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Resumo

Esta dissertação propõe um modelo para detecção de trilhos baseado na observação de que

estes são estruturas salientes no campo visual do robô. Devido à complexidade dos ambientes

naturais, uma aplicação directa dos modelos tradiconaisde saliência visual não é suficiente-

mente robusta para prever a localização dos trilhos. Tal como noutras tarefas de detecção, a

robustez pode ser aumentada através da modulação da computação da saliência com conhe-

cimento implicito acerca das caracterı́sticas visuais (e.g. cor) que permitem uma melhor repre-

sentação do objecto a encontrar. Esta dissertação propõe o uso da estrutura global do objecto,

sendo esta uma caracterı́stica mais estável e previsivel para o caso de trilhos naturais. Esta

nova componente de conhecimento implicito é especificada em termos de regras de percepção

activa, que controlam o comportamento de agentes simples que se comportam em conjunto

para computar o mapa de saliência da imagem de entrada. Parao propósito de acumulação de

informação histórica acerca da localização do trilhoé utilizado um campo neuronal dinâmico

com compensação de movimento. Resultados experimentaisnum conjunto de dados vasto reve-

lam a habilidade do modelo de produzir uma taxa de sucesso de91% a 20Hz. O modelo de-

monstra ser robusto em situações onde outros detectores falhariam, tal como quando o trilho não

emerge da parte de baixo da imagem, ou quando se encontra consideravelmente interrompido.
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Abstract

This dissertation proposes a model for trail detection thatbuilds upon the observation that

trails are salient structures in the robot’s visual field. Due to the complexity of natural environ-

ments, the straightforward application of bottom-up visual saliency models is not sufficiently

robust to predict the location of trails. As for other detection tasks, robustness can be increased

by modulating the saliency computation with top-down knowledge about which pixel-wise vi-

sual features (e.g., colour) are the most representative ofthe object being sought. This disserta-

tion proposes the use of the object’s overall layout instead, as it is a more stable and predictable

feature in the case of natural trails. This novel component of top-down knowledge is specified

in terms of perception-action rules, which control the behaviour of simple agents performing

as a swarm to compute the saliency map of the input image. For the purpose of multi-frame

evidence accumulation about the trail location, a motion compensated dynamic neural field is

used. Experimental results on a large data-set reveal the ability of the model to produce a suc-

cess rate of91% at 20Hz. The model shows to be robust in situations where previoustrail

detectors would fail, such as when the trail does not emerge from the lower part of the image or

when it is considerably interrupted.
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List of Symbols and Notations

Symbol Description

ROC Receiver Operating Characteristic

TPR True Positive Rate

FPR False Positive Rate

IOR Inhibition-Of-Return

N(.) original model normalisation operator [Itti et al., 1998]

W (.) normalisation operator proposed by [Frintrop, 2006]

K(.) proposed normalisation operator

M(X) global maximum of a given mapX

m(X) local maxima of a given mapX

I(t) input image

CC(t) colour conspicuity map

CI(t) intensity conspicuity map

S(t) saliency map

PC(t) pheromone map associated to the colour conspicuity map

PI(t) pheromone map associated to the intensity conspicuity map

F(t) dynamic neural field

H(t) perspective transformation homography matrix
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Symbol Description

Em set of agents

B set of agent behaviours

O set of possible motor actions

o(n) agent position at iterationn

a+(n) most voted motor action at iterationn

s score of an agent

fb(m, a, n) motor action evaluation function for stochastic behaviour
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Chapter 1

Introduction

Autonomous robotics has been, over the last 30 years, an increasing source of inspiration

for research and development. Ever since the first unmanned vehicles many efforts have been

made towards solving the problem of autonomous navigation,from complete autonomy in rural,

off-road, aggressive environments to driving assistance in urban scenarios.

In outdoor environments the exploitation of any sort of structure is essential for safe robot

navigation. An example is the ability to detect and follow trails, thus reducing the chances

of collision with obstacles, in addition to lowering the cognitive load associated to path and

trajectory planning.

On the account of path (roads and trails, paved or dirt) following, its importance is easy

to understand, for paths are usually deprived of obstacles,thus providing safe passageway for

both humans and vehicles. Besides the mentioned need to navigate through clear areas (i.e.,

with the least number of obstacles), trails in natural environments often offer some structure,

which can be exploited and used for navigation purposes. This dissertation contributes to this

line of research by proposing a computationally fast trail detector, with a good success rate, and

a good level of robustness, for outdoor environments.

Most of the challenges of trail detection relate to their lack of a well defined morphology

or appearance. This hampers a straightforward learning of trail models. In addition, they exist

in environments that are unstructured themselves. This in turn complicates the learning of
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background models. Moreover, the problem of supervising the learning process remains an

open issue. This is aggravated by the fact that trails changeover time, thus rendering hand-

labelling unsuited for the task at hand.

The majority of the models proposed in an attempt to solve thetrail detection problem

in mobile robots rely on hard assumptions concerning the shape of the trail and its surroun-

dings, their appearance, or the relative position of the robot. In this line of thought, a com-

mon solution is to assume that the robot is already inside thetrails’ boundaries and oriented

along it and take a sample patch of the area in front of the robot to build a colour model for

the trail [Fernandez and Price, 2005] or background [Rasmussen and Scott, 2008b]. Similarly,

there are some approaches that make use of 3-D information obtained from a LADAR to ascer-

tain the drivable area before building the model [Dahlkamp et al., 2006]. Although LADAR has

been widely used with success for robot navigation, namely in the DARPA Grand Challenges

[Cremean et al., 2006], [Urmson et al., 2006], [Thrun et al.,2006], for low cost service robots

operating in natural environments this is not the best approach. Besides the previous assump-

tion, other methods also consider that the trail is surrounded by vegetation and strong edges,

thus classifying areas mostly green as non-trail [Bartel etal., 2007] or using evolutionary algo-

rithms to explore the borderlines [Broggi and Cattani, 2006]. When considering natural trails

the mentioned assumptions might be too harsh, for these often appear somewhat homogeneous

with the surroundings, thus reducing the effectiveness of the referred approaches.

An alternative is to make use of traditional segmentation methods [Zhang and Nagel, 1994],

[Felzenszwalb and Huttenlocher, 2004], [Unser, 1995], [Jain and Farrokhnia, 1991] to discri-

minate the path in the visual field of the robot [Nabbe et al., 2006], [Kim et al., 2007]. The

segmented image can then be analysed by searching for clusters with geometric properties

identical to a trail [Blas et al., 2008], or by grouping segments according to its approximate

shape and performing tests on their appearance [Rasmussen and Scott, 2008a]. However, good

segmentation methods tend to be computationally intensive. Furthermore, natural trails usually

present themselves with great unpredictability in shape and appearance. Still, geometric con-

siderations can be used to generate trail hypotheses [Rasmussen et al., 2009], thus improving
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the efficiency but not solving all the problems that avert from natural environments.

A careful observation of natural images highlights the factthat trails are typically conspi-

cuous in the visual field of the robot, i.e., are structures that easily pop-out. This observation has

alerted to the possibility of using visual saliency as a means to focus the attention of an accurate

trail detector in an unbiased way, thus not imposing any hardconstraints on the appearance or

shape of both trail and background. Hence, this dissertation contributes to this line of research

by proposing a model-free solution for robust, reliable andcomputationally efficient trail detec-

tion in natural environments. Additionally, this dissertation extends considerably this concept

by recurring to the swarm-based collective behaviour metaphor and by exploiting evidence ac-

cumulation across frames for improved robustness.

1.1 Problem Statement

This dissertation covers the problem of vision-based traildetection for mobile robots. The

need to operate in unstructured environments in a sufficiently fast and robust way imposes two

main requirements:

R1 - The proposed solution must be model-free, thus avoiding thenecessity to rely on hard

assumptions on the appearance and morphology of the trail, which, in turn, allows it to be

used as a focus to guide a specialized detector. Such a solution also discards the need for

straightforward learning of trail models, which tend to become outdated. Furthermore,

not using given or learned models also results in increased robustness, necessary to deal

with the highly unpredictable characteristics of trails innatural environments.

R2 - The trail detector should be computationally efficient. It is also desirable that the model

lends itself to parallel implementation, thus allowing itsapplication in parallel emergent

and distributed systems.

21



1.2 Solution Prospect

This dissertation proposes the following solutions to comply with the specified require-

ments:

• The model makes use of visual saliency under the observationthat trails are typically

conspicuous in the visual field of the robot. However, saliency maps tend to be noisy

due to the ubiquity of distractors and the heterogeneity of trails and therefore additional

top-down knowledge on them is required. Hence, the trails’ overall layout is used in

order to deal with their lack of a well defined morphology and appearance, as it is a more

stable and predictable feature in natural environments. This approach does not impose

any hard constraints on the appearance or shape of both trailand surroundings. To isolate

the proposed model’s characteristics and more easily assess the major contributions, the

work presented is divided into two parts.

– In the first part, simple agents operating on the saliency maps generate trail skele-

ton hypotheses, whose behaviour embodies implicit generalknowledge about trails’

overall layout. Being simple, the agents are fast to computeand therefore compli-

ant with the requirement R2. This part of the work validates the positive correlation

between visual saliency and the trail location, as well as the application of the agent-

based method to trail detection.

– In the second part, the agent-based method is extended by allowing the agents to

perform as a swarm. Being self-organised, the agents’ collective exhibits accuracy

and robustness without hampering computation efficiency. Temporal evidence ac-

cumulating the trail location is exploited by recurring to afast to compute dynamic

neural field, further increasing the mentioned properties.
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1.3 Dissertation Outline

This dissertation is organised as follows:

Chapter 2 presents a brief overview of the state of the art in the context of trail detection;

Chapter 3 describes the first part of the work, a saliency-based model using simple agents to

explore the attention based maps for the detection of the trail;

Chapter 4 describes the second part, a swarm-based model for trail detection, extending the

previous one by allowing the agents to exhibit collective behaviour and accumulating evidence

across frames;

Chapter 5 draws some conclusions concerning the work presented, as well as possible future

improvements;

1.4 Further Readings

The work on trail detection using visual saliency and collective behaviour presented in this

dissertation has already been published:

[Santana et al., 2010a] Santana, P., Alves, N., Correia, L.,and Barata, J. (2010). A saliency-

based approach to boost trail detection.In Proc. of the 2010 IEEE Intl. Conf. on Robotics and

Automation(ICRA 2010), pages 1426-1431, May 3-8, 2010, Anchorage, Alaska.

