
 

Universidade Nova de Lisboa 

Faculdade de Ciências e Tecnologia 

Departamento de Informática 

 

 

 

 

Automatic Cymbal Classification 

 

Hugo Almeida, nº 26522 

 

 

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de 

Lisboa para a obtenção do grau de Mestre em Engenharia Informática 

 

 

 

Orientadora 

Prof(a). Doutora Sofia Cavaco 

 

 

 

Lisboa 

 

Novembro de 2010  



2 
 

  



3 
 

Nº do aluno:  26522 

Nome: Hugo Ricardo da Costa Almeida 

 

Título da dissertação:  

Automatic Cymbal Classification  

 

Keywords: 

 

 Automatic Classification 

 Cymbal Classification 

 Music Classification 

 Music Information Retrieval (MIR) 

 Drum Kit 

 Cymbals 

 Information Theoretic Algorithms 

 Principal Component Analysis (PCA) 

 Independent Component Analysis (ICA) 

 Non-Negative Matrix Factorisation (NMF) 

 Sparse Coding 

 Non-Negative Sparse Coding 

 Independent Subspace Analysis (ISA) 

 Sub-band Independent Subspace Analysis (Sub-band ISA) 

 Locally Linear Embedding (LLE) 

 Prior Subspace Analysis (PSA) 

 

 

  



4 
 

 

 

  



5 
 

 

 

 

 

 

Resumo 

 

A maioria da investigação que acenta sobre transcrição automática de música, foca-se 

primariamente nos instrumentos de tom definido como a guitarra e o piano. Ao contrário destes 

últimos, instrumentos de tom indefinido, tal como a bateria, que é uma colecção de instrumentos 

deste tipo, têm sido muito desconsiderados. No entanto, ao longo dos últimos anos e 

provavelmente devido à sua popularidade no panorama musical ocidental, este tipo de 

instrumento começou a gerar um maior nível de interesse. 

  

O trabalho relacionado com a transcrição automática da bateria foca-se principalmente na tarola, 

bombo e prato de choque. No entanto, muito é o trabalho que necessita de ser realizado com o 

intuito de efectuar transcrição automática de todos os instrumentos de tom indefinido. Os pratos 

da bateria são um exemplo de um tipo de instrumentos de tom indefinido e com características 

acústicas particulares, sobre o qual não tem recaído muito atenção por parte da comunidade 

cientifica. 

 

Uma bateria contém vários pratos que usualmente ou são tratados como se fossem um 

instrumento único ou são ignorados pelos classificadores de instrumentos com tom indefinido. 

Propomos preencher esta lacuna e como tal, o objectivo desta dissertação é a classificação 

automática de pratos de bateria e a identificação das classes de pratos a que pertencem. 

Conseguimos preencher esta lacuna dando uso a dois algoritmos - um da área de teoria de 

informação e outro de classificação, os quais serão descriminados e explicados em capítulos 

vindouros.  

 

Os pratos de bateria apresentam muitas similiridades, que vão desde a sua geometria, material de 

que são feitos, características sonoras, até às características espectrais. Os testes que são 

executados sobre instrumentos da bateria, na sua maioria, usam instrumentos muito diferentes 
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entre si, como o bombo, a tarola e o prato choque. Assim, a grande vitória deste trabalho 

encontra-se na obtenção de classificações correctas de diferentes pratos de bateria, tendo em 

atenção que existe um maior grau de dificuldade neste caso, dadas as similiridades entre os 

intrumentos testados. 
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Abstract 

 

Most of the research on automatic music transcription is focused on the transcription of pitched 

instruments, like the guitar and the piano. Little attention has been given to unpitched 

instruments, such as the drum kit, which is a collection of unpitched instruments. Yet, over the 

last few years this type of instrument started to garner more attention, perhaps due to increasing 

popularity of the drum kit in the western music.  

 

There has been work on automatic music transcription of the drum kit, especially the snare drum, 

bass drum, and hi-hat. Still, much work has to be done in order to achieve automatic music 

transcription of all unpitched instruments. An example of a type of unpitched instrument that has 

very particular acoustic characteristics and that has deserved almost no attention by the research 

community is the drum kit cymbals.  

 

A drum kit contains several cymbals and usually these are treated as a single instrument or are 

totally disregarded by automatic music classificators of unpitched instruments. We propose to fill 

this gap and as such, the goal of this dissertation is automatic music classification of drum kit 

cymbal events, and the identification of which class of cymbals they belong to. 

 

As stated, the majority of work developed on this area is mostly done with very different 

percussive instruments, like the snare drum, bass drum, and hi-hat. On the other hand, cymbals 

are very similar between them. Their geometry, type of alloys, spectral and sound traits shows us 

just that. Thus, the great achievement of this work is not only being able to correctly classify the 

different cymbals, but to be able to identify such similar instruments, which makes this task even 

harder. 
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1. Introduction 

 

Music is constantly present in our everyday activities. From the first second of our day when 

we wake up with the radio from our alarm clock, to the most common entertainment 

mediums like cinema, television, video games, and of course radio, to the music we ear and 

sing while bathing or while traveling to work. It is quite amazing how in just a few seconds 

after the start of a song we are able to recognize and identify it. However, recognition of a 

song or a piece of music does not enable a listener to transcribe it. 

 

Transcription is the ability to identify and register instruments’, harmonic
1
, rhythmic

2
, and 

melodic
3
 features of a piece

4
 of music, using standard staff notation

5
. It requires the 

attainment of aural skills
6
 and music theory knowledge and comprehension, which are only 

possible through training and study. To achieve a level of proficiency in transcription that is 

fast and accurate can take a long time. This way, for a beginner, several weeks may be 

required to transcribe only one of the instruments from a musical piece, without guaranties of 

total accuracy. Although not deprived of usefulness this ability enables little utilizations 

besides transcription and music composition. 

  

                                                           
1 Harmony deals with pitches that are played at the same time [Burrows 99]. The pitch of a note can be defined scientifically in terms of its 

sound waves frequencies. Similarly in music, a pitch is a fixed sound which can be identified using a series of letters ranging from A to G. 

So, every note you hear from a musical instrument has its own pitch [Burrows 99]. When at least three different notes sound together in the 

same instrument, the resulting effect is a chord [Burrows 99]. 

 

2 A pulsing effect that we feel when listening to a piece of music [Burrows 99]; usually its main engines are the percussion instruments. 

3 Melody refers to the deliberate arrangement of series of pitches – what most people would call a tune [Burrows 99]. 

4 Throughout this thesis, music, song, and piece will be used interchangeably, refereeing to the same thing. 

5 Staff notation consists of the written representation of all rhythmic, harmonic, and melodic elements in a piece of music. The notation is 

written in five lines which are known as the staff [Gerou 96]. 

6 Hearing and sigh-reading skills. 
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If extended to a computer system (automatic) music transcription can be a very useful asset. 

It can be used in computerized music education as a learning aid for people wishing to learn 

how to play a piece of music where there is only access to an audio recording, and not the 

necessary skills to attempt transcription themselves. Areas of entertainment such as karaoke 

[Ryynänenm 08], music composition [Simon 08], and even song data base retrieval through 

humming - known as query by humming [Ghias 95], are some of the other potential 

applications.  

 

Automatic music transcription (AMT) is a very hard problem to tackle, mainly due to 

representation issues. These are a result of music's many complex structures, which are a 

combination of mathematical (harmony, rhythm, and melody), and non-mathematical 

(tension, expectancy, and emotion) variables. Hence, computerized representations of these 

variables, along with the transformations used in audio processing, add even more to the 

complexity of this area [Dannenberg 93]. The number of note sources targeted for 

transcription, and the number of notes played at the same time are also detrimental to the 

accuracy of a transcription. When notes are played one at a time we are in the presence of 

monophonic music. On the other hand, if there is more than one note being played like a 

chord or when more than one instrument plays a note at the same time, we are in the presence 

of polyphonic music. Both monophonic and polyphonic transcription can be handled in a 

single or multiple instrument environments.  

 

Salience, perception, pitch matching, complexity of a piece of music, and overlooking 

rhythm are discussed in [Byrd 02] as some of the most common problems of monophonic 

and polyphonic music regarding music information retrieval (MIR) for pitched instruments. 

A great deal of research on AMT is usually focused on pitched instruments. FitzGerald gives 

some possible justifications regarding the preference for this type of instruments [FitzGerald 

04]: 

 

This is perhaps as a result of the predominantly melodic and harmonic based nature of 

most of Western Art music and of Western popular song as opposed to the more rhythmic 

based musical traditions such as that of Indian tabla playing and much of the music of 
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Africa. It is also perhaps as a result of a feeling that the harmonic series of partials that 

go to make up a given pitch are easier to model than the noisy frequency spectra 

associated with most drum sounds. 

 

However, over the last few years indefinite pitched instruments, mainly percussion 

instruments, started to garner more attention. From these, the one that stands out the most is 

the drum kit (see chapter 3.1 for more details on this instrument
7
), especially because of its 

increasing popularity in western music landscape. This growth in interested by the scientific 

community is also due to its usefulness in a great variety of musical situations where AMT is 

needed. Query by beat boxing [Kapur 04] is one of them, it’s an information retrieval method 

for music databases based on the same concept as query by humming, but seen primarily as 

applicable for Disk Jockey (DJ) usage. AMT of drum kit events can also be used as an aid for 

people wishing to transcribe the drum kit parts played in a song, or for studying this 

instrument. Producers and music lovers can also gain from the development of tools based 

upon AMT of the drum kit. If an audio recording has enough quality the drum track can be 

sampled
8
 to be used in other musical pieces. It is also possible to organize libraries of drum 

samples and drum loops by type of beat, tempo, or genre. Users with an enormous database 

of music could organize them by musical style based on the type of drum parts detected. 

Since some of the existing genres have a much defined rhythm structure, it is possible to 

label them based on that. Therefore, there is a whole world of new possibilities for the 

musician, the producer, and even for the everyday music enjoyer with AMT of drum kit 

events. 

 

Most of the work on automatic drum transcription is focused on combinations of snare drum 

[Tindale 04], hi-hat, and bass drum (also known as the kick drum, these two names will be 

used interchangeably throughout the text) [Paulus 06, FitzGerald 06], which are the main 

                                                           
7 A drum kit is a collection of percussion instruments, so it is not accurate to call it an instrument. For simplicity and also because it is of 

common usage, and seeing that this issue is not relevant, in this dissertation besides drum kit we will also refer to it as an instrument and 

drum set. 

8 In music, sampling is the process of recording a sound source one part at a time. Typical parts (samples) include each note recorded from a 

musical instrument [Sam 08], or in the case of a drum kit, each hit on its various instruments. A small part of a song can also be sampled in 

its entirety, or just one of the instruments. The use of this technique is a very common practice in Hip-Hop. 
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instruments of a drum kit. To the best of our knowledge, transcription of elements like the 

open hi-hat or even the different cymbals has been neglected. Yet, an accurate transcription 

of drum kit events will never be possible without the transcription of different types of 

cymbals, and in the case of a hi-hat, if it is open, closed, or half-open (just to name a few 

possible uses of this instrument). The goal of this dissertation is to fill this void. Here we 

explore automatic cymbal classification
9
 and the identification of which class of cymbals the 

cymbal played belongs to. Classification is part of the transcription process. To perform 

correct transcription we have to first identify what instruments are being played, following 

this with detection of its positioning in the piece of music. We will focus on the five most 

used types of cymbal classes – crash, ride, splash, china, and hi-hat (for more information on 

each of these classes check chapter 3.2). Our study will only regard monophonic events from 

two or three cymbals played consecutively. Even though this work will only regard cymbal 

events, a great deal of issues will arise. From capturing all the dynamic nuances played by 

the drummer (strong or weak hits), classification of up to three cymbals played 

consecutively, to cymbals with different sizes, shapes, and timbres, these are some of the 

characteristics that will drastically increase the complexity of the work developed. Still, 

another problem arises from the typical harmonic series found in this type of instrument – it 

is harder to accurately classify a cymbal do to its noisy frequency spectra. 

 

To steer our work in a good direction we chose to apply the cornerstones of the majority of 

information theory algorithms (IFA) – Principal Component Analysis (PCA) [Cavaco 07] 

[FitzGerald 04], Independent Component Analysis (ICA) [Abdallah 03] [Cavaco 07] 

[FitzGerald 04], and Non-Negative Matrix Factorization (NMF) [Smaragdis 03] [Hélen 05] 

[Moreau 07] [Virtanen 07], for sound source separation, combined with a classification 

algorithm for disclosing to what cymbal each sound sample pertains to. As we had predicted, 

PCA due to its constraints did not give satisfactory results. ICA’s results were also not very 

satisfactory, so we decided to focus our attention on NMF. This algorithm was chosen 

because of encouraging results when used as a standalone technique, as seen on [Smaragdis 

03] and [Virtanen 07]. With NMF we were able to achieve a great level of success by 

                                                           
9 From this point on, automatic classification will be simply designated as classification. 
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accurately classifying various combinations of two cymbals played sequentially, while with 

three cymbals the results were also very good, as with two cymbals. 

 

We will start our journey by overviewing a collection of introductory topics. These range 

from the physical behavior of sound (chapter 2); physical characteristics and behavior of 

cymbals, and drum kit description (chapter 3). Afterwards, analysis and exploration of 

previous work will ensue with chapter 4 - State of the Art. There, we review several 

algorithms, their pros, and cons and possible applications to the problem at hand. Next, in the 

fifth chapter, we explain in detail the proposed system to solve our problem. This document 

will conclude with the analysis of the results on chapter 6 – Results and Discussion, and with 

the conclusions and future work on chapter 7. 

 

This work was used as the basis for a paper with the title – Automatic Cymbal Classification Using Non-

Negative Matrix Factorization, written by Hugo Almeida and Sofia Cavaco, and submitted to an international 

conference.  
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2. The Physics and Math of Sound 

 

As the reader may be aware of, for the development of a work of this magnitude a high level 

of study and research is needed. Thus, we start by reading the ones that preceded us, those 

who strived to success that paved the way. Through papers and thesis we are introduced to a 

new and very scientific world, with a whole new jargon for us to cope with, with a whole 

new set of rules. With all this in mind we will try our best to achieve the type of approach 

portrayed in [Eco 98]: 

 

Once decided for whom to write for (for all mankind and not just for the evaluator) it is 

essential to decide how to write
10

. 

 

We will write this thesis with one objective in mind, to always try to clearly explain all its 

content, independently of the level of knowledge of the reader. Thus, in an effort to elaborate 

a very comprehensive source of knowledge we will start by taking a look at how sound 

behaves and how digital systems can capture and mathematically represent sounds. If the 

reader is knowledgeable about the subjects studied in this chapter, he/she is free to jump over 

to the third chapter of this dissertation. 

 

2.1. From Sound Wave to Waveform 

 

Have you ever wondered how it is possible for a sound to travel from a speaker to your ears? 

Figure 2.1 is an illustration of what ensues, since a sound is emitted by a pair of speakers 

until it reaches our ears. The dots in the picture represent air molecules. The regions with 

great density of molecules are called areas of compression - where the air pressure is greater 

than the one from the atmosphere. On the other hand, the dispersed dots are areas of 
                                                           
10 This is a translation from the portuguese version of [Eco 98]: Uma vez decidido para quem se escreve (para a humanidade e não para o 

relator), é necessário decidir como se escreve. 
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rarefaction, regions where pressure is lower than the one exerted by the atmosphere. The 

small arrows in the diagram represent the movement of a sound wave through a channel, 

which is created by a translation of the compressed area inwards, as opposed to the outwards 

movement of the scattered air molecules [Everest 01]. 

   

 

                     Figure 2.1 – From [Everest 01], the effect of sound pressure on air molecules. 

                 (A) – Sound pressure is responsible for air particles being pressed together in some regions, and sparse in others 

     (B) – A small movement of the sound wave from the position occupied in A to a new one. 

 

For the sound to be able to transit along the air, two conditions have to be met; first, there has 

to exist an equilibrium position to which the air molecules may be able to return to after 

compression or rarefaction; and secondly, the force that tends to push the air molecules back 

to equilibrium has to be proportional to the distance traveled [Berg 95]. So, air pressure tends 

to equilibrium, i.e., atmospheric pressure. A speaker develops an augmentation in the air 

pressure when it discharges the first sound wave. This establishes regions of compression 

(areas of the picture were the arrows are pointing to the right), and by extension, areas in the 

air with low pressure (areas of the picture were the arrows are pointing to the left). The 

collisions between particles near the speaker have two effects - restore the particles near the 
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speaker to equilibrium, and displace the neighboring particles, which will enable the sound 

waves to move along the air. These movements are responsible for making the sound waves 

travel through the ear channel, which introduces changes in the wavelength of the sound 

wave. The end result of this is our perception of sound. 

 

Now let us suppose that instead of reaching our ears the sound waves reach a microphone 

connected to a computer. In this particular case the information traveling in the sound waves 

will have to be digitized so it can be interpreted by a computer. When it comes to convert 

them to a digital medium their continuous information (in nature these waves are analog) will 

have to be transposed into discrete values. The digital and mathematical representation of the 

sound wave is called waveform, and is illustrated in figure 2.2 – B. This consists of 

representing the displacement of the air particles through time. In figure 2.2 we see the 

relationship between air pressure and the mathematical representation of a sound wave, 

where for example, values of compression represent high amplitude amounts. Now let us 

take a look at how the sound waves are translated into waveforms. 

 

                 Figure 2.2 – From [Everest 01], relationship between a wave form (B) and the pressure values in the air (A). 
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Audio digitization systems use time sampling and amplitude quantization to encode the 

infinitely variable analog signal as amplitude values in time [Pohlmann 00]. Samples are 

taken at irregular intervals from an analog signal to create a discrete signal. The number of 

samples recorded per second is known as sampling frequency. 

 

This is enough to guaranty the reconstruction of a signal with the same frequency as the 

original one, if the sampling theorem is taken into consideration. This theorem defines the 

relationship between the analog signal and the sampling frequency, specifying that the 

sampling frequency must be at least twice the highest signal frequency in order to allow 

reconstruction of the signal. More specifically, audio signals containing frequencies between 

0 and S/2 Hz (Nyquist frequency) can be accurately represented by a sampling frequency of S 

samples per second [Pohlmann 00].  

 

Figure 2.3 is a good visual example of what happens in the time sampling stage if the 

sampling theorem is followed. The samples will contain the same information as the original 

signal. Thus, the signal is reconstructed without loss of information [Pohlmann 00]. If the 

sampling theorem is not respected, information from the original signal will be lost, and it 

will not be possible to have the original signal reconstructed accurately in the discrete signal 

[Pohlmann 00]. As you can see in figure 2.4, the sampling frequency (44 kHz) is not two 

times the frequency of the analog signal (36 kHz) (figure 2.4 - A). This will in turn originate 

a deficient sampling frequency (figure 2.4 – B) blocking any possibility of an accurate 

reconstruction of the analog signal into a discrete one (figure 2.4 – C).  

 

Since the machine representation of amplitude is limited by the number of bits used, the 

amplitude of each sample must be quantized, that is, the actual amplitude of the sample is 

rounded to be converted to a k bit number. Because amplitudes can have a high number of 

decimal values, if k is small, more quantization errors can be produced [Widrow 61]. 
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                    Figure 2.3 – From [Pohlmann 00], the effect of time sampling on an analog signal. 
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                     Figure 2.4 – From [Pohlmann 00], the effect of not obeying the sampling theorem. 

               (A)  – The orginal signal.  (B) – The stored samples. 

               (C) – The inaccurate representation of the reconstructed signal. 

 

 

2.2. Spectrograms 

 

After the sound has been digitized into a computer it is possible to perform operations that 

enable a better retrieval of information for analysis. One of these operations is known as 

Fourier Transform (FT), a mathematical tool that enables decomposing time signals (such as 

waveforms) into the frequency domain. The discrete Fourier transform (DFT) is used instead 

of the FT to obtain a sampled spectrum for discrete time signals of finite duration. Just as the 

FT generates the spectrum of a continuous signal, the DFT generates the spectrum of a 

discrete signal expressed as a set of related sinusoids. The DFT takes samples of a waveform 

and operates on them as if they were an infinitely long waveform comprised of sinusoids 

[Pohlmann 00]. So with DFT it is possible to demonstrate that a sound input may be 

described as the combination of various other sinusoids. Nonetheless, the DFT is not a very 

efficient computational technique when compared to fast Fourier transform (FFT) [Burrus 

08], so this last one is used instead. 

