

Departamento de Engenharia Electrotécnica e de Computadores

Model Morphisms (MoMo) to Enable Language

Independent Information Models and Interoperable

Business Networks

By

Filipe André Sobral Correia

MSc. Dissertation presented at Faculdade de Ciências e Tecnologia of

Universidade Nova de Lisboa to obtain the Master degree in Electrical and

Computer Engineering, held under the guidance of

Doctor Ricardo Luís Rosa Jardim-Gonçalves

Lisboa

September 2010

ii

iii

ACKNOWLEDGEMENTS

I would like to thank all those who in some way contributed and supported me during

the realisation of my course and this dissertation.

To my parents, brother and sister in-law who supported me from the beginning and

throughout all these long years and never gave up on believing in me.

To Lua, my moonlight which guided me in these long seven years with many dark

nights. Thank you for always being there and making me believing in myself.

To my advisor Doctor Ricardo Gonçalves for believing in my capabilities and giving me

the honour of his advices, the time devoted to assist me and the assertive guidance towards

the completion of this dissertation.

To all my colleagues at GRIS, especially to Carlos Agostinho, João Sarraipa and

Fernando Ferreira, who took me as family and supported me from very closely.

Finally, a very special thanks to all my friends who shared my worries throughout these

long past years especially to Luís Martins, Tiago Gaspar and Fábio Coelho. I will never forget

those RedBull-powered nights at the University!

iv

v

ABSTRACT

With the event of globalisation, the opportunities for collaboration became more evident

with the effect of enlarging business networks. In such conditions, a key for enterprise

success is a reliable communication with all the partners. Therefore, organisations have

been searching for flexible integrated environments to better manage their services and

product life cycle, where their software applications could be easily integrated independently

of the platform in use. However, with so many different information models and

implementation standards being used, interoperability problems arise. Moreover,

organisations are themselves at different technological maturity levels, and the solution that

might be good for one, can be too advanced for another, or vice-versa. This dissertation

responds to the above needs, proposing a high level meta-model to be used at the entire

business network, enabling to abstract individual models from their specificities and

increasing language independency and interoperability, while keeping all the enterprise

legacy software‟s integrity intact. The strategy presented allows an incremental mapping

construction, to achieve a gradual integration. To accomplish this, the author proposes Model

Driven Architecture (MDA) based technologies for the development of traceable

transformations and execution of automatic Model Morphisms.

RESUMO

Com a globalização, as oportunidades de colaboração tornaram-se ainda mais

evidentes com o aumento das redes de negócios. Nessas condições, uma chave para o

sucesso empresarial é a comunicação confiável com todos os parceiros. Assim, as

organizações têm procurado por ambientes integrados flexíveis de forma a melhor gerirem

os seus serviços e ciclos de vida de produto, e onde possam integrar facilmente o seu

software independentemente da plataforma em uso. No entanto, com tantos diferentes

modelos de informação e normas standard em uso, surgem problemas de

interoperabilidade. Além disso, as organizações estão em diferentes níveis de maturidade

tecnológica, e uma solução que poderia ser ideal para uma, pode ser demasiado avançada

para outra, ou vice-versa. Esta dissertação responde às necessidades acima, propondo um

meta-modelo de alto nível usado por uma rede de empresas, permitindo a abstracção dos

modelos das suas especificidades, aumentando a independência de linguagem e

interoperabilidade, enquanto mantém a integridade de todo o software de uma empresa

intacto. A estratégia apresentada utiliza um mapeamento incremental de forma a permitir

vi

uma integração gradual. Para isto, o autor propõe o uso de tecnologias baseadas em MDA

para o desenvolvimento de morfismos rastreáveis de modelos.

vii

TABLE OF ACRONYMS

AP Application Protocol

ARM Application Reference Model

ASCII American Standard Code for Information Interchange

ATL ATLAS Transformation Language

BDA Behavioural Digital Aircraft

CAD Computer-Aided Design

CIM Computer Independent Model

DDL Data Definition Language

EEP Eurostep EXPRESS Parser

EE Extended Enterprise

EMF Eclipse Modelling Framework

EI Enterprise Interoperability

FP7 Seventh Framework Programme

GRIS Group for Research in Interoperability of Systems

ICT Information and Communication Technology

IDE Integrated Development Environments

IEC International Electrotechnical Commission

ISO International Organisation for Standardization (http://www.iso.org)

IT Information Technology

ITU International Telecommunication Union

MDA Model Driven Architecture

MDD Model Driven Development

MDE Model Driven Engineering

MDI Model Driven Interoperability

MOF Meta Object Facility

MoMo Model Morphism

MRS MoMo Recommendation System

NIST National Institute of Standards and Technologies

viii

OCL Object Constraint Language

OMG Object Management Group (http://www.omg.org)

OWL Web Ontology Language

P2P Peer to Peer

PDM Product Data Management

PIM Platform Independent Model

PLC Product Life Cycle

PLCS Product Life Cycle Support

PLM Product Lifecycle Management

PSM Platform Specific Model

QVT Query/View/Transformation Language

SC Supply Chain

SME Small and Medium Enterprise

SQL Structured Query Language

STEP Standard for the Exchange of Product Data

SUS System Under Study

TTCN The Tree and Tabular Combined Notation

UML Unified Modelling Language

VE Virtual Enterprise

VO Virtual Organisation

W3C World Wide Web

XMI XML Metadata Interchange

XML Extensible Markup Language

XSD XML Schema Definition

ix

TABLE OF CONTENTS

1. Introduction ... 1

1.1. Research Framework and Motivation .. 5

1.2. Research Method .. 7

1.3. Research Problem and Question(s) .. 10

1.4. Hypothesis ... 10

1.5. Dissertation Outline ... 10

2. Information Modelling and Languages ... 13

2.1. Models and Meta-Models .. 13

2.2. Modelling Paradigms ... 16

2.3. Data Standards .. 18

2.3.1. STEP ... 19

2.4. Modelling Languages ... 20

2.4.1. Unified Modelling Language ... 20

2.4.2. EXPRESS ... 22

2.4.3. Others .. 24

3. Model Morphisms .. 25

3.1. Model Non-Altering Morphisms... 25

3.2. Model Altering Morphisms .. 26

3.2.1. Model Transformation ... 27

3.2.2. Model Merging .. 27

3.3. Model Morphism Ontology .. 28

3.4. Semantic properties of Model Morphisms ... 29

4. Model Driven Interoperability Foundations .. 33

4.1. Model Driven Interoperability Method .. 33

4.2. Model Driven Architecture .. 35

4.2.1. MDA Standards .. 37

4.3. Executable Transformation Languages ... 39

5. Morphisms for Model and Language Independency in Multi-Sized Business Networks 43

5.1. Conceptual Solution to Enable Hypothesis ... 43

5.1.1. MDA-based Framework for Language Independency ... 45

5.1.2. Model Morphisms Within the MDA-based Framework Scope..................................... 47

5.2. The Central Meta-Model.. 50

5.3. Knowledge-Base Mediator ... 55

5.4. Application Scenario .. 56

6. Proof-of-concept Implementation .. 59

6.1. Implementation Overview and Technology Used ... 59

6.1.1. Use-Cases .. 60

6.1.2. Technology Used .. 61

x

6.2. Implementation Steps ... 63

6.2.1. Step 0 – Central Meta-Model definition and Model Mappings 64

6.2.2. Step 1 – Eurostep EXPRESS Parser Model Validation and XML representation 67

6.2.3. Step 2 – EXPRESS Injector .. 68

6.2.4. Step 3 and 5 – Bidirectional EXPRESS transformations to Central Model 70

6.2.5. Step 4 – Central Models to Central Models (UC2) ... 73

6.2.6. Step 6 – Exporting EXPRESS Models back to text and/or XML 73

7. Implementation Testing and Hypothesis Validation ... 77

7.1. Testing Methodologies .. 77

7.1.1. iSurf Functional and Non-Functional Evaluation Methodology 78

7.1.2. ISO/IEC 9646 (ITU-T X.290) – Framework and Methodology for Conformance Testing of

Implementations of OSI and ITU Protocols .. 80

7.1.3. Tree and Tabular Combined Notation (TTCN) – Test Notation Standard 82

7.1.4. Adopted Test Methodology ... 83

7.2. Requirements and Functionalities Evaluation .. 84

7.3. Functional Testing ... 86

7.4. Non-Functional Testing .. 90

7.5. Scientific Validation ... 92

8. Conclusions and Future Work .. 95

8.1. Future Work .. 97

9. References ... 99

10. Annex .. 105

10.1. Requirements and Functionalities of the System ... 105

10.1.1. Requirements .. 105

10.1.2. Functionalities ... 105

10.2. Modelling languages meta-models to Central Meta-Model mappings.............................. 106

10.2.1. EXPRESS Mappings... 106

10.2.2. XML Schema (XSD) Mappings ... 109

xi

TABLE OF FIGURES

Figure 1.1 – Interoperability on all layers of enterprises [17] .. 3

Figure 1.2 – Classical research methodology [25] ... 7

Figure 1.3 – Variation of reliability and newness of publications [26] ... 8

Figure 2.1 – Relationship between models, meta-models, modelling languages and SUS14

Figure 2.2 – OMG’s four level meta-modelling architecture ..15

Figure 2.3 – Objectivist vs. Subjectivist approaches to data modelling [28]..17

Figure 2.4 – Simple example of an UML class diagram model ..21

Figure 2.5 – Simple example of an EXPRESS text format model ...22

Figure 2.6 – Simple example of an EXPRESS-G format model ...24

Figure 3.1 – Model Altering Morphism applied to Model A ...25

Figure 3.2 – Example of “1-to-1” and “n-to-1” relationships *61+ ...26

Figure 3.3 – Model Transformation ...27

Figure 3.4 – The Model Morphism Ontology [73] ..29

Figure 3.5 – Semantic mismatches examples ..31

Figure 3.6 – Abstracting and refining operations on models ..31

Figure 4.1 – Reference Model for MDI [81] ...34

Figure 4.2 – Levels of Model Driven Framework ..37

Figure 4.3 – Instantiation of the OMG's meta-modelling architecture with MDA open standards38

Figure 4.4 – QVT languages layered architecture...39

Figure 5.1 – High level abstraction framework of the conceptual solution ...44

Figure 5.2 – Framework for model and language independency based on MDA46

Figure 5.3 – Detail of the framework for model and language independency based on MDA48

Figure 5.4 – Central UML Meta-Model proposal..51

Figure 5.5 – Central Model representation of a simple model example ...54

Figure 5.6 – Structure of Knowledge-Base Mediator ...55

Figure 5.7 – Furniture Supply Chain example [1] ...56

Figure 5.8 – Catalogue example of two different enterprises ..57

Figure 5.9 – Application scenario ..58

Figure 6.1 – EXPRESS to EXPRESS model morphisms use-case (UC1)..60

Figure 6.2 – Data injection and Central Model to Central Model use-case (UC2)60

Figure 6.3 – Proof-of-concept Implementation Overview (UC1 and UC2) ..62

Figure 6.4 – Mapping Status of EXPRESS EXP2CM and CM2EXP ATL Rules ...66

Figure 6.5 – Simple Family EXPRESS text model...67

Figure 6.6 – Simple Family EXPRESS XML text model (output of EEP) ..68

Figure 6.7 – XML Meta-Model ...69

Figure 6.8 – Simple Family EXPRESS XML model (XML meta-model instance)70

Figure 6.9 – Simple Family XMI serialised EXPRESS meta-model instance after injection71

Figure 6.10 – Simple Family model as Central Model representation ..72

Figure 6.11 – Simple Family model as EXPRESS meta-model instance (output of “CM2EXP”)72

Figure 6.12 – Simple Family model extracted to XML from an EXPRESS meta-model instance74

Figure 6.13 – Simple Family model transformed into text from an EXPRESS meta-model instance74

Figure 7.1 – Global overview of the conformance testing process [106] ..81

xii

xiii

LIST OF TABLES

Table 3.1 – Semantic Mismatches (based on [61] and [74]) ...30

Table 6.1 – Purpose of the used technologies and tools by the proof-of-concept implementation63

Table 6.2 – EXPRESS’ “EntityType” mapping to the Central Meta-Model (mapping extract)...............64

Table 7.1 – Simplified example of a TTCN table test ..83

Table 7.2 – XML (text) to EXPRESS model (instance of EXPRESS meta-model) transformation test case

 ...86

Table 7.3 – EXPRESS model to Central Model transformation test case ...87

Table 7.4 – Central Model to EXPRESS model transformation test case ...87

Table 7.5 – EXPRESS model to EXPRESS text transformation test case ...88

Table 7.6 – EXPRESS model (instance of EXPRESS meta-model) to XML (text) transformation test case

 ...88

Table 7.7 – “Product concept identification” ATL transformations time measurements91

Table 7.8 – “AP236 Furniture Catalogue and Interior Design” ATL transformations time

measurements ..92

xiv

1

1. INTRODUCTION

Given the current globalised exponential evolution in technology and aggravated

economical world state, enterprises need to maximize efforts to maintain a positive cash flow

at the same time they continue to satisfy the needs of an ever changing market. By this,

more and more enterprises realize that one important step to success in their business is to

create new and innovative products, but the solution to do so resides in abandoning the idea

of acting as an “isolated island” and start collaborating with others to be able to take

advantage of new market opportunities. On the other hand, most enterprises using traditional

business methods are not providing the expected efficiency [1]. A single company cannot

satisfy all costumers‟ requirements and where once individual organizations battled against

each other, today the war is waged between networks of interconnected organisations [2]. In

fact, with the explosion of advanced Web technologies, knowledge-bases and resources are

becoming available all over the world, levelling markets as never, and enabling organizations

to compete on an equal basis independently of their size and origin [3].

Accomplishing strategic business partnerships and outsourcing, enables enterprises to

take advantage not only of their core competences but also of methods and services others

have. In this line, in order to be more competitive they also need to improve their

relationships with customers, streamline their Supply Chains (SCs), and collaborate with

partners to create valued networks between buyers, vendors and suppliers [1] [4] [5], i.e.

activities and performance of others to whom they do business with are critical, and hence

the nature and quality of the direct and indirect relations [6]. Nevertheless, the world is

evolving to what is called today the third era of globalisation, where it is reduced to a tiny flat

place where information can be exchanged and applied innovatively across continents,

independently of races, cultures, languages or systems [3] [7]. Thus, leading to worldwide

non-hierarchical networks which are characterised by collaboration and non-centralised

decision making [8] such as Extended and Virtual Enterprises (EE and VE) [4] [9].

Although Extended and Virtual Enterprises increase the autonomy of hub

organizations, enabling different rules and procedures within the business network, it

decreases the effectiveness in terms of integration and interoperability [7]. To succeed in this

complex environment, enterprise systems and applications need to be interoperable, being

able to share technical and business information seamlessly within and across organisations

[1] [10]. However sometimes, documents and information exchange between partners often

cannot be executed automatically or in electronic format as desirable, thus causing

inefficiencies and cost increase [11] within these networks. In many scenarios common to

Small and Medium Enterprise (SME)-based industries, most goods are still handed-off

2

through faxes, phone calls, paper documents, and a wide range of proprietary systems [8]

[12].

If systems are only partially interoperable, translation or data re-entry is required for

information flows, thus incurring on several types of costs. In SCs if the lower tiers do not

have the financial resources or technical capability to support interoperability, their internal

processes and communications are likely to be significantly less efficient, thus harming the

performance of the entire network. This way, achieving an interoperable state inside

heterogeneous networks is still an ongoing challenge hindered by the fact that they are,

intrinsically, composed by many distributed hardware and software using different models

and semantics [13]. This situation is even worst in the advent of the evolution of the

enterprise systems and applications, which such dynamics results in increasing the

interoperability problem with the continuous need for models adjustments and semantics

harmonization, since:

 Retail and manufacturing systems are constantly adapting to new market and

customer requirements, thus answering the need to respond with faster and

better quality production;

 New organizations are constantly entering and leaving collaboration networks,

leading to a constant fluctuation and evolution of system models.

All these factors are making interoperability difficult to sustain [7]. Being the latter the

capability which two systems have to understand one and other to function together, it is

directly related with the heterogeneity of model languages, communication capabilities,

databases and semantics. Differences in all these factors hide a great barrier to achieve the

time-to-market symbiosis that can unleash a solution more valuable than the sum of its

creators [1] [4] [5] [14]. Enterprise Interoperability (EI) is more than just a communication

support: it is about sharing functionality and information between systems at different levels

[14], and a software approach to maximize the benefits of diversity, rather than to integrate

the different system into one. EI is a relatively recent term that describes a field of activity

with the aim to improve the manner in which enterprises, by means of Information and

Communications Technologies (ICT), interoperate with other enterprises, organisations, or

with other business units of the same enterprise in order to conduct their business [15]. On

the other hand, those different levels of communication can be framed in a five layers of

interoperability as defined by the holistic approach to interoperability by the “Advanced

Technologies for Interoperability of Heterogeneous Enterprise Networks and their

Application” (ATHENA [16]) European project (depicted in Figure 1.1) [17]:

 The Business layer is located at the top of the framework, where all issues

3

related to the organisation and the operations of an enterprise are addressed.

They include the way an enterprise is organised, how it operates to produce

value, how it takes decisions, how it manages its relationships (both internally

with its personnel and externally with partners, customers, and suppliers), etc;

 The Knowledge layer deals with acquiring a deep and wide knowledge of the

enterprise, including knowledge of internal aspects such as products, the way

the administration operates and controls, and so on, but also of external

aspects such as partners, suppliers, relationships with public institutions, etc;

 The Application layer focuses on the ICT solutions which allow an enterprise

to operate, make decisions, exchange information (Data layer) within and

outside its boundaries, and so on;

 The Semantic dimension cuts across the business, knowledge, application,

and data layers. It is concerned with capturing and representing the actual

meaning of concepts and thus promoting understanding.

Figure 1.1 – Interoperability on all layers of enterprises [17]

Since many organisations developed and purchased solutions software (positioned at

the Application layer of Figure 1.1) based on their own needs, the required cooperation with

others is not a trivial activity and business partnerships are less effective because of it,

evidencing low level of interoperability. Interoperability is even more pertinent to SMEs, since

through collaboration can unleash solutions to larger markets which could only be reached

by large enterprises, therefore increasing both clients and chances to be successful. This

way, EI is still a prominent research topic, with a wide number of open questions and

challenges.

The Enterprise Interoperability Research Roadmap [18] has a long-term perspective of

7 years (2007 to 2013). In seeking to characterise the current problem space for Enterprise

4

Interoperability, it identified the following relevant dimensions:

 Managing more rapid change / innovation;

 Adapting to globalisation;

 Large integration / interoperability costs;

 Difficulties in decision making (e.g. when to interoperate with other enterprises);

 Lack of business case for Enterprise Interoperability;

 A change in the model of collaboration towards open innovation.

These dimensions led to what are called today as Grand Challenges, giving a strategic

direction to the research work as a whole. Each of them is a global domain of research for

reaching seamless Enterprise Interoperability:

1. Interoperability Service Utility, representing an overall system that provides

enterprise interoperability as a utility-like capability. That system comprises a

common set of services for delivering basic interoperability to enterprises,

independent of particular IT solution deployment;

2. Web Technologies for Enterprise Interoperability, seeks to apply the concepts,

technologies and solutions flowing from developments in Web technology to

address the problems of Enterprise Interoperability;

3. Knowledge-Oriented Collaboration, which comprehends sharing of knowledge

within an organisation of collaborative enterprises to the mutual benefit of the

organisation partners;

4. A Science Base for Enterprise Interoperability is about creating a “science

base” by combining and extending the findings from other established and

emerging sciences, allowing EI solution providers to engineer solutions on

rigorous, scientific theories and principles.

Despite of the available edge-breaking research and development and the different

types of advanced interoperability practices (see [7]), many organisations are not yet ready

for current EI enabling technologies, e.g. adopting a complete standard for data exchange, or

a full ontology to enhance semantic interoperability. To solve this problem and contributing

for the challenges identified in Enterprise Interoperability (namely for challenge

Interoperability Service Utility), instead of adopting a paradigm that obligates every

organisation to migrate their systems or develop complex mappings in a single step to

comply with these advanced practices, one can act at the communication module, where the

data is exchanged. Hence, it is possible to establish gradual P2P relationships on a need-to-

5

serve basis for interoperability of complex business networks, by language independent

information models. This dissertation addresses research on this subject, proposing a

Central Model common to the entire business network in a framework that enables the

abstraction of individual models at their meta-level and increase language independency and

interoperability, keeping all the enterprise legacy software‟s integrity intact. The strategy

presented allows an incremental mapping construction, to achieve growing integration. To

accomplish this, the author proposes Model Driven Architecture (MDA) [19] based

technologies for the development of transformations and execution of automatic and

executable Model Morphisms, also providing traceability and repeatability on them.

1.1. Research Framework and Motivation

Enterprises engaged in supply-chain relationships, whether as manufacturers,

customers, suppliers, or providers of services, need to share a great deal of information in

the course of their business activities. This way, interoperability can affect enterprises and

global economy by having inherent costs associated with poor or even lack of

interoperability. Various researches on this matter were elaborated in the last decade like

“Economic Impact of Inadequate Infrastructure for Supply Chain Integration” [20] and

“Interoperability Cost Analysis of the U.S. Automotive Supply Chain” [21]. The latter studies

the impact of interoperability in the automobile industry. According to it, poor interoperability

affects society‟s economic welfare in two ways: by increasing the cost of designing and

producing automobiles and by delaying the introduction of improved automobiles.

This way, an increase in the cost of designing and producing a new vehicle may lead to

an increase in the equilibrium price of automobiles and/or a reduction in the quantity of

automobiles exchanged in the market. Depending on the structure of the market, the lost

social surplus will be shared by consumers, who will pay higher prices, and producers, who

will earn lower profits. On the other hand, a delay in the introduction of an improved

automobile also imposes costs on consumers and producers, since the late introduction of a

new product or service can lead to a loss in consumer surplus because consumers cannot

benefit from the product‟s improvements until it becomes available. Delays in the production

of intermediate products (parts and assemblies) can also increase the cost of design and

production and cause bottlenecks in the automobile design and manufacturing process,

leading to the inefficient use of capital and labour [21].

Complicating the interoperability state and sustainability in this given scenario, many

non trivial factors can affect the level of interoperability costs, such as:

6

 The increasing number of customers and suppliers can lead to an increase of

the required number of computer-aided design (CAD) systems and translators

used;

 Engineer training and use of design standards for the development of CAD data

can lead to data more usable by downstream functions.

Transversally to the various industrial sectors (e.g. automotive, furniture, aerospace,

etc), typical areas of for incurring cost of poor interoperability include [22]:

 Avoidance costs which are associated with preventing interoperability issues

before they occur (e.g. the cost of developing translation software);

 Mitigating costs are the resources required to address interoperability

problems after they have occurred, such as manually processing data;

 Delay costs arise from interoperability problems that cause delay in the

introduction of a new product, or prolong the sale of a bespoke product;

 Post-manufacturing interoperability costs, including the marketing and sale

of a product, such as brochure development and populating website databases;

 Loss of market share resulting from delays, where customers turn to

alternative suppliers for a faster response;

 Specification costs, the cost to a manufacturer of obtaining product data from

product and material suppliers;

 Future proofing costs are generally unknown costs that will be faced at some

time in the future in order to integrate with new (currently unknown) system

requirements.

This problem is addressed by Europe‟s 2020 strategy which aims to create jobs, and

encourage 'green' economic growth and renewal, thus creating an inclusive society and

guide Europe‟s economy out of the economic recession. The financial crisis has had a major

impact on the capacity of European businesses and governments to finance investment and

innovation projects [23], and the Europe 2020 strategy continues to invest on innovation with

programmes like the Seventh Framework Programme for research and technology

development (FP7) [24] and the future FP8.

This dissertation aims at contributing for CRESCENDO European Project which by its

turn contributes for FP7 (for more about CRESCENDO see section 7.5). The research done

hopes to contribute for a better interoperability state, not only to decrease the time needed to

accomplish it, but also reducing the amount of costs and entropy needed to achieve and

7

maintain the interoperability state.

1.2. Research Method

The research method adopted in this dissertation is based on the classical research

method [25] which is defined as following:

Figure 1.2 – Classical research methodology [25]

The phases in Figure 1.2 can be defined and explained as following:

1. Research question / Problem: it is the most important step in a research, since it

defines the “area of interest”, although it is not a declarative statement like a hypothesis. It

has to be target of a feasible study and capable of being confirmed or refuted. Usually this

question is complemented by a few secondary questions to narrow the focus. This is defined

in section 1.3.

2. Background / Observation: this step is based on the study of prior work on the

subject, i.e. how the work been done previously, or what similar work lead up to the point

where the dissertation starts. On the other hand, what will distinguish the previous work from

what the one being developed, and what / whom will have an impact by the new approach. It

is then fundamental to study state of the art as literature review and projects. These can go

from low reliability but with high newness (e.g. Reports, Workshops, etc.), to high reliability

and inherently low newness (e.g. Encyclopaedia, Monographs, Textbooks, etc.), as depicted

in Figure 1.3.

8

Due to the high influence of the prior work which may exist, iterations between steps 1

and 2 can be done.

Background observation is extensively addressed in sections 2, 3 and 4.

Figure 1.3 – Variation of reliability and newness of publications [26]

3. Formulate hypothesis: a hypothesis states the “predicted” (as an educated guess)

relationship amongst variables and is stated in a declarative form, brief and straight to the

desired point. This hypothesis serves to bring clarity, specificity and focus to a research

problem and is defined in section 1.4.

