
 

Universidade Nova de Lisboa 

Faculdade de Ciências e Tecnologia 

Departamento de Informática 

 

 

 

Dissertação de Mestrado em Engenharia Informática 
 

 

Service-oriented Mobility of Java Code in Web 

Services-based Architectures 
 

 

 

Gilberto Camacho (30189) 
 

 

 

 

 

 

 

 

 

 

 

Lisboa 2010 



  



 

Universidade Nova de Lisboa 

Faculdade de Ciências e Tecnologia 

Departamento de Informática 

 

 

 

Dissertação de Mestrado em Engenharia Informática 
 

 

Service-oriented Mobility of Java Code in Web 

Services-based Architectures 
 

 

 

Gilberto Camacho (30189) 
 

 

Orientador: Prof. Doutor Hervé Paulino 
 

 

 

 

 

 

 

Dissertação apresentada na Faculdade de 

Ciências e Tecnologias da Universidade Nova 

de Lisboa para a obtenção do Grau de Mestre 

 em Engenharia Informática 

 

 

 

Lisboa 2010 



  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my dear parents Fernando and Maria Camacho 



 

  



vii 

Acknowledgements 

 

Before proceeding with the introduction of my thesis, I would like to thank all the people involved 

with me that in one way or another, have contributed to this experience in becoming successful and 

unique. 

 

I would like to thank: 

 

• My parents Fernando Camacho and Maria Camacho, and brother José Camacho for 

their continuous support throughout the course. 

• My friends Miguel Teixeira and Ricardo Palha who have helped me in the last days 

of the evaluation of the system. 

• My colleagues Danilo Manmohanlal, Paulo Mariano and Amavel Santo who have 

shared knowledge (and much coffee) to overcome difficulties in the implementation period. 

• At last but not the least, my advisor and Professor Hervé Paulino who has proposed 

this dissertation, for his continuous support and encouragement since day one with much 

patience. 



  



ix 

 

 

 

 

 

Resumo 
 

A mobilidade de software é uma tecnologia que consiste em fornecer mobilidade a componentes de 

software para que possam migrar para um computador remoto para interagir localmente. Por outras 

palavras, esta tecnologia permite que a computação seja transferida de uma máquina para outra 

remota. Ao fornecermos esta capacidade de transferir computações entre diferentes máquinas, é de 

esperar que surjam preocupações relacionadas com a segurança. Por agora, acreditamos que o 

paradigma da mobilidade de software limita-se a ambientes com bases de confiança, tais como 

redes locais ou camadas de middleware, onde as questões de segurança podem ser melhor 

controladas. 

 

A computação orientada a serviços reorganiza a arquitectura de rede na forma de serviços, onde os 

seus componentes são mais facilmente integrados, modificados ou removidos. Eles têm a 

capacidade de cooperar entre si, independentemente da linguagem de programação utilizada no seu 

desenvolvimento. Além disso, a computação orientada a serviços é uma tecnologia amplamente 

aceite para a implementação de aplicações distribuídas como por exemplo, o middleware.  

 

O trabalho realizado nesta tese consiste em instanciar um modelo que combine mobilidade de 

software e computação orientada a serviços, tal como foi proposto por Paulino [20]. Neste modelo, 

as sessões de migração tiram proveito dos recursos de uma rede orientada a serviços, criando assim 

um ambiente onde a migração é modelada em termos de serviços em vez de abstracções de nós de 

rede. 

 

Neste trabalho, pretendemos aplicar a migração de programas Java no contexto de uma 

arquitectura orientada a serviços desenvolvidos com Web services. Esta aplicação é composta por 

uma camada de middleware que corre entre o programa fonte e os serviços de tecnologias Web, e 

cuja interface é o resultado do mapeamento das operações especificadas no modelo. 

 

A avaliação efectuada ao modelo instanciado permitiu-nos identificar situações em que a migração 

do componente para o servidor para interagir localmente é mais vantajosa comparativamente com a 

interacção remota com o mesmo. 

 

 





xi 

 

 

 

 

 

Abstract 
 

Software mobility consists of providing software components, the ability to migrate to a remote 

host with the purpose of interacting locally. In other words, this technology enables computations 

to be transferred from the current machine to a remote one. This powerful enhancement embodied 

in a traditional network fairly raises security concerns. For now, we believe that software mobility 

paradigm is confined to environments with bases of trust such as local area networks or 

middleware layers where security issues can be better controlled. 

 

Service-oriented computations reorganize the network architecture in the form of services, where 

components are more easily integrated, modified and removed. They have the ability to cooperate 

between them regardless the programming language used in their development. In addition, 

service-oriented computing is a widely accepted technology for the implementation of distributed 

applications, namely middleware. 

 

The work developed in this thesis consists of instantiating a model which combines software 

mobility and service-oriented paradigms as proposed by Paulino [20]. In this model, migrating 

sessions take advantage of the resources of a service-oriented network, creating thus an 

environment where the migration is modeled in terms of services instead of network nodes 

abstractions. 

 

In the instantiated model, we aim to apply the migration of Java programs in a context of a service-

oriented architecture developed with Web services. This application comprises of a middleware 

layer that runs between the source program and the Web services technologies, and whose 

interface is the result of the mapping of the operations defined in the model. 

 

The evaluation performed to the instantiated model allows us to identify situations in which 

component migration to the server to interact locally is more advantageous in comparison to 

remote interacting with it. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 



xiii 

 

 

 

 

 

Contents 

 

1. Introduction ............................................................................................................................... 1 

1.1. Motivation ............................................................................................................................ 1 

1.2. Problem statement and work goals ...................................................................................... 2 

1.3. Proposed solution ................................................................................................................. 3 

1.4. Contributions ........................................................................................................................ 3 

1.5. Document Outline ................................................................................................................ 4 

2. State-of-the-art ........................................................................................................................... 5 

2.1. Software Mobility ................................................................................................................ 5 

2.1.1. The Software Mobility Paradigm ................................................................................. 5 

2.1.2. Mobility Models ........................................................................................................... 6 

2.1.3. Advantages of Software Mobility ................................................................................. 7 

2.1.4. Disadvantages of Software Mobility ............................................................................ 8 

2.1.5. Applications .................................................................................................................. 8 

2.1.6. Execution Support......................................................................................................... 9 

2.1.7. Systems Supporting Software Mobility ...................................................................... 11 

2.2. Service-oriented paradigm ................................................................................................. 12 

2.2.1. Distributed Objects Architecture ................................................................................ 13 

2.2.2. Service-Oriented Architecture .................................................................................... 14 

2.2.3. Web Service Protocols and Technologies .................................................................. 15 

3. Service-Oriented Software Mobility ...................................................................................... 19 

3.1. Overview ............................................................................................................................ 19 

3.2. Itinerary .............................................................................................................................. 21 

3.3. Unidirectional traveling ..................................................................................................... 22 

3.4. Multidireccional traveling .................................................................................................. 23 

3.5. Bridging ............................................................................................................................. 24 



xiv 

4. Instantiation of the Service-Oriented Mobility Model ......................................................... 27 

4.1. Overview ............................................................................................................................ 27 

4.1.1. Scenarios ..................................................................................................................... 28 

4.1.2. Data Manager .............................................................................................................. 29 

4.2. User Application Programming Interface .......................................................................... 30 

4.2.1. Server .......................................................................................................................... 30 

4.2.2. Result .......................................................................................................................... 31 

4.2.3. Session ........................................................................................................................ 31 

4.2.4. Data Manager .............................................................................................................. 33 

4.2.5. Itinerary ....................................................................................................................... 34 

4.2.6. Bridging ...................................................................................................................... 38 

4.2.7. Code sample ................................................................................................................ 40 

4.3. Middleware Architecture.................................................................................................... 43 

4.3.1. Session Setting-up ....................................................................................................... 44 

4.3.2. Session Execution ....................................................................................................... 45 

4.3.3. Session Management .................................................................................................. 45 

4.3.4. Communication ........................................................................................................... 45 

4.4. Itinerary Lifecycle .............................................................................................................. 46 

4.5. Middleware Implementation .............................................................................................. 47 

4.5.1. User-developed components transformation into middleware components ............... 47 

4.5.2. Itinerary departure procedures .................................................................................... 50 

4.5.3. Itinerary server arrival procedures .............................................................................. 53 

4.5.4. Results returning to client ........................................................................................... 55 

5. Evaluation................................................................................................................................. 57 

5.1. Environment Specifications ............................................................................................... 58 

5.2. Measuring the overhead of the middleware ....................................................................... 58 

5.3. Remote interaction versus remote execution (lower bandwidth) ....................................... 59 

5.3.1. Remote interaction ...................................................................................................... 59 

5.3.2. Remote execution........................................................................................................ 60 

5.3.3. Comparison between remote interaction and remote execution ................................. 62 

5.4. Remote interaction versus remote execution (higher bandwidth) ...................................... 63 

5.4.1. Comparison between remote interaction and remote execution ................................. 63 

5.5. Interactions ......................................................................................................................... 64 



xv 

5.5.1. Remote interaction versus remote execution (lower bandwidth) ............................... 64 

5.5.2. Remote interaction versus remote execution (higher bandwidth) .............................. 67 

5.6. Unidirectional ..................................................................................................................... 68 

5.6.1. Remote interaction versus remote execution (lower bandwidth) ............................... 70 

5.6.2. Remote interaction versus remote execution (higher bandwidth) .............................. 73 

5.7. Multidirectional (Speed-Up) .............................................................................................. 76 

6. Conclusions .............................................................................................................................. 78 

6.1. Summary ............................................................................................................................ 78 

6.2. Future work ........................................................................................................................ 79 

7. Bibliography ............................................................................................................................. 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xvi 

  



 

xvii 

 

 

 

 

 

List of Figures 
 

1.1 - General overview of the system architecture  ........................................................................... 3 

2.1 - Strong mobility  ......................................................................................................................... 6 

2.2 - Weak mobility  .......................................................................................................................... 6 

2.3 - Find-bind-execute paradigm  ................................................................................................... 15 

2.4 - Organization of a Web service through WSDL format  .......................................................... 17 

3.1.1 - Session uploading in a service-oriented system  .................................................................. 21 

3.2.1 - Session migrating to two service‟ providers  ....................................................................... 21 

3.3.1 - Upload with unidirectional traveling strategy applied  ........................................................ 23 

3.4.1 - Upload with multidirectional traveling strategy applied  ....................................................  24 

3.5.1 - Manual bridging  .................................................................................................................  25 

3.5.2 - System bridging  ..................................................................................................................  26 

4.1.1 - General overview of the system  .........................................................................................  27 

4.1.2 - One-to-one scenario ............................................................................................................  28 

4.1.3 - One-to-many scenario  ........................................................................................................  29 

4.1.4 - Many-to-many scenario  ......................................................................................................  29 

4.2.1 - A session interacting with several data managers  ..............................................................  34 

4.2.2 - Example of an upload with both traveling strategies combined  .........................................  35 

4.2.3 - Session using a local data manager to store results  ............................................................  37 

4.2.4 - Session using a remote data manager to store results .........................................................  37 

4.2.5 - Bridging between two sessions  ..........................................................................................  38 

4.2.6 - Bridge in unidirectional traveling  .......................................................................................  39 

4.2.7 - Bridge in multidirectional traveling  ...................................................................................  40 

4.3.1 - Middleware architecture  .....................................................................................................  44 

4.4.1 - Lifecycle of an itinerary  .....................................................................................................  46 

4.5.1 - Session and Itinerary contents in the client and in the middleware  ...................................  48 

4.5.2 - Middleware itinerary  ..........................................................................................................  50 

4.5.3 - Example of an itinerary before leaving the client machine  ................................................  52 

4.5.4 - Real traveling route of itinerary 117  ..................................................................................  54 

4.5.5 - Handler synchronization  .....................................................................................................  56 

5.1 - Session executing in the server and interacting in the server  ................................................  57 

5.2 - Session executing in the client and interacting with a remote server  ....................................  58 

5.3.1 - Graph of Table 5.3.3  ...........................................................................................................  62 

5.4.1 - Graph of Table 5.4.1  ...........................................................................................................  63 

5.5.1 - Graph of Table 5.5.3  ...........................................................................................................  66 

5.5.2 - Graph of Table 5.5.4  ...........................................................................................................  67 



 

xviii 

5.6.1 - Number of classes transferred from host to host (3 servers)  ..............................................  68 

5.6.2 - Graph of table 5.6.3  ............................................................................................................  72 

5.6.3 - Graph of table 5.6.6  ............................................................................................................  75 

5.7.1 - Graph of table 5.7.1  ............................................................................................................  77 

  



 

xix 

 

 

 

 

 

List of Tables 
 

5.2.1 - Average time values in session uploading ..........................................................................  58 

5.3.1 - Remote interaction time values (1Mbps)  ...........................................................................  60 

5.3.2 - Remote execution time values (1Mbps)  .............................................................................. 61 

5.3.3 - Remote interaction versus remote execution (1Mbps)  .......................................................  62 

5.4.1 - Remote interaction versus remote execution (100Mbps)  ...................................................  63 

5.5.1 - Remote interacting with interactions (1Mbps)  ...................................................................  64 

5.5.2 - Remote executing with interactions (1Mbps) .....................................................................  65 

5.5.3 - Remote interaction versus remote execution with interactions (1Mbps)  ...........................  66 

5.5.4 - Remote interaction versus remote execution with interactions (100 Mbps)  ......................  67 

5.6.1 - Unidirectional remote execution (1Mbps) ..........................................................................  70 

5.6.2 - Unidirectional remote interaction (1Mbps)  ........................................................................  71 

5.6.3 - Unidirectional remote execution versus remote interaction (1Mbps)  ................................  72 

5.6.4 - Unidirectional remote execution (100Mbps) ......................................................................  73 

5.6.5 - Unidirectional remote interaction (100Mbps)  ....................................................................  74 

5.6.6 - Unidirectional remote execution versus remote interaction (100Mbps)  ............................  75 

5.7.1 - Multidirectional speed-up (1Mbps)  ....................................................................................  76 





 

1 

 

 

 

 

 

1. Introduction 
 

1.1. Motivation 

 

Software mobility paradigm is a well-studied technology focused on the development of 

distributed components. Environments supplying this kind of technology allow the same 

computation to run in any host across the network. The contribution given by software mobility 

in the computers science field is particularly interesting as it provides components to be 

programmed in one machine to migrate to a remote one in order to be executed. Java applet is 

an example of an application that benefits from code mobility for its execution. 

Notwithstanding the advantages introduced by software mobility, the potential existing in 

permitting mobile agents to travel towards the resources raised justified concerns about 

security. 

 

Considering the uneasiness related to security issues, we believe that with this state-of-the-art, 

the use of mobile agents are confined to environments with bases of trust such as local area 

networks running under a single administrative domain or systems offering a middleware layer 

which has control mechanisms over migrated code. 

 

Architectures supporting service-oriented computing provide a loosely-integrated set of 

services that can be used within multiple domains. We found interesting in making use of 

service-oriented computing technology in our work since it offers abstraction of both network 

resources and software components. Indeed, the composition of loosely-bound service-oriented 

components typical in this kind of architecture has been proved to be a good paradigm for the 

modeling of distributed applications such as mobile agents. 

 

Additionally, Web service is an emerging technology that fits greatly in this context since it 

provides communication between loosely-coupled components thanks to the “contract” offered 

by the WSDL (Web Services Description Language). It is our opinion that mobility has the 

potential to be a useful technology for the future of the Internet, especially when combined 

with services. 

 

 

 

 

 



 

2 

1.2. Problem statement and work goals 

 

Nowadays, software migration is modeled in terms of network node abstractions, IP addresses 

or URLs (Uniform Resource Locator). In common mobile agent development APIs, 

applications require to know the location of the server. As such, the operational flow of a 

program that wants to perform the sequence of operations P1 to Pn at hosts h1 to hn is: 

 

go to host h1 and do P1; 

go to host h2 and do P2; 

… 

go to host hn and do Pn; 

 

However, the possible absence of a specific host and the search for alternatives obligates the 

programmer to implement solutions to overcome these obstacles. 

 

Service-oriented computing is a kind of technology that permits mobility to be modeled in 

terms of services rather than hosts. A migrating program takes advantage of this technology 

since it is defined to find an instance of a service to operate instead of being set to go to a 

specific host to operate. In addition, the inclusion of service-orientation removes the burden 

from the programmer to implement solutions to surpass the problem of a missing network 

node. 

 

Thus, the operational flow of a mobile agent in this environment is: 

 

find an instance of service S1 and do P1; 

find an instance of service S2 and do P2; 

… 

find an instance of service Sn and do Pn; 

 

This approach requires the search for alternatives to be in charge of a service discovery 

mechanism. Nonetheless, the handling of situations where there are no alternatives is still 

required. 

 

In this thesis, we propose to instantiate a model in a mainstream programming language (Java) 

and to offer support so the migration is modeled in terms of services, namely Web services. 

The system consists of a middleware layer that allows multiple hosts to be connected with each 

other with the objective of managing user-programmed components that are uploaded to the 

network. Clients are able to develop mobile agents to run in this system through an API 

specifically designed to provide mechanisms that interact with the middleware. There are no 

restrictions in the code developed by the user for the session to execute remotely. Additionally, 

this API also allows the user to define the traveling strategy a session – or a set of sessions – 

must follow. 

