2 : T2

(Sequence Operator)

Unary operator not can only be applied to boolean expressions and returns a Bool
type. The second unary operator (−) can only be applied to Int expressions and also
returns a type Int.

∆ ` e : Bool

∆ ` not e : Bool

∆ ` e : Int

∆ ` −e : Int
(Unary Operators)

An identifier x has type T in a typing environment where x has type T .

∆, x : T ` x : T
(Identifier)

Variable declaration allows to associate any value type to a label x. The inner ex-
pression e2 has type T2 in a typing environment where x has type T1, obtained from
expression e1. The result type is the same as the type resulting from e2.

∆ ` e1 : T1 ∆, x : T1 ` e2 : T2
∆ ` let x = e1 in e2 : T2

(Variable Declaration)

The conditional expression if takes an expression c, the condition, with type Bool
and both branches expressions, e1 and e2, must have the same type. The result type of
the whole if expression is the same as the branches, T .

∆ ` c : Bool ∆ ` e1 : T ∆ ` e2 : T
∆ ` if c then e1 else e2 : T

(Condition)

25

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.4. Type System

In the typing of action or screen call expressions, each argument expression ei has
type Ti that must match the parameter type in the corresponding definition. In the
case of an action call, the result type Tr is obtained directly from the definition. Screens
return type is always Block, therefore it is omitted in screen definitions.

P (a) = a(x : T) : Tr { · · · } ∆ ` ei : Ti i = 1, · · · , n
∆ ` a(e) : Tr

(Action Call)

P (s) = s(x : T) { · · · } ∆ ` ei : Ti i = 1, · · · , n
∆ ` s(e) : Block

(Screen Call)

Since supported lists are homogeneous sequence of values, all expressions ei must
have the same type T , and as a final result the list constructor is a list of values with
type T .

∆ ` ei : T i = 1, · · · , n
∆ ` [e] : List〈T 〉

(List)

The foreach iterator takes an expression e1 with type List〈T1〉 and the inner expres-
sion e2 has type T2 in a typing environment where x has type T1 (the inner type of the
list obtained from e1).

∆ ` e1 : List〈T1〉 ∆, x : T1 ` e2 : T2
∆ ` foreach x in e1 do e2 : List〈T2〉

(List Iterator)

A structure is built based in a set of expressions ei, where each expression ei is
associated with label li. Each expression ei has type Ti and two distinct expressions
may have different types.

∆ ` ei : Ti i = 1, · · · , n
∆ ` { l = e } : { l : T }

(Structure)

To access a structure field, the expression e must be a structure and contain the
required field named label. The result type is the same as the type associated to label.

∆ ` e : {· · · , label : T , · · · }
∆ ` e.label : T

(Structure Field)

The typing of the insert expression requires that t is an entity with rows of type T
(represented as List〈T 〉) and the expression e must evaluate to the same type T . The
result type is boolean stating the successfulness of the insert operation.

∆ ` t : List〈T 〉 ∆ ` e : T
∆ ` insert e in t : Bool

(Entity Insert)

26

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.4. Type System

The update expression for an entity t with rows of type T (represented as List〈T 〉)
performs an update based on an expression e of type T with a boolean conditional ex-
pression f . The result is also Bool stating if any record from the entity t was modified.

∆ ` t : List〈T 〉 ∆, x : T ` e : T ∆, x : T ` f : Bool

∆ ` update x in t with e where f : Bool
(Entity Update)

The from expression rule is simplified for a single entity, and it selects a set of
records from one entity t. The selected records are filtered according to a conditional
expression e, i.e., for each record that the conditional expression e is true that record is
selected. The result expression f has typeU and hence the result of the from expression
is List〈U〉.

∆ ` t : List〈T 〉 ∆, x : T ` e : Bool ∆, x : T ` f : U

∆ ` from (x in t) where e select f : List〈U〉
(Entity Select)

As for the count expression, it results in an Int type and is available for any list.

∆ ` e : List〈T 〉
∆ ` count (e) : Int

(Count Function)

The min and max expressions are only available for lists of integers and both return
an Int type.

∆ ` e : List〈Int〉
∆ ` min (e) : Int

∆ ` e : List〈Int〉
∆ ` max (e) : Int

(Minimum and Maximum Functions)

The type system rules for blocks always result in a type Block, an interface ele-
ment. We present the block rules in a head and tail form, where the head is the first
block being evaluated and the tail is the remaining blocks (possibly none). With this
kind of presentation we omit the rule for sequence of blocks, since the sequence b is
represented in every rule and has always type Block. In the following rules for blocks
we explain the block being evaluated, since the tail is always b with type Block.

The br block typing rule is straight forward since it does not contains any inner
expressions or blocks.

∆ ` b : Block

∆ ` br, b : Block
(Line Break)

For the label block the expression to be printed in the web page e can be of any
type, hence T .

∆ ` e : T ∆ ` b : Block

∆ ` label e, b : Block
(Label)

27

2. CORE LANGUAGE FOR WEB APPLICATIONS 2.4. Type System

The div block has an inner block c that must have type Block. The formatting CSS
class label is defined as a string by the language syntax.

∆ ` c : Block ∆ ` b : Block

∆ ` div label { c }, b : Block
(Div)

The typing rule for the image block takes an expression e that corresponds to the
image URL, this URL can be of any type.

∆ ` e : T ∆ ` b : Block

∆ ` image e, b : Block
(Image)

The iterator typing rule takes an expression e of type List〈T 〉 and the inner block c
has type Block in a typing environment where x has type T .

∆ ` e : List〈T 〉 ∆, x : T ` c : Block ∆ ` b : Block

∆ ` iterator (x in e) { c }, b : Block
(Iterator)

The textfield block takes an expression e of any type T and then the tail sequence b
is evaluated in a typing environment where x has type T , the same type as the expres-
sion e.

∆ ` e : T ∆, x : T ` b : Block

∆ ` textfield x with e, b : Block
(Text Field)

The expressions in link and button elements that represent context switching in the
browser (after the token to) must always yield web page block (action or screen call)
or an expression that has type String (external URL).

∆ ` c : Block ∆ ` e : T ∆ ` b : Block

∆ ` link { c } to e, b : Block
(Link)

∆ ` e1 : T1 ∆ ` e2 : T2 ∆ ` b : Block

∆ ` button e1 to e2, b : Block
(Button)

28

3
Runtime Support System

In addition to design a core language for web applications, this work also aims at im-
plementing a prototype for our language. This prototype aims at being an interpreter
for the language and at the same time a development environment. We consider the
two interaction modes depicted in Figure 3.1, the execution mode and the development
mode. Given the correct URL in the execution mode the user sees the screens defined in
the application mode, just like a common web application. In development mode the
user sees a code editor and an application browser, although all operations are made
through a web based environment.

Our prototype architecture is depicted in Figure 3.2 and includes an HTTP server,
a language interpreter, a type checker, and two databases, one for the application data
(data created and managed by the application itself) and another for the application
code (contains all saved versions of application elements). The system entry point is
the HTTP server, which receives requests from the browser and either manages and
checks the code (development mode) or orders the language interpreter to execute
some action or screen (execution mode).

29

3. RUNTIME SUPPORT SYSTEM 3.1. Execution Mode

(a) Execution Mode (b) Development Mode

Figure 3.1: Prototype Interaction Modes

Figure 3.2: System Architecture

3.1 Execution Mode

Applications running in the system are accessed through well determined URLs1 con-
taining the information about the module name (that works like a namespace), a pro-
gramming element name (action or screen) and the corresponding arguments. By us-
ing a different module name for each application we can have several applications
running in the same system, without any kind of interference between applications.

An action or screen can be parameterized and the argument values are encoded and
sent though the URL. Since a URL is a string, when the HTTP server receives a request,
it must get all parameters and check if the requested action or screen parameter types
match. If a parameter type is not a String, then the argument value must be converted
to the expected type, but depending on the value sent to the server, it might not be
possible to perform the cast operation. If this happens, then the execution is aborted
and nothing is modified in the server. Upon successful cast of all values, the action or
screen execution can proceed. The same happens when an action or screen is called

1http://server:port/module/element/arg0/arg1/.../

30

http://server:port/module/element/arg0/arg1/.../

3. RUNTIME SUPPORT SYSTEM 3.1. Execution Mode

through button or link elements: all the data received on the server end are strings
and if needed cast operations are performed. Notice that generated code produces
well typed calls in web pages. These type conversions are only needed in hand crafted
URLs.

When a valid HTTP request is issued, the system parses the URL gathering in-
formation about the module name, element name, and its arguments. Based on the
gathered information, the system loads the application from the specified module and
executes the desired element (screen or action) with the arguments received (if any).
The code of the running application is determined by the latest published version of
each programming element. The system ensures that the latest published version of all
elements from the same application is sound. Screens are all rendered using common
application layout, hard wired in the web server (Figure 3.1a). This layout contains in
the top right corner an Edit button that switches from the execution mode to the devel-
opment mode. Switching to development mode allows to modify the definition of the
current screen. We designed this prototype as an open development environment and
we have not encoded any protection mechanisms that must be obviously implemented
in normal operation mode.

