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Resumo

Esta dissertacao propde um modelo para deteccadhiestbaseado na observacao de que
estes sao estruturas salientes no campo visual do rohiddé complexidade dos ambientes
naturais, uma aplicacéo directa dos modelos tradicateisaliéncia visual nao é suficiente-
mente robusta para prever a localizacao dos trilhos. dmlocnoutras tarefas de deteccao, a
robustez pode ser aumentada através da modulagao daitzmdp da saliéncia com conhe-
cimento implicito acerca das caracteristicas visuag @r) que permitem uma melhor repre-
sentacao do objecto a encontrar. Esta dissertaca@@mpso da estrutura global do objecto,
sendo esta uma caracteristica mais estavel e previsaval@caso de trilhos naturais. Esta
nova componente de conhecimento implicito & especificadteemos de regras de percep¢ao
activa, que controlam o comportamento de agentes simpkesewomportam em conjunto
para computar o mapa de saliéncia da imagem de entradao Paesposito de acumulacao de
informacao histérica acerca da localizacao do trghatilizado um campo neuronal dinamico
com compensacao de movimento. Resultados experimentaisonjunto de dados vasto reve-
lam a habilidade do modelo de produzir uma taxa de suces8t%ea 20 Hz. O modelo de-
monstra ser robusto em situagdes onde outros detectdinasiim, tal como quando o trilho nao

emerge da parte de baixo da imagem, ou quando se encontrdezamslmente interrompido.






Abstract

This dissertation proposes a model for trail detection bhtls upon the observation that
trails are salient structures in the robot’s visual field e@oi the complexity of natural environ-
ments, the straightforward application of bottom-up visaiency models is not sufficiently
robust to predict the location of trails. As for other deimcttasks, robustness can be increased
by modulating the saliency computation with top-down kreage about which pixel-wise vi-
sual features (e.g., colour) are the most representatitreeaibject being sought. This disserta-
tion proposes the use of the object’s overall layout insteadt is a more stable and predictable
feature in the case of natural trails. This novel componéta@down knowledge is specified
in terms of perception-action rules, which control the bétar of simple agents performing
as a swarm to compute the saliency map of the input image. hegpurpose of multi-frame
evidence accumulation about the trail location, a motiomgensated dynamic neural field is
used. Experimental results on a large data-set reveal thigy @b the model to produce a suc-
cess rate 0H1% at 20 Hz. The model shows to be robust in situations where previils
detectors would fail, such as when the trail does not emeoye the lower part of the image or

when it is considerably interrupted.
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Chapter 1

Introduction

Autonomous robotics has been, over the last 30 years, aeasiog source of inspiration
for research and development. Ever since the first unmangi@dlgs many efforts have been
made towards solving the problem of autonomous navigatiom complete autonomy in rural,

off-road, aggressive environments to driving assistanegban scenarios.

In outdoor environments the exploitation of any sort of stinwe is essential for safe robot
navigation. An example is the ability to detect and followils, thus reducing the chances
of collision with obstacles, in addition to lowering the caiive load associated to path and
trajectory planning.

On the account of path (roads and trails, paved or dirt) Wahg, its importance is easy
to understand, for paths are usually deprived of obstatties, providing safe passageway for
both humans and vehicles. Besides the mentioned need tgat@through clear areas (i.e.,
with the least number of obstacles), trails in natural envinents often offer some structure,
which can be exploited and used for navigation purposess dissertation contributes to this
line of research by proposing a computationally fast traiedtor, with a good success rate, and

a good level of robustness, for outdoor environments.

Most of the challenges of trail detection relate to theikla€ a well defined morphology
or appearance. This hampers a straightforward learningabitodels. In addition, they exist

in environments that are unstructured themselves. Thisirim complicates the learning of
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background models. Moreover, the problem of supervisiggléfarning process remains an
open issue. This is aggravated by the fact that trails chamngetime, thus rendering hand-
labelling unsuited for the task at hand.

The majority of the models proposed in an attempt to solvetrthié detection problem
in mobile robots rely on hard assumptions concerning th@estud the trail and its surroun-
dings, their appearance, or the relative position of thetoln this line of thought, a com-
mon solution is to assume that the robot is already insider#iks’ boundaries and oriented

along it and take a sample patch of the area in front of thetrtwbbuild a colour model for

the trail [Fernandez and Price, 2005] or background [Raseruand Scott, 2008b]. Similarly,

there are some approaches that make use of 3-D informattameld from a LADAR to ascer-

tain the drivable area before building the model [Dahlkarng@ . 2006]. Although LADAR has

been widely used with success for robot navigation, nanrethé DARPA Grand Challenges

[Cremean et al., 2006], [Urmson et al., 2006], [Thrun et2006], for low cost service robots

operating in natural environments this is not the best aguro Besides the previous assump-
tion, other methods also consider that the trail is surrednaly vegetation and strong edges,

thus classifying areas mostly green as non-trail [Bartal.eR007] or using evolutionary algo-

rithms to explore the borderlines [Broggi and Cattani, ZJ008hen considering natural trails

the mentioned assumptions might be too harsh, for these afteear somewhat homogeneous

with the surroundings, thus reducing the effectivenesh®féferred approaches.

An alternative is to make use of traditional segmentatiothoes [Zhang and Nagel, 1994],

[Felzenszwalb and Huttenlocher, 2004], [Unser, 1995[in[aad Farrokhnia, 1991] to discri-
minate the path in the visual field of the robpt [Nabbe et &l06], [Kim et al., 200F7]. The

segmented image can then be analysed by searching forreslwgithh geometric properties

identical to a trail [Blas et al., 2008], or by grouping segmseaccording to its approximate

shape and performing tests on their appearance [Rasmussé&catt, 2008a]. However, good

segmentation methods tend to be computationally intenBwghermore, natural trails usually

present themselves with great unpredictability in shagkeappearance. Still, geometric con-

siderations can be used to generate trail hypothéses [Rasmet al., 2009], thus improving
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the efficiency but not solving all the problems that averbfnoatural environments.

A careful observation of natural images highlights the thett trails are typically conspi-
cuous in the visual field of the robot, i.e., are structuras éasily pop-out. This observation has
alerted to the possibility of using visual saliency as a nse¢ariocus the attention of an accurate
trail detector in an unbiased way, thus not imposing any kargstraints on the appearance or
shape of both trail and background. Hence, this dissentabatributes to this line of research
by proposing a model-free solution for robust, reliable eachputationally efficient trail detec-
tion in natural environments. Additionally, this disse¢ida extends considerably this concept
by recurring to the swarm-based collective behaviour nfeiapnd by exploiting evidence ac-

cumulation across frames for improved robustness.

1.1 Problem Statement

This dissertation covers the problem of vision-based tlaiéction for mobile robots. The
need to operate in unstructured environments in a suffigiéagt and robust way imposes two

main requirements:

R1- The proposed solution must be model-free, thus avoidingnduessity to rely on hard
assumptions on the appearance and morphology of the traghwin turn, allows it to be
used as a focus to guide a specialized detector. Such amoalsio discards the need for
straightforward learning of trail models, which tend to e outdated. Furthermore,
not using given or learned models also results in increasiealstness, necessary to deal

with the highly unpredictable characteristics of trail\atural environments.

R2 - The trail detector should be computationally efficient.slalso desirable that the model
lends itself to parallel implementation, thus allowingagsplication in parallel emergent

and distributed systems.
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1.2 Solution Prospect

This dissertation proposes the following solutions to ctymaith the specified require-

ments:

e The model makes use of visual saliency under the observttairtrails are typically
conspicuous in the visual field of the robot. However, salyemaps tend to be noisy
due to the ubiquity of distractors and the heterogeneityailstand therefore additional
top-down knowledge on them is required. Hence, the traNgrall layout is used in
order to deal with their lack of a well defined morphology apgearance, as it is a more
stable and predictable feature in natural environmentss approach does not impose
any hard constraints on the appearance or shape of bothrich8urroundings. To isolate
the proposed model’s characteristics and more easily @fisesnajor contributions, the

work presented is divided into two parts.

— In the first part, simple agents operating on the saliencysnggmerate trail skele-
ton hypotheses, whose behaviour embodies implicit geRambledge about trails’
overall layout. Being simple, the agents are fast to compuatetherefore compli-
ant with the requirement R2. This part of the work validatesositive correlation
between visual saliency and the trail location, as well asplication of the agent-

based method to trail detection.

— In the second part, the agent-based method is extendeddwiradl the agents to
perform as a swarm. Being self-organised, the agents’atoleeexhibits accuracy
and robustness without hampering computation efficieneynforal evidence ac-
cumulating the trail location is exploited by recurring téaat to compute dynamic

neural field, further increasing the mentioned properties.
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1.3 Dissertation Outline

This dissertation is organised as follows:

Chapter 2 presents a brief overview of the state of the art in the cdmtitrail detection;

Chapter [3 describes the first part of the work, a saliency-based maglefsimple agents to

explore the attention based maps for the detection of thig tra

Chapter [ describes the second part, a swarm-based model for trattiten, extending the
previous one by allowing the agents to exhibit collectivedaour and accumulating evidence

across frames;

Chapter B draws some conclusions concerning the work presented, laasvygossible future

improvements;

1.4 Further Readings

The work on trail detection using visual saliency and cailecbehaviour presented in this

dissertation has already been published:

[Santana et al., 2010a] Santana, P., Alves, N., Correiaand,Barata, J. (2010). A saliency-

based approach to boost trail detectiomProc. of the 2010 IEEE Intl. Conf. on Robotics and
Automation(ICRA 2010), pages 1426-1431, May 3-8, 2010, Anchoragesksa

[Santana et al., 2010b] Santana, P., Alves, N., Correiarid,Barata, J. (2010). Swarm-based

visual saliency for trail detectiofo appear in Proc. of the 2010 IEEE Intl. Conf. on Intelligent

Robots and SysteniiROS 2010), Taipei, Taiwan.
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Chapter 2

State of the Art

This chapter surveys the state of the art in trail detectigaraghms. Trails are usually safe
pathways and also free of dead-lock situations. A robob¥alhg a trail is thus able to traverse
large distances in off-road environments in an effortlessre secure way. On the one hand,
computation for obstacle detection and trajectory or p#&hrmong is saved, thus allowing the
allocation of resources to other tasks. On the other hanarfare the chances of getting lost or
incurring into collisions, therefore contributing to theepervation of the mechanical structure
and any payload the robot may be carrying. The importancabéind road detection, suitable
for real-time application in all-terrain service robotastpromoted the research on this subject
over the past ten years. Several approaches have been @dapabis continuous search for

newer, faster and more robust detection techniques.