 



 

3 

1.3. Proposed solution 

 

Our proposal is to instantiate a model (Fig. 1.1) comprising of a middleware layer that is 

defined to support sessions‟ migration in a Web environment. This software layer is 

responsible in collecting the classes that sessions require in order to be executed remotely, 

create a Web service request, disposing a Web service in the server to receive migrating 

sessions, load the collected classes to the Java Virtual Machine (JVM), execute sessions, 

collect the computed results to return to the client, provide a Web service in the client machine 

to attend incoming results and synchronize the client application request with the results that 

have returned. 

 

 

Figure 1.1 – General overview of the system architecture 

 

In order to utilize the features provided by the middleware, the programmer has access to an 

application programming interface (API) that allows him/her to develop components and to 

dispatch them to the network. With this API, the programmer has the ability to create sessions 

to be executed in remote stations and to receive the respective computed results. In addition, 

the user can define the destinations for the session to migrate to as well as the route it should 

take throughout its trip in the network. The API allows the user to specify a session to travel 

from host to host in sequence (unidirectional) or in parallel (multidirectional). 

 

Once the system is implemented, a study of performance will be realized. The objective of the 

study is to understand which are the situations that favor migrating a session instead of having 

it interacting remotely. 

 

 

1.4. Contributions 

 

We aim to contribute with this work, a model instantiated in Java language that offers an API 

for the programmer to make use of the abstract concepts of the model. 

 

We also intend to provide a middleware in our model that features user-developed components 

to travel to any station in the network that is running our middleware. The user-programmed 



 

4 

components travel according to the route defined by the user, in sequence and/or in parallel. 

Additionally, these components feature interactions between them once deployed in the 

network, such as copying the computed results from one to another. 

Finally, we pretend to offer an extensive study of impact consisting of identifying which 

situations favors session migration and which situations favors remote interaction. The studies 

vary from increasing the bandwidth from 1 Mbps to 100 Mbps, increasing the number of 

interactions with the server as well as the number of servers that a session interacts with. 

 

 

1.5. Document Outline 

 

The thesis is structured in six chapters. The next chapter introduces the software mobility and 

the service-oriented paradigms. It explains the different approaches used for systems under 

each paradigm. Chapter 3 describes the combination of these two paradigms: service-oriented 

mobility. Chapter 4 explains the instantiation of the service-oriented mobility model. It presents 

the API for the programmer and a detailed explanation of the middleware implementation. 

Chapter 5 provides the studies performed in our model with the objective of comprehending 

which situations favor migration and which situations favor remote interaction. And at last, 

Chapter 6 presents the conclusions of this thesis and future work. 

  



 

5 

 

 

 

 

 

2. State-of-the-art 
 

In this chapter, we provide an in-depth lecture of Software Mobility and Service-oriented 

computing distributed in two sections. Section 2.1 offers a perspective of computations capable of 

traveling to remote computers to be executed locally and in Section 2.2 the attention is centered on 

service-oriented computing and in Web services. We aim to provide in these two sections, the 

background for Service-oriented Mobility (Chapter 3). 

 

 

2.1. Software Mobility 

 

2.1.1. The Software Mobility Paradigm 

 

Software mobility [5, 13, 18] is a characteristic of software which has the ability to travel 

across multiple hosts in a network, in order to perform computation activities locally.  It does 

not rely on remote sessions to exchange messages because all the information needed to 

perform its job is moved toward the resources. However, before migrating from one host to 

another, the software does need to be acknowledged of which computer to go. A software 

infrastructure running in the network is responsible for giving support to mobile software, 

providing such as data protection and security. 

 

Software mobility focuses essentially on the potential that can be achieved in having software 

components executing remotely rather than executing in the local machine. 

 

A mobile agent is a computer program that runs on behalf of a network user and is intended to 

execute all its computing operations locally.  It consists of an encapsulation of code, data and 

process state. When a computer is connected to a network, a mobile agent can travel to a new 

host by halting its execution on the current machine, saving its state and restoring it back in the 

destination. After being in execution in the recipient host, the agent may have collected 

information to return back to the source host or it may travel to another remote computer to 

continue its work. 

 

The autonomy evidenced by mobile agents is most visible when they migrate from one host to 

another. In fact, a mobile agent is intended to have contact with its source host only in two 

occasions: when it departs and when it returns to the starting node. Whatever happens in 

between, a mobile agent enjoys the freedom to be completely detached from its source host to 

perform its task in the distributed environment. Even if the starting node gets disconnected 



 

6 

from the network in this meantime, this will not bother the mobile agent because it was given 

all the instructions needed to perform its task successfully before departing from the source 

host. 

 

 
Figure 2.1 - Strong mobility 

 

 

 
Figure 2.2 - Weak mobility 

 

2.1.2. Mobility Models 

 

In the process of traveling from one machine to another, a mobile agent can be classified as 

supporting strong or weak mobility [5]. The former comprises of code, data and process state, 

and the latter comprises of just code and data. Figures 2.1 and 2.2 represent the migration of an 

agent with strong and weak mobility, respectively. The Java Virtual Machine (JVM) is an 

example of a popular run-time environment used to execute Web related applications which 

supports only weak mobility. Due to its security defined boundaries, the JVM does allow 

access only to code and data and not to the run-time state of the process [21]. 
 

When using weak mobility, since the run-time state of the agent is not transferred, the content 

sent must be given a point of reference in order to be successfully re-instantiated in the 

recipient host as intended. It could for instance, be given instructions to execute starting from a 

specific function when arriving in the new host. The re-instantiation process is explained in 

more detail in subsection 2.1.6. 
 

In software mobility, there are two types of behavior which an agent can have: proactive or 

reactive [5].  Proactive behavior is attributed to agents that decide themselves when and where 

to migrate whereas reactive behavior is attributed to agents that react to some external event 

that will trigger the migration. 
 

There are two different situations which can trigger mobile code transferring [5]:  code- 

shipping regards to when the source host sends all the code to the destination computer and 

code-fetching is when the destination host downloads the code from some source host.  The 

main difference resides in which application makes the decision for the migration - if the one in 

the source host or the one in the destination host.  



 

7 

2.1.3. Advantages of Software Mobility 

 

The use of mobile agents in distributed systems brings some advantages some of which are 

itemized below: 

 

• Overcoming client computer limitations [13] - communication delays, short memory size, 

limited storage capacities, insufficient network bandwidth and/or low CPU processing 

capacity are difficulties that may be found on a client computer. The performance can be 

improved if an agent is sent to the recipient host to process the data locally rather than 

accessing it remotely; 

 

• Survivability rate [13] - the benefit of transferring code, data and state encapsulated makes 

a mobile agent survivability rate higher compared to the client-server model. In fact, as 

longer a session has to be maintained, more costly it is likely to become for the involved 

hosts and by consequence, the request it carries on takes longer than expected. Mobile 

agents are independent entities that do not require sessions to perform their tasks. And even 

if a network node has failed, it will not reduce mobile agents working pace since they are 

intelligent enough to decide to move to a different host to continue their work. 

 

• Customization [13] - mobile agents can be easily customized according to the user needs 

whereas client-server model require more time to adapt to a new environment.  Given the 

possibility to request the remote execution of code, the server does not need to be up- 

graded to run new functionalities in order to attend client unforeseen needs. Therefore, 

memory and storage capacities, and other resources are spared from being consumed. 

 

• Portability [18] - nowadays, mobile devices such as laptops, cell phones, PDAs have the 

capability to access the Internet.  Any user can start some work in the computer at the office 

and then continue the work using a PDA on the way back home for example.  A mobile 

agent will do for good by keeping trace of its owner‟s tasks even while he is disconnected. 

Whenever the user goes online again, the agent will be transferred from its current location 

to the new one and the user can continue its work whatever the device he has selected to 

use. And best of all, the user will not notice how much the agent has eased his life. 

 

• enhancing secure communications on public networks [18] - mobile agents transport 

certificates of the user they are working on behalf as they travel in the network. These are 

used for authentication at every node they stop by, therefore protecting them from 

eavesdropping. Mobile agents also travel along the network with data, code and process 

state fully encrypted to give a higher rate of security. 

 

• Software distribution on demand [18] - Java applets and Active X are examples of 

implemented systems that widely use code on demand, creating indeed conditions 

 

to provide an alternative installation method: software distribution on demand. In fact, these 

systems are able to retrieve remote code and to install software packages automatically 



 

8 

without human interference.  With all these features, they give emphasis to code mobility 

distribution and by consequence, to mobile agents. 

 

2.1.4. Disadvantages of Software Mobility 

 

The main difficulties of software mobility are associated to mobile agents‟ paradigm [5] [18]: 

 

• Lack of applications [13] - currently, there are only a few applications using mobile 

agents. Even those, they cannot be considered successfully distributed among network users 

because they are not widely used. One of the reasons for this is perhaps that distributed 

systems are in general working satisfactorily well and not yet requiring the benefits that 

could be brought by mobile agents. Another reason could be related to the embryonic state 

of known experiences using mobile agents. 

 

• Security concern [13] - besides the communication security improvements using software 

mobility, security has not yet been developed enough to create a comfortable environment 

to use mobile agents safely. This is an issue of particular sensitivity and unfortunately, the 

potential existing in the use of mobile agents can be done for good or for evil. Allowing 

remote software to execute locally without guaranteeing that it is not harmful is of critical 

concern. Many problems arise and research in this area has a long way to go. 

 

2.1.5. Applications 

 

Next, we state some application fields using mobile agents: 

 

• Obtaining high quality information [5] - when a user seeks for some information in the 

Internet - using a search engine for example - the results found are more precise and more 

reliable to what the user was looking for because of the agent‟s ability, during the retrieval 

process, in collecting information from the sources that best match its owner profile. 

 

• E-commerce [5,18] - the huge growth of electronic commerce verified in the last few 

years can certainly give mobile agents a more participative role in this field. As was stated, 

a mobile agent works on behalf of a user and it is equipped with intelligence to choose the 

most appropriate way that best serve the interest of its owner. If some user wants to buy, for 

instance, the cheapest airline ticket from Lisbon to Faro, the in charge agent travels along 

the network computers that provide this information to seek for the cheapest flight for this 

route. It may also use its owner Bank account to purchase the ticket for him or her. And in 

case there are no direct flights, the agent may even prepare a booking for a hotel room in 

some intermediate city for its owner to stay.  

 

• Network devices supervision and configuration [5] - mobile agents can be used to 

supervise and configure network devices in the direction of giving the distributed system 

conditions to best perform continuously.  Tracking down devices behavior is precious for 



 

9 

the development of upgraded components which will be sent through code mobility to the 

devices in need, increasing the network performance without human interference. 

 

• Software maintenance and information collecting in LANs [5] - mobile agents can release 

users from irksome work such as installing and maintaining software in a distributed 

environment.  Since a mobile agent is composed by an encapsulation of code, data and 

process state, it is able to carry instructions or software packages to install in remote 

computers without the user interference.  A mobile agent can also be used to collect specific 

information that is spread along the network and which is in the interest of its owner. For 

instance, supposing that all medical records of a person, who went to various clinics and 

hospitals in his lifetime, are registered in local computers which are connected to the same 

LAN.  Delegating to a mobile agent to collect all those sensitive medical records of a 

patient and making them available to the doctor when requested, releases the complex task 

which could have been assigned to a human being [11]. 

 

2.1.6. Execution Support 

 

This subsection discusses how mobile software requires some mechanisms to successfully 

continue its execution in the destination computer. It comprises of state reconstruction and 

resource bindings, and communication. 

 

2.1.6.1. State Reconstruction and Resource Bindings 
 

In [5] Fugetta presents the state of a mobile agent is being constituted of: 

 

• code - which indicates the static description for the behavior of a computation; 

 

• data space - which contains the references to resources that can be accessed; 

 

• agent state - which provides private data that is not sharable; 

 

• execution state - which includes the run-time state of the process (program counter, call 

stack); 

 

When an agent migrates to a remote computer environment, variables holding data, like open 

file descriptors, created when the agent was in execution in the source machine, may be void if 

they are directly accessed in the destination host.  A structure containing a reconstruction of the 

resources bindings must exist to give support to the agent in successfully accessing them when 

it resumes execution in the new host. This structure is also important in supporting the agent to 

access resources that do not belong to the agent‟s address space and therefore, cannot be moved 

in the migration process. Nonetheless, when the resources are able to go altogether with the 

agent to the new host, there may be other agents requiring access to the same resources which 

have now become inaccessible. One solution to this problem is to create a copy of the resources 

in the computer where the agent is migrating - this process is called remote cloning - instead of 



 

10 

migrating the resources. Another solution for the resources that cannot be migrated is to access 

them as network references. 

Also in [5] the composition of this structure is presented as Resource = <I,V,T> which: 

 

• I is an unique network identifier for the resource; 

 

• V is the value of the resource; 

 

• T is the type of the resource; 

 

A binding established by identifier - which is the strongest binding among the three - states that 

the execution unit must be always assigned to a given I (e.g.  currently used printer).  In regard 

of a binding established by value, V (e.g.  desk jet printer 960dpi) must be associated, at any 

moment, with a given type and its value must remain unchanged when arriving to the 

destination host. T (e.g. desk jet printer) is the weakest binding and it is associated with a given 

type, independently what V and I are holding. 

 

Furthermore, as mentioned above, not every resource can migrate. Resources mobility can be 

divided in three categories [5, 9]: 

 

• free transferable - resources that are part of the agent‟s address space can move freely 

together with the agent to every network node; 

 

• fixed transferable - resources that may be shared by other agents can only be transferred if 

they are not required by any other agent; 

 

• fixed not transferable - resources that are physically attached to the computer environment 

cannot be transferred even if it isn‟t required by any agent; 

 

In summary, the resources bindings‟ structure and the resources mobility attributes are 

mechanisms which contribute for the successful migration of mobile agents in distributed 

systems. 

 

2.1.6.2. Communication 
 

Agents may require communicating with other remote agents in some occasions. Although the 

concept behind mobile agents is to perform all the computations locally, in some occasions it is 

better to send messages remotely rather than migrating to the other agent‟s machine.  The 

reason for this is that on some migrations, the amount of data transferred is much smaller than 

the agent‟s state. Therefore, remotely passing data messages instead of migrating the agent will 

benefit the efficiency and corporate work of the distributed system [18]. 

 



 

11 

The reliability of remote messages passing is given by control mechanisms that work to 

guarantee that no message is lost. For example, in case a message does not reach the receiving 

agent, the sender must be acknowledged of this occurrence. 

 

There are several types of communication: 

 

• synchronous or asynchronous messages passing 

 

• remote method invocation (RMI) or remote procedure calling (RPC) 

 

• user-level communication protocols such as SMTP or HTTP 

 

• distributed tuple spaces 

 

• communication 1 to N 

 

Due to mobile agent‟s ability to migrate autonomously to any network computer, it is difficult 

for other agents to know the exact location of an agent that they may want to contact at some 

point. Next, some strategies that aim to guarantee successfully deliveries of messages are 

described. 

 

• Proxy [5] - the message is sent to the last known location of the agent. If the agent is not 

there, this host forwards the message to where the agent has gone next and so on, until it 

reaches the agent. In extreme situations, the message behavior will look like it is chasing 

the agent; 

 

• Dynamic snapshot delivery [5] - each network node holds a copy of the message until it is 

delivered to the agent; 

 

• Based on a distributed system [18] - the system‟s naming service (which may be 

distributed) give support to every mobile agent to be referenced and therefore, reachable. In 

this method, no longer is important where the agent is but the name that it holds. Thus, 

every mobile must have a name and must inform the names service whenever it is going to 

migrate. On the occurrence of a message has not been received by its recipient agent (A), 

the sender (B) will request the location of A to the names service which will be provided to 

B. Then, B will try again to contact A. 

 

2.1.7. Systems Supporting Software Mobility 

 

The Java language has captured most of the attention on software mobility technology because 

it is able to provide a platform-independent language among agent applications by using the 

JVM. Unfortunately, due to Java imposed restrictions related to security measures, JVM 

supports only the migration of code and data (weak mobility). However, if the JVM is subject 

to modifications, it enables Java systems to support strong mobility. Sumatra [2] is an example 



 

12 

of a language for resource aware mobile programs which features strong mobility by modifying 

the JVM. There are also implementations of strong mobility for multi-threaded agents in Java 

[32] in which each agent thread maintains its own serializable execution state at all times, while 

thread states are captured just before a move.  

 

There are systems that transform programs that use strong mobility into programs that rely only 

on weak mobility [30]. KLAVA [31] is an experimental Java package for distributed 

applications and code mobility that offers this kind of support.  

 

Aglets [8], Voyager [6], Gypsy [7] and a few more, are examples of systems that also use Java 

packages to implement systems supporting mobile agents. 

 

But there are also systems that support mobile agents that are not implemented in Java.  Of 

these, we highlight Telescript and Mob. 

 

Telescript [27] is one of the first languages to use mobility on the development of loosely 

coupled distributed applications whereas Mob [21] is, to the best of our knowledge, the first 

language to combine services and mobile agents. Mob is a mobile agent scripting language 

where agents implement and require services, thus providing agent anonymity in inter-agent 

communication. There is no notion of session uploading as agents access services provided by 

other agents through remote method invocation. Mobility in Mob is related to the fact that the 

whole computation (the agent) has the ability to move. Indeed, this mobility is done towards 

hosts and not service-oriented. Additionally, Mob also supports strong mobility by running on 

a dedicated virtual machine on top of the JVM. 

