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Resumo

A musica sempre foi um reflexo das diferencgas culturais e uma influéncia na nossa sociedade.
Actualmente, a musica € catalogada sem obedecer a nenhuma norma universalmente seguida,
sendo assim este processo propicio a erros. Contudo, o mesmo € fundamental para a cor-
recta organizacdo de bancos de dados que podem conter milhares de titulos. Neste trabalho,
interessamo-nos pela classificagdo por estilo musical.

Propomos uma metodologia capaz de criar n grupos de musicas que apresentem propriedades
musicais semelhantes (utilizando um processo de aprendizagem) assim como de classificar uma
nova amostra de acordo com os grupos criados (utilizando um processo de classificagc@o). O pro-
cesso de aprendizagem tem como objectivo agrupar diferentes musicas apenas com base nas
suas propriedades musicais e sem qualquer conhecimento prévio sobre o género das amostras,
seguindo assim um método denominado como ndo-supervisionado. Assim, ndo € dada ao sis-
tema nenhuma informagdo acerca do nimero de estilos musicais representados nas musicas
a analisar, seguindo uma abordagem chamada "Model-Based" na criacdo dos conjuntos. As
principais propriedades extraidas das musicas estdo relacionadas com o ritmo, timbre, melodia,
entre outros. A distancia de Mahalanobis € utilizada no processo de classificagcdo com o intuito
de entrar em linha de conta com a forma das nuvens criadas aquando do calculo das distancias
entre a musica e os conjuntos formados.

O processo de aprendizagem proposto obtém uma percentagem de sucesso de 55% quando
sdo submetidas musicas representantes de 11 estilos musicais distintos: Blues, Classical, Coun-
try, Disco, Fado, Hiphop, Jazz, Metal, Pop, Reggae and Rock. A percentagem de acerto neste
processo aumenta significativamente quando o nimero de estilos € reduzido; com 4 estilos mu-
sicais (Classical, Fado, Metal e Reggae), € obtida uma percentagem de acerto de 100%. Quanto

ao processo de classificacdo, 82% das miusicas submetidas sao classificadas correctamente.

Palavras-chave: Reconhecimento Automatico de Géneros Musicais, Propriedades do Som,

Classificacdo Nao Supervisionada







Abstract

In this study we explore automatic music genre recognition and classification of digital mu-
sic. Music has always been a reflection of culture differences and an influence in our society.
Today’s digital content development triggered the massive use of digital music. Nowadays,
digital music is manually labeled without following a universal taxonomy, thus, the labeling
process to audio indexing is prone to errors. A human labeling will always be influenced by
culture differences, education, tastes, etc. Nonetheless, this indexing process is primordial to
guarantee a correct organization of huge databases that contain thousands of music titles. In
this study, our interest is about music genre organization.

We propose a learning and classification methodology for automatic genre classification able
to group several music samples based on their characteristics (this is achieved by the proposed
learning process) as well as classify a new test music into the previously learned created groups
(this is achieved by the proposed classification process). The learning method intends to group
the music samples into different clusters only based on audio features and without any previous
knowledge on the genre of the samples, and therefore it follows an unsupervised methodology.
In addition a Model-Based approach is followed to generate clusters as we do not provide
any information about the number of genres in the dataset. Features are related with rhythm
analysis, timbre, melody, among others. In addition, Mahalanobis distance was used so that the
classification method can deal with non-spherical clusters.

The proposed learning method achieves a clustering accuracy of 55% when the dataset con-
tains 11 different music genres: Blues, Classical, Country, Disco, Fado, Hiphop, Jazz, Metal,
Pop, Reggae and Rock. The clustering accuracy improves significantly when the number of
genres is reduced; with 4 genres (Classical, Fado, Metal and Reggae), we obtain an accuracy
of 100%. As for the classification process, 82% of the submitted music samples were correctly

classified.

Keywords: Automatic Music Genre Classification, Audio Indexing, Unsupervised Classifica-

tion
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1. Introduction

1.1 Introduction and Motivation

In this study we explore automatic music genre recognition and classification of digital
music. Music has always been a reflection of culture differences and an influence in our society.
Today’s digital content development triggered the massive use of digital music. Nowadays,
digital music is manually labeled without following a universal taxonomy, thus, the labeling
process to audio indexing is prone to errors. A human labeling will always be influenced by
culture differences, education, tastes, etc. Nonetheless, this indexing process is primordial to
guarantee a correct organization of huge databases that contain thousands of music titles.

These databases are growing everyday and it is now very easy to choose, beyond such
offer, to which music, artist or genre we want to listen. Such amount of data needs to be
well organized such that the constant updating does not interfere with the ability to generate
correct query answers. A correct classification of each music can be the key to maintain a well
structured and organized database. Many properties can be used to classify music, although,
music genre is, perhaps, the most commonly applied. Often, music can be associated to one or
more musical genres. Such genres can be seen as single leafs in an enormous hierarchical tree
of genres that is always growing up. Currently, musical genre classification is used in music
stores, Internet sites, etc. to organize music in different sections so clients retrieve, without
difficulty, their favorite music. In this study, our interest is about music genre organization.

A genre is, by definition, "a style or category of art, music, or literature"” [37] or "a class
or category of artistic endeavor having a particular form, content, technique, or the like" [1].
Boundaries between multiple musical genres are not easy to describe. A music can be defined
using different criteria such as geographic places, history time, instruments used, etc. For in-
stance, while a certain music can be labeled as an "Indian Music" in Europe, it will, for sure,
not be recognized as "Indian Music" in India.

Although everyone understands music like an universal language, the labeling process is not
a simple problem. To solve it, most of the time an artist is associated to one musical genre. This
can be a possible solution although, is not a strong one. An artist does not have to follow the
same music references in his entire career, even a single album can mix multiple genres. So,
which line can we follow to associate a correct music genre with a song? Is there any global

music genre taxonomy followed by everyone?
1



Unfortunately, there is no such thing. Starting from the subjective definition of genre, cross-
ing culture differences and ending in human interpretations, a common music genre taxonomy
is very hard to achieve. One study related with this problematic is discussed in Section 2.2.1.
Despite this universal taxonomy non existence, almost everyone with more or less difficulty
has some music knowledge to classify a music by its genre, which is why we can find genre

classification in most of places that deal with music (stores, web-sites, etc.).

As mentioned above, digital music is now the most common way to listen to our favorite
songs. Beyond a wide range of music formats, we will highlight two in particular: Multime-
dia Content Description Interface (MPEG-7) and MPEG-1 Audio Layer 3 (MP3). Those two
formats have, between other functionalities, a specific way to deal with extra information rel-
ative to multimedia content. Next we will briefly explain why these formats are important in
dealing with music, and more precisely, why they gain a significant importance in music genre

classification.

MPEG-7 is a standard that has the purpose of describing multimedia content. It supports
information interpretations which can be read by many applications by simplified mechanisms.
This information enriches multimedia content to automatic systems but also to human users.
Metadata information follows a structure defined by a Description Definition Language (DDL).
DDL is a schema language to represent the results of modeling audiovisual data (descriptors
and description schemes). This structure definition is important to allow different applications
to manage multimedia information always following the same protocol. To keep metadata in-
formation attached with multimedia content, Extensible Markup Language (XML) is used. This
format brought a possibility to manage music information in a new approach. More information

about this multimedia standard can be found in [33].

MP3 is a widely used digital audio format. Such popularity is due to its power to compress
while maintaining a reasonable audio quality. MP3 reduces drastically the size of music files,
which become easy to manage, store and share. We will not deepen MP3 specifications but
an important source of information about this encoding algorithm can be found in [12]. There
is a particularity in those files that is important to highlight, each one is capable to store extra
information about music in different tags called ID3 tags. These tags contain information like
title, artist name, album, year, etc. In newer versions, advanced data can be found, such as
music lyric, album art or user comments. Once filled, most commonly used MP3 players are
able to present such properties during a reproduction. Generally, /D3 tags are filled manually

among digitalization process. Misinformation introduced at this stage can compromise search



processes results. A wrong decision made by a "tagger" can quickly spread over the network
and become hard to correct being often detected human errors in music genre classification. So
why don’t we try an automatic labeling process? Can this automation improve reliability in

genre classification?