The most successful and interesting methods to solve thadegmoof trail detection are

presented next in this chapter.

Typical solutions often tend to rely on assumptions coriogrthe position of the robot
and general characteristics of the trails, like their apge@e and structure. Some approaches
assume that the robot is already on the trail and orientathatoSectiori 2.11), and make use
of this information to build a colour model of the trail or k@round, thus separating one from
the other. Besides this assumption, other approaches s¢smna that strong edges segment

the trail from its surroundings (Section P.2). The procedmding the boundaries can be very
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diverse, while some techniques rely on the use of colourmédion, others go a little further
and recur to evolutionary, biologically inspired algonth. However, these two assumptions
often fail to occur on realistic situations. An alternatigseo segment the image, group some of
the segments to build hypotheses, and then score thesehlegpstagainst a model of the trail
(Sectior2.B). Good segmentation techniques tend to be w@tignally intensive, thus rende-
ring the use of this method unsuitable for real-time appilce. In an attempt to reduce this
computation time problem, and assuming a trail viewed updespective is well approximated
by a triangular shape, hypotheses may be generated djractithen scored using appearance
contrast between a trail hypothesis and its surroundinigmedSectiomn 214).

The model presented in this dissertation differs from thevious approaches by making
use of visual attention techniques (Secfion 2.5). Due tcctmeputationally intensive nature
of visual search algorithms, the ability to highlight fesiand places of interest in a context-
dependent way might prove useful. Although visual saliemechanisms are not common in
trail detection, in other applications including attentb systems for humanoids and obstacle

detection for mobile robots several approaches have risen.

2.1 On-trail Approaches

When considering autonomous navigation for mobile robwisst of the time it is rea-
sonable to assume that the robot is already following a roadad, and therefore inside its
boundaries and oriented along it. This assumption has diirtm to a number of methods,
being most of them colour-based algorithms.

On the account of road detection, a method based on self\ss@e learning has been

proposed by Dahlkamp et al. [Dahlkamp et al., 2006]. This ehoelies on a laser range finder

to scan for flat, drivable surface area in the vicinity of tiedicle, which is assumed to be road.
The colour information associated with this area is therduseconstruct appearance models
to classify the entire field of view of the camera. AdditidgalGPS information is used to

guarantee that the robot is on the road and therefore thaldeisurface identified by the laser
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Figure 2.1: Trail detection using colour-based clusterirgs proposed in
[Fernandez and Price, 2005]. Blue rectangles represenculled segments. The deter-
mined trajectory is overlaid in white.

range finder is correct. In natural unstructured off-roadrenments, where paths commonly
appear as trails, thus being more narrow and unpredictafiterbads and surrounded by dense

vegetation or trees, GPS information might not be so rediabl

The model proposed by Fernandez and Price [Fernandez ared PO05] relies on colour

vision for detection and tracking of poorly structured do&ds in natural environments. The
prime assumption for this method is that road surface dysptalour-space statistics different
from the surrounding regions. In this model, the task of rdetcting and tracking is accom-
plished in three steps: characterisation of the road, elung of road regions, and modelling
of its trajectory. For the first step, it is yet assumed thanalkrectangle in the centre-bottom
of the image always contains a portion of the road, which allused to characterise it. Ana-
lysis of this region in a Hue, Saturation, Intensity (HSIyigat colour-space is the basis for
the creation of a colour-based filter, which is then used @ fiixels that may belong to the
road area. The next step consists of aggregating these jpikelregions representing segments
of the road, by assuming it is generally presented in the @rfeigving from bottom to top.
This is accomplished by first dividing the image in horizdsieces, then performing a series
of region-growing segmentation operations using the slaeborderlines, and finally merging
and culling the segments, retaining only the largest segipenslice. In the third and final

step the centres of mass of the segments mentioned in thieysetep are computed and used
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Figure 2.2: Trail detection using histogram colour clasatibn as proposed in
[Rasmussen and Scott, 2008b]. Yellow lines delimit theresfee areas. Pixels classified as
on-trail represented in green.

to determine the trajectory, by means of a spline curve uiagveighted centres of mass as

control points, as depicted in Fig. 2.1.

Another approach based on similar assumptions, appliech$tructured trails in natural

environments, is the model proposed by Rasmussen and Bestitnussen and Scott, 2008b].

In this method the terrain is first classified as flat, thickianested by analysis ofladar scan.

In the case of thick or forested terraladar information alone is used to guide the robot by
finding the empty space between the vegetation. In flat tethaiugh, this is not sufficient for
selecting the region of the image corresponding to the &raill therefore an image-based trail
segmentation is performed. In this case, the first step ofrihod consists of constructing a
3-D histogram corresponding to a colour model for the bamlkd, based on the RGB values
of the pixels contained in two narrow rectangular areas eléft and right sides of the image,
extending from its bottom to a horizon line. This backgronmadel is then used to classify all
the pixels below the horizon line as on or off-trail. Finallye reference left and right areas are
adapted according to an estimate of the trail width. An eXxerapthe result of this model for

flat terrain is shown in Fig.2.2.

As mentioned, the above models work nicely in situationk®¥aihg the main assumption

that the robot is already on the trail and oriented alongitoher requirement for the success of

28



these algorithms is that the trails present colour stesishiat are different from the background.
Bearing this in mind, these algorithms are prone to fail isesawhere: (1) variations that are
sufficient to cause the robot to lose track occur in the stnecof the trail; (2) the robot is not

on nor aligned with the trail; and (3) the colour statistiéghe trail and the background are
identical. Unpredictability in the structure, appeargraed orientation of natural trails makes
these situations of possible failure occur more frequethidyn expected, thus highlighting the

need for algorithms not sensitive to these factors.

2.2 Edge Detection based Approaches

Trails and roads often present visual cues that distingthisim from the background. The
idea of exploring the characteristics of the road-scengivas birth to a number of approaches
based on the detection of the boundaries of the trail or rhad; finding and classifying the
internal subsequent area as navigable. These methods atecaromonly applied to well
structured roads and lanes, as can be found in urban envérsm

Well known work in vision-based road following includes tin@dels proposed by Southall

and Taylor [Southall and Taylor, 2001], which consists df&sting the lane markings explo-

ring the contrast on colour images and then estimate thebleghposition using a particle filter,

and Apostoloff and Zelinsky [Apostoloff and Zelinsky, 2Q00®&hich relies on particle filtering

and cue fusion technologies to build a multiple-cue visaakltracking system. Both methods

are designed to work on paved or painted roads with sharpsed@enversely, Rasmussen

[Rasmussen, 2004] proposed a model for following ill-stmoed roads using the dominant tex-

ture orientations of every pixel in the image to estimaterastang point.
In rural and off-road areas, where roads appear with tike@l-¢tharacteristics, i.e., narrow
and unstructured, this kind of approach is not so commonded in the work described below.

A visual method for outdoor trail localization relying ongedetection is proposed by

Bartel et al. [[Bartel et al., 2007]. In this model the visulssification algorithm is processed

in three steps: trail border detection, object extractiod direction control. For detecting the
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Figure 2.3: Border extraction process, as proposed in ¢Battal., 200[/]. Processing steps,
from left to right, top to bottom, are: original image, greenblack, gaussian blur, contrast
enhancement, thresholding and border extraction

trail border, it is assumed that most trails have grass artgthborders and therefore all green
pixels of the image are painted black. Next, a gaussian blapplied, followed by a contrast
enhancement, thus revealing the pathway as the brightssirathe image. Finally, the image
is thresholded, separating the path from non-trail aread,ita edges are extracted by means
of a gradient filter. See Fid._2.3 for an illustrative exampl¢his process. In the second step,
an object extraction algorithm is used to select the biggestour surrounding smaller ones,
which allows the rejection of wrongly classified structulgag within the boundaries of the
trail. For the last step, the centre of the extracted bouesl@an several horizontal lines is used

to generate a control signal.

An alternative to the above method is the use of simple agengoposed by Broggi and
Cattani [Broggi and Cattani, 2006]. The implemented alyoniis based on the Ant Colony
Optimization (ACO)|[Dorigo and Stitzle, 2004], which c@sts in a parallel meta-heuristic for
combinatorial optimization problem inspired by the foragybehaviour of biological ants. The
first step is to localize the optimal starting states, whigh @aced in peripheral areas where
a sufficient percentage of edges is present. By computinggbrial euclidean distance be-
tween a RGB Normalized transformation over the input imagkthe temporal average of Red,

Green and Blue values of road pixels over all the images, lzewapplying a gradient operator,
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Figure 2.4: Evolutionary approach to path detection predas [Broggi and Cattani, 2006].
Top row presents the original images with the agents’ patieslaid. Middle row shows only
the ants’ paths, for clearer visualization. Bottom row edsehe path detection results.

a monochromatic edge image is obtained. This representntigea priori information given
to the agents. The obtained image is then used to define thkhearistic function, under the
rule that the attractiveness of a pixel is proportional ®hhghtness of its correspondent in the
edge image, and the cost function, under the rule that thieof@msovement towards a pixel is
inversely proportional to the brightness of its corresporidn the edge image. Next, the de-
ployed agents move according to their random-proportiandl pseudo-random-proportional
rules, with edge-exploitation and pheromone-exploitabehaviours, and random movement
polarized by a point of attraction. Agents are divided instb with different parameters
for the moving rules, meaning that as the execution procdegisbecome more sensitive to
pheromone, and less to heuristics. When every agent of @tshas reached the final pixels
the pheromone trails are updated according to an evaponatim and the ants contributions,
in order to enhance paths formed by bright pixels and rentlyreisited. To extract the final
solution a single agent is created in each colony, which npixel by pixel attracted only to

pheromone until a final pixel is reached, thus building agsentation for the road boundaries.
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The agents paths and detection results can be seen in Big. 2.4

These models work nicely in well delimited trails surrouddsy dense vegetation or side-
walk, and in roads with lanes well demarcated from the bamkgd. In situations where the
trail is somewhat mixed with its surroundings, like moseafoccurs in natural off-road envi-
ronments, edge detection may become a difficult task, thexahaking these kind of algorithms

achieve a low success rate.