[Santana et al., 2010b] Santana, P., Alves, N., Correia, L.,and Barata, J. (2010). Swarm-based

visual saliency for trail detection.To appear in Proc. of the 2010 IEEE Intl. Conf. on Intelligent

Robots and Systems(IROS 2010), Taipei, Taiwan.
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Chapter 2

State of the Art

This chapter surveys the state of the art in trail detection algorithms. Trails are usually safe

pathways and also free of dead-lock situations. A robot following a trail is thus able to traverse

large distances in off-road environments in an effortless,more secure way. On the one hand,

computation for obstacle detection and trajectory or path planning is saved, thus allowing the

allocation of resources to other tasks. On the other hand, fewer are the chances of getting lost or

incurring into collisions, therefore contributing to the preservation of the mechanical structure

and any payload the robot may be carrying. The importance of trail and road detection, suitable

for real-time application in all-terrain service robots, has promoted the research on this subject

over the past ten years. Several approaches have been proposed in this continuous search for

newer, faster and more robust detection techniques.

The most successful and interesting methods to solve the problem of trail detection are

presented next in this chapter.

Typical solutions often tend to rely on assumptions concerning the position of the robot

and general characteristics of the trails, like their appearance and structure. Some approaches

assume that the robot is already on the trail and oriented along it (Section 2.1), and make use

of this information to build a colour model of the trail or background, thus separating one from

the other. Besides this assumption, other approaches also assume that strong edges segment

the trail from its surroundings (Section 2.2). The process of finding the boundaries can be very
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diverse, while some techniques rely on the use of colour information, others go a little further

and recur to evolutionary, biologically inspired algorithms. However, these two assumptions

often fail to occur on realistic situations. An alternativeis to segment the image, group some of

the segments to build hypotheses, and then score these hypotheses against a model of the trail

(Section 2.3). Good segmentation techniques tend to be computationally intensive, thus rende-

ring the use of this method unsuitable for real-time applications. In an attempt to reduce this

computation time problem, and assuming a trail viewed underperspective is well approximated

by a triangular shape, hypotheses may be generated directly, and then scored using appearance

contrast between a trail hypothesis and its surrounding regions (Section 2.4).

The model presented in this dissertation differs from the previous approaches by making

use of visual attention techniques (Section 2.5). Due to thecomputationally intensive nature

of visual search algorithms, the ability to highlight features and places of interest in a context-

dependent way might prove useful. Although visual saliencymechanisms are not common in

trail detection, in other applications including attentional systems for humanoids and obstacle

detection for mobile robots several approaches have risen.

2.1 On-trail Approaches

When considering autonomous navigation for mobile robots,most of the time it is rea-

sonable to assume that the robot is already following a road or trail, and therefore inside its

boundaries and oriented along it. This assumption has givenbirth to a number of methods,

being most of them colour-based algorithms.

On the account of road detection, a method based on self-supervised learning has been

proposed by Dahlkamp et al. [Dahlkamp et al., 2006]. This model relies on a laser range finder

to scan for flat, drivable surface area in the vicinity of the vehicle, which is assumed to be road.

The colour information associated with this area is then used to construct appearance models

to classify the entire field of view of the camera. Additionally, GPS information is used to

guarantee that the robot is on the road and therefore the drivable surface identified by the laser

26



Figure 2.1: Trail detection using colour-based clusteringas proposed in
[Fernandez and Price, 2005]. Blue rectangles represent theculled segments. The deter-
mined trajectory is overlaid in white.

range finder is correct. In natural unstructured off-road environments, where paths commonly

appear as trails, thus being more narrow and unpredictable than roads and surrounded by dense

vegetation or trees, GPS information might not be so reliable.

The model proposed by Fernandez and Price [Fernandez and Price, 2005] relies on colour

vision for detection and tracking of poorly structured dirtroads in natural environments. The

prime assumption for this method is that road surface displays colour-space statistics different

from the surrounding regions. In this model, the task of roaddetecting and tracking is accom-

plished in three steps: characterisation of the road, clustering of road regions, and modelling

of its trajectory. For the first step, it is yet assumed that a small rectangle in the centre-bottom

of the image always contains a portion of the road, which willbe used to characterise it. Ana-

lysis of this region in a Hue, Saturation, Intensity (HSI) variant colour-space is the basis for

the creation of a colour-based filter, which is then used to find pixels that may belong to the

road area. The next step consists of aggregating these pixels into regions representing segments

of the road, by assuming it is generally presented in the image flowing from bottom to top.

This is accomplished by first dividing the image in horizontal slices, then performing a series

of region-growing segmentation operations using the slices as borderlines, and finally merging

and culling the segments, retaining only the largest segment per slice. In the third and final

step the centres of mass of the segments mentioned in the previous step are computed and used
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Figure 2.2: Trail detection using histogram colour classification as proposed in
[Rasmussen and Scott, 2008b]. Yellow lines delimit the reference areas. Pixels classified as
on-trail represented in green.

to determine the trajectory, by means of a spline curve usingthe weighted centres of mass as

control points, as depicted in Fig. 2.1.

Another approach based on similar assumptions, applied to unstructured trails in natural

environments, is the model proposed by Rasmussen and Scott [Rasmussen and Scott, 2008b].

In this method the terrain is first classified as flat, thick, orforested by analysis of aladar scan.

In the case of thick or forested terrain,ladar information alone is used to guide the robot by

finding the empty space between the vegetation. In flat terrain though, this is not sufficient for

selecting the region of the image corresponding to the trailand therefore an image-based trail

segmentation is performed. In this case, the first step of themethod consists of constructing a

3-D histogram corresponding to a colour model for the background, based on the RGB values

of the pixels contained in two narrow rectangular areas in the left and right sides of the image,

extending from its bottom to a horizon line. This backgroundmodel is then used to classify all

the pixels below the horizon line as on or off-trail. Finally, the reference left and right areas are

adapted according to an estimate of the trail width. An example of the result of this model for

flat terrain is shown in Fig. 2.2.

As mentioned, the above models work nicely in situations following the main assumption

that the robot is already on the trail and oriented along it. Another requirement for the success of
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these algorithms is that the trails present colour statistics that are different from the background.

Bearing this in mind, these algorithms are prone to fail in cases where: (1) variations that are

sufficient to cause the robot to lose track occur in the structure of the trail; (2) the robot is not

on nor aligned with the trail; and (3) the colour statistics of the trail and the background are

identical. Unpredictability in the structure, appearance, and orientation of natural trails makes

these situations of possible failure occur more frequentlythan expected, thus highlighting the

need for algorithms not sensitive to these factors.

2.2 Edge Detection based Approaches

Trails and roads often present visual cues that distinguishthem from the background. The

idea of exploring the characteristics of the road-scene hasgiven birth to a number of approaches

based on the detection of the boundaries of the trail or road,thus finding and classifying the

internal subsequent area as navigable. These methods are most commonly applied to well

structured roads and lanes, as can be found in urban environments.

Well known work in vision-based road following includes themodels proposed by Southall

and Taylor [Southall and Taylor, 2001], which consists of extracting the lane markings explo-

ring the contrast on colour images and then estimate the vehicle’s position using a particle filter,

and Apostoloff and Zelinsky [Apostoloff and Zelinsky, 2003], which relies on particle filtering

and cue fusion technologies to build a multiple-cue visual lane tracking system. Both methods

are designed to work on paved or painted roads with sharp edges. Conversely, Rasmussen

[Rasmussen, 2004] proposed a model for following ill-structured roads using the dominant tex-

ture orientations of every pixel in the image to estimate a vanishing point.

In rural and off-road areas, where roads appear with trail-like characteristics, i.e., narrow

and unstructured, this kind of approach is not so common but used in the work described below.

A visual method for outdoor trail localization relying on edge detection is proposed by

Bartel et al. [Bartel et al., 2007]. In this model the visual classification algorithm is processed

in three steps: trail border detection, object extraction and direction control. For detecting the
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Figure 2.3: Border extraction process, as proposed in [Bartel et al., 2007]. Processing steps,
from left to right, top to bottom, are: original image, greento black, gaussian blur, contrast
enhancement, thresholding and border extraction

trail border, it is assumed that most trails have grass or planted borders and therefore all green

pixels of the image are painted black. Next, a gaussian blur is applied, followed by a contrast

enhancement, thus revealing the pathway as the brightest area in the image. Finally, the image

is thresholded, separating the path from non-trail areas, and its edges are extracted by means

of a gradient filter. See Fig. 2.3 for an illustrative exampleof this process. In the second step,

an object extraction algorithm is used to select the biggestcontour surrounding smaller ones,

which allows the rejection of wrongly classified structureslying within the boundaries of the

trail. For the last step, the centre of the extracted boundaries on several horizontal lines is used

to generate a control signal.

An alternative to the above method is the use of simple agentsas proposed by Broggi and

Cattani [Broggi and Cattani, 2006]. The implemented algorithm is based on the Ant Colony

Optimization (ACO) [Dorigo and Stützle, 2004], which consists in a parallel meta-heuristic for

combinatorial optimization problem inspired by the foraging behaviour of biological ants. The

first step is to localize the optimal starting states, which are placed in peripheral areas where

a sufficient percentage of edges is present. By computing thevectorial euclidean distance be-

tween a RGB Normalized transformation over the input image and the temporal average of Red,

Green and Blue values of road pixels over all the images, and then applying a gradient operator,

30



Figure 2.4: Evolutionary approach to path detection proposed in [Broggi and Cattani, 2006].
Top row presents the original images with the agents’ paths overlaid. Middle row shows only
the ants’ paths, for clearer visualization. Bottom row reveals the path detection results.

a monochromatic edge image is obtained. This represents theonly a priori information given

to the agents. The obtained image is then used to define the local heuristic function, under the

rule that the attractiveness of a pixel is proportional to the brightness of its correspondent in the

edge image, and the cost function, under the rule that the cost of movement towards a pixel is

inversely proportional to the brightness of its correspondent in the edge image. Next, the de-

ployed agents move according to their random-proportionaland pseudo-random-proportional

rules, with edge-exploitation and pheromone-exploitation behaviours, and random movement

polarized by a point of attraction. Agents are divided in subsets with different parameters

for the moving rules, meaning that as the execution proceedsthey become more sensitive to

pheromone, and less to heuristics. When every agent of a subset has reached the final pixels

the pheromone trails are updated according to an evaporation ratio and the ants contributions,

in order to enhance paths formed by bright pixels and recurrently visited. To extract the final

solution a single agent is created in each colony, which movepixel by pixel attracted only to

pheromone until a final pixel is reached, thus building a representation for the road boundaries.
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The agents paths and detection results can be seen in Fig. 2.4.