4. Design experiment: the design experiment includes all the detailed planning of the

experimental phase, which is often composed by the design of a prototype or even system

architecture. Since the research outcomes must be measurable, in this phase it is also

imperative to identify the variables that will be manipulated and measured. Since the

hypothesis must be validated, it is necessary to plan a validation which can be replicated by

9

others in a feasible way. Theoretical design and proof-of-concept implementation are defined

in sections 5 and 6, respectively.

5. Test hypothesis / Collect data: to evaluate the hypothesis proposed, it is

necessary to evaluate the outcomes of the system / architecture designed. For this, a test

battery should be defined and applied to it, and further simulation if necessary, applying

possible multiple scenarios. For each test, data should be collected for further analysis and

hypothesis validation. Addressing this matter, section 7.1 defines the testing methodology

used to evaluate the proof-of-concept implementation.

6. Interpret / Analyse results: after all tests applied and data outputs collected, it is

time to interpret and analyse the results. If applicable, qualitative and quantitative (e.g.

descriptive and inferential statistics, clustering, etc.) data analysis should be applied to the

results. These can lead to weakening of the confidence of the hypothesis, or even put in

jeopardy all of the assumptions made in the very beginning of the research. This should not

be interpreted has a failure, but as a way to improve the original approach and try another

one with new expertise of the subject, re-iterating from step 1 or 2.

On the other hand, this is the step where, when positive results are attained, is possible

to consider the future and define the recommendations for further research. Discussion

regarding literature, research objectives and questions should be taken into account, and

draw conclusions out of it.

Interpretation and analysis of results from the proof-of-concept implementation are

presented in sections 7.2, 7.3, and 7.4.

7. Publish findings: the outcome of solids results (either in line of the original

hypothesis or against it) should result in a contribution to the scientific community.

Accordingly to the type of research, scientific papers should be written to present

intermediate results (e.g. in conferences), consolidated results (e.g. in journals), and finalised

with a dissertation about the hypothesis.

Scientific validation and hypothesis verification is presented in section 7.5.

10

1.3. Research Problem and Question(s)

 How can enterprises effectively collaborate without having to adapt their internal

systems to each member of their business network?

o How can information models be dynamically integrated enabling

transparent interoperability between heterogeneous enterprises?

o Can model morphisms be independent of technological details in order

to be specified at management levels?

1.4. Hypothesis

 By creating a common conceptual meta-model for systems information models,

one is able to abstract from technological details and enable the establishment

of semantic and structural morphisms, thus enabling network interoperability.

1.5. Dissertation Outline

In this section the current collaboration needs of enterprises and context of the

contribution of this dissertation are presented, evidencing the need for new solutions to

decrease the interoperability costs and entropy needed for sustainable enterprises

collaboration.

Sections 2, 3 and 4 present the grand topics of background observation. Section 2

covers models and modelling languages, addressed in a bottom up perspective, covering the

basis for modelling paradigms, model based standards and modelling languages. Section 3

takes this model basis to an upper level, by defining how models can be morphed and

mapped between them, without covering a technology which implements these morphisms.

Finally in section 4, interoperability framework solutions are addressed based on automated

model morphisms, defining various levels of interoperability and automatism, as well as the

technology available to implement an interoperability framework.

Section 5 defines a framework to achieve model and language interoperability in

business networks and a Central Meta-Model which enables the framework. It is based on

MDI and MDA technology, using the grand topics of background observation. A proof-of-

concept implementation steps are then presented in section 6, having a special focus on the

EXPRESS modelling language and enabling it in the framework. To validate both proof-of-

concept implementation and the proposed framework, section 7 defines and implements a

11

hybrid functional and non-functional testing methodology, and informs about the external

scientific validation of the framework.

Finally, in section 8 the conclusions and future work topics are presented.

12

13

2. INFORMATION MODELLING AND LANGUAGES

Information modelling is defined by the construction of computer-based symbol

structures, such as items, groups and relations which are able to capture and express the

meaning of information, knowledge or system and organize it in a precise format which not

only makes it understandable and useful to people [27] [28], but also able to be executed (if

the language is able to be executed). An executable modelling language can amplify the

productivity of skilled programmers, enabling them to address more complex and challenging

problems, less focusing the code writing and more about the functional services which the

system must provide. Given that information is becoming an ubiquitous, abundant and a

precious resource, its modelling is serving as a core technology for information systems

engineering, and with it modelling and simulation are quickly becoming the primary enablers

for complex system design [29], since they can represent knowledge in an intricate and

complex way and at various abstraction levels to allow automated analysis.

2.1. Models and Meta-Models

A model is a definition of some slice of reality which is being observed and interpreted,

which is constructed through the use of abstract elements and relationships in order to match

corresponding real elements and relationships. In some contexts (like Model Driven

Development / Engineering – MDD / MDE), the reality / object in study is called System

Under Study (SUS), defining the elements that exist in the system. Nevertheless, models can

represent different aspects of one reality, derive from different natures or be created using

different languages, paradigms, concepts and formalism levels [30].

Models must be written in a well defined modelling language, since the symbols and

relationships that are used to model a SUS should support the unification principle, described

both syntactic and semantically in a fixed and coherent way. The modelling language, in its

turn, is described by a meta-model – a model specifying constructs and relationships used in

a given modelling language, which makes solid defined statements about what can be

expressed in a valid model of that particular modelling language. Hence, a valid model is

only conformant to its meta-model, which is an imperative condition, when it does not violate

any statement and constructs inherited or deducible from its meta-model.

On the other hand, a meta-model is also approached as a model, which must also be

written in a coherent language – the meta-language. The latter, is considered to be

responsible to describe modelling languages in the same way of the meta-language / model

14

relation, but applied to the definition of statements of statements.

Figure 2.1 – Relationship between models, meta-models, modelling languages and SUS

As depicted on Figure 2.1 a model describing a SUS is written in a modelling language

which is conform to the semantics and syntax provided by its meta-model, and finally, the

latter is written according to its meta-language.

A reflexive meta-model prevents the indefinitely increase of abstraction layers (model,

language, meta-model and meta-languages layers), since it is expressed using the minimal

set of elements of the modelling language to express the statements of the meta-model. This

way, a meta-model is a self-describing model which self-conforms to its own semantics. A

few examples of reflexive meta-models are OMG‟s Meta Object Facility (MOF) [31], and

Ecore, which has been introduced with the Eclipse Modelling Framework (EMF) [32].

These relations between the multiple components of a modelling language was

approached by the OMG‟s Model Driven Architecture (MDA), which considers that a model

must be an instance of a well-defined meta-model, and can be classified according to the

meta-modelling level they belong to. To confine the number of modelling layers to a

manageable number, OMG has specified a reference meta-modelling architecture, limiting

this number to four (see Figure 2.2). With this, is finally possible to perform operations on

different models:

 Level 0 – model level that is not possible to instantiate, it is called in various

ways such as instance level or ground level (e.g. instances);

 Level 1 – model level that has to be instantiated to obtain ground instances

(e.g., UML model);

 Level 2 – known as the meta-model and describes the language itself (e.g.,

UML language);

 Level 3 – meta-meta-model, where models are the base for generating different

languages (e.g., MOF).

15

Figure 2.2 – OMG‟s four level meta-modelling architecture

In addition, InterOP [61] goes a little further, characterising a model according to four

dimensions:

 Meta-model: essentially modelling primitives, implemented in a meta-language;

 Structure: corresponding basically to the topology of the associated model‟s

graph;

 Terminology: the labels of the edges or nodes of the models that don‟t refer to

modelling primitives (e.g. “subclass” is not to be considered part of the

terminological dimension of an OWL ontology);

 Semantics: Given a “Universe of Discourse”, the interpretations that can be

associated with the model.

Since models can be attained from several different modelling languages with different

syntaxes, expressive power, formal semantics, meta-models, etc, achieving a lossless

expressiveness “link” between two models unleashes a new potential interoperability on a

16

heterogeneous community.

2.2. Modelling Paradigms

Models and modelling is not a recent matter of engineering, since the discussion of the

effectiveness of models is taken into consideration and traced back to the oldest known

engineering textbook, by a Roman engineer from the first century B.C. [33].

Since modelling is a process of inquiry with intrinsic similarities with classis scientific

theory construction, data modelling can‟t avoid philosophical assumptions. By applying a

data model to information, systems or simply to some slice of reality, a philosophical analysis

can be applied. On the other hand, there is a continuum between two radically conflicting

views of the ontological nature of the data being modelled: the objectivist and the subjectivist

extremes [28]. In the latter, a paradigm is characterised by the ontological and

epistemological assumptions which are broad enough to the development of several practical

approaches of data modelling within each one, such as Entity-Relationship, object-oriented

languages or even LEGally Oriented Language (LEGOL) [34].

There are two basic ontological positions concerned with the modelled information,

which are concerned with the nature of the modelled information:

 Realism, postulates that empirical entities objectively given as immutable

objects and structures of which the models are comprised, and the modelled

information exists whatever the observer uses it or not. In realism, the real

world exists and it is external and independent of the human / observer

experience of it [35];

 Nominalism, on the other hand, postulates that reality is a subjective

construction of the mind and it is perceived and structured by socially

transmitted concepts and names, hence, the construction of reality varies with

the languages and cultures. In this view, there is no existence of an external

reality, it is only in the mind of the observer and knowledge does not exist

without the observer [36].

Epistemological assumptions define another two positions, which concern both with the

nature of knowledge of the modelled information, and how it is acquired:

 Positivism, which explains the observable phenomena through the

identification of causal relationships, i.e. information is constructed in the

direction of a causal model which governs the observed sequence of

17

phenomena;

 On the other hand, interpretivism approach denies the appropriateness of the

casual model, holding that the data modeller must depend on his socially

preconditioned and pre-understanding of the subject matter. By defending that

knowledge can only be improved by applying the point of view of individuals

directly involved on it, it is historically relevant to the frame of reference of both

the data modeller and the individuals directly involved [28].

The epistemological and ontological dimensions give four possible paradigms by

combination, where only two are primary significant for data modelling. While the first is

based on a realist-positivist position, which defines an objectivist paradigm, the latter is

based on a nominalist-interpretivist position, which defines a subjectivist paradigm.

Therefore, any data modelling techniques can be located somewhere along the region

between subjectivism and objectivism (in some literature “subjectivism” can also be referred

as “constructivism”) [35] [36].

Figure 2.3 – Objectivist vs. Subjectivist approaches to data modelling [28]

An approximate ranking of how some approaches to data modelling align on the

subjectivist-objectivist continuum is depicted on Figure 2.3. From the left to the right:

 Objectivism paradigm embraces the entity-based approaches to data

modelling. For these approaches a data model is almost a mirror or picture of

the reality observed, constructed from discrete chunks – entities. Entities have

properties or attributes, which have an objective existence;

 Eclectic paradigm, which embraces the frame-based or object-based

18

approaches. The idea is that one combines a description of data and processes

it into a knowledge „frame‟, or „object‟. Frame-based approaches can be used to

implement either subjectivist or objectivist interpretations of data, but is also

possible to conceive them as predisposed towards subjectivism, since it difficult

to define its contents and there are no objective rules to accomplish it. Unlike

entities, sometimes frames are not perceived to exist in the observed reality as

objective facts;

 Subjectivist paradigm embraces the rule-based approaches, since these are

heavily influenced by the subjectivist tradition. Its supporters see the data

modelling as formalising the meaning of messages which are exchanged

between professional communities. Since the expression of meanings must

follow socially determined rules in order to facilitate the comprehension of what

is being communicated, its supporters defend that meaning is created within the

human mind and related to human purpose or intensions. Being the latter arisen

from a socially constructed understanding of reality, emerging from social

interaction and condition by social conventions / rules, they state that all

computer data ultimately have to be interpreted in terms of their natural

language meanings. Hence data can at best convey meaning from someone to

someone, but no objective meaning can be had [28].

2.3. Data Standards

Many of the systems implemented across different enterprises and even departments

of the same enterprise were initially developed to function as stand-alone systems, therefore,

have limited or no capability to share and exchange information [37]. This happens because

each application typically uses a proprietary data model and stores data in closed proprietary

formats, limiting the share of this information with other software applications. To overcome

interoperability problems, IT experts typically have to translate the data from one

representation and format to another. This translation process involves many time-

consuming and error-prone programming. Experience shows that the use of proprietary data

models and formats has created many obstacles to improving availability, quality and

reusability of data. To address this matter, by standardising data models would help define

common and consistent data structures and semantics using vendor- and technology-neutral

data encoding and exchange formats. On the other hand, a standard data model would also

provide an integrated schema for representing and exchanging data across all asset life-

cycle phases [37].

19

Dedicated to serious standard definitions multiple organisations with different

application ranges exist, such as:

 International Organization for Standardization (ISO) [38];

 International Telecommunication Union (ITU-T) [39];

 International Electrotechnical Commission (IEC) [40];

 Open Applications Group (OAGi) [41];

 Organization for the Advancement of Structured Information Standards (OASIS)

[42];

 Object Management Group (OMG) [43];

 World Wide Web Consortium (W3C) [44].

2.3.1. STEP

ISO has been pushing forward the development of standards and models [38]. Efforts

like STandard for the Exchange of Product Data (STEP) [45], have tried to deal with

integration and interoperability issues.

STEP is a family of standards for the computer-interpretable representation of product

information and for the exchange of product data under the manufacturing domain. It defines

a framework which provides neutral mechanisms that are capable of describing products

throughout their life cycle. The extent of standards required to support all the detailed

characteristics of systems in the PLC, leads to highly complex models, i.e. Application

Protocols (APs). These, are the STEP foundations for data exchange, enabling direct

communication to be established among several stakeholders within an industrial sectors.

APs are described using EXPRESS (ISO 10303-11) [46], which is the STEP modelling

language.

STEP data (i.e. an instance population of an EXPRESS schema) is typically

exchanged using an ASCII character-based syntax defined in ISO 10303-21 (also known as

Part 21 of STEP [47]). However, the STEP Part 21 syntax lacks extensibility, is hard for

humans to read, computer-interpretable only by software supporting STEP (being the latter

very expensive), and in the bottom line EXPRESS is unknown to the majority of

programmers [1] [48]. For these reasons, it is difficult to motivate implementers to adopt

these standard APs, thus risking losing all the expertise and rich contents of their Application

Protocol models. ISO, to face this situation, is developing standards to bind EXPRESS

schemas and data in XML, UML and OWL, which are technologies that are more popular

20

and have better tools support.

Hence, for the representation of data corresponding to an EXPRESS schema, the

STEP Part 28 (ISO 10303-28) specifies the mapping of type definitions and element

declarations to XML Schema (XSD [49]), and the rules for encoding conforming data in XML

according to certain configuration directives [50]. STEP Part 25 (ISO 10303-25) has similar

purposes at the model specification level, detailing a mapping of EXPRESS constructs into

the UML Interchange Meta-model, i.e. the XMI standard [51] [1].

2.4. Modelling Languages

Modelling language are artificial languages designed such way that they define a

consistent set of rules to represent information, knowledge or systems in a structure. The

rules are used for interpretation of the meaning of components in the structure, which usually

represent real objects, interactions, behaviours or systems. There are countless modelling

languages, with completely different types (e.g., graphical, object-oriented, algebraic, etc),

but in the next sections a few relevant ones (in the context of interoperability) are going to be

addressed.

2.4.1. Unified Modelling Language

Unified Modelling Language (UML) [52] is currently OMG's most-used specification and

the de facto industry standard modelling language for visualising, specifying, and

documenting software systems. It combines techniques from data, business, object and

component modelling aspects throughout the software development life cycle, and across

different implementation technologies [53].

UML models can be represented both textually and graphically. The latter specifies

several diagram types, which can be classified into three categories: structure, behaviour

and model managing diagrams.

 Structure diagrams describe the static application structure of the system

which is being modelled, also known as System Under Study (SUS). These are

the Class, Object, Component and Deployment diagrams.

 Behaviour diagrams describe the dynamic behaviour of the SUS. Therefore

Use case, Sequence, Activity, Collaboration and State-chart diagrams, are the

behavioural representations of the SUS.

 Model managing is assured by Packages, Subsystems and Models, which

21

describe how to organise and manage application modules.

Finally, as will be explained in section 4, UML is the core standard used to develop the

Platform Independent Model (PIM) and Platform Specific Model (PSM) in the context of

Model Driven Architecture (MDA). Besides its powerful modelling mechanisms, it has other

features that are essential in an MDA environment, such as extension mechanisms – the

UML Profiles, which are described in the next section.

Figure 2.4 – Simple example of an UML class diagram model

Depicted in Figure 2.4 is a simple example of an UML class diagram model.

2.4.1.1. UML Profiling

An UML profile is an UML package stereotyped “profile”, which extends the UML

language to accommodate new constraints, syntactic elements, or even to restrict it. It can

be used as an extension of a meta-model, another profile, or even to define a new language

without the need of creating it from scratch [54]. Typically an UML Profile is made up of three

basic mechanisms [55]:

 Stereotypes: are specializations of the meta-class “Class”. They define how it

can be extended and may extend one or more meta-classes;

 Tagged Values: properties of a stereotype and are standard meta-attributes;

 Constraints: are conditions or restrictions expressed in natural language text or

even in a machine readable language such as OCL [56].

To define a profile one has first to declare the set of elements and their relationships,

as well as a description of their semantics, i.e., a meta-model. As envisaged by MDA (see

above), only then can be defined the mapping of these new concepts onto UML (either meta-

model, profile or language itself), by applying the profile‟s set of basic mechanisms to the

22

meta-model, linking it to destination model basic constructs. Once the Profile is well defined,

an executable transformation language can be applied to it (e.g. ATLAS Transformation

Language – ATL) and achieve morphism automation from a model conforming to the defined

profiled meta-model. The final result is an UML model, which also conforms to the profile

created.

2.4.2. EXPRESS

EXPRESS (ISO 10303-11) [46] is a modelling language combining ideas from the

entity-attribute-relationship family of modelling languages with object modelling concepts. It is

used to describe the STEP information models in a textual format. It can represent complex

inheritance relationships and functions, and includes a rich set of constructs for specifying

constraints on populations of instances [57]. EXPRESS being mainly based in the entity-

attribute relationship model, but not limited to it, since encompasses several characteristics

from other languages such as C, C++, Pascal, SQL, etc. With this close bound with those

languages, it has an object-oriented flavour, inheritance mechanisms among the entities

constituting the conceptual model, and a large variety of types, thus becoming a very

powerful modelling language.

Figure 2.5 – Simple example of an EXPRESS text format model

Some important characteristics of EXPRESS are [58]:

 Human-readable: although having a formal syntax, i.e. not based on a natural

language, it can be read and used to communicate between people without any

ambiguity, facilitating the instant understanding of STEP information models;

 Computer-interpretable: by having a formal and well defined syntax, it allows

SCHEMA Family;

 ENTITY Person

 ABSTRACT SUPERTYPE OF (ONEOF (Male, Female));

 name: STRING;

 mother: OPTIONAL Female;

 father: OPTIONAL Male;

 END_ENTITY;

 ENTITY Female

 SUBTYPE OF (Person);

 END_ENTITY;

 ENTITY Male

 SUBTYPE of (Person);

 END_ENTITY;

END_SCHEMA;

23

its models to be processed by computer tools. With this is possible to validate

the conformance (i.e. realise conformance testing) of STEP-based messages,

which fundamental for successful communication [59]. With this, data

exchanged can be cross-checked with the respective information models, to

determine whether they are valid or not;

 Technology and platform independent: EXPRESS is designed for

conceptual product data modelling, hence its information models are described

without any specific technology or implementation details, allowing them to be

mapped into any implementation form. This feature combined with the previous

one makes it possible to generate different software artefacts (e.g. software

code, database structure, etc) from the same information model.

A simple example of an EXPRESS model is depicted in Figure 2.5. The main

constructs which can be evidenced in the EXPRESS language are:

 Schemas and Interface specifications: Schemas support the definition of

modular information models, i.e., every model consists of one or more

schemas, each with specific data definitions of a given scope. On the other

hand, the interface specifications (USE FROM and REFERENCE constructs)

enables data definitions defined in one schema to be visible in others;

 Entities and attributes: Entities are the basic units for data definition in

EXPRESS, describing classes of real world with associated properties.

Properties are represented as attributes of the entities and depending on their

types they can be simple values (e.g. string, real, etc) or relationships to other

constructs (e.g. entity reference, redeclaration, refining type, etc);

 Types: describe the domain of values that which an attribute can represent.

EXPRESS defines the basic built-in types (e.g. string, real, date, etc) but one

can define new types at the cost of the built-in types;

 Constraint Rules: are constructs that allows the definition of restrictions for the

values and relationships among the data definitions in a schema. This allows

the definition of complex and intricate models, which can be checked for

conformance not only at the syntax level, but also at the semantic level.

EXPRESS can also be represented as a graphical notation besides the text format –

the EXPRESS-G notation. It facilitates the understanding of the structure and contents of the

information models, although it cannot represent the constraint rules defined in text format.

Figure 2.6 depicts the same model in Figure 2.5, but in EXPRESS-G format.

24

Figure 2.6 – Simple example of an EXPRESS-G format model

2.4.3. Others

Besides UML and EXPRESS modelling languages, there are others broadly used for

multiple purposes. A few examples are:

 XML Schema (XSD) [49] is a language for expressing constraints about XML

documents. There are several different schema languages in widespread use,

but the main ones are Document Type Definitions (DTDs), Relax-NG,

Schematron and W3C XSD (XML Schema Definitions), adding to XML the

ability to define element and attribute content as containing values such as

integers and dates rather than arbitrary text;

 OWL 2 Web Ontology Language [60] is an ontology language for the

Semantic Web with formally defined meaning. Ontologies are formalized

vocabularies of terms, often covering a specific domain and shared by a

community of users. They specify the definitions of terms by describing their

relationships with other terms in the ontology. OWL 2 ontologies provide

classes, properties, individuals, and data values which are stored as Semantic

Web documents. It also uses datatypes defined in the XML Schema Definition

Language (XSD) and is a W3C recommendation since 27 October 2009.

25

3. MODEL MORPHISMS

Model Morphism, originally from mathematics, is the abstraction of a structure-

preserving process between two mathematical structures, but applied to data models [61]

[62]. This term only recently has been used in ICT systems and models, thus this new usage

of “morphism” has the same inherited concept. This new application was introduced by the

international research project INTEROP-NoE [63] with the aim of representing all kinds of,

unary or binary, operations (i.e. mapping, merging, transformation, composition or

abstraction) between two or more model specifications that may be described in different

languages. On the other hand, models can be approached as graphs, since graphs are well

suited to describe the underlying structures of models, especially transformations of visual

models which can be naturally formulated by graph transformations [64].

Figure 3.1 illustrates a Model Altering Model Morphism between two models (the

source “A” and target “B” models), where when it is applied to the source model it results on

a different target model [61].

Figure 3.1 – Model Altering Morphism applied to Model A

Model Morphisms are usually expressed with a certain degree of formalism. Therefore,

following well formed structures expressing non-ambiguously the representation, the

approach, the derivation law, the policies, the transformation system and the transformation

constraints, is fundamental [65].

Concerning their classification, Model Morphisms can be non-altering and altering

morphisms [66], as detailed in the following sections.

3.1. Model Non-Altering Morphisms

Model non-altering morphisms are based on the concept of traditional model-

mappings, where no changes are applied to the source models, and relationships are

identified among two or more existing models. These mappings define the space of all the

relations that put in correspondence elements in the source model with elements in the

26

second [61]. These relationships can be assigned as “1-to-1”, “1-to-n” and “m-to-n”.

When one element of one source model corresponds exactly to one element of the

other one, in this case the relationship can be designated as “1-to-1”. However, one can map

a single element to a sub-graph of multiple elements in the second model (“1-to-n”

relationship), or even from a sub-graph of elements from the first model to multiple elements

in the second model, thus “m-to-n” relationship. These relationships are depicted in Figure

3.2.

Formalising: “Let M be the set of all inner-relationships of a model‟s elements in some

language, a non-altering morphism is a relation
MBA  ,, , where    B A SubSub  ,

where  XSub is a sub-graph of relationships of X”.

Figure 3.2 – Example of “1-to-1” and “n-to-1” relationships [61]

The concept of model mapping is advised as being a result of a process of constructing

the mapping, called “mapping discovery”. This process should find the mappings in a

semantically meaningful way, i.e. semantically identical/equivalent structures in both models

should be discovered [61].

3.2. Model Altering Morphisms

Model altering morphisms can be viewed as functions applied to specific models

(operand) that relate a set of rules (operator) to modify the operand into a new model

(output). They can be divided in two categories: Model transformation and Model merging.

27

3.2.1. Model Transformation

The main objective behind model transformation consists in transforming a source

model A into a target model B, by means of modifying the first one by a function Ŧ. There are

several techniques for achieving model transformations, at various levels, such as the top

level “model-to-model” and “model-to-text” techniques [67]. One of the most common one is

the “Meta-model Approach”, by OMG [68]. The key premise behind this technique lies on the

conformity of each model to its own meta-model, i.e. both A and B models must conform to

its correspondent meta-model (MMA and MMB, respectively). These meta-models define the

languages used to build each model A and B. By establishing correspondences between

each meta-model constructs, a complete mapping/function (Ŧ) is obtained between them.

This function can be a simple table relating multiple or single constructs from both meta-

models, but once it is created it can be later implemented by using more formal and

executable languages (such as ATL, QVT, etc.). The use of these executable languages

enables the automatic execution of the transformation Ŧ of a given input model conforming to

meta-model MMA into an output model conforming to MMB, but not limited to this scenario

since one-to-one model transformations is only one kind of transformations possible [69].