2.3 Segmentation-based Approaches

Finding the edges of a road in order to segment it from the drackhd might be a difficult
challenge in natural terrain. In this line of thought, othpproaches based on image segmen-
tation techniques have emerged. These methods should lr@gcenough to allow distinction
between background and trail. Therefore, the detectioorigtgn focuses on selecting the seg-

ment or group of segments that best fit a trail model.

The work proposed by Soquet et &gl. [Soquet et al., 2007] magef stereovision to es-

timate free space in the image, and then applies colour sggtren to extract road segments.

Anisotropic texture features of roads are explored by ZtzamthNagel[[Zhang and Nagel, 1994]

for the segmentation purpose. These algorithms focus iec¢awnd fairly structured roads,

which possess characteristics not present in naturas tiied hiking and biking paths.

In this context, Rasmussen and Scptt [Rasmussen and Seo8aPproposed a model for

the trail detection problem. In this method it is assumedl tiirare is only one trail region, and
that it follows the shape of a triangle with its base alignethwthe bottom edge of the image.
The detection algorithm begins by generating a set of tigilotheses based on the grouping
of superpixels generated by an over-segmentation algorilihese hypotheses are then scored
according to several shape and appearance criteria, algl fima one with the highest score
is picked as the representation of the trail region. An tteea agglomerative process is used
to generate the hypotheses. First, a pixel is selected nalgdoom the bottom of the image

and used as the seed. Each iteration of the agglomerati@eggaonsists of adding a new
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Figure 2.5: Superpixel segmentation based trail detectiae proposed in
[Rasmussen and Scott, 2008a]. Top row represents the inpages. Bottom row shows
the output of the detector, overlaid in the input image. Rekihdts segments obtained from
the segmentation process. The best-scoring groupingriegepted in green, and the respective
fitted triangle in blue.

member to the superpixel grouping, chosen from its set ajhimurs and with probability
given by the Euclidean distance in RGB space between thdlpeiging superpixel and the
current group. The appearance variation and the overaldfithe agglomeration are used to
determine the final number of superpixels in it. To assessé#lildikelihood of each hypothesis,
the grouping is scored using a triangle as the trail shapplegmand according to three terms:
shape, appearance, and deformation. This is done simtlatlye work of Sclaroff and Liu

[Sclaroff and Liu, 2001], which uses a deformable model tmguhe grouping of regions in

search for relatively simple shapes like bananas and giges$ in fairly uncluttered images.
The first term, shape likelihood, consists in approximatimg grouping with a triangle fitted
with its highest, leftmost and rightmost points, and therasueing the similarity between both
shapes. The second, appearance likelihood, measuresfiérertie in appearance between
a grouping and its neighbouring superpixels, and the vanawithin. Lastly, deformation
likelihood measures how different the approximated triang from a learned model of the
trail. The triangle fitted to the best-scoring grouping isgagated to the next frame, and used
to evaluate the appearance likelihoods of the newly gesédaypotheses. Fid. 2.5 presents

some illustrative results of the detector.
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Figure 2.6: Segmentation algorithm for path detection ap@sed in[[Blas et al., 2008]. Top-
left shows the input image. Top-right represents the asség of each pixel to a texton.
Bottom-left is the final segmentation, and recognized pa#hown in bottom-right.

Another segmentation based method applied to trail detetithe one proposed by Blas et
al. |Blas et al., 2008]. This appearance-based segment@torithm makes use of colour and

texture in conjunction with 3-D information provided by aigo camera. For colour and texture
representation compact descriptors composed by the ciolfmumation of the centre pixel and

the relative change in intensity in a local neighbourho@dsed. The computed descriptors are

grouped using a k-means algoritim [Jain and Dubes,|1988f4xnd Hart, 1973]. Alternative

clustering methods include graph-cut-based approachasgifivet al., 2004], Self-Organizing

Maps [Martin-Herrero et al., 2004], or level-sets [Liapise, 2004]. The grouped descriptors

are then assigned to basis vectors, i.e., textons [Leund/afill, 2001], which are vocabularies

for tiny surface patches with associated local geometudgdrotometric properties. Histograms
of these textons are clustered again using k-means to finthsnegions in the image, which are
merged to provide the final segmentation. The segmentedam@gtains only a small number
of regions, which are then analysed in search for the oneptieg geometric attributes more

similar to a path. These steps can be visualized in[Eig. 2.6.
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Although a good segmentation of the terrain may provide aaldke assistance in trail
detection, contemporary models for robust image segmentahd subsequent grouping are
computationally intensive and consequently unsuitabledal-time requirements. Moreover,

grouping tends to fail in the presence of interrupted trails

2.4 Contrast-based Approaches

In a study parallel to the one presented in this dissertaiod extending the superpixel

model described in the previous section, Rasmussen et abnjBssen et al., 2009] proposes

the use of appearance contrast for trail detection. The rdaabehind this method is to look
for a triangular region which contrasts with the surrougdin The basic framework for trail
finding is to generate trail hypotheses and score each ofwitna likelihood function, assum-
ing that a trail viewed under perspective may be associaitdantriangle shape starting from
the bottom of the image. Trail hypotheses are generateddrl@arned distribution of expected
trail width and curvature variation. For each hypothesis additional triangles are defined
in its left and right neighbouring regions. Histograms ahkans cluster labels in a CIE-Lab
colour space are computed for the three triangles. Thdik@lihood is captured by measuring
the dissimilarity between the trail region and the surrangdnes, as well as the symmetry
of the flanking regions, and the highest scored hypothesisasen for trail representation, as
can be seen in Fid._2.7. Several alternatives to measuri&asimbetween image regions in-
clude colour and texture histogram measures such as Bhattg@ ory? [Dunlop et al., 2007],
[Varma and Zisserman, 2005], brightness in grayscale isfigen and Malik, 2003], Euclide-

an colour distancé [Martin et al., 2004], and the Earth Msv@istance([Mori, 2005].

In the referred method it is assumed that trails are imaggewdsct triangles and both their
left and right sides share the same appearance. Althougl #ssumptions comply with a large
set of situations, natural trails not always possess thegeepies. Additionally, the extensive
use of 3-D information to bias the detection process in thdehcomplicates the assessment of

the role played by the appearance-based component in thiestes

35



Figure 2.7: Appearance contrast method for trail detectiae proposed in
[Rasmussen et al., 2009]. The outputs of the detector arectddpas coloured triangles
overlayed in the input image.

2.5 Visual Attention Models for Autonomous Robots

Cognitively rich robots make use of visual perception fageraction with humans and their
surroundings in a context-dependent way. For this purpibgeability to highlight features
that have a high probability of being relevant, thus allayvthe system to filter unimportant

information, is a great advantage.

Vision-based attentional systems for humanoid robots baes proposed by Moren et al.

[Moren et al., 2008] and Ruesch et &l. [Ruesch et al., 2008th Bhodels make use of visual

saliency to control the gaze of a humanoid head. In the fipicific features of the objects
being sought according to a task are used to apply top-dowdutation to bottom-up saliency
maps. This results in an increase of the saliency of theserées thus highlighting objects in
context-dependent way. The second model integrates moltial saliency information (visual
and auditory) into a unified spacial representation. Thatgavith the highest overall saliency

value are the ones considered interesting and used to foewdtention of the robot.

Visual attention mechanisms have also been applied to mobldotics with the purpose
of reducing the computational cost in expensive tasks lifjeat detection and characterisa-

tion. Concerning vision-based navigation for all-terrgiound robots, visual saliency has been

used for successful guidance of an obstacle detector byasamt al. [[Santana et al., 2009],

[Santana et al., 2010c]. In these models, visual saliencgésl to focus the attention of the

detector by selecting areas of the image correspondinggione that contain obstacles, thus

narrowing the analysed data, which results in reduced ctatipn times and lower sensitivity
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to noise. Although these models make use of visual salieamtlga robot navigation context,
this dissertation reports its first time application to thgktof trail detection.

A different attentional mechanism is proposed by Hong efldéng et al., 2002] to focus

a colour-based detector of puddles and road signs. This Imualees use of laser and colour
information to build a world model. The data gathered is thsed to predict which regions of
future images should be analysed.

Since it is rather common the use of saliency for other task®gnitively rich robots, the
overhead of its computation is diluted over all modules g#inBearing this in mind, the use of
a bottom-up saliency mechanism to guide the focus of se&eattention in context-dependent
tasks, like object or trail detection, is by itself a meangletreasing computation time and
therefore an important process for real-time applicatioAdswever, in unstructured off-road
environments, although bottom-up attention provides ammdar constraining the focus of
attention, a top-down mechanism is needed in order to findkeep the correct focus of interest
on the object being sought (obstacles, trails) in spite oélated salient features.

Specifically in the trail detection problem, although viksaliency can be used as a means to
segment the input image by determining which regions of theal field detach more from the
background, the saliency maps generated may not be acea@igh to allow an immediate and
correct detection, namely in the presence of distractovehen the trail is considerably hetero-
geneous. A method for diminishing this problem is to usedopm boosting of visual features
that are known to describe the object being sought. Howélvese features are considerably
unpredictable in the case of trails in natural environmeiitsovercome these difficulties this
dissertation proposes a novel use of top-down knowledgesridrm of behaviours ruling the

motion of simple agents inhabiting the saliency and itsrimediate conspicuity maps.

