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ABSTRACT

This paper is aimed at presenting i) a simple, yet sound, conceptual model ap-
plicable to the simulation of erosion, deposition and transport of cohesionless
sediment in stratified flows under high shear stresses and ii) numerical solutions
in idealized unsteady flow non-equilibrium transport situations. The conceptual
model for the granular phase comprises 2DV mass and momentum and energy
equations and constitutive equations, all derived within the dense limit of the
Chapman-Enskog kinetic theory. 1D shallow-flow conservation and closure equa-
tions are derived for the fluid-granular mixture. Formulas for the average velocity
in the transport layers, the vertical net flux of sediment mass and the thickness of
the transport layer are thus obtained. Numerical solutions for dam-break flows
over cohesionless mobile beds in prismatic and non-prismatic channels are ob-
tained and discussed.
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1 INTRODUCTION

This paper is consecrated to the development of a one-dimensional conceptual
model applicable to flows with high geomorphic potential, herein geomorphic
flows. A large number of flows can be included in this category, including rock
or snow avalanches, debris flows or river flows in the upper regime exhibiting
sheet flow. They have in common the ultimate driving mechanism, gravity, the
fact that they are slender flows and the fact that they occur at or generate high
shear stresses. Another common feature is the importance of the micromechanical
characteristics of the sediment in the definition of the constitutive equations.

Given the common features, the conceptual model will be developed for sheet-
flows, i.e. clearly stratified flows with a transport layer under high shear stresses,
but is expected to be applicable also to debris-type flows, i.e. flows of a dense
mixture of granular material and water whose transport layer occupies the full
flow depth.

To ensure theoretical consistency and simplicity, both conservation and clo-
sure equations are deduced from the same theoretical body, the Chapman-Enskog
theory for dense gases (Chapman & Cowling 1970, §16). Applications to granular
flows have been accomplished by Lun et al. (1984), Jenkins & Richman (1988) or

Armanini et al. (2005), among others. Should the flowing particles be considered
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smooth, round and only slightly inelastic the kinetic theory requires only small
modifications in order to provide 2DV conservation laws for the mass, momen-
tum and fluctuating energy of the granular material and constitutive equations
for the stress tensor, conductivity and viscosity coefficients and dissipation rate.
The inclusion of frictional effects and viscous fluid-grain interactions is done by
patching in ad hoc theories (Ferreira 2005, p. 249). The 2DV conceptual model
is presented in Section 2. In the same section, the 2DV equations are depth-
averaged, in accordance with the shallow-flow hypothesis and with appropriate
kinematic boundary conditions. The continuum hypothesis is employed to merge
the necessary conservation equations expressing 1D mass and momentum conser-
vation.

In Section 3, the closure equations are obtained by process of numerical exper-
imentation. The 2DV conservation and constitutive equations of the transport
layer are solved in steady uniform conditions. Formulae for the average velocity
in the transport layers, the vertical net flux of sediment mass and the thickness
of the transport layer are obtained.

As they generate both sheet-flows and debris-like flows, dam-break flows are
adequate to test the solutions of the conceptual model. Numerical solutions
obtained for dam-break flows over cohesionless mobile beds, in prismatic and
non-prismatic channels, are presented in Section 4.

2 CONSERVATION EQUATIONS

Sheet-flow is a two-dimensional stratified flow involving a mixture of water and
granular material, picked up from the bottom. The granular phase is composed
of cohesionless sediment grains, nearly elastic, slightly rough and approximately
spherical. The fluid is viscous and incompressible. The flow structure is depicted
in Figure 1. Three main layers are promptly identified: A, characterized by small
mean sediment concentrations or by clear water and where turbulent stresses are
dominant; B a transport layer, featuring decreasing concentrations upwards and
stresses mainly originated in the granular phase and C the bed, composed of
grains with no appreciable horizontal mean motion.

- -
A: clear water/suspend sediment layer
L - -

\\/—/—\—T_'

Figure 1. Detail of a sheet-flow with highlighted layered structure.

In layer B, it is expected that granular collisional stresses are dominant except
in a thin bottom boundary layer where frictional stresses are dominant. The
collisional dominance assumption simplifies the expressions of the bulk granular
viscosity and of the granular conductivity (details in Ferreira 2005, pp. 231-250).