An automatic classification based on good features and using a correct classification algo-
rithm may prevent the occurrence of errors related to manual labeling. As a consequence it
will raise information reliability, which will benefit music consumers and also industrial com-
panies. A perfect automatic classification is hard to achieve but we believe, based on related

work results, that it is possible to obtain good results in such task.

Our main goal is to create an audio indexing system which is able to respond to this classifi-
cation issue. An unsupervised automatic music genre classification is intend to be implemented
to organize a set of music by their genre only based in their audio properties. With an unsuper-
vised approach, new genres can be also classified since we do not restrict the number of genres
as a supervised model would do. For that, we propose a learning methodology for automatic
genre classification which is able to group several music samples by their music characteristics
(learning process). This intends to group the music samples into different clusters only based on
audio features and without any previous knowledge on the genre of the samples, and therefore
it follows an unsupervised methodology. In addition a Model-Based approach is followed to
generate clusters as we do not provide any information about the number of genres in the data
set. It would not be plausible to initially give the number of existing genres to our system, this
would be the complete opposite of our main goal, which is to identify the number of genres
represented in a music data set. Features are related with rhythm analysis, timbre, and melody,
among others. As these features represent a large number of dimensions, a redundancy reduc-
tion technique is necessary to reduce dimensionality of our extracted data. As a final result, we
will have several clusters composed by music samples which present identical audio properties.
These groups will be the result of our genre classification, which we can query to know which
musics are in a specific cluster or which musics have the same characteristics as our favorite

music, for instance.

With this first goal accomplished, we had our indexing problem solved. Then, after the
clustering process is completed, a music classification based on the previously created groups
makes sense. That way, we proposed ourselves to create a classification methodology to asso-
ciate a new test music to one of the previously created clusters. For that, Mahalanobis distance

is used to attempt to cluster shapes, volume and orientation (since music clusters tend to present
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dispersions along reference axes) when calculating distance between the submitted music and a
learned cluster. As result, the tested music will be associated with one of the existing clusters.

To test our work, we need a music database. The proposed learning method achieves a clus-
tering accuracy of 55% when the data set contains 11 different music genres: Blues, Classical,
Country, Disco, Fado, Hiphop, Jazz, Metal, Pop, Reggae and Rock. The clustering accuracy
improves significantly when the number of genres is reduced; with 4 genres (Classical, Fado,
Metal and Reggae), we obtain an accuracy of 100%. As for the classification process, 82% of
the submitted music samples were correctly classified.

We organize this document in 6 chapters: Introduction (Chapter 1), where we discuss the
aim of our project and present our motivations; Fundamental Concepts (Chapter 2), where
we introduce some sound fundamental concepts in Section 2.1, a discussion about music genre
recognition in Section 2.2, more precisely concerning genre taxonomy in Section 2.2.1 and au-
tomatic music genre recognition in Section 2.2.2; Methodology and State-of-the-art (Chap-
ter 3), where related work on automatic music genre recognition is discussed as well as different
methodologies that will be adopted in our solution. Section 3.1 introduces the main features
tested and explains some properties of those features; Section 3.2 presents the main classifica-
tion algorithms explored in sound classification; accuracy results are presented and discussed in
Section 3.3; an introduction to the redundancy reduction approach is discussed in Section 3.4;
and finally a discussion concerning the clustering problematic is shown in Section 3.5; My Con-
tribution (Chapter 4) will explain how the learning system (Section 4.1) and the classification
system (Section 4.2) are implemented; Results (Chapter 5) presents all the important results
and details about the submitted tests; and finally, Conclusion and Future Work (Chapter 6)
where we analyze our system accuracy as well as approach some possible improvements to the

implemented solution.



2 . Fundamental Concepts

This chapter introduces some fundamental aspects that, we believe, are important for music
genre recognition. Section 2.1 discusses basic knowledge about digital sound and Section 2.2
introduces the music genre recognition thematic with a reflection about genre taxonomy and the

main steps that have to be taken in order to achieve an automatic music genre categorization.

2.1 Sound

We live in an environment where the air has an important role in the propagation of signals.
Air molecules tend to move in a random direction. When an object vibrates, it triggers a move-
ment to the closest air molecules and forces them to follow the movement direction creating a
wave. This wave is then propagated in a spherical form. Once it arrives near the human ear,
the eardrum (tympanic membrane) receives these vibrations which are then transmitted to the
ear structures and may result in audible sound. More information about this topic can be found
in [46].

Joseph Fourier ! derived an important theorem which states that any vibration, including
sounds, can be resolved into a sum of sinusoidal vibrations, where each sinusoid corresponds to
a frequency component of the sound. The sum of sinusoidal vibrations is called Fourier Series.
Any sound can thus be represented by different sinusoids.

This section introduces and clarifies important concepts concerning sound analysis that can
be helpful to understand the developed work. Complementary explanations of those concepts
can be found in [2,3,13,32,46]. In the next Section 2.1.1 some concepts around digital sound

representation are discussed.

2.1.1 Digital Sound Representation

In Figure 2.1 we show a pendulum movement that is tracing a sinusoid, also called sine wave
(particular sinusoid with starting phase = 0°). This wave repeats infinitely the same movement
with identical periods (cycles of oscillation), and can easily be described as a continuous oscil-

latory movement characterized by three important aspects: amplitude, frequency and starting

1Jean Baptiste Joseph (1768-1830), Baron de Fourier French engineer, mathematician and physicist best known
for initiating the investigation of Fourier series and their application to problems of heat transfer.

5
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Figure 2.1: A swinging pendulum drawing a sinusoid (sine wave), from [3].
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Figure 2.2: A cycle of a sinusoid, with amplitude, phase and frequency, from [3].

phase (Figure 2.2).

Amplitude is often expressed in decibels (dB) and it refers to the amount of vibration dis-
placement. Frequency is the number of cycles that a sinusoid performs per second and is mea-
sured in Hertz (Hz). If a sinusoid completes 100 complete cycles in 1 second, then it has a
frequency of 100 Hz. Starting phase represents the point in the displacement cycle of a sinusoid
in which the sine wave starts. If the wave begins with a positive amplitude, starting phase must
be between 0° and 180° (0-r radians). Otherwise starting phase lies between 180° and 360°
(m-27 radians). The relationship between amplitude displacement and time can be described by
the following equation:

D(t) = Asin(2rft+6) (2.1)

where A is the maximum amplitude, f is a frequency measurement, ¢ is a time measure, 6
represents the starting phase and finally D() is the correspondent instantaneous amplitude of

the sinusoid at time .
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Figure 2.3: (a), (b) and (c) represent sinusoids with frequencies 500, 1500 and 2500 Hz re-
spectively and with initial phases 0, /2 and r respectively. Adding those three sine waves, the
result is a complex vibration (waveform) that is represented in (d).

As mentioned above, a vibration consists of a sum of one or more sinusoids. A vibration
that is composed by several sinusoids is called a complex vibration, although, if it consists of
only one sinusoid, it is a simple vibration. Figure 2.3.a-c shows three sinusoids with frequencies
500, 1500 and 2500 Hz respectively. In the bottom graph (Figure 2.3.d), a complex vibration is
plotted representing the sum of the sinusoids of 500, 1500 and 2500 Hz. The representation of
such sum is called waveform.

A mathematical procedure called Fourier Transform (FT), converts a waveform (time do-
main) into a spectrum (frequency domain). An efficient implementation of FT that uses discrete-
time signals is called Fast Fourier Transform (FFT). With this technique (FFT), the magnitude
spectrum and phase spectrum of a specific waveform can be obtained. Those two elements are
enough to totally define a waveform. The magnitude spectrum describes the maximum magni-
tude of each sinusoid whereas the phase spectrum represents the starting phase of each sinusoid,
both in a frequency-domain. Figure 2.4 shows how the waveform from Figure 2.3.d is portrayed
in a frequency-domain. The left graphic represents the amplitude spectrum whereas the right

one represents the phase spectrum.
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Figure 2.4: Magnitude spectrum and phase spectrum of the waveform in Figure 2.3.d, frequency
domain representations.

Sound may also be portrayed using another approach entitled spectrogram. While a spec-
trum is a 2D representation (frequency X magnitude) a spectrogram corresponds to a 3D graphic
(time x frequency X magnitude). A spectrogram illustrates the magnitude variation along time
and frequency. Figure 2.5 shows a spectrogram where higher magnitude values are expressed

in dark colors while light colors are intended for lower amplitude values.