These models work nicely in well delimited trails surrounded by dense vegetation or side-

walk, and in roads with lanes well demarcated from the background. In situations where the

trail is somewhat mixed with its surroundings, like most often occurs in natural off-road envi-

ronments, edge detection may become a difficult task, therefore making these kind of algorithms

achieve a low success rate.

2.3 Segmentation-based Approaches

Finding the edges of a road in order to segment it from the background might be a difficult

challenge in natural terrain. In this line of thought, otherapproaches based on image segmen-

tation techniques have emerged. These methods should be accurate enough to allow distinction

between background and trail. Therefore, the detection algorithm focuses on selecting the seg-

ment or group of segments that best fit a trail model.

The work proposed by Soquet et al. [Soquet et al., 2007] makesuse of stereovision to es-

timate free space in the image, and then applies colour segmentation to extract road segments.

Anisotropic texture features of roads are explored by Zhangand Nagel [Zhang and Nagel, 1994]

for the segmentation purpose. These algorithms focus in paved and fairly structured roads,

which possess characteristics not present in natural trails like hiking and biking paths.

In this context, Rasmussen and Scott [Rasmussen and Scott, 2008a] proposed a model for

the trail detection problem. In this method it is assumed that there is only one trail region, and

that it follows the shape of a triangle with its base aligned with the bottom edge of the image.

The detection algorithm begins by generating a set of trail hypotheses based on the grouping

of superpixels generated by an over-segmentation algorithm. These hypotheses are then scored

according to several shape and appearance criteria, and finally the one with the highest score

is picked as the representation of the trail region. An iterative, agglomerative process is used

to generate the hypotheses. First, a pixel is selected randomly from the bottom of the image

and used as the seed. Each iteration of the agglomeration process consists of adding a new
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Figure 2.5: Superpixel segmentation based trail detectionas proposed in
[Rasmussen and Scott, 2008a]. Top row represents the input images. Bottom row shows
the output of the detector, overlaid in the input image. Red delimits segments obtained from
the segmentation process. The best-scoring grouping is represented in green, and the respective
fitted triangle in blue.

member to the superpixel grouping, chosen from its set of neighbours and with probability

given by the Euclidean distance in RGB space between the neighbouring superpixel and the

current group. The appearance variation and the overall size of the agglomeration are used to

determine the final number of superpixels in it. To assess thetrail likelihood of each hypothesis,

the grouping is scored using a triangle as the trail shape template and according to three terms:

shape, appearance, and deformation. This is done similarlyto the work of Sclaroff and Liu

[Sclaroff and Liu, 2001], which uses a deformable model to guide the grouping of regions in

search for relatively simple shapes like bananas and streetsigns in fairly uncluttered images.

The first term, shape likelihood, consists in approximatingthe grouping with a triangle fitted

with its highest, leftmost and rightmost points, and then measuring the similarity between both

shapes. The second, appearance likelihood, measures the difference in appearance between

a grouping and its neighbouring superpixels, and the variation within. Lastly, deformation

likelihood measures how different the approximated triangle is from a learned model of the

trail. The triangle fitted to the best-scoring grouping is propagated to the next frame, and used

to evaluate the appearance likelihoods of the newly generated hypotheses. Fig. 2.5 presents

some illustrative results of the detector.
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Figure 2.6: Segmentation algorithm for path detection as proposed in [Blas et al., 2008]. Top-
left shows the input image. Top-right represents the assignment of each pixel to a texton.
Bottom-left is the final segmentation, and recognized path is shown in bottom-right.

Another segmentation based method applied to trail detection is the one proposed by Blas et

al. [Blas et al., 2008]. This appearance-based segmentation algorithm makes use of colour and

texture in conjunction with 3-D information provided by a stereo camera. For colour and texture

representation compact descriptors composed by the colourinformation of the centre pixel and

the relative change in intensity in a local neighbourhood are used. The computed descriptors are

grouped using a k-means algorithm [Jain and Dubes, 1988], [Duda and Hart, 1973]. Alternative

clustering methods include graph-cut-based approaches [Martin et al., 2004], Self-Organizing

Maps [Martin-Herrero et al., 2004], or level-sets [Liapis et al., 2004]. The grouped descriptors

are then assigned to basis vectors, i.e., textons [Leung andMalik, 2001], which are vocabularies

for tiny surface patches with associated local geometric and photometric properties. Histograms

of these textons are clustered again using k-means to find similar regions in the image, which are

merged to provide the final segmentation. The segmented image contains only a small number

of regions, which are then analysed in search for the ones presenting geometric attributes more

similar to a path. These steps can be visualized in Fig. 2.6.
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Although a good segmentation of the terrain may provide a valuable assistance in trail

detection, contemporary models for robust image segmentation and subsequent grouping are

computationally intensive and consequently unsuitable for real-time requirements. Moreover,

grouping tends to fail in the presence of interrupted trails.

2.4 Contrast-based Approaches

In a study parallel to the one presented in this dissertation, and extending the superpixel

model described in the previous section, Rasmussen et al. [Rasmussen et al., 2009] proposes

the use of appearance contrast for trail detection. The mainidea behind this method is to look

for a triangular region which contrasts with the surroundings. The basic framework for trail

finding is to generate trail hypotheses and score each of themwith a likelihood function, assum-

ing that a trail viewed under perspective may be associated with a triangle shape starting from

the bottom of the image. Trail hypotheses are generated froma learned distribution of expected

trail width and curvature variation. For each hypothesis, two additional triangles are defined

in its left and right neighbouring regions. Histograms of k-means cluster labels in a CIE-Lab

colour space are computed for the three triangles. The traillikelihood is captured by measuring

the dissimilarity between the trail region and the surrounding ones, as well as the symmetry

of the flanking regions, and the highest scored hypothesis ischosen for trail representation, as

can be seen in Fig. 2.7. Several alternatives to measure similarity between image regions in-

clude colour and texture histogram measures such as Bhattacharyya orχ2 [Dunlop et al., 2007],

[Varma and Zisserman, 2005], brightness in grayscale images [Ren and Malik, 2003], Euclide-

an colour distance [Martin et al., 2004], and the Earth Mover’s Distance [Mori, 2005].

In the referred method it is assumed that trails are imaged asperfect triangles and both their

left and right sides share the same appearance. Although these assumptions comply with a large

set of situations, natural trails not always possess these properties. Additionally, the extensive

use of 3-D information to bias the detection process in the model complicates the assessment of

the role played by the appearance-based component in the results.
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Figure 2.7: Appearance contrast method for trail detectionas proposed in
[Rasmussen et al., 2009]. The outputs of the detector are depicted as coloured triangles
overlayed in the input image.

2.5 Visual Attention Models for Autonomous Robots

Cognitively rich robots make use of visual perception for interaction with humans and their

surroundings in a context-dependent way. For this purpose,the ability to highlight features

that have a high probability of being relevant, thus allowing the system to filter unimportant

information, is a great advantage.

Vision-based attentional systems for humanoid robots havebeen proposed by Moren et al.

[Moren et al., 2008] and Ruesch et al. [Ruesch et al., 2008]. Both models make use of visual

saliency to control the gaze of a humanoid head. In the first, specific features of the objects

being sought according to a task are used to apply top-down modulation to bottom-up saliency

maps. This results in an increase of the saliency of these features, thus highlighting objects in

context-dependent way. The second model integrates multi-modal saliency information (visual

and auditory) into a unified spacial representation. The points with the highest overall saliency

value are the ones considered interesting and used to focus the attention of the robot.

Visual attention mechanisms have also been applied to mobile robotics with the purpose

of reducing the computational cost in expensive tasks like object detection and characterisa-

tion. Concerning vision-based navigation for all-terrainground robots, visual saliency has been

used for successful guidance of an obstacle detector by Santana et al. [Santana et al., 2009],

[Santana et al., 2010c]. In these models, visual saliency isused to focus the attention of the

detector by selecting areas of the image corresponding to regions that contain obstacles, thus

narrowing the analysed data, which results in reduced computation times and lower sensitivity
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to noise. Although these models make use of visual saliency in the robot navigation context,

this dissertation reports its first time application to the task of trail detection.

A different attentional mechanism is proposed by Hong et al.[Hong et al., 2002] to focus

a colour-based detector of puddles and road signs. This model makes use of laser and colour

information to build a world model. The data gathered is thenused to predict which regions of

future images should be analysed.

Since it is rather common the use of saliency for other tasks in cognitively rich robots, the

overhead of its computation is diluted over all modules using it. Bearing this in mind, the use of

a bottom-up saliency mechanism to guide the focus of selective attention in context-dependent

tasks, like object or trail detection, is by itself a means ofdecreasing computation time and

therefore an important process for real-time applications. However, in unstructured off-road

environments, although bottom-up attention provides a means for constraining the focus of

attention, a top-down mechanism is needed in order to find andkeep the correct focus of interest

on the object being sought (obstacles, trails) in spite of unrelated salient features.

Specifically in the trail detection problem, although visual saliency can be used as a means to

segment the input image by determining which regions of the visual field detach more from the

background, the saliency maps generated may not be accurateenough to allow an immediate and

correct detection, namely in the presence of distractors orwhen the trail is considerably hetero-

geneous. A method for diminishing this problem is to use top-down boosting of visual features

that are known to describe the object being sought. However,these features are considerably

unpredictable in the case of trails in natural environments. To overcome these difficulties this

dissertation proposes a novel use of top-down knowledge in the form of behaviours ruling the

motion of simple agents inhabiting the saliency and its intermediate conspicuity maps.
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Chapter 3

A Saliency-Based Approach to Boost Trail

Detection

This chapter presents a saliency-based solution to boost trail detection. A careful observa-

tion of natural images highlights the fact that trails are structures that easily pop-out. Bearing

this some quantitative support, and visual saliency could then be applied to focus the attention

of an accurate trail detector in an unbiased way. Experimental results herein presented support

this assumption and furthermore show that, with proper analysis, saliency information alone

provides enough cues to reduce the ambiguity regarding bothtrail’s position and approximate

skeleton to three hypotheses, in the vast and diverse used dataset. This analysis is performed by

a set of agents inhabiting the saliency and feature specific intermediate maps. These agents’ be-

haviours exploit implicit, top-down knowledge about the object being sought in an active way.