The 2DV conservation equations of layer A are the Reynolds-averaged Navier-
Stokes equations. For layer B, the mass and momentum conservation equations,
derived within the framework of the Chapman-Enskog theory, are, respectively

P9D, (v) + P(g)Vugi-) -0 (1)
pOuD, () = =P + 1) + pDug, + £ (2)
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3p9uD, (©) = —®,;,; + Egg)u§%) — low) (3)

where pl9) is the density of the sediment grains, nu is the solid fraction (concen-

(9) -

tration at a specific point in the ﬂow) is the velocity field of the granular

phase, P is the granular pressure, T ) is the granular stress tensor, f;q is the
force per unit volume expressing the mtcraction (essentially of viscous nature)
of fluid and granular phases, © is the granular temperature, ®; is the flux of
fluctuating energy and +9®) is the rate of dissipation, due to inelastic collisions
and viscous damping (details in Ferreira 2005, pp. 247-249), of the fluctuat-
ing energy. In equations (1) to (3) the operator D,(-) stands for the material
derivative for which the convective operator is relative to the mean low, Ein-
stein’s notation is used for space derivatives and the bracket operator (-) stands
for point-wise time or ensemble average (ergodicity is assumed). Equation (3)
reveals that, unlike thermodynamic systems a granular system can maintain a
steady state of a itation, characterized by a given granular temperature, if and
only 1f the rate 0% productlon equals the diffusive flux and the d1551pat10n ie. if
TPuf) = @i+ 9.

Conservatlon equations are also needed for the water phase. These can be
obtained from a control volume analysis within the continuum hypotheses:

—o"Dy () + (1 =) p iy = 0 (4)
(1 _ l/) p(w)Dt (u;w)) _ P( w) + T( ) (1 _ V) p(w)gj . f](gw) (5)

Ji,i
where p(®) is the density of the fluid, um is the fluid velocity field, P™) is the

isotropic fluid pressure, 1}(;”) is the fluid stress tensor.

In order to derive the 1D conservation equations, i) the 2DV equations of
conservation of each constituent are summed (equations 1 and 4 and 2 and 5), ii)
cinematic boundary conditions are applied the free-surface, bed and margins and
iii) the equations are depth-integrated, within the continuum hypothesis. The
1D conservation of total mass is

0A+0, (uh) =~ = - (5% - ) (6)
where A = A, + Ay, Ay, = fo n)dn is the area of the cross-section occupied by

layer B, h; is the thickness of layer B, A, is the area corresponding to layer A,
Ay is the area below the channel (the channel bed), Q, = CyupA, is the actual
volumetric sediment discharge, C is the actual sediment concentration, @; =
CrupAyp is the equilibrium sediment discharge, Cj is the equilibrium sediment
concentration, uy; is the velocity of B, p, is bed porosity, A is an adaptation
length (the length scale of non-equilibrium sediment transport) and A; is the

lateral contribution of mass from the channel banks. In the proposed model, the
calculation of A; is simplified, as shown in Figure 2.

Erosion. No failure Erosion. Bank failure Deposition
A

o [N | =

Figure 2. Idealization of lateral channel erosion.

3874



33rd IAHR Congress: Water Engineering for a Sustainable Environment

The equation of conservation of total momentum is
HM + 9, (pyuz Ay + p“ul Ay + pogly + p™gl,)
+g(ppAy + p"A) 8.2 = —1P + g Ky + gp" K, (7)

where Z, is the bed elevation, M = p,Au is the mass discharge, u is the layer-
averaged velocity, u,, is the velocity of layer A, 7, is the bed shear stress, P is the

wetted perimeter, p, = p(™) (1 + (s — 1)), s = p'9/p™) and I, I, K, and K,
are impulsion terms.
The equation of conservation of mass in the transport layer is

Oty + 0, (Hyw) = — (5% —T(1 - py)) ®)

where the conservative variable is H, = A,C}.

The equation of conservation of the bed is

(1 - pb)atAO = % - Az(l - pb) (9)

The system of equations (6), (7), (8) and (9) admits four unknowns, the
conservative variables A, M, H, and Ay. At each time step, the primitive variables
u, C, must be computed from the conservative ones.

Closure equations for hy, up, 7, C; and A are needed. They will be derived
in the next section within the same granular dynamics paradigm.

3 CLOSURE EQUATIONS

Numerical experiments are performed to derive the closure equations. A detailed
characterization of the two-dimensional (vertical) flow in the transport layer is
obtained by solving numerically the following set of ODEs

dY

= M(Y.2) (10)

where Y = [T(g) P9 49 o ¢ , 7w pw u;w)]T and

[ —pWvgsin(B) — fp |
(s —1)vg
1

57r1/2 T(9)
M(Y,z2) = 8 vp@0103ds 6172
ox/2 1 e
4 l/p(9>191’l94 d‘s@1/2
saiz (T9) 24 (1 _ plgw)) ()9, 8%
8 vp@)9105 dOL/2 _71'1/2( — el9v)) p D, &5 (11)
xl/2 149, ® sl v
3/2
4 9104 ( 148014412990 ) 4O S (1480, +429%0 )
dv dv
—p™) (1 —v) gsin(B) + fp

_plw

e
p() nz(lfu)l/zf(l/)

where (3 is the inclination of the channel, ¥, ¥5, 3, ¥4, go and f(v) are functions
of the solid fraction (details in Ferreira 2005, p. 246), el9") is the immersed
restitution coefficient (Ferreira 2005, p. 248), k is the Von Karman constant
and z is the vertical co-ordinate. It should be noted that the granular normal

stresses are isotropic, hence reduced to the granular pressure P9 and the mixture
behaves as an incompressible fluid. This is a direct consequence of the dense limit
approximation (details in Jenkins & Richman 1988, Ferreira 2005, pp. 231-238).