37






Chapter 3

A Saliency-Based Approach to Boost Trall

Detection

This chapter presents a saliency-based solution to baoktlatection. A careful observa-
tion of natural images highlights the fact that trails arecures that easily pop-out. Bearing
this some quantitative support, and visual saliency cdutd e applied to focus the attention
of an accurate trail detector in an unbiased way. Experiaieesults herein presented support
this assumption and furthermore show that, with properyaigl saliency information alone
provides enough cues to reduce the ambiguity regardingtbaitls position and approximate
skeleton to three hypotheses, in the vast and diverse usaskdaT his analysis is performed by
a set of agents inhabiting the saliency and feature speciécnediate maps. These agents’ be-
haviours exploit implicit, top-down knowledge about thgemb being sought in an active way.
With the proposed model, computationally demanding ac¢eurail detectors are able to focus
their activity to a fraction of the input image, thus pronmgtirobustness and real-time perfor-
mance. Notably, this robustness is revealed with the medéility to detect what we humans
would select as the most navigable area, in images whele ara almost indistinguishable or

not even present. See Hig.]3.1 for some representative éasmp
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Figure 3.1: Input images (above) and respective salien@srfizelow), where saliency is repre-
sented in grey level. These maps are the superposition afdwspicuity maps, one for colour

and another for intensity channels. Each of these maps istsshfor trails by agents (see
Section3.R), whose paths are described by the overlaid.liiicker lines refer to the most

probable trail candidate, which appears in the input imaged. The best agent found on the
intensity and colour conspicuity maps is represented ie Bhd green, respectively.
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3.1 Saliency Computation

Saliency computation is about determining which regionfiefinput image are more cons-
picuous, i.e. detach from the background, at several sealé$eature channels. In this model
only intensity and colour channels are used, and saliencgrnguted according to the biolo-
gically inspired model proposed by ltti et al. [ltti et al998], properly adapted to the task at
hand.

Shortly, one dyadic Gaussian pyramid, with eight levelssamputed from the intensity
channel. Two additional pyramids, also with eight levets,@omputed to account for the Red-
Green and Blue-Yellow double-opponency colour featurennbés. The various scales are then

used to perform centre-surround operatidgns [ltti et al9819 The resulting centre-surround

maps have higher intensity on those pixels whose correspgifieature differs the most from
their surroundings. An example is a dark patch on a brighkdpaaind (off-on), as well as the
other way around (on-off). On-off centre-surround operadiare performed by across-scale
point-by-point subtraction, between a level with a fine s@ald a level with a coarser one. Off-

on maps are computed the other way around, i.e. subtratiéngpiarser level from the finer one.

Rather than considering the modulo of the difference, asarotiginal modelltti et al., 1998],

both on-off and off-on centre-surround maps are considegedrately, which has been shown

to yield better results [Frintrop et al., 2005, FrintropP8R Then, the centre-surround maps are

blended to produce two conspicuity maP§(¢) € [0,1] andCl(t) € [0, 1], one aggregating
colour and another aggregating intensity informationpeesively. Finally, these two maps are

blended in a final saliency m&§(t) € [0, 1] [Itti et al., 1998].

When blending maps, the most discriminant ones, i.e. thweighlight a smaller number
of objects, are typically promoted by recurring to a norisetion operator. In the original model

[Itti et al., 1998], this is done by scaling a given m&paccording to the normalisation operator

N(.). This operator is defined by the square of the difference éatwits global maximum,
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M (X), and the average of all its other local maximg,X), i.e.

N(X) = X - (M(X) = m(X))? (3.)

A similar normalisation operator has been proposed by feqingt al. [Frintrop et al., 2005,
[Frintrop, 2006]. In this case, the uniqueness operator,

W(X) = X/\/m(X) (3.2)

scales the maj according to the number of its local maxima above a giverstiokel,m (.X).
In this work the threshold is set to its default value, be% of the map’s global maximum

[Frintrop, 2006]. This method allows, among other thingsatcount for the proportion of

objects competing for attention when determining theiiesaly.

Common to both methods is the use of local maxima informatidrich though appealing
not always embodies the information intended to capturegd.&domogeneous structures for
instance, such as the sky, generally encompass only a feal hoaxima. In this situation,
the sky would be undesirably considered highly conspicudespite its large foot-print in
the whole image. A second aspect is that the two analyseehsglimodels consider that all
pixels contribute equally to the saliency computation. ldeer, excepting for extreme tilt/roll
angles, the upper region of the image has little relevamtrmétion for trail detection. As a
consequence, without a space-variant contribution to tta¢ §aliency map, feature maps that
are only discriminative in the lower part of the image, andsemuently interesting for trail

detection, would not be adequately promoted.

In face of these limitations a new normalisation operatdraeein proposed. Rather than
considering only the map’s local maxima when averaging; iaslone inN(.), it is proposed to
use all pixels. Furthermore, the contribution of each pigghe average is weighted according

to its distance from the top row. Formally, |&tt(X, ¢, r) return the intensity of the pixel in
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columnc and rowr of a given mapX, with heighth(X). Let
w(X,e,r)=+/r/h(X) (3.3)

be the weight of pixel at positioft, ). The map’s weighted average,,, is thus given by

> emex Int(X, e,r) - w(X, c,r)
Z(C7T)6Xw(X, e, )

my(X) = (3.4)

and similarly to the operata¥|.), the proposed normalising operatéi(.), takes the form

K(X) = X - (M(X) = m, (X))’ (35)

To reduce computational cost, the proposed system useg iopegators over 8-bit images,
whose magnitude is clamped [@ 255] by thresholding. In addition, prior to normalisation,
maps are scaled to cover the interjaR55], meaning thaf\/ (X') = 255 for all cases.

The Receiver Operating Characteristic (ROC) curves degict Fig[3.2 show that, for the
tested dataset (see Appendik A, Figs.1A.11A.6), the propasecedure produces consistently
a better trade-off between the True Positive Rate (TPR) atseHPositive Rate (FPR) than
the other two methods. The small difference between the R@&s could suggest that only a
small quantitative improvement was obtained with the psgpolonodel. However, the averaging
procedure used to build the curves hide the fact that nonbeobther methods was able to
consistently allocate higher levels of saliency to tragioms than to the background as often as
the proposed one.

Fig.[3.2 also shows that saliency is considerably corrélati¢h trail location, which is an
important contribution by itself. This correlation canalse observed for typical images in
Fig.[3.1. However, it is still lower that the one required farcurate trail detection. That is,
there is no single threshold on the saliency map that clesdynents the trail for all images in
the dataset. It is thus important to devise a mechanism aldedrcome this limitation. As it

will be shown in the next section, an agent-based desigreiadiequate tool for the purpose.
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Figure 3.2: Normalisation operators comparison. Eachipltte average ROC curve over all
images in the dataset, for a given normalisation operatdC Rurves were built by threshold-
ing the final saliency map and comparing the resulting b&earimage against the hand-labelled
ground-truth of the dataset. All operators result in curaiesve the line of no-discrimination,
y = x, thus showing the positive correlation between visuaksaly and trail presence. More-
over, the higher area under the curve for the proposed médel, demonstrates that it is the
most adequate for the task at hand.
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3.2 Trail Detection Agents

Rather than considering image analysis as informationgasing, this work follows the idea
of considering it as the result of a sensori-motor coordamgbrocess. Under this paradigm, the

agent-based approach to image analysis, in particulatjecbrecognition, is showing promi-

sing results[[Floreano et al., 2004, Owechko and Medas@fg,2e Croon and Postma, 2007,

Choe et al., 2008]. This success story can be in part under&ty the fact that agents realise

active vision local loops, and thus exploiting all the knaadvantages of considering perception
as an active process [Ballard, 1991]. Being this work in hvith this novel way of develo-
ping robust perceptual systems, its potential successibotgs to the body of evidence on the
relevance of an agent-based design for perceptual systems.

In a context different from the one considered in this disg&m, i.e. road detection, the

agent-based design has already and successfully beenBrsegjjand Cattani, 2006]. Des-

pite the fact that the work herein proposed focuses on tireskead of roads, some additional

differences between this model and the one of Broggi & Cafmggi and Cattani, 2006] can

be observed. As it will be described, in this method agerttalit conspicuity and saliency
maps, rather than the image space itself. The focus is séteostiiucture being sought, i.e. the
trail, and not on its boundaries. In addition, the hard aggion that the robot is on the trail or
road is herein disregarded.

The system is composed of a set of agehts, deployed in each conspicuity and saliency
mapm € {CC(t), Cl(t),S(t)}, with width w(m) = 320 and height:(m) = 240. Each agent
moves on one of these maps, according to a set of rules, inemgttof following a given trail

hypothesis.

3.2.1 Agent Recruitment

Let us first describe how agents are deployed in the three ,mdpsh occurs according
to the maps intensity level, i.e. the level of conspicuitysaliency, depending on the map in

question. In order to avoid any noise potentially presernhatmap’s boundaries, agents are
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deployed with a small offset of the bottom of the map in questi.e. at row = h — 15, where

h is the height of the maps.

To determine the column where each agent is deployed, titgnuemsional vector

v® = (vg', ..., o) (3.6)

7w

is first computed, where is the width of the maps. The elemeijt of v refers to the average
intensity of the pixels in columi, contained between rowand rowr — §, whered = 10 to

avoid deploying agents in columns with spurious high intgrsxels. Formally,

=Y mik D))o (3.7)
le[r,r—4]
wherem(k, 1) is the intensity or saliency level, depending on the map iestjon, at pixel in

columnk and row!.

Finally, the agent € F,, is deployed in column
c(e) = arg max o (3.8)
thus compelling it to be initiated in the most salient regiaccording tov™.