With the proposed model, computationally demanding accurate trail detectors are able to focus

their activity to a fraction of the input image, thus promoting robustness and real-time perfor-

mance. Notably, this robustness is revealed with the model’s ability to detect what we humans

would select as the most navigable area, in images where trails are almost indistinguishable or

not even present. See Fig. 3.1 for some representative examples.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.1: Input images (above) and respective saliency maps (below), where saliency is repre-
sented in grey level. These maps are the superposition of twoconspicuity maps, one for colour
and another for intensity channels. Each of these maps is searched for trails by agents (see
Section 3.2), whose paths are described by the overlaid lines. Thicker lines refer to the most
probable trail candidate, which appears in the input image in red. The best agent found on the
intensity and colour conspicuity maps is represented in blue and green, respectively.
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3.1 Saliency Computation

Saliency computation is about determining which regions ofthe input image are more cons-

picuous, i.e. detach from the background, at several scalesand feature channels. In this model

only intensity and colour channels are used, and saliency iscomputed according to the biolo-

gically inspired model proposed by Itti et al. [Itti et al., 1998], properly adapted to the task at

hand.

Shortly, one dyadic Gaussian pyramid, with eight levels, iscomputed from the intensity

channel. Two additional pyramids, also with eight levels, are computed to account for the Red-

Green and Blue-Yellow double-opponency colour feature channels. The various scales are then

used to perform centre-surround operations [Itti et al., 1998]. The resulting centre-surround

maps have higher intensity on those pixels whose corresponding feature differs the most from

their surroundings. An example is a dark patch on a bright background (off-on), as well as the

other way around (on-off). On-off centre-surround operations are performed by across-scale

point-by-point subtraction, between a level with a fine scale and a level with a coarser one. Off-

on maps are computed the other way around, i.e. subtracting the coarser level from the finer one.

Rather than considering the modulo of the difference, as in the original model [Itti et al., 1998],

both on-off and off-on centre-surround maps are consideredseparately, which has been shown

to yield better results [Frintrop et al., 2005, Frintrop, 2006]. Then, the centre-surround maps are

blended to produce two conspicuity mapsCC(t) ∈ [0, 1] andCI(t) ∈ [0, 1], one aggregating

colour and another aggregating intensity information, respectively. Finally, these two maps are

blended in a final saliency mapS(t) ∈ [0, 1] [Itti et al., 1998].

When blending maps, the most discriminant ones, i.e. those that highlight a smaller number

of objects, are typically promoted by recurring to a normalisation operator. In the original model

[Itti et al., 1998], this is done by scaling a given mapX according to the normalisation operator

N(.). This operator is defined by the square of the difference between its global maximum,
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M(X), and the average of all its other local maxima,m̄(X), i.e.

N(X) = X · (M(X)− m̄(X))2 (3.1)

A similar normalisation operator has been proposed by Frintrop et al. [Frintrop et al., 2005,

Frintrop, 2006]. In this case, the uniqueness operator,

W (X) = X/
√

m(X) (3.2)

scales the mapX according to the number of its local maxima above a given threshold,m(X).

In this work the threshold is set to its default value, i.e.50% of the map’s global maximum

[Frintrop, 2006]. This method allows, among other things, to account for the proportion of

objects competing for attention when determining their saliency.

Common to both methods is the use of local maxima information, which though appealing

not always embodies the information intended to capture. Large homogeneous structures for

instance, such as the sky, generally encompass only a few local maxima. In this situation,

the sky would be undesirably considered highly conspicuous, despite its large foot-print in

the whole image. A second aspect is that the two analysed saliency models consider that all

pixels contribute equally to the saliency computation. However, excepting for extreme tilt/roll

angles, the upper region of the image has little relevant information for trail detection. As a

consequence, without a space-variant contribution to the final saliency map, feature maps that

are only discriminative in the lower part of the image, and consequently interesting for trail

detection, would not be adequately promoted.

In face of these limitations a new normalisation operator isherein proposed. Rather than

considering only the map’s local maxima when averaging, as it is done inN(.), it is proposed to

use all pixels. Furthermore, the contribution of each pixelto the average is weighted according

to its distance from the top row. Formally, letInt(X, c, r) return the intensity of the pixel in
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columnc and rowr of a given mapX, with heighth(X). Let

w(X, c, r) =
√

r/h(X) (3.3)

be the weight of pixel at position(c, r). The map’s weighted average,mw, is thus given by

mw(X) =

∑

(c,r)∈X Int(X, c, r) · w(X, c, r)
∑

(c,r)∈X w(X, c, r)
(3.4)

and similarly to the operatorN(.), the proposed normalising operator,K(.), takes the form

K(X) = X · (M(X)−mw(X))2 (3.5)

To reduce computational cost, the proposed system uses image operators over 8-bit images,

whose magnitude is clamped to[0, 255] by thresholding. In addition, prior to normalisation,

maps are scaled to cover the interval[0, 255], meaning thatM(X) = 255 for all cases.

The Receiver Operating Characteristic (ROC) curves depicted in Fig. 3.2 show that, for the

tested dataset (see Appendix A, Figs. A.1-A.6), the proposed procedure produces consistently

a better trade-off between the True Positive Rate (TPR) and False Positive Rate (FPR) than

the other two methods. The small difference between the ROC curves could suggest that only a

small quantitative improvement was obtained with the proposed model. However, the averaging

procedure used to build the curves hide the fact that none of the other methods was able to

consistently allocate higher levels of saliency to trail regions than to the background as often as

the proposed one.

Fig. 3.2 also shows that saliency is considerably correlated with trail location, which is an

important contribution by itself. This correlation can also be observed for typical images in

Fig. 3.1. However, it is still lower that the one required foraccurate trail detection. That is,

there is no single threshold on the saliency map that clearlysegments the trail for all images in

the dataset. It is thus important to devise a mechanism able to overcome this limitation. As it

will be shown in the next section, an agent-based design is the adequate tool for the purpose.
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Figure 3.2: Normalisation operators comparison. Each plotis the average ROC curve over all
images in the dataset, for a given normalisation operator. ROC curves were built by threshold-
ing the final saliency map and comparing the resulting binarised image against the hand-labelled
ground-truth of the dataset. All operators result in curvesabove the line of no-discrimination,
y = x, thus showing the positive correlation between visual saliency and trail presence. More-
over, the higher area under the curve for the proposed model,K(.), demonstrates that it is the
most adequate for the task at hand.
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3.2 Trail Detection Agents

Rather than considering image analysis as information processing, this work follows the idea

of considering it as the result of a sensori-motor coordination process. Under this paradigm, the

agent-based approach to image analysis, in particular for object recognition, is showing promi-

sing results [Floreano et al., 2004, Owechko and Medasani, 2005, de Croon and Postma, 2007,

Choe et al., 2008]. This success story can be in part understood by the fact that agents realise

active vision local loops, and thus exploiting all the knownadvantages of considering perception

as an active process [Ballard, 1991]. Being this work in linewith this novel way of develo-

ping robust perceptual systems, its potential success contributes to the body of evidence on the

relevance of an agent-based design for perceptual systems.

In a context different from the one considered in this dissertation, i.e. road detection, the

agent-based design has already and successfully been used [Broggi and Cattani, 2006]. Des-

pite the fact that the work herein proposed focuses on trailsinstead of roads, some additional

differences between this model and the one of Broggi & Cattani [Broggi and Cattani, 2006] can

be observed. As it will be described, in this method agents inhabit conspicuity and saliency

maps, rather than the image space itself. The focus is set on the structure being sought, i.e. the

trail, and not on its boundaries. In addition, the hard assumption that the robot is on the trail or

road is herein disregarded.

The system is composed of a set of agents,Em, deployed in each conspicuity and saliency

mapm ∈ {CC(t),CI(t),S(t)}, with widthw(m) = 320 and heighth(m) = 240. Each agent

moves on one of these maps, according to a set of rules, in an attempt of following a given trail

hypothesis.

3.2.1 Agent Recruitment

Let us first describe how agents are deployed in the three maps, which occurs according

to the maps intensity level, i.e. the level of conspicuity orsaliency, depending on the map in

question. In order to avoid any noise potentially present atthe map’s boundaries, agents are
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deployed with a small offset of the bottom of the map in question, i.e. at rowr = h− 15, where

h is the height of the maps.

To determine the column where each agent is deployed, the unidimensional vector

vm = (vm0 , . . . , v
m
w ) (3.6)

is first computed, wherew is the width of the maps. The elementvmk of vm refers to the average

intensity of the pixels in columnk, contained between rowr and rowr − δ, whereδ = 10 to

avoid deploying agents in columns with spurious high intensity pixels. Formally,

vmk =
∑

l∈[r,r−δ]

m(k, l)/δ (3.7)

wherem(k, l) is the intensity or saliency level, depending on the map in question, at pixel in

columnk and rowl.

Finally, the agente ∈ Em is deployed in column

c(e) = argmax
k

vmk (3.8)

thus compelling it to be initiated in the most salient region, according tovm.

To analyse the second most salient region, an Inhibition-Of-Return (IOR) mechanism is

used. This is implemented by zeroing the elements ofvm that are connected tovmc(e) through

elements with values similar to it. This agent deployment sequence is repeated until one of the

following holds: (1) a maximum number of agents,zmax, has been deployed in the map or (2)

the current highest value ofvm, max(vm), is below a fractionη of its initial value, i.e. before

the first agent was deployed. In this workη = 0.7, which avoids the deployment of agents

in low intensity (conspicuous/salient) regions. An illustration of the recruitment procedure is

presented in Fig. 3.3.
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(a) Agent1 (b) Agent2

(c) Agent3

Figure 3.3: Agent deployment process. Illustrative example for 3 agents deployed in a map. (a)
The first agent,e1, is deployed in the region of the map with the highest intensity (conspicu-
ity/saliency level), according to the vectorvm. (b) Inhibition-Of-Return (IOR) is applied tovm,
and the second agent,e2, is deployed in the next highest intensity region. (c) Same procedure
for the third agent,e3. IOR is applied ande3 is deployed. The dotted lines represent the agents
motions since their onset (square),o(0), until the current iteration (circle),o(n), embedding the
behaviours described in Section 3.2.2. The map depicted is hand-made and purely illustrative.
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3.2.2 Agent Behaviours

Let us now describe the behaviour of each deployed agent. Forsimplicity, agents and maps

indexes will be discarded in the remainder of this section. That is to say that the following

applies to a single agente allocated to a specific mapm.