Each screen consists in one web page, which is rendered in standard HTML and
JavaScript. When the interpreter reaches a web page block (e.g., br, div, image) it eval-
uates all inner expressions to values and then the block being evaluated is rendered
as pure HTML code. JavaScript code is used to build the expressions that go back to
the server, i.e., screen or action calls in expressions after the token to in link and but-
ton blocks. If the screen or action call contains arguments, those expressions must be
evaluated to values, only open names referring text fields are left unsolved and is here
that JavaScript is inserted. Before calling the action or screen, values from textfield ele-
ments are obtained using JavaScript and included in the request. Although challenging
the current implementation is quite limited and only allows action and screen calls to
go back to the server. A richer language can be used in these interaction spots by means
of AJAX technology but this lies out of the scope of this work.

The language interpreter upon reaching a query expression converts it to SQL. Dur-
ing this conversion all inner expressions are evaluated to values and those values con-
verted to database types and included in the query and, only then, the query is exe-
cuted in the database. For an update expression the result depends on the number of
updated rows, and for an insert expression the result depends on the successfulness of
the insertion. In the case of a from expression the query results are read and each row
is converted to a structure, and all structures joined in one list. This list is now a value
that belongs to our language and can be manipulated by the language expressions.

31

3. RUNTIME SUPPORT SYSTEM 3.2. Development Mode

(a) Entity Editor (b) Code Editor

Figure 3.3: Editing Windows

3.2 Development Mode

Our web based development environment lets the user access and change the elements
of an application, with an operation close to a developer Wiki system. The environ-
ment (Figure 3.1b) lists all available entities, screens, and actions for a given module
(which is identified by the first fragment of the URL). The environment then opens the
code of each element inside the browser window and shows a console in the lower
right corner. Figure 3.3a displays the editing window for an entity and Figure 3.3b
displays the editing window for an action (screen editing window is similar). The
system also makes some other commands available in the top right corner, like the Ex-
tract command, which allows to view the complete definition of the active application,
the Clear System command, which allows anyone to delete all definitions and reset the
system, and the Help command that shows the language specification.

The runtime support system has the notion of saved and published version of ap-
plication definitions. Every time a definition is saved, a version number is associated to
it. Upon publishing, if the whole application is considered sound, by the type checker,
then that version is accepted and considered active or published. This published ver-
sion corresponds to the application definition that is actually running in execution
mode.

Existing entities can be modified by adding new attributes, change existing at-
tributes, or delete existing attributes. These operations are available through a specific
editing window for entities (Figure 3.3a). This window also allows to Save & Publish
the new entity definition. We opted not to allow only to save entities and force publish,
since entities are one of the most important components of web applications, and most
modifications in entities force modifications in other components (actions and screens).

Actions and screens are defined using a window similar to a text editor (Figure 3.3b)
where language syntax tokens are highlighted. Each window has several commands:

32

3. RUNTIME SUPPORT SYSTEM 3.2. Development Mode

the View command allows to view the current action or screen published version in exe-
cution mode, Save and Publish buttons allow to perform each operation independently,
and the Revert button allows to revert the current definition to the last published ver-
sion code (if it exists).

The dynamic reconfiguration mechanism implemented ensures that after publish-
ing a new definition, the system loads the new application definition and performs the
necessary modifications ensuring that the application runs as expected. When a screen
or action is modified or created the only reconfiguration needed is to load the new
screen or action definition. Although when an entity is modified that is not the case,
the Data database must also be modified to match the new entity definition. If a new
attribute is added to an entity, then the database table is modified to include a new col-
umn corresponding to that attribute. The opposite operation, removing an attribute, is
similar, the corresponding column is removed from the database table. Changing the
type of an entity attribute causes a type cast on all existing values to the new type. In
either cases, the existing data in entities is kept, ensuring that the application evolves
to a new state where the previous existing data is still present. When a new entity is
defined, the Data database is also updated, a new table corresponding to the new entity
is created.

33

4
Web Applications Development

The main-stream of web applications development is based on a three layer architec-
ture that divides applications into client interface, business logic, and database layers.
In practice, applications are developed in heterogeneous programming language en-
vironments, and in particular, business logic is specified using general purpose pro-
gramming languages to define computations and specialized query languages to ac-
cess information in databases [16].

General purpose programming languages can be divided into compiled languages
(e.g., Java, C#) and interpreted languages (e.g., PHP, Ruby, ASP) [23]. In compiled
languages the application code is “translated” (compiled) to machine code for direct
execution by the hardware or, in some cases the code is translated to an intermediate
language (e.g., Java Bytecode), and then executed using a virtual machine (e.g., Java
Virtual Machine). Despite offering static verifications and optimizations in compile
time, when the application code is modified it is required to stop the application exe-
cution, recompile the new code and then start the application. Interpreted languages
or scripting languages do not have a compiler or compilation phase, instead these pro-
gramming languages rely on an interpreter that executes instructions directly from the
application code.

It is also important to refer another difference between compiled and interpreted
languages, specially when used in web applications environments: dynamic typing

35

4. WEB APPLICATIONS DEVELOPMENT 4.1. Ruby On Rails

versus static typing. In a dynamically typed language (e.g., Ruby, PHP, ASP), variable
types are detected during execution according to their value, causing type errors to be
detected only when the application executes the code, i.e., when a browser request is
issued. Static typed languages (e.g., Scala, Java) have types associated with variables
(as opposed to values) or the language supports type inference (types are discovered
by the compiler based on variables context).

Usually compiled languages are associated with static typing, and interpreted lan-
guages associated with dynamic typing or no typing at all. In compiled languages,
during the compile process, static type checks ensure that the application behavior
will be correct during execution, avoiding constant repetition of type checks during
execution, as happens with interpreted languages.

Even with a compiled language, which offers greater security over the correct appli-
cation behavior, knowledge of other technologies is also required in order to be able to
integrate the three layers of a common web architecture. Interaction with the database
usually requires SQL knowledge. On the other side, an interface may require HTML
and JavaScript knowledge. Therefore, to create a complete web application with a three
layer architecture, it would be required to use several languages that do not have any
real connection between them, and without verifications in the communication code
between layers.

Ruby On Rails (Section 4.1), CakePHP (Section 4.2), Scala Lift (Section 4.3), and
Google Web Toolkit (Section 4.4) frameworks target at web applications providing scaf-
folding features to increase developers productivity, while others (Hibernate, LINQ,
and ScalaQL) provide extensions to general purpose languages and include typing for
database operations (Section 4.5). Links (Section 4.6), WebDSL (Section 4.7), Ur/Web
(Section 4.8), and Agile Platform (Section 4.9) belong to a third category of frameworks
that use domain specific languages to provide program safety by construction.

4.1 Ruby On Rails

Ruby On Rails framework is based on the Ruby1 programming language, which is an
interpreted language with support for several paradigms (functional, object-oriented,
and imperative) and is dynamically typed [20]. Rails framework architecture is based
on the Model-View-Controller (MVC) pattern [27], where ActiveRecord, ActionView, and
ActionController are the three components from the MVC pattern.

Figure 4.1 illustrates how an HTTP request is processed within the Rails framework:

1. The request is made by the user’s browser;
1http://www.ruby-lang.org/

36

http://www.ruby-lang.org/

4. WEB APPLICATIONS DEVELOPMENT 4.1. Ruby On Rails

Figure 4.1: Ruby On Rails Request Processing [29]

class Message < ActiveRecord : : Base
end

Listing 4.1: Message Model

2. Routing component transforms the URL in a request to a Controller;

3. Interaction with the Model (database) through the ActiveRecord pattern;

4. Call to the View;

5. Interface is rendered and the result sent to the browser.

The ActiveRecord component is an Object-Relational Mapping (ORM) abstraction
that controls the read and write operations in the database, turning the developed code
independent from the Database Management System (DBMS). This approach allows
portability between several supported DBMS, like MySQL, PostgreSQL, Oracle, DB2,
or SQLite [23,29] without modifying the application code. ORM abstraction turns each
database table row into a Ruby object, e.g., a table named Message with five rows
will match five different objects of type Message (Listing 4.1) in the application. The
abstraction used also supports table relationships such as 1:1, 1:n and n:n [29], input
data validation, and a version system that keeps track of the modifications made in the
database model (Listing 4.2), allowing to rollback to a previous version or update to
a higher version [23]. To create a new database table, the developer simply creates
an ActiveRecord and a migration for that table, the ORM abstraction then performs the
required modifications in the database applying the specified database migration.

The bridge between the model (ActiveRecord) and the interface (ActionView), i.e., the
business logic is defined in the controller (Listing 4.3), which collects data sent by the

37

4. WEB APPLICATIONS DEVELOPMENT 4.1. Ruby On Rails

class CreateMessages < Act iveRecord : : M ig ra t i on
def se l f . up

c rea te_ tab le : messages do | t |
t . s t r i n g : t i t l e
t . s t r i n g : author
t . date : date
t . t e x t : t e x t

t . t imestamps
end

end

def se l f . down
drop_tab le : messages

end
end

Listing 4.2: Database Migration

browser and sets how that data is used in the request, it also reads and writes data
from the database through the ORM abstraction and sends the data to the ActionView.