System (11) must be solved simultaneously, subjected to 9 boundary conditions
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Figure 3. Computed profiles of non-dimensional quantities in the
transport layer. Simulations 1, 2 and 3 correspond to, respectively,
0=1.74,0 =249 and ¢ = 3.07.

(details in Ferreira 2005, pp. 252-256). The results for plastic pellets with d =
0.003 m, s = 1.27 and coefficient of restitution e = 0.825 are shown in Figure 3.
Equations for hy, uy, 7 and @75, = (Qp — Q5)/A follow from the solution

shown in Figure 3. The existence of a frictional layer across which the shear
stress may vary allows for determining the mass flux between the bed and the
transport layer. The integration of the equation of conservation of momentum in
the vertical direction over the frictional layer renders (Ferreira (2005) p. 279)

@) (s — 1) tan
o (o) = o = Ll (g, gp) (12)
z)l2=2;

where Z; is the elevation of boundary between the frictional and collisional layers.
In equation (12) it is implicit that the equilibrium concentration is

Ci = Cru?/ (g(s — 1) tan (y) ) (13)
and the adaptation length is

us (prts)l s,

gpt™) (s — 1) (1 — py) tan ()
As seen in Figures 3¢ and 3d, the the modulus of the flux of the fluctuating
kinetic energy increases toward the bed and the granular temperature is never
zero. This means that fluctuating energy is constantly being extracted from the
mean flow and directed toward the bottom. As a consequence, the frictional sub-
layer cannot increase indefinitely. It is assumed that this layer has a thickness of
2d. The value of the concentration in p, and of (u,).—z , can be read in Figures

3b and 3a, respectively. An estimate for the velocity in the transport layer can
be obtained by fitting the profiles of Figure 3a:

A:

(14)

u(z)/u = (z/h)"° (15)
where h is the flow depth. The depth-averaged velocity becomes
up/w = (hy /)™ (16)
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Depth-averaging the equation of conservation of the fluctuating energy, Fer-
reira (2005), pp. 278-287, obtained and algebraic relation for the thickness of
the transport layer. Taking in account the values of the restitution coefficient
and the internal friction angle at the bed, the non-dimensional thickness of the
transport load layer appears to depend little on the type of sediment and may be

approximated by hy/d = 1.7+ 5.50 (17)

In rivers undergoing sheet-flow, flow resistance is only marginally influenced
by the particular shape of the stream bed, as alluvial bed forms are absent. The
micromechanical properties of the sediment and the interaction with the fluid, in
particular the energy dissipation in binary collisions and the interstitial viscous
dissipation, are the mechanisms to accommodate in the characterization of the
flow resistance. The results of Sumer et al. (1996) allow for the computation
of the friction factor. It was found that the bed shear stress can be adequately

described by 7, = p™)C;u? provided that the friction coefficient is
Cy = 0.02(h/d)" " (wy/u,) (18)

For practical purposes, the ratio u./ws, where wy is the fall velocity is considered
to be 2.

4 COMPUTATIONAL RESULTS

The important formative potential of dam-break flows implies that they transport
an extremely high sediment load over long distances. They generally feature
debris-like characteristics at the wave front and a stratified sheet-like flow behind
it. The overall quality of the model is thus tested in dam-break flows performed
in idealized conditions, namely, instantaneous rupture and cohesionless mobile
bed. Mathematically, it is a Riemann problem, a particular Cauchy problem.
Written in vector notation, the first order, non-homogeneous, hyperbolic sys-

tem of conservation laws (equations 6, 7 and 8) that describe geomorphic dam-
break flows is
9, (V(U)) + 9. (F (U)) = G (U) (19)

where V : Rx]0, +oo[ — R? is the vector of dependent conservative variables,
U : R? — R? is the vector of primitive variables, F : R* — R? is the flux vector,
G : R® — R? is the vector of the source terms and z and ¢ are the space and
time co-ordinates, respectively.