The setO = {1, 2, 3, 4, 5} defines agent motor actions in terms of an index to the nearest

neighbour pixels whereto the agent can move from its currentposition,o(n), at iterationn (see

Fig. 3.4). To reduce both sensitivity to noise and computational cost, the agent’s surroundings

are segmented into regionsR1 . . . R5 (see Fig. 3.4). The average intensity of a region containing

pixel p is given byA(p). For instance, bothA(1) andA(6) correspond to the average intensity

of the pixels contained within regionR1, as this region is composed of pixels 1, 6 and 11. Thus,

regions are indirectly indexed by their encompassed pixels. The straight intensity of a pixelp is

simply given byInt(p).

Figure 3.4: Agent neighbourhood relative pixel indexes. Numbers correspond to the pixels’
index relative to the current position of the agent,o(n). Regions surroundingo(n) are segmented
in R1 = {1, 6, 11}, R2 = {2, 7}, R3 = {3, 8}, R4 = {4, 9}, R5 = {5, 10, 12}.

To account for top-down knowledge on the structure of the object being sought, a set of five

perception-action rules, i.e. behaviours,

B = {greedy, track, centre, ahead, commit} (3.9)

vote for each possible action,a ∈ O, according to the behaviour-based voting command fusion

approach [Rosenblatt, 1997]. The most voted action,a+(n), is selected by the agent as the next
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motion, which is then used to update its position,o(n),

ȯ(n) = Γ
(

a+(n)
)

, a+(n) = argmax
a∈O

∑

b∈B

wb · fb(m, a, n) (3.10)

whereΓ(.) transforms a motor action,a ∈ O, onto pixel coordinates centred on the current

agent’s position,wb is the weight accounting for the contribution of behaviourb ∈ B, described

by the evaluation functionfb(m, a, n) as follows,

ftrack(a, n) = 1−

∣

∣

∣
A(a)−

∑

q∈Q
q

n−1

∣

∣

∣

255
(3.11)

fahead(a, n) = 1−
|3− a|

2
(3.12)

fcommit(a, n) = 1−
|a+(n− 1)− a|

4
(3.13)

fcentre(a, n) =

∣

∣

∣

∣

∣

dx(n) ·

(

6 · H
(

−dx(n)
)

− a

5

)
∣

∣

∣

∣

∣

(3.14)

fgreedy(a, n) =
A(a)

255
(3.15)

whered(n) is computed as described in Fig. 3.5(a) andH(.) is the Heaviside function.Q is a set

whose elements are scalars with the intensity of the pixels crossed by the agent along its path.

Formally, Int
(

o(n)
)

, is inserted toQ as follows,Q(n) ← Q(n − 1)
⋃

{Int
(

o(n)
)

}. Refer

to Table 3.1 for further details on each behaviour and Fig. 3.1 for examples of agent typical

motions. The best performance has been empirically obtained with the following trade-off,

wgreedy = 0.45, wtrack = 0.35, wcentre = 0.10, wahead = 0.05, wcommit = 0.05.

The agent is allowed to move until one of the following stopping conditions is met: (1)

a maximum number ofα1 iterations is performed; (2) the agent reaches rowα2 (row zero at

image’s top); (3) the average intensity of regionsR1 . . . R5 is below a given proportionβ < 1

of the average intensity of the pixels visited by the agent.

β ·
∑

q∈Q

q

n− 1
>

5
∑

j=1

A(j)

5
(3.16)
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Behaviour Voting Preferences

greedy Regions of highest intensity, under the assumption that trails are the most
salient structures in the map. See Fig. 3.5 (a) for an illustration of this process.

track Regions whose average intensity is more similar to the average intensity of
the pixels visited by the agent, under the assumption that trails’ conspicuity is
somewhat homogeneous. See Fig. 3.5 (b) for an illustration of this process.

centre Regions closer to the centroid,x(n), of the set of pixels,S(n), that: (1) share
the row witho(n); (2) display intensities similar (i.e. within a given margin
γ) to the one ofo(n); and (3) are connected too(n) through a set of pixels
complying with the first two conditions. The goal is to maintain the agent
equidistant to the trail’s boundaries, where the deviationto the centroid is
given bydx(n) =

c(o(n))−c(x(n))
D(n)

with D(n) = |S(n)|. Remember thatc(p) re-
turns the column of pixelp. See Fig. 3.5 (c) for an illustration of this process.

ahead Upwards regions under the assumption that trails appear as vertical elongated
structures. See Fig. 3.5 (d) for an illustration of this process.

commit Previously selected region, to reduce sensibility to localnoise, under the as-
sumption that trails’ outline is somewhat monotonous. See Fig. 3.5 (e) for an
illustration of this process.

Table 3.1: Behaviours ruling the trail detection agents. Illustrations of each behaviour are shown
in Fig. 3.5.
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(a) greedy (b) track

(c) centre (d) ahead

(e) commit

Figure 3.5: Behaviours ruling the trail detection agents. The dotted lines represent the agents
motions since their onset (square),o(0), until the current iteration (circle),o(n). The map
depicted is hand-made and purely illustrative. (a) Greedy behaviour. The agent will follow
higher intensity regions. (b) Track behaviour. The agent will prefer regions similar to the ones
already visited by it. (c) Centre Behaviour. The pixels composing the thicker horizontal line
define the setS(n). The agent will try to approach this line’s centroidx(n), represented by the
white square, which is deviated from the current agent’s position, o(n), by |dx(n)| pixels. (d)
Ahead behaviour. The agent will prioritize upwards regions. (e) Commit behaviour. The agent
will follow the previously selected region.
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where,α1 = 50, α2 = 160, andβ = 0.7 are empirically defined scalars.

The set of agents deployed in a given map must be ranked in order to select the one that

better represents the trail. Consequently, as soon as one ofthe previously mentioned stopping

conditions is met, the score of the agent is computed,

s =
n
∑

i=0

µ1D
′(i)− µ2D

′′(i)

n
+ (3.17)

∑

q∈Q

µ3q

n− 1
+ µ4d

(

o(n), o(0)
)

whereµ1 = 0.01, µ2 = 0.01, µ3 = 0.5, µ4 = 0.5 are empirically defined scalars and

d(o(n), o(0)) is the Euclidean distance between the two points. The first parcel of the score

function accumulates the first,D′, and second,D′′, derivatives ofD along the agent’s path.

This parcel favours paths whereD progressively shrinks towards a vanishing point. The se-

cond parcel promotes agents whose path contains highly salient pixels. Finally, the third parcel

disfavours short paths.

3.3 Experimental Results

This section presents a set of experimental results obtained with a dataset composed of50

colour images, with resolution640 × 480, obtained from Google (see Appendix A, Figs. A.1-

A.6). The dataset only encompasses images obtained with cameras roughly located at the eyes

height, and thus providing a vantage point that would be plausible for a medium-size robot.

The trail detector has been implemented without thorough code optimisation, and tested in a

Centrino Dual Core2GHz, running Linux, and OpenCV for computer vision low-level routines.

Since the output generated by the trail detector is the set ofthe agents’ paths, and not the

trail’s outline, it is difficult to find a way of comparing the results against some sort of ground

truth. The following describes the assumptions taken to assess whether a given agent has been

able to represent the trail. Trails are considered correctly detected if the agent is deployed inside
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the trail and finishes its run also inside, or very close to, the trail. In addition, curves and zigzags

described by the agent are considered valid as long as they also stay inside the trail, or very close

to its borders.

Table 3.2 summarises the results obtained as a function of the maximum number of allowed

agents per mapzmax ∈ {1, 3, 5, 7}. In a first analysis, success rate is calculated per map. This

allows to determine the proneness of each map alone to provide enough cues for its highest

score agent to properly represent the trail. In a second combined analysis, success is obtained

when at least one of three map’s best agent, succeeds. In thiscase, the ambiguity regarding both

trail’s position and approximate skeleton is of up to three hypotheses, i.e. one per map, in98%

of the tested images. This clearly shows that the proposed method accurately focus agents on

the most promising regions of the image.

The obtained results also confirm the positive correlation between saliency and the presence

of trails (see Fig. 3.2). Would this correlation be nonexistent and the trail detection results would

be linearly affected by the number of agents. Instead, with asingle agent per map, the trails in

90% of the images were properly detected, whereas an increment of only 6% is observed if two

additional agents per map are deployed. An even smaller differential is obtained when we go

from three to five agents, namely2%. Adding more agents reflects in a null gain.

Figs. A.7, A.8 show the trail of the best agent per map in the images composing the dataset.

These images are very diverse and in some cases no trail can befound altogether, not even

by the human eye. The system still produces a correct answer,that is, selects the open region

through which the robot would be able to traverse. This is a sign of generalisation capability,

which was only possible due to the use of a non-specific detector, as it is the case of saliency.

Hence, even in the most difficult situations, saliency and conspicuity maps were able to

maintain a globally coherent description of the environment. However, the existence of local

intensity variations requires the system to have a considerable level of robustness in order to be

unaffected by those local artifacts. The agent-based approach showed to be that robust, mostly

due to the fusion of several behaviours. Moreover, being a purely bottom-up and feed-forward

approach, the method is exceptionally fast, taking an average of1ms per map. This includes
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Nr. of Agents Colour Map Intensity Map Saliency Map Combined

zmax = 1 44% 64% 74% 90%

zmax = 3 54% 78% 82% 96%

zmax = 5 58% 80% 82% 98%

zmax = 7 58% 80% 82% 98%

Table 3.2: Trail detection results.

finding all the potential trails, finding their length, and choosing the correct one. An additional

cost must be considered, which refers to the computation of the three maps, which takes on

average30ms. These maps have two remarkable embedded properties: (1)they segment the

input image in a very efficient way, and (2) they naturally prioritise the segments according to

their conspicuity.
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Chapter 4

Swarm-Based Visual Saliency for Trail

Detection

In the previous chapter was shown that the saliency map of a given image corresponds

itself to an efficiently computed segmentation of the latter. That is, the segmentation of the

input image, which can be a computationally intensive task,can be obtained as a by-product of

determining which regions of the visual field detach more from the background. Furthermore,

the obtained segments are already prioritised by their conspicuity level. It was also shown that

visual saliency and trail location in the input image are positively correlated.