 

In this section, we have discussed software mobility models, advantages and disadvantages of 

software mobility, how a mobile agent is transferred from one host to another, applications and 

systems supporting software mobility. In the next section, we will describe the Web services 

paradigm. 

 

 

2.2. Service-oriented paradigm 

 

The lecture of this section is centered on the service-oriented paradigm. We start by 

introducing the principal distributed objects architectures that preceded service-oriented 

architectures. Next, we will discuss service-oriented architectures which are the platforms that 

support Web services. The objective of this section is to complement the Software Mobility 

paradigm described in the previous section in order to set the bases for Service-oriented 

Mobility, the theme explained in Chapter 3. 

 

 

 

 



 

13 

2.2.1. Distributed Objects Architecture 

 

2.2.1.1. CORBA 

 

The Common Object Requesting Broker Architecture (CORBA) [12, 16] was one of the first 

infrastructures to appear which looked for tackling down distributed systems complexity. 

CORBA strategy focuses on promoting interoperability and adaptability between network 

components created by different computer languages. It basically uses Object Request Brokers 

(ORB) to provide an understanding platform between components written in different 

programming languages and an Interface Definition Language (IDL) which is a neutral-

language presentation of each component in the referred platform, so others components can 

request to operate together. In addition, CORBA technology can work together with the Java 

platform to enhance its portability and productivity. 

 

2.2.1.2. Java RMI 

 

Java Remote Method Invocation (Java RMI) [23] is a technology based in Java which has the 

particularity of being able to invoke methods on Java objects which are remotely located and 

make use of these objects as if they were locally present in the invoking computer.  It is 

typically constituted by a RMI server which is responsible for creating the referred Java objects 

and a RMI simple naming facility - RMI registry - which is a storehouse of references to the 

objects created by the RMI server. RMI also provides a mechanism through which is 

performed the communication between network computers running RMI applications (e.g. a 

JVM program running on the client machine invokes a method on an object located in the RMI 

server).  

 

What Java RMI introduces successfully is the ability of a client JVM not requiring creating 

locally an object which is remotely distributed to perform any task on it. The client JVM 

application invokes methods on the remote object and the results or effects produced is what is 

sent back to the client. These methods can be either provided at the server side or at the client 

side but it is required that they implement some particular interface. In addition, a single 

distributed object can be used concurrently by any number of client applications because Java 

RMI creates a local stub (that is basically the remote reference) in the client JVM which acts as 

a local representative of the remote object.  

 

Another feature of using Java RMI is that for the software engineer, invoking remotely located 

objects looks similar to regular Java method invocation. 

 

2.2.1.3. DCOM 
 

Distributed Component Object Model or DCOM [33] is a proprietary Microsoft technology for 

building distributed software components in networked computers. DCOM is an extension of 

COM (also from Microsoft) that supports communication between objects in distributed 



 

14 

environments and features the development of applications that focuses on centralizing 

business rules and processes, provides scalability and facilitates maintenance. Additionally,  

DCOM works transparently for both the client and the server application which are encoded 

according to the COM standard. 

 

2.2.1.4. EJB 

 

Enterprise JavaBeans or EJB [34,35] is an embracing technology that offers an infrastructure 

for constructing corporate server-side distributed Java components. It offers an architecture that 

supports distributing components that integrates several requirements at the corporate level, 

such as distribution, operations, security, transactions, persistence and connectivity with 

mainframes and Enterprise Resource Planning. In comparison with other technologies 

consisting of distributed components (CORBA and Java RMI for instance), the EJB 

architecture occults the subjacent system-level semantics that are used on distributed 

component applications. 

 

2.2.2. Service-Oriented Architecture 

 

Service-oriented architecture (SOA) [10, 17] is a kind of computer network architecture which 

basically lets applications and systems make use of services available in a distributed system. 

No matter what size is the distributed environment (e.g. World Wide Web), this architecture 

facilitates the integration of any applications and systems, and also reduces the effort expended 

by software engineers in developing new ones. This is possible because in SOA, applications 

are in the form of services providing therefore universal interoperability between them. Thus, 

functionalities or services which are currently being offered in the network can be used by 

other services as well as the new ones that will be implemented. This feature allows software 

engineers to develop new services which could make use of existing ones. With this strategy, a 

service – which may request to use other services – can provide any functionality without much 

hindrance for the developer, from the simple ones (e.g. give the currency exchange value of 

100 USD in Euros) to the more complex ones (e.g. booking the cheapest flight from Lisbon to 

Faro with one night stay in some hotel). 

 

The main feature introduced by SOA is allowing client applications (or services) to make use 

of multiple services no matter what code language or platform is used by the service. This is 

called loose-coupling. A client application (or service) does not need to have much knowledge 

about the service in order to use it.  It just needs to know that it exists and the operations it 

offers, so it can be requested when needed. In addition, the software engineer that is developing 

the client application does not have to worry about how it communicates. What must exist is a 

well-defined interface for each service to be accessible by other clients or services in order to 

communicate with it. In case a revision has to be done on an application (without changing the 

service offered), it is the application that has to be changed and not the interface. This is a very 

helpful solution because applications can be updated without changing the service offered and 

therefore, does not need to inform other clients regarding of the application revision. 

 



 

15 

The mechanism involving SOA services is typically supported by a find-bind-execute 

paradigm (Fig. 2.3). In this paradigm we have a service provider, a service registry and a 

service consumer.  The service provider creates services which are registered in the service 

registry which in turn is a public directory of services.  Whenever a client requires a specific 

service, it looks at the service registry and if there is any matching, a contract and an endpoint 

address for that service is given to the consumer by the service registry in order to be able to 

request it. The ‟new‟ terms contract and endpoint address are in fact, constituents of the 

previously mentioned service interface. 

 

 

Figure 2.3 - Find-bind-execute paradigm 

 

2.2.3. Web Service Protocols and Technologies 

 

The Web Services approach is based on a maturing set of standards that are widely accepted 

and used [17].  It provides a common understanding platform between clients and services 

which traditionally communicates through applications developed in different computer 

languages. The Web Services standards are based on Web technologies XML HTTP namely 

SOAP, WSDL, and UDDI which are described below.  Since security and asynchrony are 

important in the context of our work, we also discuss the standards WS-Security and WS- 

Notification. 

 

2.2.3.1. Communication 

 

Although XML along with its schema provides a common computer language for any 

computer environment to understand the content existing in a Webpage, it is necessary to use 

an agreed- upon format for the communication process.  SOAP means Simple Object Access 

Protocol [3] and it is an XML-based protocol for exchanging information between clients and 

services in a network.   A SOAP message consists of an envelope, a header which is optional, 

and a body.  Through the envelope, an XML namespace and an encoding style are sent.  It is 

vital to specify the names in the message to avoid ambiguities between names attributed to 

different items.  The encoding style is used for identification of data types. The header which is 

optional is used to provide additional information for an intermediate node to deal with the 



 

16 

message in case it has received. This information is often related to security issues. The body 

which contains the essential part of the message is for the destination node. 

 

2.2.3.2. Service Description 
 

XML and SOAP solely are ineffective if the client does not know how to access to Web 

services and which operations they perform. A typical Web service may not have one interface 

only and interfaces may not provide just one operation. It is important for a Web service to be 

presentable to the clients in order to be easily requested. The way a Web service ‟becomes‟ 

organized with all its operations, interfaces and protocols are provided by a WSDL document. 

WSDL or Web Services Description Language [4] is an XML format document with 

definitions describing the operationality of a Web service. A WSDL document makes a service 

viewed as a collection of network endpoints or ports. These ports relies on URIs (Uniform 

Resource Identifier) which the service uses to communicate (send or receive messages) with 

the exterior through HTTP, SMTP, TCP, etc. Each port is unique and it is created to support 

specifically a set of operations of the same type. In summary, WSDL documents group 

messages into operations and operations into interfaces and these in turn are bonded to the 

ports or endpoints (Fig. 2.4). By presenting an understandable format of what a Web service 

can offer, WSDL document provides to any client how to appropriately make use of a Web 

service. 

 

2.2.3.3. Service Registry 
 

Universal Description Discovery and Integration (UDDI) [1] is a standard used to describe 

Web services registered in the registry repository which aims to provide clients a method to 

easily find a desired service. A UDDI registry has 3 main components which give a better 

organization of its content and enhances thus the clients searching: yellow pages, white pages 

and green pages. White pages typically hold information regarding of the business providing 

the service, such as its name, its description which could be in one or more languages and 

contact information (phone number, email, address, etc). Yellow pages can be viewed as a sub- 

group of the white pages as they are grouped by services of the same business name. A 

business company can have one yellow page only if it offers a single service. Each tuple also 

holds a description of the service.  And finally, the green pages typically have information 

regarding of how to access a service‟s interface binding (a service could have one or more 

bindings). A service could have one or more green pages because services could have one or 

more bindings. 

 



 

17 

 
 

Figure 2.4 - Organization of a Web service through WSDL format 

 

2.2.3.4. Security 
 

XML, SOAP, WSDL and UDDI provide the conditions for a client to find a needed service and 

understand how to make use of it, independently of where the client and the service are located 

in the network. However, these standards are not enough to be applied in a Web services-based 

SOA. Security is also an important issue for the sustainability of distributed systems with Web 

services. 

 

WS-Security [15] is the protocol currently in vigor (released by OASIS in February 2006) and 

it relies on security tokens to provide integrity, confidentiality and authentication in a SOAP 

message. For instance, the authentication process can be performed by combining the security 

token with the sender‟s digital signature. Thus, the receiver is able to acknowledge the veracity 

about the author of the message. 

 

When integrity can be guaranteed in a SOAP message, it means that the message will not suffer 

any changes during its traveling.  When confidentiality is assured, it is synonym that the 

message will not be read by any party except the intended one. And when authentication is 

made, it helps to prove that the originator of the SOAP message is correct. All these 

mechanisms along with cryptographic technologies can be combined together in several ways 

to provide various security models for the distributed environment. WS-Security is also 

extensible to other mechanisms which aim to enhance security in SOAP messages exchanging 

in a Web services- based network.  In addition, WS-Security also describes how to build binary 

security tokens encryptions that can be included in SOAP messages. 



 

18 

2.2.3.5. Web Services in Java 
 

There are frameworks that give support to applications which would like to interact with Web 

services. As mentioned before, SOAP is the protocol which Web services use to communicate 

between them and in which SOAP messages go through. So, what these frameworks typically 

do is to build and interpret messages, acting thus as a SOAP engine between applications and 

Web services. 

 

AXIS 2 [25] is an example of these frameworks and it is implemented in Java. Although Web 

services use XML language, AXIS 2 provides an environment in which is possible to create 

Java applications that can ‟directly‟ communicate with Web services. Another popular 

framework is the JAX-WS [24] which is a Java programming language API. Briefly 

describing, JAX-WS provides an environment that simplifies the task of software engineers in 

developing Web applications and Web services. 

 

 

  



 

19 

 

 

 

 

 

3. Service-Oriented Software Mobility 
 

In this chapter, we will present the combination of the software mobility and the service-oriented 

computing paradigms explained in Chapter 2. 

 

3.1. Overview 

 

Software mobility [20] is a well-studied and known paradigm for the programming of 

distributed applications. The advantages offered by this technology such as abstracting the 

underlying network and reducing the requirement to maintain costly network sessions have 

been off-staged by well-founded security concerns [28, 29]. In spite of the security reasons that 

have restricted the use of the paradigm, we have the conviction that software mobility can still 

be a useful technology in trusted environments such as local area networks and middleware 

layers that assure control of mobile agents. 

 

Service-oriented computing has emerged as a technology that provides abstractions of both 

network resources and software components. Indeed, the modeling of distributed applications 

into loosely-bound service-oriented components has been proved to be a good paradigm, 

especially in heterogeneous environments, such as the ones used in mobile and grid computing. 

 

Service-oriented Software Mobility [19] is a paradigm that combines software mobility and 

service-oriented paradigms. This technology consists of supporting the migration of 

components regardless of their origin or developer throughout a network that is presented in the 

form of services instead of network nodes. In other words, this environment allows user-

developed components to migrate towards a service provider instead of the classic migration 

towards a machine. The objective of this thesis is to instantiate a model that uses this 

technology as proposed by Paulino. 

 

It is important to mention that our goal is not to replace the usual client/server interaction 

technologies but rather to provide a simple and transparent way for programmers to make use 

of the known benefits of software mobility. 

 

In service-oriented computing, services are presented in a transparent way for clients, requiring 

only knowledge of a contract which is the service interface. This feature offers anonymity and 

the kind of loose bindings desirable to construct resilient programs in highly dynamic 

networks, such as the ones consisting of mobile devices. As such, an application is modeled in 



 

20 

terms of distributed inter-connected components which communicate based on the client-server 

paradigm.  

 

Typically, the operational flow of a program that wants to perform the sequence of operations 

P1 to Pn at hosts h1 to hn is: 

 

go to host h1 and do P1; 

go to host h2 and do P2; 

… 

go to host hn and do Pn; 

 

But in an environment which is service-oriented, the operational flow of a mobile agent is: 

 

find an instance of service S1 and do P1; 

find an instance of service S2 and do P2; 

… 

find an instance of service Sn and do Pn; 

 

To find an instance of a service, a session requires obtaining the location of the service 

provider before departing from the client machine. A services repository is used in such 

service-oriented distributed environment with the objective of registering services available in 

the network. When a new service is „launched‟, the service‟s contract is stored in this 

repository along with the location of its provider. Thus, before the application leaves the client 

machine, it needs to contact the service repository to obtain the location of the host providing 

the service it is looking for (Fig.3.1.1). It is important to realize that this process is completely 

abstracted to the programmer as the requisite to migrate is to specify the service that the session 

is defined to look for and not the host. 

 

This process is completely hidden to the programmer thanks to a middleware layer that is 

responsible for getting the location of the service provider by querying the service registry. The 

session is then uploaded to the host providing the service and when the interaction is over, the 

computed result is returned to the middleware which sends to the client application. 

 

 



 

21 

 
Figure 3.1.1 – Session uploading in a service-oriented system 

 

One of the benefits brought by the inclusion of service-orientation is that it removes the burden 

that the programmer has in implementing the code to overcome the possible absence of a host 

(and when this happens, to search for alternatives). Since mobility is modeled in terms of 

services, rather than hosts, the handling of alternatives is responsibility of the service discovery 

mechanism. 

 

Another advantage of using services in software mobility technology is the enhancement of 

security. Access to local resources can be encapsulated into services, which obligates all host 

machine interaction to use service providers as intermediates. Proof-carrying code can validate 

that an uploaded session does not try to access the local resources directly. 

 

 

3.2. Itinerary 

 

A session can have its mobility enhanced if it is defined to migrate to a set of hosts. This means 

that a session is able to travel further than a single service provider (Fig.3.2.1).  

 

 
Figure 3.2.1 – Session migrating to two services‟ providers 



 

22 

 

Figure 3.2.1 represents a session migrating to the service provider of “Cathay Pacific flight 

booking” and then, to the service provider of “Hilton Hotel Reservation”. The itinerary feature 

is very useful for sessions that have a set of tasks to be performed remotely. In a trusted 

environment, a session can be programmed to interact with N hosts and to successfully 

accomplish the tasks that have been defined to do without returning to the client. This means 

that the client dispatches the session only once regardless of the number of servers that it will 

interact with.  

 

The illustration described above, contains a sequence of events for a session featuring itinerary. 

The session is programmed to make a flight booking in Cathay Pacific airline and to make a 

reservation in Hilton Hotel. Indeed, the programmer is not aware of the location of the servers 

that provide these services at any time. It is the service‟s instance that indicates the location of 

the host that provides the service which the session is looking for. The programmer is only 

required to specify the services and to upload the session. Once uploaded, the session becomes 

under the responsibility of the system that is defined to take it to the hosts that offer the 

requested services. A solution to overcome this problem is to have a middleware layer in the 

client machine that is in charge of finding an instance of the location that provides the 

requested service. 

 

No matter how many hosts a session visits, it has contact with the client machine in two 

occasions only: before being uploaded to the network and once the work is completed. Indeed, 

two of the premises of the mobile agent paradigm are: enabling disconnected execution (the 

client does not have to be connected to the network to provide session execution) and 

autonomy (the session must be able to make choices without the user‟s intervention). 

 

The time that a session takes to complete its tasks, i.e., to return the results to the client, may 

vary immensely. Thus, it is our opinion that asynchronous communication is more adequate for 

environments that manage user-developed components. 

 

 

3.3. Unidirectional traveling 

 

The itinerary feature allows us to perceive that a session can be defined to obey to a specific 

traveling strategy. Unidirectional traveling is a strategy in which sessions travel from host to 

host in sequence (Fig. 3.3.1). 

 



 

23 

 
Figure 3.3.1 – Upload with unidirectional traveling strategy applied 

 

An evident advantage in this strategy is when the tasks defined in the session have 

dependencies among them, i.e., a task to be executed in server 2 can only be performed after 

the session has executed in server 1. An example of this approach is represented in Figure 

3.2.1. Supposing that the user intends to travel to Hong Kong flying Cathay Pacific and to stay 

overnight in a hotel (the user loves the chain Hilton). The unidirectional strategy „obligates‟ the 

session to make the reservation of the room only after the flight booking has been confirmed. 