The Short-Time Fourier Transform (STFT) uses FFT to compute the time-varying spectra
of the signal. The term short-time derives from a process called windowing process where an
input signal is divided into small segments with a specific time duration, usually between 1 ms
and 1 second. Figure 2.6 illustrates this process. Since a Hamming function, which is not a
rectangular function, is usually chosen to multiply with the signal segment (like illustrated in
Figure 2.6), there is a need to overlap those segments to avoid some loss of information. The
next step is to extract a magnitude and phase spectrum from each window using the FFT. Thus,

STFT gives us a representation of the time-spectral variation of the signal (Figure 2.5).

Three sound representation techniques were presented in this section: waveform, spectrum
and spectrogram. Those methods are used in sound analysis each one with a different purpose.
For instance, a spectrogram is better if we want to find a specific sound (instrument, voice,
etc.) in the middle of a music, while waveforms are useful when looking for a weak reflection
following a short sound, and a spectrum representation can be useful to observe the sound’s

fundamental frequency.
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2.2 Music Genre Recognition

2.2.1 Music Genre Taxonomy

In this section we discuss about music genre taxonomy trying to find some answers about
the boundaries that are, or are not, possible to specify. It is a subject that brings many questions
due to its subjectivity. In our best knowledge, only one article has been published concerning
music genre taxonomy.

F.Pachet and D.Cazaly brought some interesting information about the number of different
music taxonomies on the Internet [29]. They analyzed the classification methods of three dif-
ferent sources, which are all well known Internet music retailers (Amazonz, AllMusicGuide3
and MP3 web site*) and looked for similar structures between them. Those three taxonomies
presented huge differences concerning the treatment of relevant information like genealogical
hierarchies, geographical information, historical period, etc. and also how they are prepared to
receive a new genre. It was easily concluded that the skeletons were extremely different and
their combination would be an hard task. Yet, those taxonomies work perfectly when used by a
client that is searching for a specific music, the aim is accomplished with more or less effort.

An inconsistency appears when the data is exploited by software (for instance, search mech-
anism). To solve this problem, F.Pachet and D.Cazaly suggested a new method to create a genre
taxonomy following some basic criteria. They reduced considerably the number of different
genres applying a stronger connection between each one and introduced new descriptors (like
danceability, audience location, etc.). It is clear that a world taxonomy is hard to implement but

this solution can be a good starting point to develop an universal music genre classification.

2.2.2 Automatic Music Genre Recognition

Audio Signal Classification (ASC) is a research field that explores different areas such as
speech recognition, music transcription and recently speech/music discrimination. The aim of
ASC is to label an audio signal based on its audio features, i.e., with a computational analysis
of audio properties, to be able to identify to which class the analyzed signal belongs. Two main

steps are needed during this process: feature extraction and classification. As part of ASC,

Zhttp://www.amazon.com/
3http ://www.allMusic.com/
“http://www.mp3.com/
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music genre recognition also needs to follow these two steps.

2.2.2.1 Feature Extraction

Feature extraction is the first step in music genre recognition. This process is very important:
automatic genre recognition can only be successful if music samples from different genres are
separated in the space formed by the extracted features. When a set of music begins to be
analyzed, a lot of values are extracted from each single music, and from that point, these values
can be seen as the music files "lawyers". These values will represent each music during all the
genre recognition process and, from now one, all complementary information that we could
access, from a MP3 file or MPEG-7 file, will not be used. The importance of this process is
to guarantee that the values extracted will be enough to distinguish different music genres and
emphasize boundaries between different music styles.

A feature is, by definition, "a distinctive attribute or aspect" [37]. To better understand what
a feature is, we propose a simple exercise. Imagine that we want to know the average height
of a class. To obtain it, we will imperatively need to know the height of each student. Once
we have this information, we are able to use it for different purposes such as, average height,
maximum, minimum, etc. In this simple example, the feature used is human body height.

Features from audio signals can be related to dimensions of music as melody, harmony,
rhythm, timbre, etc. Two main feature groups can be set: computational features and perceptual
features. Those groups are exploited in Section 3.1 where most commonly used musical features

are described as well as articles in which those feature sets have been tested.

2.2.2.2 Classification

Once the features are extracted, the classification process is the next step. Basically, this
step will use the extracted values to define boundaries between different genres, and afterwards
it associates each music to one (or more) genre. Three distinct paradigms can be followed at this
stage, each one with their own properties: expert systems, unsupervised learning or supervised
learning. Before a decision about which paradigm is the right one do adopt, we need to study
their differences. The goal can be hit with any of these paradigms, but some are more useful to
solve our problem. Let us find out why.

Expert systems demand for a explicit set of rules, which in automatic genre classification

is very hard to achieve, if not impossible. As discussed before, a global genre taxonomy does
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not exist until now, and we believe that it is an utopia. In our best knowledge, not a single
experiment was done using this paradigm in genre classification.

Unsupervised learning is a completely different way to board the question. In this paradigm,
clusters are formed from a set of data, i.e., without any taxonomy or rule set, clusters are formed
from data based on some similarity measures. In genre classification, it can be very useful since
not requiring a taxonomy definition lowers the chances of having music samples that do not fit
in any genre. However, with such approach, the created groups may not follow an expected
human music genre taxonomy. That is a possible reason for the reduced number of studies in
genre classification using this approach. Some examples that use this approach are [31,35].

Supervised learning is the most used paradigm to classify music samples according to their
genre. Manually labeled data is required to train the system in a first stage. During this training
stage, relationships between features values and genres will be created. After this period, the
system is able to classify new unlabeled data based on the previous training. This paradigm
differs from the expert system paradigm since it does not need a complete genre taxonomy, it
only requires labeled data that will be used to automatically create the relationships between
the features and the categories. This technique is explored in [16-20,22,25-27,30, 38,42, 45].

These paradigms can be implemented using several algorithms. The most used algorithms
in music genre recognition are presented in 3.2. In the next chapter (Chapter 3) the state-of-the-
art is discussed. We also analyze results from published articles and methods for music genre

classification.



3. Methodology and State-of-the-art

In this chapter we present all the details concerning features extraction and the classification
process used in our implementation. Here we also present the state-of-the-art concerning auto-
matic music genre recognition and discuss about other features and algorithms used in this area.
As mentioned in Section 2.2.2, two main steps are needed in automatic genre recognition: fea-
ture extraction, which is discussed in Section 3.1, and classification, described in Section 3.2.
In Section 3.3, results from several studies are compared based on features and classification

used.

3.1 Feature Extraction for Automatic Music Genre Recognition

Feature extraction is the first process to be executed in automatic music genre recognition.
Next we describe all the features we have explored as well as some commonly known features
that are used in music genre recognition. We grouped the features into three distinct groups:
computational features, perceptual features and high-level features. We considered as com-
putational features (Section 3.1.1) the ones that does not present any musical meaning, they
only describe a mathematical analysis over a signal. In the opposite, perceptual features (Sec-
tion 3.1.2) represent, in some way, the perception that a human has listening to a music. Finally,
we also focus some features named as high-level features (Section 3.1.3) which are able to

represent a music event using a different perspective.

Before a more detailed description of each feature, it is important to note that some of these
feature sets have a very high dimensionality and it is more efficient to describe them with less
dimensions, always ensuring their "meaning". For this purpose, we use Statistical Spectrum
Descriptor (SSD) which consist in seven statistical descriptors: mean, median, variance, skew-
ness, kurtosis, min- and max-value [21]. Using these mathematical values, T.Lidy and A.Rauber
presented interesting results. With this representation, we drastically reduce the number of di-
mensions to seven ensuring that the main statistical properties of the analyzed feature set are
maintained. Whenever this property is calculated, we clarify over which set these statistics are
processed. These properties can limit the description of the analyzed features since they assume
a perfect Gaussian data representation although we choose to use these descriptors since they

already present interesting results.
13
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3.1.1 Computational Features

Computational features are extracted from digital audio signals but they do not assume a
musical meaning or are related to any human perceptual measure. These features are often used
in ASC and they can be important to discern between different musical genres. Many studies
on automatic music genre problematic use these type of features [11, 16-18, 18-20, 22, 23,27,
30,42,45].