 

Applying FFT to the input signal might not be enough to gather detailed information on the 

signal’s attributes, simply because we lose information on its temporal variations. Very rarely 
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do we hear natural sounds with a constant value of frequency through time, and as such we 

must use another method to better analyze their time-varying frequency content. To do so the 

input signal can be divided in windows with a time based function performing FFT on each 

one of the windows. This technique is named Short-Time Fourier Transform (STFT) which 

specifies magnitude versus time and frequency for any signal [Cohen 95]. Even though the 

FFT (and consequently the STFT) also give information about the initial phase of the 

frequency components of the waveform, here we will not make use of this information; we 

will only use the magnitude information. 

 

A windowing function is illustrated in figure 2.5. This signal is broken into chunks that are 

multiplied by the windowing function, which is embodied by the series of red curves that are 

applied to the signal being analyzed and represented in blue. Afterwards, the results of 

applying FFT to each window can then be placed together in a single matrix called a 

spectrogram, which is a graphical display of the magnitude of STFT. 

 

 
                                  Figure 2.5 – From [ECE 10], short-time Fourier transform. 

 

In equation 2.1 the spectrogram is represented in matrix   where     is an amplitude value at 

time frame             and frequency bin            . In this following example (figure 

2.6) the magnitude of the frequency components of the signal is represented by the color’s 
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intensity. The greatest value possible is dark red. From there, the amplitude value will 

decrease until it reaches the lowest level in the purple area. 

 

                        

       

   
       

                                                     (2.1) 

 

 
                                        Figure 2.6 – From [Cavaco 09], a spectrogram. 
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3. Drum Kit and Cymbals 

 

This chapter gives a brief overview of the different instruments that are included in the most 

typical drum kit setup, and of the different families of cymbals we intend to use in this work 

for analysis purposes. Since each drum and cymbal has its own characteristics and voice, it is 

of the utmost importance to cover their functions as an instrument in the drum set, and in the 

case of cymbals, the sound differences between them. This is the most important goal of this 

chapter; educate the reader in the sound differences between each class of cymbals, and how 

their very audible differences can actually translate into very hard characteristics for IFA to 

perform sound source separation accurately. This chapter will also serve as a very basic 

educational resource for those who would like to expand their knowledge on important sound 

features to consider when using feature based classification for cymbals. 

 

We have also included a brief historical background on cymbals on the Attachments. This 

serves to show the importance of these instruments in different elements and eras of 

mankind’s history, and how they evolved through time, helping to mold musical landscape 

from past and present alike. This further legitimizes the work developed for this dissertation, 

due to the level of historical and musical relevance of cymbals. 

 

3.1. Drum Kit 

 

The drum kit is considered as a collection of percussion instruments. In contemporary music 

more and more often we see all types of percussion instruments being mingled with the more 

usual western drum kit setup. When we talk about drum kits in this work, we only consider 

the most used and most common instruments found in the majority of drum kits - the snare 

drum, bass drum (played with the help of a pedal), hi-hat, tom-toms, crash and ride cymbals 

(figure 3.1). This setup is known as the rock/ pop drum kit. 
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                                            Figure 3.1 – A basic rock/pop drum kit. 

 

The snare drum, bass drum and hi-hat are the pieces that define the essence of a drum kit; 

they are the main instruments in almost all types of music. Jazz is an exception, since the ride 

cymbal has a more important role than that of the hi-hat. The remaining instruments are 

important as well but will depend mostly in the style of music played, and on the drummer’s 

personal preference. The importance of these four pieces of the drum kit is due to them being 

mainly used to keep time during songs, playing beats and embellishments that complement 

the song. Since time keeping is the most important role of a drummer, these four instruments 

become essential. The toms are used more often for fills, which are rhythmic patterns played 

in between sections of songs (e.g., between verse and chorus). They prepare the listener and 

the band to the next section. They can also be used in beats, just like the snare, bass drum, hi-

hat, and ride can be used in fills, but that is not their main functions. 

 

3.2. Cymbals 

 

The families of cymbals described next, have three different and unique striking zones 

(except for china cymbals in certain conditions, as we will see later), that enable the drummer 
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to get three unique types of sounds from the cymbals. Those areas are the edge, bow, and bell 

(figure 3.2).  

 

                                      

                                    Figure 3.2 – The different zones to hit on a cymbal. 

 

Each cymbal family’s name is very recent. A catalog from 1948 of one of the most famous 

cymbal companies of our time, Zildjian, did not state their cymbals as being crash or ride, but 

distinguished them by their sizes (7 to 26 inches) and weights (Thin, Medium, and Heavy, 

just to name a few). In the next sections we will be taking a look at each class of cymbals that 

will be used for the analysis stages of our work. Here we introduce each class’s origins, 

mains usages, and playing techniques. We will also get to discuss how their physical features 

forge the aspect of their respective spectrograms and sound. The next sections are based 

around the various chapters that can be found on [Pinksterboer 92]. 

 

3.2.1. Hi-Hat 

 

The hi-hat is not a cymbal per se, but two cymbals that work together as one. One of them 

has its bottom side facing down against the bottom side of the second cymbal, which in turn 

is facing up. The two instruments are hanged on a hi-hat stand which has a pedal board 

(figure 3.3). 
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                                                     Figure 3.3 – A Hi-Hat. 

 

The hi-hat is a very versatile instrument that enables the usage of a great number of 

techniques. When the pedal is pressed down the two cymbals are squashed against one 

another, this is the closed position or closed hi-hat (figure 3.3). When the pedal is not pressed 

down the two cymbals will have some distance separating them. This is called the opened 

position, or open hi-hat. The most common sizes for a pair of hi-hats range from 10 to 15 

inches.  

 

There are other techniques utilized with this cymbal like the “foot chick”; when the pedal is 

pressed down by the foot and a “chick” is heard as a result of the two cymbals hitting each 

other and closing the space between them; the “foot splash”, when the pedal is pressed and 

the two cymbals touch each other for a little fraction of time, returning promptly to the 

opened position.  

 

In the next figure (3.4) we can see the spectrogram of a hit on the closed bow of the hi-hat, 

which resembles white-noise. The first thing you will notice in this spectrogram is that the 

energy level of this cymbal spreads along every value of the human frequency range with a 

very similar and fast decay. This behavior is very different from the one observed in the 

remaining cymbals, which have a longer decay that is not constant throughout the various 

frequencies. The quick white-noise effect we get with this cymbal is the result of the cymbals 

being closed when hit. As the drummer opens the cymbals the white noise effect continues, 
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due to both cymbals rattling against each other with any stroke, but with a longer decay 

spread equally through the frequencies. 

 

                                 Figure 3.4 – Spectrogram of a hit on the bow of a Hi-Hat. 

 

                                   Figure 3.5 – Spectrogram of a note played on a piano. 
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Figure 3.5 is the spectrogram of a piano note. It gives us the fundamental frequency as the 

line with a higher level of energy, and the remaining harmonics from the note played. The 

difference between figures 3.4 and 3.5 is astonishing. In figure 3.5 instead of covering the 

entire human frequency range like on figure 3.4, we get very well defined bursts of energy. 

This is something common to any piano note. This way, it is harder to distinguish between 

the different cymbals than it is to distinguish between the different notes played on a piano. 

 

3.2.2. Ride Cymbal 

 

The name of this cymbal derives from what is played on it, steady, rhythmic, and driving 

patterns called ride patterns. That is why most drummers like to play this cymbal in the bow 

or bell areas, since these are the regions where we can get a more defined sound for playing 

the ride motifs. It is possible to find rides (figure 3.6) with sizes ranging from 18 to 24 

inches. They are usually very heavy and thick, making their sound louder, compact, and 

much defined.  

 

Figure 3.7 shows spectrograms of strong hits on both bell and bow areas of this cymbal. 

Taking a closer look at the spectrogram, we can see that the low frequency range (below 500 

Hz) has a much longer decay. This is due to a couple of aspects - higher frequencies have a 

faster decay, low frequencies tend to last longer, and because all cymbals, when stricken, 

have an initial explosion that is rich in low frequencies. This does not mean the sound of this 

cymbal will be very low. However, due to their size and weight, ride cymbals tend to be 

lower pitched when compared with a crash cymbal, for instance, and as such have longer 

decays. 

 

The differences between bow and bell can be observed on the spectrograms of figure 3.7. The 

bell sound is more compact, defined, and louder than the one from the bow. The amplitude 

levels on the spectrogram for the bell have more energy (they are in a very live red) than the 

same frequencies in the bow spectrogram (they are in a lively orange). As for the decay, there 

are various factors that determine the way it evolves in a cymbal. These factors are cymbal 

weight, cymbal size, bell size, and taper (change of thickness from the center of the cymbal 
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to the edge) evenness
11

. All these factors contribute in one way or another for the overall 

decay of the cymbal. We would need a lot more information and study to be able really 

evaluate what is influencing the decay of both bell and bow. In comparison to the 

spectrogram of figure 3.4, these ride spectrograms are way more readable. They are still very 

noisy when compared with the one on figure 3.5.  

 

 
                                      Figure 3.6 – A Zildjian ZHT 20 inch Ride Cymbal. 

 

                             Figure 3.7 – (Left) Spectrogram of a hit in the bow of a ride.  

     (Right) Spectrogram of a hit in the bell of the ride. 

                                                           
11

 The decay increases with cymbal size, cymbal weight, the larger the bell, and with an even taper.  
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3.2.3. Crash Cymbal 

 

After the development of the first ride cymbal, the smaller and lighter cymbals whose 

objective was of playing accents in a song by hitting their edges, eventually got named crash 

cymbals. These cymbals have a quick decay due to their usually thinner taper and lighter 

weight. The most common sizes for this type of cymbals are in the between 14 and 20 inches 

(figure 3.8), with the edge being the most played area of this type of cymbal. 

 
Figure 3.8 – A Zildjian ZHT 14 inch Crash Cymbal. 

 

 

                            Figure 3.9 – Spectrogram of a hit on the edge of a crash cymbal. 
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Figure 3.9 shows the spectrogram of a crash cymbal when struck on the edge. When hitting 

this cymbal on the edge (known as crashing) the effect is a little different than when playing 

on the bow or edge of the ride. In the case of the crash, which is usually a much lighter and 

thinner cymbal than a ride, by striking its edge we will get more overtones, and a less 

controlled and defined sound. The decay is faster but the sound is explosive. Just like with 

the ride cymbal, the low frequency range has a much slower decay, with the higher 

frequencies having a faster decay, and low frequencies tending to last longer. However, there 

are a lot higher frequencies being excited here and with a longer decay than what we saw 

with the ride. Once again this is due to the weight and thickness of crash cymbals.  

 

3.2.4. Splash Cymbal 

 

These cymbals can be considered as small crash cymbals as can be seen on figure 3.10. Their 

sound is fast and bright, with a short sustain. Just like the crash cymbals, they are usually 

used for short accents. The most common sizes for splash cymbals are in between 6 and 12 

inches. 

 

                               Figure 3.10 – A Zildjian ZHT 10 inch Splash Cymbal. 

 

The most used zone of this cymbal is the edge. Figure 3.11 shows the spectrogram of a hit on 

the edge of a splash cymbal. Both the higher and lower frequencies have very short sustain 

here, and even the explosion of the lower frequencies is mellower. This comes to show that 

as cymbals get smaller they tend to lose more and more of their lower frequencies. Thus their 

sound is predominantly high and fast, since the higher frequencies have a high decay. 
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                           Figure 3.11 – Spectrogram of a hit in the edge of a Splash Cymbal. 

 

3.2.5. China Cymbal 

 

 China cymbals where very popular at the beginning of the 20
th

 century, and were used mainly 

as a ride cymbals. In the early 1970’s drummers started to use them more and more as 

additional crash cymbals. Like the name states, these cymbals came originally from China, 

and have a very characteristically flanged edge just like the cymbal of figure 3.12. The 

cymbal on the picture maintains very few resemblances with the original Chinese cymbals 

however, besides the flange.  

 

 

      Figure 3.12 – A Zildjian ZHT China Cymbal. 
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                   Figure 3.13 – [From Pinksterboer 92] Profiles of various types of china cymbals. 

 

Original Chinese cymbals had a conical bell or handle, since these bells were used to be 

grabbed so a percussionist could crash a cymbal against each other. The western counterparts 

of the Chinese cymbals usually have a normal bell or a square one. Figure 3.13 shows the 

various shapes of china cymbals that can be found. 

 

The sounds of some of the original Chinese cymbals resembled the sound produced by trash 

can lids. The western variations of this cymbal however are more pleasing to the ears, with a 

much warmer and harmonic sound. Nowadays these cymbals are most commonly used in the 

same manner as crash cymbal, but with an exotic sound to it; continuing a trend started in the 

seventies. Some drummers rather use it as a ride just like the first western drummers who 

used them. Due to its shape it can also be played in very different positions, whether facing 

up or flipped over. In this last position the bell of the cymbal cannot be played.  

 

China cymbals have sizes that range from 6 to 27 inches. The sound of a china cymbal has a 

very fast decay, and just like the splash cymbal has a very bright sound, being however very 

piercing. Taking a look at the spectrogram below (figure 3.14) the initial amplitude values of 

most of the frequencies are in red, which comes to show how powerful the first moments of 
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the sound of a china can be. The same rules we have been talking about with all the other 

cymbals apply here also.  

           

               

                              Figure 3.14 – Spectrogram of a hit on the edge of a China Cymbal. 
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4. State of the Art 

 

Most classifiers studied for dealing with musical instruments are directed towards string and 

wind harmonic instruments. Still, some of these studies focus on the recognition of different 

types of strokes in percussion instruments with indefinite pitch, like the snare drum and 

conga drums [Bilmes 93][Schloss 85][Tindale 04]. However, most of the studies focus on 

identifying different instruments from the drum kit - bass drum, snare drum, hi-hat, toms and 

cymbals [FitzGerald 02][FitzGerald 04][Sillanp 02][Herrera 02][Gouyon 01][Paulus 

06][Moreau 07]. Nonetheless, some of the proposed classifiers cannot clearly distinguish 

between the classes of cymbals. This means the sounds from any of the cymbals in the drum 

kit are assigned to the same class - cymbals.  

 

Sound classifiers have two different stages, one for sound features extraction and another for 

classification. Many low and high level temporal, spectral and short-time features have been 

used to try to typify indefinite pitch percussion instruments. However, many classifiers give 

use to a blend of various features for getting good classification rates [Bilmes 93][Gouyon 

01][Kaminskyj 01][Paulus 06][Schloss 85][Sillanp 02][Tindale 04]. This happens because of 

the issues that arise when deciding the most appropriate features to characterize the data. 

While most sound classifiers use a set of pre-defined features, others are that learn the 

features using decomposition methods such as ICA, ISA, Sub-band ISA, and NMF 

[FitzGerald 02][FitzGErald 04][Moreau 07], which we will be studying next, among another 

methods such as these. 

 

4.1. Decomposition Methods 

 

If I do not sit on a chair does it stop being a chair? If I use it as a table, will it be called a 

table from that moment on? What is it that makes a chair, a chair? Is it its shape or its 



41 
 

function? After a while we realize that it is a very obvious answer - it is its shape, because 

even if we used a chair as a table for one hundred years, it would still be a chair being used 

as a table. But still, what is the principle that guides our assessment of reality that makes us 

decide that some object has a certain denomination?  

 

When trying to figure out what defines a chair, we use inductive reasoning, i.e., an 

intellectual and conscious effort; however, to start this whole process of intellectualizing the 

chair, we have to first learn what a chair is. This is accomplished by perception [Attneave 

54]. Perception is a sensorial mechanism that enables an inner representation of the outside 

world as well as its understanding. It enables us to react in the best possible way regarding 

external stimuli, having our own preservation as its main goal. Thus, speed on the perception 

of our surroundings is of the utmost importance. This can become a real problem to achieve, 

since we are constantly being bombarded with sensorial stimulus, and storing it all would be 

a total waste of space, since a great slice of our everyday stimulus is redundant, that is, 

accurately predictable and whose knowledge has already been acquired [Barlow 01]. But 

should the entire redundant stimulus be ignored to achieve a best level of comprehension 

about the new stimulus?  

 

Barlow postulates that the perception of sensory messages may have a certain degree of 

redundancy and loss of information [Barlow 59], and that a total level of compression, that 

is, no redundancy whatsoever, is not the way our brain handles sensorial information. 

Without redundancy it would not be possible to identify structural regularities in the 

environment, essential to survival [Barlow 01]. This work developed by Barlow on 

quantification of information is called information theory. This discipline is instrumental in 

presenting compression techniques and redundancy reduction algorithms, not only useful in 

understanding how our brain functions, but in performing computer driven operations like 

image compression and sound source separation. A very well known case of sound source 

separation is described next. 

 

In a cocktail party, the air surrounding our auditory sensors is cluttered with all the different 

confabulations taking place at one time. To this collection of sounds coming from different 
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sources in the form of conversations, and engaging our ears as one single stream of 

cacophony, we call a signal mixture. Although some masking can occur, it is possible to 

concentrate on just one of those dialogues and separate it from the rest. This is known as the 

“cocktail party effect” [Arons 92] and is a problem of blind source separation (BSS). It is 

called BSS because there is an ability of separating a conversation from the mixture of 

dialogues without knowing the sources [Plumbley 02].  

 

BSS is what we intend to perform in this work, but instead of separating one dialog from a 

stream of cacophony, we intend to identify to which class consecutively played cymbals in a 

signal mixture belong to. BSS based techniques use waveforms as inputs. Each one of the 

waveforms represents one source signal, and each source signal is a mixture of the sounds 

coming from the different sound sources. For each sound source there is a microphone 

recording the surrounding sounds. Now for our case, instead of using various waveforms we 

will use only one but represented by a spectrogram. A spectrogram can be assumed to be the 

result of the sum of an unknown number of independent source signals, each represented by 

an independent spectrogram. So in this chapter we take a look at some algorithms’ potential 

to perform separation of sound sources form a spectrogram of a mixture of various cymbal 

samples. 

 

FitzGerald made a very comprehensive study on the separation and classification of the 

standard rock/ pop drum kit’s main instruments (check chapter 3.1 for more information on 

the rock/ pop drum kit). For that goal he used several algorithms, such as PCA, ICA, 

Independent Subspace Analysis (ISA), Sub-band ISA, and Prior Subspace Analysis (PSA), 

which we will explore in more detail below [FitzGerald 04]. Other promising techniques we 

will also explore include NMF and Non-Negative Sparse Coding, since they seem of great 

usefulness regarding cymbal separation.  

 

We will start by analyzing PCA, ICA and NMF – that can be used as blind source separation 

algorithms, since they are what we like to call pure algorithms. This means they do not use 

other blind source separation techniques to achieve results, like ISA does. Afterwards, we 

analyze blind source separation techniques Sparse Coding, Non-Negative Sparse Coding, 
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ISA, and Sub-band ISA. We will end this chapter with the analyzes of Locally Linear 

Embedding (LLE), an algorithm that can substitute PCA in techniques like ISA and Sub-

band ISA, and with PSA. 

 

4.1.1. Principal Component Analysis 

 

PCA is a method used primarily for redundancy reduction or dimension reduction, i.e., data 

compression, and can be used to find patterns in high dimensional spaces. This is 

accomplished by finding an ordered set of uncorrelated Gaussian signals, such that each 

signal accounts for a decreasing proportion of the variability in the set of signal mixtures, 

where this variability is formalized as variance [Smith 02]. 

 

PCA starts by subtracting the mean from the N-dimensional mixtures in order to produce a 

data set with zero mean [Smith 02] (i.e., it centers the data at the origin of the N-dimensional 

space). Figure 4.1 illustrates this; on the left image we have the original N-dimensional 

mixture, while on the right we can check the result of subtracting the mean from the mixture. 

By not going along this line of procedure, the best fitting
12

 plane will not pass through the 

data mean but instead through the origin [Miranda 07]. Once the data is centered PCA 

searches for the areas of greater variability, so that from a set of signal mixtures x, it can get a 

set of extracted/source signals y, that is, PCA tries to unmix the signal mixtures. 