Thus, making a room reservation before the flight being booked is an unwelcome situation that 

never happens. 

 

In this strategy, the contact with the source machine occurs only when the computation on the 

last server is finished. When the results are returned to the client, it means that the session has 

completed its job. 

 

 

3.4. Multidireccional traveling 

 

A second traveling strategy that can be featured in a session regards to a parallel migration. In 

this strategy, the session is defined to migrate to a set of servers at the same time (Fig. 3.4.1). 

 

Unlike the unidirectional strategy, the source host establishes contact „at the same time‟ with 

all selected nodes that the migrating session is indicated to work on. This strategy is adequate 

for a session that is defined to do the same job in a set of hosts. For instance, supposing that the 

task is to install a software package in all machines in an office. In this procedure, prior to the 

uploading, a copy of the session is required for each of the servers specified to migrate to. 



 

24 

Since the execution of this job is done in parallel, the time expended to accomplish this task in 

all servers is lower than if done in sequence.  

 

And when the execution is completed in a given host, the session will not migrate to another 

node rather than returning to the source. Since this is a service-oriented environment, the client 

application doesn‟t have direct contact with any host. Thus, the system must have mechanisms 

to wait asynchronously for all results to return to the client machine. When the results have 

arrived, the system delivers them to the client application. 

 

 

 
Figure 3.4.1 – Upload with multidirectional traveling strategy applied 

 

 

3.5. Bridging 

 

A feature we found interesting to include in our model is related to the bridging of sessions that 

have „common interests‟. This characteristic refers to the situation in which a session uses the 

computed results of another session as part of its execution. 

 

This feature is only possible in a system that accepts a set of sessions to be uploaded together at 

the same time. The first session is executed in the servers specified to do so, and then the 

second session migrates to the servers defined to work at, and so on (in case there are more 

sessions). It is important to mention that the sessions require traveling together for the 

computed results of one session to be copied to the other when the former completes execution. 

 

In fact, there are two ways to copy the results from one session to another: one is doing it 

manually (Fig. 3.5.1), i.e., the programmer waits for the results of the first session to return and 



 

25 

then adds it to the second. In case the first session takes a long time to deliver the results, the 

second one is „never‟ uploaded. The second solution (Fig. 3.5.2) is to allow sessions to interact 

with each other after being uploaded. In other words, when a session completes execution in a 

given host, in case it has a bridge defined to other session, the computed results are copied to 

the latter. This process requires that both sessions are sent together as the results‟ copying is 

done automatically by the system and distant from the client.  

 

 
Figure 3.5.1 – Manual bridging 

 

 In the scenario represented in Figure 3.5.1, the results copying is done in the client, after the 

results of A have returned. Additionally, session B can only be uploaded after the results of A 

have been copied. 

 



 

26 

 
Figure 3.5.2 – System bridging 

 

In the scenario illustrated in Figure 3.5.2, the situation is completely different. Session A and 

session B are uploaded together to the network. When the execution of session A is completed, 

the respective results are copied to session B. This process is done remotely from the client, 

i.e., in some host in the network. Then, when session B finishes its computation the results of 

both sessions are delivered to the client. 

 

An evident advantage provided by this feature is that the client only needs to define the 

sessions that make a bridge prior to their uploading as the results copying is done by the system 

in the network. Therefore, the client is not required to wait for the results of middle 

computations to return in order to use them in another session. 

  



 

27 

 

 

 

 

 

4. Instantiation of the Service-Oriented 

Mobility Model 
 

This thesis focuses on an instantiation of the service-oriented mobility model in the Java language 

with the use of Web service technology for communication between remote hosts. 

 

In this chapter, we start by providing an overview of the model instantiated (Section 4.1). Then 

(Section 4.2), we present the application programming interface (API) that offers a general 

guidance for the user to understand how to prepare a session to be uploaded to the distributed 

system in Section 4.2. In Section 4.3, we introduce the architecture of the system. In Section 4.4 

we present the lifecycle of an itinerary. Finally, in Section 4.5, we provide an in-depth description 

of the implementation of the system middleware. 

 

 

4.1. Overview 

 

The objective of this work is to instantiate the service-oriented mobility model so that the 

sessions programmed in Java language can be locally attended by services – preferentially Web 

services – available in remote stations. 

 

In Figure 4.1.1, a general architecture of the system is illustrated and it consists of a client and 

several servers running a middleware layer. User-developed components – sessions or 

itineraries – can be submitted by the client to the network through methods available in the 

proposed API (see Section 4.2). 

 
Figure 4.1.1 – General overview of the system 



 

28 

The middleware is a software layer distributed among all machines willing to receive and 

execute sessions. This means that there will be one process running in each machine listening 

to receive and execute user-programmed components. Thus, it is of the responsibility of the 

middleware to transport sessions – and itineraries – to the server which offers the requested 

service. In other words, the middleware has to take care of the user-programmed components 

from the instant they leave the client until they have completed their trip in the network. Once 

the trip is completed, the remotely computed results must be returned to the client. This is the 

purpose of this work. 

 

One of the advantages brought by the inclusion of a middleware – along with the API – is that 

it has removed the burden a user has in the process of uploading a session. The middleware 

assures the responsibility to create the conditions required for a user-programmed component 

to be well succeeded when executed in a remote host. For instance, a session may require Java 

classes that do not exist remotely. It is the job of the middleware to find these classes and pack 

them with the session that was requested to be uploaded. In Section 4.3, we will have a more 

in-depth comprehension of this middleware layer. 

 

4.1.1. Scenarios 

 

In order to have a better understanding, Figures 4.1.2., 4.1.3 and 4.1.4 demonstrate three 

different scenarios possible in the instantiated model (disregarding the traveling strategy 

applied): one-to-one, one-to-many and many-to-many. 

 

The Home reference (represented with an “H”) is used for the itinerary to have knowledge of 

the “home address” of the client. It is utilized to deliver the computed results. 

 

One-to-one scenario happens when the client uploads one session that migrate to one server 

only (Fig. 4.1.2). Thus, a single result is returned to the client once the trip is completed. 

 

 
Figure 4.1.2 – One-to-one scenario 



 

29 

One-to-many scenario happens when the client uploads one session that migrates to many 

servers (Fig. 4.1.3). Thus, many results are returned to the client once the trip is completed. 

 

 
Figure 4.1.3 – One-to-many scenario 

 

Many-to-many scenario happens when the client uploads many sessions that migrate to many 

servers (Fig. 4.1.4). Thus, many results are returned to the client once the trip is completed. 

 

 
Figure 4.1.4 – Many-to-many scenario 

 

4.1.2. Data Manager 

 

A feature we found interesting to include is a data storage component which we called data 

manager. In this model, the client has total freedom to write the code which is going to be 



 

30 

executed remotely. Thus, by providing a data manager, the client is able to implement a session 

that stores and retrieves data to and from a storage recipient. 

 

A data manager is featured to be local to the session or remote. In other words, this means that 

a session is able to interact with a data manager that travels together with the session or a data 

manager that is available on a remote computer. The benefit of using a remote storage facility 

is that it reduces the content laid up in the session during its trip, especially when it has stored 

large amounts of data. 

 

Next, we will present the user application programming interface which offers mechanisms for 

the user to develop sessions and to upload them to the network. 

 

 

4.2. User Application Programming Interface 

 

The platform provides an API to implement sessions which consists of Java classes offering 

methods that interact with the middleware – e.g. upload of a session. 

 

One of the benefits coming from the use of middleware is that it allows multiple processes 

running on one or more machines to interact. Thanks to the middleware, the user workload is 

reduced to the essential (session implementation) as the middleware disposes of mechanisms 

associated to the management of user-programmed components dispatched to the network. For 

now, we will present the classes that make up the API component and justify how to use it, 

leaving the middleware implementation to be explained in Section 4.3. 

 

4.2.1. Server 

 

In the original model, the migration‟s target is a service, i.e., the migration is done towards the 

location of the service to which the session wants to interact with. The abstraction featured in 

this instantiation, a server provides a more general concept. In other words, a server denotes the 

identification of the location where a session can be migrated to. For example, the URL address 

of a server, a service‟s name for books purchasing (e.g. Amazon), a service‟s name for flights 

booking in a travel‟s agency and so on. In fact, a Server can even represent a repository (such 

as an UDDI directory) upon which the location of the target service can be queried. 

 

Listing 4.2.1: The Server interface 

public interface Server { 

  URL get();   // returns an URL of this Server 

  List<URL> getAll();        // returns a list of URL of this Server 

} 

 

Interface Server contains two methods which return a URL and a list of URL as it is 

illustrated (Listing 4.2.1). Thus, any session could be uploaded to any kind of server that 

implements Server. 



 

31 

4.2.2. Result 

 

The result of executing a session is abstracted in class Result (Listing 4.2.2). 

  

Listing 4.2.2: The Result class 

public class Result<T> { 

  public String getOwner();   // returns the owner of this Result 

   public T getResult();       // returns the result computed 

} 

 

This class enables a user to acknowledge the computed result through method getResult() 

and the name of the machine where the result was computed through method getOwner(). 

 

4.2.3. Session 

 

Session (Listing 4.2.4) is an abstract class that implements interface SessionRunnable 

(Listing 4.2.3) which provides a method called run() for the programmer to specify the code 

to be executed remotely.  

 

Along with class Itinerary (Listing 4.2.7), class Session provides the methods for the user 

to develop components to be uploaded to the network. To create a session, the user is only 

required to develop a class that extends class Session.  

 

Listing 4.2.3: The SessionRunnable interface 

public interface SessionRunnable<T> { 

   T run(); 

 } 

 

Listing 4.2.4: The Session abstract class 

public abstract class Session<T> implements SessionRunnable<T> { 

 

  // Uploads this session to the location identified by server and  

  // returns a Future Result 

  public Future<Result<T>> upload(Server server) {…} 

 

  // Uploads this session to the location identified by server and  

  // returns a Future List of Result 

  public Future<List<Result<?>>> uploadAll(Server server) throws                     

         HomeCreationFailedException {…} 

 

  // Uploads this session to the locations identified by servers and  

  // returns a Future List of Result 

  public Future<List<Result<?>>> uploadAll(List<Server> servers) throws           

   HomeCreationFailedException {…} 

 

  // Executes this session locally and returns a Result of T 

  public Result<T> exec() {…} 

 



 

32 

  // adds a data manager identified by the given key 

  protected void addDatamanager(String key, DataManager<?,?> dm) throws    

         KeyNotAcceptedException {…} 

 

  // Returns the data manager associated to the given key 

  protected DataManager<?,?> getDataManager(String key) throws    

         KeyNotFoundException {…} 

} 

 

Class Session consists of three different methods to upload a session to the network and one 

method to execute it locally. All upload methods require the identification of the location 

where a session could be migrated to.  

 

Method upload uploads the representing session to a single location identified by an instance 

of Server. In other words, when this method is invoked, the session is uploaded to a location 

given by server.get(). 

 

Method uploadAll uploads the representing session to all the locations identified by an 

instance of Server. It has two versions: one that receives the list of the locations to travel to, 

and the other that retrieves these locations from a single server parameter by invoking 

server.getAll(). 

 

It is important to take into account that both methods uploadAll may throw a 

HomeCreationFailedException. This situation happens when the system was not able to 

create the mechanisms to return the computed results to the client. This Exception is not 

thrown by method upload because the session is uploaded to one location only, which means 

the connection established between the client and the server can be used to return the computed 

result. 

 

In regard of the values returned by each of these methods, all of them return instances of class 

Future. Class Future belongs to the Java concurrent library (java.util.concurrent) 

and abstracts the result of an asynchronous computation. The reason behind the use of a future 

is that the time expended for an upload to return its results could vary immensely. By 

attributing a future to the returning result, the thread responsible for this computation waits 

passively for its results to return, benefiting thus the processing on the client computer. 

 

Method exec()simply executes the session in the local machine. This feature is useful on the 

occasion that it is not possible to upload a session to a remote host because the target machine 

does not feature our middleware or simply does not allow this session uploading. This method 

executes the session in the local computer and interacts with the network resources remotely. 

 

Regarding of methods related with data managers, addDataManager adds a data manager 

associated to the given key and a KeyNotAcceptedException is thrown if there is already 

one stored with the same key. Method getDataManager returns the data manager associated 



 

33 

to the given key and a KeyNotFoundException is thrown if there is no data manager stored 

with this key. 

 

4.2.4. Data Manager 

 

Abstract class DataManager (Listing 4.2.5) was developed with the objective of being used as 

a data storage recipient while a session is running. Thus, it is up to the user to define when the 

session interacts with the data manager. 

 

Listing 4.2.5: The DataManager abstract class 

public abstract class DataManager<K,V> implements Serializable { 

  

  

  // Constructs a DataManager with the String dm_key 

  public DataManager(String dm_key) {…}     

 

  // Returns the key of this DataManager 

   public String getDataManagerKey() {…} 

 

   // Returns the value V referenced by K key 

   public abstract V get(K key); 

 

   // Returns the list of values V referenced by K key 

   public abstract List<V> getAll(K key); 

 

// Stores a V value with the K key. If previous values exist, they    

// will be replaced 

   public abstract void put(K key, V value); 

 

// Stores a list of V values with the K key. If previous values      

// exist, they will be replaced 

   public abstract void putAll(K key, List<V> list); 

} 

 

The methods provided by class DataManager are only related to the storage and to the 

retrieval of data from the data manager. All of them require a key as parameter because the key 

is used to reference a value. 

 

Method put stores a value with the given key into the data manager. On the other hand, 

method get retrieves the value from the data manager associated to the given key. 

Analogously, methods putAll and getAll allows to store/to retrieve a list of values 

associated to a given key respectively, instead of a single value. On the occasion of storing a 

value with a key that has already been used before, the previous stored values are replaced. 

And when calling method get but it is a list what is stored, the first element of the list is 

returned. 

 

A session can dispose of more than one data manager. One could be used to store values of 

type String and another could be used to store values of type Integer, for instance. It is the 



 

34 

dm_key – the argument of the constructor of class DataManager – that distinguishes each of 

the data managers available in the session. 

 

DataManager is flexible with the key type chosen by the user to store values. The key could 

be of any type (Integer, String, etc). An example of a session interacting with several data 

managers is illustrated in Figure 4.2.1. 

 

 
Figure 4.2.1 – A session interacting with several data managers 

 

4.2.5. Itinerary 

 

Class Itinerary offers an interface which allows the user to enhance the potential existing in 

the mobility of a session. One of the features is that it is possible to define the traveling strategy 

for a session – or a set of sessions – within the same itinerary. In Chapter 3, we presented two 

traveling strategies: unidirectional and multidirectional. In the instantiated model, the traveling 

strategies can be used individually or combined. Figures 3.3.1 and 3.4.1 from Chapter 3 

represents examples of traveling strategies applied individually to an itinerary and Figure 4.2.2 

is an example of both strategies combined. 

 



 

35 

 
Figure 4.2.2 – Example of an upload with both traveling strategies combined 

 

In Listing 4.2.6, it is described the public interface of class Itinerary: 

 

Listing 4.2.6: The Itinerary class 

public class Itinerary implements Serializable { 

 

  // Adds a session to be uploaded to the location identified by server 

  public <T> void add(Session<T> session, Server server) {…} 

 

  // Adds a session to be uploaded to all the locations identified  

  // by server. The traveling strategy for the session is  

  // unidirectional. 

  public <T> void addUniDirection(Session<T> session, Server server){…} 

 

  // Adds a session to be uploaded to the locations identified  

  // by the list of servers. The traveling strategy for the session is  

  // unidirectional. 

  public <T> void addUniDirection(Session<T> session, List<Server>  

         serversList) {…} 

 

  // Adds a session to be uploaded to all the locations identified  

  // by server. The traveling strategy for the session is  

  // multidirectional. 

  public <T> void addMultiDirection(Session<T> session, Server     

         server) {…} 

 

  // Adds a session to be uploaded to the locations identified  

  // by the list of servers. The traveling strategy for the session is  

  // multidirectional. 

  public <T> void addMultiDirection(Session<T> session, List<Server>    



 

36 

         serversList){…} 

 

  // Uploads this itinerary to the network 

  public Future<List<Result<?>>> upload() throws    

         SessionNotFoundException, HomeCreationFailedException {…} 

 

  // Sets a remote DataManager identified by url for this Itinerary 

  public void setRemoteResultStorage(URL url) {…} 

 

  // Adds a DataManager dm to this Itinerary 

  public void addDataManager(DataManager<?,?> dm) throws  

         KeyNotAcceptedException {…} 

 

  // Returns a DataManager associated to the given key 

  public DataManager<?,?> getDataManager(String key) throws  

   KeyNotFoundException {…} 

 

  // Bridges session1 to session2. Session2 must be of Unidirectional 

  // traveling 

  public <T> void bridge(Session<T> session1, Bridge<T> session2)  

         throws BridgeException, SessionNotFoundException {…} 

 

  // Bridges session1 to session2. Session2 must be of MultiDirectional  

  // traveling 

  public <T> void bridgeMulti(Session<T> session1, Bridge<List<T>>  

         session2) throws BridgeException, SessionNotFoundException {…} 

} 

 

Method add simply adds to the current itinerary, a session to be deployed in a given server. 