The interface code that defines what is sent to the browser is defined in ActionViews
(Listing 4.4, 4.5 and 4.6), and can be plain HTML or a mix of HTML and Ruby (embed-
ded Ruby) [23].

Besides the three components from the MVC pattern, there is also a set of Helpers
that consists in reusable pieces of code. Rails framework provides a default set of
Helpers that allows developers to create forms, manipulate URLs, and date/time val-
ues [23]. There is also a scaffolding generator that creates every MVC component in-
cluding a CRUD2 interface for a given data model [23, 29]. The framework provides
different environments for application development, test, and production, allowing to
isolate each task:

• Development. Modifications in the application code are immediately visible in
the browser and some detailed logs are produced with details about the applica-
tion execution (useful when new features are being developed).

• Test. In this environment the database is filled with dummy data, and tests de-
fined by the developer, ensuring that the results of the tests are consistent, and
the application behavior is reproducible. It is possible to test models (Unit Tests),
actions in controllers (Functional Tests), and test the flow between controllers (In-
tegration Tests) [23, 29].

• Production. Environment where changes in the application are less frequent and

2Create, Read, Update, Delete

38

4. WEB APPLICATIONS DEVELOPMENT 4.1. Ruby On Rails

class MessagesControl ler < A p p l i c a t i o n C o n t r o l l e r
def index

i f (params [: author])
@messages = Message . a l l (: cond i t i ons => { : author => params [: author] })

else
@messages = Message . a l l

end
end

def show
@message = Message . f i n d (params [: i d])

end

def new
@message = Message . new

end

def create
@message = Message . new(params [: message])
i f @message . save

f l a s h [: no t i ce] = ’ Message was s ucce ss fu l l y created . ’
r e d i r e c t _ t o (@message)

else
render : ac t i on => "new"

end
end

end

Listing 4.3: Blog Controller

<h1>Message L i s t < / h1>
< table border=" 1 ">

< t r >
<th> T i t l e < / th>
<th>Author< / th>
<th>View< / th>

< / t r >
<% @messages . each do | message | %>

< t r >
<td><%=h message . t i t l e %>< / td>
<td><%=h message . author %>< / td>
<td><%= l i n k _ t o ’ View ’ , message %>< / td>

< / t r >
<% end %>
< / table>
<%= l i n k _ t o ’ Wr i te Message ’ , new_message_path %>

Listing 4.4: “Message List” Interface

for performance reasons tasks like logging are disabled.

On each of the environments a different database is used, avoiding changes made
in the development environment to be visible in the production environment [23]. It

39

4. WEB APPLICATIONS DEVELOPMENT 4.1. Ruby On Rails

<h1>New message< / h1>
<% form_for (@message) do | f | %>

<%= f . error_messages %>
<p>

<%= f . label : t i t l e %><br / >
<%= f . t e x t _ f i e l d : t i t l e %>

< / p>
<p>

<%= f . label : author %><br / >
<%= f . t e x t _ f i e l d : author %>

< / p>
<p>

<%= f . label : date %><br / >
<%= f . da te_se lec t : date %>

< / p>
<p>

<%= f . label : text %><br / >
<%= f . tex t_area : text %>

< / p>
<p>

<%= f . submit ’ Create ’ %>
< / p>

<% end %>

Listing 4.5: “Add Message” Interface

<h1><%=h @message . t i t l e %>< / h1>
<h2> by <%=h @message . author %> at <%=h @message . date %>< / h2>
<p><%=h @message . text %>< / p>
More messages from <%= l i n k _ t o @message . author , {

: action => " index " , : author => @message . author }
%>

Listing 4.6: “View Message” Interface

is also possible to use different DBMS in each environment, the ActiveRecord (ORM)
abstraction makes sure that the application works with every DBMS in the same way.
Rails also supports features such as session data and cookies management, AJAX, and
REST3.

The example presented in this section is similar to the example described in Sec-
tion 2.1.2 for our core language. This simple blog example allows any user to post text
messages. Listing 4.1 and 4.2 display the definitions for the database layer. Compar-
ing to the approach in our language, Rails supports database migrations, where we
only can modify entities and publish them, not allowing rollback operations. How-
ever, both Rails and our language perform an automatic mapping of entities (models)
definitions to the database. Querying an entity in our language uses a syntax similar

3Representational State Transfer

40

4. WEB APPLICATIONS DEVELOPMENT 4.2. CakePHP

Figure 4.2: CakePHP Request [1]

to SQL, while Rails uses an ORM abstraction with its own querying language. In Rails,
controllers (Listing 4.3) contain the equivalent to a set of actions from our language.
The controller defines the application business logic, but each definition (index, show,
and new) is associated to a user interface with the same name or the definition (create)
specifies which user interface is rendered. The interface definition in Rails is a mix
between HTML and Ruby (Listing 4.4, 4.5, and 4.6) while our language has support
to define interface elements using built-in blocks. The major difference between Rails
and our language is static check support. While Rails has no support for static checks
and errors are only detected at runtime, our language supports static checks avoiding
common programming errors in unverified code, in particular, in communication code
between layers.

4.2 CakePHP

CakePHP framework [11] is inspired in Ruby On Rails and shares some of the key
features like the Model-View-Controller pattern [1, 27]. Applications developed us-
ing this framework, and the framework itself, use the PHP4 programming language.
This scripting language joins the imperative and the object-oriented paradigm and is
dynamically typed.

Figure 4.2 demonstrates how a request is processed using the CakePHP framework.
The process starting from the request until the reply is as follows:

1. HTTP request to the server;

2. Controller, action and parameters are extracted from the requested URL;

4http://www.php.net/

41

http://www.php.net/

4. WEB APPLICATIONS DEVELOPMENT 4.2. CakePHP

CREATE TABLE ‘ cake ‘ . ‘ messages ‘ (
‘ id ‘ INT NOT NULL AUTO_INCREMENT ,
‘ t i t l e ‘ VARCHAR(255) NOT NULL ,
‘ author ‘ VARCHAR(255) NOT NULL ,
‘ date ‘ DATE NOT NULL ,
‘ t ex t ‘ TEXT NOT NULL ,

PRIMARY KEY (‘ id ‘)
) ENGINE = MYISAM ;

Listing 4.7: MySQL Table Creation

<?php
c lass Message extends AppModel {

var $name = ’ Message ’ ;
}
?>

Listing 4.8: Blog Model

3. The desired controller is called through defined routes;

4. Data exchange with Models (e.g., database);

5. Components are used to execute common tasks to several controllers;

6. When all data is processed by the Controller, the web page layout (View) is built
using Helpers if needed;

7. The final result is sent to the browser.

Similar to Rails, the Model-View-Controller pattern is represented by the Model
(Listing 4.8), View (Listing 4.10, 4.11, and 4.12), and Controller (Listing 4.9) components
in CakePHP framework. The major difference between Rails and CakePHP is that, in
CakePHP, database tables must be manually created using SQL and a Model for each
table (Listing 4.7 and 4.8) must also be created manually. Still related to Models, they do
not support multi-column keys but support 1:1, 1:n, and n:n table relationships and
validation rules for each column in the tables. It is also possible to use several Database
Management Systems such as MySQL, PostgreSQL, SQLServer, or ODBC [6].

MVC components can also be extended, Models are extended through Behaviors al-
lowing to add common features to one or more Models, and DataSources are abstrac-
tions to manipulate different sources of data (e.g., databases, RSS, CSV, LDAP, iCal).
Views are extended through Helpers, i.e., reusable code for Views. Controllers can also
be extended using Components, i.e., common business logic for controllers or applica-
tions [1].

42

4. WEB APPLICATIONS DEVELOPMENT 4.2. CakePHP

<?php
c lass MessagesControl ler extends AppCont ro l le r {

var $name = ’ Messages ’ ;
f u n c t i o n index () {

$ th is−>set (’ messages ’ , $ th i s−>Message−>f i n d (’ a l l ’)) ;
}
f u n c t i o n view ($ id) {

$ th is−>Message−>i d = $ id ;
$ th is−>set (’ message ’ , $ th i s−>Message−>read ()) ;

}
f u n c t i o n add () { }
f u n c t i o n save () {

i f ($ th i s−>Message−>save ($ th is−>data)) {
$ th is−>Session−>setF lash (’ Message saved . ’) ;
$ th i s−>r e d i r e c t (array (’ ac t i on ’ => ’ view ’ , $ th i s−>Message−>i d)) ;

}
}
f u n c t i o n f i l t e r ($author) {

$ th is−>set (’ messages ’ , $ th i s−>Message−>f i ndA l lByAu tho r ($author)) ;
$ th i s−>render (’ index ’) ;

}
}
?>

Listing 4.9: Blog Controller

<h1>Add Message </h1>
<?php
echo $form−>create (’ Message ’ , array (" ac t i on " => " save ")) ;
echo $form−>inpu t (’ t i t l e ’) ;
echo $form−>inpu t (’ author ’) ;
echo $form−>inpu t (’ date ’) ;
echo $form−>inpu t (’ t e x t ’ , array (’ rows ’ => ’ 3 ’)) ;
echo $form−>end (’ Submit ’) ;
?>

Listing 4.10: “Add Message” Interface

CakePHP also has features like scaffolding (create CRUD interfaces), REST sup-
port and, session and cookies manipulation. Related to the interface, CakePHP offers
Helpers for AJAX and JavaScript, date/time manipulation and forms [1, 6].