 

Lets us take as an example a 2-dimensional space, and two signal mixtures   
  and   

 . From 

these mixtures it is possible to extract two source signals    and   . For a successful 

extraction it is required to use an unmixing coefficient for each mixture. In this next example 

we use two of them, a and b, to extract    like so: 

 

                                                                
         

                                          (4.1) 

 

This pair of unmixing coefficients       defines a vector: 

                                                           
12

  Line/Plane of best fit, is a straight line/plane that best represents, or that best reconstructs (with minimum reconstruction error) the data of a 

given function/ scatter plot. 
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                                                                    (4.2) 

 

 

                   Figure 4.1 – From [Smith 02], Mean adjustment of the N-dimensional Space 

                                                   On the left, the original mixtures on a 2-dimensional space. 

                                             On the right, the mean adjusted 2-dimensional space for the mixtures. 

 

This vector has two very important geometric properties - length and orientation. Length 

defines the size of the amplitude of the extracted signal, making it bigger or smaller. 

Orientation is the factor that enables extraction of the signal. Let us call   to the space 

defined by the source signal axis    and   , and by    the space defined by the signal mixture 

axis   
  and   

  [Stone 04]. Both these spaces are defined in figure 4.2. 

 

To unmix the signal mixtures we start by factorizing the mixtures by the employment of 

singular value decomposition (SVD). This technique decomposes a matrix into several 

component matrices that are often orthogonal or independent [Ientilucci 03]. The 

factorization goes like this, with C being the mixture matrix, 

 

 

                                                                                                                                                              (4.3) 
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U is a matrix with basis on the columns; S, a diagonal eigenvalue matrix; and    a matrix 

with time based source signals on the rows. The column vectors of   and line vectors of   

are eigenvectors; with a related eigenvalue on the diagonal matrix  . Each of these vectors 

works just like the unmixing coefficient   , representing a line of best fit through the data 

mixture that finds uncorrelated Gaussian signals from it. Uncorrelation is assured by the 

orthogonality between the directions of the eigenvectors. Figure 4.3 has perpendicular 

vectors in red assuring uncorrelation, while the transformed axes are drawn as dotted lines. 

 

 

                   Figure 4.2 – From [Stone 04], source signal axis (left) and signal mixture axis (right). 

 

Sorting the eigenvalues in descending order yields the same ordering for their respective 

eigenvectors on both U and V [FitzGerald 04]. This way, we will have the eigenvectors 

ordered from greatest to lowest value of variance [Smith 02]. This will enable us to perform 

data compression by removing the eigenvectors with the lowest values of variance, since 

lower variance dictates a less relevant eigenvector when it comes to the overall signal 

strength and idiosyncrasy.  

 

Eigenvectors are scaled by the eigenvalues, this conveys that although their direction is 

untouched their size is not. This brings about one issue regarding not only PCA but ICA and 

NMF also; these algorithms do not accurately recover the amplitude information for each of 

the unmixed signals. 
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                              Figure 4.3 – From [Stone 04], PCA of two speech signals. 

 Each solid red line defines one eigenvector. 

 

FitzGerald tested the use of PCA on spectrograms of drum sounds mixture. The information 

available on the spectrogram of the mixture is represented by a        matrix   with   

signal mixtures. It is possible to learn a        unmixing matrix   that allows extracting 

  independent source signals from  :  

 

                                         ,                                                             (4.4) 

    

where   is a        matrix that contains the   independent source signals. With   

    , equation 4.4 can be rewritten as: 

 

                                                                                                                                       (4.5) 

 

where the columns of   are the basis that define the new space. 
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Figure 4.4 shows the spectrogram of the drum loop FitzGerald used. It contains sounds from 

snare drum, kick drum, and hi-hat. After performing PCA on the spectrogram we get a set of 

frequency basis functions. Figure 4.5 shows the first three basis functions, while on figure 4.6 

we have the first three source signals. Each of the basis functions are related to any of the 

source signals; for instance, the first basis is related to the first source signal. This means that 

the source signals are the coefficients in a new dimensional space defined by the basis 

functions. The first frequency basis function is related to the whole signal, while the second 

and third show only information regarding the kick drum and snare drum sounds [FitzGerald 

04]. 

Figure 4.4 – From [FiztGerald 04], the spectrogram of a drum loop containing snare drum, kick drum and hi-hat. 

 

We have a basis for snare drum and bass drum, but what about the hi-hat? This instrument 

has a very low amplitude level, so its variance is also low and the source signals that only 

have hi-hat information are ranked low. Clear information regarding hi-hats can be found 

only after five source signals [FitzGerald 04]. 

 

PCA may fail when performing individual sound source depiction due to it using orthogonal 

axes for separating the different sound sources from the mixture, something that may not be 
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enough. There is no guaranty that it will separate the different sound sources in the mixture 

into separate source signals. This feature by itself is enough to discourage the use of PCA on 

cymbal separation. 

 

The separation of each drum kit instrument through different basis was unsuccessful. This 

can be confirmed by the second and third basis functions and source signals of both figures 

4.5 and 4.6, where information regarding both kick and snare is scattered through them. So 

even though PCA seems deemed to failure, there are ways of improving its overall success 

when separating the different sound sources from the mixture. 

 

 

                             Figure 4.5 – From [FiztGerald 04], the first three basis functions. 

 

Onset detection
13

 could be used for the separation of each drum instrument through the 

search of abrupt increases in the energy envelope of the coefficients with the various basis 

[Hélen 05]. Afterwards the separated coefficients related to one specific drum kit piece could 

be joined in a single source signal. Anyhow there still remains a big problem, how to detach 

                                                           
13 Onset detection techniques detect the onset times of musical notes in audio signals. [Dixon 06] 
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coinciding events? Since this type of algorithm does not use prior knowledge but 

accumulated experience from the input, like we will see in NMF, if there are no isolated 

events that represent each of the drums in the coinciding event, separation is not possible 

[Smaragdis 03].  

 

As we have seen, PCA favors basis of high amplitude. The information from sounds of low 

amplitude, like from the bow of the ride, or from a closed hi-hat can be represented by basis 

functions of very low rank. 

 

                                 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                    Figure 4.6 - From [FiztGerald 04], the first three source signals. 

 

4.1.2. Independent Component Analysis 

 

ICA can be used to identify the different sources in a mixture. While PCA tries to achieve 

this through the uncorrelation of source signals, ICA decomposes the signal mixture into a set 

of source signals through independence, a much stronger property than correlation [Stone 

04].  
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When the mixtures are represented as waveforms, ICA requires having at least the same 

number of mixtures, that is, signals from different sound sources, as sound sources. For 

example, if we have two distinguishable sound sources, placing two microphones in two 

distinct places will create two different mixtures, since different distances of each sound 

source from the microphone will enable different proportions of the two signals in each 

mixture. Microphone placement works in the same way as camera placement. With an 

increased number of cameras filming a particular scene from different angles, we will get a 

much complete notion of what his going on. This way it will be possible to describe the 

scene with a greater level of detail [Stone 04]. However, when the sound of a drum kit is 

recorded in a studio
14

 and ultimately mixed into a sound file, usually we get a maximum of 

two channels (stereo) from where we can separate the different cymbals used. Taking into 

account that we usually have at least three cymbals in a drum kit, ICA is doomed to failure if 

only two channels are available. To outflank this, another procedure can be used; much like 

PCA it is possible to apply ICA to the spectrogram of a sound mixture. Nevertheless with 

ICA the dimensionality of the data can be reduced by considering only   source signals, 

where      [Cavaco 07]. 

 

To build the unmixing matrix it is required to use unmixing basis, one for each mixture. 

Thus, equations 4.1 and 4.2 are applicable here as well, and in the same molds, i.e.,     

which will be an unmixing basis in  , defines a weight vector used in the signal mixture 

space. Its length defines the size of the amplitude of the extracted signal, making it bigger or 

smaller. While the unmixed sound sources may be recovered, their original magnitude level 

can differ from the original signal. Orientation is the factor that enables extraction of the 

signal [Stone 04]. For a weight vector to extract a source signal it will have to be orthogonal 

to the orientations associated with the rest of the source signals, except the one that it will 

extract. In figure 4.7 we can see that by being orthogonal to   
 ,    will be able to separate 

source signal   , like stated. 

                                                           
14

 Check attachment “Drum Kit Sound Recording and Production” for more details on drum kit recording methods. 
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                     Figure 4.7 – From [Stone 04], w1 orthogonal to all source signals (S2) except S1. 

 

 

 

         Table 4.1 – From [Helen 05], SNR results for various types of sound source separation techniques. 

 

Hélen performed the separation of an entire drum track from a polyphonic signal containing 

pitched instruments. The drum parts enclosed in the songs contained cymbals, tom-toms, 

snare, and bass drum. Hélen showed that it is possible to separate drum sounds from other 

instruments with both ICA and NMF of a spectrogram [Helen 05]. In addition, Hélen 

analyzed the level of quality of ICA's and NMF’s separation using signal-to-noise ratio 

(SNR). With this type of measurement the level of the background noise is compared to the 

level of the ideal sound to unmix. The higher the values of SNR calculated the less influential 
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the noise is over the signal, thus we have a greater level of success on the separation. The 

SNR obtained with all the methods are low, with ICA having the lowest value of them all, as 

can be seen on table 4.1. Other techniques like NMF, and under the same conditions, showed 

better performance than ICA when separating percussion instruments from the original 

mixture, in which cymbals were included.  

 

4.1.3. Non-Negative Matrix Factorization 

 

The base concept behind NMF is the same as the one seen on PCA and ICA. Nevertheless, 

rather than establishing statistical independence or uncorrelation as the basis for this 

factorization process, NMF uses non-negativity. This technique has a matrix notation similar 

to the one in equation 4.5, and can also be applied to the spectrogram of a mixture. Matrix   

of size        is comprised of a set of N-dimensional data vectors, which are placed in its 

columns, with   signal mixtures in the rows. This matrix is then factorized into   of size  

      where its columns are the basis functions, and   of size (    , with   source 

signals. This factorization is conceived in a way that makes it possible for the new matrices 

to be smaller than  , since             , which may result in data compression [Lee 

01]. As we will see further down in this section, this can bring about some complications 

regarding the level of success of the factorization. 

 

With the non-negative constraint. NMF does not allow negative values in any of the 

component’s magnitude spectrums, enabling the components gains to be addictive between 

them. With this we have a parts-based representation, one that enables the different 

components to act like different parts of a source signal, without subtracting information 

between them to build the whole [Lee 99].  

 

As an example of NMF application, Lee used this technique on a database of facial 

expressions as a way of learning how to represent a face as a linear combination of basis 

functions (entries in  ) [Lee 99]. In figure 4.8 it is possible to witness in first hand NMF’s 

effect over a picture of a face.     and   are the same as the ones in equation 4.5. The 

reconstruction of the original image into    shows the additive nature of this algorithm, and 
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that with NMF the reconstruction of the original facial image loses its original magnitude 

values. This is shown by the levels of gray on figure 4.8, where these levels are different 

between the original image ( ) and its reconstruction (  ). The original face is reconstructed 

accurately using the basis matrix, although being mostly an approximation of the original 

data.  

 

A good example of using NMF for sound source separation comes from [Smaragdis 03]. 

Smaragdis and Brown performed a study on the transcription of a polyphonic music signal 

using NMF, where polyphony events were two notes played from one instrument at the same 

time and by the same instrument. This algorithm was tested over recordings of a piano, with 

both isolated and coinciding notes played. On figure 4.9 we can see a series of isolated notes 

and only one polyphonic event, which is surrounded by a red box. 

                                   

                           Figure 4.8 – From [Lee 99] NMF applied to face representation. 

 

 

 
                          Figure 4.9 – From [Smaragdis 03], Musical piece played by a piano 

                                 containing a polyphonic event with a red box surrounding it. 

 



54 
 

This musical piece has ten events with seven different notes, so let   be seven (    ). The 

result of NMF of this musical piece can be seen on figure 4.10. On the left image we have the 

representation of the values in matrix   (source signals), and on the right the values in matrix 

  (basis functions). On the third row of   we can observe a source signal filled with noise, 

which signals a non-note source signal. This non-note source signal is the result of setting   

to seven, but having NMF consider that there are only six events. This means that one of the 

sources has two notes in it that are regarded as one event, instead of two. The notes we are 

talking about are the ones played at the same time in figure 4.9. You can locate them on the 

sixth row of   of figure 4.10. 

 

Since NMF does not use prior knowledge, the only way to achieve a comprehensive and 

correct transcription result is through accumulated experience from the input [Smaragdis 03]. 

Thus, for this technique to be able to separate those two notes in the mentioned sixth row, 

both of them have to be part of the musical piece as unique events also. Separation is not 

possible in this case since these two notes are always played at the same time in the input 

signal. 

 

With this algorithm it is not possible to know exactly how many source signals are to be 

retrieved from the input signal without prior study of the musical piece. Setting a value for   

will condition exactly how many source signals to be returned. If the value chosen is less 

than the number of notes in the input then information will be lost and exact reconstruction 

will not be possible. On the other hand, if   is greater than the number of notes available, the 

coefficients (notes) with greater level of energy can be distributed amongst the rest of the 

entries in   and  . Ergo, the choice of a random value for   is not quite effective unless we 

know how many sources we want to retrieve from the input. 

 

Moreau developed a system that presented a solution for the transcription of drum events 

using NMF. The events consisted of bass drum, snare drum, and hi-hat sounds. Table 4.2 

shows the results of Moreau’s efforts. Precision rate (  ) is the ratio between the number of 

correct detections and the total number of detections; recall rate (  ) is the ratio between the 

number of correct detections and the number of events in the reference annotation. The 
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overall hit rate (  ) was calculated as the mean of individual instrument hit rates [Moreau 

07]. Probably the most noticeable aspects of this table are the results regarding the hi-hat, 

which are the worst from the bunch. The overall results were very poor, probably due to the 

test data utilized, since only a song of one minute long was used to test the system [Moreau 

07]. 

                        

                        Figure 4.10 – From [Smaragdis 03], Decomposition of a musical piece. 

 

NMF capacities were also tested along a system designed for the separation of a polyphonic 

musical signal into two classes - drum kit and pitched instruments [Hélen 05]. To achieve 

this goal the input signal was first separated into source signals using NMF. Afterwards 

support vector machines (SVM) classified sources according to one of the classes they 

belong to – harmonic instruments or drums. Results were evaluated using SNR. In the signals 

created for the testing phase, besides the usual drum kit pieces, bass drum, snare drum, and 

hi-hat, cymbals and toms were also added. The results can be seen in table 4.3. In this table it 

is possible to notice that from the algorithms tested, NMF with SMV gave the best results on 

the separation of the input signal into the two different classes. The results of the separation 

were not high with any of the methods, but NMF was the one that showed the greatest level 

of success. However, correct classification with SVMs of sources signals separated with 

NMF gave very encouraging results, with an accuracy of 93% [Helen 05]. 
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                                    Table 4.2 – From [Moreau 07], decomposition results. 

                                                 Rp – Precision Rate/ Rr - Recall Rate/ Rh – Instrument Hit Rate 

 

 

     Table 4.3 – From [Helen 05], SNR results for various types of sound source separation techniques. 

     In red the results of applying NMF of separating the drum part. 

 

The last case studied was presented by Paulus and Virtanen [Paulus 05]. It consists of three 

stages. In the first one, source signals are estimated from training material for each 

instrument in the mixture. The training material comprises samples for unique sounds of each 

cymbal. NMF is applied to each sample for any instrument. The basis functions for samples 

pertaining to a given instrument are then averaged over the total number of samples for that 

cymbal in the training set hailing the instrument’s source spectra. This procedure is repeated 

for all instruments [Paulus 05]. In the second stage each drum instrument is separated from 

the mixture using the training source spectra. In the last stage of the algorithm, onset 

detection is applied to determine the temporal locations of sound events from the separated  

Signals [Paulus 05]. As usual, snare drum, kick drum, and hi-hat were used for this test. In 

table 4.4, precision rate (  ), is the ratio of correct detections to all detections; recall rate 

(  ) is the ratio of correct detections to number of events in the reference annotation. The 

overall hit rate (  ) was calculated as the mean of individual instrument hit rates. Avg is the 

result of adding the percentages of each instrument, regarding a type of rate and dividing it 
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by the number of instruments, B (bass drum), S (snare drum) and H (hi-hat). NMF presents 

better results than PSA
15

, especially on the hi-hat. So this algorithm may perform very well 

against cymbals. 

 

 
          Table 4.4 – From [Paulus 05], table were PSA and NSF (Non-negative spectrogram 

                                   factorization – NMF applied to a spectrogram) are applied on an unprocessed signal (left) 

                            table were PSA and NSF are applied on a processed signal (right). 

 

The results of the analysis in [Moreau 07] although substantially weak, especially with the 

hi-hat, are insufficient to reach a conclusion, since only one test signal was used. On the 

other hand, the methods used in [Smaragdis 03] were successful in their separation efforts. 

Nonetheless they were not able to separate notes played at the same time. The only way to 

achieve separation with NMF is if both notes are part of the musical piece as unique events 

also. The notes played at the same time are one event, and is with events that NMF works. 

Like Smaragdis, Helén and Virtanen in [Helén 05] had a certain degree of success in proving 

that NMF could be effective in separating drum signals from polyphonic signals in a way 

that helped the classifier hail very good results, with a success rate of 93%. What is most 

encouraging is that besides considering the usual drum kit pieces for separation, cymbals 

were also added to the mix. The results in [Paulus 05] are very encouraging. AS you will 

able to see in section 4.8 of this chapter, PSA has very good results in what concerns 

separating bass drum, snare drum, and hi-hat from a mixture. However with NMF the results 

are even better, and the hi-hat, which is the cymbal that could be the most neglected here, 

                                                           
15

 Check section 4.8 for details on this algorithm. 
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actually has a success rate of 98% for unprocessed signals, and of 96% for processed signals, 

which is quite astonishing. 

 

With the results shown here it is possible to admit that NMF may be a suitable algorithm to 

perform cymbal separation with some level of success. We don’t have cymbals samples 

being played at the same time (they are played sequentially in the same sound file), so the 

issues found on [Smaragdis 03] may not occur. We also use a classification algorithm over 

the sound sources separated from NMF. Since in [Helén 05] we have a 93% of success when 

using a combination of NMF with a classification algorithm, and a 98%/ 96% of precision 

ratio for hi-hat detection, once again, from these results we expect this to be a very good 

option for classifying cymbals accurately from the mixture. 

 

4.1.4. Sparse Coding and Non-Negative Sparse Coding 

 

Sparse coding was intended to be a coding strategy that would be capable of simulating the 

receptive fields of the cells of the visual cortex of mammals [Olshausen 96]. Sparse coding 

considers that at a given moment only a certain number of sources are active, which means 

that only a certain number of sources are responsible for the creation of each observed signal 

[FitzGerald 04]. In order to identify the source signals sparse coding has to find the set of 

basis functions that enables the greatest level of independency amongst the source signals.  

 

Olshausen conjectured that an image could be described with only a few coefficients out of 

the full set. To achieve this a form of low-entropy
16

 should be found. If low-entropy is 

applied to all source signals, a lower level of dependencies can be achieved between them, 

enabling a greater level of sound source separation [Olshausen 96], and a greater level of 

independency. We first talked about independence when we introduced ICA for the first 

time, thus is there any kind of relationship between ICA and sparse coding? 

  

                                                           
16  Entropy is the level of uncertainty associated with a given variable. The higher the entropy, the higher the independence between the sources. 
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The model followed by sparse coding, is similar to the one already seen in ICA (equation 

4.5) but with the addition of an error term ( ) that accounts for noise (for instance in the 

signal transmission): 

 

                                                         (4.6) 

 

This way, sparse coding does not try to recreate the original sources data perfectly, like ICA, 

focusing only on recreating it approximately [FitzGerald 04], with minimum reconstruction 

error [Olshausen 96]. 