A set of features called timbral texture features [42] handles with several feature sets com-
monly used. Timbral features is composed by: Spectral Centroid, Spectral Rolloff, Spec-
tral Flux, Zero-Crossing Rate (ZCR), Low Energy and Mel-Frequency Cepstral coeflicients
(MFCCs). The spectral properties can follow two different approaches, calculate values over
each window of a STFT (obtain a set of spectral values for each window) or they can be cal-
culated directly over an audio spectrum (and we only have one value for that music). Usually,
these values are calculated after a STFT. As long as we obtain a set of values with a significant
dimension, means and variances are calculated and used as another feature value. This two ad-
ditional properties represent the "behavior" of these spectral values. How do we calculate these

properties? Let us look in detail to each feature:

Spectral Centroid represents the "center of gravity" of the magnitude spectrum. Next we

present how the centroid is calculated:

B ZnNzl M;[n]=n
SN Miln]

where M;[n] is the magnitude at frame ¢ and frequency bin n.

Spectral Rolloff corresponds to the frequency R, which concentrates 85% of the magnitude

distribution below it.

R; N
ZM,[n] = ZMt[n] «0.85
n=1

n=1

Spectral Flux corresponds to the square difference between the normalized amplitudes of suc-

cessive spectral distributions.

N
Fi= ) (Nin] = Ni-1[n])®

n=1
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where N¢[n] and N;_i[n] are the normalized magnitude of the Fourier transform at the

current frame ¢, and the previous frame ¢ — 1, respectively.

ZCR represents the number of times the audio waveform crosses the zero axis per time unit:

1 N
Z,= 5 > Isign(xin)) = sign(xln—1])|
n=1

where the sign function is 1 for positive arguments and O for negative arguments and x[#]

denotes the time domain signal for frame 7.

Low Energy is the percentage of frames that have lower energy than the average energy over
the whole signal. It measures the amplitude distribution of the signal and can be a good
feature to distinguish between music genres. As an example, a music which presents long
silence periods will have a larger low-energy once compared to a music with few silence

periods. This feature is based on the analysis over the spectrogram of a sound.

MFCCs are one of the most popular set of features used in pattern recognition, particularly in
speech recognition. Based on the auditive human system model, it uses a Mel-frequency
scale to group the FFT bins. After a STFT transformation the log-based magnitude is
filtered by a triangular filter bank that is constructed based on 13 linearly-spaced filters
(133.33Hz between center frequencies). A 10 log base is calculated and a cosine trans-

formation is applied to reduce dimensionality.

Although this feature set is based on human perception analysis, we classify it as a com-
putational feature since it may not be understood as human perception of rhythm, pitch,
etc. It would be acceptable to classify the MFCCs as perceptual as they try to simulate

the human auditory perception based on the Mel scale.

As this audio feature is well known we do not discuss minutely each step of the extraction
process (please refer to [32] for further details). Instead of using the MFCCs directly,
we use the SSD of the MFCCs: once the extraction process is concluded, the SSD is
calculated to describe each coefficient. These are the values we use in the classification
process. Therefore, this results in a 7 dimension vector for each of the 13 coefficients.
Figure 3.1 shows the differences between the MFCCs from a sample from Classical

music and a sample from Metal, respectively.
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Figure 3.1: MFCC'’s feature from 2 music samples, Classical and Metal.

As mentioned above, these presented features were combined in a set called timbral texture
features in some previous works [16,20,22,42]. This set is used in many studies related with

automatic music genre classification.

G.Tzanetakis and P.Cook were the firsts to extract these features from several music files [42].
Later, T.Li and G.Tzanetakis presented a refinement of this article achieving, with the same
features but different classification algorithms, better accuracy results [20]. S.Lippens et al.
compared accuracies between human and automatic music genre classification also with tim-
bral texture features [22] and they conclude that the use of features derived from an auditory

model have similar performance with features based on MFCCs.

A. Koerich et al. also include these features in their study [16]. A particular difference
exists in their approach concerning the extraction of features. Features are not extracted from
the whole music file or from a single part of the music, they are extracted from three different
sections of the music file: begin, middle and end. A. Koerich’s team believes that this small
detail could make a difference when a music does not behave well in time, i.e., the amplitude
variation can be very high.

As described above, MFCCs are a particular feature that belongs to the timbral texture set.
M.McKinney combines low-level signal parameters (such as Spectral Centroid, Spectral Roloff,
ZCR, etc.) with MFCCs into a 36 and 52 features vectors respectively [27]. D.Pye tried two
distinct feature sets in his experience: MFCCs and MP3CEP [30] (the MP3CEP set will not

be explored in this document since it presents worst results than those obtained with MFCCs).
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T.Li and al. also exploit timbral features in their researches [18, 20].

Apart from the timbral texture features, there are also other useful computational features:

Root Mean Square (RMS) is an approximation of the volume/loudness value:

where N is the frame length, s, (i) denotes the amplitude of the ith sample in the nth frame.

Bandwidth is a energy-weighted standard deviation and it measures the frequency range of the
signal [11,23]:

Bl‘:

SN (C,—loga(n))2.M[n]
>N My[n]

B; is the bandwidth of frame ¢, with C; as the centroid and »n as a frequency bin.

Uniformity measures the similarity of the energy levels in the frequency bands [11,23]:

Mi[n] M,[n]
U;=- A
= S N Mln]

n=1 ~n=1

U, is the uniformity of frame 7.

While the features described so far were all explored in this work, there are many more
features that are not used by our classifier. Below we present some of those features that can
lead to good results in Music Information Retrieval (MIR).

C.Lee et al. extracted MFCCs features combined with two other feature sets [17]:

Octave-Based Spectral Contrast (OSC) represents the spectral properties of a music signal.
A spectral contrast can be defined over a spectral analysis, in which peaks and valleys

represent harmonic and non-harmonic components of the music respectively.

Normalized Audio Spectral Envelope (NASE) represents the power spectrum of each audio
frame which corresponds to the normalized square magnitude of each frequency sub-
band.
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C.Lee et al achieved good results with a classification algorithm based on modulation of

the spectral analysis of these feature sets.

Besides MFCCs features, C.Xu et al. considered another feature set called Linear Predic-
tion Coefficients (LPC) [45]:

LPC were settled based on the idea that a music can be approximated as a combination of past
music samples. A set of predictors can be determined minimizing the squared differences
between the actual music sample and the linear predictive ones. This feature is commonly

extracted for vocal music analysis.

Daubechies Wavelet Coefficient Histograms (DWCHs) was proposed by T.Li et al. and is
discussed here since it presents good results in automatic genre classification [18, 19]. In

summary, this feature set extraction presents the following steps:

1. Wavelet decomposition of the music signal;
2. Construction of a histogram of each subband;
3. Computation of the first three moments of all histograms;

4. Computation of the subband energy for each subband;

To illustrate the advantages of this feature set, Figure 3.2 shows DWCHs from ten differ-
ent music genres. In this figure we can see DWCHs features of ten music genres based in
G.Tzanetakis and P.Cook database with Blue, Classical, Country, Disco, Hip hop, Jazz,
Metal, Pop, Reggae and Rock music [3]. Analyzing the different graphics, we can see that
for each music type we have a different representation. For instance, Blues songs show
a very different DWCHs graphic from Pop or Rock. If DWCHs are capable to present
distinct values for each music genre, they can be very useful in automatic categorization

of music.

Besides distinct representations for each music genre, DWCHs also present similar fea-
tures inside a single music genre. Figure 3.3 shows DWCHs from ten blues songs and
all present a similar graphic representation. Thus, it may be possible to achieve a good

classification accuracy using this feature.
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Figure 3.2: DWCHs of 10 music signals in different genres. The feature representation of
different genres are mostly different from each other (from [19]).
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Figure 3.3: DWCHs of 10 blues songs. The feature representation are similar (from [19]).
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3.1.2 Perceptual Features

Perceptual features, unlike computational ones, have a musical meaning. They mathemat-
ically represent music properties based on the human hearing system. In genre classification,
those features gain more importance and are often used as they may simulate some properties
that a human would use to classify a music by its genre. Next, we will present the usually tested
features in automatic musical genre recognition and describe how they can be extracted from

digital audio signals.
Rhythmic Content (Beat)

The rhythmic content of a music can be important in genre recognition. Rhythm has not a
precise definition but it can be seen as a temporal description of music, i.e., it contains informa-
tion such as: the beat, the tempo, the regularity of the rhythm and time signature. This feature
set is obtained from the beat histogram analysis, which allows to explore the periodicities of the
signal.