 

In regard of applying a traveling strategy for a session, there are two versions offered for each 

strategy. Similarly to method add, these methods add to the current itinerary, a session to be 

deployed in a given server or list of servers. Methods addUniDirection assign a 

unidirectional traveling strategy and methods addMultiDirection assign a multidirectional 

traveling strategy. 

 

Once the itinerary has at least one session added – done by any of the methods introduced 

above – the user can call the method upload to dispatch this itinerary to the network. Similar 

to class Session, the method upload provided in class Itinerary returns a future list of 

results. Since the time expended by sessions to complete execution may vary greatly, the use of 

an asynchronous computation is more adequate. When calling the method upload, if the 

system was not capable to create the mechanism for the itinerary to deliver the computed 

results back home, a HomeCreationFailedException is thrown. In this situation, the 

session is not uploaded to the network. 

 

In class Itinerary, the user is able to add a data manager to the itinerary through method 

addDataManager. If the key attributed to the data manager already exists, a 

KeyNotAcceptedException is thrown. Analogously, any of the stored data managers can be 



 

37 

retrieved by calling getDataManager with the associated key and in case the data manager 

doesn‟t exist, a KeyNotFoundException is thrown. 

 

Figure 4.2.3 illustrates the setting by default: the data is stored locally and carried from 

machine to machine within the itinerary. This might be particularly useful when sessions 

compute large amounts of data and might not be intelligent to carry them from host to host 

within the itinerary. Figure 4.2.4 depicts the case where the method 

setRemoteResultStorage is used by the client to indicate that the itinerary must use a data 

manager located remotely to store and to retrieve data.  

 

 
Figure 4.2.3 – Session using a local data manager to store results 

 

 
Figure 4.2.4 – Session using a remote data manager to store results 

 



 

38 

4.2.6. Bridging 

 

Regarding the bridging of sessions, class Itinerary offers two methods: bridge and 

bridgeMulti.  

 

To make a bridge between two sessions, the user-programmed session is required to implement 

interface Bridge (Listing 4.2.7). Then, similarly to interface SessionRunnable, the user is 

obliged to implement the only method specified in Bridge: setArg.  

 

Listing 4.2.7: The Bridge interface 

public interface Bridge<T> { 

   void setArg(T arg); 

} 

 

On a bridging, the value given by the parameter arg in the method setArg will contain the 

results of the other session once it has finished executing. Thus, when writing the code for the 

session in method run(), the parameter arg of method setArg could be trivially used by the 

programmer. 

 

 
Figure 4.2.5 – Bridging between two sessions 

 

A condition for a bridge to be successfully made (Fig. 4.2.5) is that the result computed by 

the first session must be of the same type of the parameter used in the setArg method. The 

design of our model allows the user to acknowledge of compile-time errors that may occur in 

case the code written by the user for the migrating-component is not correctly implemented. 

For instance, if a session returning a result of type String is bridged to a session that uses 

type Float as parameter in the setArg method, will cause a compile-time error. An additional 

condition to successfully bridge two sessions is that they must have been already added to the 

Itinerary prior to the bridge, otherwise a SessionNotFoundException is thrown.  



 

39 

 

An important requirement to successfully bridge two sessions is that the first session must use a 

unidirectional traveling strategy; otherwise a BridgeException is thrown. This is due to a 

session migrating to many servers – i.e. multidirectional – returns a list of results but the 

session that is bridging with it accepts only one. Thus, the bridging cannot be made. It is 

because of this situation that prompted the development of bridgeMulti which offers the 

same functionalities as bridge except that bridgeMulti requires the first session to use 

multidirectional traveling strategy rather than unidirectional. This way, the list of results could 

be copied to the other bridging session. These two methods are illustrated respectively in 

Figures 4.2.6 and 4.2.7. 

 

 
Figure 4.2.6 – Bridge in unidirectional traveling 

 

Figure 4.2.6 represents two sessions A and B that has a bridge and uses unidirectional 

traveling- The result X computed by session A is used in the execution of session B. 

 

 



 

40 

 
Figure 4.2.7 – Bridge in multidirectional traveling 

 

Figure 4.2.7 illustrates two sessions A and B that has a bridge and uses multidirectional 

traveling. The results X and Y computed by session A are used in the execution of session B. 

 

4.2.7. Code sample 

 

The following four listings contain a code example for the scenario represented in Figure 4.2.2 

where the traveling strategies are both combined in the uploading of SessionA, SessionB 

and SessionC. The bridging feature is also used between SessionA and SessionB as 

described in the code of class SimpleItinerary. Finally, Listing 4.2.12 contains the output 

of the computed results from this scenario. 

 

It is important to notice that the migrating sessions are always JavaBeans. The reason behind 

this requirement is that Web services only accept Java primitive types (e.g. int, byte, 

String, Object, etc) to be passed as parameter in their Web methods. 

 

Listing 4.2.8 – SessionA code 

public class SessionA extends Session<String> implements Serializable{ 

 

  // it is the user that defines the type that is returned by the     

  // method run 

  public String run() { 

     String str = “apple”;  // just an example 

     // …  

     // any code written by the user 

     // … 

      

     return str; 

  } 

} 



 

41 

Listing 4.2.9 – SessionB code 

public class SessionB extends Session<String>  

  implements Serializable, Bridge<String> { 

 

  private String arg; 

 

  public String run() { 

     String str = “ is delicious”;  // just an example 

     // …  

     // any code written by the user 

     // … 

  

     return arg + str; 

  } 

 

  // a class that implements Bridge must implement method setArg 

  public void setArg(String arg) { 

    this.arg = arg; 

  } 

 

} 

 

Listing 4.2.10 – SessionC code 

public class SessionC extends Session<Integer> implements Serializable{ 

 

  public Integer run() { 

     Integer myInt = new Integer(10); // just an example 

     // …  

     // any code written by the user 

     // … 

      

     return myInt; 

  } 

} 

 

Listing 4.2.11 – Example of a class using SessionA, SessionB and SessionC with both 

traveling strategies combined 

public class SimpleItinerary { 

 

  public static void main(String[] args) { 

 

 SessionA sessionA = new SessionA(); 

      SessionB sessionB = new SessionB(); 

      SessionC sessionC = new SessionC(); 

 

  Itinerary it = new Itinerary();     

 

// Server1 to N could be for instance a ServerURL(“http://…”) 

 

// sessionA is defined to go to Server1 

  it.addUniDirection(sessionA,Server1);  // unidirectional travel 

   



 

42 

  // bList contains the list of servers for SessionB to migrate to 

  List<Server> bList = new ArrayList<Server>(); 

  bList.add(Server2); 

  bList.add(Server3); 

  bList.add(Server4); 

  it.addMultiDirection(sessionB,bList); // multidirectional travel 

   

  // cList contains the list of servers for SessionC to migrate to 

  List<Server> cList = new ArrayList<Server>(); 

  cList.add(Server5); 

  cList.add(Server6); 

  cList.add(Server7); 

  it.addUniDirection(sessionC,cList);  // unidirectional travel 

 

// bridging 

  try { 

   it.bridge(sessionA,sessionB); 

  } catch (BridgeException e) { 

   e.printStackTrace(); 

} 

 

// upload itinerary and wait asynchronously for the results 

  Future<List<Result>> future; 

 

  try { 

   future = it.upload(); 

  } catch (SessionNotFoundException e) { 

   e.printStackTrace(); 

  } catch (HomeCreationFailedException e) { 

   e.printStackTrace(); 

} 

 

List<Result> results; 

     

  try { 

   results = future.get(); 

  } catch (InterruptedException e) { 

   e.printStackTrace(); 

  } catch (ExecutionException e) { 

   e.printStackTrace(); 

  } 

   

  // printing the results 

  for (Result<?> r : results) { 

   System.out.println(“Owner: “ + r.getOwner()); 

  System.out.println(“Result: “ + r.getResult() + “\n”); 

} 

  } 

} 

 

Listing 4.2.12 – Returned results 

Output> 

 

“Owner: Server1”; 

“Result: apple”; 

 

“Owner: Server2”; 



 

43 

“Result: apple is delicious”; 

 

“Owner: Server3”; 

“Result: apple is delicious”; 

 

“Owner: Server4”; 

“Result: apple is delicious”; 

 

“Owner: Server5”; 

“Result: 10”; 

 

“Owner: Server6”; 

“Result: 10”; 

 

“Owner: Server7”; 

“Result: 10”; 

 

 In this section, we introduced the API. In the following sections, we will present the 

middleware architecture and its implementation in order to comprehend the processes running 

„inside‟ the middleware that are required to accomplish the requests submitted by the client. 

 

 

4.3. Middleware Architecture 

 

This section describes the middleware which is responsible for the management, transportation 

and execution of user-programmed components dispatched to the network. 

 

As mentioned in the beginning of this chapter, all communication between remote processes 

resorts to Web service technology, i.e., to Web standards enabling migration of sessions across 

the Internet. 

 

The process of sending a session to a remote machine requires several stages. Thanks to the 

interface, the user is not aware of the operations done in these stages. To the user, the only 

requirement is to call the method upload to perform the sending process. In regard of the 

middleware, it has to ensure that the user-programmed session is successfully executed 

remotely and the computed results are successfully delivered to the respective client. In other 

words, the middleware is responsible for the migration of sessions in the network and this 

requires embodying the traveling component of requisites to successfully execute in remote 

machines. These operations are fundamental not only to hide from the user the complexities in 

the process of migrating sessions – and obtaining their results – but to give total control to the 

middleware whose job is to satisfy the demands made by the client application. 

 

To dispose of a middleware layer that allows migration, execution and returning of sessions 

results, it was necessary to embody the middleware of functionalities that cooperate with each 

other at the client side and at the server side.  

 



 

44 

Figure 4.3.1 shows the middleware architecture sliced between the client and the server, 

displaying the components existing at each side. In order to make possible the communication 

between remote hosts, Web services – represented in the figure with the acronym WS – were 

assigned to make the bridge between components residing in different machines. 

 

 
Figure 4.3.1 – Middleware architecture 

 

Next, we are going to explain each of these middleware functionalities in four different 

categories: Session Setting-up, Session Execution, Session Managing and Communication. 

 

4.3.1. Session Setting-up 

 

Functionalities belonging to this group have the responsibility of setting up user-developed 

components in order to successfully execute in any remote machine. The setting-up process is 

done prior to the sending of the session to the first host. The idea is to include within the 

session, information that is necessary for its trip (Fig. 4.5.3) not only to successfully execute in 

remote machines but also to be able to deliver the computed results back to the client. Session 

setting-up components reside only in the client machine. 

  

CollectClasses is a component responsible for finding and collecting all classes that are 

required to execute the user-programmed session. 

  

HomeService is responsible for receiving the computed results from sessions that have 

completed their trip and to deliver the results to the client application. 

 

ItineraryIDRegister attributes a unique ID for each session or itinerary dispatched by the user. 

In other words, all user-developed components have an ID assigned by the middleware in order 

to have control of all sessions and itineraries that are running in the network. 



 

45 

4.3.2. Session Execution 

 

Components belonging to this category are in charge of putting sessions into execution once 

they arrive to the server. Session execution components are located only in the server machine. 

 

SessionLoader is responsible for loading the classes required to run the session on the local 

JVM. These classes were collected on the client side by CollectClasses component presented 

above. 

 

SessionRunner is the component assigned to run sessions. When a session arrives to a given 

server, SessionLoader loads the classes to the JVM and then, SessionRunner executes the 

session. 

 

4.3.3. Session Management 

 

Components belonging to this group have the responsibility of managing sessions sent to the 

network. Most of these components are needed in the client and server machines because they 

are required by other components to do their job. 

 

ObjectManager is responsible in transforming an object into an array of bytes and in 

transforming an array of bytes into an object. The former functionality is used for example to 

transform a migrating session into an array of bytes before it is sent to a given host through a 

Web service method. The inverse operation is done for example when the session arrives to the 

server.  

 

Controller is a component consisting of operations related to the upload of user-developed 

components across the network, and to the returning of computed results to the client. Although 

the sending process is done through the Web methods provided by the stubs, it is the Controller 

that checks where the session is set to move next. In case a session has completed its trip, the 

Controller grabs the computed results and sends them to the HomeService component. 

Moreover, Controller is also in charge of checking the traveling strategy assigned for a session 

in order to call an operation to send the session in parallel or an operation to send it in 

sequence. 

 

4.3.4. Communication 

 

Communication components can be resumed to the stubs that are created from the WSDL 

document of a Web service. In our model, we used the wsimport
1
 tool to generate client-side 

run time classes which provide mechanisms for message exchanging between components 

running in different hosts. In other words, the generated stubs offer Web methods which are 

used by the middleware components to pass data to remote stations. For instance, component 
                                                           
1
 tool that generates JAX-WS portable artifacts, such as Service Endpoint Interface, Service, Exception class mapped 

from wsdl:fault, Asynchronous Response Bean derived from response wsdl:message and JAXB generated values types 

(https://jax-ws.dev.java.net/jax-ws-ea3/docs/wsimport.html) 

https://jax-ws.dev.java.net/jax-ws-ea3/docs/wsimport.html


 

46 

Controller uses a Web method provided by a specific stub to transfer a session from the current 

machine to another. 

 

 

4.4. Itinerary Lifecycle 

 

The objective of this section is to offer a visual perspective of our model in order to understand 

the chain of events happening „inside‟ the middleware when the user uploads a session to the 

network. 

 

 
Figure 4.4.1 – Lifecycle of an itinerary 

 

Figure 4.4.1 shows a schema representing the lifecycle of an itinerary. Starting in the program, 

the sequence demonstrates the applicability of each component working in the client and in the 

server machines until the computed result is delivered to the program. Each of these 

components have a well defined task in order to make possible the uploading of a session, the 

execution in any remote computer and the return of computed results. 

 

Let‟s explain the sequence in the figure: starting in the program (lower left corner) that uploads 

a session, the CollectClasses component looks for the user-programmed classes needed to 

execute the session and packs them together with the session. On the next stage, the 



 

47 

middleware attributes an itinerary with an id (117 in the figure) to hold the session and registers 

it with the ItineraryIDRegister. Next, the Controller „informs‟ the itinerary about the location 

of the client machine in the network and checks if the HomeService is active. If not, 

HomeService is launched in the client computer. Then, the ObjectManager smashes the 

itinerary into an array of bytes and the Controller uploads this array of bytes through a Web 

method provided in the stubs components. 

 

On the server side, the ObjectManager rebuilds the itinerary component that has arrived in the 

form of an array of bytes. When the itinerary is reconstituted, SessionLoader loads the classes 

required to execute the session to the local JVM. Once they are loaded, SessionRunner 

component runs the session that is defined to be executed in this server. When the execution 

has completed, the Controller verifies that the itinerary – now holding a result – “wants to go 

home”. Thus, ObjectManager is called to transform the migrating component into an array of 

bytes to be sent by a Web method given in the stubs. 

 

In the last procedure, now back to the client machine, the ObjectManager rebuilds the itinerary 

and the Controller looks in the itinerary registry table to acknowledge which itinerary has 

arrived in order to correctly deliver the computed results to the programmer. 

 

Now that we have acknowledged of the activities happening „inside‟ the middleware, we 

proceed to the explanation of the middleware implementation in the next section. 

 

 

4.5. Middleware Implementation 

 

Throughout this work, we have generally assumed that the user–programmed components are 

of type Session. It is important to recall that components of type Itinerary could also be 

uploaded by the user as denoted in the beginning of Section 4.1. A user-programmed 

component of type Itinerary contains one or more components of type Session with routes 

defined by the user and features that enhances its mobility in the network. 

 

4.5.1. User-developed components transformation into middleware components 

 

It is important to understand that the itineraries presented in the figures with the shape similar 

to a „vessel‟ are not the same itineraries programmed by the user. This „vessel‟ which is able to 

travel in our model is constructed by the middleware to transport user-developed sessions to 

their destinations. The repository of classes needed to execute sessions remotely are also 

included by the middleware in the „cargo‟ of this itinerary. In order to distinguish the „vessels‟ 

traveling in the instantiated model, each of them has a unique identifier assigned by the 

middleware before the departure from the client machine. 

 

In fact, the class that constructs the middleware Itinerary is not much different from the API 

class Itinerary. The former is equipped with more mechanisms which give total control to 



 

48 

the middleware at each stage of its lifecycle. In case the user uploads a component of type 

Itinerary, the „cargo‟ – which consists of sessions – of this component is simply transferred 

to the internal Itinerary constructed in the middleware. The reason behind the 

implementation of an internal Itinerary is to have those mechanisms – or methods – 

available anywhere in the middleware but hidden from the user. 

 

Similarly to an Itinerary uploaded by the user, a component of type Session is also 

„transformed‟ into a middleware Session. The reason behind this procedure is the same: the 

system cannot afford a client to call methods that can interfere with a component that is already 

in the middleware. 

 

So, components of type Session and of type Itinerary uploaded by the client are 

„transformed‟ into a middleware Session and Itinerary respectively. In Figure 4.5.1, we 

have an image showing the data held in each of them. 

 

 
Figure 4.5.1 – Session and Itinerary contents in the client and in the middleware 

 

In the client application, Session and Itinerary contents are defined by the user. In the 

middleware, Session and Itinerary contents comprises of data added by the middleware 

(in bold) and the information indicated by the user. 

 

Client Session Contents 

 

ServersList is the list containing 1 to N servers for this session to migrate to.  