 

The error term, a cost function
17

, is the one responsible for the lowering of entropy on the 

coefficients of the source signals, enabling a greater level of independence between sound 

sources, and also performs a form of redundancy reduction [FitzGerald 04]: 

 

                                                          ,                 (4.7) 

 

where   is a positive constant that levels the degree of significance of the second term - 

                , relative to the first -                      . This term 

(                     ) is the mean square of the error between the original and the 

reconstructed signal mixture, measuring how well the reconstructed signal describes the 

original mixture. The second term of equation 4.7 has a cost assigned to   
18 that depends on 

the level of activity that is scattered throughout the coefficients. Activity here is the level of 

participation of the coefficients in the reconstructed data. A higher cost goes out to a greater 

level of scattered activity. In the case of overlaps, this cost value forces the system to choose 

the coefficient most capable of describing a certain structure of the signal’s data [Olshausen 

96]. Sparse coding, like PCA, performs dimensional reduction, and may present problems 

with the separation of sound sources of lower level of amplitude [FitzGerald 04]. 

 

                                                           
17 A cost function      is a function of  , which tells us what the minimum cost is for producing   units of output [Chan 07]. 

18  The group of source signals separated from the mixture, where each i is a source signal. 
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Abdallah and Plumbley tried to achieve automatic music transcription of an extract from a 

Bach piece played on a synthetic harpsichord
19

 with sparse coding. The results were said to 

be passable [Abdallah 03]. Still we have to consider that the tests were done on a synthetic 

instrument with a very small data set, so it is yet to be seen how their system would behave 

with an acoustic instrument, and with a large data set. 

 

Another test was made using non-negative sparse coding, that is, sparse coding where  ,  , 

and   of equation 4.6 all have non-negative column values [Virtanen 03]. But this time, 

instead of synthetic instruments, two acoustic instruments were selected: the snare and the 

bass drum. The transcription was tested using polyphonic signals containing pitched 

instruments synthesized from MIDI [FitzGerald 04]. This choice was made because through 

MIDI it was possible to have access to the correct drum score, not having to go through time 

consuming annotations to verify the final results obtained from transcription [Virtanen 03].  

 

The transcription procedure starts by separating the most prominent coefficients. Then the 

identification of bass and snare sounds among the separated coefficients ensues, following 

the method described in the previous paragraph. Afterwards, onset detection is carried on the 

amplitude envelope of the source signals constructed from the coefficients, to detect the onset 

times of each hit on these two instruments. The performance of the transcription is evaluated 

using an error rate measure: 

 

                                                            
        

              
                                                    (4.7) 

 

where    is the number of correct transcriptions,    is the number of deletions or missing 

events, and    is the number of insertions or extra events detected [FitzGerald 04]. 

 

Bass/ snare hits that are at most 32 milliseconds farther from the original hit are considered 

correct transcriptions. If a hit is determined as a snare or bass drum event, then they are 

counted as correct transcriptions. If however they are not recognized, but exist in the signal, 

                                                           
19  A musical instrument in which by pressing a key the chord is plucked instead of hammered, like in a piano. 
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they are considered deletions. If they are recognized but in reality are not part of the track, 

then are insertions. From the tests developed, there was an error rate of 27% for the bass 

drum and 43% for the snare drum [Virtanen 03]. 

 

As stated before, studies related to drum transcription are usually tested with a combination 

of bass drum, snare drum, and hi-hat. In this case the hi-hat was not used, because separation 

was very difficult due to their much weaker energy, compared with the bass and snare 

[Virtanen 03]. This predicament is the direct result of the redundancy reduction performed by 

sparse coding. Much like in PCA, cymbal separation may be very hard to perform with 

sparse coding, since knowing exactly how many source signals will represent the important 

information is a very big affair here. Therefore, when selecting the number of coefficients to 

maintain, information about elements with low amplitude levels may be lost. This is once 

again crucial to our intentions because in a mixture where we may have cymbals with low 

amplitude level, their information might be disregarded, and as such, separation is not 

possible which may difficulty the classification procedure. 

  

In the analysis executed by Virtanen even the elements with high amplitude levels and of the 

same type, in this case skinned percussion instruments, were hard to separate with non-

negative sparse coding. This way, it seems that when separating mixtures that have similar 

instruments, like skinned drums or in our case cymbals, the algorithm may have problems in 

separating the different sound sources from the mixture. Another problem arises from the 

lack of success of this algorithm for separating cymbals with low amplitude levels when 

stricken, like closed hi-hat and the bow of the ride.  

 

4.1.5. Independent Subspace Analysis 

 

ISA is a technique that was especially created to work with sound, in particular, it was 

developed to carry out sound source separation on a single channel apparatus. It first uses 

PCA to perform dimensional reduction on an input spectrogram and then ICA, so as to make 

the PCA source signals independent. The spectrogram is assumed to be the result of the sum 

of an unknown number of independent source signals, each represented by an (independent) 
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spectrogram. These independent spectrograms are the result of the outer product
20

 between a 

basis function and a source signal [FitzGerald 04]. 

 

Figure 4.11 shows the spectrogram of a sound clip containing a hi-hat, snare drum, and a 

piano. After applying ISA to the excerpt we get three source signals (figure 4.12), and three 

basis functions (figure 4.13). In each of the source signals of figure 4.12 it is possible to see 

that although separation was achieved, there still remains some unwanted information. The 

first source signal (snare drum) has some very small hi-hat peaks; the second source signal 

captures all of the piano notes, but we can see that the third one has some interference from 

the snare drum, since it coincides exactly with the snare stroke; the third source signal which 

is the hi-hat shows no problems. In each of the basis functions of figure 4.13 there is also 

unwanted information. In the snare drum, after the 1 kHz mark we have some residual noise, 

which in some part is related to the hi-hat. The second basis shows up the piano chord played 

as a set of peaks representing harmonics of the notes in the chord. The rest of this basis is a 

combination of noise with some characteristics from the hi-hat. The last basis has the main 

features of the hi-hat between 15 kHz and 20 kHz, with the lower frequencies of the basis 

having information regarding the piano [FitzGerald 04]. FitzGerald stated that after hearing 

the re-synthesis of the hi-hat, he noticed the presence of the attack portion of the piano notes, 

which is something that is missing in the re-synthesized piano signal. So, while the quality of 

the separation is good, overlaps between the separated source signals may happen, which to 

some degree may mask the separated signals. 

 

Since ISA uses PCA and ICA to handle sound source separation, it is only natural that ISA 

inherits some of their limitations. In the dimensional reduction phase ISA neglects the source 

signals with a lower level of amplitude, which can make the recovery of sources like splash 

cymbals, rides played on the bow, and hi-hats a very hard task. This way, it may be necessary 

to increase the number of separated source signals, just to make sure that all the relevant 

information from different cymbals is maintained. This, of course, has repercussions in the 

robustness of ISA, since it is hard to set a correct threshold (number of components to 

                                                           
20 Outer product is the multiplication between two vectors, who’s final result is a matrix. 
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maintain) since relative amplitudes of sources can vary from mixture to mixture, and even 

inside a same mixture, depending on the type of dynamics used by a drummer when playing. 

 

The amount of information needed to perform sound source separation using ISA varies from 

signal to signal. This way, the number of dimensions to maintain from signal to signal in the 

PCA phase of the algorithm is unknown and will depend greatly on the amplitudes and 

frequencies of the sound sources [FitzGerald 02].  

 

                                     

                               Figure 4.11 – From [FitzGerald 04], spectrogram of an audio 

   excerpt taken from a commercially available CD. 

 

In a signal containing only cymbal events, the usage of thresholds can be very risky since 

some cymbals may have much lower amplitude levels than others. Therefore, all cymbal 

coefficients related to a certain cymbal can be removed in the PCA stage of ISA, ending any 

chance of an accurate cymbal transcription – this is a limitation of PCA. Also, the 

coefficients that come from the ICA stage are not ordered in any way possible. This means 

that each of the coefficients has to be identified as being from a certain sound source, giving 

use to their frequency characteristics, or amplitude envelopes [FitzgGerald 04]. The big 

problem here is that, as we saw on chapter 3, cymbals show very similar frequency 
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characteristics and envelopes, so even this identification of coefficients can go very wrong 

here. There are too many uncontrollable variables to attend to with ISA, which makes it seem 

like it is not the best choice for sound source separation of cymbals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

                Figure 4.12 – From [FitzGerald 04], source signals for each 

                                   of the instruments played on the signal from figure 4.11. 

                         

                                 Figure 4.13 – From [FitzGerald 04], basis functions for each 

                                    of the instruments played on the signal from figure 4.11. 
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4.1.6. Sub-Band Independent Subspace Analysis 

 

This technique is based on ISA. The main difference consists of dividing the signal into sub-

signals before performing ISA: the signal mixture is segregated in two sub-bands before 

performing ISA of each resulting sub-signal. FitzGerald performed tests with this algorithm 

on a drum loop with snare drum, closed hi-hat, and bass drum [FitzGerald 02 & FitzGerald 

04]. The loop was severed into two sub-bands through one low pass filter with a cutoff 

frequency of 1 kHz, and a high pass filter with a cutoff frequency of 2 kHz, giving rise to two 

signals – one with a high frequency range and another with a low frequency range. This was 

the apparatus chosen because of the most important frequency bands that hi-hat (high 

frequencies), bass drum (low frequencies), and snare drum (low and high frequencies) cover. 

This may prevent the removal of cymbal coefficients from the overall signal, seeing they 

may become the events with a higher level of amplitude in the high frequency sub-band 

signal. 

 

Applying sub-band ISA to the drum loop resulted in a whole collection of cleaner sound 

sources (with less noise). In addition the number of source signals required to recover the hi-

hat was smaller than with ISA, as we will see next. Figure 4.14 exhibits the source signals 

retained by sub-band ISA of a drum loop, while figure 4.15 the coefficients from ISA of the 

same drum loop.  

 

By comparing figures 4.14 and 4.15 we perceive that Sub-band ISA displays better results 

than ISA. With Sub-Band ISA the description of the three drum pieces utilized on the loop is 

done with less source signals, they are cleaner, and the hi-hat has more definition than with 

ISA. Despite its good results sub-band ISA is slower than ISA, since it requires two passes 

through the data, one for each sub-band. Since sub-band ISA is based on ISA one of the 

problems of ISA is still felt, which is the existence of more source signals than sound 

sources, but in a smaller number than with ISA [FitzGerald 02]. 
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                            Figure 4.14 – From [FitzGerald 02], Sub-band ISA of a drum loop. 

 

 
                Table 4.5 – From [FitzGerald 02], Sub-band ISA transcription results of a drum loop. 

 

Table 4.5 exhibits the results of performing Sub-Band ISA on a drum loop. Total, refers to 

the number of total hits in each of the drum kit instruments present in the drum loop. 

Undetected, is the number of hits present in the sound mixture that were not detected. 

Incorrect, is the number of hits that were detected as being from the wrong instrument. 

Percentage refers to the percentage of accurate hits.  

 

Although performing better than ISA and exhibiting very good results regarding the 

transcription of the drum kit events and even of the hi-hat, sub-band ISA still has a problem 

on the choice of the amount of information to maintain after the PCA phase of the technique, 

which would still be unknown. Consequently some important source signals might enable an 

accurate transcription could be lost forever. One other issue we found in this algorithm is that 
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by applying it only to cymbals we would actually just be separating the cymbals frequency 

values through the two different sub-bands and not various cymbals for each sub-band. This 

is a result of cymbals having very “busy” frequency spectrums. 

 
                                   Figure 4.15 – From [FitzGerald 02], ISA of a drum loop. 

 

4.1.7. Locally Linear Embedding 

 

Locally Linear Embedding (LLE) can be used as a redundancy reduction technique, but 

contrary to other techniques studied in this chapter, it is not an information theoretic 

approach [FitzGerald 04]. This technique was included in this group of algorithms because of 

its possible applications in redundancy reduction, especially regarding its usage in ISA, 

where it can substitute PCA in the data redundancy reduction phase. 

 

PCA's dimensional reduction is based around the concept of higher variance or higher 

amplitude level. As we have already studied, this may cost us the loss of important 

information related to sounds with low amplitude in the original musical piece. Important 

because this information may be related to cymbals. This loss happens because of the low 

level of power with which some cymbals are played, or because the area of the cymbal which 
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is stricken has a natural low amplitude. When using ISA to perform sound source separation 

the first stage of the algorithm is performing PCA on the mixture, which may contribute to 

the loss of information from cymbals, something that is highly unwanted. 

 

LLE is based on geometric principals, instead of the variance levels with which PCA reduces 

dimensional space. So, when used for dimensional reduction, LLE attempts to obtain a low 

dimensional space from the original high dimensional space, keeping the relative positions of 

data points, regarding its nearby neighborhood.  

 

In a more mathematical approach, considering that the data is distributed to   real-valued 

vectors    with   dimensions, then we can consider that each vector and its respective 

neighborhood will lie on, or close, to pieces of data that can be characterized by coefficients 

that reconstruct each vector through its  -nearest neighbors (K-NN) [FitzGerald 03b]. To 

perform redundancy reduction with LLE, a value for the number of dimensions to keep ( ) 

on the low dimensional space, will have to be specified, as well as the number of neighbors 

( ) to use for the reconstruction of each vector. 

 

Because of the nature of this algorithm it can be combined with ISA to substitute PCA. To 

further test this assumption we take a look at a little test performed by FitzGerald on a drum 

sample containing snare drum, hi-hat, and bass drum [FitzGerald 03b]. In Figure 4.16 we can 

see the result of using LLE in ISA instead of PCA. The number of neighbors considered was 

thirty (      and the number of dimensions to recover from the signal was three (   ). 

The amplitude spikes match the correct locations for each stroke in each of the three drum kit 

pieces. When using PCA with ISA (figure 4.12) the results of the separation are well defined 

in the snare and bass drum, but however, LLE performs way better in separating the hi-hat. 

 

ICA on the source signals of figure 4.16 results in an increase in the definition of each of the 

peaks (figure 4.18). The lower peaks on figure 4.17 may be due to the fact that the 

neighborhood points belong to other types of drums, or to drums with very similar frequency 

characteristics. 
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                           Figure 4.16 – From [FitzGerald 03b], source signals from using LLE in  

             ISA instead of PCA, with K = 30 and d = 3. 

 

 

As we have already stated, before performing LLE on the signal mixture we must first 

choose the number of neighbors to use in the reconstruction of the signal into a lower 

dimensional state. The choice of   when performing ICA on the output of LLE has to be 

done carefully, since, has we will be seeing next, the end results will vary with it.  

 

Figure 4.19 shows the results of choosing a greater value for   than the one on figure 4.18. 

The third row of figure 4.19 shows that the hi-hat peaks are lower, while the ones that stand 

up the most are from the snare drum. This highlights that when using LLE in ISA much care 

must be taken when choosing a value for  , because this will influence the results of ICA. 

The problem here is that there is no way of choosing the most appropriate value for  , which 

would allow the technique to perform optimally. Nevertheless, FitzGerald stated that this 

problem is less harsh when the number of source signals recovered from LLE is greater than 

10 (     ) [FitzGerald 03b]. 
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                        Figure 4.17 – From [FitzGerald 03b], source signals from using PCA in ISA. 

 

 

 
                        Figure 4.18 – From [FitzGerald 03b], coefficients obtained from ICA 

                                               on the outputs of LLE, with K = 30. 
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First and foremost, the choice of values for   and   is done blindly as there is not a known 

value for   that can assure an optimal number of neighbors with which to reconstruct each 

vector. Anyhow, there is a way to bypass this situation if   is greater than ten, which in term, 

may create one other big problem. Since we do not know how many cymbals the input 

signals will exhibit, we could end up with a higher or smaller number of source signals than 

what is desirable for the separation. Furthermore, the number of source signals to output with 

LLE is likewise unknown, consequently the same problem that we had with ISA and sub-

band ISA using PCA manifests in ISA using LLE, that is, not knowing how many source 

signals to input to the ICA phase of ISA. This will depend on the number of cymbals present 

in the mixture, something we are unaware of, since these algorithms are used without prior 

knowledge of what type of cymbals and how many are in the piece. Moreover, an additional 

problem abides in the neighbourhood of a given coefficient. As stated earlier, a 

neighbourhood may be comprised of a collection of data points, pertaining to different 

instruments, and whose frequencies spectrum superimposes one another in some values. 

When this happens the sources may not be characterised adequately [FitzGerald 03b], and 

since cymbals have overlapping frequencies, it may not be possible to guaranty a separation 

of cymbals through different coefficients. 

 

 
 Figure 4.19 – From [FitzGerald 03b], coefficients obtained from ICA on the outputs of LLE with K =50. 
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4.1.8. Prior Subspace Analysis 

 

PSA is the first technique in this work that incorporates models of the sounds in the mixture 

as training sets, as a way to achieve a better result in the separation of sound sources. The 

first step in PSA is to ensure the creation of a prior subspace capable of representing each 

sound source used in a given mixture. To do so, a large number of samples has to be 

analyzed for each of the instruments, in this case drum kit instruments, enabling the creation 

of a model for each instrument through a ISA type approach. This algorithm conditions each 

drum kit instrument to be pertained by a small number of invariants [FitzGerald 03a].    

 

PSA starts by applying PCA to the spectrogram of each sample of a given instrument. The 

first three coefficients are then retained for further analysis. ICA is then applied to each one 

of the coefficients to get the independent frequency subspaces. This is so because the 

amplitude envelope of a pattern executed on a drum kit will depend exclusively on the way 

the drummer plays it, which varies greatly. The frequency values will be the ones chosen to 

represent the invariants of each drum, since this way we have a representation of a specific 

characteristic of the drum itself. The frequency subspace with the biggest variance is chosen 

to be the prior frequency subspace for that particular sample. After performing these 

operations on each sample for any instrument, K-means clustering is applied on the cluster of 

prior subspaces of samples for a given sound source. This way we get a prior subspace that 

characterizes each sound source. 

 

After the prior subspace has been created for each of the drum kit’s instruments in the source 

signal, their pseudo inverse are multiplied by the spectrogram of the input mixture. This 

originates the amplitude basis functions of each drum kit instrument in the mixture 

[FitzGerald 04]. Since drum sounds have a very noisy spectrum, each amplitude basis 

function may have smaller peaks from other instruments. To clean the functions from the 

unwanted peaks, and to get independent basis functions, ICA is used. This way, by 

multiplying the independent basis functions by its respective prior subspace we can estimate 

the independent spectrograms for each instrument in the mixture [FitzGerald 03a].  
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The use of prior subspaces naturally overcomes the problem of low amplitude sources, since 

PCA is not performed, unlike with ISA and sub-band ISA. This way, PSA has a faster 

performance level in comparison with ISA and sub-band ISA. Since sub-band ISA presented 

better results in comparison with ISA, we will further the correlation between PSA and sub-

band ISA. To do so we will look at the tests made by FitzGerald for PSA, with the same 

drum loops used when performing tests with sub-band ISA [FitzGerald 04]. 

 

                  

 

                 Table 4.6 – From [FitzGerald 04], comparison between the results from applying 

                              sub-band ISA (left) and PSA (right) to the same drum loop. 

 

As stated before, sub-band ISA performs ISA two times, one on the high-pass band and 

another on the low-pass band, while PSA only needs one pass performing in a much efficient 

manner. On table 4.6 we can see a comparison between the source signals separated by PSA 

and sub-band ISA. Total, refers to the number of total hits in each of the drum kit instruments 

present in the drum loop. Undetected, is the number of hits that although being in the sound 

mixture were not detected. Incorrect, is the number of hits that were detected as being of one 

instrument, when they belonged to another totally different. Percentage refers to the 

percentage of accurate hits. 

 

With the use of a prior subspace, PSA is able to return a source signal for each sound source 

in the musical piece, outperforming sub-band ISA. PSA excels in the separation of hi-hat 

events, being 5% more successful than sub-band ISA (table 4.5). Even though the overall 

performance is better, there are snare events wrongly evaluated as hi-hat hits. This is due to a 

certain level of similarity between the higher frequency values of the snare and of the hi-hat 

[FitzGerald 04]. 
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              Figure 4.20 – From [FitzGerald 04], comparison between the source signals returned 

                           from applying sub-band ISA (right) and PSA (left). 

 

In figure 4.20 the source signals that result from separation with PSA are cleaner, and are in 

the same number as that of the drum kit pieces. However, there may be some shortcomings 

when it comes to cymbals. The snare drum events wrongly evaluated as hi-hat hits, due to the 

level of similarity between the higher frequency values of both instruments, brings about an 

issue when it comes to separating cymbals. Since every cymbal has their energy spread along 

the human audible frequency range, it can become that much harder to separate the cymbals 

from each other, than to separate the snare from the hi-hat as shown on table 4.5. Either way, 

PSA seems to be a very good option for performing sound source separation of different 

cymbals, and a better one than ISA and Sub-band ISA. 
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5. The System 

 

In the last chapter we reviewed a great number of algorithms. Each review was followed with 

a small analysis of their possible usage for detecting cymbal events. All of those analyses 

were just assumptions of what could be achieved by these techniques, since none of them had 

been previously used on the classification of cymbal events. Therefore, we have yet to see 

how they really work and behave in an environment filled exclusively with cymbal events. 