From these findings it should follow that the highest priority segment in the saliency map

matches the location of the trail in the input image. In practise, this is a brittle assumption in

the face of not so well behaved saliency maps, which may occurin the presence of distractors

or when the trail is considerably heterogeneous. This difficulty can be diminished with top-

down boosting of visual features (e.g., colour) that are known to describe the object being

sought [Frintrop et al., 2005, Navalpakkam and Itti, 2005].However, these visual features are

considerably unpredictable in the case of trails in naturalenvironments. In opposition, trails’

overall layout is a much more predictable feature. For example, the projection of trails onto

the input image typically converges towards a vanishing point. This novel use of top-down

knowledge was embedded in the previous model in the form of behaviours ruling the motion of
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simple agents inhabiting the saliency and its intermediateconspicuity maps. The motion paths

of these agents were then taken as the skeleton of a set of trail hypotheses, which were then

scored, and three of them selected as the output of the system.

Despite its overall good results, the previous model was unable to reduce the ambiguity of

three trail hypotheses, it was brittle in the presence of interrupted trails, and it was unable to

exploit historical information to improve its robustness.Fig. 4.2 depicts the model proposed

in this chapter, which extends the previous one to overcome its limitations: (1) by allowing

the agents to exhibit collective behaviour through pheromone-based interactions, and (2) by

allowing the system to accumulate evidence about the most likely trail location across multiple

frames through the use of a dynamic neural field. See Fig. 4.1 for typical results obtained with

the extended model.

(a) video#3 (b) video#6

(c) video#24 (d) video#25

Figure 4.1: Typical trail detection results (red overlay) obtained with the swarm-based model.
These results show that model is able to localise the trail even when it is highly interrupted,
blends itself with the background, or does not start from thebottom of the image.
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4.1 System Overview

In short, two conspicuity maps,CC(t) ∈ [0, 1] for colour andCI(t) ∈ [0, 1] for intensity

information, are computed from the input imageI(t), as described in Chapter 3, Section 3.1.

A set of agents is then deployed on each map. These agents interact with the corresponding

conspicuity map according to their perception-action rules, which embed the trail-specific top-

down modulation process, as defined in Chapter 3, Section 3.2. During the process, pheromone

is deployed and sensed by the agents in two pheromone fields,PC(t) ∈ [0, 1] andPI(t) ∈ [0, 1],

according to the ant foraging metaphor. An additional perception-action rule is introduced

to make the agents’ behaviour sensible to the pheromone deployed by the swarm, and thus

enabling coherent collective behaviour to emerge. This way, agents help each other on the task

of perceptual completion, resulting in a global behaviour that is robust to the local variations

inherent to trails.

Being the deployed pheromone a function of agents’ sensations across their trajectories on

the corresponding conspicuity maps, it is influenced by the activity occurring in distant regions

of the map. This long-range spatial connectivity allows handling the potentially large size of

trails in a robust and parsimonious way.

Rather than blending both conspicuity maps,CC(t) andCI(t), to generate the final saliency

mapS(t) ∈ [0, 1], as typically done [Itti et al., 1998, Frintrop et al., 2005], in this workS(t)

is obtained by blending both pheromone fields. The final saliency mapS(t) feeds a dynamic

neural field [Amari, 1977, Rougier and Vitay, 2006],F(t) ∈ [0, 1], which integrates pheromone

(i.e., evidence) across frames and also implements both lateral excitation and long-range inhi-

bition. This neural field allows the system to maintain a coherent focus of attention across time

[Rougier and Vitay, 2006]. Motion compensation is also implemented so that the dynamics of

the neural field can be decoupled from the dynamics of the robot. The neural field’s state feeds

back both pheromone fields so that history influences agents’activity. The output of the system

is given by the current state of the neural field, where the higher the activation of a given neuron

the higher its chances of being associated to a trail pixel.
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Figure 4.2: System overview. The red overlays in both pheromone fields,PC(t) andPI(t),
are two illustrative agent paths. For the sake of clarity, motion compensation aspects are not
represented.
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4.2 Conspicuity Maps Computation

Conspicuousness computation is about determining which regions of the input image detach

from the background at several scales and feature channels.In this model, as in the previous

one, only intensity and colour channels are used.

Shortly, one dyadic Gaussian pyramid with eight levels is computed from the intensity chan-

nel. Two additional pyramids also with eight levels are computed to account for the Red-Green

and Blue-Yellow double-opponency colour feature channels. The various scales are then used

to perform centre-surround operations [Itti et al., 1998].The resulting centre-surround maps

have higher intensity on those pixels whose corresponding feature differs the most from their

surroundings. An example is a bright patch on a dark background (on-off), as well as the

other way around (off-on). On-off centre-surround operations are performed by across-scale

point-by-point subtraction, between a level with a fine scale and a level with a coarser one.

Off-on maps are computed the other way around, i.e., subtracting the coarser level from the

finer one. Then, the centre-surround maps are blended to produce a colour conspicuity map,

CC(t) ∈ [0, 1], and an intensity conspicuity map,CI(t) ∈ [0, 1]. The width,w, and height,h,

of both maps is80 and60, respectively.

When blending maps, the most discriminant ones are promotedby recurring to a normali-

sation operator. Here the normalisation operator described in the previous model is followed,

which was shown to outperform other known models [Itti et al., 1998, Frintrop et al., 2005] in

trail detection. Please refer to Chapter 3, Section 3.1 for further details and to Fig. 4.2 for

examples of conspicuity maps.

4.3 Collective Behaviour

This section describes how an agent deployed on a conspicuity mapm ∈ {CC(t),CI(t)}

behaves in order to generate a pheromone fieldp ∈ {PC(t),PI(t)}, in cooperation with other

agents, whose activity level is correlated with the localisation of the trail. If the agent is allocated
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to the colour conspicuity map,CC(t), then it contributes to the colour pheromone field,PC(t).

Analogously, if allocated to the intensity conspicuity map, CI(t), the agent contributes to the

intensity pheromone field,PI(t). The process through which agents are deployed in the maps

is also explained in this section.

4.3.1 Agent Behaviours

At the onset of each frame, both pheromone fields are zeroed and subsequently affected by

a small ratioλ of the robot motion compensated neural field’s previous state,F′(t−∆t),

PC(t) = PI(t) = λF′(t−∆t) (4.1)

In this studyλ = 0.1. Refer to Section 4.4 for details on the computation ofF′(t−∆t). This

pheromone level offset allows agents’ activity to be affected by history, which induces stability,

robustness to noise and across-frames progressive improvement.

For a given numbernmax = 50 of iterations, whose index is represented byn, the agent

builds up a trail hypothesis by updating its position,o(n), according to a set of behavioursB,

which are sensible to the level of conspicuity in the agent’ssurroundings. These behaviours

embed top-down information on the object being sought, suchas its approximate shape. The

agent’s motion is also affected by other agents’ activity according to the ant foraging metaphor,

i.e., viastigmergy. That is, agents interact with each other through a pheromone field built by

them while moving. Conspicuity-based behaviours and pheromone influence contribute to the

agent’s motion according to the following voting mechanism,

a+(n) = argmax
a∈O

(

∑

b∈B

αbfb(m, a, n) + βg(p, a, n) + γq

)

(4.2)

ȯ(n) = Γ
(

a+(n)
)

(4.3)
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where:O is the set of possible agent motor actions (e.g., “move to theright”); Γ(.) transforms

a motor action,a ∈ O, onto pixel coordinates centred on the current agent’s position; β is the

weight accounting for the contribution of pheromone, whichis described by the motor action

evaluation functiong(p, a, n) ∈ [0, 1]; αb is the weight accounting for the contribution of be-

haviourb ∈ B, which is described by the motor action evaluation functionfb(m, a, n) ∈ [0, 1];

andγ is the weight accounting for stochastic behaviour, beingq ∈ [0, 1] a number sampled from

a uniform distribution each time the action is evaluated.

The following describes which regions in the local neighbourhood of the current agent po-

sition are selected as its next position by each of the five behaviours composingB, and thus

embody top-down knowledge about trails,

1. Regions of higher levels of conspicuity, under the assumption that trails are salient in the

input image;

2. Regions whose average level of conspicuity is more similar to the average level of cons-

picuity of the pixels visited by the agent, under the assumption that trails’ appearance is

somewhat homogeneous;

3. Regions that maintain the agent equidistant to the boundaries of the trail hypothesis being

pursued;

4. Upwards regions under the assumption that trails are often vertically elongated;

5. Region targeted by the motor action at the previous iteration, under the assumption that

trails’ outline is somewhat monotonous.

The newly proposed evaluation functiong(p, a, n) greedily provides higher score to the

motor actions that take the agent to regions of higher level of pheromone. By making the score

proportional to the level of pheromone, this evaluation function guides the agent towards regions

recurrently visited by other agents. The outcome is coordinated collective behaviour. By the

end of each iteration, the agent contributes to pheromone field p by deploying an amount of
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pheromoneǫ in its current position,o(n), and to the other pheromone fieldp′ a small portion of

ǫ, υ. That is, ifp = PC(t) thenp′ = PI(t), and the other way around. This process enables

loosely coupled cross-modality influence, thus allowing each agent to exploit multiple cues

indirectly, and therefore to maintain their simplicity. Inthis studyǫ = 0.008 andυ = 0.3.

The ratio used to control the importance of the collective over the individual experience,

β/(
∑

b∈B

αb + γ) (4.4)

has, in this study,β = 1.0 andγ = 0.8. Please refer to Chapter 3, Section 3.2 for further details

on the agent motor actions setO, on the behaviour setB, on its associated weightsαb, and on

how the agent’s local surroundings is segmented into regions.

4.3.2 Agent Recruitment

A set of agents,Em, is deployed at each conspicuity mapm ∈ {CC(t),CI(t)}. The chance

of deploying an agent on a given location of mapm depends on the level of conspicuity at that

location and on the level of pheromone at the same position ofthe corresponding pheromone

field p. The following describes in detail the deployment process.