The beat histogram is obtained by decomposition of a music signal using Wavelet Transform
(WT), an alternative technique to the STFT. From this decomposition, the envelopes of each
band are summed and the autocorrelation of the resulting function is calculated. Analyzing the
autocorrelation function, the peaks are accumulated into a beat histogram.

From this beat histogram, the usually meaningful information extracted is:

1. Relative amplitude (divided by the sum of amplitudes) of the first and second histogram
peak;

2. Ratio of the amplitude of the second peak divided by the amplitude of the first peak;
3. Periods of the first and second peak;

4. Overall sum of histogram;

A repetitive music will present strong beat spectrum peaks at the repetition times revealing
both tempo and relative strength of particular beats. Thus it can be used to distinguish between
two different kinds of rhythms at the same tempo.

G.Tzanetakis and P.Cook proposed a procedure to extract these features [42]. Figure 3.4

illustrates some of the results they obtained: four distinct beat histogram for four different
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music genres are presented where is perceptible the differences between each histogram. Other
studies also used this feature set [16, 18,19,22,45].

Rhythm Patterns

Rhythm Patterns (RP) are not a complete description of rhythm neither a total pitch de-

scriber [21]. This feature represents the loudness sensation for several frequency bands in a

time-invariant frequency representation. To obtain RP of one music some psycho-acoustic pro-

cessing steps are required, and once all transformations are completed, two distinct features
can be calculated: SSD and Rhythm Histogram (RH). First, let us start with the RP extraction

process. Below we explain the main steps required to obtain this feature.

1. A Short-Time Fourier Transformation is applied to the signal representation. A spectro-

gram is obtained (Figure 3.6a); (as default values, 512 samples windows are used with a

Hanning window function of 23ms and 50% overlap)

2. A Bark scale! is applied. The spectrogram is grouped using 24 critical bands. More
details in [47] (Figure 3.6b);

IBark scale is an absolute frequency scale which is a measure of critical-band number. In table 3.5 the Bark
Scale from Zwicker is plotted.
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lower center upper lower center upper

Bark (Hz) (Hz) (Hz) Bark (Hz) (Hz) (H2)
01 0 50 100 12-13 1720 1850 2000
1-2 100 150 200 13-14 2000 2150 2320
2-3 200 250 300 14~15 2320 2500 2700
34 300 350 400 15-16 2700 2900 3150
4-5 400 450 510 16-17 3150 3400 3700
56 510 570 630 17-18 3700 4000 4400
67 630 700 770 18-19 4400 4800 5300
78 770 840 G20 19-20 5300 5800 6400
89 920 1000 1080 20-21 6400 7000 7700
9-10 1080 1170 1270 21-22 7700 8500 9500
10-11 1270 1370 1480 22-23 9500 10500 12000
11-12 1480 1600 1720 23-24 12000 13500 15500

Figure 3.5: The Bark Scale (from [13]).

3. Transform the last spectrogram into a decibel scale (dB).
4. Compute loudness levels through equal-loudness coutours (Phon).
5. For each critical band, calculate the specific loudness sensation (Sone).

6. At this step, a new Fast Fourier Transform is applied to the Sone representation. This
new transformation presents a time-invariant representation of the 24 critical bands which
shows an amplitude modulation with respect to modulation frequencies that can be seen
as a rhythmic descriptor. As humans are not able to perceive rhythm beyond a range from

0 to 43Hz, the considered amplitude modulation is between 0 and 10Hz.

7. Weight modulation according to human hearing sensation and emphasizing distinctive

beats from the previous results.

As earlier mentioned, psycho-acoustic phenomena are incorporated in this analysis. In steps
2 to 5 and 7 some studied techniques involving human hearing system are incorporated to in-
crease accuracy results.

Once RP obtained, some properties can be computed as describers of those values.

After step 6 a SSD (Figure 3.7a and Figure 3.7c) feature set is calculated which is able to
describe the audio content according to the occurrence of beats or other rhythmic variation of
energy. For each one of the 24 bands, 7 statistical moments are calculated: mean, median,
variance, skewness, kurtosis, min- and max-value. The resulting feature set is a vector with 168
dimensions.

Unlike RP and SSD extraction, to obtain RH (Figure 3.7b and Figure 3.7d) features we do

not store information per critical band, rather, the magnitudes of all frequencies modulation
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Figure 3.6: Two firsts steps of the RP extraction for a Classical music. a) A spectrogram
representation. b) A spectrogram representation after a Bark Scale applied.

are summed up to reach a histogram of "rhythmic energy" per modulation frequency. This

histogram will present 60 dimensions which reflect frequency range between 0 and 10Hz.

Pitch Content (Melody, Harmony)

Pitch content features are used to describe melody and harmony of a music signal. The
extraction method can be simply explained and is based on various pitch detection techniques.
The main goal is to obtain a pitch histogram from where pitch content can be extracted.

Pitch histograms are obtained following four main steps:

1. Decompose the signal (FFT);
2. Obtain envelopes for each frequency band and sum them;
3. From that sum, obtain dominant peaks of the autocorrelation function;

4. Accumulate dominant peaks into pitch histograms;

A more precise explanation about pitch histogram can be found in [43]. Once the pitch his-
tograms are obtained, pitch content can be extracted and it typically includes the amplitudes and
periods of maximum peaks in the histogram, pitch intervals between the two most prominent

peaks and the overall sums of the histograms.
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Figure 3.7: Feature set used.

G.Tzanetakis et al. demonstrated how relevant the pitch content feature may be in genre
classification [43]. G.Tzanetakis and P.Cook also used this feature set [42] following a multip-
itch detection algorithm described by Tolonen and Karjalainen [40]. Later, T.Li and G.Tzanetakis
refined this work using the same features but with another classification method [20]. As men-
tioned before, some other papers related with automatic genre classification followed features
proposed by G.Tzanetakis and P.Cook being pitch content analyzed too in [16, 18, 19, 22].

This feature set is widely tested in automatic music genre classification and good accuracy
results are achieved when it is used. Music melody is an important property for labeling a music

by its musical genre therefore pitch content is often extracted.

3.1.3 High-Level Features

Digital audio data can be represented in two distinct form: with symbolic data and audio

data. The difference between them concerns the representation of the audio signal and how
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it is stored. Symbolic data, or "high-level" representation, stores musical events and parame-
ters while audio data, or "low-level" representation, encodes analog waves as digital samples.
Description features can be extracted from both types of representations.

C.McKay brought a different approach to genre classification [25,26]. He defined two types
of features, low-level features and high-level features that are extracted from these representa-
tions. Low-level features are based in signal-processing with no explicit musical meaning, e.g.,
ZCR, RMS, etc. while high-level features are characterized by having a musical meaning, based
on musical abstraction, e.g., tempo, meter, etc. Both features can be extracted from low-level
data. Still, a better accuracy is hit with high-level features when high-level data is used.

C.McKay tests high-level features using MIDI format, which is a high-level data representa-
tion. C.McKay explains the main advantages and disadvantages of using the MIDI format [26].
Some features commonly used in genre classification are unavailable in such format which
could reduce the average accuracy classification, although, since symbolic data was an unex-
ploited area concerning musical genre classification, C.McKay developed an application based
on high-level features that could bring a new focus into symbolic data representation. Some
important musical knowledge such as, precise note timing, voice and pitch are available which
opens a door to exploit those new features. At the end, this experience revealed that some losses

of usual information, as timbral content, could not be as significant as it may seem.

3.2 Classification Algorithms for Automatic Music Genre Recognition

After the feature extraction phase, we have now data that can be analyzed in the classifica-
tion process. Two different approaches can be adopted in music genre recognition: supervised
recognition and unsupervised recognition (see Section 2.2.2 for more details). Below, we de-
scribe the most commonly used algorithms in automatic music genre recognition. As we will

be able to see in this section, most of these algorithms follow a supervised approach.

K-Nearest Neighbor (KNN) is one of the most popular algorithms in instance-based learning.
It is based on the idea that there are high chances that a point belongs to the same class
as its closest neighbors. For a given test feature vector, the K nearest vectors are selected
(according to some distance measure, traditionally Euclidean distance) and the test vector
is labeled with the class that occurs more often within its neighbors. KNN is a non-

parametric classifier. This algorithm is very popular in automatic music genre recognition
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and it was used in [17-19,22,25,26,42,45]. A detailed explanation about KNN can be
found in [10].