With that in mind, in this chapter we propose a system whose objective is performing sound 

source separation of the different cymbals in a signal mixture, and of accurately classifying 

them. 

 

                 Figure 5.1 – Steps followed for automatic cymbal separation and classification. 

 

The system follows an approach that consists of a three step sequence. The relationship 

between the three steps is displayed in figure 5.1. The audio processing stage comprises two 

different sub-divisions. The first one consists of converting samples from analog to digital 

(for further details on this conversion check chapters 2.1 and 2.2) through the recording of 

cymbal sounds into wav format. In the second sub-division the resulting waveform is 
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transformed into a spectrogram. Then, in the sound source separation stage we apply one of 

the algorithms studied in chapter 4, to perform sound source separation. The final stage 

consists on using a classification algorithm, which categorizes each of the separated signals 

in the second stage into a cymbal class. In the following sections we analyze each one of 

these three steps in its own section with further detail.                     

 

5.1. Audio Processing Stage 

 

For each analysis the system is fed with a combination of two or three classes of cymbals at 

the same time. Three possible combinations of samples were designed to be used for each 

one of the classes in the different cymbal combinations: 

 

1. In the first sample combination, for each class of cymbals we choose the six samples 

with highest level of amplitude;  

2. In the second sample combination, for each class of cymbals we choose the six 

samples which best describe the whole spectrum of amplitudes in a given cymbal, 

i.e., from high to low amplitudes;  

3. In the third sample combination, for each class of cymbals we choose the six samples 

with the lowest amplitude level that still maintain sound characteristics particular to a 

peculiar family of cymbals
21

.  

 

For each analysis performed between cymbals, the sample combination chosen for a given 

class of cymbals has to be the same for the remaining classes. This means that if we use 

sample combination (1) for one cymbal class, then all the remaining cymbals will have to be 

tested with the same combination. This is how we organized the training set of our system. 

 

After being transformed into magnitude spectrograms by applying STFT to each sound 

samples, the samples are concatenated as rows in a matrix. We do not consider phase 

                                                           
21

   When you are hitting a cymbal using very quiet strokes, it gets to a point where its sound does not emanate any audible characteristics 

associated with that given class of cymbals. 
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information here and use only the magnitude, taking the absolute values of the FFT spectra. 

All of this gives birth to the magnitude spectrogram matrix of the cymbal mixture. 

 

5.2. Sound Source Separation Stage 

 

Once the data is represented with a spectrogram we use NMF for performing sound source 

separation. As discussed in section 4.3. NMF presented encouraging results when it comes to 

sound source separation, which is a good indication that it can also mitt our goals. We know 

that the non-negative constraint is very useful in attaining the factorization of the whole, i.e., 

the mixture into its parts. Keeping that in mind, we followed a similar route to the one 

proposed by Virtanen [07], which in turn is based on Lee’s and Seung’s work [Lee 01] for 

using NMF for sound source separation. 

 

NMF of the spectrogram of a mixture results into two non-negative matrices –   and    The 

product between these two matrices is equal to the spectrogram  , as in equation 4.5. All 

entries on   and   are initialized with the absolute value of Gaussian noise. Estimation of 

both matrices is done by a cost function       , whose minimization algorithm tries to 

deprecate for each iteration of the factorization. This way, the reconstruction error of the 

product between   and   vis-à-vis   is minimized. The cost function is a weighed sum of 

three terms – reconstruction error        , temporal continuity      , and sparseness      . 

Ergo, the cost function is, 

 

                                                                         ,                               (5.1) 

 

with   and   as weights for the last two terms [Virtanen 07]. 

 

Information theory algorithms are usually more sensitive to high-energies, failing to separate 

source signals with low-energy levels (PCA is a good example of this, as we have seen on 

chapter 4.1). Lee and Seung [Lee 01] tested two approaches for minimizing the 

reconstruction error of NMF – the square of the Euclidean distance and the divergence. The 

usage of a divergence is the best choice for our case, due to its sensitivity to low levels of 
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energy when compared to the Euclidean distance [Virtanen 07]. So due to some of the 

cymbals used in our work, like the hi-hat, the ride, and the splash, this was the best option for 

us and the one we chose to use in this dissertation. 

 

Adjacent time frames in a spectrogram show some continuity on their temporal structure, so 

they are not completely unrelated between themselves. The temporal continuity of the 

components is measured by assigning a cost to large changes between the gains in adjacent 

frames, which may be able to improve the separation between the source signals [Virtanen 

07]. 

 

The last term of equation 5.1, sparseness, is taken in consideration because it helps to 

increase the weight of the redundant information, i.e., the most informative data, in the 

overall information landscape of a spectrogram. This way it may also increase the quality of 

sound source separation. To understand how this may happen let us look at a practical 

example using as subjects two instruments from the drum kit, the bass drum and the snare 

drum. Looking at the spectrograms of both instruments on figure 5.2 (bass drum on the left 

and snare drum on the right), it is possible to notice an overlap in the lowest portion of the 

frequencies from 0 to 1000 Hz. The overlap means that both instruments have energy along 

that same frequency interval. If we created a mixture with both these instruments, and used 

the sparseness criterion, the overlapped information of the bass drum would cover the lower 

frequency range of the snare drum. However, by giving use to sparse gains it is possible to 

model the snare drum with the information from the bass drum, plus the residual from the 

snare’s higher frequencies [Virtanen 07].  

 

While the ideas and possibilities behind the cost function are very interesting, as shown by 

Virtanen, the end result of its application can be far from the expected [Virtanen 07]. The 

objective of the work developed by Virtanen was to separate drum kit sound sources and 

pitched instruments sound sources from a mixture. For testing sound source separation using 

the apparatus we just described, of NMF and a cost function for minimizing reconstruction 

errors, Virtanen generated signal mixtures by using a random number of drum and pitched 

instruments sources. For the pitched instruments sources an arbitrary instrument and a 
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fundamental frequency were chosen from the available samples, while for drum sources a 

random drum kit and a different drum instrument. Both the temporal continuity and 

sparseness terms of the cost function did not improve the results significantly.  

 

Figure 5.3 shows the effect of applying different values to the weights   and  , when   and 

  are set to 0 respectively. In the   axis we have two different measures of success for the 

separation procedure; one for measuring the signal strength relative to background noise 

known as signal-to-noise ratio (SNR), and another for determining the degree of errors called 

error rate. There are three lines exhibited in the picture; the dashed one is for pitched sounds, 

the dotted line is for drum sounds, and the solid line represents the average results between 

the drum sounds and the pitched sounds. In regards to sparseness the figure shows that drum 

sounds have very low SNR (close to 3 dB) and very little error rate fluctuations. The only 

variation are when      , where the results start to degrade, due to the size of the weight. 

With our case we are interested in the dotted line, since it was the one used for drums
22

. 

 

 

 

                  Figure 5.2 – Spectrograms of a stroke on a bass drum drum and on snare drum. 

                    Bass drum spectrogram on the left and Snare drum spectrogram on the right. 

 

                                                           
22

 Samples from the sample based drum software synthesizer Drum Kit from Hell, developed by Toontrack, were used in [Virtanene 07], for both 

cymbals and drum sounds. 
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                        Figure 5.3 – From [Virtanen 07], effect of different temporal continuity 

                           weights   and sparseness weights   on the detection error rate and SNR. 

 
   Figure 5.4 – Spectrograms of powerful strokes on the edge of a splash (left) and of a china cymbal (right). 

 

The example given on figure 5.2 with bass and snare drum sounds was meant to illustrate the 

sparseness criteria as explained by Virtanen. However, if we take a look at the spectrograms 

of the two cymbals we can further understand how this sparseness criterion can actually fail. 

Figure 5.4 shows the spectrogram of a powerful hit on the edge of a splash cymbal (left), and 

a powerful stroke on the edge of a china cymbal (right). As can be observed there is much 
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useful information in every bin and frame. Even when the samples of both china and splash 

have medium or low amplitude, like on figure 5.5, there is a lot of activity in both bins and 

frames. 

 

    Figure 5.5 – Spectrograms of softer strokes on the edge of a splash (left) and of a china cymbal (right). 

 

Temporal continuity, one of the terms of equation 5.1, shows that the results are almost 

identical to the sparseness results. We have done some preliminary tests that confirmed the 

insignificance of these terms – sparseness and temporal continuity. By increasing both   and 

  while keeping   and   equal to zero respectively, we found no differences in the success of 

the sound source separation results over the end result. Accordingly, after this initial 

examination both   and   were used throughout the whole testing phase with their value 

equal to 0, removing the sparseness and temporal continuity terms from the algorithm. 

Therefore the cost function used here was the reconstruction term: 

 

                                          .                                                    (5.2) 
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5.3. Sound Classification Stage 

 

The classification algorithm used in the last stage of the system was K-NN with     , thus 

1-NN. This algorithm requires a neighborhood, called a training set, from which it can then 

compare the distance to a test set. The training set contains the source signals (envelopes) 

learned by NMF. Therefore, each source signal is a collection of all the points that take part 

in the envelope. In the same way the test set is also a collection of points. The distance is 

computed with the square of the Euclidean distance between each point of the test set and the 

whole assortment of points in the training set. 

 

1-NN will classify and band each point of the test set to a certain class, based on its 

proximity to certain points of the training set. As mentioned above we have    , which 

means that if the majority of points of a given test sample are nearer the points of a certain 

training cymbal, then this test sample will be categorized as a sample from that same class 

[Mitchell 97]. A test sample from a cymbal is considered to be accurately classified if we get 

above 50% of its source signal points to be assorted as being from that particular cymbal. 

 

To enable an accurate adoption of 1-NN for classification, we first need to transform the test 

samples intothe same dimensional space as the training set. To do so, the   test samples we 

feed to 1-NN are first transformed by applying an unmixing matrix    , based on the 

pseudoinverse of the mixing matrix  . This is so that each sample    follows the same basis 

as the training set  , enabling the test sample to be transformed into   , its new 

representation on the training set’s dimensional space: 

  

                                                                                                                                     (5.3) 
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6. Results and Discussion 

 

This is the chapter we have all been waiting for, the chapter where all the suspense reaches a 

screeching halt. We finally unveil the results of our study - the good, the bad, and the ugly; 

the why’s and what’s.  

 

We start by giving a brief overview of the software and hardware used (section 6.1). We then 

proceed shedding some light on the ins and outs of the procedures followed while recording 

cymbal samples in studio, as well as the gear and cymbals used to do so (section 6.2). In the 

final section of this chapter (section 6.3) we get into the full details on the analysis executed, 

as well as a full discussion of both the results and decisions taken. 

 

6.1. Hardware and Software Specifications 

 

In this section we will take a look at hardware and software specifications from the tools 

adopted for this dissertation.  

 

6.1.1. Software Specifications 

 

Analysis Software: Matlab version 7.0.0.19920 (R14). 

Operating System: Windows XP with Service Pack 3. 

System Type: 32-bit Operating System. 

 

6.1.2. Hardware Specifications 

 

Computer: Asus Notebook F9S Series – bought in 2007. 

Processor: Intel Core Duo T7250. 
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Clock Speed: 2 GHz. 

Memory (RAM): 2 GB. 

 

6.2. Cymbal Recording Process 

 

The data used for testing the proposed cymbal classifier was a set of cymbal sounds recorded 

in the “Chop Chop” studio (Portugal). Figure 6.1 shows a diagram of the studio (the diagram 

of the studio was provided by the studio owner). Room   is the room where the cymbal 

samples were recorded, while room   is the control room. Room A has laminated floor, 

which can easily result in sound wave reflection. To attenuate this effect, the laminated floor 

is covered with carpets that work as sound absorbers. The walls are made of plasterboard 

with its interior filled with an acoustic isolator called rockwool. The interior walls of the 

room, including areas of the ceiling, are covered with sound cushions, which are open 

structures made of wood and covered with fabric. They house a great quantity of rockwool 

that work as sound absorbers for the sound waves produced by music instruments. All of this 

apparatus is of great importance in a recording studio because they prevent reverberation and 

enable a greater quality in sound control. 

                

               

                Figure 6.1 – Chop Chop Studio. 
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The cymbals used for recording were chosen following three criterions - quality, diversity, 

and sound. Although no attention was given to the cymbals’ brands, they are all from top 

cymbal manufacturers – Zildjian and Sabian Cymbals. It is also important to point out that 

the number of cymbals available in the studio was limited. We wanted to have at least one 

quality cymbal for each one of the five classes. We ended up recording six cymbals that are 

represented on figure 6.2 and listed just below:  

 

o Zildjian 16 inch A Custom Crash Cymbal; 

o Zildjian 14 inch K Custom Dark Crash Cymbal; 

o Zildjian 16 inch A China High Cymbal; 

o Zildjian 9 inch K Custom Hybrid Splash Cymbal; 

o Zildjian 14 inch K/Z Hi-Hat; 

o Sabian 20 inch AA Heavy Ride. 

 

    Figure 6.2 – Cymbals Sampled.  

       (Top Left) A Custom Crash; (Top Center) K Custom Hybrid Splash; (Top Right) A China High    

    (Bottom Left) K/Z Hi-Hats; (Bottom Center) AA Heavy Ride; (Bottom Right) K Custom Dark Crash 

 

To play these cymbals we used the signature series drum sticks of the drummer Bruno 

Pedrosa, made by the Portuguese brand of sticks Missom. These drum sticks are made of 

“pau-santo”. This is not a typical wood for drum sticks manufacturing. They are usually 
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made of maple, hickory, or oak. In figure 6.3 a picture of Pedrosa’s stick is shown with the 

anatomy of a drum stick explained. Other important issues to consider in this whole process 

regarding the playing techniques utilized while recording the samples. This is a very 

important point since the sound produced by a cymbal is influenced by the area of the stick it 

is stricken with. For playing the edges and the bells of the cymbals we used the shoulder of 

the stick, while for the bow we used the tip. These are the most common areas of the stick for 

playing those cymbal areas. 

 

                                                      Figure 6.3 – Anatomy of a drum stick. 

 

The recorded samples range from the highest level of amplitude to the lowest. The different 

zones of the cymbal were stricken one by one, from the most powerful of strokes to the 

softest. Because this process is very susceptive to nuances in the strength used, and the 

cymbals were hit by hand, this resulted in certain zones of cymbals having more samples 

than others to ensure we would get a full spectrum of amplitudes. Bell, Bow, and Edge were 

recorded for four of the six cymbals – A Custom and K Custom Crashes, K Custom Hybrid 

Splash, and AA Heavy Ride. Due to time restrictions only the edge was used on the first 

three cymbals and the bow on the ride. As for the china we only recorded and used the edge. 

For the hi-hat we only got to use the hits on the closed bow. 

 

Table 6.1 shows an overview of the number of samples obtained for each zone of the 

cymbals considered for this work. In the first column the cymbals family is described, 

followed by the brand and name of the cymbal. The remaining entries describe the size of the 

cymbals in inches
23

, the zones of the cymbals which were used for analysis, as well as the 

number of samples per zone and the total number of samples available for each of the 

                                                           
23

 Cymbal sizes are referred in inches amongst drummers, even in Europe. 
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cymbals’ family. All these samples were recorded in mono by a Condenser microphone, an 

Octava MC012, with a sample rate of 96 kHz. 

 

Cymbal Family Cymbal Size Zone Number of Samples

Zildjian K Custom  Dark 14 Inches Edge 23

Zildjian A Custom 16 Inches Edge 22

Ride Sabian AA Heavy 20 Inches Bow 14

Hi-Hat Zildjian K/Z 14 Inches Closed Bow 16

Splash Zildjian K Custom Hybrid 9 Inches Edge 20

China Zildjian Avedis 16 Inches Edge 20

Crash

 
                                   Table 6.1 – Number of samples available for analyzes. 

 

6.3. Results  

 

For testing, the sampling frequency of each sample was decreased from 96 kHz to 44.1 kHz, 

due to the size of each sample file, which impaired their use with matlab because of memory 

constraints. The beginning of each sample was trimmed to assure no silences. The end of 

each file was also removed, to avoid any unwanted residual sound coming from vibrating 

metal, which does not contain any distinguishable data about the sound of each class of 

cymbals. 

 

To obtain the spectrograms of the cymbal samples we used a DFT with 40 millisecond 

windows and 50% of overlap between them. The length of the DFT was the same as the size 

of the window. Only the magnitude spectrogram was used, while the phase information was 

discarded. Several experiments were conducted to analyze our system’s ability to separate 

two and three cymbals with NMF. These experiments are described below. 

 

6.3.1. Two Cymbals 

 

We started by analyzing the system’s ability to separate and classify combinations of samples 

from two cymbals. We used the following combinations: 
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o Splash Edge with China Edge; 

o 14 inch Crash Edge with 16 inch Crash Edge; 

o Splash Edge with 16 inch Crash Edge; 

o China Edge with 16 inch Crash Edge; 

o Hi-Hat Closed Bow with Ride Bow. 

 

These combinations test real situations, especially the combination of both crashes and of the 

hi-hat with the ride.  

 

To perform this analysis we had to build a training set and a test set. Both types of sets were 

built with the same combination of two or three cymbals. However, the way we chose the 

samples for the test set was based on the samples used on the training set: 

 

1. If the training set already has a certain sample, then it will not be used in the test set;  

2. In the tests where there are china and hi-hat training sets with low amplitude samples, 

we used five samples instead of six. This was due to not having enough dynamically 

spaced (notoriously different amplitude values) samples to work with. By not doing 

so the training set would become unbalanced, since a certain area of its neighborhood 

would have more information than the remaining ones; 

3. If the training set is comprised of six samples with high amplitudes, then the six test 

samples will be of low amplitude; 

4. If the training set has six low amplitude samples, then the six test set samples will 

have high amplitude; 

5. If the training set has the six samples spread along the various levels of amplitude so 

does the test sample.  

  

Structuring the samples this way enabled us to analyze our problem from three different 

perspectives. With (3) we got to simulate situations where the database may only have high 

amplitude sound files while trying to detect low amplitude samples of cymbal sounds. In (5) 
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we simulated situations where both database and sound sources have a good dynamic range 

regarding cymbal sounds. The last case (4) was tested just by curiosity. 

 

 
 

        Table 6.2 – Table with the number of correctly classified and separated samples in the first test. 

    H.A. means that the data in the training set consists of high amplitude samples; V.A. is for the training set with  

       variable amplitude samples (i.e., samples that go from high to low amplitude); and L.A. is for a training set  

                                                                        with low amplitude samples. 

 

Table 6.2 shows the number of correctly classified samples. The results on this table show 

that our approach was very successful in identifying the samples correctly. For H.A. we got 

an overall success of 85% of correctly identified samples, 95% for V.A., and 91,2% for L.A.. 

A test sample from a cymbal is considered to be accurately classified if in the classification 

stage we get above 50% of its source signal points to be assorted as being from that particular 

cymbal. This is done for every test sample of each cymbal used in any combination. The 

overall success rate values for each of the different types of training sets (H.A., V.A., and 

L.A) were accounted as the percentage of accurately classified samples between all the 

combinations with a certain type of training set, against the total number of samples that were 

tested under that particular type of training set from any cymbal combination. Although the 

results were very good they were not perfect. So what can possibly be making this happen?  
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Let us take a look at figure 6.4, which shows the training data (with variable amplitude 

samples) represented in the space learned by NMF. The training data is from the splash and 

china cymbals from combination #1 of table 6.2. Most of the points on figure 6.4 that are 

closer to the y axis are from splash samples, while those near the x axis are related to the 

china. Figure 6.5 exhibits an overlap of the source signal points (in green) of a china cymbal 

test sample (with a variable amplitude training set) over the scatter plot of figure 6.4. This 

test sample was wrongfully classified on combination #1 (table 6.2), and has the lowest 

amplitude level amongst the test samples for that particular training set. The points badly 

classified by 1-NN are exhibited with a blue circle surrounding them. Most of these points 

are agglomerated in the origin of the coordinate system. Consequently, these points’ 

classification went wrong because of the heavy clustering of training samples’ points from 

both china e splash cymbals near the origin as well. These points get mixed quite easily due 

to their high mass. So it’s only natural that the classification process in this case suffers, 

ending up by inaccurately classifying the china test sample.  