The example presented throughout this section defines a simple blog where any
user can post messages, similar to the example described in Section 2.1.2 for our lan-
guage. In CakePHP, database tables are created manually (Listing 4.7) and then a
model for each table must also be created (Listing 4.8). The approach in our language
is simpler, since the developer only needs to define the entities and the database ta-
bles are created by the dynamic reconfiguration mechanism. As for controllers (List-
ing 4.9), CakePHP approach and Rails approach are similar, both have controllers (a set

43

4. WEB APPLICATIONS DEVELOPMENT 4.2. CakePHP

<h1>Message L i s t < /h1>
<tab le >

< t r >
<th > T i t l e </ th >
<th >Author </ th >
<th >View </ th >

</ t r >
<?php foreach ($messages as $message) : ?>
< t r >

<td ><?php echo $message [’ Message ’] [’ t i t l e ’] ; ?></ td >
<td ><?php echo $message [’ Message ’] [’ author ’] ; ?></ td >
<td >

<?php echo $html−>l i nk (" View " ,
array (

’ c o n t r o l l e r ’ => ’ messages ’ ,
’ ac t i on ’ => ’ view ’ , $message [’ Message ’] [’ i d ’])) ;

?>
</ td >

</ t r >
<?php endforeach ; ?>

</ tab le >
<?php
echo $html−>l i nk (" Wr i te Message " ,

array (’ c o n t r o l l e r ’ => ’ messages ’ , ’ ac t i on ’ => ’ add ’)) ;
?>

Listing 4.11: “Message List” Interface

<h1><?php echo $message [’ Message ’] [’ t i t l e ’]? > </h1>

<h2>by <?php echo $message [’ Message ’] [’ author ’]? > a t
<?php echo $message [’ Message ’] [’ date ’]? > </h2>

<?php echo $message [’ Message ’] [’ t e x t ’]? >

<br / >
More messages from <?php echo $html−>l i nk ($message [’ Message ’] [’ author ’] ,

array (’ c o n t r o l l e r ’ => ’ messages ’ ,
’ ac t i on ’ => ’ f i l t e r ’ , $message [’ Message ’] [’ author ’])) ;

?>

Listing 4.12: “View Message” Interface

of actions in our language) and each controller function has a corresponding interface
screen (Listing 4.10, 4.11, and 4.12). In our language actions are not associated to any
specific screen, if an action needs to render a screen just calls the screen in the action
body. Since CakePHP uses an interpreted language it does not support static checks,
while our language has support for them.

44

4. WEB APPLICATIONS DEVELOPMENT 4.3. Scala Lift

Figure 4.3: Scala Lift Architecture [12]

4.3 Scala Lift

Scala Lift framework [12] for web applications is based in the Scala5 programming lan-
guage. The code developed in this language is compiled to Java Bytecode and then ex-
ecuted in a Java Virtual Machine. In addition to be able to use libraries from Java, Scala
joins the functional paradigm to the imperative and object-oriented paradigms from
Java. Scala also supports local type inference, native XML processing, and functions
as objects. Usually web applications developed with Lift execute in a Web component
like Jetty6 or Tomcat7 [12].

Lift architecture is quite complex (Figure 4.3), however it is also based in the Model-
View-Controller pattern [27], offering a clear separation between the interface and
business logic, unlike Ruby On Rails, CakePHP, and JSP8 that mixes business logic

5http://www.scala-lang.org/
6http://jetty.codehaus.org/jetty/
7http://tomcat.apache.org/
8Java Server Pages

45

http://www.scala-lang.org/
http://jetty.codehaus.org/jetty/
http://tomcat.apache.org/

4. WEB APPLICATIONS DEVELOPMENT 4.3. Scala Lift

code with the interface definition [12]. We now explain each component of the archi-
tecture:

• LiftCore. Framework engine responsible for receiving HTTP requests and creat-
ing responses.

• SiteMap. Application web pages. Among other things, allows to define access to
menu items, group existing pages similar to a tree, and create web site navigation
menus.

• LiftRules. Object to store application configuration settings.

• LiftSession. User session representation. Allows to manage information about
each user session.

• S. Object that represents the state of the current request. Allows to manage cook-
ies and the timezone, change and access HTTP headers from the request, set re-
sponse HTTP headers, etc.

• SHtml. Helper functions to create forms and to use AJAX and Comet.

• Views. LiftView objects that contain the interface definition (XML).

• LiftResponse. Abstraction of a response that will be sent to the user (HTTP
codes: 200 OK, 404 Not Found, etc.).

• Comet. Layer that sends asynchronous content to the browser.

• Mapper/Record ORM. Mapping between Scala objects and the relational model.

• HTTP Authentication. User authentication using Basic or Digest HTTP.

• JavaScript API. JavaScript abstraction layer to build JavaScript code within the
application.

• Utilities. Helper functions used by the application and available to developers.

The Model, Page Template, and Snippet application components correspond to the
Model, View, and Controller from MVC pattern [12, 27]. The Boot component is exe-
cuted once when the application starts and contains the required configuration to start
the application. This component defines URL parsing rules, database connections (de-
fault uses JNDI9), site map for navigation menus, etc. [12]. During application start,

9Java Naming and Directory

46

4. WEB APPLICATIONS DEVELOPMENT 4.3. Scala Lift

class Message extends LongKeyedMapper [Message] with IdPK {
def ge tS ing le ton = Message

object t i t l e extends MappedString (this ,255)
object author extends MappedString (this ,255)
object date extends MappedDateTime (th is)
object t e x t extends MappedText (th is)

}

object Message extends Message with LongKeyedMetaMapper [Message]

Listing 4.13: Blog Model

<h1>Message L i s t < / h1>
< table border=" 1 ">

< t r >
<th> T i t l e < / th>
<th>Author< / th>
<th>View< / th>

< / t r >
< l i f t : Messages . l i s t >

< t r >
<td><message : t i t l e / >< / td>
<td><message : author / >< / td>
<td><message : view / >< / td>

< / t r >
< / l i f t : Messages . l i s t >

< / table>
Wri te Message< / a>

Listing 4.14: “Message List” Interface

the Schemifier mechanism inspects the defined Models and the current database con-
figuration, and ensures that tables, columns, indexes, and integrity restrictions match
between the two models. Schemifier mechanism can execute in manual mode where
modifications are suggested, or in automatic mode where the mechanism performs
the required modifications [12].

The Models are defined through inheritance from classes such as LongKeyedMapper,
that map the defined models to the relational database (Object-Relational Mapping –
ORM). Each object of type Message (Listing 4.13) maps to a row from the database table
Message [12]. Columns are also defined by inheritance and can contain behavior like
default values and validation rules. Inheritance can also be used to create more specific
column types, e.g., define a type Email instead of using type String for a column email
(in the type Email the value is converted to lower case) [12].

Lift framework has an approach where the interface definition should not contain
any business logic code, however the interface definition (Listing 4.14, 4.15, 4.16, and

47

4. WEB APPLICATIONS DEVELOPMENT 4.3. Scala Lift

< l i f t : Messages . view>
<h1><message : t i t l e / >< / h1>
<h2> by <message : author / > a t <message : date / >< / h2>
<message : text / ><br / >
More messages by <message : a u t h o r l i n k / >

< / l i f t : Messages . view>

Listing 4.15: “View Message” Interface

<h1>Message L i s t < / h1>
< table border=" 1 ">

< t r >
<th> T i t l e < / th>
<th>Author< / th>
<th>View< / th>

< / t r >
< l i f t : Messages . f i l t e r >

< t r >
<td><message : t i t l e / >< / td>
<td><message : author / >< / td>
<td><message : view / >< / td>

< / t r >
< / l i f t : Messages . f i l t e r >

< / table>
Wri te Message< / a>

Listing 4.16: “Filter Message” Interface

4.17) must be flexible enough to support dynamic content. The framework combines
the MVC pattern with the View-First pattern, i.e., each request matches a View or tem-
plate (defined in XML) and specifies which controllers are executed to build the reply.
This View-First approach allows to have a higher modularity of the business logic com-
ponents. Usage of XML templates is only possible due the native XML processing in
Scala and allows to embedded templates and insert dynamic content in each request.
XML templates use specific tags (<lift:xyz />) to execute business logic code. Each tag
matches a Snipped–method pair, i.e., a business logic method [12].