Model transformation has some differences from model mapping, which are:

1. While a model transformation is a function, a mapping can be a relation;

2. Domain and range of mappings and transformations are different.

Particularizing, mappings can only exist if the input models are given in

advance.

Figure 3.3 – Model Transformation

Formalising: “Let M be the set of all inner-relationships of a model‟s elements in some

language,
MBA  ,

and a function Ŧ: M1 → M2, a model altering morphism is Ŧ, having Ŧ(A) =

B”.

3.2.2. Model Merging

Model merging can be described as when multiple models (e.g. A and B) act as input

28

for the model transformation, but preserving all original semantics from the input models.

This means that there is no fundamental difference in considering multiple input models as a

unique aggregated model, a set of disjoint graphs, one for each input model, which are

joined through a mechanism of multiple inputs and a single output [61].

Formalising: “Let M be the set of all inner-relationships of a model‟s elements in some

language,
MCBA  ,,

and a function Ŧ: (M1,M2) → M3, a model altering morphism is Ŧ, having

Ŧ(A,B) = C”.

3.3. Model Morphism Ontology

INTEROP-NoE consortium facilitated the definition and usage of Model Morphisms by

developing a Model Morphism Recommendation System (MRS [70]), which is a centralized

knowledge repository of Model Morphisms. This way, if someone is looking for Model

Morphism in order to answer his needs, he can search for specific details on the MRS and

obtain the available Model Morphism(s) that meets his criteria. In order to this system be

available to the public, they created a web portal [71] and defined an ontology [72] to classify

the existing Model Morphism solutions, as is depicted in Figure 3.4, as an UML class

diagram.

This way, Model Morphisms in MRS are classified according to the Model Morphism

Ontology, allowing users to search for those which meet their needs. Here is some of the

ontology concepts used to catalogue the Model Morphisms on the MRS:

 EnablingTechnology: technologies that realize a model operation

(Methodology, SoftwareTool or ModellingLanguage – i.e. the Meta-model);

 ModelOperation: every kind of manipulation that can be performed on one or

more models (ModelCreation, ModelProcessing);

 ModelCreation: steps undertaken during the process of model building;

 ModelProcessing: operations that can be performed on models once they are

created (ModelTransformation, ModelMorphismDiscovery);

 ModelMorphismDiscovery: operation that takes as input at least two models

and returns the model correspondences discovered among them;

 ModelTransformation: operation that takes as input one or more models and

returns as output a correspondent model;

 Purpose: reason for performing a ModelTransformation (e.g. model merging,

29

model translation, etc.);

 Approach: method or methodology applied for realizing a ModelTransformation

(e.g. graphs, programming language, etc.).

Figure 3.4 – The Model Morphism Ontology [73]

3.4. Semantic properties of Model Morphisms

In the previous sections an analysis has been made over model morphisms but mainly

focused on the structural inner-relations changes. On the other hand, one can particularly

analyse the effects on the semantic. Since morphisms changes the structural inner-relations

of the operand model(s), one must admit that a change to its semantics is at least plausible.

InterOP NoE [61] makes a proposal to classify morphisms accordingly to the type of

alterations they produce in the model, either altering it or leaving such semantics unaltered

and so forth.

The concept of semantic mismatches exists due to the differences among models and

usually any model morphism leads to a semantic mismatch. These are inconsistencies of

information that result from “imperfect” mappings, thus mismatches can either be loss or

lossless depending on the nature of the related model elements (see Table 3.1 which is

based on [61] and [74]). This notion of mismatch can bring a semantic meaning to the type of

30

the relationship being established in the mapping:

 In lossless cases, the relating element can fully capture the semantics of the

related;

 In loss mismatches, a semantic preserving mapping to the reference model

cannot be built.

Mismatch Description

L
o

s
s

le
s
s

Naming Different labels for same concept

Granularity Same information decomposed (sub)attributes

Structuring Different design structures for same information (see Figure 3.5)

SubClass-
Attribute

An attribute, with a predefined value set (e.g. enumeration)
represented by a subclass hierarchy

Schema-
Instance

An attribute value in one model can be a part of the other‟s model
schema (see Figure 3.5)

Encoding Different formats of data or units of measure (e.g. USD and EUR)

L
o

s
s

Content Different content denoted by the same concept

Coverage Absence of information

Precision Accuracy of information (see Figure 3.5)

Abstraction Level of specialisation (e.g. “Car” and “Ford”)

Table 3.1 – Semantic Mismatches (based on [61] and [74])

On the other hand, transformations can be classified as:

 Semantics preserving transformations, in which the semantic content of the

source model is equivalent to the semantic content of target model;

 Semantics enriching transformation in which the semantic content of the

source model is contained in the semantic content of target model;

 Semantics abstracting transformation in which the semantic content of the

source model contains the semantic content of target model;

 Semantics enriching / abstracting transformation combining the above

classes.

31

Figure 3.5 – Semantic mismatches examples

In section 2.1 models were characterised accordingly to meta-model, structure,

terminology and semantics. With these four dimensions and the basic relations of

equivalence and inclusion, one can have all the possible combinations of these features.

Hence, transformations can be classified accordingly to the alteration of one or more of the

meta-model, structure, terminology and semantics dimensions. By analysing the alteration,

the result can be without loss of information, expressiveness power, or abstracting / refining

ones. Figure 3.6 depicts the inter-level transformations which can occurs and the refinement

/ abstraction relations throughout the defined OMG model levels.

Figure 3.6 – Abstracting and refining operations on models

32

33

4. MODEL DRIVEN INTEROPERABILITY FOUNDATIONS

Model Driven Development (MDD), sometimes also referred as Model Driven

Engineering (MDE), is an emerging practice for developing model driven applications. Its

defining characteristic is that software development focus on models rather than computer

program functionalities [75]. This way it is possible to express information models using

concepts that are less bound to the underlying implementation technology and closer to the

problem domain relative to most popular programming languages. When compared to these,

models are easier to specify, verify, understand and maintain, thus widening the creation of

new systems to domain experts, instead of only computing specialists to do so. One key

premise behind MDD is that code can be automatically generated from the corresponding

models, elevating, once more, the level of abstraction at which developers operate, reducing

both the amount of development effort and the complexity of the software artefacts that the

developers use [76].

Since the past two decades, level of software abstraction has been raised, for example,

by using more expressive object-oriented languages (JAVA, C#, C++, etc), rather than less

abstract Fortran or C [77]. MDD‟s vision does it again, by invoking a unification principle –

“everything is a model”, the same way that the object-oriented languages invokes that

“everything is an object”. Thus, the need for increase of software abstraction is not new, and

MDD beside being the latest approach to do so, it introduces model abstractions at the

various stages of the software life cycle, representing an evolutionary step of past efforts to

create methods, languages and technologies to further elevate the abstraction level and

increase the productivity and quality of the software development process [58] [78] [79].

Another key feature in MDD is the support of model at different levels of abstraction,

from the high-level models focusing on goals, roles and responsibilities, to the bottom-level

use-cases and scenarios for business execution. Supporting these principles can only be

attained through mechanisms that perform operation on models and ensure traceability and

consistency between them throughout the different levels of abstraction [58] [80].

4.1. Model Driven Interoperability Method

Model Driven Interoperability (MDI) Method is a model-driven method, based

essentially on Model Driven Architecture (MDA) approach, to solve interoperability problems

between enterprises not only at the application and software systems level, but also at the

Enterprise Modelling level with an ontological support. This method aims at improving the

34

enterprises performances, and it is supported by the conceptual framework (MDI Framework

or Reference Model for MDI) through the extensive use of models in vertical and horizontal

integration of the multiple abstraction levels defined in the Reference Model for MDI [81] [82]

[83]. This method, as detailed on Figure 4.1, introduces different conceptualization levels to

reduce the gap between enterprises models and code level during the model transformation

of MDD and Model Driven Architecture (MDA) sub-domains, and uses a common ontology to

support the transformations and to solve semantic interoperability.

Figure 4.1 – Reference Model for MDI [81]

The definition of the several levels in the Reference Model for MDI was based on the

MDA, which defines three levels: Computation Independent Level (CIM), Platform

Independent Level (PIM) and Platform Specific Level (PSM). As one can observe on the

Reference Model for MDI, when compared to an MDA approach, has divided the CIM level

into two sub-levels, the Top CIM Level (TCIM) and the Bottom CIM Level (BCIM). This was

done in order to reduce the gap between the CIM and PIM levels. This decomposition of the

original CIM level lead to different characterizations for TCIM and BCIM:

 Top CIM is used to represent a company from the “holistic” point of view, i.e.,

its domain, business strategy, etc, on a high level of abstraction without any

detail of the software applications features;

 Bottom CIM is the representation of the Top CIM, since it needs to be

implemented on some computer system, but without linking it to any kind of

35

technology or implementation in specific.

While the main objective of MDA is to separate the functional specifications of a system

from the implementation details related to a specific platform, MDI Method‟s objective is to

start at the highest level of abstraction and derive solutions from successive transformations,

instead of solving the interoperability at the code level. Therefore, the Interoperability Model

has been defined at the various different levels of abstractions, since this way can solve the

horizontal interoperability problem between the enterprises, which takes in the account an

ontology-based approach to solve the semantic interoperability (ensured by the definition of a

Common Interoperability Ontology). Further explanation of the several levels and steps to

follow for implementation of the Reference Model for MDI are available in [81].

4.2. Model Driven Architecture

Model Driven Architecture (MDA) [19] is one of several realizations of MDD that are

available today, such as Agile Model Driven Development [84], Domain-oriented

Programming [85], Microsoft‟s Software Factories [86], among others. Nevertheless, MDA is

perhaps the most prevalent one [58], having a large landscape of software tools for its

support.

MDA is the basis for MDI and MDD implementations since it is the approach from

Object Management Group (OMG) [43] on how MDD can be executed. It has as its

foundation three complementary ideas: direct representation, automation and open

standards. The first, direct representation makes use of abstract models to represent ideas

and concepts of the problem domain, reducing the semantic gap existent between the

domain-specific concepts and the technologies used to implement them. The second,

automation, uses model transformation tools to automate the translation process from the

high levels specifications and formal descriptions of the systems, to the bottom levels and

implementation code, therefore increasing speed, code optimization and avoiding human

errors in the process. Regarding the last foundation, MDA enforces the usage of open

standards to specify the high level models, and the features of the target implementation

platforms. In addition, the usage of standards helps to eliminate diversity and promote

interoperability among the entire ecosystem of tool vendors addressing its many different

aspects and producing tools and methods to achieve MDA‟s goals [87].

MDA states that a system can be observed and analysed from different points of view,

and in order to support the supra-cited foundations it defines a hierarchy of models at three

different levels of information abstraction (see Figure 4.2) [55] [88] [82]:

36

 Computation Independent Model (CIM) to represent system requirements in

the environment in which it is going to operate, concerning business models

and a holistic point of view about enterprise;

 Platform Independent Model (PIM) to model system functionality but without

define how and in which platform will be implemented, centred in information

and from a computational point of view;

 Platform Specific Model (PSM) is the realization of PIM transformed into a

platform dependent model according to selected platform, focused on

technological point of view.

While CIM specifies the requirements, both PIM and PSM specify respectively the

system design and implementation of the system, but neither PIM nor PSM implementations

can violate the CIM requirements [89].

MDA also introduces the distinction between vertical and horizontal transformations,

where the earlier implies a change on the abstraction level of the resulting model, e.g. going

from PSM to PIM implies a generalization transformation, and from PIM to PSM implies a

specialisation transformation. In the case of the horizontal transformation (e.g. refactoring of

individual models, language equivalent translation or even joining different models) in

whichever level of abstraction, it remains unchanged [61], leading to solutions for

interoperability problems at the same enterprise level.

Both input and output models considered in the MDA transformations must be an

instance of a well-defined meta-model, and have to be classifiable according to the meta-

modelling level they belong to (see section 2.1). However due to the inherent differences that

may exist between the models that act as input and output of the transformations, a

distinction can be done between endogenous and exogenous transformations. In the earlier,

the source and target models belong to the same domain, i.e. they are instances of the

language described by the same meta-model; while in the latter ones, the source and the

target models are instances of different meta-models [61]. On the other hand, harder

interoperability issues are expected in exogenous transformations due to the different

specificities of the languages, e.g. one might enabled to describe an object with much more

detail than the other and at completely different levels (structural and / or functional levels).

When performing a model transformation (e.g. converting instances of a model to

instances of another model) an explicit or an implicit mapping of the “meta-model” has to be

performed [61]. Thus, the idea that when performing a transformation at a certain level “n”,

this transformation has (implicitly or explicitly) to be designed by taking into account

mappings at level “n+1”. Once the “n+1” level mapping is complete, executable languages

37

(e.g. ATL, QTV, Xtend) can be used to implement the transformation [90] [91] [92]. As

depicted in the centre part of Figure 4.2, a transformation at the “n” level can be executed

automatically. For instance, when applying ATL to an UML profile, the transformation from

the original information model to the destination one is executed, semantics are preserved,

traceability and reverse operations enabled [55].

Figure 4.2 – Levels of Model Driven Framework

The most interesting idea behind this approach, is the possibility to design high level

models which represent systems or organisations, and through model transformations

thorough the vertical morphisms, be able to automatically generate code from those models.

This not only reduces the error-prone task of a human generating the code, but also open

doors to maintainability and updatability from the high level models to the bottom-level code.

Yet, to accomplish this state, multiple transformation rules have to be defined (at multiple

levels of MDA) and implemented. Since these have to be coded by a human, it can also lead

to errors and bugs. On the other hand, implementing and coding in executable languages are

neither easy nor quick, since a variety of execution languages are available at multiple

maturity states and none is broad enough to cover all the others, i.e. all have limitations.

4.2.1. MDA Standards

Since open standards are one of the foundations of MDA to promote interoperability, at

MDA‟s core methodology there are multiple industry-wide supported OMG open standards

38

like UML (section 2.4.1), MOF and XMI. An instantiation of the OMG meta-modelling

reference architecture with some open standards is depicted on Figure 4.3.

Figure 4.3 – Instantiation of the OMG's meta-modelling architecture with MDA open standards

4.2.1.1. Meta-Object Facility

The Meta-Object Facility (MOF) [31] is an extensible model driven integration

framework for defining, manipulating and integrating metadata and data in a platform

independent manner. The OMG standard models, such as UML, are defined in terms of MOF

constructs, providing the basis for model/metadata interchange and interoperability, also

being the mechanism through which models are analysed in XMI [93].

Thus, MOF is the foundation of OMG's industry-standard environment, where models

can be exported from and to multiple applications, transported across a network, stored and

retrieved in a repository, rendered into multiple different formats (e.g. XMI), transformed, and

used to generate application code. These operations are not restricted to structural models,

or even to models defined in UML, since non-UML modelling languages can partake also, as

long as they are MOF-based, i.e. composed by the MOF constructs.

39

4.2.1.2. XML Metadata Interchange

XML Metadata Interchange (XMI) [94] is OMG's XML-based standard format for model

transmission and storage between various tools, repositories and middleware, which defines

how XML tags are used to represent serialised MOF-compliant models in XML. Thus, it

defines a standard to exchange MOF-complaint models between tools through XML

serialisation. Besides promoting tool interoperability, XMI plays an important role in achieving

the interoperability goal of MDA, facilitating the integration of different systems, whose

models are maintained by different teams using different tools [95].

Another advantage of XMI being based on XML is that both metadata (tags) and the

instances they describe (element content) can be packaged together in the same document,

enabling applications to readily understand instances via their metadata. This enables a self-

describing interchange which is very attractive to distributed and heterogeneous

environments. On the other hand, XMI can lead to some problems, since not all applications

use the same XMI implementation for model import / export, or even the same XMI version.

Also, programs which validate and fully support all XMI versions are not very common, which

can delay the process of models integration [96].

4.3. Executable Transformation Languages

Model transformation is an important activity in MDD and OMG recognized this by

issuing the Query/Views/Transformations (QVT) Request For Proposals (RFP) [91] to seek

an answer compatible with its MDA standard suite containing UML, MOF, OCL, etc. Many

contributions for the QVT RFP were submitted which led to several transformation languages

with support for automatic model transformation execution. Some of these are based on the

Object Constraint Language (OCL) [56], like Atlas Transformation Language (ATL) [90] and

MOF Query/View/Transformation (QVT) [91].

Figure 4.4 – QVT languages layered architecture

40

OMG‟s QVT defines a standard way to transform source models into target models,

which is sustained by the four levels of OMG‟s meta-modelling architecture (see Figure 2.2)

and its conforming relations. It also defines three domain-specific languages: Relations, Core

and Operational Mappings which are organised in a layered architecture, as depicted in

Figure 4.4:

 The Relations language provides capabilities for specifying transformations as a

set of relations among models and handles the manipulation of traceability links

automatically, hiding the related details from the developer;

 The Core language is simpler than the Relations language. One purpose of the

Core language is to provide the basis for specifying the semantics of the

Relations language. The semantics of the Relations language is given as the

transformation RelationsToCore. Since sometimes it is difficult to provide a

complete declarative solution to a given transformation problem and to address

this, the QVT proposes two mechanisms for extending the declarative

languages Relations and Core: a third language called Operational Mappings,

and a mechanism for invoking transformation functionality implemented in an

arbitrary language (Black Box implementation);

 The Operational Mappings language extends the Relations language with

imperative constructs and OCL constructs. The idea in this language is that the

object patterns specified in the relations are instantiated by using imperative

constructs. In that way, the declaratively specified relations are imperatively

implemented in the language;

 The Black Box mechanism allows the plugging-in and execution of external

code during the transformation execution, allowing complex algorithms to be

implemented in any programming language and enabling reuse of already

existing libraries.

Finally, QVT supports bidirectional transformations but allows model to model only

transformations, conforming to any MOF 2.0 meta-model. This means that text (e.g. XML,

code, SQL, etc) to model and vice-versa is out of QVT scope and simply not supported.

ATL was initially conceived as an answer to the QVT RFP but later the language

requirements evolved towards a larger set of transformational scenarios. Since ATL is

inspired in QVT, it led to a hybrid of declarative (through matched rules) and imperative

(called rules and action blocks) transformation language. The main difference between them

is that it can only be used to do unidirectional syntactic and semantic translation. An ATL

transformation is composed by a set of rules (matched rules) that define how the source

41

model elements are linked, navigated enabling and instantiating the elements of the target

model. These elements can then be filled with information from the source model by called

rules (similar to functions in usual object languages like JAVA) and action blocks (blocks of

imperative code which can be used by matched rules and called rules). ATL is one of the

most used transformation languages, having a large user base and being very well

documented, nevertheless it is neither a standard nor a simple language to use [97].

Beside ATL and QVT, several other languages exist, such as:

 Non-MOF based VIATRA2 [98], GReAT [99], AGG [100] which were built upon

the strong foundation of graph transformations and were elaborated

independently of the OMG efforts;

 Non-OCL based Xtend/Xpand [92] which is a JAVA looked-alike transformation

language, now a component of the open development platform Eclipse.

All the languages addressed in this section have some common goals and features,

but also expose differences in their paradigms, constructs, underlying modelling approaches,

etc. Despite the fact that they are designed as general-purpose model-to-model

transformation languages, all have strong and weak points and demonstrate a better

suitability for a certain set of problems. Comparisons of applicability and interoperability

between several transformation languages are widely available [101], which can narrow the

choice to a few transformation languages for a known given type of transformation.

42

43

5. MORPHISMS FOR MODEL AND LANGUAGE INDEPENDENCY

IN MULTI-SIZED BUSINESS NETWORKS

To enhance interoperability in complex business networks, as well as business and

information model integration adapted to the companies‟ needs, organisations require

mechanisms capable of abstracting the model from the technology in which it is described.

This happens because enterprises need to abstract from the technology itself and get focus

on managing and planning of their business. If that would be the case, more organisations

could enlarge their business networks without having to make huge investments on

specialised personal and tools to handle technologies they are not aware.

5.1. Conceptual Solution to Enable Hypothesis

The proposed framework (depicted in Figure 5.1) enables organisations to achieve

model and language independency. It was based on the definition a series of requirements of

the system which are enumerated in section 10.1. With the model and language

independency obstacle out of the way, organisations will become capable of establishing

gradual P2P mappings on a need-to-serve basis, independently of the language their

information models are described on, and the number of business relationships within the

collaboration networks they are part of. This means that organisations continue to use their

legacy software and models (at the bottom of Figure 5.1), without needing to adjust to each

organisation they want to seamlessly collaborate. Instead, the approach used in the

framework resides on companies applying an interface to their output models. This interface

is a common contact Modelling Language Harmonisation Layer (depicted at the centre of

Figure 5.1) for all organisation‟s models, acting as a modelling language translator. This way

each enterprise does not need to know how to relate their models to the modelling language

specificities of the other companies‟ models, they just have to focus on how to correctly link

their models to the interface and this way generate their harmonised models – modelling

language independent models.

Once all harmonised models from all different enterprises are generated, the Inter-

Enterprise Harmonisation Layer is responsible to establish another level of translation (top of

Figure 5.1). Here, not only the models from the different sources are linked to obtain model

structure transparency, but also the semantic of the models is analysed and adjusted to

finalise the process of model and language independency. Once the models are in fact

integrated in the framework, and since all models‟ flow are bidirectional, they can finally be

44

exported back to any desired compatible source which is already connected to the

framework, allowing bidirectional communication of enterprises and achieving the desired

enterprises‟ transparency of technology envisaged.

Figure 5.1 – High level abstraction framework of the conceptual solution

The proposal depicted in Figure 5.1 is an interpretation and refinement of ISO/IEC

11179 Metadata Registries (MDR) [102]. ISO/IEC 11179 describes the standardising and

registering of data elements to make data understandable and shareable. Data element

standardisation and registration, as described in ISO/IEC 11179, allow the creation of a

shared data environment in much less time and with much less effort than it takes for

conventional data management methodologies, and it is applicable and not limited to:

 Enabling global data acquisition and interchange, particularly across application

areas;

 When documentation of data element characteristics is inadequate to support

fully automated sharing of data, including locating, retrieving, and exchanging

the data.

The refinement applied to ISO/IEC 11179 tried to simplify the enterprises‟ adoption

45

process and maintain the overall time and money spent as low as possible when compared

with the need for adopting a complex model and data representation standard such as ISO

10303 – STEP for exchanging information. On the other hand, since this conceptual

approach does not have a specific domain of action, it is possible to embrace several

domains (e.g. aeronautics, furniture, automotive, etc) with it, enabling different domain

enterprises to communicate and collaborate.

5.1.1. MDA-based Framework for Language Independency

In order to materialise the high level abstraction framework of the conceptual solution

(depicted on Figure 5.1), a more complete representation of the proposal is depicted on

Figure 5.2. It is based on a four level MDA applied structured relationships between meta-

meta-models, meta-models, information models and data.

The left (Enterprise A, with blue background) and right-hand (Enterprise B, green

background) sides of Figure 5.2 represent the two different organisations‟ internal legacy

models where the data is described by the respective model, which by itself is defined by its

meta-model which ultimately conforms to a meta-meta-model. The core of the framework is

represented by the middle part (Inter-Enterprise Harmonisation Layer, with grey

background), which includes the Common Base (sustained by the Central Meta-Model and

its instances, defined in section 5.2) and serves as a standard during the mapping

establishment (morphism) within the collaboration network. Analogous to Figure 5.1, in

Figure 5.2 are specified the abstraction layers of the earlier figure. The Modelling Language

Harmonisation Layer (responsible for modelling language translation) is represented by all

morphisms at the interfaces between the Enterprise A and B, and the framework‟s core. The

latter is in fact the Inter-Enterprise Harmonisation Layer itself, being responsible for the

model and semantics harmonisation.

Since the problematic is on achieving interoperability between same levels of

abstraction of the organisations involved, the framework makes use of horizontal morphisms

which can support the harmonisation of both models and data levels (Level 1 and 0,

respectively). These morphisms are the base for both Modelling Language Harmonisation

and Inter-Enterprise Harmonisation Layers, which are covered in detail on the next sections.

46

Figure 5.2 – Framework for model and language independency based on MDA

47

5.1.2. Model Morphisms Within the MDA-based Framework Scope

Within the framework depicted in Figure 5.2, model morphisms are used across the

multiple harmonisation layers and throughout the MDA levels. At MDA Level 2 and 3, types

and instances mapping (at the Modelling Language Harmonisation Layer), and models and

ontologies mapping (at the Inter-Enterprise Harmonisation Layer) respectively exist. The

morphisms associated with these mappings are model non-altering morphisms (see section

3.1), which are described by mapping tables for each Specific Format (modelling language)

linked to the Common Base meta-model. These mappings are then implemented using an

executable language, implementing the model altering morphisms (transformations) on the

respective inferior level. Formalising: “Let M be the set of all inner-relationships of a model‟s

elements in some language at MDA Level N, a non-altering morphism  
21,,, MBMABA  ,

then at MDA Level N-1 a model altering transformation is given by Ŧ( ,A) = B”.

Since the morphisms from the Modelling Language Harmonisation Layer are intended

to be used for modelling languages translation to the Common Base (and vice-versa),

multiple mappings must exist for the same number of desired modelling languages to

translate. These mappings exist mostly at the meta-models, so they are expected to be

defined and implemented only one time and used without changes as long the respective

modelling languages are needed (since those meta-models are supposed to be constant).

Nevertheless, in the Intra-Enterprise Harmonisation Layer a completely different situation

arises. For each model there must be at least one transformation, and since models can

have a limited life cycle, any mappings and transformations regarding particular models may

have to be changed as models evolve, disappear or are added to the framework. This way,

the Intra-Enterprise Harmonisation Layer suffers from greater entropy given by the changes

in companies‟ models.