             Figure 6.4 – Scatter plot of the training set for V.A. on Combination #1 of table 6.2. 

 

Let us look at one more example, but this time around from combination #3 of table 6.2. For 

this case we gave use to the last test sample from the splash cymbal of that combination, the 

sample that was badly classified. In figure 6.6 the points are from the training set of this 
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combination. Taking a look at figure 6.7, we can see the same issue found in figure 6.5. This 

time however, this problem is responsible for the lack of success in the correct classification 

of the splash sample on combination #3 of table 6.2 with the lowest amplitude level. All the 

test samples that were badly classified on H.A. and V.A. had the lowest amplitude levels 

amongst the samples from the same test set, so there is a pattern here.  

 

   

   Figure 6.5 – In green the points from the sample with lowest amplitude from the china on combination #1 of 

                                    table 6.2. The training set has samples with variable amplitudes. 

 

         
                  Figure 6.6 – Scatter plot of the training set for V.A. on Combination #3 of table 6.2. 
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     Figure 6.7 – In green the points from the sample with lowest amplitude from the splash on combination #3 of 

                             table 6.2. The training set has samples with variable amplitudes. 

 

The training set with low amplitude samples had a different behaviour than the one seen on 

training sets with variable amplitude and high amplitude samples. None of the badly 

classified test samples were the lowest in their respective test samples set. However, the 

classification failure on the test sample from combination #3 originated in the same problem 

as the one we talked about beforehand. Taking a look at figure 6.8 we can see just that. There 

is a great mass of points near 0 which end up by being badly classified and inducing an 

overall wrongful classification of this test sample. Combination #2 has a different problem 

which we will talk about at the end of this section.  

 

Although the classification in this first test was very good, we took this opportunity to try 

other approaches to see if we could improve the overall result of the number of samples 

accurately classified. To do so, we focused our attention on the test sets. From the scatter 

plots (figure 6.5 and 6.7) we took that the results were not as good as they could be, due to 

the great quantity of test set points near the origin of the dimensional space, which hailed 

some inaccurate classifications. To try to overcome this issue we tested two different filters 

to remove points of a sample with amplitude values below a certain threshold. On figure 6.9 

we get to see the filters. Assuming a test sample point is given by       , then this point is 

maintained in the test sample only if: 
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o Right Scatter Plot – Test #2 -                  (if the point is in any of the 

colored areas); 

o Left Scatter Plot – Test #3 -                  (if the point is in any of the 

colored areas). 

                                                                

 

 

              Figure 6.8 – In green, points from the sample of the splash on combination #3 that was 

                                        badly classified on table 6.2. The training set has samples with low amplitudes. 

 

 

            

                                                     Figure 6.9 – Thresholds. 
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            Table 6.3 – Table with the number of correctly classified and separated samples in test #2 

 

These threshold values were chosen at random, since we did not have a way to accurately 

choose the optimum values for it. Instead of these thresholds we could as well have used 

another based on the Euclidean distance to the origin. We started by performing test #2, 

which changed the end result to a certain extent, as can be seen on table 6.3 – it out performs 

test #1 on combinations #2 and #3, but it is outperformed on combinations #4 and #5. 

However, this test did not improve the results of the samples that originated this experience 

at first, and actually aggravated the result of the ride samples of combination #5 with an 

inferior level of amplitude, and the results from the china on combination #4. It did however 

improve to 50% the number of 14 inch crash points from a sample, accurately classified on 

combination #2, when working with H.A. and L.A. training sets. 

 

Seeing test #2 did not produce the results we were expecting, it was decided to try a second 

approach. This time around instead of using 0,06 as a threshold we used 0,01. The idea 

behind this change was simple - to get even closer to the origin of the dimensional space. 

From this change we expected to avoid the loss of unnecessary source signal points, and at 

the same time improve the overall results. Our suspicious were right, test #3 (table 6.4) did 
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change the end result. Combinations #1, #2, and #5 of test #3 outperform these same 

combinations on test #1, while combination #4 gets worst. With combinations #1 and #5 this 

test worked as we were initially expecting it too, with all the samples with the lowest level of 

amplitude for each test set being accurately classified. However, with combination #3 the 

number of inaccurately classified samples with the lowest of amplitudes in the test set 

actually increased. 

 

              Table 6.4 – Table with the number of correctly classified and separated samples in test #3 

 

The relationship between the basis functions of each cymbal’s training samples influences 

the way the separation is processed. A basis function is not exclusively associated to the 

sounds of cymbals, being able to find the same properties seen on different cymbals. This 

prevents the separation from being perfect since we will be having information from each 

cymbal on each basis function. If this was not the case, the results of classification would 

probably be of 100%, since we would have a basis for each cymbal. However this was not 

the case hence the results we got. Thus the quality of the classification depends on NMF’s 

ability to accurately separate the sound sources and the basis for each cymbal from the 

mixture. 
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To have a better idea of how NMF really affects the results of classifying samples with 1-

NN, next, we take a look at the source signals separated from the mixtures shown on table 

6.2, of combinations #1 – training set with H.A. samples (figure 6.10), combination #2 – 

training set with H.A. samples (figure 6.11) and combination #4 – training set with V.A. 

samples (figure 6.12). Each figure shows the source signals learned by NMF, where a source 

signal is a temporal envelope that contains the coefficients related to one spectrogram (from 

the training set) and one basis function. The squares mark the peaks of the envelopes 

associated to the samples for each cymbal – one color for each cymbal. 

                         

Figure 6.10 – Source signals from splash (left) and china (right) obtained by NMF, with a training set with high amplitude              

samples. The first 6 source signals (envelopes) in each figure are related to the splash cymbal while the other 6 are related to 

the china. The squares mark the peaks of the envelopes associated to the samples for each cymbal – red for splash and green 

for china. Any figure shows the source signals related to one of the basis functions learned by NMF. 

 

On figure 6.10 it is shown that the left diagram has very strong elements from both cymbals. 

Since in the right figure the peaks from splash samples are much lower than those from china 

samples, it seems that the basis function related to these source signals is describing 

properties from the china cymbal. On figure 6.11 we have the same thing happening, but 

instead of a splash and a china we have a 14 inch crash and a 16 inch crash. The way NMF 

learned these source signals seen on both figures (6.10 and 6.11) is the result of the different 

combinations of types of training sets we made with the different types of test sets. From the 

three types of training sets of table 6.2, the ones with samples that range from a high level of 
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amplitude to a low level are the ones that show the best results in all the combinations. This 

is shown on table 6.5. The table with variable amplitude training samples has the highest 

percentage of accurately classified samples. This is so because the test sets have variable 

amplitude sample also. This way, NMF will have enough information in the training set to 

accurately recognize each of the test samples. This is especially shown on combination #2 of 

table 6.2. The cymbals on that combination are of the same class - crash cymbal. Thus, it is 

expected of them to have very similar characteristics, which is assumed to bring about 

problems when NMF tries to separate them into two different source signals. However, due 

to the variable amplitude training and test sets we get eleven out of twelve accurately 

classified samples. The tests with high amplitude and low amplitude training samples do not 

have enough information in them to give NMF the tools to better separate the low amplitude 

and high amplitude tests sets respectively. 

 

 

 Figure 6.11 – Source signals from 14 inch crash (left) and 16 inch crash (right) obtained by NMF, with a training set with 

high amplitude samples. The first 6 source signals (envelopes) in each figure are related to the 14 inch crash cymbal, while 

the other 6 are related to the 16 inch crash. The squares mark the peaks of the envelopes associated to the samples for each 

cymbal – red for 14 inch crash and green for the 16 inch crash. Any figure shows the source signals related to one of the 

basis functions learned by NMF. 
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S.R. (%) C.S. (#) S.R. (%) C.S. (#) S.R. (%) C.S. (#)

Splash Edge 91,3 6 Splash Edge 98,8 6 Splash Edge 93,2 6

China Edge 80,8 6 China Edge 61,4 5 China Edge 68,6 5

Crash 14 Edge 54,3 2 Crash 14 Edge 79,2 6 Crash 14 Edge 49,7 2

Crash 16 Edge 67,9 5 Crash 16 Edge 75,1 5 Crash 16 Edge 96,6 6

Splash Edge 64,4 4 Splash Edge 73,5 5 Splash Edge 87,2 5

Crash 16 Edge 91,7 6 Crash 16 Edge 99,6 6 Crash 16 Edge 100 6

China Edge 75,9 6 China Edge 89,3 6 China Edge 93,2 5

Crash 16 Edge 84,9 5 Crash 16 Edge 99,9 6 Crash 16 Edge 99,9 6

HH Cls Bow 100 6 HH Cls Bow 100 6 HH Cls Bow 99,8 5

Ride Bow 81,2 5 Ride Bow 87,1 6 Ride Bow 99,1 6

Average (%) 79,24 85 Average (%) 86,39 95 Average (%) 88,73 91,2

Total 51/ 60 Total 57/ 60 Total 52/ 57

Combo #5

Combo #1

Combo #2

Combo #3

Combo #4

Combo #1

Combo #2

Combo #3

Combo #4

Combo #5

Combo #1

Combo #2

Combo #3

Combo #4

Combo #5

 

 

Table 6.5 – Combinations with high amplitude training sets (left table). Combinations with variable amplitude training sets 

(center table). Combinations with low amplitude training sets (right table).The success rate (S.R.) is the percentage of source 

signal points to be assorted as being from a particular cymbal. The column with the number of correct samples (C.S.) shows 

the number of accurately classified samples for each cymbal in any combination. Average gives the average of the S.R. over 

all the cymbals in each combination, and it also gives the percentage of accurately classified samples over all the cymbals in 

the combinations. Total represents the total number of C.S. samples over the total number of samples testes over all the 

cymbals. 

          

We have shown here how the proposed classifier achieves very accurate results when it 

comes to cymbal classification. In addition, we have analyzed the badly classified cases. We 

were able to conclude that the quality of the classification depends on NMF’s ability to 

accurately separate the sound sources from mixtures, and that the training sets with samples 

that range from a high level of amplitude to a low level are the ones that show the best results 

in all the combinations, that is, if the test sets also have well distributed samples amongst 

amplitude levels. We also experimented with the usage of test sample source signal points’ 

filters that ended up improving the end result of our tests to some extent. Since the results 

were very good on the classification of two cymbals, we took our analysis a step further to 

see how the classifier behaved when the signal mixture was composed of samples from three 

cymbals. This analysis is discussed in the next section. 
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6.3.2. Three Cymbals 

 

The next step in our analysis was of performing the same three tests performed with two 

cymbals, but this time around with a combination of three cymbals. We did not perform the 

same amount of combinations as we did on two cymbals due to time restrictions. The 

combinations chosen are as follows: 

 

o Splash Edge, 16 inch Crash Edge, and China Edge; 

o Splash Edge, 16 inch Crash Edge, and 14 inch Crash Edge; 

o China Edge, 16 inch Crash Edge, and 14 inch Crash Edge; 

 

Like with what we saw on section 6.3.1. and for the same reasons, the china cymbal in the 

tests with low amplitude training sets has only five samples in the training and test sets. The 

rules for building the test and training sets are the same as what we saw on the previous 

section.  

 

Table 6.6 shows the number of correctly classified samples for all the combinations of three 

cymbals we analyzed. In it, it is shown that our approach was successful in identifying the 

samples correctly. For H.A. we got an overall success of 66,6% of correctly identified 

samples, 74,1% for V.A., and 90,3% for L.A. A test sample from a cymbal is considered to 

be from a cymbal X if in the classification stage it has a greater percentage of source signal 

points from cymbal X. This is done for every test sample of each cymbal used in any 

combination. The overall success rate values for each of the different types of training sets 

H.A., V.A., and L.A were accounted as the percentage of accurately classified samples 

between all the combinations with a certain type of training set, against the total number of 

samples that were tested under that particular training set from any cymbal combination. 

 

With V.A. and L.A. training samples we get above 50% of success with combinations #2 and 

#3, and #1 and #2 respectively. The main issue here is with the china on combo #1, which 

shows very low results with V.A. and H.A. training samples. Just like with two cymbals we 

tested two different filters to remove points from a test sample with amplitude values below a 

certain threshold. Figure 6.9 from the previous section shows how the two filters work. 
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Tables 6.7 and 6.8 show the results of applying said filters to the same combos we saw on 

test #1 of this section. 

 

          Table 6.6 – Table with the number of correctly classified and separated samples in the first test. 

   H.A. means that the data in the training set consists of high amplitude samples; V.A. is for the training set with variable       

amplitude samples (i.e., samples that go from high to low amplitude); and L.A. is for a training set with low amplitude 

samples. 

 

            Table 6.7 – Table with the number of correctly classified and separated samples in the second test,                                                                             

with threshold <= 0,06. 
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From the two extra tests, only the test with threshold <= 0,06 (table 6.7) shows really great 

improvements when compared to test #1 (table 6.6). For H.A. we got the same amount of 

successfully indentified points (66,6%), while with V.A. and L.A. the results improved to 

83,3% and of 94,2% respectively. All tests with V.A. and L.A. training sets had success 

above 50%, which was a great improvement from test #1. Even the china on combination #1 

improved greatly with above 50% of success with H.A., V.A., and L.A. training sets.  

 

Testing the classification of three cymbals was done in the exact same conditions as what we 

saw with two cymbals. However, while with two cymbals using the extra tests (#2 and #3) 

hailed some improvements, in this case we got a very good improvement with test #2 and a 

lighter improvement with test #3. Another surprising result came from the two combinations 

of three cymbals that contain the 14 inch crash and the 16 inch crash. In whatever test the 

results were very good with these two cymbals included. There was one other surprising 

result here. While with two cymbals the variable amplitude training and test sets hailed the 

best results, here the best results came from the low amplitude training sets with high 

amplitude test sets.  

 

       Table 6.8 – Table with the number of correctly classified and separated samples in the third test, 

                                                                             with threshold <= 0,01. 
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The results in this section are once again adamant in showing that the combination of NMF 

and 1-NN enable a great level of success when it comes to separating samples from cymbals. 

Taking in consideration we are handling three cymbals instead of two, makes these results 

that more regal. This experiment also showed how the usage of filtering can be of great 

importance to improve the accurate classification of cymbals. 

 

For checking the results of the separation and classification with farther detail, check the 

Attachments. There the reader can find two sections, each one with the entire collection of 

tables whose values were taken from the different experiments made with two and three 

cymbals. 
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7. Conclusions 

 

The idea of transcribing a piece of music in its most detailed shape, with rhythmic, harmonic, 

and melodic content, is as incredible as useful. From learning music on an instrument, 

creating music applications, to software able to enhance the work of DJs; the possibilities are 

immense. However, before even thinking about transcription we have to first contemplate 

how to accurately classify the instruments in a musical piece. Correct classification is the 

first step for achieving a precise transcription. Most proposed classifiers of musical 

instruments deal with string and wind harmonic instruments, while much less attention has 

been given to percussion instruments with non-perceptible pitch, that is, with indefinite pitch. 

The classification of cymbal events, an area which as far as we know as never been tackled in 

the scientific world before, presents itself as challenging. This is due to the very noisy 

spectrum these percussive instruments have. To separate cymbals from one another is a very 

complex task, since there is not a clean a definite spectrum like the ones on pianos and flutes 

for instance. The goal of this dissertation was to explore automatic cymbal classification and 

the identification of which class of cymbals (crash, ride, splash, china, and hi-hat), cymbals 

played belong to.  

 

We were able to achieve a great level of success by accurately classifying various 

combinations of two or three cymbals played sequentially. To achieve this goal we had to 

create a training set of samples for each cymbal in the sequence. This set would then have a 

sound classifier be applied to it. The choice of an adequate technique is one of the first 

problems one encounters. Whereas most sound classifiers use a set of pre-defined features 

[Bilmes 93][Gouyon 01][Herrera 02][Kaminskyj 01][Tindale 04][Schloss 85][Sillanp 02], 

there are also some classifiers that learn the features using a decomposition method 

[Abdallah 03][FitzGerald 04][Hélen 05][Paulus 05]. In this work we reviewed several of 

these decomposition techniques and worked with three of them – PCA, ICA, and NMF. As 
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we had predicted, PCA due to its constraints did not give satisfactory results. ICA’s results 

were also not very satisfactory, so we decided to focus our attention on NMF. It could have 

very well been PSA for that matter, since it also seemed to guaranty good results. But NMF 

has something very special about it. It represents data in a parts based approach; it 

deconstructs information into non-negative parts which when summed up give the whole 

once again. This is a very natural way of approaching classification since that is what we 

humans do, we can deconstruct the sound mixture into the various instruments – guitar, 

cymbals, piano, snare, bass drum, while we listen to it. After deconstructing the original 

signal mixtures from the training set into various source signals, we can proceed to classify 

new data samples. The source signals are the values of the basis functions, which are the 

features. For classifying the data samples we chose to use 1-NN. This algorithm classifies 

new data samples based on their proximity to the points in the training set.  

 

Here we proved that a combination of NMF with 1-NN is a good option for automatic 

cymbal classification. For testing this model we assembled five different combinations of 

two cymbals and three different combinations of three cymbals played consecutively. For 

each combination we had three different collections of 5 or 6 samples as a training set, and 6 

other samples as a test set. Our classifier achieved excellent results for sound mixtures with 

these combinations. The quality of the classification was proportional to the quality of the 

separation, i.e., the higher the quality of the sound source separation done by NMF, the 

higher the success of classification. The overall classification rate for each of the three 

collections of training samples for all the combinations of two cymbals was of 85%, 95%, 

and 91,2%. The most surprising results came from the combination of the ride bow and 

closed hi-hat bow, given these cymbals have similar characteristics – both have very low 

energy and a fast decay. The overall classification rate for each of the three collections of 

training samples for all the combinations of three cymbals was of 66,6%, 74,1%, and 90,3%. 

The most surprising results in this case, came from the combinations which contained both 

the 14 inch and the 16 inch crash. Given these cymbals are of the same family and have 

similar characteristics, the result were very good. We were able to prove that a combination 

of NMF with 1-NN is a good option for automatic cymbal classification. 
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Although the classifications were very good, we took this opportunity to try other approaches 

to see if we could improve the overall result of the number of samples accurately classified. 

For the tests with two cymbals, the approaches did not improve the results that much, 

although the test with a threshold of 0,01 showed the best overall results. For three cymbals 

one of the approach with a threshold of 0,06 had a definite positive impact on the overall 

success rate of the classification of cymbal samples, with results of 66,6%, 83,3%, and 

94,2%, which improved upon the initial results. 

 

7.1. Future Work 

 

PSA is also a good candidate for performing an accurate sound source separation just like 

NMF. So the next natural step to follow in this study, would be that of using PSA instead of 

NMF for sound source separation. 

 

During the testing phase of this work we also dabbled with the usage of the Mahalanobis 

distance in K-NN, instead of using the Euclidean distance. We did so because the 

Mahalanobis distance is a technique for calculating the distance between two points that is 

better adapted than the Euclidian distance to settings involving non spherically symmetric 

distributions, which is the case of our subject of study. However, we were not able to go 

really deep into its possibilities due to time constraints. So a further study of the Mahalanobis 

distance with K-NN could be very promising.  

 

Also, even though we used 1-NN in the final stage of our classifier, many other algorithms 

are worth considering, like k-means or support vector machines (SVM). It would also be 

interesting to see how this setup would work with other zones from cymbals that we didn’t 

work with, like crash and ride bell, open hi-hat, hi-hat foot chick and foot-splash.  

 

To shed some more insight into how the cymbals may affect the outcome of the sound source 

separation stage with NMF, we decided to study some frequency and envelope characteristic 

of cymbals. This would be a complement to a study we did on cymbals’ physical 

characteristics; like the way size, material, and shape (just to name a few) are relevant in 
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modeling the sound and various frequencies of a cymbal when stricken. Since this was not 

the main focus of our work, we were forced to drop this analysis due to time constraints. 

Nonetheless, this is an important study to understand the main sound characteristics that 

really drive the timber and frequencies of each class of cymbals, which in turn can help in 

understanding how samples can be manipulated to improve the performance of classification. 