A validation test was perf}(])rmed by comparing the results of the model with
laboratory results performed at UCL, Louvain-la-Neuve, Belgium (details in Benoit
2005 pp. 56-56 and Ferreira et al. 2006). The sediment particles were PVC pel-
lets with s = 1.56 kg m~® and equivalent diameter d = 3.9 mm. The dimensions
of the particles exhibited little variability. The initial conditions, in terms of
hy,, the upstream water depth, Z;, , the upstream bed elevation, hg, the down-
stream water depth, Y}, the upstream elevation above the upstream bed level,

_ het|min(0,2,)| - Zy, . .
= Tnrmar(0Zn ) and 0 = Frrman(0Z) are shown in Table 1.
Table 1. Summary of the initial data for experimental tests.
hL Yo, hr YL o 19
Name (m) (m) (m) (m (o) (o)
35.00.00 0.35 0.00 0.00 0.35 0.000 0.000
35.10.00 0.25 0.10 0.00 0.35 0.000 0.286
35.10.10 0.25 0.10 0.10 0.35 0.286 0.286

Equation (19) was discretized with a first-order Godunov scheme with HLLC
Riemann solvers. The comparison between experimental and computational re-
sults is shown in Figure 4 where a general good agreement for the flow depth is
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found, especially for the flat bed case (test 35.00-00). Tests 35.10_00 and 35-10_10
show two different types of hydraulic jump that may occur in the a — ¢ plane
(Ferreira 2005, Ferreira et al. 2006). Due to the low downstream water depth in
test 351000, the jump is induced by the non-equilibrium transport and friction
(Capart & Young 1998). The the jump observed in 35-10_10 is independent of the
source terms in equation (19). A general poor agreement in the bed elevation is
found in the vicinity of the gate, due to un-acountable geotechnical slope failure.

35:400:00 35:+10:00 35:410:10

2/YL
z/YL
z/YL

1 -1 1

0 0
x/t/ YL @/t) JFYL x/t/o‘/yY‘L
Figure 4. Computed and measured of the flow profiles corresponding
to the tests identified in Table 1

In order to test the effects of the variability of channel configuration and the
influence, on the final solution of the parameters that govern lateral bank failure,
a test was performed with trapezoidal erodible banks. Initial conditions comprise:
Zyp, = 0.06 m, hy, = 0.21 m and hg = 0.0 m. The initial bed width is by = 0.15
m and the inverse bank slopes are m = 0.84, which corresponds to an initial
bank slope angle of 50°. This channel configuration mimics the experimental
tests presented by Le Grelle et al. (2003). The material of the bed and margins
is sand with d = 1.8 mm, s = 2.62, tan(yp,) = 0.4. For the sake of numerical
stability, the friction coefficient was C'y = 0.0067.

Numerical results are obtained with a conservative firs order flux difference
splitting discretization based on Euler’s method and Roe’s Riemann solvers (de-
tails in Ferreira 2005, pp. 465-479). The results are shown in Figure (5). Two
scenarios are shown, SimBel for which the critical bank slope is m,,. = 0.7 and
SimBe% fgcg))rgwhich Mg = 0.825. The equilibrium bank slope was, in both cases
Meq = 0.839.

0.35 t=16s 1.6 t=16s

e
W
=
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o
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0.10 . . . . 0.0 . Lo - 0.10
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Distance (m) Distance (m) Distance (m)
Figure 5. Longitudinal profiles of the flow depth, bed elevation and
thickness of the transport layer (left), layer-averaged velocity and ve-
locity in the transport layer (center) and channel width at the initial
bed elevation (right). X' = (z/t)/\/gYL. Darker line: m.r = 0.7. Lighter
line: m.r = 0.825
In scenario SimBel the critical value is attained infrequently but, when at-

tained, the lateral sediment input is large and the local morphologic impact is
significant. On the contrary, in SimBe2 the frequency of bank failure is high but
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the corresponding volume of sediment is relatively mild. In both scenarios the
total volume eroded from the banks is high and of the same order of magnitude;
it is the rate at which it is eroded that is controlled by the value of m... As
a result, the impact of the particular choice of m,, on the final solution is low.
The main difference is that the flow profiles corresponding to scenario SimBe2
are smoother that those of SimBel because the flow was not subjected to massive
bank avulsion events

5 CONCLUSION

The conceptual model presented in this paper is applicable to geomorphic strati-
fied flows featuring sediment transport at high shear stresses. The dense limit of
Chapman-Enskog’s kinetic theory is at the root of the 1D closure equations. This
means that the interaction between sediment and fluid phenomena is conceived
to occur, fundamentally, at the grain-scale.

The model was tested for internal consistency and compared with experi-
mental evidence. Dam-break flows were chosen as applications, for its ability to
generate stratified flows with high shear stresses. The computational results sug-
gest that the model assumptions, namely the emphasis on grain-scale phenomena
as the most relevant for developing closure models, may be valid for a wider range
of actual geomorphic flows.
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