To avoid any noise potentially present at the map’s boundaries, agents are deployed with a

small offset of the bottom of the conspicuity map in question, i.e., at rowr = h− 5, whereh is

the height of the conspicuity maps.

To determine the column where each agent is deployed, the unidimensional vector

vm = (vm0 , . . . , v
m
w ) (4.5)

is first computed, wherew is the width of the conspicuity maps. The elementvmk of vm refers

to the average conspicuity level of the pixels in columnk, contained between rowr and row

r − δ, whereδ = 5 to avoid deploying agents in columns with spurious highly conspicuous
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pixels. Formally,

vmk =
∑

l∈[r,r−δ]

m(k, l)/δ (4.6)

wherem(k, l) is the conspicuity level at pixel in columnk and rowl.

The same process is repeated to build a vector for the pheromone field in question,

vp = (vp0, . . . , v
p
w) (4.7)

wherep(k, l) is the pheromone level at pixel in columnk and rowl. In this case,

vpk =
∑

l∈[r,r−δ]

p(k, l)/δ (4.8)

Then, the test

z < (vmj·w +max(vpj·w−4, v
p
j·w+4)) (4.9)

is repeated until it succeeds, wherez ∈ [0, 1] andj ∈ [0, 1] are numbers sampled from a uniform

distribution each time the test is performed. At that time, the agent is deployed in columnj ·w.

With this test, the chance of deploying an agent in a randomlyselected columnj · w is as high

as the conspicuity and pheromone levels at the deployment region. This sampling process is

repeated until|Em| = 20 agents are deployed per mapm.

4.4 Evidence Accumulation

To integrate evidence across time, to consider competitionbetween multiple focus of atten-

tion, and to promote perceptual grouping, the fusion of bothpheromone fields,

S(t) =
1

2
PC(t) +

1

2
PI(t) (4.10)

feeds a 2-D dynamic neural fieldF(t). Note that this process only occurs after the agents’

activity has ceased, and therefore the pheromone fields havebeen fully updated.
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The dynamical characteristic of the neural fields [Amari, 1977, Rougier and Vitay, 2006] is

what enables their ability to integrate information acrosstime. To avoid the blurring of the

neural field when the robot moves, the following three steps explicitly compensate the neural

field for the camera motion engaged between the previous and current frames:

1. Estimate the homography matrix H(t) that describes the perspective transformation be-

tween the current frame,I(t), and the previous one,I(t−∆t). This step is further detailed

in Section 4.4.1.

2. Obtain a perspective compensated version of the previousneural field’s state by using the

estimated homography matrix,

F′(t−∆t) = H(t)F(t−∆t) (4.11)

3. ObtainF(t) by updating the perspective compensated neural fieldF′(t − ∆t) with the

pheromone fieldS(t). This step is further detailed in Section 4.4.2.

4.4.1 Homography Matrix Estimation

To estimate the perspective transformation, a set of Shi andTomasi [Tomasi and Shi, 1994]

corner points are first detected in the previous frame,I(t−∆t). These points are then tracked in

the current frame,I(t), with a pyramidal implementation of the Lucas-Kanade feature tracker

[Bouguet, 1999]. The resulting sparse optical flow is then used to estimate the perspective

transformation relating both frames, i.e., the3× 3 homography matrix H,

u′

i = H(t)ui (4.12)

whereui is a local feature found inI(t − ∆t) andu′

i its correspondence inI(t). Due to noise

in the tracking process, the homography matrix is calculated as the least-squares solution that

minimises the back-projection error [Bradski and Kaehler,2008]. This process assumes that
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distortion introduced by the camera lens into the input images has been corrected. It also as-

sumes that either: (1) the terrain in front of the robot is planar or (2) the camera was only

rotated, and not displaced, between frames. None of these two constraints can be strictly en-

sured in off-road environments. Still, in most situations the terrain is somewhat planar and the

attitude of the camera changes more significantly than its position. Experiments have shown

that the co-occurrence of these two relaxed constraints is sufficient to maintain a robust opera-

tion. If a minimum of four correspondences is not found, the homography matrix is set to the

identity matrix, H(t) = diag(1, 1, 1).

4.4.2 Neural Field Update

The neural fieldF(t) is a 2D lattice ofw × h neurons with “Mexican-hat”-shaped lateral

coupling. This pattern of connectivity helps in the formation of a coherent focus of attention

[Rougier and Vitay, 2006]. On the one hand, activated neurons excite their neighbours, thus

promoting perceptual grouping. On the other hand, activated neurons tend to inhibit distant

ones, thus reducing ambiguities in the focus of attention. Formally, the connection’s weight

between a neuron in positionx and a neuron in positionx′ is given by a Difference of Gaussians

(DoG), function of the Euclidean distance between both,w(x,x′).

In addition to lateral connectivity, the neural field also has afferent interactions with phero-

mone fieldS(t). The weight of a connection between an element ofS(t) in positiony and a

neuron ofF(t) in positionx is given by a Gaussian function of the Euclidean distance between

both,d(x,y). This operation enlarges neurons’ receptive field to reducesensitivity to noise.

The average membrane potential of a given neuron at positionx can now be expressed by

the following nonlinear integro-differential equation,
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(a) t = 190 (b) S(190) (c) F(190)

(d) t = 220 (e) S(220) (f) F(220)

(g) t = 250 (h) S(250) (i) F(250)

(j) t = 280 (k) S(280) (l) F(280)

Figure 4.3: Example of neural field competition in a situation represented by four ordered
frames obtained from video#11 of the tested dataset. The trail is present in the input imagefor
several frames prior tot = 220, thus eliciting high level of activity in the neural field,F(190).
Although the transient appearance of a trail-like grass segment in the bottom-left region of the
image is felt in the pheromone field,S(220) andS(250), this distractor is actively inhibited in
the neural field,F(220) andF(250).
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τ
∂F(x, t)

∂t
=− F(x, t)+
∫

w(x,x′) f (F(x′, t)) dx′+
∫

d(x,y)S(y, t)dy + h (4.13)

wheref(x) = x in this work, τ is a time constant andh = 0 is the neuron threshold. For

numerical integration, the Euler forward method is used to obtain an approximation of the

neural field, which in matrix form results in the following rearranged expression,

F(t) = F′(t−∆t) +
∆t

τ

(

−a ·
(

F′(t−∆t)
)

+ (4.14)

b ·
(

DoGk1,k2
σ1,σ2
∗ F′(t−∆t)

)

+

c ·
(

Gk3
σ3
∗ S(t)

)

+ h
)

where∗ is the convolution operator,a, b andc are weights defining the contribution of each

term,DoGk1,k2
σ1,σ2

= Gk1
σ1
− Gk2

σ2
, Gk

σ is a Gaussian kernel of sizek × k and widthσ. Note that

the neural field’s previous state,F(t − ∆t), is substituted by its motion compensated counter

part,F′(t − ∆t). The neural field free parameters have been empirically defined,σ1 = 4.25,

σ2 = 14.15, σ3 = 2.15, k1 = 25, k2 = 91, k3 = 11, a = 2, b = 2.5, c = 8, and∆t
τ

= 0.03. The

system showed robustness to small variations around these values as long as the proportions are

roughly maintained.

To enable fast computation, the model is synchronously evaluated, meaning that at timet

neurons are updated based on the network state at timet−∆t. Due to robot motion, any potential

symmetry at the sensory input does not prevail, making neural field oscillations unlikely to occur

over relevant periods of time.

The dynamical characteristic of the model in conjunction with the long-range lateral inhi-

bition results in the following property. The higher the number of frames with the same spot
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with high activity the more difficult it is, due to lateral connectivity, for other regions to become

activated. Hence, transient distractors are actively inhibited once a large evidence on the trail

location is accumulated (see Fig. 4.3).

4.5 Experimental Results

An extensive dataset of 25 colour videos encompassing a total of 12023 frames with a

resolution of640 × 480 has been obtained with a hand-held camera (see Appendix B). The

camera was carried at an approximate height of1.5m and at an approximate speed of1ms−1.

The trail detector was evaluated on a Core2 Duo 2.8 GHz running Linux. OpenCV was used

for low-level routines. Table 4.1 shows that the model runs on average at20Hz, where only4%

refers to the swarm-based activity. The timing reported forthe neural field update also includes

optical flow computation, homography estimation, and neural field wrapping.

The experimental results are twofold. First it is shown thatthe proposed swarm-based

saliency model is more robust than a classical one [Itti et al., 1998, Frintrop et al., 2005], where

conspicuity maps are blended,

S(t) =
1

2
CC(t) +

1

2
CI(t) (4.15)

rather than their corresponding pheromone fields,

S(t) =
1

2
PC(t) +

1

2
PI(t) (4.16)

For the sake of fair comparison, the neural fieldF(t), which is fed byS(t), is used to generate the

output in both cases. Then, a qualitative comparison with related trail detectors highlights the

advantages of the proposed model. To handle the probabilistic nature of the agents behaviours,

a set of 5 runs was performed per video.

The trail is considered correctly localised if the biggest blob of neural field activity above

0.85 (from a maximum of1) is fully within the trail’s boundaries. In cases of ambiguity caused
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Neural Field
Conspicuity Maps

Computation
Swarm

Computation Total

time (ms) 12 36 2 50

Table 4.1: Average computation times.

by co-occurrence of two similar blobs, the pheromone fieldS(t) is used to assess which blob is

being reinforced and consequently should be taken as the output.

A comparative analysis between Table 4.2 and Table 4.3 reveals that the proposed swarm-

based saliency model clearly outperforms the classical one. That is, a higher average suc-

cess rate is obtained along with a smaller standard deviation. It follows from the success

rate of 91% ± 12% that the proposed model is well suited for off-road autonomous robots.

This result is more stringent if the difficulty of the tested dataset is taken into account. To

our knowledge no previous work has been tested against a dataset with trails as narrow, un-

structured and discontinuous as the ones herein considered. Moreover, differently from previ-

ous works [Rasmussen and Scott, 2008a], [Fernandez and Price, 2005], [Blas et al., 2008], and

[Rasmussen et al., 2009], the model succeeds in situations where the trail is not starting from

the bottom of the image (see Fig. 4.1(a)).