We feel this study about the instruments would also be very beneficial in developing a 

general procedure for anyone who may want to record samples of their own, or even for 

developing a complete and general scientific samples database. This general procedure would 

also be important in setting rules for the types of stick to use. The type of stick, size, shape of 

tip, weight of the stick, type of wood, etc. all influence the final sound that comes out of a 

cymbal. 
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. Attachment #1 

 

. A Bit of History 

 

All the information in this section is taken from Pinksterboer’s book [92] about cymbals. 

 

Cymbals are not like any other instrument, in that they are used in almost every style of 

music - jazz, marching band, orquestral, rock, Afro-Cuban, heavy-metal; the list could really 

go on. However, it is believed that cymbals may have come from a very different background 

regarding its usage. 

 

Bronze is the oldest alloy known to man, and the natural resource that has always been 

adopted for cymbal making. In has been used in Asia since around 3000 B.C. (before Christ), 

so cymbals’ ancestors may have been from that time. Nonetheless, one of the first stories 

known about cymbals dates back to 1200 B.C. where the worshiping of the goddess Cybele 

was always accompanied by the sound of cymbals. In the holy bible the first reference to a 

cymbal dates back to 1050 B.C., when David moved the Ark of God to Jerusalem, and at his 

arrival
24

: 

 

… and all the house of Israel played before the Lord on all manner of instruments made 

of Firrewood, even on harpes and on psalteries, and on timbrels, and on cornets, and on 

cimbels. 

 

Still, the usage of these metallic saucers was not exclusively reserved to worshiping Gods; 

they were used in a numerous ceremonies and parties, including orgies and funerals, while 

witches used them to counter lunar eclipses. 

                                                           
24

   The following text is a transcription from what is stated on the Bible. The way it was written, although wrong from today’s standards, has to 

be respected. Thus, it isn’t filled with typos. 
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The military also found usages for cymbals. They were an integral part of the military music 

of the Turkish army during the Ottoman Empire. The Chinese army of about 2500 years ago 

used them to strike terror in their enemy lines with a cacophony of clashing cymbals, a 

technique that appears to have been used also in the Korean war of the 1950’s. The European 

military marching bands have also been using cymbals since the eighteenth century. 

 

It was not until the second half of the nineteenth century that cymbals started to be used 

widely as a serious musical instrument, mainly due to the extensive cymbal parts of authors 

like Wagner and Berlioz. The latter was also the first to require the cymbals to be suspended 

and played with wooden sticks. This was a big thing at the time, because cymbals were used 

in pairs, with each one attached to a any hand of the percussionist. The musician would then 

clash the cymbals against each other. Verdi and Rossini were fundamental in continuing the 

development of the usage of the cymbal and of creating the most used technique in a 

contemporary setting, when it comes to a drum kit player - combining the stroke of a cymbal 

with a bass drum hit. With the advent of the bass drum pedal and the inception of the drum 

kit cymbals started to garner more attention from musicians, and it was at the beginning of 

the last century that the trends that are followed nowadays started to be developed. 

 

. Drum Kit Sound Recording and Production 

 

The idea behind this section is that of giving a very brief insight into drum set recording 

methods. This way, it becomes easier to understand some of the options taken when trying to 

perform sound source separation, like using spectrograms with algorithms like ICA.  

 

When music is recorded in a studio a great number of microphones is usually required. Each 

instrument can have more than one microphone assigned to the recording of its sound. A 

drum kit is a collection of percussion instruments, making it a very special instrument 

regarding music production. The techniques utilized for the recording of a kit, as well as the 

placement and number of microphones, vary accordingly to a great number of factors, like 
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the number of pieces in the kit, type of recording equipment, number of other instruments 

being recorded, as well as the type of sound desired [Shea 05]. 

 

The process of recording a piece of music involves the usage of a multitracker. A 

multitracker is software
25

 or hardware based, having a certain number of tracks available for 

recording. Various tracks can be used to record only one instrument, but it is only possible to 

use one microphone per track. This is what happens with a drum kit. Using as an example the 

standard pop/rock drum kit (chapter 3.1), usually kick, snare, and hi-hat are recorded on 

individual tracks, as are each of the toms. However for the cymbals, overhead
26

 microphones 

can be used to capture the sound of the instruments independently of the number of cymbals 

in the drum kit. Another very popular microphone setup implies the usage of the overhead 

microphones for the tapping of the toms also [Shea 05]. Figure 9.1 shows a drum kit ready 

for recording. 

 

 

                                             Figure 9.1 – A drum kit ready for recording. 

                                   Highlighted by red boxes are the overhead microphones. 

                                                           
25   Cubase from Steinberg, Pro Tools from Digidesign, and Sonar from Cakewalk are some of the examples of some of the most used software 

based multitrackers. 

26 The name says it all, these microphones are placed above the drum kit. Usually two are used, one by the right side of the drum kit and 

another by the left side of the drum kit. 
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Although having dedicated microphones to almost every piece of the drum kit, each one of 

them captures the rest of the elements that are played but with a lesser level of amplitude 

then the assigned piece. When the drum kit recording is concluded, the whole collection of 

tracks is mixed to a single channel (mono), or into a two channel setup (stereo) [Shea 05], 

i.e., the sound source mixture. 
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. Attachment #2 

 

This next attachment is comprised of the entire collection of tables with the values outputted 

by each one of the different tests we performed. Each line in any table corresponds to the 

samples of the particular cymbal to whom the line is connected to. If a line is colored in 

black then that particular test sample was classified inaccurately. T.P. (total points) is the 

total number of points from the sound sources of every test sample. A.C.P. (accurately 

classified points) is the number of points from T.P. that were correctly classified. S.R.(%) 

(success ratio) is the ratio between A.C.P. and T.P.. Avg(%) is the mean between the success 

ratios from all the test samples of a given cymbal. The last column of the tables has two 

different meanings. In the tests with two cymbals it gives us the number of samples that had 

more than 50% of accurately classified points. In the tests with three cymbals it gives us the 

number of samples whose majority of accurately classified points is bigger than the number 

of points badly classified that are distributed for each of the other two cymbals. Black lines 

are correspond to wrong classifications. 

 

. Sets With High Amplitude Training Samples for Two Cymbals (Test #1) 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

227 205 90,308

227 219 96,476

219 198 90,411

223 202 90,583

228 204 89,474

228 207 90,789

291 240 82,474

288 245 85,069

286 227 79,371

267 226 84,644

132 106 80,303

134 98 73,134

6

China Edge 6

91,3

80,8

Splash Edge
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T.P. A.C.P. S.R.(%) Avg(%) >= 50%

296 138 46,622

274 90 32,847

300 144 48

234 113 48,291

227 176 77,533

187 136 72,727

499 431 86,373

499 398 79,76

499 345 69,138

499 347 69,539

499 320 64,128

249 96 38,554

Crash 14 Edge 54,3 2

Crash 16 Edge 67,9 5

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

227 209 92,07

227 211 92,952

219 198 90,411

223 196 87,892

228 39 17,105

228 14 6,1404

499 498 99,8

499 495 99,198

499 481 96,393

499 487 97,595

499 498 99,8

249 143 57,43

Splash Edge 64,4 4

Crash 16 Edge 91,70267 6

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

291 201 69,072

288 197 68,403

286 203 70,979

267 186 69,663

132 115 87,121

134 121 90,299

499 471 94,389

499 459 91,984

499 454 90,982

499 454 90,982

499 464 92,986

249 119 47,791

China Edge 75,9 6

Crash 16 Edge 84,9 5
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T.P. A.C.P. S.R.(%) Avg(%) >= 50%

249 249 100

249 249 100

249 249 100

249 249 100

249 249 100

249 249 100

570 569 99,825

474 465 98,101

434 423 97,465

478 465 97,28

424 222 52,358

396 168 42,424

HH Cls Bow 100,0 6

Ride Bow 81,2 5

 

 

. Sets With Variable Amplitude Training Samples for Two Cymbals (Test #1) 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

218 217 99,541

225 224 99,556

227 225 99,119

226 221 97,788

232 225 96,983

230 230 100

285 197 69,123

291 200 68,729

272 189 69,485

271 190 70,111

221 116 52,489

132 51 38,636

Splash Edge 98,8 6

China Edge 61,4 5

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

333 255 76,577

297 281 94,613

258 188 72,868

261 191 73,18

230 176 76,522

200 163 81,5

848 732 86,321

499 453 90,782

499 424 84,97

499 407 81,563

499 402 80,561

249 66 26,506

Crash 14 Edge 79,2 6

Crash 16 Edge 75,1 5
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T.P. A.C.P. S.R.(%) Avg(%) >= 50%

218 209 95,872

225 213 94,667

227 191 84,141

226 197 87,168

232 150 64,655

230 34 14,783

848 832 98,113

499 499 100

499 498 99,8

499 330 99,8

499 499 100

249 248 99,598

Splash Edge 73,5 5

Crash 16 Edge 99,55183 6

 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

291 258 88,66

288 275 95,486

286 190 66,434

267 228 85,393

132 132 100

134 134 100

499 499 100

499 499 100

499 499 100

499 498 99,8

499 499 100

249 248 99,598

China Edge 89,3 6

Crash 16 Edge 99,9 6

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

249 249 100

249 249 100

249 249 100

249 249 100

249 249 100

249 249 100

589 589 100

609 609 100

570 570 100

434 434 100

424 275 64,858

396 228 57,576

HH Cls Bow 100,0 6

Ride Bow 87,1 6
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. Sets With Low Amplitude Training Samples for Two Cymbals (Test #1) 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

190 190 78,421

228 204 89,474

223 206 92,377

477 472 98,952

232 232 100

223 223 100

270 175 64,815

285 171 60

285 251 88,07

293 160 54,608

267 201 75,281

Splash Edge 93,2 6

China Edge 68,6 5

 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

361 143 39,612

333 160 48,048

297 188 63,3

274 107 39,051

267 127 47,566

227 137 60,352

499 498 99,8

499 499 100

499 499 100

499 473 94,79

499 458 91,784

499 465 93,186

Crash 14 Edge 49,7 2

Crash 16 Edge 96,6 6

 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

190 185 97,368

228 224 98,246

223 212 95,067

477 224 46,96

232 225 96,983

223 197 88,341

499 499 100

499 499 100

499 499 100

499 499 100

499 499 100

499 499 100

Splash Edge 87,2 5

Crash 16 Edge 100 6
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T.P. A.C.P. S.R.(%) Avg(%) >= 50%

270 268 99,259

285 254 89,123

285 250 87,719

293 288 98,294

267 244 91,386

499 499 100

499 496 99,399

499 499 100

499 499 100

499 499 100

499 499 100

China Edge 93,2 5

Crash 16 Edge 99,9 6

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

249 249 100

249 247 99,197

249 249 100

249 249 100

249 249 100

741 731 98,65

589 579 98,302

614 607 98,86

511 507 99,217

570 569 99,825

474 473 99,789

HH Cls Bow 99,8 5

Ride Bow 99,1 6

 

 

. Sets With High Amplitude Training Samples for Two Cymbals (Test #2) 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

52 52 100

48 48 100

4 4 100

3 3 100

228 204 89,474

228 207 90,789

80 80 100

80 80 100

63 63 100

63 63 100

132 106 80,303

134 98 73,134

Splash Edge 96,7 6

China Edge 92,2 6
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T.P. A.C.P. S.R.(%) Avg(%) >= 50%

46 10 21,739

38 17 44,737

19 3 15,789

1 1 100

227 180 79,295

187 135 72,193

443 384 86,682

238 201 84,454

199 142 71,357

140 86 61,429

86 53 61,628

1 0 0

Crash 14 Edge 55,6 3

Crash 16 Edge 60,9 5

 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

43 42 97,674

39 38 97,436

219 198 90,411

223 196 87,892

228 39 17,105

228 14 6,1404

151 150 99,338

137 133 97,08

88 88 100

61 60 98,361

17 17 100

249 143 57,43

Splash Edge 66,1 4

Crash 16 Edge 92,03483 6

 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

47 15 31,915

42 11 26,19

31 6 19,355

34 8 23,529

132 116 87,879

134 121 90,299

136 114 83,824

120 91 75,833

64 60 93,75

42 37 88,095

5 5 100

249 119 47,791

China Edge 46,5 2

Crash 16 Edge 81,5 5
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T.P. A.C.P. S.R.(%) Avg(%) >= 50%

8 8 100

5 5 100

4 4 100

3 3 100

2 2 100

249 249 100

236 235 99,576

147 138 93,878

91 80 87,912

78 68 87,179

2 0 0

1 0 0

HH Cls Bow 100,0 6

Ride Bow 61,4 4

 

 

. Sets With Variable Amplitude Training Samples for Two Cymbals (Test #2) 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

57 57 100

56 56 100

48 48 100

37 37 100

232 225 96,983

230 230 100

89 89 100

93 93 100

89 89 100

80 80 100

21 21 100

1 0 0

Splash Edge 99,5 6

China Edge 83,3 5

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

60 58 96,667

60 57 95

54 52 96,296

58 52 89,655

10 10 100

200 150 75

443 383 86,456

238 203 85,294

199 145 72,864

139 87 62,59

86 54 62,791

1 0 0

Crash 14 Edge 92,1 6

Crash 16 Edge 61,7 5
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T.P. A.C.P. S.R.(%) Avg(%) >= 50%

54 54 100

55 55 100

45 45 100

31 31 100

232 150 64,655

230 35 15,217

376 375 99,734

204 204 100

183 183 100

126 126 100

83 83 100

6 6 100

Splash Edge 80,0 5

Crash 16 Edge 99,95567 6

 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

50 50 100

50 50 100

33 33 100

32 32 100

132 132 100

134 134 100

197 166 84,264

178 153 85,955

133 105 78,947

121 95 78,512

61 61 100

2 1 50

China Edge 100,0 6

Crash 16 Edge 79,6 6

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

10 10 100

9 9 100

7 7 100

4 4 100

3 3 100

249 249 100

398 398 100

378 378 100

295 295 100

131 131 100

4 0 0

2 0 0

HH Cls Bow 100,0 6

Ride Bow 66,7 4
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. Sets With Low Amplitude Training Samples for Two Cymbals (Test #2) 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

176 134 77,841

195 174 89,231

212 195 91,981

228 223 97,807

212 212 100

187 187 100

270 175 64,815

255 171 67,059

270 251 92,963

293 160 54,608

267 201 75,281

Splash Edge 92,8 6

China Edge 70,9 5

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

317 138 43,533

328 162 49,39

245 132 53,878

274 117 42,701

267 136 50,936

227 143 62,996

442 441 99,774

451 451 100

379 379 100

358 330 91,62

362 331 91,436

340 318 93,529

Crash 14 Edge 50,6 3

Crash 16 Edge 96,1 6

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

111 106 95,495

116 112 96,552

123 122 99,187

115 115 100

102 102 100

85 85 100

442 442 100

451 451 100

379 379 100

358 358 100

365 365 100

341 341 100

Splash Edge 98,5 6

Crash 16 Edge 100 6
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T.P. A.C.P. S.R.(%) Avg(%) >= 50%

183 183 100

159 159 100

164 164 100

180 180 100

151 151 100

442 442 100

451 448 99,335

379 379 100

358 358 100

365 365 100

341 341 100

China Edge 100,0 5

Crash 16 Edge 99,9 6

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

18 18 100

15 12 80

14 11 78,751

13 13 100

12 12 100

741 729 98,381

589 578 98,132

614 605 98,534

511 506 99,022

570 569 99,825

474 473 99,789

HH Cls Bow 91,8 5

Ride Bow 98,9 6

 

 

. Sets With High Amplitude Training Samples for Two Cymbals (Test #3) 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

99 99 100

93 93 100

54 54 100

52 52 100

228 204 89,474

228 207 90,789

176 176 100

175 175 100

159 159 100

159 159 100

57 52 91,228

50 47 94

Splash Edge 96,7 6

China Edge 97,5 6
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T.P. A.C.P. S.R.(%) Avg(%) >= 50%

210 87 41,429

215 90 41,86

199 82 41,206

162 88 54,321

76 61 80,263

25 1 4

364 295 81,004

351 253 72,08

342 196 57,31

323 172 53,251

308 136 44,156

26 25 96,154

Crash 14 Edge 43,8 2

Crash 16 Edge 67,3 5

 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

87 86 98,851

76 75 98,684

40 40 100

33 33 100

228 41 17,982

228 14 6,1404

364 363 99,725

352 348 98,864

345 327 94,783

329 318 96,657

315 315 100

46 2 4,3478

Splash Edge 70,3 4

Crash 16 Edge 82,39613 5

 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

133 65 48,872

135 66 48,889

126 67 53,175

123 66 53,659

20 19 95

15 14 93,333

364 344 94,505

349 308 88,252

341 297 87,097

321 279 86,916

305 270 88,525

18 4 22,222

China Edge 65,5 4

Crash 16 Edge 77,9 5
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T.P. A.C.P. S.R.(%) Avg(%) >= 50%

12 12 100

10 10 100

9 9 100

6 6 100

6 6 100

6 6 100

570 569 99,825

473 464 98,097

432 421 97,454

467 457 97,859

215 204 94,884

164 153 93,293

HH Cls Bow 100,0 6

Ride Bow 96,9 6

 

 

. Sets With Variable Amplitude Training Samples for Two Cymbals (Test #3) 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

125 125 100

122 122 100

109 109 100

101 101 100

63 63 100

1 1 100

191 191 100

192 191 99,479

186 186 100

186 186 100

111 110 99,099

73 50 68,493

Splash Edge 100,0 6

China Edge 94,5 6

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

303 204 67,327

245 204 83,265

258 170 65,891

261 154 59,004

229 142 62,009

184 134 72,826

848 760 89,623

379 342 90,237

358 296 82,682

331 253 76,435

342 271 79,24

131 16 12,214

Crash 14 Edge 68,4 6

Crash 16 Edge 71,7 5
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T.P. A.C.P. S.R.(%) Avg(%) >= 50%

97 97 100

98 98 100

87 87 100

84 84 100

28 28 100

230 34 14,783

848 829 97,759

379 379 100

358 358 100

331 331 100

341 341 100

122 122 100

Splash Edge 85,8 5

Crash 16 Edge 99,6265 6

 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

134 134 100

136 136 100

136 136 100

118 118 100

37 37 100

23 23 100

364 364 100

356 356 100

355 355 100

331 331 100

325 325 100

94 94 100

China Edge 100,0 6

Crash 16 Edge 100,0 6

 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

15 15 100

14 14 100

12 12 100

8 8 100

7 7 100

6 6 100

589 589 100

609 609 100

570 570 100

434 434 100

268 257 95,896

226 215 95,133

HH Cls Bow 100,0 6

Ride Bow 98,5 6
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. Sets With Low Amplitude Training Samples for Two Cymbals (Test #3) 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

190 149 78,421

228 204 89,474

213 196 92,019

229 224 97,817

225 225 100

197 197 100

270 175 64,815

259 171 66,023

272 251 92,279

293 160 54,608

267 201 75,281

Splash Edge 93,0 6

China Edge 70,6 5

 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

358 153 42,737

333 168 50,45

297 145 48,822

274 119 43,431

267 135 50,562

227 144 63,436

442 441 99,774

451 451 100

379 379 100

359 329 91,643

366 336 91,803

343 321 93,586

Crash 14 Edge 49,9 3

Crash 16 Edge 96,1 6

 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

190 185 97,368

228 224 98,246

213 212 99,531

229 224 97,817

225 225 100

197 197 100

442 442 100

451 451 100

379 379 100

359 359 100

366 366 100

343 343 100

Splash Edge 98,8 6

Crash 16 Edge 100 6
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T.P. A.C.P. S.R.(%) Avg(%) >= 50%

270 268 99,259

255 254 99,608

272 251 92,279

293 288 98,294

267 244 91,386

442 442 100

451 448 99,335

379 379 100

359 359 100

366 366 100

343 343 100

China Edge 96,2 5

Crash 16 Edge 99,9 6

 

 

T.P. A.C.P. S.R.(%) Avg(%) >= 50%

249 249 100

249 247 99,197

249 249 100

249 249 100

249 249 100

741 731 98,65

589 580 98,472

614 607 98,86

511 507 99,217

570 569 99,825

474 473 99,789

HH Cls Bow 99,8 5

Ride Bow 99,1 6
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. Sets With High Amplitude Training Samples for Three Cymbals (Test #1) 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. China S.R.(%) Avg(%)