To analyse the second most salient region, an InhibitiofiR€urn (IOR) mechanism is
used. This is implemented by zeroing the elementg™®fthat are connected 7, through
elements with values similar to it. This agent deploymeqgus@&ce is repeated until one of the
following holds: (1) a maximum number of agents,.., has been deployed in the map or (2)
the current highest value &f™, max(v™), is below a fractiom of its initial value, i.e. before
the first agent was deployed. In this wagk= 0.7, which avoids the deployment of agents
in low intensity (conspicuous/salient) regions. An ilkaton of the recruitment procedure is

presented in Fid._3.3.
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(a) Agentl (b) Agent2

(c) Agent3

Figure 3.3: Agent deployment process. lllustrative exapt 3 agents deployed in a map. (a)
The first agentg,, is deployed in the region of the map with the highest intign&onspicu-
ity/saliency level), according to the vecto®. (b) Inhibition-Of-Return (IOR) is applied to™,

and the second agen, is deployed in the next highest intensity region. (c) Samoegdure

for the third agentes. IOR is applied and; is deployed. The dotted lines represent the agents
motions since their onset (square())), until the current iteration (circley(n), embedding the
behaviours described in Section 312.2. The map depicteaghid-made and purely illustrative.
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3.2.2 Agent Behaviours

Let us now describe the behaviour of each deployed agensifglicity, agents and maps
indexes will be discarded in the remainder of this sectiohatTis to say that the following

applies to a single agentallocated to a specific map.

The setO = {1,2,3,4,5} defines agent motor actions in terms of an index to the nearest
neighbour pixels whereto the agent can move from its cupesition,o(n), at iterationn (see
Fig.[3.4). To reduce both sensitivity to noise and compaieti cost, the agent’s surroundings
are segmented into regions . . . R; (see Figl.34). The average intensity of a region containing
pixel p is given by A(p). For instance, bothl(1) and A(6) correspond to the average intensity
of the pixels contained within regiof;, as this region is composed of pixels 1, 6 and 11. Thus,
regions are indirectly indexed by their encompassed piXéie straight intensity of a pixelis

simply given byInt(p).

R, 71 2131|149 |R,

Rof11| 6 | 1 I 5 | 10|12 | Rs

Figure 3.4: Agent neighbourhood relative pixel indexes.nm¥ers correspond to the pixels’
index relative to the current position of the ageirtt;). Regions surroundingn) are segmented
in Ry = {1,6,11}, Ry = {2, 7}, Ry = {3,8}, Ry = {4,9}, Rs = {5, 10, 12}.

To account for top-down knowledge on the structure of theadiyeing sought, a set of five

perception-action rules, i.e. behaviours,

B = {greedy, track, centre, ahead, commit} (3.9)

vote for each possible action,c O, according to the behaviour-based voting command fusion

approach[[Rosenblatt, 1997]. The most voted actioiiy ), is selected by the agent as the next
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motion, which is then used to update its positiofm),

o(n) =T(a"(n)), a*(n)=arg I;leaOXZwb - fy(m,a,n) (3.10)

beB
whereI'(.) transforms a motor action, € O, onto pixel coordinates centred on the current
agent’s positiony, is the weight accounting for the contribution of behavibw B, described

by the evaluation functiof,(m, a, n) as follows,

Aa) =2 geq v

Fracil(a,m) =1 = = (3.11)
faneaa(a,n) =1 — @ (3.12)
Foommitla,n) =1 — o™ (n _41) —a (3.13)
Fromre(@, ) = |du(n) - (6 ' H(_dg<n)) _ a>| (3.14)
foreeay(a,n) = Ala) (3.15)

255

whered(n) is computed as described in Hig.]3.5(a) &n(d) is the Heaviside functiony) is a set
whose elements are scalars with the intensity of the pixelssed by the agent along its path.
Formally, Int(o(n)), is inserted toQ as follows,Q(n) + Q(n — 1) J{Int(o(n))}. Refer
to Table[3.1 for further details on each behaviour and [Fif.f8 examples of agent typical
motions. The best performance has been empirically oldaivith the following trade-off,
Wyreedy = 0.45, Wiraek = 0.35, Weentre = 0.10, Wanhead = 0.05, Weommir = 0.05.

The agent is allowed to move until one of the following steyptonditions is met: (1)
a maximum number ofy; iterations is performed; (2) the agent reaches tewrow zero at
image’s top); (3) the average intensity of regid®s. . . R5 is below a given proportiof < 1

of the average intensity of the pixels visited by the agent.

q AJ)
ﬁ-%n_1>j17 (3.16)
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Behaviour

Voting Preferences

greedy

Regions of highest intensity, under the assumption thas tese the mos

salient structures in the map. See Eigl 3.5 (a) for an ikistn of this process.

track

Regions whose average intensity is more similar to the geeatensity of
the pixels visited by the agent, under the assumption thég’tconspicuity is
somewhat homogeneous. See Figl 3.5 (b) for an illustrafitm®process.

centre

Regions closer to the centroig(n), of the set of pixelsS(n), that: (1) share
the row witho(n); (2) display intensities similar (i.e. within a given marg
~) to the one ofo(n); and (3) are connected tgn) through a set of pixels
complying with the first two conditions. The goal is to maintéhe agent
equidistant to the trail's boundaries, where the deviatmihe centroid is

given byd,(n) = "(“’”&w with D(n) = |S(n)|. Remember that(p) re-

U7

turns the column of pixeh. See Figl_-3}5 (c) for an illustration of this process.

ahead

Upwards regions under the assumption that trails appeasrtisal elongated
structures. See Fig._3.5 (d) for an illustration of this @ex

commit

Previously selected region, to reduce sensibility to loxase, under the as
sumption that trails’ outline is somewhat monotonous. SgdF3 (e) for an
illustration of this process.

Table 3.1: Behaviours ruling the trail detection agentastrations of each behaviour are shown

in Fig.[3.3.
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(a) greedy (b) track
(c) centre (d) ahead

(e) commit

Figure 3.5: Behaviours ruling the trail detection agentse @otted lines represent the agents
motions since their onset (square}), until the current iteration (circle)p(n). The map
depicted is hand-made and purely illustrative. (a) Greeglyabiour. The agent will follow
higher intensity regions. (b) Track behaviour. The agefitpuvefer regions similar to the ones
already visited by it. (c) Centre Behaviour. The pixels cosipg the thicker horizontal line
define the sef(n). The agent will try to approach this line’s centraith), represented by the
white square, which is deviated from the current agent'stioos o(n), by |d.(n)| pixels. (d)
Ahead behaviour. The agent will prioritize upwards regide3 Commit behaviour. The agent
will follow the previously selected region. 51



where,a; = 50, as = 160, andj = 0.7 are empirically defined scalars.
The set of agents deployed in a given map must be ranked im twdeelect the one that
better represents the trail. Consequently, as soon as ahe pfeviously mentioned stopping

conditions is met, the score of the agent is computed,

p o3 D) — D) 617

whereu; = 0.01, up = 0.01, ug = 0.5, uy = 0.5 are empirically defined scalars and
d(o(n),0(0)) is the Euclidean distance between the two points. The finstepaf the score
function accumulates the firsf)’, and secondp”, derivatives ofD along the agent’s path.
This parcel favours paths where progressively shrinks towards a vanishing point. The se-
cond parcel promotes agents whose path contains highgnsalixels. Finally, the third parcel

disfavours short paths.

3.3 Experimental Results

This section presents a set of experimental results olutauith a dataset composed &
colour images, with resolutioft0 x 480, obtained from Google (see Appendik A, Figs.JA.1-
[A.6). The dataset only encompasses images obtained witBreamoughly located at the eyes
height, and thus providing a vantage point that would be tdel for a medium-size robot.
The trail detector has been implemented without thorougte aptimisation, and tested in a
Centrino Dual Cor@ GHz, running Linux, and OpenCV for computer vision low-lerautines.

Since the output generated by the trail detector is the st#teodgents’ paths, and not the
trail's outline, it is difficult to find a way of comparing thesults against some sort of ground
truth. The following describes the assumptions taken tesss#hether a given agent has been

able to represent the trail. Trails are considered cogreelected if the agent is deployed inside
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the trail and finishes its run also inside, or very close te tthil. In addition, curves and zigzags
described by the agent are considered valid as long as thegtaly inside the trail, or very close
to its borders.

Table[3.2 summarises the results obtained as a functior@h&ximum number of allowed
agents per map,... € {1,3,5,7}. In afirst analysis, success rate is calculated per map. This
allows to determine the proneness of each map alone to gr@ndugh cues for its highest
score agent to properly represent the trail. In a second pmdlanalysis, success is obtained
when at least one of three map’s best agent, succeeds. badasthe ambiguity regarding both
trail's position and approximate skeleton is of up to thrgpdtheses, i.e. one per map 9%
of the tested images. This clearly shows that the propos¢kdad@ccurately focus agents on
the most promising regions of the image.

The obtained results also confirm the positive correlatetmben saliency and the presence
of trails (see Fid.-312). Would this correlation be nonexisaind the trail detection results would
be linearly affected by the number of agents. Instead, wgimgle agent per map, the trails in
90% of the images were properly detected, whereas an incremientyo6% is observed if two
additional agents per map are deployed. An even smallegrdiitial is obtained when we go
from three to five agents, namel{;. Adding more agents reflects in a null gain.

Figs.[A1[A.8 show the trail of the best agent per map in theges composing the dataset.
These images are very diverse and in some cases no trail ceume altogether, not even
by the human eye. The system still produces a correct anfivegnis, selects the open region
through which the robot would be able to traverse. This igya sif generalisation capability,
which was only possible due to the use of a non-specific deteas it is the case of saliency.

Hence, even in the most difficult situations, saliency andspccuity maps were able to
maintain a globally coherent description of the environmeétowever, the existence of local
intensity variations requires the system to have a coraldietevel of robustness in order to be
unaffected by those local artifacts. The agent-based apprshowed to be that robust, mostly
due to the fusion of several behaviours. Moreover, beingralptottom-up and feed-forward

approach, the method is exceptionally fast, taking an geeodil ms per map. This includes
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Nr. of Agents | Colour Map Intensity Map | Saliency Map| Combined
Zmaz = 1 44 % 64 % 74 % 90 %
Zmaz = 3 54 % 78 % 82 % 96 %
Zmaz = D 58 % 80 % 82 % 98 %
Zmaz = T 58 % 80 % 82 % 98 %

Table 3.2: Trail detection results.

finding all the potential trails, finding their length, andocising the correct one. An additional
cost must be considered, which refers to the computatiohethree maps, which takes on
average30 ms. These maps have two remarkable embedded propertiethegl3egment the

input image in a very efficient way, and (2) they naturallyoptise the segments according to

their conspicuity.