5.1.2.1. Modelling Language Harmonisation Layer

Depicted in Figure 5.2, the Modelling Language Harmonisation Layer is responsible for

translating the Specific Formats (modelling languages) from enterprises to the Common

Base (the solution‟s Central Meta-Model, depicted on the right-hand side of Figure 5.3 and

described in section 5.2) of the framework, and vice-versa. The morphisms existent at this

layer are accomplished by establishing a manual correspondence at the meta-model level

(Level 2 of the MDA) between any Specific Format and the Central Meta-Model, enabling

transformations at any organisation‟s information model (Level 1).

By being able to transform any given input model back and forth to the Central Meta-

48

Model (which is well structured, known and documented), the framework accomplishes the

objective for modelling language independency, helping enterprises to further abstract from

technology. To unleash it, executable rules can be applied to transform any N-1 level,

according to the N the level of the mapping (see Figure 4.2).

Figure 5.3 – Detail of the framework for model and language independency based on MDA

These automatic model transformations at the model level are attained (Level 1) by

applying the rules for the mapping defined at Level 2 (Meta-model level). This way, one can

represent multiple models on the Central Meta-Model, and if there is a mapping defined

between each input modelling language and the latter, multiple models from multiple

languages can be represented by equal number of instances of the Central Meta-Model.

Consequently, using the proposed framework, the language mapping procedure is a

manual process (since meta-models must be analysed and mapped between them), but the

language transformations are always automatic and repeatable. Considering that the number

of languages used for information modelling is not so high, it is an acceptable cost since

49

each map is done only once for the whole collaboration life period, independently of the

number of times it is used / executed.

5.1.2.2. Inter-Enterprise Harmonisation Layer

Once all models from different enterprises and modelling languages are harmonised to

a central and common language and meta-model (Central Meta-Model), another very

important problematic of collaboration can be addressed: the semantic mismatches of the

various models from the organisations and their correct model integration. The framework

takes this in account by allowing model and ontologies mapping at the models level (Level 1)

and between Central Meta-Model instances. This way, the mappings realised at this point

don‟t suffer from the extra complexity of dealing with multi-modelling languages, easing the

process of harmonising the semantic and structure level of models and ontologies. At the

centre of Figure 5.2 is depicted this interaction between models and ontologies mapping with

the semantic mismatches evaluation.

The result of the process of evaluating semantic mismatches and models mapping is

the seamless generation of transformations (at the bottom centre of Figure 5.2, in green)

between models and data from Enterprise A to Enterprise B and vice-versa. By its turn, each

pair of transformation is then stored on knowledge-bases (Knowledge-Base Mediator – see

section 5.3) on each of the organisations side, which will allow exchanging data and models

automatically (by means of transformations executions) in a P2P approach.

Since these transformations (at the bottom centre of Figure 5.2, in green) only apply to

the inner concepts (structural and semantic) of the Central Meta-Model instances, also the

Modelling Language Harmonisation Layer transformations (right and left-hand of Figure 5.2,

in blue) must be stored on each Mediator, regarding how to transform the Specific Models of

each organisation from and to the Central Meta-Model. This way, the union of the two

transformations (for each direction of communication) unleashes the capability of both

automatic and transparently communicate and collaborate with other organisations, with

different modelling languages, models, semantics and ontologies. On the other hand, by

storing these transformations, future changes on models and meta-models can be reflected

on the previous transformations. Finally, also traceability and repeatability are inherently

available by storing the transformations in the knowledge-bases.

Although this conceptual framework proposes a complete solution to enable the model

and language independency in multi-sized business networks, it is more focused in enabling

the harmonisation of the heterogeneous models from the multiple organisations involved in

the collaboration network. These models then act as inputs for the semantics analysis and it

50

is not in the scope of this dissertation the further refinement of how models and ontologies

are mapped accordingly with the semantic mismatches, and how the transformations occur

within the harmonised upper layer (Inter-Enterprise Harmonisation Layer, in gray

background).

Other works have been developed in parallel to this dissertation, which evolved and

cooperated to the maturation of the presented framework. This way, they cover both how the

semantic mismatches are identified and applied to the mapping between each pair of

harmonised models from the organisations involved, and also how Level 0 transformations

(at the bottom centre of Figure 5.2, in green) between the Central Meta-Model instances are

generated, stored, accessed and executed in combination with the modelling language

harmonising transformations (right and left-hand of Figure 5.2, in blue). With this, the sum of

all three research works explains and covers in detail the entire framework‟s inwards and

proof-of-concept.

As been said before, the process of mapping between different information model

structures at the Central Meta-Model instances (i.e. Level 1) is not part of this dissertation.

However, with such a framework, the complete automatic data exchange and translation can

be accomplished between different model instances at the Level 0, thus completing the base

for sustainable systems interoperability. Since all mappings of Level 1 can be stored on a

local knowledge base, it enables to gradually add more mappings with other enterprises and

even to edit or delete past mappings. This provides the required adaptability of the

framework to small collaboration networks, and being able to escalate to larger scenarios. A

usage scenario explaining the complete picture is included in section 5.4.

5.2. The Central Meta-Model

The Central Meta-Model proposed is described as an UML class diagram meta-model

in Figure 5.4. It was designed with an UML design tool, since UML class diagrams are a

good starting point for visualising the meta-model, plus it is possible to be exported as a

lossless MOF XMI model. It was intended to be as little loss of expressiveness as possible,

but at the same time simple and generic to support multiple language mappings. The

resembles with ISO/IEC 11179 standard are not by fortuity, since the Central Meta-Model

was based on the standard foundations and concepts in order to give support to mechanisms

for enabling global data interchange, particularly across application areas [102]. A bridge

between major concepts of the Central Meta-Model and ISO/IEC 11179 can be made, such

as “Entity”, “Property” and “Representation” concepts in the standard corresponds to

“Entity_Concept”, “Property” and “Representation” concepts of the Central Meta-Model.

51

Figure 5.4 – Central UML Meta-Model proposal

52

Many of the information modelling languages, e.g. EXPRESS [46], UML [52], OWL [60]

and XSD [49] have been analysed in detail and they were the focus of the attention to create

this comprehensive meta-model and as far the mappings defined for those languages

demonstrate, the Central Meta-Model is able to support them with little loss of

expressiveness. In resemblance to what happens in the OWL language, the Central Meta-

Model is also capable of representing both models and data levels of MDA (Level 1 and

Level 0, respectively), enabling the combined transformation of both levels at the same time,

or each independently if required. With this, not only the meta-model is prepared to deal with

harmonisation of modelling languages, but is also capable of representing instances of

models, meaning that can be used as an intermediate platform for harmonisation of the data

(represented by the Instances Package depicted in Figure 5.4 in blue). Also, since the

representation of both levels can occur at the same time, this facilitates the process of

semantic matching for the upper framework layer (see Figure 5.2, Inter-Enterprise

Harmonisation Layer, with gray background).

Concerning modelling concepts, the meta-model considers the representation of

entities, attributes, basic types, aggregations, etc. Nevertheless, some explicit non-supported

elements also exist, such as behavioural expressions and functions which, for example, the

EXPRESS language is able to embed directly in models. However, they are not fundamental

for the envisaged mapping process which is mainly focused on the information model

mapping at the Level 1 of the framework.

A more detailed explanation of the composition of the meta-model is presented,

evidencing the use of each structure defined in it:

 Model: identifies the “header” of the original model, in terms of owner, version

and original modelling language. A “Model” can be composed by a multitude of

“Modules”;

 Module: each “Module” represents a fraction or the whole model, since original

models can be distributed by a series of resources. The “Module” class

identifies by a name and version of each part of the original model. It is

constituted by “Concepts”;

 Concept: is an abstract class, and represents any kind of structure defined as

root of the module (root elements of the original model representation). It either

can be instanced as complex entities (“Entity_Concept”) or type declarations

(“Type_Concept”);

 Entity_Concept: class “Entity_Concept” represents an important structural part

of the model defining classes of objects. It can have properties and represent

53

palpable model information, thus it can also be instantiated with real Level 0

data (through “Instance_Group”). Being the class that enables the definition of

classes, it allows to mark them as abstract if that is the case;

 Property: this class acts as complementary information about a given

“Entity_Concept”, since it cannot exist without it. “Properties” have a given

underlying associated type which can be any class inherited from the abstract

“Representation” class. Similarly to “Entity_Concepts”, also “Properties” are

linked with instances, through the “Instance_Group” (e.g. when a property is an

Aggregation) or “Instance_Item”, completing the Level 0 representation;

 Representation: is the top abstract class which can go from generic basic

types, advanced types, passing through entities and aggregations. This class

represents the top level of abstraction of a single piece of information that can

be modelled by the meta-model, or that exists natively in modelling languages

(e.g. “Strings”);

 Generic_Basic_Type: this class represents a generic basic type which is

defined by the “type” string. This can acquire any basic type which the model

demands (e.g. “Integer”, “String”, “Boolean”, etc);

 Aggregation_Type: like the name explains, is a class to represent

Aggregations (i.e. arrays, bags, vectors, etc), which can be limited by the

“upperCardinality” and “lowerCardinality”. This class also has no information

about possible contents besides the type it is associated with. This means that

there is no information about possible order and duplicity of elements;

 Type_Concept: is an abstract class and represents the high level abstraction

of selectors, renamed concepts and enumerations, such as “Select_Type”,

Labelled_Type” and “Enumeration_Type”. “Type_Concept” acts as a separation

of models‟ structures from the “Entity_Concept”, and helps the understanding of

the difference which is inherent between them;

 Select_Type: as one of the advanced type structures, it allows a given property

to assume a multitude of different types, not limiting the instantiation to one

particular type. This notion of selection only exists on the EXPRESS modelling

language;

 Labelled_Type: allows to rename a previous defined concept or a native

“Representation”;

 Enumeration_Type: the last advanced type available defines the use of

54

enumerations, which by definition is a set of well defined named values. These

values are inherently constant and in the Central Meta-Model each enumeration

value is considered to be an “Instance_Item” attached to a specific

“Instance_Group” representing the scope of all values allowed on a defined

“Enumeration_Type”;

 Redeclared_Property: since “Properties” can be associated with

“Entity_Concepts” to add finer modelling detail, “Redeclared_Properties” should

be used in case of need to redefine some other “Property” from a remote and

already defined “Entity_Concept”. With this, a particular “Property” can be

renamed and / or even type redefined / refined;

 Instance_Group: acting as an aggregator of “Instance_Items”, the

“Instance_Group” class represents disjointedly either an instance of an

“Entity_Concept”, an aggregation of the possible values of an

“Enumeration_Type” or even the values of a property which its underlying type

is an “Aggregation_Type”;

 Instance_Item: this class can represent four different instances: a “Property”

instance, an “Entity_Type” instance, an item of an “Enumeration_Type” or even

a value of a “Property” which is of type “Aggregation_Type”;

To better understand the inwards of a model represented by the Central Meta-Model,

the model example depicted in Figure 2.4 is now represented as a Central Model:

Figure 5.5 – Central Model representation of a simple model example

55

5.3. Knowledge-Base Mediator

In order to enable the envisaged traceability to support intelligence and sustainability, it

is required to store the morphisms in a parseable and structured knowledge-base. With it,

every mapping between models or ontologies of business partners can be stored and

accessed by their local systems. This allows communities to build systems with reasoning

capabilities able to understand each others‟ representation format, without having to change

their data and schema import or export processes [103].

The proposed KB Mediator is defined by an ontology in OWL format. It has been built

up as an extension to the Model Traceability Ontology defined in [104], which addresses

traceability as the ability to chronologically interrelate the uniquely identifiable objects in a

way that can be processed by a human or a system. This way, the morphisms are modelled

with traceability properties in a sense that they enable to store different versions of model

elements, as well as mappings between specific objects defined in a model or ontology A

(relating) and objects defined in a model or ontology B (related).

Figure 5.6 – Structure of Knowledge-Base Mediator

The structure of the evolved KB mediator is presented in Figure 5.6 and described as

follows: the KB mediator has two main classes: “Object” and “Morphism”. The “Object”

represents any “InformationModel” (IM) which is the model/ontology itself and

“ModelElements” (also belonging to the IM) that can either be classes, properties or

instances. The “Morphism” associates a pair of “Objects” (related and relating), and classifies

their relationship with a “MorphismType”, “KnowledgeMappingType” (if the morphism is a

56

mapping), and “Match/Mismatch” class. The “Morphism” is also prepared to store

transformation oriented “ExecutableCode” that will be written in the ATLAS Transformation

Language and can be used by several organizations to automatically transform and

exchange data with their business partners as envisaged before.

5.4. Application Scenario

The proposal to achieve interoperability of complex business networks by language

independent information models, presented in section 5.1, relies on a scalable framework

which enables the definition of information mapping and morphisms to accomplish automatic

peer-to-peer communication with business partners at execution time. To obtain a fully

automatic and transparent communication between two enterprises, both models and

semantics must be mapped at some point. Figure 5.9 illustrates a typical application scenario

that can be applied to most business collaboration networks (e.g. supply chains – SCs,

collaborative product design and procurement, etc).

In the case of SC, where retailers and e-marketplaces need to be interoperable with

manufacturers to publish their catalogues and sell their products – e.g. manufacturers need

to be interoperable with their suppliers to obtain a wider configurability on their products, and

with designers for more innovative structures and similarly down the chain (see Figure 5.7).

Figure 5.7 – Furniture Supply Chain example [1]

57

A generalisation of the supply chain scenario is depicted in Figure 5.9, with four

enterprises (A, B, C and D). To illustrate the usability of the framework, only two are needed

(A and B), representing a manufacturer and a retailer where the first wants to publish its

product catalogue (particularly a new “chaise longue”) to the collaborative network in general,

and to the retailer in particular. Yet, these enterprises do not share neither same modelling

languages nor models, and have different terminology for the same product (see Figure 5.8).

Figure 5.8 – Catalogue example of two different enterprises

A complete scenario from each enterprise joining the collaborative network, getting to

understand each other and finally to communicating transparent and automatically is

explained in the next four steps which are also identified in Figure 5.9:

(1) The first step towards reaching an interoperable state involves model

translation to a common language of understanding, thus achieving the

envisaged language independency. In the solution, this step consists in doing a

transformation of the Enterprise A (Manufacturer) modelling language to an

instance of the Central Meta-Model of section 5.2. Thus, mappings between the

meta-model of the Manufacturer and the Central Meta-Model must be created.

This way two morphisms have to be implemented: the M2C morphism, which

stands for Model to Central Model and has as direction of transformation from

the model represented in Manufacturer meta-model to its representation in the

Central Meta-Model. On the other hand, the opposite direction of transformation

is accomplished by the C2M morphism, which stands for Central Model to

Model. By applying the first transformation M2C(A) (generated from the manual

mappings) the translation of the Manufacturer‟s modelling language occurs,

hence, the model‟s structure is now represented in a Central Meta-Model

instance;

(2) The second step is the repetition of the fist but focusing on the Retailer

(Enterprise B): mapping its own meta-model and modelling language to the

Central Meta-Model and posterior transformation generation and execution;

58

(3) The third step starts once both enterprises have their models represented at the

Central Language (CMA and CMB), where the model mapping and semantic

matches begins. The relations between the both catalogues must be manually

established, linking “Catalogue” with “Catalogue”, “Products” with “Products”

and finally the inwards of the “Chaise Long” model with the “Long Sofa” model.

These mappings between the two models must be established by a business

expert, and registered in a local knowledge base (KB Mediator) that contains all

the mappings with the organisation‟s business partners. This also enables

gradual mapping on a need-to-serve basis since the Mediator can store the

work progress. Through this step it is possible to obtain second level of

morphisms (C2C morphism: Central Model to Central Model) and the basis for

the automatic final solution;

(4) Once the above steps are complete, all the generated executable

transformation code stored in the local Mediator will be used to transform data

in the bidirectional communication between each pair of enterprises. Having

this, if more enterprises are required to enter/leave the network, it is possible to

add, remove and edit all the mappings and the transformation code.

Figure 5.9 – Application scenario

59

6. PROOF-OF-CONCEPT IMPLEMENTATION

In order to validate the viability of the framework proposed in section 5.1, it was

necessary to implement a part of it. Since this dissertation has a main focus over the

Modelling Language Harmonisation Layer (see Figure 5.1), it was also chosen to be the

proof-of-concept implementation focus. On the other hand, this dissertation was developed

aggregated with Group for Research in Interoperability of Systems (GRIS) at UNINOVA,

which already have many research works related with the integration of STEP technologies

with others more open and popular among developers [1] [7] [58] [59] [66] [103] [104],

EXPRESS was the elected modelling language to prove the concept, thus not only map to

the Central Meta-Model but also to implement the proof-of-concept morphisms. All the

EXPRESS expertise which was available as human knowledge and the possible positive

results of this implementation were also aspects for its choice, and to further develop MDA-

based tools to its manipulation.

In this case, the proof-of-concept implementation consists in the bottom up

development of the framework but not concerning with the Inter-Enterprise Harmonisation

Layer. This means that the software layer developed resolves the translation from the

EXPRESS modelling language to the Central Model and vice-versa, delivering its results to

the Inter-Enterprise Harmonisation Layer which will resolve the semantic and model

integration of the harmonised models.

Although this proof-of-concept is limited to the EXPRESS modelling language, others

(such as UML, OWL and XML Schema) were considered on the development of the

framework (depicted in Figure 5.2). From these, XML Schema modelling language, similarly

as EXPRESS, was mapped to the Central Meta-Model (see section 10.2.2).

6.1. Implementation Overview and Technology Used

As seen before on section 2.4.2, EXPRESS modelling language models can be

represented as either in the text (EXPRESS) or graphical (EXPRESS-G) formats, being the

text format the most complete representation due to the loss of expressiveness of EXPRESS

expressions inherent to the graphical format. On the other hand, ISO 10303-21 (STEP Part

21) is the most used data format exchanged between EXPRESS enabled systems. This

format enables the representation of models‟ data without exchanging the whole original

models, reducing the amount of real data exchanged between the systems. Nevertheless,

this compels to a prior communication to synchronise (wireless or not) complete models and

60

future synchronisations to maintain coherence of evolving models. Therefore, model

morphisms at model and data levels can be frequent.

6.1.1. Use-Cases

Regarding the proof-of-concept, two use-cases have been defined. The first one

defines the input of an EXPRESS model, applying a model morphism to represent it as a

Central Model and back again to EXPRESS model (depicted in Figure 6.1). This represents

a round-trip to the Central Meta-Model of the EXPRESS models, and implements a complete

mapping of the EXPRESS modelling language (see mappings in section 10.2.1). It is

expected that each modelling language interfaced in the Modelling Language Harmonising

Layer (depicted in Figure 5.1) is capable of be imported to a Central Model representation

and back again to the original model representation by means of automated model

morphisms.

Figure 6.1 – EXPRESS to EXPRESS model morphisms use-case (UC1)

The second use-case not only defines the injection of EXPRESS models‟ data to an

EXPRESS model but also that model morphisms are applied to generate Central Models to

Central Models transformations. The latter functionality is the foundation of the Inter-

Enterprise Harmonisation Layer (depicted in Figure 5.1), which is responsible to harmonise

Central Model representations of heterogeneous enterprises models, not only at the

structural level, but also at the semantic level too.

Figure 6.2 – Data injection and Central Model to Central Model use-case (UC2)

61

6.1.2. Technology Used

Given the context of MDA and MOF based meta-models transformation languages,

ATL is currently the largest user-base and has the most extensive available information such

as reference guides, tutorials, programmers‟ forum, etc. It is by far the most used language

to implement MDA based tools [101], having a specific Development Toolkit plug-in available

in open source from the GMT Eclipse Modelling Project (EMP)1. By all these reasons it was

decided to use ATL to implement model transformations (see section 4.3). Although ATL

transformation input models can be represented in plain text, it is preferable to use previously

validated serialised XMI and EXPRESS meta-model conforming models (OMG EXPRESS

reference Meta-Model [105]). Yet to achieve this is not an easy task. In Figure 6.3 is depicted

the flow of the EXPRESS model input for bi-directional transformations, which enables STEP

to STEP model communications. Even though UC1 (depicted in Figure 6.1), which

represents this implementation, does not includes transformations between Central Models,

that will be the case in real life applications and is envisaged in UC2 (depicted in Figure 6.2).

Eurostep EXPRESS Parser (EEP)2 is a command line parser which allows EXPRESS

models in text format to be validated against the published standard, and can export a XML

Standard form the validated models. Since the EXPRESS input models for the

transformations flow are represented in text format and without any warranties of being valid

models, the use of EEP as first contact with the framework acts not only as models validator

but also as publisher of STEP models to XML Standard. The use of XML Standard will

simplify the process of representing the input models as instances of the EXPRESS meta-

model, since XML can be natively injected by the ATL modelling tools, conforming to the

XML meta-model and automatically creating a valid XMI serialised instance of it.

Hence, XMI plays a fundamental basis role through the whole workflow of

transformations, since all MOF based instances (in the context of these ATL modelling tools)

are serialised in XMI, no matter if it regards to the meta-models, models or even Level 0 data

instances. To be usable by the ATL rules, the available EXPRESS meta-model was exported

from an UML MagicDraw3 representation to Ecore (Eclipse EMF approach of MOF, used to

represent meta-models in the EMF framework). MagicDraw is a business process,

architecture, software and system modelling tool with teamwork support. It is also a versatile

and dynamic development tool, providing code engineering from models, with full support for

UML, Data Definition Language (DDL) generation and reverse engineering facilities.

1 http://www.eclipse.org/modeling/
2
 http://www.eurostep.com/global/solutions/download-software.aspx#EXPRESS%20Parser

3 http://www.magicdraw.com/

62

Figure 6.3 – Proof-of-concept Implementation Overview (UC1 and UC2)

63

MagicDraw (and in principle most UML tools) can export UML projects to a variety of other

formats / serialisations such as UML XMI 2.1, EMF Ecore, EMF UML2 v2.x and v1.x XMI,

MOF XMI and Business Process Execution Language (BPEL).

To summarise the most important technologies and tools used throughout the proof-of-

concept implementation, a short but objective purpose of those is presented in the next table.

Technology Tools

Purpose

Purpose

MDA
Foundation for models’

transformations
EEP

Validator and parser of text
EXPRESS models to XML

ATL
Executable transformation

language for model morphisms
MagicDraw

UML designing tool for UML class
diagrams definition and export to

Ecore XMI

MOF
Basic constructs for model

representation

Ecore
Approach of MOF implementation

by Eclipse EMF

XMI
Format for models and data

interchangeable representation

Table 6.1 – Purpose of the used technologies and tools by the proof-of-concept implementation

6.2. Implementation Steps

The main objective of this proof-of-concept consists on the implementation of the

Modelling Language Harmonisation Layer (depicted in Figure 5.1) which implements

transformations responsible for inputting an EXPRESS model formatted as text (lower-left

corner of Figure 6.3), forward transforming it to a Central Meta-Model representation (steps 1

to 3 of Figure 6.3), delivering the results for the upper framework layer (Inter-Enterprise

Harmonisation Layer, for evaluation of semantic mismatches and model mappings, between

step 3 and 5), and backward transforming it to either EXPRESS text or XML representation

(steps 5 and 6).

Focusing only in the EXPRESS models as lower inputs and outputs of the Modelling

Language Harmonisation Layer, Figure 6.3 depicts all the transformations and validations

necessary to start with an EXPRESS model in text format, harmonise the model for the Inter-

Enterprise Harmonisation Layer usage (UC1), and finally transform it back to EXPRESS

either text or XML formatted. On the other hand, with step 3 and 4 is possible to inject Data

instances on an EXPRESS model, transform it to a Central Model and apply a structural

transformation to obtain another Central Model (UC2). In the next sections a thorough

64

explanation of Figure 6.3 is presented, covering the software used and which versions (if

applicable) and all steps needed to achieve the desired results.

6.2.1. Step 0 – Central Meta-Model definition and Model Mappings

In section 5.2 is defined the Central Meta-Model which is the basis for achieving the

modelling language harmonisation between heterogeneous models. This is achieved by

mapping the desired modelling language, i.e. meta-model, with the Central Meta-Model. By

creating these mappings to the Central Meta-Model, it acts as “translation” of each modelling

language, which will be available for the upper framework (Inter-Enterprise Harmonisation

Layer, see section 5.1). To be able to support all this, the Central Meta-Model was developed

so that it can represent the most important high level concepts of each modelling language

analysed, and with little information representation loss as possible. Therefore, the definition

of the Central Meta-Model is one of the foundations for the correct integration of all the

various modelling languages.

EXPRESS Concepts EXPRESS Meta-model [105] Central Meta-Model
For each
EntityType / EntityConcept

SchemaElement as EntityType
Concept as EntityConcept

EntityType Entity_Concept

(InvertibleAttribute)
EntityType.attributes

NOT MAPPED

(RangeRole) EntityType.play-
range-role

NOT MAPPED

(DomainRole)
EntityType.plays-domain-role

NOT MAPPED

(UniqueRule)
EntityType.unique-rules

NOT MAPPED

((ScopedId)
EntityType.id).localname

Entity_Concept.name

 EntityType.isAbstract Entity_Concept.abstract

(EntityType)
EntityType.subtype-of

(Entity_Concept)
Entity_Concept.isSpecificationOf

(Attribute) EntityType.local-
attributes

(Property)
Entity_Concept.contains

Property as Redeclared_Property
(Redeclaration)
EntityType.redeclarations

(Redeclared_Property)
Entity_Concept.contains

Table 6.2 – EXPRESS‟ “EntityType” mapping to the Central Meta-Model (mapping extract)

On the other hand, the mappings between the corresponding meta-model of a

modelling language and the Central Meta-Model, and the quality associated with those

mappings are other foundations of the steps towards the state of interoperability desired. The

relations established between the meta-models will allow not only to simplify complex meta-

65

models which scatter information across a multitude of classes and structures, narrowing it to

simple high-level concepts and easing the process of further analysis of the structure and

semantic involved, but also allows subterfuges for eventual lack of expression by the Central

Meta-Model itself.