Gaussian Mixture Models (GMM) is a widely used algorithm in music information retrieval
with the aim to model the distribution of different genres. For each genre we assume a
Probability Density Function (PDF) expressible as a mixture of a number of multidimen-
sional Gaussian distributions. The iterative Expectation Maximization (EM) algorithm
is typically used to estimate the parameters to each Gaussian component and the mix-
ture weight. This algorithm, compared with others, presented some interesting results in
several studies [17-19,22,30,42,45]

Hidden Markov Model (HMM) is widely used in speech recognition due to its capacity to
handle time series data. It is a double embedded stochastic process that handles two
distinct processes: one process is hidden and can only be observed over another stochastic
process (observable) which produces the time set of observations. This method can be
defined by its number of states, the transition probabilities between its states, the initial
state distribution and the observation symbol probability distribution. It can be used in

supervised systems [34,38] but also in unsupervised systems [35].

Linear Discriminant Analysis (LDA) aims to find the linear transformation that best discrim-
inates among classes. The classification is performed in the transformed space using some
metric (e.g. Euclidean distances). This classification algorithm presents one of the best
accuracy results known and it was used in several different articles [17-20]. An extensive

explanation of this algorithm can be found in [10].

Support Vector Machines (SVM) is a very popular binary classification method applied in
pattern recognition [44]. This algorithm intends to find a hyper plane that separates neg-
ative points from positive ones with a maximum margin. Initially designed for binary
classification, it can also be used to a multi-class classification applying different ap-
proaches such as pair-wise comparison, multi-class objective functions or one-versus the
rest. This algorithm is explored in [18-20,45].

Artificial Neural Networks (ANN) are composed by a large number of highly interconnected
processing elements (neurons) that work together to solve a problem. When first pro-
posed, this method was based on human biological learning system [28]. Music genre
classification can be done using this method [16, 25,26, 38].
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Below, in Section 3.3, results from different studies are presented. Different combinations
between features and classification algorithms are discussed.

3.3 Databases & Results

3.3.1 Supervised System Recognition

Now that the main features and classification algorithms were presented, it is time to dis-
cuss about the accuracy results that each analyzed article achieved. For that, we summarize
this information in Figure 3.8. It is important to notice that not all tests used the same mu-
sic databases, which reduces the possibility to compare results equally between all studies. To

highlight studies that shared the same music database, a blue background color is used in rows
number 2, 6, 10-12.



AUTHORS |\"EAR| KNN| GMM| HMM | LDA| NN ‘ SVM ‘ GS|TreeQ‘ Best result achieved with: Algorithm: Features: Nr. Musics | Nr. Genres
SUPERVISED SYSTEM RECOGNITION
1 A.Koerich,C.Poitevin 2005 95,97% NN (Multilayer Perceptran) Beat+Musical surface Features 414 2
2 | C.Lee, J. Shih, K.Yu, H.Lin | 2009 90,60% LDA MMFCC + MOSC + MNASE 1000 10 (100/genre)
3 C.McKay, I.Fujinaga 2000 98% (root) - 90% (leafs) KNN + NN [GA for feat.selection) High-Level {109} 950 3 (root) +9 (leaf)
4 C.Xuetal. 2003 93,14% SVM Beat+LPC+ZCR+MFCC+SpecPower 100 4
5 D.Pye 2000 92,00% GMM MFCC (energy terms + delta) 175 6
6 G.Tzanetakis,P.Cook 2002 61,00% GMM Timbre,Beat,Pitch 1000 10 (100/genre)
7 H.Soltau 1938 86,10% ETM-NN Analysis of Temporal Structures 360 L
8 | M.McKinney,J.Breebaart | 2003 74% (static&temporal features) GMM AFTE 188 7
9 S.Lippens et al. 2004 58,00% GS Beat,FFT,MFCC,Pitch 160 6
10 T.Li,G.Tzanetakis 2003 71,10% LDA Beat,FFT,MFCC,Pitch 1000 10 (100/genre)
11 T.Li,M.Ogihara,Q.Li 2003 78,50% SVM (one-versus-the-rest) DWCH 1000 10 (100/genre)
12 T.Li,Ogihara 2006 78,50% SWM (pari-wise) MECC+DWCHAFET 1000 10 {100/genre)
UNSUPERVISED SYSTEM RECOGNITION

13 X.Shao etal. [ 2004 | \ 89,00% \ HMM [ mhytmicsmrccepceDeltagace 50 a4

Figure 3.8: Summary of previous studies in automatic genre recognition. Each row represents one study and for each one we
present: authors, published year, algorithms tested, best accuracy result, algorithm used to achieve the best result, features
extracted to achieve the best result, number of music samples classified and number of different genres tested. There are
twelve studies that used a supervised approach while only one study used an unsupervised approach. Blue background is
used to specify the studies that used the same database (rows 2, 6, 10-12).
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Five distinct studies used the same database which contains ten musical genres (Blues, Clas-
sical, Country, Disco, Hip hop, Jazz, Metal, Pop, Reggae, and Rock) with one hundred excerpts
of music for each genre (rows 2, 6, 10-12). These excerpts of the data set were taken from
radio, compact disk, and MP3 compressed audio files. They were stored as 22 050 Hz, 16-bit,
mono audio files. An important effort was made to ensure that the musical sets truly represent
the corresponding musical genre [17-20,42].

In 2002, G.Tzanetakis and P.Cook created this database to exploit musical genre classifica-
tion of audio signals [42]. They achieved an accuracy of 61% combining timbre, beat and pitch
feature sets with a GMM classification algorithm. In 2003, T.Li and G.Tzanetakis, realized new
tests to this database with other classification methods [20]. They achieve a correct classifi-
cation result in 71,1% of the tested music using the LDA classification algorithm applied to a
feature set composed by beat, FFT, MFCCs and pitch content.

Also in 2003, T.Li et al. achieved an accuracy of 78,5% using DWCHs to classify music
with an SVM algorithm (one-versus-the-rest) [19]. In a later work, T.Li and Ogihara presented
more details and shown that DWCHs can achieve good classification results when combined
with FFT and MFCCs feature sets [18]. They also obtained a classification accuracy of 78,5%
although, it is reached with a pair-wise SVM algorithm. The information in these two articles
is contradictory. The presented results are exactly the same, not only the best accuracy, but the
confusion matrix is the same using different features and a different classification algorithm.
In the first article [19], we believe that some information is missing since the later article [18]
presents a different combination (SVM + DWCHs,MFCCs,FFT) that is more plausible (with
the same results).

In 2009, C.Lee et al. achieved really good results with the same database on long-term
modulation spectral analysis of spectral (OSC and NASE) and cepstral (MFCCs) features [17].
Their best accuracy is 90,6% achieved using LDA classification algorithm.

These five studies apply several combinations of features and classification algorithms to
obtain the better accuracy possible. It is clear that the results have improved along the years
and now an accuracy rate of 90,6% has been achieved. Although, other studies with better
performances are reported in the past years, a direct comparison should not be made since those
studies tested different databases.

A.Koerich and C.Poitevin had a 1000 music titles database for a total of about 50 hours
of music. From those titles, 414 samples were randomly selected as data set. These samples

represent 2 distinct classes (genres): classical and rock. They achieved an accuracy of 95%
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classifying beat-related features and musical surface features (spectral centroid, flux, etc.) with
an ANN (Multilayer Perceptron Neural Network) [16].

C.McKay and I.Fujinaga use high-level musical features [25]. For this, they use a different
digital format, MIDI. Their music database contains 900 MIDI records and the basic taxonomy
includes 3 main genres that are part of the "root genre". 9 other musical genres derive from
those 3 root classes. An accuracy of 98% in "root" correct classification and 90% in "leaf"
was obtained combining two classification methods (KNN and ANN) to classify 109 high-level
features. Those features are detailed in McKay thesis [26].

C.Xu et al. employ a data set with 100 music samples collected from music CDs and the
Internet [45]. This data set contains music from different genres as Classic, Jazz, Pop and
Rock. Only 15 titles from each genre were used as training samples. An accuracy of 93%
was achieved combining several feature sets (beat spectrum, LPC, ZCR, spectrum power and
MEFCCs) classified with a SVM.