Scala is a compiled language, so a compilation step is required, although the XML
templates are not statically checked during compilation, so errors in XML templates
are not detected until execution time.

Snippets (Listing 4.18) correspond to the controllers in the MVC pattern and consist
in a set of methods that return a NodeSeq object (sequence of XML/HTML nodes).
Methods from Snippets are called when a XML template is executed and contains a
tag similar to <lift:Snippet.method />. By returning a NodeSeq object, the method return
value replaces the tag in the template, i.e., the method returns the XML/HTML code
to be included in the reply sent to the browser [12].

48

4. WEB APPLICATIONS DEVELOPMENT 4.4. Google Web Toolkit

< l i f t : Messages . add form=" post ">
< table>

< t r >
<td> T i t l e : < / td>
<td><message : t i t l e / >< / td>

< / t r >
< t r >

<td>Author : < / td>
<td><message : author / >< / td>

< / t r >
< t r >

<td>Date : < / td>
<td><message : date / >< / td>

< / t r >
< t r >

<td>Text : < / td>
<td><message : text / >< / td>

< / t r >
< t r >

<td rowspan=" 2 "><message : submit / >< / td>
< / t r >

< / table>
< / l i f t : Messages . add>

Listing 4.17: “Add Message” Interface

The example presented throughout this section is also similar to the example de-
fined in our language from Section 2.1.2 where any user can post messages. Lift frame-
work also uses an ORM abstraction like Rails and CakePHP. Although models are de-
fined in a similar way, in comparison, to our language. This framework uses a com-
piled language with static check support like our language. Although views (List-
ing 4.14, 4.15, 4.16, and 4.17) are defined in XML and not subject to any static veri-
fications in compile time. Business logic is defined in controllers (Listing 4.18) and
methods inside controllers may contain XML code, mixing interface and business logic
layers. However, XML code inside controllers is subject to static checks.

4.4 Google Web Toolkit

A greater browsing experience has been one of the most important aspects in web
development. Users browsing experience gets higher with highly interactive appli-
cations. This kind of web applications are mainly developed using Asynchronous
JavaScript and XML (AJAX), however differences among the several browsers has been
a problem for developers. Each browser implements in it is own way JavaScript in-
structions such as XMLHttpRequest, highly used in AJAX applications.

49

4. WEB APPLICATIONS DEVELOPMENT 4.4. Google Web Toolkit

class Messages {
def l i s t (html : NodeSeq) : NodeSeq = {

Message . f i n d A l l . f la tMap (message =>
bind (" message " , html ,

" t i t l e " −> Text (message . t i t l e . is) ,
" author " −> Text (message . author . is) ,
" view " −> <a h re f = { " / b log / view / " +

message . i d . is } >{ " View " } < /a>
))

}

def f i l t e r (html : NodeSeq) : NodeSeq = {
Message . f i n d A l l (By (Message . author ,S . params (" author ") . head)) . f la tMap (

message => bind (" message " , html ,
" t i t l e " −> Text (message . t i t l e . is) ,
" author " −> Text (message . author . is) ,
" view " −> <a h re f = { " / b log / view / " + message . i d . is } >{ " View " } < /a>

))
}

def view (html : NodeSeq) : NodeSeq = {
val i d = java . lang . Long . valueOf (S . params (" i d ") . head) . longValue

Message . f i n d A l l (By (Message . id , i d)) match {
case msg : : N i l => bind (" message " , html ,

" t i t l e " −> Text (msg . t i t l e . is) ,
" author " −> Text (msg . author . is) ,
" date " −> Text (msg . date . t o S t r i n g) ,
" t e x t " −> Text (msg . t e x t . is) ,
" a u t h o r l i n k " −> <a h re f = { " / b log / f i l t e r / " +

msg . author . is } >{msg . author . is } < /a>)
case _ => Text (" I n v a l i d Message ")

}
}

def add (form : NodeSeq) : NodeSeq = {
val msg = Message . create
def save () : Un i t = {

msg . save ; S . no t i ce (" Added "+msg . t i t l e) ; S . red i r ec tTo (" / b log / ") ;
}

b ind (" message " , form ,
" t i t l e " −> msg . t i t l e . toForm ,
" author " −> msg . author . toForm ,
" date " −> msg . date . toForm ,
" t e x t " −> msg . t e x t . toForm ,
" submit " −> submit ("New" , save))

}

}

Listing 4.18: Blog Controler (Snippet)

50

4. WEB APPLICATIONS DEVELOPMENT 4.5. Programming Language and Database Integration

Google Web Toolkit (GWT) [2] framework allows to create browser-based applica-
tions with a higher level of abstraction for web interfaces development. GWT main
goals are to improve the development productivity and at the same time hide browser
specific implementations [2, 30].

Development using GWT is made using Java10 programming language and the
code is compiled to JavaScript and optimized for several browsers (e.g., Internet Ex-
plorer, FireFox, Chrome, Safari, Android, iPhone) [2, 22]. The compiler also performs
other optimizations like removing unused code, string optimizations, in-line methods,
and move constant values to call places [2, 19, 30].

The compiler ensures that the application experience is the same using any browser
by creating one application version for each browser and language combination (e.g.,
FireFox/English, FireFox/Portuguese, Chrome/Portuguese). Combinations can also
be based on other parameters, defined by the developer (e.g., gender, age). During
application boot, the correct combination is chosen for the user’s browser and lan-
guage and only the required version is loaded, decreasing the amount of data trans-
fered across the Internet and it also ensures that the application will work as expected
with the user’s browser and language [2, 19, 30].

This kind of applications rely on asynchronous communications with the server.
These communications are made using the XMLHttpRequest mechanism and the data
exchanged can use JSON11, XML, or a user defined protocol to communicate with the
server, since the server side has a different language.

4.5 Programming Language and Database Integration

The usual architecture for applications with persistent data uses general purpose pro-
gramming languages to define the computations and a database to access the applica-
tion data [16]. This kind of applications is mainly developed using an object-oriented
programming language and a relational database [16, 25]. The integration between
these two layers is one of the most important aspects during application design, es-
pecially in web applications [17]. The relational model does not have a direct match
with the available structures in a object-oriented programming language, requiring to
use an intermediate language to perform the communication between each other. In-
stead of iterating data structures with loops and conditions, the communication with
the database is usually done through SQL [16, 17].

The integration problem between relational databases and programming languages,

10http://www.java.com/
11JavaScript Object Notation

51

http://www.java.com/

4. WEB APPLICATIONS DEVELOPMENT 4.5. Programming Language and Database Integration

S t r i n g empQuery = "SELECT e . name, e . sa lary , d . name as deptName "
+ " FROM (Employee e INNER JOIN Department d ON d . ID = e . department) "
+ " INNER JOIN Employee m ON m. ID = e . manager "
+ " WHERE e . name LIKE ? AND e . sa la ry > m. sa la ry "

Connection conn = DriverManager . getConnect ion (. . .) ;
PreparedStatement stmt = con . prepareStatement (empQuery) ;
stmt . s e t S t r i n g (1 , p r e f i x + "%") ;
Resul tSet rs = stmt . executeQuery (empQuery) ;
while (rs . next ()) f

p r i n t (rs . g e tS t r i n g ("name")) ;
p r i n t (rs . getDecimal (" sa la ry ")) ;
p r i n t (rs . g e tS t r i n g (" deptName ")) ;

}

Listing 4.19: JDBC Example [16]

also known as impedance mismatch, occurs due to the differences between the relational
model and the object-oriented paradigm [16, 17]:

• Type Mismatch. Strings usually have limited length in databases, which is not
the case in C#, VB.NET, or Java [25]. The precision of numeric values is another
difference, but despite the difficulty to create a match between models, it is pos-
sible [16].

• Data Models. Concepts like inheritance are not directly supported by most rela-
tional databases (Figure 4.4) [25].

• Programming Models. Languages like C# or Java require loops and conditions
to select data. Relational databases use a high-level declarative way to express
the data we want.

• Encapsulation. In object-oriented languages, objects have behavior and data as-
sociated with them. Relational databases have a clear separation between data
and behavior. It is only possible to act on database data through SQL queries or
stored procedures.

One of the common approaches to integrate databases in programs, is to write SQL
queries as strings inside the programming language code (Listing 4.19) [7, 16, 31]. This
approach is highly error prone, since common errors such as typos in field names are
only detected during runtime (typically in the test phase). A similar approach is to
use a library of “prepared statements” which is safer but not very flexible, since the
programmer has to adjust the library every time a change in the database is made [17].