 

49 

TravelType is a flag that represents the traveling strategy applied for this session. If the user 

created a session without specifying the traveling strategy, the middleware applies by default a 

unidirectional strategy for the session. It is important to understand that this flag cannot be 

affected by the user if it is a single session that is uploaded (API class Session does not offer 

any method to define the traveling strategy for a session). In other words, the traveling strategy 

can only be specified to a session through class Itinerary. The itinerary which holds the 

session is then, responsible to transport it to the destination(s) according to the traveling 

strategy specified by the user. 

 

The reason behind not offering methods in API class Session for the user to specify the 

traveling strategy is because the migrating component is a single session only. However, since 

every user-developed component is transferred into a middleware Itinerary before being 

dispatched to the network, the traveling strategy has to be mandatorily specified in the 

background by the middleware. Thus, in class Session, the middleware applies a 

multidirectional traveling strategy for the session in methods uploadAll whilst in upload, 

the middleware „obligates‟ the session to use a unidirectional traveling strategy. 

 

Client Itinerary Data 

 

SessionsList is a list containing 1 to N sessions that will be transported by this itinerary to their 

respective destinations. 

 

DataManagers contains 0 to N data managers defined by the user. 

 

RemoteStorageURL is a variable that specifies a remote data manager for the itinerary to store 

the computed results while it is migrating from host to host. 

 

Middleware Session Data 

 

SessionId is a unique identifier generated by the middleware for this session.  

 

BridgeSessionId is the identifier of the session which is making a bridge with this session. In 

case there is no bridging, this value is null. 

 

ClassesCollection is a repository of classes which the session requires to execute remotely. It is 

the middleware that looks up for these classes in the directory of the class that called the upload 

method. Classes that are in its subdirectories are also collected to be included within the 

middleware session. 

 

SessionId and BridgeSessionId are required only to perform a bridge. In case the user calls a 

method to bridge a session to another, these identifiers are used by the middleware to copy the 

computed results from one session to the other. 

 



 

50 

Middleware Itinerary Data 

 

ItineraryId is the identifier that represents this itinerary in the middleware. This id is used to 

distinguish the „vessels‟ that are „navigating‟ in our model. In Figure 4.4.1, the ItineraryId is 

117. 

 

HomeURL contains the address of the client machine which is required to deliver the computed 

results once the itinerary completes its trip. This information is essential otherwise the itinerary 

won‟t know where to return the computed results. 

 

It is important to realize that the middleware session is the component that is executed in 

remote hosts and the middleware itinerary is the component that transports the sessions in the 

network.  

 

In order to have a clearer perception of this „relationship‟, Figure 4.5.2 allows us to understand 

that the middleware itinerary contains a list of middleware sessions. And the session that was in 

fact developed by the user is stored „inside‟ this middleware session, along with the classes‟ 

collection and with the servers specified to execute it. 

 

 
Figure 4.5.2 – Middleware itinerary 

 

4.5.2. Itinerary departure procedures 

 

Prior to the departure of the itinerary, the middleware generates a unique identifier for the 

traveling component and stores it in the itinerary registry map. This procedure is required 

because a user may upload two or more itineraries and thus, the id stored in the table is used to 

know which returned results corresponds to which itinerary that has been sent. In addition, a 

handler of the client thread responsible for the uploading is also stored in the same table and is 

associated with an itinerary id. The objective of the handler is to provide a way to synchronize 

the thread that receives the computed results with the thread of the client application that is 

waiting for them. Thanks to class Future (java.util.concurrent), the coordination 



 

51 

between these two processes is done asynchronously. This means that the handler stored in the 

itinerary map acts only when the results from the same itinerary id have returned. 

 

Moreover, the middleware has to ensure that the client machine has a way to receive computed 

results sent from any remote machine. The component HomeService presented in Section 4.3 is 

the one that is responsible to receive the results by disposing a Web service (Listing 4.5.1) in 

the client machine. Thus, the middleware has to ensure that this Web service is enabled when 

an upload is made. 

 

Listing 4.5.1 – client side Web interface 

public class ClientWebService { 

 void receive(SessionResults results) {…} 

} 

 

A task that is also in charge of the middleware is to create a data manager to store computed 

results. By default, a local data manager is generated as part of the „cargo‟ of an itinerary. 

Thus, it will travel along with the itinerary. Nonetheless, our model allows the user to specify a 

remote storage recipient to be used. When this option is chosen, the local data manager is not 

generated and the itinerary is defined to use the remote storage facility to save computed 

results. This particular data manager is defined with the key “RESULTS_DM” and a 

KeyNotAcceptedException is thrown if the user attempts to add a data manager with this 

key. 

 

Once the vessel is set to depart, the first destination to migrate to, is the first server specified in 

the list of the first session in the list. But before uploading the session, the middleware has to 

verify the traveling strategy applied by the user. If the session is set to travel with 

unidirectional strategy, then it is uploaded „normally‟ to the first server. In case the session is 

set to travel with multidirectional strategy, then the middleware has to dispatch a copy of the 

itinerary to each of the servers defined to run the session.  

 



 

52 

 
Figure 4.5.3 – Example of an itinerary before leaving the client machine 

 

The itinerary represented in Figure 4.5.3 can be interpreted as the same itinerary of Figure 4.2.2 

with its code written in Listing 4.2.11 in the moment before leaving the client computer. In this 

image, we can see that the „vessel‟ is identified with id 117 and has three sessions: session A is 

defined to travel “unidirectionally” to sever 1; session B is specified to go to servers 2, 3 and 4 

“multidirectionally”, and finally, session C is defined to migrate “unidirectionally” to servers 5, 

6 and 7. The classes‟ collection is also part of the „cargo‟ of the itinerary component. 

 

Each session also has a unique identifier within the itinerary attributed by the middleware. This 

identifier is needed for the bridging mechanism. In other words, the identifier is used by the 

middleware to pass the results computed by a session to one that has a bridge with it. It is the 

identifier that distinguishes the sessions that are in the list within the itinerary. Some sessions 

may have a bridge, some may not. In the example displayed above, session A is making a 

bridge with session B (proved by the BrgId variable). Thus, when session A completes its 

execution in server 1, the computed result is copied to session B. 

 

The act of uploading is done through a Web method called transfer (Listing 4.5.2) and is 

defined in the stubs components. Since Web services only accept Java primitive types (e.g. 

int, byte, String, Object, etc), the migrating itinerary – and its constituents – is required 

to be transformed into one of these types.  

 

Listing 4.5.2 – server side Web interface 

public class ServerWebService { 

 void transfer(SessionTransfer session) {…} 

} 



 

53 

Listing 4.5.3 – SessionTransfer 

public class SessionTransfer { 

   byte[] code; 

   String mainClass; 

  byte[] object; 

} 

 

A class called SessionTransfer (Listing 4.5.3) was created with the objective of 

representing the migrating component which contains the itinerary and its constituents. A 

SessionTransfer consists of three important variables: the name of the session class (type 

String) that is going to run remotely, the code of the classes required to run the session (type 

byte) and the itinerary itself (type byte). This way, our model offers a type of component that 

is accepted to be used in the Web methods.  

 

Thanks to ObjectManager, the itinerary is transformed into an array of bytes and the classes of 

the session that is going to execute, are also transformed into an array of bytes. These two 

variables are set into a SessionTransfer component together with the name of the main 

class. Then, the upload is effectively done as the SessionTransfer component is transferred 

from the current machine to a remote host. 

 

4.5.3. Itinerary server arrival procedures 

 

Once the SessionTransfer component arrives to a server, the array of bytes containing the 

code of the classes of the session that is going to execute, is rebuilt into an object thanks to the 

ObjectManager component. Then, the SessionLoader adds these classes to the local JVM. 

 

In regard of the array of bytes containing the itinerary, the process is not exactly the same as 

done with the classes‟ collection.  In this case, the ObjectManager component has to work 

together with the SessionLoader. The reason for this is because the itinerary object can only be 

reconstructed while the corresponding class is loaded from the JVM. 

 

Finally, the last variable stored in SessionTransfer component is the name of the class that 

is going to be executed. Otherwise, the server wouldn‟t be able to select from the list, which is 

the session class to run. 

 

From this moment, SessionRunner component entries into action: it runs the session and stores 

the results in the “RESULTS_DM” data manager. Next, it checks if the running session has a 

bridge with another one. In case there is a bridging id found in this session, then the „freshly‟ 

computed results are copied to the other session to be used in its calculations.  

 

Still in the server machine, the next stages are performed by the Controller component. It 

checks if the current session has more servers to migrate to: if yes, then the vessel is transferred 

to the next server defined in the list. Otherwise, the Controller checks if there are more sessions 

in the itinerary.  



 

54 

If there are no more sessions waiting to be executed, then the itinerary has completed its trip 

and delivers the results to the client. Otherwise, the Controller acknowledges the location of 

the first server of the following session and transfers the itinerary to this machine. 

 

Additionally to the processes explained above, the Controller is also programmed to check the 

traveling strategy specified in the session before transferring the itinerary to a remote station. 

When the strategy is unidirectional, the itinerary can be „integrally‟ dispatched to the next 

server. Otherwise – a multidirectional traveling is thus defined – a copy of the itinerary is sent 

to each server stated in the session. In this last situation, the thread responsible for transferring 

the „vessel‟ to each of the servers has to wait for the computed results to return. This process is 

required to synchronize the computed results which are delivered from different machines. 

Thus, the „vessel‟ with id 117 defined in Figure 4.5.3 will take a route similar to the one 

represented in Figure 4.5.4. 

 

 
Figure 4.5.4 – Real traveling route of itinerary 117 

 

Notice in Figure 4.5.4 that after session A has finished its execution, a copy of the itinerary is 

sent to Servers 2, 3 and 4 with the objective of running the next session, which is session B. 

But the thread responsible for the sending in Server 1 waits for the three results to return. Only 

after the last result has returned that the itinerary migrates to Server 5 in order to execute 

session C. 

 

No matter if the user-developed component travels unidirectional or multidirectional, the 

middleware uses asynchronous communication in both situations. From the first upload 

triggered by the client until the upload to the last server, our model uses only asynchronous 

computation/communication. Thanks to class Future (java.util.concurrent) which 



 

55 

represents the result of an asynchronous computation, the middleware uses this class to receive 

the returning results that may arrive at any time. Looking carefully to the code sample provided 

in Listing 4.2.11, the upload method called by the client also returns a Future. Thus, the 

thread in the client computer also waits passively or asynchronously for the results to return. 

 

In fact, the itinerary only leaves a host when the working session returns a result. In case the 

session has no more locations to go, it is simply offloaded from the itinerary after the result is 

stored in the dedicated data manager (RESULTS_DM). This means that the session and all its 

contents (e.g. the classes that belonged to this session) are discarded from the itinerary. 

Otherwise, the session is kept in the itinerary until the last server of its list is visited.  

 

Hereafter, the logic is the same: the destination that the itinerary migrates to is always defined 

by the first session in the list of sessions. The following session – if any – takes place only 

when the first one has finished executing in all servers specified in its list of servers. If the list 

of sessions is empty, it means that the itinerary has finished its voyage and the results are sent 

to the client machine. 

 

The process of migrating to the next machine is the same as explained in the beginning of this 

section: the ObjectManager transforms the itinerary into an array of bytes for a Web method 

(Listing 4.5.2) to transfer it to the next machine. After arriving to the next host, the process of 

rebuilding the itinerary, loading the session classes to the JVM and running the session, repeats 

again but this time in a different machine. 

 

However, there is a situation that this process is different: it is when the last session finishes its 

execution in the last server. To be more precise, it is when the result computed by the last 

session in the last server is stored in the results data manager. This means that the vessel never 

travels back to the client machine. Since the client is only interested in obtaining the results, the 

contents returned are resumed to a list of results with the itinerary id that was responsible for 

them. The vessel that has been representing the itinerary in the figures, „disappears‟ at this 

point. 

 

The process of sending the object containing the list of results with the identifier of the 

itinerary to the client machine is similar to the one used in the itinerary sending to a server: the 

ObjectManager component transforms the object into an array of bytes and calls a Web method 

provided to transfer it (Listing 4.5.1). Nevertheless, like in all uploading processes in the 

middleware, the Controller component performs one crucial task before the itinerary is 

discarded: the “HomeURL” reference stored in the itinerary is labeled into the component that 

is migrating to the client machine. 

 

4.5.4. Results returning to client 

 

It is responsibility of the HomeService functionality to receive the returned results. After the 

component containing the list of results and the id of the itinerary has arrived to the client 

computer, the middleware uses the id to compare with those stored in the itinerary registry map 



 

56 

to obtain the associated handler. Once found, the handler is „awaken‟ to handle the results from 

the HomeService component to the thread in the client application that is waiting to receive 

them. 

 

The handler is a Callable (java.util.concurrent) that is created and executed in the 

middleware when the user uploads an itinerary and it is stored in the itinerary registry map. The 

task of the handler is to call the upload method to send the itinerary to the network and to wait 

for the results to return. In other words, the current thread responsible for the uploading call 

waits until another thread notifies the handler (java.lang.Object). When HomeService 

component receives the computed results, these are sent to the respective handler. It is this 

thread which is responsible for the sending that notifies the handler to return the results to the 

client application. Like the thread that is waiting in the client application for the results (the 

method upload returns an instance of class Future), the wait and notify mechanism of 

java.lang.Object is also asynchronous. 

 

 
Figure 4.5.5 – Handler synchronization 

 

In this chapter, the instantiation of our model has been described. In Chapter 5, we will present 

tests and the respective results performed in our model.  



 

57 

 

 

 

 

 

5. Evaluation 
 

This chapter presents the evaluation of tests performed to our model and has the objective to 

understand the impact of session migration in comparison to remote interaction. The environment 

where the tests were conducted is a computer that worked as client and as server. 

 

Figure 5.1 illustrates a session migrating to a server in order to interact locally (in the server) whilst 

Figure 5.2 shows a session executing in the client machine and interacting with a remote server. 

 

 
Figure 5.1 – Session executing in the server and interacting in the server 

 



 

58 

 
Figure 5.2 – Session executing in the client and interacting with a remote server 

 

 

5.1. Environment Specifications 

 

The presented values were measured on a laptop computer with the following characteristics: 

CPU Intel Core 2 Duo Processor T5500, 1GB memory DDR2 SDRAM 667Mhz, hard disk 

with 120 GB capacity and the operating system is Windows 7 Home Edition. All the values 

concerning network transfer times were estimated. 

 

All tests were executed from within the eclipse framework and the Web server that hosts the 

Web services is Apache Axis. 

 

 

5.2. Measuring the overhead of the middleware 

 

This section presents the measurement that the middleware takes on average
2
 in the uploading 

of a session to the network (Table 5.2.1). In order to not have inconsistent measurements, we 

closed all user-processes that were running in parallel in the system before proceeding with the 

evaluations. 

 

 Message creation 

 (sec) 

Collect Classes 

 (sec) 

Smash Object 

(sec) 

Build Object 

(sec) 

1 class 0,047 0,005 0,017 0,032 
10 classes 0,056 0,010 0,019 0,033 
11 classes 0,059 0,011 0,019 0,033 

Table 5.2.1 – Average time values in session uploading 

                                                           
2
 the average for each value was calculated by obtaining the mean of 20 tests 



 

59 

In the standards defined in Table 5.2.1, we considered three cases: one that a session consists of 

1 class (2,059 KB), another consisting of 10 classes (20,59 KB) and another which contains 11 

classes (22,645 KB). The message creation column refers to the time that the middleware 

requires to generate the message to be sent. Collect Classes‟ one indicates the time that the 

system requires to find and collect the classes of the session. Smash object column describes 

the time needed to transform an instance of class SessionTransfer (Listing 4.5.3) 

component into an array of bytes and build object‟s one refers to the time required to do the 

reverse operation, i.e., to rebuild the instance of class SessionTransfer from the array of 

bytes. 

 

Moreover, another parameter that we had to consider in our calculations is the overhead of the 

SOAP envelope in the messages exchanged with a Web service. The tool we used to obtain the 

overhead value is called tcpmon. This program simply acts as a monitor between the client and 

the server to detect the content-length of transmitted messages (and also other characteristics 

but they are not required in our study).  

 

 

5.3. Remote interaction versus remote execution (lower bandwidth) 

 

The first evaluation conducted compares the temporal differences between a session executing 

in the client machine and performing one remote interaction with a given server and the 

migration of that same session to the server to perform the interaction locally. In this initial 

setting we assume a network with a bandwidth of 1 Mbps (125 KB/sec). 

 

5.3.1. Remote interaction 

 

We begin by presenting in Table 5.3.1 the scenario (similar to the one illustrated in Figure 5.2) 

where the session is executed in the client machine and interacts with a server remotely. In our 

calculations, we‟ve already considered the overhead of the message. 

  

We assume the request message size to be of 1 KB. We range the size of the result message 

from 1 KB to 1000 KB and the time required for the session to complete its task from 1 to 

1000s. This comprises the time waiting for the server to process the request 

  



 

60 

 

 

Table 5.3.1 – Remote interaction time values (1Mbps) 

 

Table 5.3.1 reading: 

 

 Message creation indicates the time required creating the request message for the session to 

interact with the server and the time required to create the result message to return to the client.  

 

Transfer request shows the time elapsed for transferring the request from the client to the 

server.  

 

Calculation:                   
                    

           
 

 

Transfer result indicates the time elapsed for transferring the result from the server to the client. 