D.Pye’s database contains 175 samples representing 6 different musical genres, Blues, easy
listening, Classical, Opera, Dance and Indie Rock [30]. Musics were split evenly between
the training and test sets. By extracting an MFCCs feature set and classifying with a GMM

algorithm, D.Pye achieved an accuracy of 92%.

H.Soltau et al. had a database composed by 3 hours of audio data for four categories:
Rock, Pop, Techno and Classic [38]. They achieved a recognition rate of 86,1% using their Ex-
plicit Time Modeling with Neural Networks (ETM-NN) approach that combines discriminative

power of neural networks with a direct modeling of temporal structures.

M.McKinney and J.Breebaart classified 7 different musical genres (Jazz, Folk, Electronica,
R&B, Rock, Reggae and Vocal) with a total of 188 samples [27]. An accuracy rate of 74%
was achieved using Auditory Filterbank Temporal Envelopes (AFTE), classified by a GMM

algorithm.

S.Lippens et al. studied music genre classification on a 160 music database considering dif-
ferent music genres: classical, dance, pop, rap, rock and "other tracks" [22]. With this database,
the best accuracy rate was 58%. This can be compared with a human classification study that
achieved 76% classification accuracy. They extracted the same feature set as that used in [42]
by G.Tzanetakis in addition to a feature that explored the use of an auditory model. The classi-

fication method tested in this article that achieved better results is Simple Gaussian (GS).



31
3.3.2 Unsupervised System Recognition

X.Shao et al. presented a study using unsupervised classification for music genre recog-
nition [35]. They achieved an accuracy rate of 89% with a 50 music database that represents
4 distinct musical genres (Pop, Country, Jazz and Classic). Rhythmic content, MFCCs, LPC
and delta and acceleration (improvements in feature extraction) were applied to a classification
performed by a HMM. However, a quite detailed confusion matrix is presented with a perfect
accuracy results in Classical music recognition (100%). The worst results are achieved with
the Jazz recognition process, only reaching 76% success. Jazz samples were assumed as Pop
music 20% of times. The presented accuracy results allow us to conclude that this unsupervised
approach can benefit automatic genre classification since there is no need to previously label a
data set to obtain good results in music genre recognition.

A Rauber et al. applied a Growing Hierarchical Self-Organizing Map (GHSOM) (which is
a popular unsupervised ANN) to classify psycho-acoustic features (loudness and rhythm) ob-
taining a hierarchical structuring music tree [31]. They tested their implementation with two
distinct music databases, one with 77 samples and another with 359. They presented no con-
fusion matrix or accuracy results although, an analysis of each created cluster is made looking
at the grouped samples. Their results are encouraging despite the few features extracted. It is
noticeable that music samples belonging to the same cluster present similar rhythms and "sound
styles" for human perception. It is also interesting to notice that music from a single band can
fall into several clusters, which reveals a plurality of music genres within a music band. Un-
fortunately, no confusion matrix has been presented turning a comparison with other discussed

studies impossible, that is why this paper is not included in Figure 3.8.

3.4 Redundancy Reduction

Principal Component Analysis (PCA) is one of the most popular techniques used to reduce
the dimensionality of a data set. In this section, our goal is to provide a simple explanation of
this technique and discuss some details that we consider important to understand why we use
this algorithm. A detailed study about this statistical tool can be found in [24,39].

A huge data set, represented in a space with several dimensions, can be hard to work with for
several reasons, including those related to machine resources, that is, computational limitations.

PCA can be used to reduce the dimensionality of the data set and therefore preparing it for
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a computationally easier analysis. PCA is able to reduce the dimensionality of the data by
decreasing the data redundancy and not considering the less informative dimensions (that is,
dimensions with very low variability). Reduction of dimensionality by PCA is obtained when
a high correlation between variables can indicate a huge redundancy in the data. Usually, a
high variance in some variables reveals the most important dimensions. While doing this, PCA

compresses the data and filters some noise from the data.

Algebraically, PCA returns the basis functions, or axis, of a new space where the data is
now represented. These axis are linear combinations of the initial variables (that is, the initial
attributes or axis of the initial space). These axis are the uncorrelated final attributes which are
presented in a matrix, ordered by descending variances of their values, from the matrix leftmost
to the rightmost columns [15]. Since global information is mostly concentrated on the leftmost

columns of that matrix, usually, only the first few columns are used to describe the initial data.

3.5 Clustering Problematic

A clustering or grouping process can follow several ways pursuing one common goal: create
clusters based on a data set. We will approach two different solutions for such problematic in

this section: Partitioning grouping (Section 3.5.1) and Model-Based grouping (Section 3.5.2).

3.5.1 Partitioning Group

In this family we can highlight two commonly known algorithms: k-means and k-medoids
(details in [14]). Once applied to a data set, they both return as result k clusters. This number
(k) has to be given by the user.

In k-means, a cluster is represented by the centroid of its elements. The algorithm attempts
to find a cluster combination such that it maximizes the similarity between each element (music,
document, etc.) and the centroid of its belonging group. In the other hand, in k-medoids a cluster
is represented by one element chosen by the algorithm. Essentially, these two algorithms differ
in such a way that while k-means gives an equal weight to each element of a cluster to get the

centroid, k-medoids tends to ignore the outliers from a cluster.

Another peculiarity concerning these algorithms is the use of the Euclidean or Manhattan

distance which confine clusters to have an equal hyper-sphere volume. Neither variances nor
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covariances have an important role in the cluster creation which implies the uniform volume to
all clusters. Nonetheless, clusters do not always present a hyper-spherical volume, as it can be
seen in [7].

Since, the number of clusters must be set a priori by the user and clusters can present non-
spherical volumes, we do not use this approach in our solution. As it will be seen later (Sec-
tion 3.5.2) in order to allow non-spherical volumes, we opted for a different kind of distance
measure in our solution, and we also do not set the number of clusters a priori to let the al-
gorithm find the most appropriate number of clusters. As already mentioned in Chapter 1 our
goal is to find the number of clusters of a music data set without any initial information besides
the music samples. With a partitioning group model, we would be forced to initially define
the number of groups that we wanted to create. However, we would like that this information

(number of groups) would be automatically given by our implementation.

3.5.2 Model-Based Group
The Model-Based approach aims to answer two distinct questions:
e Which is the more accurate configuration for each cluster?
e How many clusters must be created?

Just like in the partitioning approach, the model-based approach aims to create clusters
based on an initial data set, although, it does not know the number of clusters, nor their shape
or orientation in a restrict dimension space.

Based on this model, C.Fraley and A.E.Raftery [7] developed a Model-Based Clustering
Analysis (MBCA) in which they represent the data by several models. Each model is composed
by some clusters and presents different geometric properties from the other models. As we will
see in more detail later, a configuration model-number_of _clusters more plausible is suggested
for each initial data set.

Groups are merged combining the EM algorithm to use a maximum-likelihood criterion
and a hierarchical clustering algorithm (see [7] for details). This methodology is based on

multivariate normal distributions (Gausians). Thus, the density function has the form:

e(—%(xi—#c)TZZl (xi—tc))
Je(xilpe, Xe) =

R (3.1)
(2r)z[Xc[?
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Y. (model) | Distribution | Volume Shape Orientation | Ref.

Al Spherical equal equal NA El
Al Spherical | variable  equal NA VI
ADADT Ellipsoidal equal equal equal EEE

A.D.A.DT | Ellipsoidal | variable variable  variable | VVV
AD.ADT | Ellipsoidal | equal  equal variable | EVE
A.D.ADT | Ellipsoidal | variable equal variable | VEV

Table 3.1: Parameterization of matrix X, in the Gaussian model and their geometric interpreta-
tion.

where x; is an object that belongs to group ¢ which is centered in .. Each group has an ellipsoid
volume. Covariance matrix X is responsible for the geometric property of each group, which is

why different models result from different parameterizations of its eigenvalues decomposition:
Y. = A.D.ADL, (3.2)

where D, is the orthogonal matrix of eigenvectors which determine the orientation of the axis;
A, is a diagonal matrix whose elements are proportional to the eigenvalues of X., and which
determine the shape of the ellipsoid; and the volume is defined by the scalar A.. That way, shape,
orientation and volume of clusters can be allowed to vary between them, or be constrained to

be the same for all groups.