Several mappings between the Central Meta-Model and other modelling languages

were defined, including EXPRESS and XML Schema (XSD). These mappings, in a first

stage, are represented in a table where a correspondence is setup between the modelling

language meta-model concepts and the Central Meta-Model ones (see complete tables in

section 10.2).

Table 6.2 is an extract of the complete EXPRESS mapping presented in section 10.2.1.

In the first column, EXPRESS concepts are selected from [105] and specialised through the

various types they support (e.g. “SchemaElement” as “EntityType”, where “EntityType” is

sub-type of “SchemaElement”). In the second column, the various attributes are selected in

order to map to the corresponding element(s) in the Central Meta-Model (the third column).

The notation used allows the identification of the origin and destination of a class

relationship, e.g. “(Attribute) EntityType.local-attributes”, means that the “local-attributes”

which belongs to the “EntityType” class, links with an “Attribute” class type. Between

parenthesis is defined the type of the concerning class which is represented by the property

path, much like the explicit casts in programming languages like ANSI C. Nevertheless,

multiple in between consecutive parenthesis types can exist, in order to better identify the

path on the meta-model, clarifying any possible doubt or even casting heritages of a multiple

abstract classes path. On the other hand, although the mappings definition tried to cover the

maximum information as possible, some particular concepts weren‟t possible to represent,

either because they weren‟t relevant to the expressiveness of the models (like the concept

“InvertibleAttribute” on EXPRESS) or due to dynamic evaluations which would lose its value

when translated to other modelling language (like the package Expressions on the

EXPRESS). The representation of these ignored concepts or properties are also explicitly

represented in the mapping tables, as it can be observed in the few first lines of Table 6.2,

where “InvertibleAttribute”, “RangeRole”, “DomainRole” and “UniqueRule” types corresponds

to “NOT MAPPED”.

Regarding the EXPRESS mapping in particular, the meta-model is divided by a series

of packages: Algorithms, Core, Enumerations, Express2, Expressions, Instances, Rules and

Statements. From all these, each which gives the ability to dynamically change the values

and structure of models like the packages Algorithms, Expressions, Rules and Statements,

were not mapped due to the reasons supra cited. On the other hand, all Core and

Enumerations packages‟ concepts where taken into account and were either deliberately not

66

mapped or completely mapped to the Central Meta-Model. The last two packages (Instances

and Express2) deserved a completely different approach, since Express2 is nothing more

than the package which aggregates all other packages, defining the EXPRESS meta-model

as a whole intricate network of dependencies and relations, which altogether ends up being

classified as partially mapped, since not all packages were completely mapped. In its turn,

the Instances package has the ability to represent instances of every class which can be

instantiated as data from a model. This means that the EXPRESS meta-model does

comprehend a way to represent not only the Level 1 of MDA (model level) but also the Level

0 (data level), also supporting the possibility of the existence of the two levels at the same

time, i.e. an instance of the meta-model is not exclusively composed by instances of the

Level 1 – it can be either a mix of the two levels, or just one.

Figure 6.4 – Mapping Status of EXPRESS EXP2CM and CM2EXP ATL Rules

67

Due to time restrictions, the implementation of transformations from this package is

limited to forward transformation of EXPRESS meta-model to Central Metal-Model (UC2)

and with limited application, yet functional to some extent. With this, the package Instances is

considered to be only partially mapped.

Depicted on Figure 6.4 is the mapping status regarding the EXPRESS meta-model

forward and backward transformations to the Central Meta-Model, which corresponds to the

“EXP2CM” and “CM2EXP” transformations, respectively.

6.2.2. Step 1 – Eurostep EXPRESS Parser Model Validation and XML representation

Eurostep EXPRESS Parser (EEP) is a command line EXPRESS text format parser. It

enables EXPRESS text models to be verified against either the published EXPRESS

language (ISO 10303-11:2004) or the first edition (ISO 10303-11:1994). It can also be used

to generate a "pretty printed" form of the verified EXPRESS and an XML Standard form (for

use with XML based tools).

Being a professional application and able to validate models against the final

EXPRESS standard, it is elected as first (and only) kind of validation of external to framework

models. Every input model from external to framework sources are considered to be valid,

coherent and complete models, hence, every external model must pass the EEP validation

or will face the consequence of immediately failing the whole transformation process.

Figure 6.5 – Simple Family EXPRESS text model

Although the validation of the external models is extremely important, it could be

68

bypassed by simply ignoring errors at each transformation stage. Yet, the use of EEP is

justified with other extremely important feature: the XML tag formatting export. The process

of XML injection and extraction for EXPRESS models is not a simple task (Step 2), but the

simplest way to achieve it is starting with a XML formatted model. At the current date does

not exist a public EXPRESS text to MOF model instance available, so it had to be developed

bottom up from the workflow to the transformations. With all this in mind, EEP was the

rational choice to interface the external models with the framework, being able to complete

two critical steps with just one tool / step. Additionally, EEP (which current version is 1.3.34)

is pre-compiled for the three most used operating systems: Windows (2000, XP, Vista, 7,

Server 2003 and 2008), Linux (libc version 6 dependent) and Mac OSX (10.4.8 or later),

which allows the same multiplatform support like Eclipse.

Figure 6.5 depicts an input EXPRESS text model to the EEP validator. From now on,

throughout all steps, all input models for current step‟s explanation will be the output of the

previous step (except otherwise explicitly identified). The output of EEP after the input of the

model in Figure 6.5 is the XML formatted text depicted in Figure 6.6.

Figure 6.6 – Simple Family EXPRESS XML text model (output of EEP)

6.2.3. Step 2 – EXPRESS Injector

The transformations which will implement the mappings defined on Step 0 must be

applied to instances of MOF Model (XMI serialised), and the input EXPRESS models are in

69

text format (XML after Step 1). Therefore, this XML model representation has to be somehow

injected to an EXPRESS meta-model conforming model, and to accomplish that a

transformation from the XML representation of the model must be executed, yet not as

straight-forward as the others.

The correct workflow to implement the EXPRESS injection is depicted on Figure 6.3

between Step 1 and Step 3. It starts with a validated EXPRESS model in XML format (output

model of Step 1), followed by a XML injection which natively supported by the ATL engine. In

the current implementation this injection is performed at the “LoadModel” ANT Task

execution, i.e. when the model is actually being loaded from the file and before applying any

transformation. This XML injection takes all elements, attributes and text from the input XML

model and transforms it into an instance of the XML meta-model (depicted in Figure 6.7).

Figure 6.7 – XML Meta-Model
4

The XML meta-model is very simple: its UML representation has only five classes and

4 Available at Atlantic Zoo: http://www.emn.fr/z-info/atlanmod/index.php/Atlantic

70

relationships simple to understand. No information is lost in the process, since the input XML

model is already validated and was created regarding the XML rules. The result injected

model being an instance of the XML meta-model (which is a MOF model), is also XMI

serialised (depicted in Figure 6.8). At this point (just before Step 2 in Figure 6.3) it is finally

possible to apply transformations to this model. Yet, the latter conforms to the XML meta-

model, which means that a mapping between all possible XML tags generated by the EEP

must be exist to the EXPRESS meta-model, allowing a final transformation “XML2EXP”

(numbered as 2 in Figure 6.3) to complete the EXPRESS injection (depicted in Figure 6.9).

Figure 6.8 – Simple Family EXPRESS XML model (XML meta-model instance)

6.2.4. Step 3 and 5 – Bidirectional EXPRESS transformations to Central Model

After a successful EXPRESS injection, an instance of the EXPRESS meta-model, XMI

serialised, is obtained. Using the EXPRESS mapping previously defined (see section 10.2.1)

it was possible to implement it to ATL rules, defining two transformations (identified in Figure

6.3 with numbers 3 and 4) responsible to translate the EXPRESS models into Central

models, and vice-versa. Hence, “EXP2CM” implements the direct EXPRESS models

transformation into Central models, while “CM2EXP” implements the inverse transformation.

Until this point all ATL rules have been regarding transformations of the models only,

since an EXPRESS text model has been given as input of the Modelling Language

…

71

Figure 6.9 – Simple Family XMI serialised EXPRESS meta-model instance after injection

72

Figure 6.10 – Simple Family model as Central Model representation

Figure 6.11 – Simple Family model as EXPRESS meta-model instance (output of “CM2EXP”)

73

Harmonisation Layer. But since both Central Meta-Model and EXPRESS meta-model can

represent either models and/or model instances, it is possible to inject those instances on the

XMI serialised representation of the EXPRESS models. To support the feasibility of both

model and data transformations, only “EXP2CM” has specific rules to also transform those

model instances into the corresponding instances of the Central model (envisaged in UC2).

This way, the implementation validates both the possibility to use model instances closely to

the corresponding models of the EXPRESS meta-model and Central Meta-Model, yet limited

in one direction of transformation.

The Central model instance of the original EXPRESS model (output of the

transformation “EXP2CM” depicted in Figure 6.10) is the output intended to the Inter-

Enterprise Harmonisation Layer (depicted in Figure 5.1), representing the original model

(with some possible loss of information) but translated to the common Central Meta-Model

high abstraction concepts. After this layer treats the semantic and model mappings (UC2),

the returning Central Model (which by the workflow depicted on Figure 5.2 corresponds to

the model of the opposite enterprise which one is referencing as being the original input

model) will act as input of the Modelling Language Harmonisation Layer. This means that is

possible to transform it back into a readable and understandable format for the destination

enterprise. So far, only transformations which exports from the Central Meta-Model to

EXPRESS are available. This process consists in transforming the Central Model

representation to an EXPRESS model (transformation “CM2EXP”, numbered as 4 in Figure

6.3), but due to limited time it is not instances enabled (an example of the output of this

transformation is depicted in Figure 6.11).

6.2.5. Step 4 – Central Models to Central Models (UC2)

Central Models to Central Models transformations are enabled and envisaged by UC2,

and used to harmonise both structurally and semantically (Inter-Enterprise Harmonisation

Layer responsibility). Each transformation (identified as Step 4 in Figure 6.3) has to be

specifically designed for a known and static source Central Model and to a given static

destination Central Model, regarding the structural and semantic mappings defined by the

Inter-Enterprise Harmonisation Layer specifically for that pair of Central Models.

6.2.6. Step 6 – Exporting EXPRESS Models back to text and/or XML

Any model represented as an instance of the EXPRESS meta-model, has two possible

transformations to be exported from the XMI serialisation. It can be exported back to the

original XML or text format, by a model to model transformation (“EXP2XML” plus XML

74

extraction) via the XML meta-model instance (output depicted in Figure 6.12), or a model to

text transformation (ATL Query “EXP2TXT”, output depicted in Figure 6.13), respectively.

These final steps are identified with the number 6 in Figure 6.3, and enable the export of the

models which are returning from the Central Meta-Model representation and have as

destination of communication an enterprise working with EXPRESS models, either

represented as text or XML.

Figure 6.12 – Simple Family model extracted to XML from an EXPRESS meta-model instance

Figure 6.13 – Simple Family model transformed into text from an EXPRESS meta-model instance

Comparing the final model text output (Figure 6.12) with the original model input

(Figure 6.5), it is easy to realise that they are equivalent models. The only particularity lost

75

during all the process of being transformed from text to a Central Model and back to text,

was the EXPRESS rule “SUPERTYPE OF (ONEOF (Male, Female))”, which belongs to the

“Expressions” EXPRESS package. This package was explicitly not mapped, thus there is no

surprise on the loss itself. On the other hand, since the entity “Person” remains as an

abstract entity on the output, there is no great loss of information.

While this implementation is focused on the input and output of EXPRESS models on

Modelling Language Harmonisation Layer, in a real collaboration scenario the output

modelling language would usually be different from the input‟s one.

76

77

7. IMPLEMENTATION TESTING AND HYPOTHESIS VALIDATION

In this section will be addressed the implementation testing, validating that the

specifications defined in section 10.1 where in fact met. Testing is the process of trying to

find errors in a system implementation by means of experimentation. This experimentation is

usually carried out in a special environment, where normal and exceptional use is simulated.

The aim of testing is to gain confidence that during normal use the system will work

satisfactory, since testing of realistic systems can never be exhaustive, because systems can

only be tested during a restricted period of time. On the other hand, testing cannot ensure

complete correctness of an implementation since it can only show the presence of errors, not

their absence [106]. Although a successful testing applied to the proof-of-concept does not

mean that it is ready to work as a commercial software (since it was never intended to be

one), it can validate that all major functions and modules are correctly (or not) working and

with that validate the feasibility of a future full implementation.

In the next sections will be presented some methodologies and the one which has

been chosen to best approach the test definition applied to this particular proof-of-concept

implementation. After some tests formalisation will be presented its results based on the

performance of the various tested modules. Finally, in the last section a scientific context

validation is presented.

7.1. Testing Methodologies

There are many testing methodologies available to test software engineering, many of

them are abstract concepts like white / black / grey box testing, unit testing, conformance

testing, etc. Testing in general but particularly in software testing [107] [108], functional and

structural testing are distinguished from each other.

Structural testing is based on the internal structure of a computer program, where all

program code is analysed and each line executed at least one time, covering all possible

paths of execution. This type of analysis is also known as the white-box testing, where tests

are derived from the program code. On the other hand, functional testing is about testing the

externally observed phenomena of a program, regarding to its specification. Also known as

black-box testing, in functional testing the functionality is evaluated by observing the box

externally with no reference of its internal details or implementation at all. Since the

functional tests are derived from the specification, the main goal is to analyse if the product is

in fact working accordingly with the specification. Consequently, due to the nature of each of

78

these testing methods, while structural testing is used in the early stages of the software

development, functional tests are more often concentrated in the later stages of

development.

Conformance testing is a kind of black-box testing, being only concerned with the

correctness of a protocol implementation. This means that a developed software is evaluated

regarding to its specification and it correct implementation, directly implying that correct, valid

and clear specification was provided in advance. Evaluating the correctness of a

specification is referred to as “protocol validation” and involves checking that the

implementation correctly behaves accordingly to the specification and the intended behaviour

is indeed present. One problem regarding this procedure is inherently close to the

specification: if it contains a design error and if the conformance testing process is correctly

performed, each conforming implementation will have that same error [106].

To define proved methods which apply these testing concepts, many standards were

defined and revised throughout the years based on the expertise of using them and their

practical results. On the other hand, sometimes a superimposition of a multitude of these is

used in order to cover the necessities of a larger or more specific project. An example of this

is the evaluation method and its definition which was used on the European Project iSurf

[109], since it was based on the SQuaRE series of standards.

7.1.1. iSurf Functional and Non-Functional Evaluation Methodology

The iSurf European Project is integrated in the European Community's Seventh

Framework Programme (FP7/2007-2013), and has as main objective the development of “an

environment [which] needs to be created to facilitate the collaborative exploitation of

distributed intelligence of multiple trading partners in order to better plan and fulfil the

customer demand in the supply chain” [109]. As a response to this need, the iSURF project

(“An Interoperability Service Utility for Collaborative Supply Chain Planning across Multiple

Domains Supported by RFID Devices”) provides a knowledge-oriented inter-enterprise

collaboration environment to SMEs to share information on the supply chain visibility,

individual sales and order forecast of companies, current status of the products in the

manufacturing and distribution process, and the exceptional events that may affect the

forecasts in a secure and controlled way.

The iSurf evaluation and testing framework follows the standard process defined on the

evaluation reference model and guide ISO/IEC CD 25040 [110] of the SQuaRE series of

standards and not limited to. Some of the used standards were: ISO/IEC 9126-1 [111],

ISO/IEC 14598-1 [112], ISO/IEC CD 25010 [113], ISO/IEC CD 25030 [114], ISO/IEC 14598-

79

5 [115], ISO/IEC CD 8402-1 [116] and ISO 9241 [117]. ISO/IEC CD 25040 details the

activities and tasks providing their purposes, outcomes and complementary information that

can be used to guide a software product quality evaluation. The outcomes of applying a

standard process approach for the evaluation activities in iSurf are the repeatability,

reproducibility, impartiality and objectivity of all process.

Deliverable series 8 of the iSurf [118] project present the principal standard steps for

iSurf evaluation strategy (prepare, establish, specify, design, execute, report) and also

describe in detail the procedures used to generate the evaluation criteria that were applied

for the functional and non-functional characteristics (functionality, reliability, usability,

efficiency, maintainability and portability). The project also identified the following techniques

which were applied for evaluation of the iSurf components and architecture: functional tests,

unit tests, fault tolerance analysis, user interface analysis, execution time measurements,

documentation inspection and analysis of software installation procedures.

These techniques and their evaluation criteria were modularised as recommended in

ISO/IEC 25041 former ISO/IEC 14598-6 [119], in order to have a structured set of

instructions and data used for the evaluation. It specifies the evaluation methods applicable

to evaluate a quality characteristic (functional / non-functional) identifying the evidence it

needs, defining the elementary evaluation procedure and the format for reporting the

measurements resulting from the application of the technique.

Functional and non-functional evaluation criteria modules provide a flexible and

structured approach to define criteria for monitoring the quality of intermediate products

during the development process and for evaluation of final products. The purpose of using

evaluation modules is to ensure that software evaluations can be repeatable, reproducible

and objective.

These modules define a set structured instructions and data used for an evaluation. It

specifies the criteria applicable to evaluate a quality characteristic and it identifies the

evidence of it needs. It also defines the elementary evaluation procedure and the format for

reporting the measurements resulting from the application of the technique.

The modules described specify the criteria for making the measurement as well as the

preconditions and accuracy of the measurement. The aim is to make the various aspects

(principles, metrics, activities, etc.) of evaluation visible and to show how they are handled.

They are documented as specified on the standard ISO/IEC 14598-6:

1. Provides formal information about the evaluation module and gives an

introduction to the evaluation technique described in the evaluation module;

2. Defines the scope of applicability of the evaluation module;

80

3. Specifies the input products required for the evaluation and defines the data to

be collected and measures to be calculated;

4. Contains information about how to interpret measurement results.

The evaluation modules define the criteria for the evaluation of the iSurf components

considering the functional and non-functional quality characteristics specified on the SQuaRE

series of standards:

Functional:

 Functionality: Functional Test Cases;

 Functionality: Unit Tests.

Non-functional:

 Reliability: Fault tolerance Analysis;

 Usability: User interface;

 Efficiency: Execution time measurement;

 Maintainability: Inspection of development documentation;

 Portability: Analysis of software installation procedures.

7.1.2. ISO/IEC 9646 (ITU-T X.290) – Framework and Methodology for Conformance

Testing of Implementations of OSI and ITU Protocols

ISO together with International Telecommunication Union – Telecommunication

Standardisation Sector (ITU-T), developed a standard for conformance testing of Open

Systems, in order to standardise the way implementations of protocols are tested and

verified they are conforming the specifications. One way to check if implementations of a

protocol are correct is through tests based on generally accepted principles, using generally

accepted tests which lead to generally accepted test results. To cover this, ISO and ITU-T

developed ISO/IEC 9646 (“Open Systems Interconnection (OSI) Conformance Testing

Methodology and Framework” [120]) which applies generally accepted tests to evaluate

conformance testing of Open Systems. The general purpose of this standard is “to define the

methodology, to provide a framework for specifying conformance test suites, and to define

the procedures to be followed during testing”, which leads to “comparability and wide

81

acceptance of test results produced by different test laboratories, and thereby minimising the

need for repeated conformance testing of the same system” [120]. While not defining specific

tests for specific protocols, the standard defines a framework in which such tests should be

developed, and gives directions for their execution, recommending a formalisation for the set

of test – test suite (Part 2 and 3 of the standard).

Figure 7.1 – Global overview of the conformance testing process [106]

The testing process described by this methodology is divided in three different steps

(depicted in Figure 7.1). In the first step it is specified an abstract test suite for a particular

system (“test generation”). They are called abstract since they are specified independently of

82

the implementation. In the second step consists in the realisation of the tests in order to be

executed (“test implementation”). Here, the specific implementation is taken into account,

and the abstract tests are transformed / adapted in order to be possible to apply them to the

specific implementation. The third and last step consists in the test execution and analysis of

the results, determining a verdict of the implementation conformity with the original

specification [106].

7.1.3. Tree and Tabular Combined Notation (TTCN) – Test Notation Standard

The Tree and Tabular Combined Notation (TTCN [121]) is a notation standardised by

the ISO/IEC 9646-1 for the specification of tests for communicating systems and has been

developed within the framework of standardised conformance testing. Based on the

black-box testing model, the tests are defined through tables which are divided in general

description, constraints, behaviour and verdict.

With TTCN, the test behaviour is defined by a sequence of events which represent the

test per se. The sequence of events can be approached as tree, containing branches of

actions based on evaluation of the system output after one (or a series of) executed event.

Each event has its own respective level of indentation and can be of one of two types: action

or question. Actions are preceded by an exclamation point before its brief description, and

represent actions performed on the System Under Test (SUT). Questions are preceded by

an interrogation point, and represent evaluations of the output of the SUT after one or more

actions are completed. Since the answer can be positive or negative, multiple questions can

exist at the same indentation level, covering all possible outputs of the system. After a

completion of a TTCN test table a verdict must be deliberate: “Success”, “Failure” or

“Inconclusive”. This verdict is based on the sequence of events which travel through the tree,

and was conditioned by the outputs of the system and evaluated by the question events.

Depicted in Table 7.1 is a simplified example of a phone call can establishment

evaluation. After a series of actions and evaluations (questions events) a different verdict is

attained. The table can textually read as:

1. The user picks up the headphone;

2. Tests if the dialling tone is present;

3. If the dialling tone is present, then the user must dial the other phone‟s number.

Otherwise, if the dialling tone is absent, the verdict is a “Failure” of the

possibility of establishing a phone call;

4. If there is a calling tone after dialling the number, the user may test if the line is

83

in fact connected;

5. If the line is connected, the user may hung up the headphone and the verdict is

set as “Success” on establishing a phone call, otherwise the verdict is a

“Failure” of the possibility of establishing a phone call;

6. If the dialling tone is not heard, but a busy tone instead, then the user may hung

up the headphone and the verdict is set as “Inconclusive” on establishing a

phone call;

7. If none of the tones corresponds to calling or busy, then the verdict is set as

“Failure” on establishing a phone call.

Test Case

Test Case: Basic Connection

Group:

Purpose: Check if a phone call can be established

Comments:

Behaviour Constraints Verdict

! Pick up headphone

 ? Dialling tone

 ! Dial number

 ? Calling tone

 ? Connected line

 ! Hung up headphone Success

 OTHERWISE Failure

 ? Busy tone

 ! Hung up headphone Inconclusive

 OTHERWISE Failure

 ? Dialling tone absent Failure

Table 7.1 – Simplified example of a TTCN table test

Some more examples and tutorials are available at the TTCN-3 website [122].

7.1.4. Adopted Test Methodology

Section 6 addresses the section 5 framework‟s implementation design and structure,

but it is intended to be a proof-of-concept of the framework. Unlike a commercial product, the

proof-of-concept is not supposed to be flawless and a complete solution, but a working proof

of feasibility of a full solution. This way, by applying such a complex test methodology as the

one applied on the iSurf project only does not make sense, since it is too extensive for such

84

kind of implementation. With this, a mix of validation tests was chosen in order to try to

validate the proof-of-concept implementation.

Based on the iSurf test methodology and the TTCN tables proposed by ISO/IEC 9646,

a series of functional test cases and unit tests described by TTCN tables were designed and

applied to the various units of the implementation steps (depicted in Figure 6.3). On the other

hand, non-functional tests such as reliability, efficiency and portability were also addressed.

All the results and tests definitions are published in section 7.3.

7.2. Requirements and Functionalities Evaluation

In section 10.1 the requirement and functionalities of the system are presented. These

were defined during the framework design and were the main objectives of a full

implementation of the framework. In order to evaluate the extent of the proof-of-concept

implementation, a mapping between the requirements and functionalities of the system and

the implementation are presented:

Requirements:

 The user should be able to import models (OWL, XSD, UML, EXPRESS):

model imports are only available for EXPRESS models. Both EXPRESS and

XML Schema meta-models were mapped to the Central Meta-Model, yet only

the EXPRESS mappings were implemented through a series of six

transformations (see Figure 6.3) plus an external parsing program (EEP,

section 6.2.2);

 The system should have a Central Model able to represent all foreign

models languages specificities, i.e. language independent: it was defined a

Central Meta-Model able to represent high abstraction level concepts which

were comprehensive enough to support at least EXPRESS and XML Schema

concepts with minimal loss of expressiveness;

 The system should have all foreign models interconnected with the

Central Model, at the Meta-Model Level: mappings between the meta-models

of EXPRESS and XML Schema were proposed to interconnect with the Central

Meta-Model (see section 10.2);

o Model morphism should be explicit (not embedded in the code): all

model morphisms implementations were designed using ATLAS

Transformation Language (ATL). This way, each morphism is isolated

85

from the others, in different code and compiled files, yet not embed in an

object oriented language solution like a JAVA program. Independent

compiled files means that each transformation is platform independent,

yet dependent of an ATL transformation executor;

o Transformation should be executed automatically (e.g. ATL): since

all transformations were implemented in ATL, transformations are

always automatically executed given an input and a transformation

engine which executes them;

o Mediator should be able to have a link to the model morphism

defined: each transformation is physically separated from the others,

since each one has its own code and compiled files. This way, the

mediator will be able to differentiate each transformation by linking

different files representing the multiple transformations available and

direction of transformation.