A more evolved solution is to use an Object-Relational Mapping (ORM) interface
where each object maps to a set of attributes in a database table. Relationships between

52

4. WEB APPLICATIONS DEVELOPMENT 4.5. Programming Language and Database Integration

Figure 4.4: Object-Oriented Paradigm and Relational Model Mapping [25]

tables are represented using object references and n-ary relationships represented with
collections of references [31]. This kind of interface offers an automatic mapping solu-
tion, but is not trivial, as shown in Figure 4.4. This figure shows the inheritance concept
from the object-oriented paradigm that does not exists in the relational model. An ex-
tra attribute Type is added to represent the several types of objects (Circle, Square, and
Drawing). This mapping also causes to have attributes that only belong to a certain type,
to be available in all the others (Diameter or Side). Object-oriented languages primitive
types ca not be null, but relational model supports null, and sometimes it may mean an
unknown value (e.g., table joins).

All the approaches mentioned have advantages and drawbacks. Queries as strings
are simple and fast to implement but do not allow any kind of static checks, while
solutions like ORM (e.g., Hibernate) provide a safer solution to this problem, but are
in many cases too heavy [25]. From these problems, we conclude that the best ap-
proach is to use a language that supports static checks between both layers. This
requires the usage of a programming language with native support for queries [17,
31]. LINQ addresses the impedance mismatch problem by having built-in support for
queries similar to SQL queries [10]. ScalaQL extends the Scala language using operator
overloading, implicit conversions, and call-by-name semantics to implement an inte-
grated query context [31]. In order to have a powerful integration between relational
databases and programming languages it is necessary to avoid some of the problems
that emerge. The best approach consists in integrating query support in the language
itself, turning the compiler able to statically check queries for errors [17, 31]. As for
our language we opted to have a native support for queries in our syntax (similar to
LINQ) and use a type system with support for static checks for the entire application,
including queries.

53

4. WEB APPLICATIONS DEVELOPMENT 4.5. Programming Language and Database Integration

Figure 4.5: Hibernate Integration in an Application [24]

4.5.1 Hibernate

Hibernate [3] is an open source Object-Relational Mapping implementation designed
to mediate the interaction between the application and a relational database [7].

Figure 4.5 shows how Hibernate is integrated in an application. Hibernate is incor-
porated between the Client Code and a JDBC12 Driver. The purpose of a JDBC Driver,
besides being responsible for the communication with the relational database, is to
abstract the underlying connection details for each relational database, since each re-
lational database supports a different set of features and different versions of SQL. To
circumvent these differences, Hibernate abstracts DBMS into dialect classes where each
supported database has its own dialect. Hibernate supports over 20 different dialects
(e.g., MySQL, DB2, Oracle, Sybase, PostgreSQL) [3, 7, 24].

To use Hibernate the programmer defines persistent classes that are mapped to
database tables. The mapping between persistent classes and database tables can ei-
ther be done using Java annotations, or though a XML mapping file [7]. Inheritance
relationships and various other relationships between classes are also supported by
Hibernate [24].

Hibernate Query Language (HQL) allows us to request arbitrary information from
the database. HQL is an object-oriented query language with its own syntax and gram-
mar, similar to SQL, but instead of operating on tables and columns, it operates on per-
sistent objects [24]. Although, queries are composed using string concatenation (List-
ing 4.20) therefore, type errors such as non-existing columns are only detected during
runtime [35].

12Java Database Connectivity

54

4. WEB APPLICATIONS DEVELOPMENT 4.5. Programming Language and Database Integration

S t r i n g supplierHQL = " from Supp l ie r where name= ’ MegaInc ’ " ;
Query suppl ierQuery = session . createQuery (supplierHQL) ;
Supp l ie r s u p p l i e r = (Supp l ie r) suppl ierQuery . l i s t () . get (0) ;

S t r i n g hq l = " from Product as product where product . s u p p l i e r =: s u p p l i e r " ;
Query query = session . createQuery (hq l) ;
query . s e t E n t i t y (" s u p p l i e r " , s u p p l i e r) ;

L i s t r e s u l t s = query . l i s t () ;

Listing 4.20: Hibernate Query Example [24]

Figure 4.6: LINQ Architecture [25]

4.5.2 LINQ

As a way to address the impedance mismatch between the database layer and the
programming language layer, Microsoft introduced the Language INtegrated Query
(LINQ) component in the .NET platform [10].

LINQ offers a built-in support for queries, using a declarative syntax similar to
SQL. This component allows to access in-memory collections like arrays or lists (LINQ
to Objects), XML files (LINQ to XML), or relational databases (LINQ to SQL). It is also
possible to create extensions to access other data sources (e.g., file systems, LDAP13) [17,
25].

13Lightweight Directory Access Protocol

55

4. WEB APPLICATIONS DEVELOPMENT 4.6. Links

val underAge = for {
p <− Person
c <− Company

i f p . company is c
i f p . age < 14

} yie ld p

Listing 4.21: ScalaQL Example [31]

SELECT p .∗
FROM people p JOIN companies c ON p . company_id = c . i d
WHERE p . age <14

Listing 4.22: SQL Query Obtained by ScalaQL From Listing 4.21

Using a common syntax to access different sources of data (Figure 4.6) makes pos-
sible to change between a database and XML without modifying the application code
to use XQuery instead of SQL [25]. In addition to a common interface for several data
sources LINQ also provides static checks during compile time.

4.5.3 ScalaQL

It is not always possible to integrate new syntax instructions in a language, like Mi-
crosoft has done with LINQ. ScalaQL language uses operators overloading, implicit
conversions, and call-by-name semantics to extend Scala programming language, im-
plementing statically checked queries by the Scala compiler itself [31].

ScalaQL transforms for-comprehensions (Listing 4.21) into sequences of flatMap, map,
and filter method calls. For the example shown in Listing 4.21, the return type is
Query[Person], when this type is implicitly converted, during execution, to a Seq[Person]

type, the conversion to SQL is done, obtaining a query similar to Listing 4.22.

4.6 Links

Even with a server-side programming language that is able to statically check queries,
like C# with LINQ or ScalaQL, the web interface is always designed with HTML or
similar. With frameworks like GWT, communication between the interface and busi-
ness logic layers is made using specific protocols (e.g., JSON, XML). The mismatches
between the server and client sides can lead to other issues such as form input data
validation. In order to ensure that the integration between the several interacting parts
is not an application weakness, it becomes important to use a programming language

56

4. WEB APPLICATIONS DEVELOPMENT 4.6. Links

to design all three application layers.

Links [18] programming language solves the mismatches between layers by allow-
ing the programmer to define entities (database tables), interface, and business logic
using a functional and typed language with static checks and type inference.

The compilation process is done using a component written in OCaml. During com-
pile time, the application code is split into the three common layers: interface, business
logic and queries. The interface and business logic methods have a specific annotation
in the language itself to identify to which layer they belong. The compiler submits ev-
ery component through a series of static checks and the interface code is converted to
HTML and JavaScript, queries converted to SQL, and the business logic remains in the
server and is interpreted by the OCaml component. Although the interface definition
mixes HTML code with Links code, thus not having a clear separation between layers.

Links authors argue that their implementation is scalable by preserving session
state in the client [18]. On the one hand the server does not waste resources with
session data but, on the other hand, every time a page is requested the session state
is serialized and transfered between the client and the server and then back. This ap-
proach is more scalable in the sense that server resources are not used by users’ data,
but it has some security issues, transferring session data back and forth from the server,
data like passwords, or critical user data may travel the Internet constantly.

The code fragment shown in Listing 4.23 implements a simple dictionary. This
dictionary allows to view definitions and has a suggest feature that uses AJAX and a
database table containing the definitions. The main page displays a simple form with a
input text element that, when filled, displays the definition for the word written. This
definition is done using plain XML with embedded code in curly braces and some spe-
cial annotations like l:name. Business logic functions may also contain special annota-
tions (client or server) to specify in which layer the function will be executed, e.g. func-
tions that access database tables (completions) must be executed at the server whereas
the suggest function that modifies the user interface must be executed in the browser.
Links business logic functions may contain XML/HTML interface code, where in our
language we create a clear separation between layers. Although Links already has sup-
port for features like AJAX that we consider important feature to develop richer web
applications.