54



Chapter 4

Swarm-Based Visual Saliency for Trall

Detection

In the previous chapter was shown that the saliency map ofengmage corresponds
itself to an efficiently computed segmentation of the latt€hat is, the segmentation of the
input image, which can be a computationally intensive taak,be obtained as a by-product of
determining which regions of the visual field detach morenfithe background. Furthermore,
the obtained segments are already prioritised by theirgonsy level. It was also shown that

visual saliency and trail location in the input image areipoay correlated.

From these findings it should follow that the highest priogeégment in the saliency map
matches the location of the trail in the input image. In gssgctthis is a brittle assumption in
the face of not so well behaved saliency maps, which may dodine presence of distractors
or when the trail is considerably heterogeneous. This ditficcan be diminished with top-

down boosting of visual features (e.g., colour) that arevkmdo describe the object being

sought [Frintrop et al., 2005, Navalpakkam and Itti, 2008pwever, these visual features are

considerably unpredictable in the case of trails in natar@ironments. In opposition, trails’
overall layout is a much more predictable feature. For exantpe projection of trails onto
the input image typically converges towards a vanishingipoirhis novel use of top-down

knowledge was embedded in the previous model in the formwdNdeurs ruling the motion of
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simple agents inhabiting the saliency and its intermediatespicuity maps. The motion paths
of these agents were then taken as the skeleton of a setldfiypaitheses, which were then

scored, and three of them selected as the output of the system

Despite its overall good results, the previous model wablena reduce the ambiguity of
three trail hypotheses, it was brittle in the presence armipted trails, and it was unable to
exploit historical information to improve its robustnedsig.[4.2 depicts the model proposed
in this chapter, which extends the previous one to overcasmknitations: (1) by allowing
the agents to exhibit collective behaviour through phenogabased interactions, and (2) by
allowing the system to accumulate evidence about the miagylirail location across multiple
frames through the use of a dynamic neural field. See[Fig.of tiypical results obtained with

the extended model.

(c) video#24 (d) video#25.

Figure 4.1: Typical trail detection results (red overlapjaned with the swarm-based model.
These results show that model is able to localise the trahevhen it is highly interrupted,
blends itself with the background, or does not start fromabgom of the image.
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4.1 System Overview

In short, two conspicuity map&©(¢) € [0, 1] for colour andC'(¢) € [0, 1] for intensity
information, are computed from the input imafe), as described in Chapter 3, Section 3.1.
A set of agents is then deployed on each map. These agentscinéath the corresponding
conspicuity map according to their perception-actionsuehich embed the trail-specific top-
down modulation process, as defined in Chdpter 3, SdciibriD8u2ng the process, pheromone
is deployed and sensed by the agents in two pheromone figfds) < [0, 1] andP(¢) € [0, 1],
according to the ant foraging metaphor. An additional petioe-action rule is introduced
to make the agents’ behaviour sensible to the pheromoneyplby the swarm, and thus
enabling coherent collective behaviour to emerge. This aggnts help each other on the task
of perceptual completion, resulting in a global behavidat tis robust to the local variations

inherent to trails.

Being the deployed pheromone a function of agents’ semsatoross their trajectories on
the corresponding conspicuity maps, itis influenced by thigity occurring in distant regions
of the map. This long-range spatial connectivity allowsdieng the potentially large size of

trails in a robust and parsimonious way.

Rather than blending both conspicuity ma@$;(¢) andC(t), to generate the final saliency

mapS(t) € [0,1], as typically done[[ltti et al., 1998, Frintrop et al., 2008] this work S(t)

is obtained by blending both pheromone fields. The final sejienapS(¢) feeds a dynamic

neural field [Amari, 1977, Rougier and Vitay, 2008j.¢) € [0, 1], which integrates pheromone

(i.e., evidence) across frames and also implements batalaxcitation and long-range inhi-

bition. This neural field allows the system to maintain a eehefocus of attention across time

[Rougier and Vitay, 2006]. Motion compensation is also iempénted so that the dynamics of

the neural field can be decoupled from the dynamics of thetrdliwe neural field’s state feeds
back both pheromone fields so that history influences agactisity. The output of the system
is given by the current state of the neural field, where thbdrghe activation of a given neuron

the higher its chances of being associated to a trail pixel.
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Figure 4.2: System overview. The red overlays in both phermrfields,P€(t) and PL(t),
are two illustrative agent paths. For the sake of clarityfiamocompensation aspects are not
represented.
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4.2 Conspicuity Maps Computation

Conspicuousness computation is about determining whgibms of the input image detach
from the background at several scales and feature chanimeisis model, as in the previous
one, only intensity and colour channels are used.

Shortly, one dyadic Gaussian pyramid with eight levels impoted from the intensity chan-
nel. Two additional pyramids also with eight levels are coabep to account for the Red-Green

and Blue-Yellow double-opponency colour feature channéle various scales are then used

to perform centre-surround operations [ltti et al., 1998he resulting centre-surround maps

have higher intensity on those pixels whose correspondiatufe differs the most from their
surroundings. An example is a bright patch on a dark backgtqon-off), as well as the
other way around (off-on). On-off centre-surround operadiare performed by across-scale
point-by-point subtraction, between a level with a fine scahd a level with a coarser one.
Off-on maps are computed the other way around, i.e., subtgathe coarser level from the
finer one. Then, the centre-surround maps are blended ta@eaa colour conspicuity map,
C€(t) € [0,1], and an intensity conspicuity ma@!(¢) € [0, 1]. The width,w, and heightp,
of both maps is0 and60, respectively.

When blending maps, the most discriminant ones are pronimtedcurring to a normali-

sation operator. Here the normalisation operator destiinéghe previous model is followed,

which was shown to outperform other known modéls ltti et H098, Frintrop et al., 2005] in

trail detection. Please refer to Chapiér 3, Secfioh 3.1 dathér details and to Fig. 4.2 for

examples of conspicuity maps.

4.3 Collective Behaviour

This section describes how an agent deployed on a conspivaipm € {CC(t), CI(¢)}
behaves in order to generate a pheromone field{ P(¢), P1(¢)}, in cooperation with other

agents, whose activity level is correlated with the lo@dlen of the trail. If the agent is allocated
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to the colour conspicuity mag;€(¢), then it contributes to the colour pheromone fid, ().
Analogously, if allocated to the intensity conspicuity m&p(¢), the agent contributes to the
intensity pheromone field'(¢). The process through which agents are deployed in the maps

is also explained in this section.

4.3.1 Agent Behaviours

At the onset of each frame, both pheromone fields are zerakdubsequently affected by

a small ratio\ of the robot motion compensated neural field’s previoueskitt — At),

PC(t) = PL(t) = \F'(t — At) (4.1)

In this study\ = 0.1. Refer to Sectioh 414 for details on the computatioB'@f — At). This
pheromone level offset allows agents’ activity to be affedby history, which induces stability,
robustness to noise and across-frames progressive impente

For a given numben,,.. = 50 of iterations, whose index is represented/hythe agent
builds up a trail hypothesis by updating its positiofy), according to a set of behavioubs
which are sensible to the level of conspicuity in the agesirtgoundings. These behaviours
embed top-down information on the object being sought, sigcits approximate shape. The
agent’'s motion is also affected by other agents’ activityoading to the ant foraging metaphor,
i.e., viastigmergy That is, agents interact with each other through a phererfiefd built by
them while moving. Conspicuity-based behaviours and phere influence contribute to the

agent’'s motion according to the following voting mechanism

a™(n) = arg max <Z apfo(m,a,n) + Bg(p,a,n) + ’yq) (4.2)

beB

o(n) = r(a+(n)) (4.3)
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where: O is the set of possible agent motor actions (e.g., “move taighe”); I'(.) transforms
a motor actiong € O, onto pixel coordinates centred on the current agent'siposis is the
weight accounting for the contribution of pheromone, whilklescribed by the motor action
evaluation functiory(p, a,n) € [0,1]; a; is the weight accounting for the contribution of be-
haviourb € B, which is described by the motor action evaluation functfgim, a, n) € [0, 1];
and~ is the weight accounting for stochastic behaviour, bgirg|0, 1] a number sampled from
a uniform distribution each time the action is evaluated.

The following describes which regions in the local neightmod of the current agent po-
sition are selected as its next position by each of the fiv@Wehrs composing3, and thus

embody top-down knowledge about trails,

1. Regions of higher levels of conspicuity, under the assionphat trails are salient in the

input image;

2. Regions whose average level of conspicuity is more sirtoléhe average level of cons-
picuity of the pixels visited by the agent, under the assuwnghat trails’ appearance is

somewhat homogeneous;

3. Regions that maintain the agent equidistant to the baieslaf the trail hypothesis being

pursued;
4. Upwards regions under the assumption that trails are egeically elongated,;

5. Region targeted by the motor action at the previous imratinder the assumption that

trails’ outline is somewhat monotonous.

The newly proposed evaluation functigiip, a,n) greedily provides higher score to the
motor actions that take the agent to regions of higher leieheromone. By making the score
proportional to the level of pheromone, this evaluatiorction guides the agent towards regions
recurrently visited by other agents. The outcome is coatéith collective behaviour. By the

end of each iteration, the agent contributes to pheromoit fiby deploying an amount of
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pheromone in its current positiong(n), and to the other pheromone fielda small portion of
e, v. Thatis, ifp = PC(¢) thenp’ = PL(¢), and the other way around. This process enables
loosely coupled cross-modality influence, thus allowingheagent to exploit multiple cues

indirectly, and therefore to maintain their simplicity.tims studye = 0.008 andv = 0.3.