Functionalities:

 Transform foreign models into a Central Model: thought the execution of

Steps 1 to 3 of the proof-of-concept implementation (see Figure 6.3) is possible

to transform EXPRESS foreign models into a Central Model;

 Transform Central Models into foreign models: thought the execution of

Steps 5 and 6 of the proof-of-concept implementation (see Figure 6.3) is

possible to transform Central Models into a EXPRESS foreign model;

Through the analysis of these mappings is possible to conclude that, with the exception

of the first requirement, all requirements and functionalities are present on the

proof-of-concept implementation.

Regarding the first requirement, the multitude of import model languages was not

possible to be implemented due to time limitation. With this, was not possible to define and

implement all those modelling languages mappings and transformations. While the

EXPRESS modelling language is fully supported (meta-models mapping and implementation

of the required transformations) and the XML Schema meta-model mapping is also defined

(see section 10.2.2), the author believes that the Central Meta-Model defined is complete

enough to support the other modelling languages proposed (OWL and UML).

86

7.3. Functional Testing

To address the functional testing of the proof-of-concept implementation, a series of

TTCN represented tests were designed. Depicted in Figure 6.3 are five from the seven steps

of the implementation process. Since Step 1 regards a commercial and stable product, it was

not targeted for testing. EEP is a well known EXPRESS model validator against the

standards and there is no interest of whatsoever to further test its outputs. Having this, the

four last steps (2 to 6) were tested independently by the functional tests defined below.

To run each test, an initial EXPRESS text model was defined, including all concepts

which were explicitly target of a mapping to the Central Meta-Model. It was also intended to

have a variety of intricate possible relations between the concepts, in order to test more

complex situations of modelling techniques with EXPRESS and rare specificities of possible

models. With this initial text model, the transformations were tested in a sequence, only

advancing to the next test case after a successfully transformation. To each transformation

has given as input, the output of the preceded transformation. This way, not only was

possible to observe any irregularity with the currently being tested transformation, but also

loss of expressiveness could be evaluated step by step on the implementation.

Test Case

Test Case: XML (text) to EXPRESS Model (instance of EXPRESS meta-model) transformation

Group: Isolated Transformation Test

Purpose: Check if a transformation correctly transforms all supported concepts

Comments: Step 2 – “XML2EXP” Transformation

Behaviour Constraints Verdict

! Load a XML EXPRESS model

 ? Valid XML model and not empty

 ! Apply XML injection to EXPRESS model (XML)

 ! Apply Step 2 transformation “XML2EXP”

 ? Output is coherent with input model Success

 OTHERWISE Failure

 OTHERWISE Failure

Table 7.2 – XML (text) to EXPRESS model (instance of EXPRESS meta-model) transformation test case

The first test case defined (Table 7.2) regards Step 2 transformation evaluation. It is

possible to test whenever an invalid model is put as input of the “XML2EXP” transformation,

since Eclipse ATL‟s execution engine automatically determines if a model is valid against the

corresponding meta-model. Since the input of this Step is not a valid XML instance of the

XML meta-model (see section 6.2.3 and Figure 6.7), the model is loaded through a XML

87

injector, which mean that the ATL‟s execution engine only checks for a correctly XML tagged

document, ignoring the rest as text. After a successfully imported XML model, the

transformation itself is applied to the injected model. A manual inspection of the resulting

model must be done in order to validate its correctness accordingly with the original model.

Test Case

Test Case: EXPRESS model to Central Model transformation

Group: Isolated Transformation Test

Purpose: Check if a transformation correctly transforms all supported concepts

Comments: Step 3 – “EXP2CM” Transformation

Behaviour Constraints Verdict

! Load an EXPRESS model (instance of EXPRESS meta-model)

 ? Valid EXPRESS model and not empty

 ! Apply Step 3 transformation “EXP2CM”

 ? Output is coherent with input model Success

 OTHERWISE Failure

 OTHERWISE Failure

Table 7.3 – EXPRESS model to Central Model transformation test case

Test Case

Test Case: Central Model to EXPRESS model transformation

Group: Isolated Transformation Test

Purpose: Check if a transformation correctly transforms all supported concepts

Comments: Step 5 – “CM2EXP” Transformation

Behaviour Constraints Verdict

! Load a Central Model

 ? Valid Central Model and not empty

 ! Apply Step 4 transformation “CM2EXP”

 ? Output is coherent with input model Success

 OTHERWISE Failure

 OTHERWISE Failure

Table 7.4 – Central Model to EXPRESS model transformation test case

Step 3 and 5 are tested by the TTCN Table 7.3 and Table 7.4, respectively. The test

cases are very similar, since the input models are validated against the correspondent

meta-models (by the ATL‟s execution engine) and after each transformation a manual

inspection is done to each output. This inspection must be very thorough in order not only to

evaluate the loss of expressiveness (which can be substantial if the rules are not correctly

implemented, since these transformations are translating models to different output

88

modelling languages), but also to evaluate that each concept is in fact represented in the

desired output as the intended mapping originally defined.

Test Case

Test Case: EXPRESS model to EXPRESS text transformation

Group: Isolated Transformation Test

Purpose: Check if a transformation correctly transforms all supported concepts

Comments: Step 6 – “EXP2TXT” Transformation

Behaviour Constraints Verdict

! Load an EXPRESS model (instance of EXPRESS meta-model)

 ? Valid EXPRESS model and not empty

 ! Apply Step 5 transformation “EXP2TXT”

 ? Output is coherent with input model Success

 OTHERWISE Failure

 OTHERWISE Failure

Table 7.5 – EXPRESS model to EXPRESS text transformation test case

Test Case

Test Case: EXPRESS Model (instance of EXPRESS meta-model) to XML (text) transformation

Group: Isolated Transformation Test

Purpose: Check if a transformation correctly transforms all supported concepts

Comments: Step 6 – “EXP2XML” Transformation

Behaviour Constraints Verdict

! Load an EXPRESS model (instance of EXPRESS meta-model)

 ? Valid EXPRESS model and not empty

 ! Apply Step 5 transformation “EXP2XML”

 ! Apply EXPRESS model (XML) extractor to XML

 ? Output is coherent with input model Success

 OTHERWISE Failure

 OTHERWISE Failure

Table 7.6 – EXPRESS model (instance of EXPRESS meta-model) to XML (text) transformation test case

Finally, Step 6 (which involves two different kind of export models) is tested by

Table 7.5 test case in what concerns the text export of EXPRESS models (“EXP2TXT”), and

Table 7.6 concerning the XML format export (“EXP2XML”). The first evaluation process

regarding Step 6 is very similar to the Step 3 and 5 evaluation test cases: ATL‟s execution

engine validates the input model accordingly to the EXPRESS meta-model and then the

transformation “EXP2TXT” is applied to it. To determinate its success, a manual inspection to

the final text model is done, comparing it with the original model.

89

The second evaluation process of Step 6 regards with exporting EXPRESS

meta-models instances to XML tagged representations. As usual, input model loading is

validated by the Eclipse ATL‟s executor engine against the EXPRESS meta-model. The

typical transformation “EXP2XML” is then applied to transform the model into an XML

meta-model instance. The last action is then applied to this model, extracting it to a XML

tagged model. Once this is obtained, a manual inspection is then applied to the output and

validated against the original model.

Analysing the output of each of the above transformations, all of them were evaluated

as a success, based on the corresponding TTCN test case tables. Hence, the

transformations are indeed capable of representing the mappings defined in section 10.2.1,

validating the feasibility of an automated EXPRESS text model to its Central Model

representation, and back to EXPRESS text model. All intricate relations and most important

model representation forms were preserved. On the other hand, by analysing the inherent

loss of expressiveness, a few remarks can be enumerated, since these transformations are

not completely lossless:

1. An initially EXPRESS concept defined as being an “AggregationType”,

specifically as “SETType”, “LISTType”, “BAGType” and “ARRAYType” are

exclusively mapped to the Central Meta-Model “Aggregation_Type”. By not

being able to annotate the original EXPRESS type, it will lose this information

and therefore a loss of expression is present. When the inverse transformation

“CM2EXP” occurs, there is no way of differentiating if the data contained on

such typed concept is in fact from a Bag, List, Set or Array. To avoid further

misconception of the data, the transformed “Aggregation_Type” will always be

instantiated as a “BAGType” of the EXPRESS meta-model, since it is the least

restrictive type out of the four;

2. Another loss of expressiveness occurs when regarding EXPRESS abstract

properties, since the Central Meta-Model is only able to deal with abstraction of

“Entity_Concept” concepts, which maps with the “EntityType” concepts of the

EXPRESS meta-model;

3. The “USE” and “REFERENCE” links to foreign schemas are not mapped to the

Central Meta-Model, hence, its semantic value are lost and when in attempt to

export a Central Model to EXPRESS model, the “USE” link is automatically

associated for references to other schemas.

Since all these functional test cases where executed using a synthetic model

representation, with sole function of being able to test from simple relations to intricate in-

90

model relations, there was an urge to test with a model which would in fact represent a real

use case. On the other hand, all transformations were working as expected when analysed in

an independent way, but a complete test case from EXPRESS to Central model and back to

EXPRESS should be tested by automatically executing all the necessary transformations.

This way, and in order to validate the complete transformation cycle with a real application

model, a manipulated data standard as ISO TC184/SC4/WG12 N1177 – ISO/TS 10303-1060

“Product concept identification”, and a complete standard as ISO TC184/SC4/WG3 N2186 –

ISO/TS 10303-436 “AP236 Furniture Catalogue and Interior Design” (in EXPRESS ARM long

form) were given as text model input of the implementation proof-of-concept. Both were able

to be transformed into a Central Model instance and back again into EXPRESS text model

and XML model, without any critical application error or intra framework steps model

validation failure. The first standard was simple to manually validate the final output against

the original input. Regarding the second standard (a text file of 176KB and 5092 lines), due

to the model dimensions involved, it was not possible to completely evaluate the loss of

expressiveness which the model suffered, but induced by the results obtained with earlier

tests, there were nothing to expect but the ones presented before. This test validates a

transformation of a bigger model (than the ones used to validate the TTCN tables), without

compromising the reliability of the process.

7.4. Non-Functional Testing

Regarding non-functional testing, reliability, efficiency and portability can be addressed

in order to give a glimpse of what can be evaluated.

Reliability is the ability of the software to perform a required function under given

conditions for a given time interval. In general, software which is not doing what it is intended

to do is unavailable for its proper tasks [118]. Analysing the reliability of a system is not a

simple task, yet in what regards to the transformations executing engine, it either applies the

transformation or it does not. Given that no critical bug is known in the transformations

workflow (i.e. a bug which aborts a transformation), given an initial valid model (e.g. pre-

validated by EEP) the reliability is given by the execution engine itself, and not by the

transformations themselves. This way, given that ATL is currently in growing development,

and since it is not a final product, it is recommended that no human lives depend on an

implementation or workflow which includes Eclipse ATL execution engine. Nevertheless,

given the experience the author has, the software never crashed nor froze when defining and

executing any transformation or transformations workflow. To test reliability furthermore, it

was put as a model input a very large model (ISO TC184/SC4/WG3 N2186 – ISO/TS 10303-

91

436) when functional testing was being evaluated. By increasing the model size with intricate

relations, the probability of error also increases. This can be explained since the probability

of running all transformations ATL rules (and combination of them) also increases. By

applying a large standard as input model and no execution errors where present, it is

plausible to admit that the proof-of-concept is reliable enough to not fail when a valid model

is put as input.

Regarding the efficiency of the implementation, it can be evaluated from the

measurement of the worst case scenario, which is given by two different applications: a

complete transformation from EXPRESS text model to Central Model and an export from

Central Model to EXPRESS text and XML representations. Since the framework application

is not supposed to be time critical, i.e. is not necessary to be fast enough to react to

real-time events, it is plausible to define as metric for small input models (less than 200 lines)

a maximum of five seconds for each direction of transformation, and for large models (less

than 5000 lines) a maximum of sixty seconds for each direction. Given these acceptable

maximum times for real application of such a complete framework implementation, both

manipulated ISO TC184/SC4/WG12 N1177 – ISO/TS 10303-1060 “Product concept

identification” (104 lines), and complete ISO TC184/SC4/WG3 N2186 – ISO/TS 10303-436

“AP236 Furniture Catalogue and Interior Design” (5092 lines) were time measured three

times in both directions of transformations. These measurements were taken directly from

the Eclipse‟s ATL executor engine console, which by default outputs the total time which the

execution lasted and individually to each transformation.

Input to Central Model Average

Total (s) 0,448 0,490 0,465 0,468

XML2EXP (s) 0,057 0,059 0,058 0,058

EXP2CM (s) 0,014 0,014 0,015 0,014

 Output from Central Model Average

Total (s) 0,331 0,313 0,341 0,328

CM2EXP (s) 0,015 0,015 0,015 0,015

EXP2TXT (s) 0,009 0,010 0,010 0,010

EXP2XML (s) 0,022 0,022 0,024 0,023

Table 7.7 – “Product concept identification” ATL transformations time measurements

In Table 7.7 and Table 7.8 are depicted the results of the ATL transformations time

measurements of the manipulated standard “Product concept identification” and complete

standard “AP236 Furniture Catalogue and Interior Design”, respectively. As can be observed,

the first model took an average of 0,468 seconds to complete the loading of all necessary

92

meta-models and to complete the transformations from EXPRESS text model to a Central

Model representation. For the same operation, the larger model took an average of 28

seconds. Concerning the inverse direction, exporting a Central Model to EXPRESS text and

XML representations, took an average of 0,328 seconds for the first model, and an average

of 2 seconds for the larger model. With this is possible to conclude that the implementation is

quick enough when dealing with transformations of small and large EXPRESS text models,

since it is not a time critical application.

Input to Central Model Average

Total (s) 28 28 28 28

XML2EXP (s) 27,235 27,038 27,203 27,159

EXP2CM (s) 0,190 0,194 0,201 0,195

 Output from Central Model Average

Total (s) 2 2 2 2

CM2EXP (s) 0,901 0,906 0,870 0,892

EXP2TXT (s) 0,215 0,214 0,209 0,213

EXP2XML (s) 0,510 0,505 0,504 0,506

Table 7.8 – “AP236 Furniture Catalogue and Interior Design” ATL transformations time measurements

Finally, the last non-functional test regards with portability. Portability is defined as the

degree of independence a software product or portion of a software product has from any

particular hardware and/or operating system platform [118]. This proof-of-concept

implementation depends both on the Eclipse‟s ATL executor engine (JAVA based) and on

EEP application. Eclipse is available for Windows, Linux and Mac OS X, and is able to run

projects created in whichever version. On the other hand, EEP has also three compiled

version for Windows, Linux and Mac OS X, which basically covers the Eclipse portability.

Although it was not implemented, Eclipse‟s ATL executor engine can be detached from the

Eclipse installation by isolating the correct libraries, which means that it is possible to run, in

all of the above operating systems, a JAVA program which makes the ATL transformations

execution possible without needing to install Eclipse with the Modelling Tools libraries.

7.5. Scientific Validation

This dissertation contributed with some results which were published in the European

Project CRESCENDO (project number 234344) integrated in the Seventh Framework

Programme (Theme 7 – Transport). CRESCENDO stands for “Collaborative and Robust

Engineering using Simulation Capability Enabling Next Design Optimisation”, has sixty two

93

beneficiaries which includes Airbus SAS (France), ALTRAN Technologies S.A. (France),

Dassault Systèmes SA (France), Eurostep AB (Sweden), Fujitsu Systems Europe (United

Kingdom), Israel Aerospace Industries Ltd. (Israel), Rolls Royce Plc (United Kingdom), SAAB

Aktiebolag (Sweden), Siemens Product Lifecycle Management Software SAS (France),

UNINOVA – Instituto de Desenvolvimento de Novas Tecnologias (Portugal), Volvo Aero

Corporation AB (Sweden), among others. The project started in 2009, will last for 36 months

and addresses the Vision 20205 objectives for the aeronautical industry by contributing

significantly to the fulfilment of three specific targets of the aeronautical industry‟s Strategic

Research Agenda. CRESCENDO will develop the foundations for the Behavioural Digital

Aircraft (BDA), taking experience and results from VIVACE [123], and integrating these into a

federative system and building the BDA on top of them. Main components of the BDA are:

the Model Store, the Simulation Factory, the Quality Laboratory, and the Enterprise

Collaboration Capabilities. The results of the project will provide the aeronautics supply chain

with the means to realistically manage and mature the virtual product in the extended / virtual

enterprise with all of the requested functionality and components in each phase of the

product engineering life cycle. CRESCENDO will make its approach available to the

aeronautics supply chain via existing networks, information dissemination, training and

technology transfer actions [65].

As a direct result of this dissertation, contributions were made for CRESCENDO:

 Contribution to Deliverable 5.2.1.1 which has as objective “developing the state-

of-the-art on the topics of semantic and model-based interoperability, exploring

sub-areas such as semantic mediation based on adaptive ontology, semantic

enrichment, model-driven development, model morphisms, and sustainability of

interoperability on complex dynamic networks” [65];

 Elicitation and analysis of the requirements in Deliverable 5.2.2.2;

 Formalisation of BDA Model store scenarios in Deliverable 5.2.2.3;

 Model Store Architecture definition in Deliverable 5.2.3.2;

 Definition of the generic scenarios in Deliverable 5.2.3.3.

Also validating the proposed framework (see section 5), a scientific publication was

accepted in the 17th ISPE International Conference on Concurrent Engineering, from 6th to

5European Aeronautics: A Vision for 2020 – http://www.cleansky.eu/sra/vision%202020.pdf

94

10th of September 2010 in Cracow – Poland, and it was published on the proceedings of the

conference:

 Agostinho C., Correia F., and Jardim-Goncalves R., Interoperability of Complex

Business Networks by Language Independent Information Models, Accepted In:

17th ISPE International Conference on Concurrent Engineering (CE 2010). Sep

6-10, Cracow, Poland, 2010

95

8. CONCLUSIONS AND FUTURE WORK

Enterprises are changing the way they do business in order to successfully cope with

the global economic crisis that has established. Many of them still use traditional business

methods which are becoming glaringly outdated with poor efficiency. SMEs are more than

ever resorting to collaboration with other enterprises to be able to take advantage of new

market opportunities with narrower time windows and increasingly lower time-to-market.

Underlying to the increasing need for collaboration and since many of these enterprises still

operate with outdated systems and sometimes with no technology at all, they have a big

barrier to overcome in order to become interoperable with others. Many of these older

systems were designed on a need to serve the client, with proprietary standards which were

not prepared to be eventually interoperable with other systems. This is even more evident in

supply chains, where technological heterogeneous enterprises are more frequent since the

lower tiers do not have financial margins or technical capability to invest in new technology,

harming the performance of a possible collaboration network.

Adding even more complexity to the panorama, even those enterprises which in fact

have the capital to invest in new technology and hardware are not willing to change their

adopted models and semantics inherent to their business. On the other hand, every

enterprise has critical data which does not want others to know, mainly related with clients

and business opportunities, which invariably regards to their models. Yet, in order to

collaborate they have to open hand and share a great deal of information in the course of

their business activities, and constant adaptation of models and semantic to the high entropy

inherent to dynamic collaboration.

All this is a great barrier to the interoperability state which enterprises are constantly

looking for, but have serious regards about how and when to participate in collaboration

networks. This impasse of not knowing when and what to collaborate have a great impact

over enterprises‟ and global economy, due to the costs associated with poor or even lack of

interoperability. This is a problem which is addressed by the Europe‟s 2020 strategy to guide

its economy out of the economic recession, by investing on innovation with programmes like

FP7 and FP8.

This dissertation presents a framework that provides a solution for collaborative

networks in need of a foundation to correctly enable interoperability. It is known that MDA

approach enables the use of models to represent ideas and concepts and supports

automatic transformations between the same levels of abstraction of these concepts, using

the available open standards to specify the models. With this, MDA with the widespread use

96

of open standards can be the basis for model sharing, from the high levels of the enterprises

internal organisation (such as the business level) to the lower data level. Therefore, the

proposed framework is MDA-based, and defines two levels of models translation: one

regarding the modelling language (Modelling Language Harmonisation Layer, see section

5.1.2.1) and another one regarding the semantics and models‟ structure (Inter-Enterprise

Harmonisation Layer, see section 5.1.2.2). While the first can be common to multiple

enterprises and needs to be implemented only once for each required modelling language on

the collaboration network, the second is focused on P2P communications of pairs of

enterprises.

Any enterprise willing to join the collaboration network with this framework does not

have to change in any way their models or legacy software. The interface to the framework is

implemented first by the model morphisms which integrates their legacy information systems

with a Central Meta-Model, and secondly by mapping their business models (represented as

Central Models) to the ones of other enterprises which have already implemented the

framework (both regarding the structure and semantics). All these framework‟s particularities

answer to the original research problem and questions defined in section 1.3.

By using P2P communications in the framework implementation, not only enterprises

can choose what information they are willing to share, but also they get to choose to whom

they will make available the models they choose to. This can be approached as a security

protection from exposing information which is restricted to a limited number of destination

enterprises, but not to all network. On the other hand, high dynamic collaboration networks

derive from enterprises often joining and leaving from the set. With P2P communication

enabled, it requires that only a joining enterprise has to implement the interface to the

framework to have a bidirectional communication with the rest of the set, leaving unaltered all

the other enterprises‟ interfaces and reducing the amount of entropy necessary to the

collaboration network converge to a complete state of interoperability. Thus, with this

framework, it is possible for an enterprise to belong to a number of disjoint collaboration

networks without compromising their information security or changing its legacy models and

software. This way, the framework delivers a simple, cheaper and quicker interoperability

state, when compared to what involves migrating software and models to adopt a common

central standard to attain the same interoperability level, in multiples collaboration networks.

Nevertheless, while the model morphisms implementing the Modelling Language

Harmonisation Layer need to be implemented only once (since the meta-models are

constant throughout the whole life of a given version of the standard) that can be not true

regarding the Inter-Enterprise Harmonisation Layer. Concerning the Central Model to Central

Model morphisms, it is directly connected on matching the structure of a source model to

97

with the structure of a destination model. If somehow one of the involving enterprises decides

to change a particular model structure which was previously available on the framework, it

can spoil all the morphisms associated with it, forcing all other interested parties to changes

those morphisms to regain the state of total interoperability. Thus, the higher volatile a

shared model is, the more entropy it will generate to the framework‟s interoperability state

once changed.

The model morphisms regarding the EXPRESS modelling language were implemented

to prove the framework feasibility, and the results of the tests applied to the Modelling

Language Harmonisation Layer (see section 7.3), proved that minimal loss of

expressiveness of an EXPRESS model round trip to a Central Model were present. These

losses were due to an incomplete package mapping and not from limitations from the model

morphisms, which validates the feasibility of a more complete solution.

8.1. Future Work

As for future work, a few things regarding the framework itself can be better refined.

The framework proposed is intended to have a graphical interface in which models and

meta-models concepts should be displayed and be able to be mapped visually. This would

allow a business specialist, rather than an ICT expert, to be able to map those concepts, not

only creating mappings between the used modelling language concepts to the Central Meta-

Model ones, but also the inter-enterprise model maps and semantic unification decisions.

This way the enterprise side is abstracted from the technology details and ATL rules which

should be generated based on the visual mappings, defined intuitively by the business

specialist focused on the enterprise‟s knowledge. On the other hand, an interface would ease

the mechanism of the framework readjusting its state of interoperability altered by evolution

of the enterprises‟ models, in the sense of rapidly allowing enterprises to correct the spoiled

morphisms.

Regarding the high level abstraction layers of the framework, the Inter-Enterprise

Harmonisation Layer which evaluates the semantic mismatches and common ontology

definition, should be completely defined and integrated with the results of this dissertation

(these semantic mismatches research work is being developed in parallel to this

dissertation), in order to reflect semantic changes in the model morphisms applied to Central

Models. Another concern related to this layer resides on the security of models and data

sharing throughout the collaborative network. It is not clearly specified how the results of

meta-models mapping from the Modelling Language Harmonisation Layer and the mappings

at the Inter-Enterprise Harmonisation Layer are going to be available at the enterprises side.

98

This means that while a manual distribution of the implemented morphisms is possible, an

automated distribution centre or even encryption keys should be taken in account in order to

limit the access to shared morphisms on enterprises demand, which otherwise could lead to

security holes of data and models. On the other hand, the Modelling Language

Harmonisation Layer is completely defined and specified for enabling more modelling

languages, but more languages should be applied. This would allow testing the interaction of

importing to Central Model with one and exporting with a different one. At this layer all

EXPRESS model transformations were implemented, but in what regards EXPRESS

instances only a small ATL rules validation part was implemented. The optional data

instances injection between step 2 and 3 depicted in Figure 5.2 is not a straight forward step

and would involve a specific workflow of complex transformations similar to the ones

involving the EXPRESS models injection. Data instances of EXPRESS are defined in ISO

10303-21 or 10303-28, which have a completely different text syntax and process of injecting

them to the EXPRESS meta-model. Due to time limitation this injection was made manually

to test a limited set of rules which transformed these EXPRESS instances in Central Model

ones.