 

 Calculation:                  
                   

           
 

 

At last, request processing denotes the time spent by the server to process the request. 

The total time for each situation is presented in bold.  

 

 Calculation:   

 

                                                                  

                                

 

We can observe that the total time (in bold) increases proportional to the result size and to the 

time of request processing. 

 

5.3.2. Remote execution 

 

In this scenario, we have the same variables as the previous one but this time the session is 

uploaded to a remote station (similar to the one illustrated in Figure 5.1). The size of the 

Result 

size 

(KB) 

message creation transfer request processing (sec) 

request result request result 1 10 100 1000 

1 0,046 0,046 0,009 0,008 1,109 10,109 100,109 1000,109 

10 0,046 0,051 0,009 0,080 1,186 10,186 100,186 1000,186 

20 0,046 0,057 0,009 0,160 1,272 10,272 100,272 1000,272 

50 0,046 0,074 0,009 0,400 1,529 10,529 100,529 1000,529 

100 0,046 0,102 0,009 0,800 1,957 10,957 100,957 1000,957 

200 0,046 0,160 0,009 1,600 2,815 11,815 101,815 1001,815 

500 0,046 0,332 0,009 4,000 5,387 14,387 104,387 1004,387 

1000 0,046 0,619 0,009 8,000 9,674 18,674 108,674 1008,674 



 

61 

request message is 30,9326 KB as we considered the migrating session to contain 10 classes 

(22,645 KB). Like in all calculations, the overhead is already included. 

 

Result 

size 

(KB) 

MW 
message creation transfer request processing (sec) 

request result session result 1 10 100 1000 

1 0,214 0,046 0,046 0,247 0,008 1,561 10,561 100,561 1000,561 

10 0,214 0,046 0,051 0,247 0,080 1,638 10,638 100,638 1000,638 

20 0,214 0,046 0,057 0,247 0,160 1,724 10,724 100,724 1000,724 

50 0,214 0,046 0,074 0,247 0,400 1,981 10,981 100,981 1000,981 

100 0,214 0,046 0,102 0,247 0,800 2,410 11,410 101,410 1001,410 

200 0,214 0,046 0,160 0,247 1,600 3,267 12,267 102,267 1002,267 

500 0,214 0,046 0,332 0,247 4,000 5,840 14,840 104,840 1004,840 

1000 0,214 0,046 0,619 0,247 8,000 10,127 19,127 109,127 1009,127 

Table 5.3.2 – Remote execution time values (1Mbps) 

  

 Table 5.3.2 reading:  

 

In comparison to the previous table, this one has a new column called “MW” which represents 

the middleware share in the session migration. Another difference is the session transfer 

column instead of the request transfer column. These changes are all related to the fact that this 

scenario represents the uploading of a session to a remote station. Thus, the content transferred 

to the server is not a solo request but a session (therefore, the values in this column are 

relatively higher). 

 

Middleware (MW) indicates the time spent in constructing the requisites for a session to 

execute remotely and to return its results to the client. 

 

Calculation:  

 

                                                               

                                                       

 

Transfer session denotes the time elapsed for transferring the session from the client machine to 

the server. 

 

Calculation:  
            

         
 
       

   
           

 

Similarly to the previous scenario, the total time for each situation is presented in bold.  

 

 Calculation:   

 

                                                          

                                                   



 

62 

Although we have a session migrating to a remote station to execute, the total time (in bold) 

also increases proportional to the result size and to the time of request processing. 

 

5.3.3. Comparison between remote interaction and remote execution 

 

In order to understand the differences between remote execution versus remote interaction, 

Table 5.3.3 and the respective graph (Fig. 5.3.1) represent the comparison between the previous 

two tables. 

 

Calculation: 
                      

                      
 – 1 

 

result 

size (KB) 

request processing (sec) 

1 10 100 1000 

1 -28,98% -4,28% -0,45% -0,05% 

10 -27,62% -4,25% -0,45% -0,05% 

20 -26,24% -4,22% -0,45% -0,05% 

50 -22,84% -4,12% -0,45% -0,05% 

100 -18,77% -3,97% -0,45% -0,05% 

200 -13,85% -3,69% -0,44% -0,05% 

500 -7,75% -3,05% -0,43% -0,05% 

1000 -4,47% -2,37% -0,41% -0,04% 

Table 5.3.3 – Remote interaction versus remote execution (1Mbps)   

 

 

Figure 5.3.1 – Graph of Table 5.3.3 

 

Interpreting the graph of Figure 5.3.1, we are in conditions to conclude that the migration takes 

always longer than remote interaction in this scenario. The worst case is when the processing 

time is shorter and/or the result size is smaller. For larger result‟s size and/or for longer 

processing time, the difference between migration and remote interaction tends to be smaller.  

-35,00%

-30,00%

-25,00%

-20,00%

-15,00%

-10,00%

-5,00%

0,00%

0 200 400 600 800 1000

result size (KB)

1 10 100 1000 request processing (sec)



 

63 

5.4. Remote interaction versus remote execution (higher bandwidth) 

 

The second evaluation conducted is similar to the previous one but with the bandwidth changed 

to a higher value: 100 Mbps instead of 1 Mbps. The objective of this test is to understand if the 

bandwidth can considerably influence the results favoring remote interaction or favoring 

remote execution. 

 

5.4.1. Comparison between remote interaction and remote execution 

 

Two tables have been constructed similarly to Table 5.3.1 (remote interaction) and Table 5.3.2 

(remote execution) but this time with a bandwidth of 100 Mbps. The comparison of these two 

tables is represented in Table 5.4.1 and the respective graph of Figure 5.4.1. 

 

result 

size (KB) 

request processing (sec) 

1 10 100 1000 

1 -16,57% -2,10% -0,22% -0,02% 

10 -16,50% -2,10% -0,22% -0,02% 

20 -16,41% -2,10% -0,22% -0,02% 

50 -16,18% -2,10% -0,22% -0,02% 

100 -15,79% -2,09% -0,22% -0,02% 

200 -15,07% -2,08% -0,22% -0,02% 

500 -13,26% -2,04% -0,22% -0,02% 

1000 -11,05% -1,98% -0,21% -0,02% 

Table 5.4.1 –Remote interaction versus remote execution (100Mbps) 

 

 

Figure 5.4.1 – Graph of Table 5.4.1 

 

The graph represented in Figure 5.4.1 illustrates that remote interaction is always faster than 

remote execution in this scenario which provides us the same conclusions as explained in 

subsection 5.3.3. 

-35,00%

-30,00%

-25,00%

-20,00%

-15,00%

-10,00%

-5,00%

0,00%

0 200 400 600 800 1000

1 10 100 1000 request processing (sec)

result size (KB)



 

64 

 

Thus, in both scenarios (1 Mbps and 100 Mbps) which featured only one interaction with the 

server, we can conclude that remote interaction is always worthier than remote execution. 

 

 

5.5. Interactions 

 

The next evaluation we performed, we used the same base values as the previous one (Section 

5.4). We used a fixed result size of 1 KB, set the request processing time to 0 and raised the 

number of interactions in the server. The objective of this test is to understand the weight of the 

interactions between a session and a server on remote execution and on remote interaction. 

 

5.5.1. Remote interaction versus remote execution (lower bandwidth) 

 

We start by describing in Table 5.5.1 the scenario where the session is executed in the client 

machine and interacts with a server remotely. In this test, we range the interactions number 

from 1 to 60.  

 

Interactions 
message creation transfer total 

time request result request result 

1 0,041 0,041 0,009 0,009 0,100 

2 0,081 0,081 0,019 0,019 0,200 

3 0,122 0,122 0,028 0,028 0,300 

4 0,162 0,162 0,038 0,038 0,400 

6 0,243 0,243 0,057 0,057 0,599 

8 0,324 0,324 0,075 0,075 0,799 

10 0,405 0,405 0,094 0,094 0,999 

12 0,486 0,486 0,113 0,113 1,199 

14 0,567 0,567 0,132 0,132 1,398 

17 0,689 0,689 0,160 0,160 1,698 

20 0,810 0,810 0,189 0,189 1,998 

25 1,013 1,013 0,236 0,236 2,497 

30 1,215 1,215 0,283 0,283 2,996 

40 1,620 1,620 0,377 0,377 3,995 

50 2,026 2,026 0,471 0,471 4,994 

60 2,431 2,431 0,566 0,566 5,993 

Table 5.5.1 – Remote interacting with interactions (1Mbps) 

 

Table 5.5.1 reading: 

 

Interactions column denotes the number of interactions between the session and the server. 

Total time indicates the total time spent by the interactions. 

 



 

65 

 

 Calculation:   

 

                                                                

                

 

We can easily verify that the total time (in bold) increases proportional to number of 

interactions. 

 

Next and analogously to the previous table, we present the values (Table 5.5.2) describing the 

scenario where the session is executed remotely.  In this case, we considered the size of the 

message to be 30,9326KB (including the session). 

 

Interactions middleware 
message creation Transfer 

total time 
request result session result 

1 0,214 0,041 0,041 0,247 0,009 0,552 

2 0,214 0,081 0,081 0,247 0,009 0,633 

3 0,214 0,122 0,122 0,247 0,009 0,714 

4 0,214 0,162 0,162 0,247 0,009 0,795 

6 0,214 0,243 0,243 0,247 0,009 0,957 

8 0,214 0,324 0,324 0,247 0,009 1,120 

10 0,214 0,405 0,405 0,247 0,009 1,282 

12 0,214 0,486 0,486 0,247 0,009 1,444 

14 0,214 0,567 0,567 0,247 0,009 1,606 

17 0,214 0,689 0,689 0,247 0,009 1,849 

20 0,214 0,810 0,810 0,247 0,009 2,092 

25 0,214 1,013 1,013 0,247 0,009 2,497 

30 0,214 1,215 1,215 0,247 0,009 2,902 

40 0,214 1,620 1,620 0,247 0,009 3,712 

50 0,214 2,026 2,026 0,247 0,009 4,522 

60 0,214 2,430 2,430 0,247 0,009 5,333 

Table 5.5.2 – Remote executing with interactions (1Mbps) 

 

 Calculation:   

 

                                                          

                                 

 

In this case we can also conclude that the total time (in bold) increases proportional to number 

of interactions. 

  



 

66 

Comparison between remote interaction and remote execution 

 

Interactions 
Total 

Time 

1 -81,92% 

2 -68,46% 

3 -58,06% 

4 -49,77% 

6 -37,41% 

8 -28,62% 

10 -22,06% 

12 -16,97% 

14 -12,91% 

17 -8,15% 

20 -4,50% 

25 0,01% 

30 3,26% 

40 7,63% 

50 10,43% 

60 12,38% 

Table 5.5.3 – Remote interaction versus remote execution with interactions (1Mbps) 

 

 
Figure 5.5.1 – Graph of Table 5.5.3 

 

The graph of Fig 5.5.1 allow us to understand that for a result size of 1 KB in a network with a 

bandwidth of 1 Mbps, a session that requires to interact 25 times or more with a server has 

better performance if uploaded to the server to interact locally. 

  

-100,00%

-80,00%

-60,00%

-40,00%

-20,00%

0,00%

20,00%

0 10 20 30 40 50 60

Interactions



 

67 

5.5.2. Remote interaction versus remote execution (higher bandwidth) 

 

The evaluation performed in this scenario is to understand if the bandwidth readjusted to 100 

Mbps has significant impact in the remote interaction versus remote execution performances. 

In this case, we had to increase the result size from 1 KB to 50 KB in order to see the 

interaction number in which the remote execution is a „better solution‟ rather than remote 

interaction. 

 

Comparison between remote interaction and remote execution 

 

Interactions 
Total 
Time 

1 -71,81% 

2 -55,54% 

3 -44,96% 

4 -37,52% 

6 -27,76% 

8 -21,64% 

10 -17,44% 

12 -14,38% 

14 -12,06% 

17 -9,45% 

20 -7,53% 

25 -5,26% 

30 -3,68% 

40 -1,63% 

50 -0,36% 

60 0,50% 

Table 5.5.4 – Remote interaction versus remote execution with interactions (100 Mbps) 

 

 
Figure 5.5.2 – Graph of Table 5.5.4 

-100,00%

-80,00%

-60,00%

-40,00%

-20,00%

0,00%

20,00%

0 10 20 30 40 50 60

Interactions



 

68 

We can conclude that for a result size of 1 KB and a session sized 30 KB, a network with a 

bandwidth of 1 Mbps offers better performances for remote execution than a network with a 

bandwidth of 100 Mbps.  

 

 

5.6. Unidirectional 

 

The next evaluations we realized has traveling strategies included. We begin with the 

unidirectional traveling strategy. The objective of this test is to understand the weight that 

remote execution has on a session that is traveling in sequence (unidirectional) from 1 to N 

servers in comparison to a session that is remote interacting with the same number of servers. 

  

Similarly to previous tests, we performed two evaluations: one with the bandwidth set to 1 

Mbps and a second set to 100 Mbps. 

 

In this scenario (Fig. 5.6.1), we had to consider that the time a session spends in the first server 

is not the same as in the last server or in the servers in the „middle‟ (i.e., those that are neither 

first nor last of the route). This happens because of the „extra‟ data that is created due to the 

computed result. To simplify the scenario, we also considered that the processing time in the 

server is zero and the size of a session is 30,9326KB (10 classes). This means that when the 

session leaves the client machine, it contains 10 classes but when it leaves the first server, it is 

already a little bit larger than the 10 classes. We assumed the „extra‟ data to have the size of 

3,09326 KB (the size of 1 class). Thus, the first server receives 10 classes, the second (and so 

on until the last) receives 11 „classes‟ because of the computed results that have been 

calculated in the meantime. 

 

The last server sends a component consisting of one class only (result) because the session is 

not required to travel back to the client. In our calculations, we had to consider these cases in 

which the classes inputted and outputted to a server vary according to its position in the route 

used by the session. 

 

 
Figure 5.6.1 – Number of classes transferred from host to host 

  



 

69 

The calculations we used to determinate the values for remote execution (Table 5.6.1 and Table 

5.6.4) are as follows: 

 

Total Time =  
  client side operations(collect classes, message creation, smash object, build object and transfer) + 

  server side operations(collect classes, message creation, smash object, build object and transfer) + 

  num servers × ( 

    interactions × ( 

      message creation request +  message creation result + request processing)) 

 

where: 

  for all servers: 

    client side operations = collect classes + session message creation +  

                                           session smash object + result build + session transfer 

 

  for only 1 server: 

    server side operations = result message creation + result smash + session build + result transfer 

 

  for only 2 servers: 

    server side operations = 1
st
 server operations + last server operations 

    where: 

      1
st
 server operations = session and result message creation + session and result smash +  

                                            session build + session and result transfer 

      last server operations = result message creation + result smash + session and result build + 

                                             result transfer) 

 

  for 3 or more servers: 

    server side operations = 1
st
 server operations + middle server operations × (number of servers – 2) + 

                                            last server operations 

    where: 

      1
st
 server operations and last server operations are the same as for only 2 servers 

      middle server operations = session and result message creation + session and result smash + 

                                                session and result build + session and result transfer) 

 

 
 

  



 

70 

5.6.1. Remote interaction versus remote execution (lower bandwidth) 

 

Servers 
Interactions 

1 10 100 1000 

1 0,586 1,316 8,607 81,525 

2 1,048 2,507 17,090 162,926 

3 1,511 3,698 25,573 244,327 

4 1,973 4,889 34,057 325,729 

5 2,435 6,081 42,540 407,130 

6 2,897 7,272 51,023 488,531 

7 3,359 8,463 59,506 569,932 

8 3,821 9,655 67,989 651,333 

9 4,283 10,846 76,472 732,734 

10 4,746 12,037 84,955 814,135 

11 5,208 13,229 93,438 895,536 

12 5,670 14,420 101,922 976,938 

13 6,132 15,611 110,405 1058,339 

14 6,594 16,803 118,888 1139,740 

15 7,056 17,994 127,371 1221,141 

16 7,518 19,185 135,854 1302,542 

17 7,981 20,377 144,337 1383,943 

18 8,443 21,568 152,820 1465,344 

Table 5.6.1 – Unidirectional remote execution (1Mbps) 

 

For remote interaction (Table 5.6.2), we used the following calculation: 

 

Total Time = number of servers × ( 

interactions × ( message creation request + message creation result + 

request processing + transfer request + transfer result)) 

  



 

71 

Servers 
Interactions 

1 10 100 1000 

1 0,338 3,379 33,791 337,911 

2 0,676 6,758 67,582 675,821 

3 1,014 10,137 101,373 1013,732 

4 1,352 13,516 135,164 1351,643 

5 1,690 16,896 168,955 1689,553 

6 2,027 20,275 202,746 2027,464 

7 2,365 23,654 236,537 2365,374 

8 2,703 27,033 270,329 2703,285 

9 3,041 30,412 304,120 3041,196 

10 3,379 33,791 337,911 3379,106 

11 3,717 37,170 371,702 3717,017 

12 4,055 40,549 405,493 4054,928 

13 4,393 43,928 439,284 4392,838 

14 4,731 47,307 473,075 4730,749 

15 5,069 50,687 506,866 5068,659 

16 5,407 54,066 540,657 5406,570 

17 5,744 57,445 574,448 5744,481 

18 6,082 60,824 608,239 6082,391 

Table 5.6.2 – Unidirectional remote interaction (1Mbps) 

 

Table 5.6.3 and the respective graph in Figure 5.6.2 represent the comparison of the previous 

two tables (remote execution versus remote interaction). 