57

4. WEB APPLICATIONS DEVELOPMENT 4.6. Links

fun lowercase (s) {
f o r (c <− s) [toLower (c)]

}

fun suggest (pre) c l i e n t {
rep laceCh i ld ren (

format (complet ions (lowercase (pre))) ,
getNodeById (" suggest ions ")

)
}

fun format (words) {
f o r (w <− words)

{ str ingToXml (w. word) } < / b>
< i >{ st r ingToXml (w. type) } < / i > : { s t r ingToXml (w. meaning) }
<br / >

}

fun complet ions (pre) server {
var w o r d l i s t = t ab l e " w o r d l i s t " with (

word : S t r ing ,
type : S t r ing ,
meaning : S t r i n g

) from (database " d i c t i o n a r y ") ;
i f (pre == " ") []
else {

query [1 0] {
f o r (w <−− w o r d l i s t)

where (w. word =~ / ^ { pre } . ∗ /)
orderby (w. word)

[w]
}

}
}

var handler = spawn {
fun r ece i ve r () {

rece ive { case Suggest (pre) −> suggest (pre) ; r ece i ve r () }
}
r ece i ve r ()

} ;

page
<html >

<head>< t i t l e > D i c t i o n a r y suggest </ t i t l e > </head>
<body>

<h1> D i c t i o n a r y suggest </h1>
<form l : onkeyup=" { handler ! Suggest (pre) } ">

< inpu t type=" t e x t " l : name=" pre " autocomplete=" o f f " / >
</ form >
<d iv i d = " suggest ions " / >

</body>
</ html >

Listing 4.23: Links Suggest Dictionary Example

58

4. WEB APPLICATIONS DEVELOPMENT 4.7. WebDSL

4.7 WebDSL

WebDSL [35] is a domain specific compiled language dedicated to web applications
development. The application code is split into the three layers and compiled to cor-
responding target languages. The interface layer uses JavaServer Faces (JSF) as target
language and is concerned with generating web pages and interpreting user events.
The database layer contains a relational database and a Object-Relational Mapping to
take care of the communication with database and translate relational data into objects.
The bridge between the interface and database layers is completed with Enterprise
Java Beans (EJB3). Although the generated code is divided into three layers, WebDSL
language combines the user interface with the business logic layer violating the Model-
View-Controller [27] pattern, thus not providing a clear separation between layers in
the application definition in WebDSL language.

Even using a statically typed language, which ensures that many common errors
are caught at compile time, this does not ensures that web applications developed are
error free. With JSF, web pages are only checked during runtime causing runtime ex-
ceptions such as missing or non-supported tags, references to non-existing properties
and references to non-existing components. Seam framework, that combines JSF pages
and EJB3, also has similar problems. Java Persistence API and Hibernate queries are
composed using string concatenation, therefore, syntactic and type errors (e.g. non-
existing columns) are only detected at runtime. While most of the times such errors are
detected during the test phase, WebDSL tries to avoid this errors by statically checking
programs (Listing 4.24). Hibernate Query Language is embedded in WebDSL syntax
as expressions. With queries integrated in the syntax of the language, syntactic er-
rors are caught at compile time by WebDSL compiler. The WebDSL type checker also
checks the consistency of queries against the data model and local variable declara-
tions. WebDSL compiler also performs static checks on application definitions, page
navigation, and others.

4.8 Ur/Web

Ur/Web [13, 14] is a domain specific language for web applications development. The
base language is Ur, which is a strongly statically typed and purely functional language
based in ML and Haskell.

Ur/Web programming language allows to create dynamic web applications with
persistent data stored in databases. With this language the programmer writes server-
side code and client-side code in the same statically-typed language, and the compiler

59

4. WEB APPLICATIONS DEVELOPMENT 4.8. Ur/Web

e n t i t y User { name : : S t r i n g }

de f ine page user (u : User) {
t e x t (u . fu l lname)
t e x t (us . name)
nav igate (foo ()) { " bar " }

}

$ dsl−to−seam − i t e s t . app
[e r r o r] e n t i t y ’ User ’ has no proper ty ’ fu l lname ’
[e r r o r] v a r i a b l e ’ us ’ has no declared type
[e r r o r] l i n k to undef ined page ’ foo ’

Listing 4.24: WebDSL Compile Errors Example [35]

t ab l e t : { A : i n t }

fun l i s t [u] (_ : f i e l d s O f u [A = i n t]) (t i t l e : s t r i n g) (x : u) =
xml <− queryX (SELECT ∗ FROM x)

(fn r : {X : {A : i n t } } => <xml>< l i > { [r .X .A] } < / l i > </xml >) ;
r e t u r n <xml>

<h2 > { [t i t l e] } < / h2>
{ xml } < / u l >

</xml>

fun main () =
l i s t T <− l i s t "T" t ;
r e t u r n <xml><body>

{ l i s t T }
<br / >
<form > I n s e r t : < tex tbox {#A} / > <submit ac t i on ={ ins } / > </ form >

</body > </xml>
and i ns r =

dml (INSERT INTO t (A) VALUES ({ [readError r .A] })) ;
main ()

Listing 4.25: Ur/Web Example

transforms the server-side code to native code and the client-side code to JavaScript.
Database tables are defined inside Ur/Web modules, and the strongly-typed query
library mimic a subset of SQL.

The Ur/Web type system ensures that an application does not suffer from code-
injection attacks, executes invalid SQL queries, performs invalid marshaling or un-
marshaling in communication with SQL databases or between the browser and the
web server. An application can also use different Database Management Systems like
MySQL, PostgreSQL, or SQLite and when compiled, a standalone web server is in-
cluded.

Listing 4.25 shows a code fragment in Ur/Web language. This example allows to

60

4. WEB APPLICATIONS DEVELOPMENT 4.9. Agile Platform

Figure 4.7: Agile Platform Architecture [4]

store simple text values in a database table (t) and view all existing values. The main
screen is generated by the function main where it calls the list functions. This last func-
tion performs a database query against the table t selecting all fields and values, then
for each value it displays an HTML element and returns the entire list. The main

function also has a simple form that allows us to insert new values, when submitted the
function ins is executed and inserts the new value in the database table. Comparing to
our approach, Ur/Web also allows to define all three common layers from a common
web architecture, although it does not provide a clear separation between the business
logic layer and interface layer, since functions may contain HTML and business logic,
as shown in the example.

4.9 Agile Platform

Agile Platform from OutSystems [4] aims at solving the problem between the three
layer integration, like Links, WebDSL, and Ur/Web. This platform uses a graphic en-
vironment to develop web applications and has four components (Figure 4.7): Service
Studio, Service Center, Integration Studio, and Embedded Change Technology.

We will focus on the Service Studio component, since is the one that lies in the scope
of this work. Service Studio allows to graphically define web pages, business logic, and
the relational data model. Web pages are designed with a WYSIWYG14 editor (Fig-
ure 4.8a). The application business logic is defined using Action Flows (Figure 4.8b),
i.e., oriented graphs, possibly cyclic, where each node represents an operation. Avail-
able operations are, among others, conditional expressions (if, switch), SQL queries, or

14What You See Is What You Get

61

4. WEB APPLICATIONS DEVELOPMENT 4.10. Discussion

(a) Web Pages (b) Business Logic (c) Data Model

Figure 4.8: Service Studio

user defined actions. The third layer, relational data model, is also designed using a
graphic editor (Figure 4.8c). Changes in the relational model are checked by Service
Studio and, if necessary, modifications are recommended.

In addition to application development, Service Studio can also publish an applica-
tion using the 1-Click Publishing feature. This feature checks the integrity of the entire
application, compiles, and publishes everything. The compilation process transforms
the application definition to C# or Java. It is also possible to use Oracle or Microsoft
SQL Sever as the Database Management System. During the compilation process, sev-
eral optimizations are performed, such as query grouping and removal of duplicate
queries in loops, decreasing the number of database accesses and improving applica-
tion performance.

4.10 Discussion

Throughout this chapter we presented several tools related with the development of
web applications. Ruby On Rails, CakePHP, and Scala Lift frameworks are similar, in
the sense that they all use abstractions to access the database layer and the application
is defined in a Model-View-Controller [27] pattern. For each framework, we present
the same example to serve as a mean of comparison between each framework and
our language, where we also present a similar example. Both Rails and CakePHP use
interpreted languages (Ruby and PHP), so neither one of them supports static checks.
This gap is one major difference when compared to our language, where we designed
a language with support for static checks, like Scala Lift. Another difference is the
usage of a specific querying language. All three frameworks have their own querying
language, we opted to use a common querying syntax in our language (similar to LINQ
and SQL). In our approach the interface is defined using blocks from the language

62

4. WEB APPLICATIONS DEVELOPMENT 4.10. Discussion

syntax while these three frameworks use standard unverified HTML/XML.
Google Web Toolkit addresses the problem in the interface layer, i.e., the mismatch

between browsers. Since this work is focused on the integration between all three
common layers and currently does not have support for features like AJAX (heavily
used in applications developed with GWT), we present GWT framework just as a study
for future work.

The integration between programming languages and databases has several mis-
matches, and from our readings we consider that integrating query support in the lan-
guage itself, turning the compiler able to statically check queries for errors, is the best
approach. We have chosen a syntax similar to LINQ (based on SQL), since our busi-
ness logic language fragment is more close to the imperative paradigm, in comparison
to the others approaches like for-comprehensions that are more common in functional
languages.

We also describe Links, WebDSL, Ur/Web, and Agile Platform that aim at solving
the integration between the three common layers. While these frameworks have a
compile step, we opted to use an interpreted language with static type checks. By using
an interpreted language we managed to use a dynamic reconfiguration mechanism in
our prototype that is able to update an application definition without needing to restart
the application. Both Links and Ur/Web do not provide a clear separation between
the business logic layer and the interface layer, while in our approach we have two
different language fragments for actions and screens. In Links, business logic may
contain XML/HTML code whereas in Ur/Web the interface is defined along side with
the business logic code. Unlike WebDSL, our type system checks all fields used in
queries (including select and where clauses) detecting errors like invalid field names.