99

9. REFERENCES

[1] Jardim-Goncalves R, Agostinho C, Malo P, and Steiger-Garcao A, “Harmonising technologies in
conceptual models representation”, International Journal of Product Lifecycle Management 2007,
Vol. 2, No. 2, pp.187–205, 2007

[2] Peppard J, Rylander A, “From Value Chain to Value Network: Insights for Mobile Operators”,
European Management Journal. Vol.24, Issues 2-3, pp. 128-141, 2006

[3] Friedman T, “The World is Flat”, Farrar, Straus & Giroux, 2005
[4] Camarinha-Matos L, Afsarmanesh H, “Collaborative networked organizations: a research agenda

for emerging business models”, Springer, 2004
[5] Amin A, Cohendet P, “Architectures of knowledge: firms, capabilities, and communities”, Oxford

University Press, 2004
[6] Wilkinson I, Young L, “On cooperating: firms, relations and networks”, Journal of Business

Research, vol. 55, issue 2, pp.123-132, 2002
[7] Agostinho C and Jardim-Goncalves R, “Dynamic Business Networks: A Headache for

Sustainable Systems Interoperability”, Proceedings of the Confederated international Workshops
and posters on: On the Move To Meaningful internet Systems: Adi, Cams, Ei2n, Isde, Iwssa,
Monet, ontocontent, Odis, Orm, OTM Academy, Swws, Semels, Beyond Sawsdl, and COMBEK
2009

[8] Watson S, “Material offshore sourcing undergoes standardization”, SCBIZ Magazine, April-May,
2008

[9] Tae-Young K, Sunjae L, Kwangsoo K, and Cheol-Han K, “A Modeling Framework for agile and
interoperable virtual enterprises”, Comput. Ind. 57(3), 204-217, 2006

[10] Ray S, Jones A, “Manufacturing interoperability. Journal of Intelligent Manufacturing”, vol. 17, no.
6, pp. 681-688, 2006

[11] Brunnermeier S and Martin S, “Interoperability Cost Analysis of the U.S. Automotive Supply
Chain: Final Report”, DIANE Publishing, 1999

[12] Roca de Togores A, Agostinho C, et al, “Handbook: Improving interoperability in furniture SME‟s
using funStep standard-based solutions”, INNOVAFUN - EC INNOVA Project No.: 031139,
Deliverable 2.4., 2008

[13] White W, O‟Connor A, Rowe B, “Economic Impact of Inadequate Infrastructure for Supply Chain
Integration”, NIST Planning Report 04-2, Gaithersburg, MD: National Institute of Standards and
Technology, 2004

[14] INTEROP NoE, “DI.2. - Enterprise Interoperability - Framework and knowledge corpus -
Advanced report”, INTEROP NoE public Deliverable, 2006

[15] Li M-S, Cabral R, Doumeingts G, Popplewell K, “Enterprise Interoperability – Research Roadmap
v4.0”, Information Society Technologies, 2006

[16] ATHENA-IP European Project: http://interop-vlab.eu/ei_public_deliverables/athena-deliverables
[17] ATHENA-IP, “Deliverable D.A4.2 – Advanced Technologies for Interoperability of Heterogeneous

Enterprise Networks and their Application”, 2007
[18] Charalabidis Y, Gionis G, Hermann K, Martinez C, “Enterprise Interoperability – Research

Roadmap v5.0”, Information Society Technologies, 2008
[19] OMG's Model Driven Architecture (MDA) home page: http://www.omg.org/mda; Last accessed

on: 15
th
 March 2010

[20] White W, O‟Connor A, Rowe B, “Planning Report 04-2 Economic Impact of Inadequate
Infrastructure for Supply Chain Integration”, Research Triangle Institute International for NIST,
2004

[21] Brunnermeier S, Martin S, “Planning Report 99-1 – Interoperability Cost Analysis of the U.S.
Automotive Supply Chain”, Research Triangle Institute for NIST, 1999

[22] INNOVAFUN – Applying open standards to INNOVAte FUrNiture business processes,
“Deliverable 1.3 – Innovation impact on furniture organisations resulting from funStep standard
implementation”, 2008

[23] EUROPE 2020 – A strategy for smart, sustainable and inclusive growth – COM(2010) 2020;
Available at: http://ec.europa.eu/eu2020/index_en.htm; Last accessed on: 15

th
 September 2010

[24] Seventh Framework Programme for research and technology development (FP7); Available at:
http://cordis.europa.eu/fp7/home_en.html; Last accessed on: 15th September 2010

[25] Camarinha-Matos L, “Scientific Research Methodologies and Techniques - Unit 2: Scientific
Method”, PhD Program in Electrical and Cumputer Engineering, 2010

100

[26] Mämmelä A, “How to Get a PhD: Methods and Practical Hints”, 2006; Available at:
http://www.infotech.oulu.fi/GraduateSchool/ICourses/2006/phd/lecture1-oulu.pdf; Last accessed
on: 15

th
 September

[27] Mylopoulos J, “Information Modelling in the Time of the Revolution”, Information Systems, vol. 23,
no. 3/4, pp. 127-155, 1998

[28] Klein H, Hirschheim R “A Comparative Framework of Data Modelling Paradigms and
Approaches”, The Computer Journal, vol. 30, no. 1, 1987

[29] Mosterman P, “Computer Automated Multi-Paradigm Modelling: An Introduction”, SIMULATION,
vol. 80, no. 9, pp. 433-450, September 2004

[30] INTEROP NoE, 2004, „Annex 1 – Description of Work‟; Available at: http://www.interop-noe.org/;
Last accessed on: 15

th
 September 2010

[31] OMG's MetaObject Facility (MOF) homepage; Available at: http://www.omg.org/mof/; Last
accessed on: 15

th
 September 2010

[32] Eclipse Modeling Framework, “Chapter 5 - Ecore Modeling Concepts”, Addison Wesley
Professional, ISBN: 0131425420, 2004

[33] Vitruvius, “The Ten Books on Architecture”, Dover Publications, 1960
[34] Liu K, “Semiotics in information systems engineering”, Cambridge University Press, ISBN

0521593352, 2000
[35] Jonassen D, “Objectivism versus Constructivism: Do We Need a New Philosophical Paradigm?”,

ETR&D, vol. 39, no. 3, pp. 5-14, 2006
[36] Vrasidas C, “Constructivism Versus Objectivism: Implications for Interaction, Course Design, and

Evaluation in Distance Education”, International Journal of Educational Telecommunications,
Vol.6, No.4, pp. 339-362, 2000

[37] Halfawy M, Vanier D, Froese T, “Standard Data Models for Interoperability of Municipal
Infrastructure Asset Management Systems”, Canada Journal of Civil Engineering, no. 33, pp.
1459-1469, 2006

[38] International Organization for Standardization (ISO); Available at:
www.iso.org/iso/en/aboutiso/introduction/index.html; Last accessed on: 15

th
 September 2010

[39] International Telecommunication Union – Standardization Section (ITU-T); Available at:
www.itu.int/net/about/itu-t.aspx; Last accessed on: 15

th
 September 2010

[40] International Electrotechnical Commission (IEC); Available at: www.iec.ch; Last accessed on: 15
th

September 2010

[41] Open Applications Group (OAGi); Available at: www.oagi.org; Last accessed on: 15
th
 September

2010
[42] Organization for the Advancement of Structured Information Standards (OASIS); Available at:

http://www.oasis-open.org; Last accessed on: 15
th
 September 2010

[43] Object Management Group (OMG); Available at: www.omg.org; Last accessed on: 15
th

September 2010

[44] World Wide Web Consortium (W3C); Available at: www.w3.org/standards/; Last accessed on:
15

th
 September 2010

[45] ISO 10303 “STandard for the Exchange of Product Data”
[46] ISO 10303-11:1994, “Industrial automation systems and integration - Product data representation

and exchange - Part 11: Description methods: The EXPRESS language reference manual”
[47] ISO 10303-21:2002, “Industrial automation systems and integration – product data representation

and exchange – Part 21: implementation methods”
[48] Lubell J and Frechette S, “XML representation of STEP schemas and data”, Journal of Computer

and Information Science in Engineering, vol. 2, pp.69–71, 2002
[49] XML Schema (XSD); Available at: www.w3.org/XML/Schema; Last accessed on: 15

th
 September

2010
[50] ISO TC184/SC4/WG11 N223 (2004) “Product data representation and exchange: implementation

methods: XML Schema governed representation of EXPRESS schema governed data”
[51] ISO TC184/SC4/WG11 N204 (2003) “Product data representation and exchange: implementation

methods: EXPRESS to XMI Binding”
[52] Unified Modeling Language (UML) homepage; http://www.uml.org/; Last accessed on: 15

th
 March

2010
[53] Mishra S. "Visual Modeling & Unified Modeling Language (UML): Introduction to UML", Rational

Software Corporation, 1997. Available at: http://www2.informatik.hu-berlin.de/~hs/Lehre/2004-
WS_SWQS/20050107_Ex_UML.ppt; Last accessed on: 15

th
 September 2010

[54] Fuentes-Fernández L and Vallecillo-Moreno A, “An Introduction to UML Profiles”, UPGRADE -
Vol. V, No. 2, April 2004

101

[55] Grangel R, Bigand M, Bourey JP, “A UML Profile as Support for Transformation of Business
Process Models at Enterprise Level”, MDISIS 2008

[56] Object Management Group: Object Constraint Language 2.2. OMG document number:
formal/2010-02-01 (2010)

[57] Lubell J, Peak R, Srinivasan V, Waterbury S, “STEP, XML, and UML: Complementary
Technologies”, DETC 2004, ASME 2004

[58] Delgado M, “Harmonisation of STEP and MDA conceptual models using Model Morphisms”,
Universidade Nova de Lisboa, 2008

[59] Jardim-Gonçalves R, Onofre S, Agostinho C, Steiger-Garção A, “Conformance Testing for XML-
based STEP Conceptual Models”, ASME International Design Engineering Technical
Conferences & Computers and Information In Engineering Conference, Philadelphia,
Pennsylvania, USA, 2006

[60] OWL 2 Web Ontology Language, “Document Overview”; Available at: http://www.w3.org/TR/owl2-
overview/; Last accessed on: 15

th
 September 2010

[61] D‟Antonio F, et al, “Deliverable DTG 3.1 - Deliverable MoMo.2 - TG MoMo Roadmap”, InterOP,
2005

[62] Rahm E, Bernstein P, “A survey of approaches to automatic schema matching”, The VLDB
Journal, no. 10, pp. 334-350, 2001

[63] INTEROP - VLab Platform – “The European Virtual Laboratory for Enterprise Interoperability”;
Available at: http://interop-vlab.eu; Last accessed on: 15th September 2010

[64] Taentzer G, Ehrig K, Guerra E, Lara J, Lengyel L, Levendovszky T, Prange U, Varro D, Varro-
Gyapay S, “Model Transformation by Graph Transformation: A Comparative Study”, Model
Transformations in Practice Workshop at MoDELS 2005, Montego, 2005

[65] CRESCENDO “Deliverable 5.2.1, BDA Model Store State-of-the-Art and Vision”; Available at: (not
public at the current time)

[66] Agostinho C, Sarraipa J, D'Antonio F, et al, “Enhancing STEP-based interoperability using model
morphisms”, 3rd International Conference on Interoperability for Enterprise Software and
Applications (I-ESA 2007), 2007

[67] Czarnecki K, Helsen S, “Feature-based survey of model transformation approaches”, IBM
Systems Journal, vol. 45, no. 3, 2006

[68] MDA Guide Version 1.0.1. – OMG, Document number: omg/2003-06-01 edn
[69] Grangel R, Bigand M, Bourey J-P, “UML Profiles for Transforming GRAI Decisional Models into

UML Use Cases”, 13th IFAC Symposium on Information Control Problems in Manufacturing
(INCOM 2009), Moscow, Russia, 2009

[70] Hausmann K, “Deliverable DTG 3.2 - Report and workshop, Final version of the Toolbox”,
InterOP, 2007

[71] Model Morphism Recommendation System (MRS) web portal; Available at:
www.alliknow.net/momo; Last accessed on: 1

st
 March 2010

[72] D'Antonio F, Missikoff M, Bottoni P, Hahn A, Hausmann K, “An ontology for describing model
mapping/transformation tools and methodologies: the MoMo ontology”, EMOI-INTEROP, 2006

[73] Hausmann K, “Deliverable DTG 3.3 - TG3 MoMo: Extended toolbox definition and dissemination
report”, InterOP, 2007

[74] INTEROP NoE. “Deliverable D.A3.3 - Semantic Annotation language and tool for Information and
Business Processes”, InterOP, 2006

[75] Selic B, “The Pragmatics of Model-Driven Development”, September/October IEEE Software
Magazine, 2003

[76] Hailpern B, Tarr P, “Model-driven development: The good, the bad, and the ugly”, IBM Systems
Journal, Model-Driven Software Development, vol. 45, no. 3, pp. 451, 2006

[77] Schmidt D, “Model-Driven Engineering”, Computer Magazine, IEEE Computer Society, February
2006

[78] Frankel D, “Model-Driven Architecture: Applying MDA to Enterprise Computing”, John Wiley,
ISBN 0471319201, 2003

[79] Fowler M, “Model Driven Architecture”; Available at:
http://martinfowler.com/bliki/ModelDrivenArchitecture.html; Last accessed on: 15

th
 September

2010
[80] Nordmoen B, “Beyond Corba Model Driven Development”; Available at:

http://www.omg.org/mda/mda_files/SSSummit_nordmoen_OMG.pdf; Last accessed on: 15
th

September 2010

[81] Bourey J-P, Grangel R, Doumeingts G, Berre A, “Deliverable DTG 2.3 - Report On Model Driven
Interoperability”, InterOP 2007

102

[82] Berre A-J, Liu F, Xu J, Elvesæter B, “Model Driven Service Interoperability through use of
Semantic Annotations”, International Conference on Interoperability for Enterprise Software and
Applications, China, 2009

[83] Model Driven Interoperability; Available at: http://www.modelbased.net/mdi/; Accessed on: 15
th

March 2010

[84] Agile Modelling (AM) home page; Available at: http://www.agilemodeling.com/; Last accessed on:
15

th
 September 2010

[85] Thomas D, Barry B, “Model Driven Development: the Case for Domain-Oriented Programming”,
Companion of the 18th OOPSLA, ACM Press, 2003

[86] Greenfield J, “Software Factories: Assembling Applications with Patterns, Models, Frameworks,
and Tools”, Microsoft Corporation, 2004

[87] Miller J, Mukerji J, “Model Driven Architecture (MDA) - Draft Report / Architecture Board
ORMSC”, Document number: ormsc/2001-06-01

[88] MDA Guide Version 1.0.1. – OMG, Document number: omg/2003-06-01 edn
[89] Hendryx S, “Integrating Computation Independent Business Modeling Languages into the MDA

with UML 2”, Hendryx & Associates, January 2003; Available at:
http://cs.ua.edu/630/UML%20and%20MOF%20specifications/Integrating%20Bus.%20Model%20
Lang.%20into%20MDA%20using%20UML2%20-%20Hendryx%20-%20ad-03-01-32.doc; Last
accessed on: 15

th
 September 2010

[90] ATLAS Transformation Language homepage; Available at: http://www.eclipse.org/m2m/atl/; Last
accessed on: 15

th
 March 2010

[91] MOF 2.0 Query/View/Transformation 1.0. - OMG, document number: formal/08-04-03
[92] Xpand Language homepage; Available at: http://www.eclipse.org/modeling/m2t/; Last accessed

on: 15
th
 March 2010

[93] Belaunde M, “MODA-TEL Deliverable 2.1 - Assessment of the Model Driven Technologies –
Foundations and Key Technologies”, MODA-TEL Consortium, 2002

[94] OMG‟s XML Metadata Interchange (XMI); Available at:
http://www.omg.org/technology/documents/formal/xmi.htm; Last accessed on: 15

th
 March 2010

[95] Poole D, “Model-Driven Architecture: Vision, Standards And Emerging Technologies”, European
Conference on Object-Oriented Programming (ECOOP'01) – Workshop on Metamodelling and
Adaptive Object Models, 2001

[96] Damm C, Hansen K, Thomsen M, Tyrsted M, “Tool Integration - Experiences and Issues in Using
XMI and Component Technology”, International Conference on Technology of Object-Oriented
Languages, 2000

[97] Bézivin J, et al, “First experiments with the ATL model transformation language: Transforming
XSLT into XQuery”, OOPSLA 2003 Workshop, California, 2003

[98] Balogh A, Varr´o D, “Advanced model transformation language constructs in the VIATRA2
framework”, ACM Symposium on Applied Computing, Dijon, France, pp. 1280–1287, 2006

[99] Agrawal A, “Graph rewriting and transformation (GReAT): A solution for the model integrated
computing (MIC) bottleneck”, IEEE Computer Society, 2003

[100] Taentzer G, “AGG: A graph transformation environment for modeling and validation of
software”, Lecture Notes in Computer Science, Springer, 2003

[101] Jouault F, Kurtev I, “On the interoperability of model-to-model transformation languages”,
Science of Computer Programming, no. 68, pp. 114–137, 2007

[102] ISO/IEC 11179 – “Metadata Registries (MDR)” – First Edition, 1999
[103] Sarraipa J, Jardim-Goncalves R and Steiger-Garcao A, “MENTOR: an enabler for

interoperable intelligent systems”, International Journal of General Systems, vol. 39, no. 5, pp 557
– 573, July 2010

[104] Sarraipa J; Zouggar N; Chen D, Jardim-Goncalves R, “Annotation for Enterprise Information
Management Traceability”, IDETC/CIE ASME, 2007

[105] Object Management Group (OMG) – “Reference Metamodel for the EXPRESS Information
Modelling Language”, Version 1.0 – Beta 3, November 2009

[106] Tretmans J, “An Overview of OSI Conformance Testing”, University of Twente, 2001
[107] White L, “Software Testing and Verification”, vol. 26 of Advances in Computers, Academic

Press, 1987
[108] Myers G, “The Art of Software Testing”, John Wiley & Sons Inc., 1979
[109] iSurf European Project, no. 213031; Available at: http://www.srdc.com.tr/isurf/; Last Accessed

on: 15
th
 September 2010

[110] ISO/IEC CD 25040: “Software engineering – Software product Quality Requirements and
Evaluation (SQuaRE) – Evaluation reference model and guide”

103

[111] ISO/IEC 9126-1: “Software Engineering-Software product quality-Part 1: Quality model”
[112] ISO/IEC 14598-1: “Software product evaluation-Part 1: General overview”
[113] ISO/IEC CD 25010: “Software engineering-Software product Quality Requirements and

Evaluation (SQuaRE) Quality model”
[114] ISO/IEC CD 25030: “Software engineering – Software product Quality Requirements and

Evaluation (SQuaRE) – Quality requirements”
[115] ISO/IEC 14598-5: “Information technology – Software product evaluation – Part 5: Process for

evaluators”
[116] ISO/IEC CD 8402-1, “Quality Concepts and Teminology Part One: Generic Terms and

Definitions”
[117] ISO 9241: “Ergonomics of Human System Interaction”
[118] i-Surf “Deliverable 8.1.1 – Functional and Non-Functional Evaluation Criteria for i-Surf

Components and Integrated Platform”, Available at: [109]
[119] ISO/IEC 14598-6: “Software engineering – Product evaluation – Part 6: Documentation of

evaluation modules”
[120] ISO/IEC 9646: “Information Technology, Open Systems Interconnection, Conformance

Testing Methodology and Framework”
[121] Tree and Tabular Combined Notation 3; Available at: http://www.ttcn-3.org/; Last Accessed on:

15
th
 September 2010

[122] TTCN-3 Tutorials; Available at: http://www.ttcn-3.org/Tutorials.htm; Last Accessed on: 15
th

September 2010

[123] VIVACE European Project; Available at: http://www.vivaceproject.com/; Last Accessed on:
15

th
 September 2010

104

105

10. ANNEX

10.1. Requirements and Functionalities of the System

10.1.1. Requirements

 The user should be able to import models (OWL, XSD, UML, EXPRESS) (foreign

models);

 The system should have a Central Model able to represent all foreign models

languages specificities, i.e. language independent;

 The system should have all foreign models interconnected with the Central Model, at

the Meta-Model Level:

o Model morphism should be explicit (not embedded in the code);

o Transformation should be executed automatically (e.g. ATL);

o Mediator should be able to have a link to the model morphism defined.

10.1.2. Functionalities

 Transform foreign models into a Central Model;

 Transform Central Models into foreign models.

106

10.2. Modelling languages meta-models to Central Meta-Model mappings

10.2.1. EXPRESS Mappings

Express Concepts Express Meta-model Central Meta-Model
For each
Data Model

- Model

 - Model.owner = VAZIO

 - Model.language = “EXPRESS”

 Schema.version Model.version

 Schema (Module) Model.isComposedBy

For each
Schema / Module

Schema Module

 InterfacedElement NOT MAPPED

 Schema.name Module.name

 Schema.version Module.version

(Schema) ((Interface) Schema.interfaces).interfaced-
schema

(Module) Module.references

 (SchemaElement) Schema.schema-elements (Concept) Module.defines

For each
SchemaElement / Concept
(ABSTRACT CONCEPTS)

SchemaElement Concept

 ((ScopedId) SchemaElement.id).localname Concept.name
SchemaElement as CommonElement (AlgorithmScope) CommonElement.AlgorithmScope NOT MAPPED
SchemaElement as NamedType (DomainRule) NamedType.DomainRule NOT MAPPED

For each
EntityType / EntityConcept

SchemaElement as EntityType
Concept as EntityConcept

EntityType Entity_Concept

 (InvertibleAttribute) EntityType.attributes NOT MAPPED

107

 (RangeRole) EntityType.play-range-role NOT MAPPED

 (DomainRole) EntityType.plays-domain-role NOT MAPPED

 (UniqueRule) EntityType.unique-rules NOT MAPPED

 ((ScopedId) EntityType.id).localname Entity_Concept.name

 EntityType.isAbstract Entity_Concept.abstract

 (EntityType) EntityType.subtype-of (Entity_Concept) Entity_Concept.isSpecificationOf

 (Attribute) EntityType.local-attributes (Property) Entity_Concept.contains
Property as Redeclared_Property (Redeclaration) EntityType.redeclarations (Redeclared_Property) Entity_Concept.contains

For each
DefinedType / Type_Concept
(ABSTRACT CONCEPTS)

SchemaElement as DefinedType
Concept as Type Concept

DefinedType Type_Concept

For each
SelectType / Select_Type

DefinedType as SelectType
Type_Concept as Select_Type

SelectType Select_Type

 SelectType.isExtensible NOT MAPPED

 SelectType.isEntity NOT MAPPED

 (NamedType) SelectType.select-list (Concept) Select_Type.oneOf

 (SelectType) SelectType.extension (Select_Type) Select_Type.isSpecificationOf

For each
EnumerationType /

Enumeration_Type
DefinedType as EnumerationType
Type_Concept as Enumeration_Type

EnumerationType Enumeration_Type

 EnumerationType.isExtensible NOT MAPPED

 (EnumerationType) EnumerationType.extension (Enumeration_Type) Enumeration_Type.isEspecificationOf

((ScopedId) ((EnumerationType)
EnumerationType.declared-items).id).localname

(Instance_Item) ((Instance_Group)
(Enumeration_Type.hasItems).hasItems)).value

For each
SpecializedType /

Labelled_Type
SpecializedType Labelled_Type

108

DefinedType as SpecializedType
Type_Concept as Labelled_Type

 (ConcreteType) SpecializedType.underlying-type (Representation) Labelled_Type.baseType

For each
AnonymousType

 (AnonymousType) AnonymousType.specializes NOT MAPPED
AnonymousType as SimpleType SimpleType Generic_Basic_Type
 SimpleType.id Generic_Basic_Type.type
Specific attributes of sub-types of
SimpleType NOT MAPPED

AnonymousType as
ConcreteAgregationType ConcreteAggregationType Aggregation_Type

 ConcreteAggregationType.ordering NOT MAPPED

 ConcreteAggregationType.isUnique NOT MAPPED

(InstantiableType)
ConcreteAggregationType.member-type

(Representation) Aggregation_Type.baseType

ConcreteAggregationType as BAGType,
LISTType & SETType

((SizeConstraint) (BAGType, LISTType &
SETType).lower-bound).bound / “0” (if non-existant)

Aggregation_Type.lowerCardinality

((SizeConstraint) (BAGType, LISTType &
SETType).upper-bound).bound / “?” (if non-existant)

Aggregation_Type.upperCardinality

ConcreteAggregationType as ARRAYType ((ArrayBound) ARRAYType.lo-index).bound Aggregation_Type.lowerCardinality

 ((ArrayBound) ARRAYType.hi-index).bound Aggregation_Type.upperCardinality

For each
Attribute / Property

Attribute Property

 Attribute.isAbstract NOT MAPPED

 Attribute.position NOT MAPPED
Attribute as InverseAttribute NOT MAPPED
Attribute as InvertibleAttribute NOT MAPPED
Attribute as ExplicitAttribute or
DerivedAttribute ((ScopedId) Attribute.id).localname Property.name

(InstantiableType)((ParameterType)
Attribute.attribute-type)

(Representation) Property.ofType

109

Attribute as ExplicitAttribute Attribute.ExplicitAttribute.isOptional Property.optional

For each
Redeclaration / Redefinition

 Redeclaration.position NOT MAPPED

 Redeclaration.refined-role NOT MAPPED

 Redeclaration.derivation NOT MAPPED

 Redeclaration.upper-bound NOT MAPPED

 Redeclaration.lower-bound NOT MAPPED

 Redeclaration.refines (Redeclared_Property) Redeclared_Property.isRefinementOf

 (EntityType) Redeclaration.scope (Entity_Concept) Redeclared_Property.fromScope

 (Attribute) Redeclaration.original-attribute (Property) Redeclared_Property.originalProperty

 (InstantiableType) Redeclaration.restricted-type (Representation) Redefinition.ofType