  



 

72 

Servers 
Interactions 

1 10 100 1000 

1 -42,37% 156,85% 292,58% 314,49% 

2 -35,54% 169,60% 295,44% 314,80% 

3 -32,89% 174,12% 296,40% 314,91% 

4 -31,48% 176,44% 296,88% 314,96% 

5 -30,61% 177,85% 297,17% 314,99% 

6 -30,01% 178,80% 297,36% 315,01% 

7 -29,58% 179,48% 297,50% 315,03% 

8 -29,26% 180,00% 297,61% 315,04% 

9 -29,00% 180,40% 297,69% 315,05% 

10 -28,79% 180,72% 297,75% 315,05% 

11 -28,62% 180,98% 297,80% 315,06% 

12 -28,48% 181,20% 297,85% 315,07% 

13 -28,36% 181,39% 297,88% 315,07% 

14 -28,26% 181,55% 297,92% 315,07% 

15 -28,17% 181,69% 297,94% 315,08% 

16 -28,09% 181,81% 297,97% 315,08% 

17 -28,02% 181,92% 297,99% 315,08% 

18 -27,96% 182,01% 298,01% 315,08% 

Table 5.6.3 – Unidirectional remote execution versus remote interaction (1Mbps) 

 

 
Figure 5.6.2 – Graph of table 5.6.3 

 

Through the graph illustrated in Fig. 5.6.2, we can see that remote interaction has better 

performances (at least for 18 servers) with one interaction whilst remote execution is better for 

ten or more interactions. 

 

 

-100,00%

-50,00%

0,00%

50,00%

100,00%

150,00%

200,00%

250,00%

300,00%

350,00%

0 5 10 15
Servers

1 10 100 1000 Interactions



 

73 

5.6.2. Remote interaction versus remote execution (higher bandwidth) 

 

This evaluation is equal to the previous one but with a bandwidth of 100 Mbps.  

 

Servers 
Interactions 

1 10 100 1000 

1 0,298 1,028 8,319 81,237 

2 0,493 1,952 16,535 162,371 

3 0,689 2,876 24,752 243,506 

4 0,884 3,801 32,968 324,640 

5 1,079 4,725 41,184 405,774 

6 1,274 5,649 49,400 486,908 

7 1,470 6,574 57,616 568,042 

8 1,665 7,498 65,833 649,177 

9 1,860 8,423 74,049 730,311 

10 2,055 9,347 82,265 811,445 

11 2,250 10,271 90,481 892,579 

12 2,446 11,196 98,697 973,713 

13 2,641 12,120 106,914 1054,848 

14 2,836 13,045 115,130 1135,982 

15 3,031 13,969 123,346 1217,116 

16 3,227 14,893 131,562 1298,250 

17 3,422 15,818 139,778 1379,384 

18 3,617 16,742 147,995 1460,519 

Table 5.6.4 – Unidirectional remote execution (100Mbps) 

  



 

74 

 

Servers 
Interactions 

1 10 100 1000 

1 0,084 0,836 8,359 83,589 

2 0,167 1,672 16,718 167,178 

3 0,251 2,508 25,077 250,767 

4 0,334 3,344 33,436 334,356 

5 0,418 4,179 41,794 417,945 

6 0,502 5,015 50,153 501,533 

7 0,585 5,851 58,512 585,122 

8 0,669 6,687 66,871 668,711 

9 0,752 7,523 75,230 752,300 

10 0,836 8,359 83,589 835,889 

11 0,919 9,195 91,948 919,478 

12 1,003 10,031 100,307 1003,067 

13 1,087 10,867 108,666 1086,656 

14 1,170 11,702 117,024 1170,245 

15 1,254 12,538 125,383 1253,834 

16 1,337 13,374 133,742 1337,423 

17 1,421 14,210 142,101 1421,011 

18 1,505 15,046 150,460 1504,600 

Table 5.6.5 – Unidirectional remote interaction (100Mbps) 

  



 

75 

Table 5.6.6 represents the comparison between remote execution (Table 5.6.4) and remote 

interaction (Table 5.6.5). 

 

Servers 
Interactions 

1 10 100 1000 

1 -71,99% -18,66% 0,47% 2,89% 

2 -66,12% -14,35% 1,10% 2,96% 

3 -63,59% -12,81% 1,31% 2,98% 

4 -62,17% -12,03% 1,42% 2,99% 

5 -61,27% -11,55% 1,48% 3,00% 

6 -60,64% -11,22% 1,52% 3,00% 

7 -60,18% -10,99% 1,55% 3,01% 

8 -59,83% -10,82% 1,58% 3,01% 

9 -59,55% -10,68% 1,60% 3,01% 

10 -59,33% -10,57% 1,61% 3,01% 

11 -59,14% -10,48% 1,62% 3,01% 

12 -58,99% -10,41% 1,63% 3,01% 

13 -58,85% -10,34% 1,64% 3,02% 

14 -58,74% -10,29% 1,65% 3,02% 

15 -58,64% -10,24% 1,65% 3,02% 

16 -58,55% -10,20% 1,66% 3,02% 

17 -58,47% -10,16% 1,66% 3,02% 

18 -58,40% -10,13% 1,67% 3,02% 

Table 5.6.6 – Unidirectional remote execution versus remote interaction (100Mbps) 

 

 
Figure 5.6.3 – Graph of table 5.6.6 

 

-100,00%

-50,00%

0,00%

50,00%

100,00%

150,00%

200,00%

250,00%

300,00%

350,00%

0 5 10 15

Servers

1 10 100 1000 Interactions



 

76 

The graph described in Figure 5.6.3 allows us to verify that remote execution is better for 100 

or more interactions in the server. In addition, and in comparison to the scenario of 1 Mbps 

bandwidth, we are able to confirm that a higher bandwidth favors remote execution. 

 

 

5.7. Multidirectional (Speed-Up) 

 

The last evaluation we conducted is to determinate the speed-up while using a multidirectional 

traveling strategy in a network of 1 Mbps bandwidth and a request processing time of 1 second. 

The objective is to understand the speed-up gained in sharing the interactions through the 

targeted servers. Table 5.7.1 specifies the values obtained in our test, in seconds. 

 

Calculation: 

 

Total Time = (collect classes + smash session + message session creation ×  

servers + client build result + client transfer session +  

server transfer result + server result creation + server smash result +  

server build session + interactions × (message creation request +  

message result creation + request processing) / servers) 

 

Servers 
Interactions 

5 20 100 1000 

1 1,00 1,00 1,00 1,00 

2 1,89 1,97 1,99 2,00 

3 2,63 2,90 2,98 3,00 

4 3,23 3,77 3,95 3,99 

5 3,68 4,58 4,91 4,99 

6 
 

5,32 5,85 5,98 

7 
 

5,98 6,77 6,98 

8 
 

6,58 7,67 7,97 

9 
 

7,10 8,54 8,95 

10 
 

7,55 9,39 9,94 

11 
 

7,94 10,21 10,92 

12 
 

8,27 11,00 11,89 

13 
 

8,53 11,76 12,86 

14 
 

8,75 12,49 13,83 

15 
 

8,92 13,19 14,80 

16 
 

9,04 13,85 15,76 

17 
 

9,13 14,48 16,71 

18 
 

9,19 15,08 17,66 

Table 5.7.1 – Multidirectional speed-up (1Mbps) 

  



 

77 

 
Figure 5.7.1 – Graph of table 5.7.1 

 

The graph represented in Fig. 5.7.1 allows us to trivially understand that as more servers are 

used in the computation, a speed-up is confirmed. Additionally, the growth becomes linear as 

the number of interactions is greater. 

 

  

-

2,00   

4,00   

6,00   

8,00   

10,00   

12,00   

14,00   

16,00   

18,00   

20,00   

0 5 10 15 20

5

20

100

1000

interactions

servers



 

78 

 

 

 

 

 

6. Conclusions 
 

6.1. Summary 

 

The goal of this thesis was to produce a model that comprises of a middleware layer equipped 

with functionalities that allow user-developed sessions to travel in a network in order to be 

executed remotely. The middleware is assigned to take control of a session from the moment a 

user requests to upload it. Tasks such as collecting the classes required to run sessions in 

remote stations, transferring sessions to the specified hosts, session executing and returning of 

the computed results back to the client, are all within the responsibility of the middleware. In 

addition, it is important to mention that the network is available to the client in the form of 

services, namely Web services, instead of network nodes since we implemented a model whose 

computing is service-oriented. 

 

The implementation of this model also focused in providing a simple methodology for the 

programmer to dispatch sessions to the network. It is through an API that the programmer is 

able to develop components at his/her own taste (the user has total freedom to write the code to 

run remotely) and to upload them to the network. In addition, this API offers methods that 

enhance session mobility in the network such as the traveling strategy that it must take. The 

programmer is also able to bridge a session to another, which means that one session will use 

the computed results from another session to complete its execution.  

 

The evaluations conducted in the instantiated model allowed us to identify situations that favor 

session migration and situations that favor remote interaction. An interesting finding is that a 

faster bandwidth not always benefits session migration. 

 

All objectives proposed for this work were successfully accomplished. We were able to 

instantiate a model that provides an API for the programmer to develop components to execute 

in remote stations. Our model offers a middleware layer which is responsible for sessions 

traveling to any host in the network and to return the computed results to the respective client. 

At last, we presented evaluations that were performed with the objective of comprehending the 

middleware impact in session‟s migration on the model instantiated. 

 

 

 

 

 



 

79 

6.2. Future work 

 

Future work on service-oriented mobility consists of embodying the system with security, 

allowing modification of the itinerary route dynamically at run-time, featuring a “go home” 

method to instruct the itinerary that it is time to return to the client machine, implement 

integration with Web service registries and implement integration with service level 

agreements.  



 

80 

 

 

 

 

 

7. Bibliography 
 

 

[1] Luc Clement and Andrew Hately and Claus von Riegen and Tony Rogers - UDDI spec 

technical committee draft 3.0.2. Oasis committee draft, 2004. 

[2]  Anurag Acharya, M. Ranganathan, and Joel Saltz.  Sumatra: A Language for Resource- 

aware Mobile Programs. In MOS ‟96: Selected Presentations and Invited Papers Second 

International Workshop on Mobile Object Systems – Towards the Programmable Internet, 

pages 111–130. Springer-Verlag, 1997. 

[3]  Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Hen- rik 

Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple object access protocol (SOAP) 

1.1. W3C Note NOTE-SOAP-20000508, World Wide Web Consortium, May 2000. 

[4]  Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.   Web 

Services  Description Language (WSDL) 1.1. W3C, 1.1 edition, March 2001.  

http://www.w3c.org/TR/wsdl. 

[5]  Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding Code Mobility. 

IEEE Trans. Softw. Eng., 24(5), 1998. 

[6]  Graham Glass. Overview of Voyager: ObjectSpace‟s Product Family for State-of-the-art 

Distributed Computing. Technical report, CTO ObjectSpace, 1999. 

[7]  Mehdi Jazayeri and Wolfgang Lugmayr. Gypsy: A Component-based Mobile Agent Sys- 

tem. In Proceedings of the 8
th

 Euromicro Workshop on Parallel and Distributed Processing 

(PDP2000), 2000. 

[8]  Gunter Karjoth, Danny B. Lange, and Mitsuru Oshima.  A Security Model for Aglets. 

IEEE Internet Computing, 1(4), 1997. 

[9]  Danny B. Lange. Mobile Objects and Mobile Agents: The Future of Distributed Computing?   

In Proceedings of The European Conference on Object-Oriented Programming ‟98,  

pages 1–12, 1998. 

 

http://www.w3c.org/TR/wsdl


 

81 

[10]  Sun Microsystems  Qusay  H.  Mahmoud. Service-Oriented  Architecture  (SOA) and Web 

Services: The Road to Enterprise Application Integration (EAI). 

http://java.sun.com/developer/technicalArticles/WebServices/soa/index.html, 2005. 

[11]  Pedro Marques, Sergi Robles, Jordi Cucurull-Juan, Ricardo Correia, Guillermo Navarro, and 

Ramon Martí. Secure integration of distributed medical data using mobile agents. IEEE 

Intelligent Systems, 21(6):47–54, 2006. 

[12]  Sun Microsystems. Introduction to CORBA. 

http://java.sun.com/developer/onlineTraining/corba/corba.html, 1999. 

[13]  Dejan S. Milojicic, Frederick Douglis, and Richard G. Wheeler, editors.  Mobile Agents for 

Mobile Computing. Addison Wesley and ACM Press, April 1999. 

[14]  OASIS. Web Services Notification (WSN) TC.  

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn. 

[15]  OASIS. Web Services Security (WSS) TC.  

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss. 

[16]  Object Management Group. The Common Object Request Broker: Architecture and 

Specification. Object Management Group, 2001. 

[17]  Ed Ort.  Service-Oriented Architecture and Web Services: Concepts, Technologies, and 

Tools. http://java.sun.com/developer/technicalArticles/WebServices/soa2/soa2.pdf, 2005. 

[18]  Hervé Paulino. An Overview of Mobile Agents Systems. Technical report, CITI, 01 2002. 

[19]  Hervé Paulino. An Abstract Machine for Service-oriented Mobility, volume 2 of Chapman & 

Hall/CRC Computational Science, pages 199–233.  CRC Press, William Gardner and Michael 

Alexander edition, 12 2008. 

[20]  Hervé Paulino. A Service-Oriented Approach to Software Mobility. Submitted, 2009.  

[21]  Hervé Paulino and Luís Lopes. A programming language for service-oriented computing 

with mobile agents. Software: Practice and Experience, 38(7):705–734, 06 2008. 

[22]  Hervé Paulino and Carlos Tavares.  Sedeuse:  A model for service-oriented computing in 

dynamic environments.  In Carlo; Magedanz Thomas Bonnin, Jean-Marie; Giannelli, editor, 

Mobile Wireless Middleware, Operating Systems and Applications. Second Inter- national 

Conference, Mobilware 2009, Berlin, Germany, April 28-29, 2009, number 7 in Lecture 

Notes of the Institute for Computer Sciences, Social-Informatics and Telecommu- nications 

Engineering, pages 157–170. Springer-Verlag, 04 2009. 

[23]  Sun Microsystems. An Overview of RMI Applications. 

http://java.sun.com/docs/books/tutorial/rmi/overview.html. 

http://java.sun.com/developer/technicalArticles/WebServices/soa/index.html
http://java.sun.com/developer/onlineTraining/corba/corba.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://java.sun.com/developer/technicalArticles/WebServices/soa2/soa2.pdf
http://java.sun.com/docs/books/tutorial/rmi/overview.html
http://java.sun.com/docs/books/tutorial/rmi/overview.html


 

82 

[24]  Sun  Microsystems,  Inc. JAX-WS  Reference  Implementation Project.  

https://jax-ws.dev.java.net. 

[25]  The Apache Software Foundation. Apache Axis2. http://ws.apache.org/axis2. 

[26]  Victoria  Shannon. A  ‟more  revolutionary‟  Web. New  York  Times, 2006. 

http://www.nytimes.com/2006/05/23/technology/23iht-Web.html. 

[27]  James E. White. Telescript Technology: Scenes from the Electronic Marketplace. General 

Magic White Paper, General Magic edition, 1995 

[28]  Jansen, W., Karygiannis, T.: Mobile Agent Security. Special Publication 800-19, National 

Institute of Standards and Technology (1999) 

[29]  Brooks, R.R.: Paradigms and security issues. IEEE Internet Computing 8(3) (2004) 54-59 

[30] Bettini, L. and Nicola, R. D. 2002. Translating Strong Mobility into Weak Mobility. In 

Proceedings of the 5
th

 international Conference on Mobile Agents (December 02 – 04, 2001). 

G. P. Picco, Ed. Lecture Notes In Computer Science, vol. 2240. Springer-Verlag, London, 

182-197. 

[31] Bettini, L., De Nicola, R., and Pugliese, R. 2002. KLAVA: a Java package for distributed and 

mobile applications. Softw. Pract. Exper. 32, 14 (Nov. 2002), 1365-1394.  

DOI= http://dx.doi.org/10.1002/spe.486 

[32] Arjav J. Chakravarti, Xiaojin Wang, Jason O. Hallstrom, Gerald Baumgartner, 

“Implementation of Strong Mobility for Multi-Threaded Agents in Java,” Parallel Processing, 

International Conference on, p. 321, 2003 International Conference on Parallel Processing 

(ICPP‟03), 2003 

[33]  Distributed Component Object Model (DCOM) 

http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-

a657e5900cd3/[MS-DCOM].pdf 

[34] Enterprise JavaBeans Technology 

http://java.sun.com/products/ejb/index.jsp 

[35] Introduction To Enterprise Java Bean(EJB) 

http://www.roseindia.net/javabeans/javabeans.shtml 

 

 

https://jax-ws.dev.java.net/
http://ws.apache.org/axis2.
http://www.nytimes.com/2006/05/23/technology/23iht-web.html
http://www.nytimes.com/2006/05/23/technology/23iht-web.html
http://dx.doi.org/10.1002/spe.486
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/%5bMS-DCOM%5d.pdf
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/%5bMS-DCOM%5d.pdf
http://java.sun.com/products/ejb/index.jsp
http://www.roseindia.net/javabeans/javabeans.shtml