It is also worth noting that in 7 of the 25 videos, the proposedmodel shows100% success

rate for all the 5 five runs. Video 5 is accounted as a long run with almost 5 minutes length.

Besides being often interrupted and highly unstructured, the trail in this video also exhibits a

variable width. Moreover, the terrain surrounding the trail is heterogeneous and highly popu-

lated with potential distractors, such as trees and bushes.The85% success rate of the model

in this video clearly shows its robustness in demanding situations. About5% of the fail cases

refer to situations where the trail is nevertheless noticeable in the neural field. In this case, as

in other lower performance videos, ambiguity between trailand surroundings could be reduced

by considering additional perceptual modalities, such as texture and depth.

When the trail is highly conspicuous in the environment, as most often occurs, ambiguity is

rarely present. When this assumption fails and distractorsare scattered, the model is still able to
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perform correctly. This robustness owes to the agents’ sensori-motor coordination capabilities,

which allow an opportunistic exploitation of the trail-background segmentation present in the

conspicuity maps.
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Video ID Nr. of Frames Nr. of Correct Frames % of Correct Frames

1 278 124 44.60

2 204 126 61.76

3 422 20 4.74

4 135 0 00.00

5 2854 927 32.48

6 186 52 27.96

7 121 0 00.00

8 124 0 00.00

9 309 58 18.77

10 147 73 49.66

11 386 0 00.00

12 158 0 00.00

13 134 54 40.30

14 676 299 44.23

15 683 181 26.50

16 770 35 4.55

17 403 141 34.99

18 335 325 97.01

19 230 195 84.78

20 439 28 6.38

21 490 18 3.67

22 230 25 10.87

23 600 36 6.00

24 802 0 00.00

25 907 0 00.00
∑

= 12023
∑

= 2717 (µ± σ) = (23.97± 27.73)

Table 4.2: Trail detection results - Classic saliency computation:S(t) = 1
2
CC(t) + 1

2
CI(t).
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Video ID Nr. of Frames
Average Nr. of Correct

Frames
Average % of Correct

Frames

1 278 124 44.60

2 204 126 61.76

3 422 20 4.74

4 135 0 00.00

5 2854 927 32.48

6 186 52 27.96

7 121 0 00.00

8 124 0 00.00

9 309 58 18.77

10 147 73 49.66

11 386 0 00.00

12 158 0 00.00

13 134 54 40.30

14 676 299 44.23

15 683 181 26.50

16 770 35 4.55

17 403 141 34.99

18 335 325 97.01

19 230 195 84.78

20 439 28 6.38

21 490 18 3.67

22 230 25 10.87

23 600 36 6.00

24 802 0 00.00

25 907 0 00.00
∑

= 12023
∑

= (10577.60± 109.80) (µ± σ) = (91.32± 1.01)

Table 4.3: Trail detection results - Proposed saliency computation:S(t) = 1
2
PC(t) + 1

2
PI(t).
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Chapter 5

Conclusions, Contributions and Future

Work

This chapter summarises the work presented in this dissertation, providing a set of conclu-

sions and contributions concerning the proposed models andthe results obtained, as well as

some aspects for future work.

5.1 Conclusions

This dissertation reported for the first time the use visual saliency to the trail detection pro-

blem. The model showed to be a computationally efficient solution with overall good results

(91% success rate at20Hz), performing in situations where previous detectors tend to fail, such

as when the trail does not emerge from the lower part of the image or when it is considerably in-

terrupted. These results are mostly due to the effective segmentation obtained through the visual

saliency method, and to the swarm-based design used to exploit this information. Furthermore,

no hard assumptions on the appearance and morphology of the trails are done, conversely to

most of the solutions proposed so far, which makes this model-free approach suitable for di-

verse and demanding natural environments. To our knowledge, this work is the most complex

application of the agent-based sensori-motor coordination approach to object detection. The
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work was presented in two parts.

The first part focused on a saliency-based method using simple agents to exploit the saliency

maps, with the purpose of validating the application of visual saliency to agent-based trail de-

tection. A positive correlation was shown to exist between visual saliency and trail location.

This preattentive mechanism also revealed as a promising method for fast prioritised (according

to saliency) segmentation of the input image. Furthermore,seeing trails as conspicuous parts of

the scene allowed the system to generalise. That is to say that in situations where trails could

be hardly identified, even by the human eye, the system reported as trail open regions of the

environment. A newly proposed normalisation operator for saliency computation played an im-

portant role in this achievement. The good prioritised segmentation properties exhibited by the

visual saliency method, though not sufficient for accurate trail detection, present a good basis

for boosting a focused detector.

To rapidly extract the trail skeleton from the prioritised saliency maps, an agent-based so-

lution was proposed. This approach showed to be adequate, with experimental results showing

that up to three trail hypotheses are generated by the method, being at least one of them correct

in 98% of the cases. These results contribute to the growing evidence of agent-based approaches

for the development of robust perceptual systems. This model is also innovative on the way top-

down knowledge of the object being sought is considered. Typically, visual features are boosted

according to the expected object’s scale, colour and intensity [Navalpakkam and Itti, 2005]. In-

stead, in this work the object’s (trail) approximate shape is implicitly considered, by means

of feed-forward and consequently fast perception-action rules dictating the behaviour of each

agent. Despite its overall good results, the model showed aninability to overcome some diffi-

culties, namely: (1) it was unable to reduce the ambiguity ofthree trail hypotheses; (2) it was

brittle in the presence of interrupted trails; and (3) it wasunable to exploit historical information

to improve its robustness.

In the second part of the work, the model was extended to overcome these difficulties by: (1)

allowing the agents to exhibit collective behaviour; and (2) allowing the system to accumulate

and make use of historical information. Hence, this part presented a swarm-based solution for
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trail detection, in which agents influence each other through shared mediums, i.e., viastigmergy.

Evidence of trail location is accumulated across frames in amotion compensated dynamic neu-

ral field.

This solution has been successfully validated against a highly demanding and diverse dataset

composed by video sequences, exhibiting91% success rate at20Hz. These results due to large

extent to the swarm-based design, which enabled a robust self-organisation of visual search,

perceptual grouping, and multiple hypotheses tracking. The dynamic neural field showed to

be a fast and efficient means for the integration of evidence across frames, implementing both

lateral excitation and long-range inhibition, which increased the resilience of the system in the

presence of distractors, namely rocks and trail-like grass. The motion compensation allowed the

dynamics of the neural field to be decoupled from the dynamicsof the robot, thus contributing

to the stability of the system in outdoor environments. Finally, the high success rate across the

diverse dataset shows that the selected parametrisation isnot over-fit to a specific environment,

thus highlighting its robustness.

5.2 Future Work

A more extensive sensitivity analysis of the model still needs to be addressed in future

work. In this context, a mechanism for the self-parametrisation of the system can be considered.

Other perceptual modalities, such as texture and depth, canbe further analysed as alternative or

complement to the used colour and intensity conspicuity maps, and might be included to further

increase the robustness of the model. Testing the swarm-based saliency model to other visual

search tasks is also object of future prospect. Lastly, the implementation of the detector in a

physical robot and its testing in the mentioned environments will allow the assessment of the

applicability of the proposed model.
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Appendix A

A Saliency-Based Approach to Boost Trail

Detection - Dataset and Image Results
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Figure A.1: Dataset used in the saliency-based model, composed by images #01 to #09. The
first column presents the input image. The second, third and fourth columns show the colour
conspicuity, the intensity conspicuity, and the saliency maps, respectively.
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Figure A.2: Dataset used in the saliency-based model, composed by images #10 to #18. The
first column presents the input image. The second, third and fourth columns show the colour
conspicuity, the intensity conspicuity, and the saliency maps, respectively.
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Figure A.3: Dataset used in the saliency-based model, composed by images #19 to #27. The
first column presents the input image. The second, third and fourth columns show the colour
conspicuity, the intensity conspicuity, and the saliency maps, respectively.
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Figure A.4: Dataset used in the saliency-based model, composed by images #28 to #36. The
first column presents the input image. The second, third and fourth columns show the colour
conspicuity, the intensity conspicuity, and the saliency maps, respectively.
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Figure A.5: Dataset used in the saliency-based model, composed by images #37 to #45. The
first column presents the input image. The second, third and fourth columns show the colour
conspicuity, the intensity conspicuity, and the saliency maps, respectively.
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Figure A.6: Dataset used in the saliency-based model, composed by images #46 to #50. The
first column presents the input image. The second, third and fourth columns show the colour
conspicuity, the intensity conspicuity, and the saliency maps, respectively.
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Figure A.7: Trail detection results (#01 to #28). The best agent’s path in each map is superposed
on the corresponding input image. Path colour is green, blueand red for the colour, intensity
and saliency maps, respectively. In the top-right corner ofeach image, the presence of a filled
circle with a given maps’ colour, indicates that the best agent’s path of the corresponding map
correctly represents the trail.
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Figure A.8: Trail detection results (#29 to #50). The best agent’s path in each map is superposed
on the corresponding input image. Path colour is green, blueand red for the colour, intensity
and saliency maps, respectively. In the top-right corner ofeach image, the presence of a filled
circle with a given maps’ colour, indicates that the best agent’s path of the corresponding map
correctly represents the trail.
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Appendix B

Swarm-Based Visual Saliency for Trail

Detection - Dataset and Image Results
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(a) video #01 (b) video #02 (c) video #03

(d) video #04 (e) video #05 (f) video #06

(g) video #07 (h) video #08 (i) video #09

(j) video #10 (k) video #11 (l) video #12

(m) video #13 (n) video #14 (o) video #15

Figure B.1: Dataset used in the swarm model, representativeframes from videos #01 to #15.
Each image corresponds to one video whose ID is given by increasing order from left to right
and top to bottom. The overlaid red blobs represent the model’s estimate of the trail location,
which corresponds to an activity of the neural field above0.85.
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(a) video #16 (b) video #17 (c) video #18

(d) video #19 (e) video #20 (f) video #21

(g) video #22 (h) video #23 (i) video #24

(j) video #25

Figure B.2: Dataset used in the swarm model, representativeframes from videos #16 to #25.
Each image corresponds to one video whose ID is given by increasing order from left to right
and top to bottom. The overlaid red blobs represent the model’s estimate of the trail location,
which corresponds to an activity of the neural field above0.85.
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