 Redeclaration.isMandatory !Redeclared_Property.optional
If Redeclaration.alias exist ((ScopedId) Redeclaration.alias).localname Redeclared_Property.name

Else
((ScopedId)
Redeclaration.originalAttribute.id).localname

Redeclared_Property.name

10.2.2. XML Schema (XSD) Mappings

Express Concepts XSD Meta-model Central Meta-Model
For each
Data Model (xsd)

- Model

 - Model.owner = VAZIO

 - Model.language = “XSD”

 schema.version Model.version

 schema (Module) Model.isComposedBy

For each
schema / Module

schema Module

110

 schema.version Module.version

 schema.id Module.name

 (schema) schema.include.schemaLocation (Module) Module.references

 (schema) schema.import.schemaLocation (Module) Module.references

 schema.redefine NOT MAPPED

 schema.annotation NOT MAPPED

 (topLevelElement) schema.element (Concept) Module.defines

 (topLevelAttribute) schema.attribute Property

 schema.notation NOT MAPPED

 (topLevelSimpleType) schema.simpleType Type_Concept

 (topLevelComplexType) schema.complexType Entity_Concept

 schema.group Entity_Concept

For each
simpleType / Type_Concept

SimpleType Type_Concept

 simpleType.annotation NOT MAPPED
 simpleType.id NOT MAPPED
 simpleType.final NOT MAPPED

For each
simpleType

(if exists simpleType.union)

SimpleType NOT MAPPED

For each
simpleType / Enumeration_Type

(if exists
simpleType.restriction.enumeration)
simpleType as topLevelSimpleType
Type_Concept as Enumeration_Type

topLevelSimpleType.restriction Enumeration_Type

 simpleType.name Enumeration_Type.name

 simpleType.restriction.enumeration (String) Enumeration_Type.items

For each topLevelSimpleType.restriction Labelled_Type

111

simpleType / Labelled_Type
(if exists simpleType.restriction.base)
simpleType as topLevelSimpleType
Type_Concept as Labelled _Type

 simpleType.name Labelled_Type.name

 simpleType.restriction.base ((Generic_Basic_Type) Labelled_Type.baseType).type

For each
simpleType / Labelled_Type

(if exists simpleType.list)
simpleType as topLevelSimpleType
Type_Concept as Labelled_Type

topLevelSimpleType Labelled_Type

 simpleType.name Labelled_Type.name

 simpleType.list (Aggregation_Type) Labelled_Type.baseType

For each
simpleType / Enumeration_Type

(if exists
simpleType.restriction.enumeration)
simpleType as localSimpleType
Type_Concept as Enumeration_Type

localSimpleType.restriction Enumeration_Type

 - Enumeration_Type.name = “local_simple_type”

 simpleType.restriction.enumeration (String) Enumeration_Type.items

For each
simpleType / Labelled_Type

(if exists simpleType.restriction.base)
simpleType as localSimpleType
Type_Concept as Labelled _Type

localSimpleType.restriction Labelled_Type

 - Labelled_Type.name = “local_simple_type”

 simpleType.restriction.base ((Generic_Basic_Type) Labelled_Type.baseType).type

For each
simpleType / Labelled_Type

(if exists simpleType.list)
simpleType as localSimpleType
Type_Concept as Labelled_Type

localSimpleType Labelled_Type

112

 - Labelled_Type.name = “local_simple_type”

 simpleType.list (Aggregation_Type) Labelled_Type.baseType

For each
list / Aggregation_Type

list Aggregation_Type

 list.itemType Aggregation_Type.baseType

 - Aggregation_Type.lowerCardinality = “0”

 - Aggregation_Type.upperCardinality = “?”

 list.simpleType NOT MAPPED

For each
complexType / Entity_Concept

complexType Entity_Concept

 complexType.mixed NOT MAPPED

 complexType.id NOT MAPPED

 complexType.annotation NOT MAPPED

 complexType.final NOT MAPPED

 complexType.block NOT MAPPED

 complexType.anyAttribute NOT MAPPED
(if complexType as topLevelComplexType) complexType.name Entity_Concept.name
(else) - Entity_Concept.name = “local_complex_type”

 complexType.abstract Entity_Concept.abstract

 complexType.simpleContent.id NOT MAPPED

 complexType.simpleContent.annotation NOT MAPPED

 complexType.complexContent.id NOT MAPPED

 complexType.complexContent.annotation NOT MAPPED

 complexType.attribute (Property) Entity_Concept.contains

For each
complexType / Entity_Concept

(If exists complexType.group)

complexType.group Entity_Concept

 complexType.group.id NOT MAPPED

 complexType.group.minOccurs NOT MAPPED

113

 complexType.group.macOccurs NOT MAPPED

 complexType.group.annotation NOT MAPPED

 complexType.group.ref (Concept) Entity_Concept.isSpecificationOf

For each
complexType / Entity_Concept

(If exists complexType.all)

complexType.all Entity_Concept

 complexType.all.id NOT MAPPED

 complexType.all.minOccurs NOT MAPPED

 complexType.all.macOccurs NOT MAPPED

 complexType.all.annotation NOT MAPPED

 complexType.all.element (Property) Entity_Concept.contains

For each
complexType / Entity_Concept

(If exists complexType.choice)

complexType.choice Entity_Concept

 complexType.choice.id NOT MAPPED

 complexType.choice.minOccurs NOT MAPPED

 complexType.choice.macOccurs NOT MAPPED

 complexType.choice.annotation NOT MAPPED

(If exists choice.element or choice.group or
choice.choice or choice.sequence) -

((Property) Entity_Concept.contains).name =
Entity_Concept.name + “_choice”

(If exists choice.element or choice.group or
choice.choice or choice.sequence) -

((Concept) ((Property)
Entity_Concept.contains).ofType)).name =
Entity_Concept.name + “_choice”

(If exists choice.element) complexType.choice.element
(Concept) ((Select_Type) ((Property)
Entity_Concept.contains).ofType).oneOf

(If exists choice.group) (complexType.group) complexType.choice.group (Entity_Concept) ((Property) Entity_Concept.contains).ofType
(If exists choice.choice) (complexType.choice) complexType.choice.choice (Entity_Concept) ((Property) Entity_Concept.contains).ofType

(If exists choice.sequence)
(complexType.sequence)
complexType.choice.sequence

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

 complexType.choice.any NOT MAPPED

114

For each
complexType / Entity_Concept

(If exists complexType.sequence)

complexType.sequence Entity_Concept

 complexType.sequence.id NOT MAPPED

 complexType.sequence.minOccurs NOT MAPPED

 complexType.sequence.macOccurs NOT MAPPED

 complexType.sequence.annotation NOT MAPPED
(If exists sequence.element or
sequence.group or sequence.choice or
sequence.sequence)

-
((Property) Entity_Concept.contains).name =
Entity_Concept.name + “_sequence”

(If exists sequence.element or
sequence.group or sequence.choice or
sequence.sequence)

-
((Concept) ((Property)
Entity_Concept.contains).ofType)).name =
Entity_Concept.name + “_sequence”

(If exists sequence.element) complexType.choice.element
(Concept) ((Select_Type) ((Property)
Entity_Concept.contains).ofType).oneOf

(If exists sequence.group) (complexType.group) complexType.sequence.group (Entity_Concept) ((Property) Entity_Concept.contains).ofType
(If exists sequence.choice) (complexType.choice) complexType.sequence.choice (Entity_Concept) ((Property) Entity_Concept.contains).ofType

(If exists sequence.sequence)
(complexType.sequence)
complexType.sequence.sequence

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

 complexType.sequence.any NOT MAPPED

For each
complexType / Entity_Concept

(If exists
complexType.simpleContent.restriction)

simpleContent.restriction Entity_Concept

 complexType.simpleContent.restriction.id NOT MAPPED

 complexType.simpleContent.restriction.annotation NOT MAPPED

 complexType.simpleContent.restriction.anyAttribute NOT MAPPED

complexType.simpleContent.restriction.attributeGro
up

NOT MAPPED

 complexType.simpleContent.restriction.attribute (Property) Entity_Concept.contains

 complexType.simpleContent.restriction.base
((Property) Entity_Concept.contains).name =
Entity_Concept.name + “_restriction_base”

 complexType.simpleContent.restriction.base ((Labelled_Type) ((Property)

115

Entity_Concept.contains).ofType)).name =
Entity_Concept.name + “_restriction_base”

 complexType.simpleContent.restriction.base
(Representation) ((Labelled_Type) ((Property)
Entity_Concept.contains).ofType)).baseType

For each
complexType / Entity_Concept

(If exists
complexType.simpleContent.restriction.en
umeration)

simpleContent.restriction.enumeration Entity_Concept

complexType.simpleContent.restriction.enumeratio
n

((Property) Entity_Concept.contains).name =
Entity_Concept.name + “_enumeration”

complexType.simpleContent.restriction.enumeratio
n

((Enumeration_Type) ((Property)
Entity_Concept.contains).ofType)).name =
Entity_Concept.name + “_enumeration”

complexType.simpleContent.restriction.enumeratio
n

(String) ((Enumeration_Type) ((Property)
Entity_Concept.contains).ofType)).items

For each
complexType / Entity_Concept

(If exists
complexType.simpleContent.extension)

simpleContent.extension Entity_Concept

 complexType.simpleContent.extension.id NOT MAPPED

 complexType.simpleContent.extension.annotation NOT MAPPED

 complexType.simpleContent.extension.anyAttribute NOT MAPPED

 complexType.simpleContent.extension.attribute (Property) Entity_Concept.contains

 complexType.simpleContent.extension.base (Concept) Entity_Concept.isSpecificationOf

For each
complexType / Entity_Concept

(If exists
complexType.complexContent.restriction)

complexContent.restriction Entity_Concept

 complexType.complexContent.restriction.id NOT MAPPED

 complexType.complexContent.restriction.annotation NOT MAPPED

116

complexType.complexContent.restriction.anyAttribu
te

NOT MAPPED

 complexType.complexContent.restriction.attribute (Property) Entity_Concept.contains

 complexType.complexContent.restriction.base
((Property) Entity_Concept.contains).name =
Entity_Concept.name + “_restriction_base”

 complexType.complexContent.restriction.base
((Labelled_Type) ((Property)
Entity_Concept.contains).ofType)).name =
Entity_Concept.name + “_restriction_base”

 complexType.complexContent.restriction.base
(Representation) ((Labelled_Type) ((Property)
Entity_Concept.contains).ofType)).baseType

For each
complexType / Entity_Concept

(If exists
complexType.complexContent.restriction.g
roup)

complexContent.restriction.group Entity_Concept

 complexType.complexContent.restriction.group.id NOT MAPPED

complexType.complexContent.restriction.group.min
Occurs

NOT MAPPED

complexType.complexContent.restriction.group.mac
Occurs

NOT MAPPED

complexType.complexContent.restriction.group.ann
otation

NOT MAPPED

 complexType.complexContent.restriction.group.ref (Concept) Entity_Concept.isSpecificationOf

For each
complexType / Entity_Concept

(If exists
complexType.complexContent.restriction.a
ll)

complexContent.restriction.all Entity_Concept

 complexType.complexContent.restriction.all.id NOT MAPPED

complexType.complexContent.restriction.all.minOcc
urs

NOT MAPPED

 complexType.complexContent.restriction.all.macOcc NOT MAPPED

117

urs

complexType.complexContent.restriction.all.annotat
ion

NOT MAPPED

complexType.complexContent.restriction.all.elemen
t

(Property) Entity_Concept.contains

For each
complexType / Entity_Concept

(If exists
complexType.complexContent.restriction.c
hoice)

complexContent.restriction.choice Entity_Concept

 complexType.complexContent.restriction.choice.id NOT MAPPED

complexType.complexContent.restriction.choice.min
Occurs

NOT MAPPED

complexType.complexContent.restriction.choice.ma
cOccurs

NOT MAPPED

complexType.complexContent.restriction.choice.ann
otation

NOT MAPPED

(If exists choice.element or choice.group or
choice.choice or choice.sequence) -

((Property) Entity_Concept.contains).name =
Entity_Concept.name + “_restriction_choice”

(If exists choice.element or choice.group or
choice.choice or choice.sequence) -

((Concept) ((Property)
Entity_Concept.contains).ofType)).name =
Entity_Concept.name + “_restriction_choice”

(If exists choice.element)
complexType.complexContent.restriction.choice.ele
ment

(Concept) ((Select_Type) ((Property)
Entity_Concept.contains).ofType).oneOf

(If exists choice.group)
(complexContent.restriction.group)
complexType.complexContent.restriction.choice.gro
up

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

(If exists choice.choice)
(complexContent.restriction.choice)
complexType.complexContent.restriction.choice.cho
ice

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

(If exists choice.sequence)
(complexContent.restriction.sequence)
complexType.complexContent.restriction.choice.seq

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

118

uence

 complexType.complexContent.restriction.choice.any NOT MAPPED

For each
complexType / Entity_Concept

(If exists
complexType.complexContent.restriction.s
equence)

complexContent.restriction.sequence Entity_Concept

complexType.complexContent.restriction.sequence.i
d

NOT MAPPED

complexType.complexContent.restriction.sequence.
minOccurs

NOT MAPPED

complexType.complexContent.restriction.sequence.
macOccurs

NOT MAPPED

complexType.complexContent.restriction.sequence.
annotation

NOT MAPPED

(If exists sequence.element or
sequence.group or sequence.choice or
sequence.sequence)

-
((Property) Entity_Concept.contains).name =
Entity_Concept.name + “_restriction_sequence”

(If exists sequence.element or
sequence.group or sequence.choice or
sequence.sequence)

-
((Concept) ((Property)
Entity_Concept.contains).ofType)).name =
Entity_Concept.name + “_restriction_sequence”

(If exists sequence.element)
complexType.complexContent.restriction.sequence.
element

(Concept) ((Select_Type) ((Property)
Entity_Concept.contains).ofType).oneOf

(If exists sequence.group)
(complexContent.restriction.group)
complexType.complexContent.restriction.sequence.
group

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

(If exists sequence.choice)
(complexContent.restriction.choice)
complexType.complexContent.restriction.sequence.
choice

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

(If exists sequence.sequence)
(complexContent.restriction.sequence)
complexType.complexContent.restriction.sequence.
sequence

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

 complexType.complexContent.restriction.sequence. NOT MAPPED

119

any

For each
complexType / Entity_Concept

(If exists
complexType.complexContent.extension)

complexContent.extension Entity_Concept

 complexType.complexContent.extension.id NOT MAPPED

 complexType.complexContent.extension.annotation NOT MAPPED

complexType.complexContent.extension.anyAttribut
e

NOT MAPPED

 complexType.complexContent.extension.attribute (Property) Entity_Concept.contains

 complexType.complexContent.extension.base (Concept) Entity_Concept.isSpecificationOf

For each
complexType / Entity_Concept

(If exists
complexType.complexContent.extension.gr
oup)

complexContent.extension.group Entity_Concept

 complexType.complexContent.extension.group.id NOT MAPPED

complexType.complexContent.extension.group.min
Occurs

NOT MAPPED

complexType.complexContent.extension.group.mac
Occurs

NOT MAPPED

complexType.complexContent.extension.group.anno
tation

NOT MAPPED

 complexType.complexContent.extension.group.ref (Concept) Entity_Concept.isSpecificationOf

For each
complexType / Entity_Concept

(If exists
complexType.complexContent.extension.al
l)

complexContent.extension.all Entity_Concept

 complexType.complexContent.extension.all.id NOT MAPPED

complexType.complexContent.extension.all.minOcc
urs

NOT MAPPED

120

complexType.complexContent.extension.all.macOcc
urs

NOT MAPPED

complexType.complexContent.extension.all.annotati
on

NOT MAPPED

 complexType.complexContent.extension.all.element (Property) Entity_Concept.contains

For each
complexType / Entity_Concept

(If exists
complexType.complexContent.extension.c
hoice)

complexContent.extension.choice Entity_Concept

 complexType.complexContent.extension.choice.id NOT MAPPED

complexType.complexContent.extension.choice.min
Occurs

NOT MAPPED

complexType.complexContent.extension.choice.mac
Occurs

NOT MAPPED

complexType.complexContent.extension.choice.ann
otation

NOT MAPPED

(If exists choice.element or choice.group or
choice.choice or choice.sequence) -

((Property) Entity_Concept.contains).name =
Entity_Concept.name + “_extension_choice”

(If exists choice.element or choice.group or
choice.choice or choice.sequence) -

((Concept) ((Property)
Entity_Concept.contains).ofType)).name =
Entity_Concept.name + “_extension_choice”

(If exists choice.element)
complexType.complexContent.extension.choice.ele
ment

(Concept) ((Select_Type) ((Property)
Entity_Concept.contains).ofType).oneOf

(If exists choice.group)
(complexContent.extension.group)
complexType.complexContent.extension.choice.gro
up

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

(If exists choice.choice)
(complexContent.extension.choice)
complexType.complexContent.extension.choice.choi
ce

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

(If exists choice.sequence)
(complexContent.extension.sequence)
complexType.complexContent.extension.choice.seq

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

121

uence

 complexType.complexContent.extension.choice.any NOT MAPPED

For each
complexType / Entity_Concept

(If exists
complexType.complexContent.extension.se
quence)

complexContent.extension.sequence Entity_Concept

complexType.complexContent.extension.sequence.i
d

NOT MAPPED

complexType.complexContent.extension.sequence.
minOccurs

NOT MAPPED

complexType.complexContent.extension.sequence.
macOccurs

NOT MAPPED

complexType.complexContent.extension.sequence.a
nnotation

NOT MAPPED

(If exists sequence.element or
sequence.group or sequence.choice or
sequence.sequence)

-
((Property) Entity_Concept.contains).name =
Entity_Concept.name + “_extension_sequence”

(If exists sequence.element or
sequence.group or sequence.choice or
sequence.sequence)

-
((Concept) ((Property)
Entity_Concept.contains).ofType)).name =
Entity_Concept.name + “_extension_sequence”

(If exists sequence.element)
complexType.complexContent.extension.sequence.e
lement

(Concept) ((Select_Type) ((Property)
Entity_Concept.contains).ofType).oneOf

(If exists sequence.group)
(complexContent.extension.group)
complexType.complexContent.extension.sequence.g
roup

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

(If exists sequence.choice)
(complexContent.extension.choice)
complexType.complexContent.extension.sequence.c
hoice

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

(If exists sequence.sequence)
(complexContent.extension.sequence)
complexType.complexContent.extension.sequence.s
equence

(Entity_Concept) ((Property) Entity_Concept.contains).ofType

 complexType.complexContent.extension.sequence.a NOT MAPPED

122

ny

For each
group / Entity_Concept

group Entity_Concept

 group.id NOT MAPPED

 group.annotation NOT MAPPED

 group.name Entity_Concept.name

For each
group / Entity_Concept

(If exists group.all)

group.all Entity_Concept

 group.all.id NOT MAPPED

 group.all.annotation NOT MAPPED

 group.all.element (Property) Entity_Concept.contains

For each
group / Entity_Concept

(If exists group.choice)

group.choice Entity_Concept

 group.choice.id NOT MAPPED

 group.choice.annotation NOT MAPPED

(If exists choice.element or choice.group or
choice.choice or choice.sequence) -

((Property) Entity_Concept.contains).name =
Entity_Concept.name + “_group_choice”

(If exists choice.element or choice.group or
choice.choice or choice.sequence) -

((Concept) ((Property)
Entity_Concept.contains).ofType)).name =
Entity_Concept.name + “_group_choice”

(If exists choice.element) group.choice.element
(Concept) ((Select_Type) ((Property)
Entity_Concept.contains).ofType).oneOf

(If exists choice.group) (group) group.choice.group (Entity_Concept) ((Property) Entity_Concept.contains).ofType
(If exists choice.choice) (group.choice) group.choice.choice (Entity_Concept) ((Property) Entity_Concept.contains).ofType
(If exists choice.sequence) (group.sequence) group.choice.sequence (Entity_Concept) ((Property) Entity_Concept.contains).ofType

 group.choice.any NOT MAPPED

For each group.sequence Entity_Concept

123

complexType / Entity_Concept
(If exists group.sequence)

 group.sequence.id NOT MAPPED

 group.sequence.annotation NOT MAPPED
(If exists sequence.element or
sequence.group or sequence.choice or
sequence.sequence)

-
((Property) Entity_Concept.contains).name =
Entity_Concept.name + “_group_sequence”

(If exists sequence.element or
sequence.group or sequence.choice or
sequence.sequence)

-
((Concept) ((Property)
Entity_Concept.contains).ofType)).name =
Entity_Concept.name + “_group_sequence”

(If exists sequence.element) group.sequence.element
(Concept) ((Select_Type) ((Property)
Entity_Concept.contains).ofType).oneOf

(If exists sequence.group) (group) group.sequence.group (Entity_Concept) ((Property) Entity_Concept.contains).ofType
(If exists sequence.choice) (group.choice) group.sequence.choice (Entity_Concept) ((Property) Entity_Concept.contains).ofType
(If exists sequence.sequence) (group.sequence) group.sequence.sequence (Entity_Concept) ((Property) Entity_Concept.contains).ofType

 group.sequence.any NOT MAPPED

For each
attribute / Property

(if exists attribute.type)
attribute as topLevelAttribute

topLevelAttribute Property

 attribute.id NOT MAPPED

 attribute.annotation NOT MAPPED

 attribute.default NOT MAPPED

 attribute.fixed NOT MAPPED

 attribute.name Property.name
Type as topLevelSimpleType or
topLevelComplexType or dataTypes attribute.type (Representation) Property.ofType

Type as localSimpleType attribute.simpleType (Representation) Property.ofType

For each
attribute / Property

attribute as attribute
attribute Property

 attribute.id NOT MAPPED

 attribute.default NOT MAPPED

124

 attribute.fixed NOT MAPPED

 attribute.annotation NOT MAPPED
(if exists attribute.name) attribute.name Property.name
(else) attribute.ref Property

 attribute.use == “optional” Property.optional = true

 attribute.use == “required” Property.optional = false

 attribute.use == “prohibited” NOT MAPPED
(if exists attribute.name and
attribute.type)
Type as topLevelSimpleType or
topLevelComplexType or dataTypes

attribute.type (Representation) Property.ofType

(else if exists attribute.name)
Type as localSimpleType attribute.simpleType (Representation) Property.ofType

For each
attributeGroup / NOT MAPPED

attributeGroup NOT MAPPED

For each
element / Concept

element Concept

 element.annotation NOT MAPPED

 element.identifyConstraint NOT MAPPED

 element.id NOT MAPPED

 element.ref (Concept) Concept.isSpecificationOf

 element.default NOT MAPPED

 element.fixed NOT MAPPED

 element.nillable NOT MAPPED

 element.final NOT MAPPED

 element.block NOT MAPPED

 element.form NOT MAPPED

 element.substitutionGroup NOT MAPPED

 element.identifyConstraint NOT MAPPED

For each topLevelElement Labelled_Type

125

element / Concept
(if exists element.simpleType.restriction)
element as topLevelElement
Concept as Labelled _Concept

 element.abstract NOT MAPPED

 element.name Labelled_Type.name

 element.simpleType.restriction.base ((Generic_Basic_Type) Labelled_Type.baseType).type

For each
element / Concept

(if exists element.simpleType.list)
element as topLevelElement
Concept as Labelled _Concept

topLevelElement Labelled_Type

 element.abstract NOT MAPPED

 element.name Labelled_Type.name

 element.simpleType.restriction.list (Aggregation_Type) Labelled_Type.baseType

For each
element / Concept

(if exists
element.simpleType.restriction.enumerati
on)
element as topLevelElement
Concept as Enumeration _Concept

topLevelElement Enumeration_Type

 element.abstract NOT MAPPED

 element.name Labelled_Type.name

 element.simpleType.restriction.enumeration (String) Enumeration_Type.items

For each
element / Concept

(if exists element.type)
element as topLevelElement
Concept as Labelled_Type

topLevelElement Labelled_Type

 element.name Labelled_Type.name
Type as topLevelSimpleType or
topLevelComplexType or dataTypes element.type (Representation) Labelled_Type.baseType

 element.abstract NOT MAPPED

126

For each
element / Concept

(if exists element.complexType)
element as topLevelElement
Concept as Entity_Concept

topLevelElement Entity_Concept

 element.name Entity_Concept.name

 element.abstract Entity_Concept.abstract

For each
element / Property

element as localElement

localElement / narrowMaxMin Property

 element.name Property.name

 element.type (Representation) Property.ofType

 element.simpleType (Representation) Property.ofType

 element.complexType (Representation) Property.ofType

For each
type / String

type String

 string string

 boolean boolean

 float float

 double double

 decimal decimal

 dateTime dateTime

 duration duration

 hexBinary hexBinary

 base64Binary base64Binary

 anyUri anyUri

 ID ID

 IDREF IDREF

 ENTITY ENTITY

 NOTATION NOTATION

127

 normalizedString normalizedString

 token token

 language language

 IDREFS IDREFS

 ENTITIES ENTITIES

 NMTOKEN NMTOKEN

 NMTOKENS NMTOKENS

 Name Name

 QName QName

 NCName NCName

 integer integer

 nonNegativeInteger nonNegativeInteger

 positiveInteger positiveInteger

 nonPositiveInteger nonPositiveInteger

 negativeInteger negativeInteger

 byte byte

 int int

 long long

 shor shor

 unsignedByte unsignedByte

 unsignedInt unsignedInt

 unsignedLong unsignedLong

 unsignedShort unsignedShort

 date date

 time time

 gYearMonth gYearMonth

 gYear gYear

 gMonthDay gMonthDay

 gDay gDay

 gMonth gMonth