63

5
Final Remarks

This MSc work main goals were to design a simple and small core language for web ap-
plications, and implement a prototype that allows us to define applications using a web
based development environment. Our language offers an integrated programming en-
vironment that allows to define the interface, business logic and database manipula-
tion operations. Using a higher level of abstraction in our language, in comparison to
general purpose languages, we avoid the several existing mismatches between layers.
These mismatches include unverified code between the client and server sides, and
the SQL code within the application and the database. Using static verifications within
all application code, including communication code between layers, we provide basic
safety of programs and elimination of common programming errors.

Our prototype implementation provides a small but effective web based develop-
ment environment where users can act directly over the application definition and
update it. This prototype includes a dynamic reconfiguration mechanism that ensures
that applications modifications are put into practice without needing to restart the ap-
plication.

This language also aims at potentiating the verification of other more sophisticated
properties, in particular, we refer to properties related to data security and access con-
trol [9, 26, 33] and related to the coordination of several interacting parts in distributed
systems [34]. The language is already being extended to demonstrate security related

65

5. FINAL REMARKS 5.1. Future Work

properties checking by means of refinement types [9, 21].

As the result of the entire language design and implementation we consider that
the final result reached our main goals of creating a simple and small language with
a working prototype that will allow further studies of properties related with web
applications like data security and access control.

5.1 Future Work

Even with an extension already in progress we consider that are still some features that
can improve or make our language and prototype more complete.

Nested Queries. In most cases it is possible to circumvent this gap by executing mul-
tiple queries and using iterators, but a feature like this makes a language more expres-
sive.

Query Optimization. In web applications it is common to repeat queries inside iter-
ators and most of the times it is possible to optimize those queries to avoid multiple
requests to the database.

Lazy Query Evaluation. Currently when a from query is executed, all data is fetched
from the database and placed in memory We could avoid this by using lazy evaluation
and only fetch the results as they were needed.

Delete Operation and Order By Clause. Entities can be manipulated through the in-
sert, update and from expressions, however the delete expression is not yet included in
our language syntax. The same happens with the order by clause in from expressions,
since we currently cannot order query results.

User Interface. The current number of interface blocks do not consider some HTML
elements such as radio buttons, check boxes, or text areas. Still related with screens,
we cannot create a screen by composition, i.e., create a screen based on several defined
screens, something that would offer even more modularity to the language.

Asynchronous JavaScript and XML. Adding the possibility to execute callbacks ex-
pressions through Asynchronous JavaScript and XML (AJAX) is something that could
also be added to our language, allowing to develop richer web applications since this
kind of applications are becoming more popular.

66

5. FINAL REMARKS

Sessions and Cookies. Management of session variables and user cookies is cur-
rently not part of our language, but features like this are highly used in web appli-
cations to store temporary and specific data about each user. This feature would make
our language more usable in practical scenarios.

67

Bibliography

[1] CakePHP Manual: The Cookbook, Jan 2010. http://book.cakephp.org/.

[2] Google Web Toolkit, Jan 2010. http://code.google.com/webtoolkit/.

[3] Hibernate, Jun 2010. http://www.hibernate.org/.

[4] OutSystems, Jan 2010. http://www.outsystems.com/.

[5] Ruby On Rails, Jul 2010. http://www.rubyonrails.org/.

[6] Ahsanul Bari and Anupom Syam. CakePHP Application Development. Packt Pub-
lishing, 2008.

[7] Christian Bauer and Gavin King. Hibernate in Action (In Action series). Manning
Publications Co., Greenwich, CT, USA, 2004.

[8] Tim Berners-Lee. Information Management: A Proposal. European Particle Physics
Laboratory (CERN), March 1989.

[9] Luís Caires, Jorge A. Perez, João C. Seco, and Hugo T. Vieira. Refinement Types
for Database Access Control. Technical report, UNL-DI-3-2010, Departamento de
Informática, FCT/UNL, 2010.

[10] C. Calvert and D. Kulkarni. Essential LINQ. Addison-Wesley Professional, 2009.

[11] Kai Chan, John Omokore, and Richard Miller. Practical CakePHP Projects. Apress,
Berkely, CA, USA, 2008.

69

http://book.cakephp.org/
http://code.google.com/webtoolkit/
http://www.hibernate.org/
http://www.outsystems.com/
http://www.rubyonrails.org/

BIBLIOGRAPHY

[12] Derek Chen-Becker, Tyler Weir, and Marius Danciu. The Definitive Guide to Lift: A
Scala-based Web Framework. Apress, Berkely, CA, USA, 2009.

[13] Adam Chlipala. Ur: Statically-Typed Metaprogramming with Type-Level Record
Computation. Programming Language Design and Implementation (PLDI) 2010, SIG-
PLAN Notices, 45(6):122–133, 2010.

[14] Adam Chlipala. The Ur/Web Manual. Mar 2010. http://www.impredicative.
com/ur/.

[15] The Web Application Security Consortium. Web Application Se-
curity Statistics, 2008. http://projects.webappsec.org/

Web-Application-Security-Statistics.

[16] William R. Cook and Ali H. Ibrahim. Integrating Programming Languages and
Databases: What’s the Problem? In ODBMS.ORG, Expert Article, 2005.

[17] Ezra Cooper. The Script-Writer’s Dream: How to Write Great SQL in Your Own
Language, and Be Sure It Will Succeed. Database Programming Languages (DBPL)
2009, LNCS, 5708, 2009.

[18] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web pro-
gramming without tiers. Lecture Notes in Computer Science, 4709:266–296, 2006.

[19] Ryan Dewsbury. Google Web Toolkit Applications. Addison-Wesley, 2008.

[20] David Flanagan and Yukihiro Matsumoto. The ruby programming language.
O’Reilly, 2008.

[21] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceedings of the
SIGPLAN ’91 Symposium on Language Design and Implementation, pages 268–277,
Toronto, Ontario, June 1991. ACM Press.

[22] Robert Hanson and Adam Tacy. GWT in Action: Easy Ajax with the Google Web
Toolkit. Manning Publications Co., Greenwich, CT, USA, 2007.

[23] Patrick Lenz. Simply Rails 2. Sitepoint, Collingwood, Vic. :, 2nd ed. edition, 2008.

[24] Jeff Linwood and Dave Minter. Beginning Hibernate, Second Edition. Apress,
Berkely, CA, USA, 2010.

[25] Fabrice Marguerie, Steve Eichert, and Jim Wooley. LINQ in action. Manning Pub-
lications Co., Greenwich, CT, USA, 2008.

70

http://www.impredicative.com/ur/
http://www.impredicative.com/ur/
http://projects.webappsec.org/Web-Application-Security-Statistics
http://projects.webappsec.org/Web-Application-Security-Statistics

BIBLIOGRAPHY

[26] Mário Pires and Luís Caires. A type system for access control views in object-
oriented languages. Foundations and Applications of Security Analysis, Joint Work-
shop on Automated Reasoning for Security Protocol Analysis and Issues in the Theory of
Security, 2010.

[27] Trygve Reenskaug. Models - Views - Controllers. Technical note, Xerox PARC,
December 1979.

[28] David Robinson and Ken A.L. Coar. The Common Gateway Interface (CGI) Ver-
sion 1.1. RFC 3875 (Informational), October 2004.

[29] Sam Ruby, Dave Thomas, and David Hansson. Agile Web Development with Rails,
Third Edition. Pragmatic Bookshelf, 2009.

[30] Bram Smeets, Uri Boness, and Roald Bankras. Beginning Google Web Toolkit: From
Novice to Professional. Apress, Berkely, CA, USA, 2008.

[31] Daniel Spiewak and Tian Zhao. ScalaQL: Language-Integrated Database Queries
for Scala. Software Language Engineering 2009, LNCS, 5969:154–163, 2010.

[32] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles and
Paradigms (2nd Edition). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2006.

[33] Bernardo Toninho and Luís Caires. A spatial-epistemic logic and tool for rea-
soning about security protocols. Technical report, Departamento de Informática,
FCT/UNL, 2009.

[34] Hugo T. Vieira, L. Caires, and J. C. Seco. The conversation calculus: A model of
service oriented computation. European Symposium on Programming (ESOP) 2008,
LNCS, 4960, 2008.

[35] Eelco Visser. WebDSL: A case study in domain-specific language engineering.
Generative and Transformational Techniques in Software Engineering (GTTSE 2007),
LNCS, 5235:291–373, October 2008.

71

	Introduction
	Motivation
	Context
	Proposed Solution
	Contributions
	Document Structure

	Core Language for Web Applications
	Examples
	Phone Book
	Simple Blog
	Photo Album

	Syntax
	Semantics
	Type System

	Runtime Support System
	Execution Mode
	Development Mode

	Web Applications Development
	Ruby On Rails
	CakePHP
	Scala Lift
	Google Web Toolkit
	Programming Language and Database Integration
	Hibernate
	LINQ
	ScalaQL

	Links
	WebDSL
	Ur/Web
	Agile Platform
	Discussion

	Final Remarks
	Future Work

	Bibliography