227 165 61 1 72,687

227 163 63 1 71,806

219 138 81 0 63,014

223 121 102 0 54,26

228 30 184 14 13,158

228 6 210 12 2,6316

NeighborsRelated NeighborsA.C.P. Splash A.C.P. China

499 499 0 0 100

499 713 1 0 99,8

499 499 0 0 100

499 498 1 0 99,8

499 499 0 0 100

249 171 78 0 68,675

A.C.P. Splash A.C.P. Crash 16

291 49 175 67 16,838

288 39 195 54 13,542

286 55 142 89 19,231

267 53 147 67 19,85

132 0 129 3 0

134 0 106 28 0

China Edge 11,6 0

Splash Edge 46,3 4

Crash 16 Edge 94,7 6

 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

227 131 40 56 57,709

227 147 49 31 64,758

219 93 59 67 42,466

223 74 60 89 33,184

228 31 197 0 13,596

228 10 210 0 4,386

A.C.P. Splash A.C.P. Crash 14

499 499 0 0 100

499 498 1 0 99,8

499 499 0 0 100

499 498 1 0 99,8

499 499 0 0 100

249 214 27 8 85,944

A.C.P. Splash A.C.P. Crash 16

296 60 18 218 20,27

274 52 219 3 18,978

300 24 0 276 8

234 0 234 0 0

227 11 8 208 4,8458

187 0 69 118 0

Crash 14 Edge 8,7 0

Splash Edge 36,0 3

Crash 16 Edge 97,6 6
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T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

45 45 0 0 100

44 44 0 0 100

51 51 0 0 100

28 28 0 0 100

5 5 0 0 100

3 3 0 0 100

A.C.P. China A.C.P. Crash 14

364 363 0 1 99,725

350 349 0 1 99,714

346 339 0 7 97,977

328 328 0 0 100

315 312 0 2 99,365

51 48 1 2 94,118

A.C.P. China A.C.P. Crash 16

174 169 2 3 97,126

189 168 0 21 88,889

161 158 0 3 98,137

156 65 91 0 41,667

52 44 8 0 84,615

17 13 4 0 76,471

Crash 14 Edge 81,2 5

China Edge 100,0 6

Crash 16 Edge 98,5 6

 

 

 

. Sets With Variable Amplitude Training Samples for Three Cymbals (Test #1) 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. China S.R.(%) Avg(%)

218 205 9 4 94,037

225 202 20 3 89,778

227 176 48 3 77,533

226 190 35 1 84,071

232 142 89 1 61,207

230 83 143 4 36,087

A.C.P. Splash A.C.P. China

848 42 276 530 4,9528

499 486 0 13 97,395

499 495 1 3 99,198

499 498 1 0 99,8

499 498 0 1 99,8

249 224 25 0 89,96

A.C.P. Splash A.C.P. Crash 16

285 65 220 0 22,807

291 57 234 0 19,588

272 54 218 0 19,853

271 41 230 0 15,129

221 6 215 0 2,7149

132 5 127 0 3,7879

China Edge 14,0 0

Splash Edge 73,8 5

Crash 16 Edge 81,9 5
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f

T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%) >= 50%

218 197 13 8 90,367

225 192 21 12 85,333

227 169 49 9 74,449

226 175 35 16 77,434

232 138 89 5 59,483

230 84 146 0 36,522

A.C.P. Splash A.C.P. Crash 14

848 128 580 140 15,094

499 464 6 29 92,986

499 476 1 22 95,391

499 446 6 47 89,379

499 462 5 32 92,585

249 209 0 40 83,936

A.C.P. Splash A.C.P. Crash 16

333 126 94 113 37,838

297 127 91 79 42,761

258 111 38 109 43,023

261 141 42 78 54,023

230 99 20 111 43,043

200 39 16 145 19,5

Crash 14 Edge 40,0 4

Splash Edge 70,6 5

Crash 16 Edge 78,2 5

 

 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

148 146 0 2 98,649

128 128 0 0 100

97 97 0 0 100

124 124 0 0 100

56 56 0 0 100

5 5 0 0 100

A.C.P. China A.C.P. Crash 14

848 587 86 175 69,222

379 379 0 0 100

358 353 0 5 98,603

331 327 0 4 98,92

341 341 0 0 100

97 97 0 0 100

A.C.P. China A.C.P. Crash 16

265 171 6 88 64,528

179 127 33 19 70,95

213 149 0 64 69,953

256 127 0 129 49,609

169 101 0 68 59,763

157 41 0 116 26,115

Crash 14 Edge 56,8 4

China Edge 99,8 6

Crash 16 Edge 94,5 6
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. Sets With Low Amplitude Training Samples for Three Cymbals (Test #1) 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. China S.R.(%) Avg(%)

157 103 3 51 65,605

172 125 7 40 72,674

208 146 22 40 70,192

229 173 17 39 75,546

224 160 51 13 71,429

196 156 38 2 79,592

A.C.P. Splash A.C.P. China

442 442 0 0 100

451 451 0 0 100

379 379 0 0 100

359 359 0 0 100

366 366 0 0 100

343 342 1 0 99,708

A.C.P. Splash A.C.P. Crash 16

270 251 19 0 92,963

255 255 0 0 100

272 270 1 1 99,265

293 251 41 1 85,666

267 231 32 4 86,517

China Edge 92,9 5

Splash Edge 72,5 6

Crash 16 Edge 100,0 6

 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

190 167 8 15 87,895

213 194 6 13 91,08

205 191 2 12 93,171

191 183 0 8 95,812

177 177 0 0 100

170 170 0 0 100

A.C.P. Splash A.C.P. Crash 14

442 442 0 0 100

451 451 0 0 100

379 379 0 0 100

359 349 0 10 97,214

365 355 0 10 97,26

343 329 0 14 95,918

A.C.P. Splash A.C.P. Crash 16

356 149 52 155 41,854

333 162 33 138 48,649

297 180 60 57 60,606

274 121 27 126 44,161

267 133 22 112 49,813

227 169 9 49 74,449

Crash 14 Edge 53,3 4

Splash Edge 94,7 6

Crash 16 Edge 98,4 6
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T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%) >= 50%

270 263 7 0 97,407

254 254 0 0 100

267 257 10 0 96,255

293 232 61 0 79,181

262 233 29 0 88,931

A.C.P. China A.C.P. Crash 14

210 210 0 0 100

260 257 0 3 98,846

238 238 0 0 100

259 256 0 3 98,842

297 295 0 2 99,327

210 199 0 11 94,762

A.C.P. China A.C.P. Crash 16

212 71 135 6 33,491

209 96 107 6 45,933

209 78 131 0 37,321

174 139 35 0 79,885

179 148 30 1 82,682

152 126 26 0 82,895

Crash 14 Edge 60,4 3

China Edge 92,4 5

Crash 16 Edge 98,6 6

 
  

 

 

. Sets With High Amplitude Training Samples for Three Cymbals (Test #2) 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. China S.R.(%) Avg(%)

36 35 0 1 97,222

36 35 0 1 97,222

219 136 86 0 62,1

223 123 100 0 55,157

228 30 184 14 13,158

228 6 210 12 2,6316

A.C.P. Splash A.C.P. China

101 101 0 0 100

91 91 0 0 100

81 81 0 0 100

57 57 0 0 100

20 20 0 0 100

249 155 94 0 62,249

A.C.P. Splash A.C.P. Crash 16

38 38 0 0 100

34 28 6 0 82,353

13 13 0 0 100

12 12 0 0 100

132 0 130 2 0

134 0 112 22 0

China Edge 63,7 4

Splash Edge 54,6 4

Crash 16 Edge 93,7 6
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T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

227 138 30 59 60,793

227 142 59 26 62,555

219 101 59 59 46,119

223 82 69 72 36,771

228 23 205 0 10,088

228 9 219 0 3,9474

A.C.P. Splash A.C.P. Crash 14

499 499 0 0 100

499 498 0 1 99,8

499 499 0 0 100

499 498 0 1 99,8

499 498 1 0 99,8

249 130 0 119 52,209

A.C.P. Splash A.C.P. Crash 16

296 51 3 242 17,23

274 53 0 221 19,343

300 17 0 283 5,667

234 0 0 234 0

227 27 18 182 11,894

187 65 15 107 34,759

Crash 14 Edge 14,8 0

Splash Edge 36,7 4

Crash 16 Edge 91,9 6

 

 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

125 80 0 45 64

124 81 0 43 65,323

102 65 0 37 63,725

104 70 0 34 67,308

18 15 0 3 83,333

11 11 0 0 100

A.C.P. China A.C.P. Crash 14

360 360 0 0 100

349 349 0 0 100

336 336 0 0 100

314 314 0 0 100

300 300 0 0 100

249 191 0 58 76,707

A.C.P. China A.C.P. Crash 16

201 80 0 121 39,801

194 72 0 122 37,113

175 30 0 145 17,143

158 1 0 157 0,63291

66 0 66 0 0

1 0 1 0 0

Crash 14 Edge 15,8 0

China Edge 73,9 6

Crash 16 Edge 96,1 6
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. Sets With Variable Amplitude Training Samples for Three Cymbals (Test #2) 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. China S.R.(%) Avg(%)

43 43 0 0 100

43 42 0 1 97,674

34 33 0 1 97,059

15 15 0 0 100

232 125 89 18 53,879

230 45 185 0 19,565

A.C.P. Splash A.C.P. China

324 166 10 148 51,235

186 186 0 0 100

169 169 0 0 100

101 101 0 0 100

65 65 0 0 100

1 1 0 0 100

A.C.P. Splash A.C.P. Crash 16

31 29 2 0 93,548

28 28 0 0 100

22 22 0 0 100

8 8 0 0 100

221 91 112 18 41,176

132 45 87 0 34,091

China Edge 78,1 4

Splash Edge 78,0 5

Crash 16 Edge 91,9 6

 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

218 190 11 17 87,156

225 194 19 12 86,222

227 165 51 11 72,687

226 182 31 13 80,531

232 134 89 9 57,759

230 83 147 0 36,087

A.C.P. Splash A.C.P. Crash 14

848 116 575 157 13,679

499 446 5 48 89,379

499 472 0 27 94,589

499 440 5 54 88,176

499 460 4 35 92,184

249 210 0 39 84,337

A.C.P. Splash A.C.P. Crash 16

333 129 95 109 38,739

297 126 91 80 42,424

258 120 35 103 46,512

261 147 53 61 56,322

230 101 25 104 43,913

200 126 17 57 28,5

Crash 14 Edge 42,7 4

Splash Edge 70,1 5

Crash 16 Edge 77,1 5
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T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

147 146 0 1 99,32

152 152 0 0 100

137 137 0 0 100

135 135 0 0 100

70 70 0 0 100

41 41 0 0 100

A.C.P. China A.C.P. Crash 14

848 592 86 170 69,811

379 379 0 0 100

358 354 0 4 98,883

331 327 0 4 98,792

341 341 0 0 100

96 96 0 0 100

A.C.P. China A.C.P. Crash 16

265 173 4 88 65,283

180 131 29 20 72,778

211 145 0 66 68,72

254 123 0 131 48,425

165 99 0 66 60

154 37 0 117 24,026

Crash 14 Edge 56,5 4

China Edge 99,9 6

Crash 16 Edge 94,6 6

 

 

 

. Sets With Low Amplitude Training Samples for Three Cymbals (Test #2) 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. China S.R.(%) Avg(%)

155 103 2 50 66,452

167 122 6 39 73,054

208 158 10 40 75,962

229 182 9 38 79,476

224 175 37 12 78,125

196 162 32 2 82,653

A.C.P. Splash A.C.P. China

442 442 0 0 100

451 451 0 0 100

379 379 0 0 100

359 359 0 0 100

366 366 0 0 100

343 343 0 0 99,708

A.C.P. Splash A.C.P. Crash 16

270 251 19 0 92,963

255 255 0 0 100

272 271 0 1 99,632

293 251 41 1 85,666

267 231 32 4 86,517

China Edge 93,0 5

Splash Edge 76,0 6

Crash 16 Edge 100,0 6
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T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

190 168 6 16 88,421

209 192 5 12 91,866

207 196 2 9 94,686

192 184 0 8 95,833

177 177 0 0 100

169 169 0 0 100

A.C.P. Splash A.C.P. Crash 14

442 442 0 0 100

451 451 0 0 100

379 379 0 0 100

359 349 0 10 97,214

365 356 0 9 97,534

343 329 0 14 95,918

A.C.P. Splash A.C.P. Crash 16

357 153 49 155 42,857

333 161 32 140 48,348

297 194 50 53 65,32

274 118 28 128 43,006

267 127 24 116 47,566

227 168 11 48 74,009

Crash 14 Edge 53,5 4

Splash Edge 95,1 6

Crash 16 Edge 98,4 6

 

 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

270 238 32 0 88,148

255 246 9 0 96,471

272 248 24 0 91,176

293 214 79 0 73,038

267 193 74 0 72,285

A.C.P. China A.C.P. Crash 14

442 442 0 0 100

451 446 0 5 98,891

379 379 0 0 100

359 354 0 5 98,607

364 361 1 2 99,176

343 333 1 9 97,085

A.C.P. China A.C.P. Crash 16

357 179 148 30 50,14

333 192 128 13 57,658

297 130 157 10 43,771

274 245 29 0 89,416

267 239 26 2 89,513

227 200 27 0 88,106

Crash 14 Edge 69,8 5

China Edge 84,2 5

Crash 16 Edge 99,0 6
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. Sets With High Amplitude Training Samples for Three Cymbals (Test #3) 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. China S.R.(%) Avg(%)

78 77 0 1 98,718

72 71 0 1 98,611

30 30 0 0 100

21 21 0 0 100

228 30 184 14 13,158

228 6 210 12 2,6316

A.C.P. Splash A.C.P. China

360 360 0 0 100

332 332 0 0 100

301 301 0 0 100

288 288 0 0 100

258 258 0 0 100

249 162 87 0 65,06

A.C.P. Splash A.C.P. Crash 16

129 48 79 2 37,209

127 36 88 3 28,346

105 55 47 3 52,381

111 52 55 4 46,847

21 0 21 0 0

15 0 15 0 0

China Edge 27,5 1

Splash Edge 68,9 4

Crash 16 Edge 94,2 6

 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

227 165 53 9 72,687

227 147 63 17 64,758

219 117 77 25 53,425

223 102 92 29 45,74

228 44 184 0 19,298

228 19 209 0 8,3333

A.C.P. Splash A.C.P. Crash 14

499 499 0 0 100

499 498 0 1 99,8

499 499 0 0 100

499 498 0 1 99,8

499 498 1 0 99,8

249 155 0 94 62,249

A.C.P. Splash A.C.P. Crash 16

296 50 2 244 16,892

274 51 0 223 18,613

300 17 0 283 5,6667

234 0 0 234 0

227 27 18 182 11,894

187 64 14 109 34,225

Crash 14 Edge 14,5 0

Splash Edge 44,0 4

Crash 16 Edge 93,6 6
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T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

123 80 0 43 65,041

120 73 0 47 60,833

101 55 0 46 54,455

103 61 0 42 59,233

8 8 0 0 100

134 65 0 69 48,507

A.C.P. China A.C.P. Crash 14

364 364 0 0 100

349 349 0 0 100

339 339 0 0 100

316 316 0 0 100

304 304 0 0 100

36 36 0 0 100

A.C.P. China A.C.P. Crash 16

205 80 0 125 39,024

198 71 0 127 35,859

182 30 0 152 16,484

158 1 0 157 0,63291

69 0 0 69 0

9 0 0 9 0

Crash 14 Edge 15,3 0

China Edge 64,7 5

Crash 16 Edge 100,0 6

 

 

 

. Sets With Variable Amplitude Training Samples for Three Cymbals (Test #3) 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. China S.R.(%) Avg(%)

101 99 0 2 98,02

91 90 0 1 98,901

86 84 0 2 97,674

82 82 0 0 100

39 39 0 0 100

230 86 140 4 37,391

A.C.P. Splash A.C.P. China

848 41 275 532 4,8349

379 366 0 13 96,57

358 355 0 3 99,162

331 331 0 0 100

340 339 0 1 99,706

76 76 0 0 100

A.C.P. Splash A.C.P. Crash 16

180 24 156 0 13,333

176 26 147 3 14,773

162 19 143 0 11,728

145 17 128 0 11,724

88 0 88 0 0

42 0 42 0 0

China Edge 8,6 0

Splash Edge 88,7 5

Crash 16 Edge 83,4 5
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T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

90 90 0 0 100

86 86 0 0 100

71 71 0 0 100

80 80 0 0 100

31 31 0 0 100

230 81 149 0 35,217

A.C.P. Splash A.C.P. Crash 14

848 114 574 114 13,443

379 310 5 64 81,794

358 330 0 28 92,179

331 270 5 56 81,571

341 298 4 39 87,39

98 98 0 0 100

A.C.P. Splash A.C.P. Crash 16

290 112 95 83 38,621

234 83 90 61 35,47

258 118 38 102 45,736

261 146 53 62 55,939

204 96 25 83 47,059

175 53 17 105 30,286

Crash 14 Edge 42,2 4

Splash Edge 89,2 5

Crash 16 Edge 76,1 5

 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

123 123 0 0 100

127 127 0 0 100

123 123 0 0 100

121 121 0 0 100

58 58 0 0 100

37 37 0 0 100

A.C.P. China A.C.P. Crash 14

311 272 0 0 1,2862

138 138 0 0 100

149 149 0 0 100

85 85 0 0 100

75 75 0 0 100

17 17 0 0 100

A.C.P. China A.C.P. Crash 16

114 77 37 0 67,544

112 71 41 0 63,393

90 84 6 0 93,333

90 75 15 0 83,333

29 23 1 5 79,31

11 5 1 5 45,455

Crash 14 Edge 72,1 6

China Edge 100,0 6

Crash 16 Edge 83,5 5
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. Sets With Low Amplitude Training Samples for Three Cymbals (Test #3) 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. China S.R.(%) Avg(%)

179 117 8 54 65,363

201 129 29 43 64,179

169 127 1 41 75,148

142 103 0 39 72,535

132 116 0 16 87,879

131 125 3 3 95,42

A.C.P. Splash A.C.P. China

442 442 0 0 100

451 451 0 0 100

379 379 0 0 100

359 359 0 0 100

366 366 0 0 100

343 341 2 0 99,417

A.C.P. Splash A.C.P. Crash 16

270 251 19 0 92,963

255 255 0 0 100

272 270 1 1 99,265

293 245 47 1 83,618

267 230 34 3 86,142

China Edge 92,4 5

Splash Edge 76,8 6

Crash 16 Edge 99,9 6

 

 

 

T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

151 127 6 18 84,106

151 133 5 13 88,079

208 196 2 10 94,231

229 221 0 8 96,507

224 224 0 0 100

195 195 0 0 100

A.C.P. Splash A.C.P. Crash 14

442 442 0 0 100

451 451 0 0 100

379 379 0 0 100

359 349 0 10 97,214

366 357 0 9 97,541

343 331 0 12 96,501

A.C.P. Splash A.C.P. Crash 16

357 151 50 156 42,297

333 153 33 147 45,946

297 197 50 50 66,33

274 111 29 134 40,511

267 118 26 123 44,195

227 160 12 55 70,485

Crash 14 Edge 51,6 3

Splash Edge 93,8 6

Crash 16 Edge 98,5 6
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T.P. A.C.P. A.C.P. Crash 16 A.C.P. Crash 14 S.R.(%) Avg(%)

270 261 9 0 96,667

255 255 0 0 100

272 265 7 0 97,426

293 240 53 0 81,911

267 232 35 0 86,891

A.C.P. China A.C.P. Crash 14

442 441 0 1 99,774

451 448 0 3 99,335

379 379 0 0 100

356 353 0 3 99,157

362 360 0 2 99,448

338 322 1 15 95,266

A.C.P. China A.C.P. Crash 16

357 179 145 33 50,14

333 213 112 8 63,964

297 141 156 0 47,475

274 237 36 1 86,496

267 237 29 1 88,764

227 203 24 0 89,427

Crash 14 Edge 71,0 5

Splash Edge 92,6 5

Crash 16 Edge 98,8 6

 