The ratio used to control the importance of the collectiverdiie individual experience,

B/ o +7) (4.4)

beB

has, in this study? = 1.0 andy = 0.8. Please refer to Chapfér 3, Section 3.2 for further details
on the agent motor actions gef on the behaviour s€8, on its associated weighig, and on

how the agent’s local surroundings is segmented into region

4.3.2 Agent Recruitment

A set of agentsE,,, is deployed at each conspicuity mape {C€(t), C(¢)}. The chance
of deploying an agent on a given location of maplepends on the level of conspicuity at that
location and on the level of pheromone at the same positidgheo€orresponding pheromone

field p. The following describes in detail the deployment process.

To avoid any noise potentially present at the map’s bourdaggents are deployed with a
small offset of the bottom of the conspicuity map in questian, at rowr = h — 5, whereh is

the height of the conspicuity maps.

To determine the column where each agent is deployed, titgnuemsional vector
v® = (vg', ..., ) (4.5)

is first computed, where is the width of the conspicuity maps. The elemefitof v™ refers
to the average conspicuity level of the pixels in coluimrcontained between rowand row

r — 9, wherej = 5 to avoid deploying agents in columns with spurious highlpsmcuous
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pixels. Formally,

=Y mik D))o (4.6)

l€[r,r—4]
wherem(k, [) is the conspicuity level at pixel in colunminand row!.

The same process is repeated to build a vector for the pher®fredd in question,
vP = (vf,...,00) (4.7)

wherep(k, 1) is the pheromone level at pixel in columkrand row!. In this case,

= > pk,1)/o (4.8)
l€[r,r—4]
Then, the test
z < (U;ﬁw + max(vgw—@ U§~w+4)) (49)

is repeated until it succeeds, where [0, 1] and;j € [0, 1] are numbers sampled from a uniform
distribution each time the test is performed. At that tinhe, agent is deployed in column w.
With this test, the chance of deploying an agent in a randamligcted columri - w is as high
as the conspicuity and pheromone levels at the deploymgidrre This sampling process is

repeated untilE,,| = 20 agents are deployed per map

4.4 Evidence Accumulation

To integrate evidence across time, to consider competigtween multiple focus of atten-

tion, and to promote perceptual grouping, the fusion of lpdtromone fields,

S(t) = %Pc(t) + %Pl(t) (4.10)

feeds a 2-D dynamic neural fieB(¢). Note that this process only occurs after the agents’

activity has ceased, and therefore the pheromone fieldsldesrefully updated.
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The dynamical characteristic of the neural fields [Amari{ 2,9Rougier and Vitay, 2006] is

what enables their ability to integrate information acrosge. To avoid the blurring of the
neural field when the robot moves, the following three steqpdigtly compensate the neural

field for the camera motion engaged between the previouswanent frames:

1. Estimate the homography matriXHl that describes the perspective transformation be-
tween the current framé(t), and the previous oné(t — At). This step is further detailed

in Sectiof 4.41.

2. Obtain a perspective compensated version of the previewsl field’s state by using the

estimated homography matrix,

F'(t — At) = H(t)F(t — At) (4.11)

3. ObtainF(¢) by updating the perspective compensated neural B&ld— At) with the
pheromone fiel&®(t). This step is further detailed in Section 4]4.2.

4.4.1 Homography Matrix Estimation

To estimate the perspective transformation, a set of Shifanthsi [Tomasi and Shi, 1994]

corner points are first detected in the previous fralfte; At). These points are then tracked in
the current framel (¢), with a pyramidal implementation of the Lucas-Kanade feattacker

[Bouguet, 1999]. The resulting sparse optical flow is theedut estimate the perspective

transformation relating both frames, i.e., the 3 homography matrix H,

u; = H(ty (4.12)

whereu; is a local feature found ih(t — At) andu! its correspondence ir(t). Due to noise
in the tracking process, the homography matrix is calcdlatethe least-squares solution that

minimises the back-projection errgr [Bradski and Kaef2808]. This process assumes that
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distortion introduced by the camera lens into the input iesalgas been corrected. It also as-
sumes that either: (1) the terrain in front of the robot isnplaor (2) the camera was only
rotated, and not displaced, between frames. None of thesedwstraints can be strictly en-
sured in off-road environments. Still, in most situations terrain is somewhat planar and the
attitude of the camera changes more significantly than isstipa. Experiments have shown
that the co-occurrence of these two relaxed constraint#ffigient to maintain a robust opera-
tion. If a minimum of four correspondences is not found, tbenbgraphy matrix is set to the

identity matrix, Ht) = diag(1,1,1).

4.4.2 Neural Field Update

The neural fieldF'(¢) is a 2D lattice ofw x h neurons with “Mexican-hat”-shaped lateral

coupling. This pattern of connectivity helps in the formatiof a coherent focus of attention

[Rougier and Vitay, 2006]. On the one hand, activated neuextite their neighbours, thus

promoting perceptual grouping. On the other hand, activaturons tend to inhibit distant
ones, thus reducing ambiguities in the focus of attentioornfally, the connection’s weight
between a neuron in positioand a neuron in positioxi is given by a Difference of Gaussians

(DoG), function of the Euclidean distance between beftx, x’).

In addition to lateral connectivity, the neural field als® ladferent interactions with phero-
mone fieldS(¢). The weight of a connection between an elemer@f in positiony and a
neuron ofF(¢) in positionx is given by a Gaussian function of the Euclidean distanceden

both,d(x, y). This operation enlarges neurons’ receptive field to redeositivity to noise.

The average membrane potential of a given neuron at positc@n now be expressed by

the following nonlinear integro-differential equation,
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(a)lt _ 190 (b) S(190) (c) F(190)

(d) ¢t = 220 | (e) S(220) (f) F(220)

(h) S(250) (i) F(250)

() t =280 (k) S(280) (I) F(280)

Figure 4.3. Example of neural field competition in a situatrepresented by four ordered
frames obtained from videg 11 of the tested dataset. The trail is present in the input infi@aige
several frames prior to= 220, thus eliciting high level of activity in the neural field,(190).
Although the transient appearance of a trail-like grassngeq in the bottom-left region of the
image is felt in the pheromone fiel8(220) andS(250), this distractor is actively inhibited in
the neural fieldF(220) andF(250).



T@F(x, ) =—F(x,t)+

ot
/w(x, x') f(F(X,t)) dx'+

/ d(x,y)S(y, O)dy + h (4.13)

where f(xz) = « in this work, 7 is a time constant antl = 0 is the neuron threshold. For
numerical integration, the Euler forward method is usedltaim an approximation of the

neural field, which in matrix form results in the followingaiganged expression,

F(t) =F'(t — At) + % (—a (F'(t— Ab))+ (4.14)

b (DoGEVE « F'(t — At))+

01,02

c- (GE «S(t) + h)

wherex is the convolution operator, b andc are weights defining the contribution of each

term, DoGEk2 =GR — GP2

01,02 o2’

G* is a Gaussian kernel of siZzex k and widtho. Note that
the neural field’s previous stat®(t — At), is substituted by its motion compensated counter
part, F'(t — At). The neural field free parameters have been empirically elfin = 4.25,

0y = 14.15, 035 = 2.15, ky = 25, ky = 91, k3 = 11,a = 2,b = 2.5, ¢ = 8, and2! = 0.03. The
system showed robustness to small variations around tlasesvas long as the proportions are
roughly maintained.

To enable fast computation, the model is synchronouslyueteti, meaning that at tinte
neurons are updated based on the network state attithé. Due to robot motion, any potential
symmetry at the sensory input does not prevail, making méaldoscillations unlikely to occur
over relevant periods of time.

The dynamical characteristic of the model in conjunctiothvtine long-range lateral inhi-

bition results in the following property. The higher the roen of frames with the same spot
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with high activity the more difficult it is, due to lateral coectivity, for other regions to become
activated. Hence, transient distractors are activelybitdd once a large evidence on the trail

location is accumulated (see Fig.14.3).

4.5 Experimental Results

An extensive dataset of 25 colour videos encompassing &dbtb2023 frames with a
resolution of640 x 480 has been obtained with a hand-held camera (see Appendix iB. T
camera was carried at an approximate height.®m and at an approximate speediahs!.
The trail detector was evaluated on a Core2 Duo 2.8 GHz rignhimux. OpenCV was used
for low-level routines. Table4l.1 shows that the model rumserage a0 Hz, where onlyt%
refers to the swarm-based activity. The timing reportedtierneural field update also includes
optical flow computation, homography estimation, and niigla wrapping.

The experimental results are twofold. First it is shown ttiet proposed swarm-based

saliency model is more robust than a classical bne [Itti.efl@O8| Frintrop et al., 2005], where

conspicuity maps are blended,
1 C 1 I
S(t) = §C (t) + §C (t) (4.15)

rather than their corresponding pheromone fields,

S(t) = %Pc(t) + %Pl(t) (4.16)

For the sake of fair comparison, the neural fiEld), which is fed byS(¢), is used to generate the
output in both cases. Then, a qualitative comparison witited trail detectors highlights the
advantages of the proposed model. To handle the probabiieture of the agents behaviours,
a set of 5 runs was performed per video.

The trail is considered correctly localised if the biggdstbof neural field activity above

0.85 (from a maximum ofi) is fully within the trail's boundaries. In cases of ambiyuwaused
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. Conspicuity Maps Swarm
Neural Field Computation Computation Total
time (ms) 12 36 2 50

Table 4.1: Average computation times.

by co-occurrence of two similar blobs, the pheromone f#lg is used to assess which blob is

being reinforced and consequently should be taken as tipeiout

A comparative analysis between Tablel4.2 and Table 4.3 Ittt the proposed swarm-
based saliency model clearly outperforms the classical drfeat is, a higher average suc-
cess rate is obtained along with a smaller standard dewiatlo follows from the success
rate of 91% + 12% that the proposed model is well suited for off-road autonosnmbots.
This result is more stringent if the difficulty of the testedtaket is taken into account. To
our knowledge no previous work has been tested against aedatath trails as narrow, un-

structured and discontinuous as the ones herein considstectover, differently from previ-

ous works|[[Rasmussen and Scott, 2008a], [Fernandez ara] P6i@5], [Blas et al., 2008], and

[Rasmussen et al., 2009], the model succeeds in situatibesawthe trail is not starting from

the bottom of the image (see Fig. 4.1(a)).

It is also worth noting that in 7 of the 25 videos, the proposeatiel showd 00% success
rate for all the 5 five runs. Video 5 is accounted as a long ruh aiimost 5 minutes length.
Besides being often interrupted and highly unstructuriee ttail in this video also exhibits a
variable width. Moreover, the terrain surrounding thel isheterogeneous and highly popu-
lated with potential distractors, such as trees and bushies85% success rate of the model
in this video clearly shows its robustness in demandingtiins. About% of the fail cases
refer to situations where the trail is nevertheless nolitean the neural field. In this case, as
in other lower performance videos, ambiguity between &mad surroundings could be reduced
by considering additional perceptual modalities, sucteatite and depth.

When the trail is highly conspicuous in the environment, astoften occurs, ambiguity is

rarely present. When this assumption fails and distraeti@scattered, the model is still able to

69



perform correctly. This robustness owes to the agents'‘aensotor coordination capabilities,
which allow an opportunistic exploitation of the trail-bk@cound segmentation present in the

conspicuity maps.
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Video ID | Nr. of Frames Nr. of Correct Frames % of Correct Frames
1 278 124 44.60
2 204 126 61.76
3 422 20 4.74
4 135 0 00.00
) 2854 927 32.48
6 186 52 27.96
7 121 0 00.00
8 124 0 00.00
9 309 58 18.77
10 147 73 49.66
11 386 0 00.00
12 158 0 00.00
13 134 54 40.30
14 676 299 44.23
15 683 181 26.50
16 770 35 4.55
17 403 141 34.99
18 335 325 97.01
19 230 195 84.78
20 439 28 6.38
21 490 18 3.67
22 230 25 10.87
23 600 36 6.00
24 802 0 00.00
25 907 0 00.00

ST =12023 S =2717 (1 +0) = (23.97 £27.73)

Table 4.2: Trail detection results - Classic saliency cotaton: S(¢) = 1CC(¢) + 1C(¢).
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Average Nr. of Correct

Average % of Correct

Video ID | Nr. of Frames Frames Frames
1 278 124 44.60
2 204 126 61.76
3 422 20 4.74
4 135 0 00.00
) 2854 927 32.48
6 186 52 27.96
7 121 0 00.00
8 124 0 00.00
9 309 58 18.77
10 147 73 49.66
11 386 0 00.00
12 158 0 00.00
13 134 54 40.30
14 676 299 44.23
15 683 181 26.50
16 770 35 4.55
17 403 141 34.99
18 335 325 97.01
19 230 195 84.78
20 439 28 6.38
21 490 18 3.67
22 230 25 10.87
23 600 36 6.00
24 802 0 00.00
25 907 0 00.00

ST =12023 | 3 = (10577.60 +109.80) | (n+o0)=(91.32+1.01)

Table 4.3: Trail detection results - Proposed saliency adatipn:S(t) = 1P€(¢) + 1P(¢).
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Chapter 5

Conclusions, Contributions and Future

Work

This chapter summarises the work presented in this disgert@roviding a set of conclu-
sions and contributions concerning the proposed modeldtandesults obtained, as well as

some aspects for future work.

5.1 Conclusions

This dissertation reported for the first time the use visabéacy to the trail detection pro-
blem. The model showed to be a computationally efficienttgmiuwith overall good results
(91% success rate @b Hz), performing in situations where previous detectorsl terfail, such
as when the trail does not emerge from the lower part of thg@&aawhen it is considerably in-
terrupted. These results are mostly due to the effectivmsatation obtained through the visual
saliency method, and to the swarm-based design used totekgddanformation. Furthermore,
no hard assumptions on the appearance and morphology afdilsedare done, conversely to
most of the solutions proposed so far, which makes this mivdelapproach suitable for di-
verse and demanding natural environments. To our know]atdgework is the most complex

application of the agent-based sensori-motor coordinajgproach to object detection. The
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work was presented in two parts.

The first part focused on a saliency-based method using siag@nts to exploit the saliency
maps, with the purpose of validating the application of &lssaliency to agent-based trail de-
tection. A positive correlation was shown to exist betwemual saliency and trail location.
This preattentive mechanism also revealed as a promisitigoahéor fast prioritised (according
to saliency) segmentation of the input image. Furthernms®eing trails as conspicuous parts of
the scene allowed the system to generalise. That is to sayntedauations where trails could
be hardly identified, even by the human eye, the system megad trail open regions of the
environment. A newly proposed normalisation operator &iesicy computation played an im-
portant role in this achievement. The good prioritised segfiation properties exhibited by the
visual saliency method, though not sufficient for accuredé tletection, present a good basis
for boosting a focused detector.

To rapidly extract the trail skeleton from the prioritisemlisncy maps, an agent-based so-
lution was proposed. This approach showed to be adequdteexperimental results showing
that up to three trail hypotheses are generated by the mdikod) at least one of them correct
in 98% of the cases. These results contribute to the growing evaefhagent-based approaches
for the development of robust perceptual systems. This hi®déso innovative on the way top-

down knowledge of the object being sought is consideredic@jly, visual features are boosted

according to the expected object’s scale, colour and irtiejdavalpakkam and Itti, 2005]. In-

stead, in this work the object’s (trail) approximate shap@mplicitly considered, by means
of feed-forward and consequently fast perception-actidesrdictating the behaviour of each
agent. Despite its overall good results, the model showedadility to overcome some diffi-
culties, namely: (1) it was unable to reduce the ambiguitihaée trail hypotheses; (2) it was
brittle in the presence of interrupted trails; and (3) it waable to exploit historical information
to improve its robustness.

In the second part of the work, the model was extended to owecthese difficulties by: (1)
allowing the agents to exhibit collective behaviour; anpa®owing the system to accumulate

and make use of historical information. Hence, this pars@néed a swarm-based solution for
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trail detection, in which agents influence each other thihalgared mediums, i.e., v&éigmergy
Evidence of trail location is accumulated across framesnmtaon compensated dynamic neu-
ral field.

This solution has been successfully validated againsttdyhigemanding and diverse dataset
composed by video sequences, exhibitingo success rate &) Hz. These results due to large
extent to the swarm-based design, which enabled a robdstrgahisation of visual search,
perceptual grouping, and multiple hypotheses trackinge dynamic neural field showed to
be a fast and efficient means for the integration of evideroesa frames, implementing both
lateral excitation and long-range inhibition, which ingsed the resilience of the system in the
presence of distractors, namely rocks and trail-like graike motion compensation allowed the
dynamics of the neural field to be decoupled from the dynawfitise robot, thus contributing
to the stability of the system in outdoor environments. Fnéhe high success rate across the
diverse dataset shows that the selected parametrisation @ver-fit to a specific environment,

thus highlighting its robustness.

5.2 Future Work

A more extensive sensitivity analysis of the model still sie¢o be addressed in future
work. In this context, a mechanism for the self-parameinsaf the system can be considered.
Other perceptual modalities, such as texture and deptiheéurther analysed as alternative or
complement to the used colour and intensity conspicuityspapd might be included to further
increase the robustness of the model. Testing the swarsdtsadiency model to other visual
search tasks is also object of future prospect. Lastly, iigamentation of the detector in a
physical robot and its testing in the mentioned environsievill allow the assessment of the

applicability of the proposed model.
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Figure A.1: Dataset used in the saliency-based model, ceetpby images #01 to #09. The
first column presents the input image. The second, third andh columns show the colour
conspicuity, the intensity conspicuity, and the salien@ps) respectively.

86



=

YENL L™
AVEERRA

s

Figure A.2: Dataset used in the saliency-based model, ceetpby images #10 to #18. The
first column presents the input image. The second, third andh columns show the colour
conspicuity, the intensity conspicuity, and the salien@ps) respectively.
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Figure A.3: Dataset used in the saliency-based model, ceetpby images #19 to #27. The
first column presents the input image. The second, third andh columns show the colour
conspicuity, the intensity conspicuity, and the salien@ps) respectively.
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Figure A.4: Dataset used in the saliency-based model, ceetpby images #28 to #36. The
first column presents the input image. The second, third andh columns show the colour
conspicuity, the intensity conspicuity, and the salien@ps) respectively.
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Figure A.5: Dataset used in the saliency-based model, ceetpby images #37 to #45. The
first column presents the input image. The second, third andh columns show the colour
conspicuity, the intensity conspicuity, and the salien@ps) respectively.
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Figure A.6: Dataset used in the saliency-based model, ceetpby images #46 to #50. The
first column presents the input image. The second, third andh columns show the colour
conspicuity, the intensity conspicuity, and the salien@ps) respectively.



Figure A.7: Trail detection results (#01 to #28). The bestrdg path in each map is superposed
on the corresponding input image. Path colour is green, &hgered for the colour, intensity
and saliency maps, respectively. In the top-right cornevamh image, the presence of a filled
circle with a given maps’ colour, indicates that the besinéiggath of the corresponding map
correctly represents the trail.
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Figure A.8: Trail detection results (#29 to #50). The bestrdag path in each map is superposed
on the corresponding input image. Path colour is green, &haered for the colour, intensity
and saliency maps, respectively. In the top-right cornezawh image, the presence of a filled
circle with a given maps’ colour, indicates that the besinéiggath of the corresponding map
correctly represents the trail.
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Swarm-Based Visual Saliency for Trall

Detection - Dataset and Image Results
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Figure B.1: Dataset used in the swarm model, representativees from videos #01 to #15.
Each image corresponds to one video whose ID is given byasarg order from left to right
and top to bottom. The overlaid red blobs represent the nwegifimate of the trail location,

which corresponds to an activity of the neural field abos.
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Figure B.2: Dataset used in the swarm model, representativees from videos #16 to #25.
Each image corresponds to one video whose ID is given byasarg order from left to right
and top to bottom. The overlaid red blobs represent the nwoesfimate of the trail location,
which corresponds to an activity of the neural field aboNss.
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