In Table 3.1 we can find several models explored by the MBCA algorithm. By analyzing
this table we can see that one of the considered strategy matches with the k-means specification,
using Euclidean or Manhattan distances which generate hyper-spherical clusters with the same
volume for all clusters (X, = Al); the £, = A.I model, groups are hyper-spherical although their
volume can be variable; with the . = ADADT , all groups have an ellipsoidal volume and present
the same shape and orientation; the X, = /ICDCACDCT model is the least restrictive model in which
shape, volume and orientation can differ in all groups; with £, = AD.AD, only the orientation

can change between groups; lastly, when X, = A.D.AD all groups present the same shape;

Once all models are created, there is a need to compare them and choose which one is the
most accurate. MBCA provides a Bayesian Information Criterion (BIC), that is a measure to
compare each pair (model-nr_of_clusters) using Bayes factor. A simply comparison is made

and the larger the value of BIC, the stronger the evidence for the model. With this technique,
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the most reliable model will be chosen and consequently, the number of clusters is defined based

on such choice.

As a multi-oriented technique, this approach can be used in several areas. Some interesting
results can be seen in [4, 5] concerning document clustering. This algorithm fits perfectly our
solution. With MBCA we will be able to, after a feature extraction process, attribute a correct
cluster to each music from the data set without any a priori information on the number of
clusters. Therefore, MBCA will provide us a finite number of clusters and will tell us which

music belongs to each cluster (that is exactly what we were looking for!).

3.6 Conclusion

In this chapter we presented the most relevant and commonly used features in music genre
recognition as well as the most studied classification algorithms used for the same purpose.
As mentioned above, supervised recognition has much more documentation related to genre

classification than unsupervised recognition.

In supervised systems, the high number of studies published until now demonstrates a
clearly improvement in accuracy results along the past years. Once again, it is important to
understand that results achieved from one study can only be compared with another one if both
use the same music database. As mentioned before, five studies based their implementation in
the same database, and from those studies, the best accuracy achieved was 90,6% extracting
MEFCCs, OSC and NASE features [17]. A spectral modulation analysis of each feature set was
applied and classification was performed by a LDA algorithm. This accuracy was achieved in a

1000 music database representing 10 different genres.

Concerning unsupervised systems, a fair comparison between studies may be not done since
we do not have enough detailed information from the two analyzed papers, however, an encour-
aging accuracy of 89% was achieved using this approach with few features, which is a very good
indicator from the potential that this method can achieve in automatic music genre recognition.

In a global analysis, we can highlight that in several studies some feature sets are usually
present, such as: beat, pitch, timbre. This is not surprising. A human can easily distinguish a
music genre based on some properties as: the music rhythm (beat content), different types of
sounds, instruments heard (timbre) and music melody (pitch). Another very popular feature set

used is MFCC:s since it is based on the human auditory model.
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In this chapter we also introduce the redundancy reduction problematic. A PCA based
technique is adopted to reduce the dimensionality of our data (Section 3.4 explains the main
ideas behind such technique).

Finally, we approach the clustering problematic analyzing two different models: Partitioning
Group (Section 3.5.1) and Model-Based Group (Section 3.5.2). We discuss the main differences
between each methodology and explain why we follow a Model-Based approach. Also in that

section, we introduce the Model-Based algorithm adopted.



4 . My Contribution

Now that all the important concepts concerning our problem were introduced, this chapter
will present a detailed explanation of the proposed solution. There are two main goals on this
implementation: on the one hand, we want to cluster music samples (from the training data)
according to their genre, and, on the other hand, we want to be able to classify new (test) music
samples. Clustering music is a learning process which is able to organize them according to
their audio features. Once the clustering is done, the classification of new test samples is done
according to the clusters learned during the learning phase. This chapter is organized in two
sections: one that explores how clustering of the training samples is done (Section 4.1) and

another that discussed the classification of the test samples (Section 4.2).

4.1 Learning Process

The learning process aims to organize several music samples into clusters without any initial
information besides the feature set values of these samples. Let us try to clarify the reader
about which steps are needed in the learning process. Figure 4.1 plots the system organization
where different transformation steps and data representation can be clearly identified. To easily
understand how it works, we will follow the sequence shown in the referred figure and explain
it step-by-step. We use rectangles for input/output values while ovals represent computation

processes.

1) The system extracts several features (previously selected) from the music samples in the data

set;

2) As a result of step 1 we have a data set matrix (M) in which each line characterizes one

music sample while columns represent a specific feature;

mi mp2 -0 MLF
mpy mzp 0 MQF

= b
myi1 my2 -+ MNF

where my, r is the value of the fth feature for music sample m.
37
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Figure 4.1: Learning process illustration where rectangles represent data (vectors or matrices)

while oval boxes are used for transformations/processes.

3) Once our data set matrix is obtained, some transformations need to be performed.

(a) Standardization - This process aims to scale each feature (that is, each column of
the data set matrix M) such that the features have equal variances (i.e., importance).

For this purpose, it creates a new matrix T that has the same dimension as matrix

M.
i tp -+ NHF
3 1 bp - bF
IN1 IN2 - INF

where 1,, s stands for the value of the standardized value of music m for feature f.

To calculate each new cell of T we apply the equation below:

My, f —mean(m_y)

1 = s
mf \var(m_y)

4.1)
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where m_y is the fth column of matrix M. Variance is obtained from:

N
1
var(m_y) = N ;(mi,f — mean(m,’f))z, 4.2)
and the mean from
1 N
mean(m _y) = N FZ] mi f, 4.3)

where N is the number of music samples.

Correlation Matrix - At this step, matrix S (the similarity matrix) is calculated from
matrix T. S presents different dimensions from T. Since it is a correlation matrix,
S is a symmetric matrix, where the number of lines and columns is the number of
music samples in the data set. Each cell of this matrix represents the similarity
between two music samples. With such similarity matrix, it is expected that music
titles which belongs to the same genre present, higher correlation values between
them. Based on the T matrix we next present the calculation of the similarity for a

generic cell of this matrix:

cov(i, j)
Sij = — —, (4.4)
Veov(i, i) * Jcov(], J)
where i and j refer to music samples. S can be seen as:
St S12 ot SIN
$2,1 §22 0 S2N
S .
SN SN2ttt SNN
The covariance between samples, cov(i, j), is obtained based on the equation:
1 &
cov(i, )= 7 JZ;”"’ F—t) i —15], (4.5)

where F is the number of features used (that is, the number of columns in M and T)

and #; _is the ith line of matrix T.
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Figure 4.2: Similarity matrix from 165 music titles (11 different genres).

Figure 4.2 plots an image of correlation matrix S for 165 music samples (from 11
different genres). The symmetry of the matrix can easily been confirmed in the
figure. The color spectrum in the figure goes from dark blue (for lower values) to
red (for higher values) and brown (for the highest value, which is 1): the diagonal

(brown) has the maximum correlation value (1).

This similarity matrix can be seen as representing a set of music samples by a spe-
cial set of attributes: where each attribute characterizes the similarity of the music

sample to another music sample in the data set.

PCA - Now that our similarity matrix is calculated, it is important to built a matrix
where objects are characterized by a reduced number of final attributes, so it can
be submitted to a classification algorithm. Since the number of samples in the data
set is usually high, the similarity matrix S usually has a high number of features
(i.e., attributes). Therefore, there is a need to reduce the number of features (that is
the dimensionality of the data). In the example given in Figure 4.2, there are 165
attributes, which are too many attributes to characterize the same number of objects.

A technique based on PCA will be used to reduce dimensionality.

Matrix S may be seen as a representation of several music samples characterized by

a set of attributes and, since it presents strong correlations between dimensions, a
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reduction in dimensionality can be applied such that we ensure that the main data
properties are maintained. As a symmetric matrix, S can be described as S = PAPT
with P orthogonal (P = [ey, ..., e, ] is the matrix of normalized eigenvectors of S) and
A diagonal (more details in [15]). In A we have the eigenvalues of S Ay,...,4> such
that A; > 1> > ... > 4, > 0. Since A is symmetric, A = A'/?A!/2 and A'/? = (AV/%)T

SO:

S = PAI/ZAI/ZPT — PAI/Z(AI/Z)TPT — PAI/Z(PAI/Z)T — QQT, (46)

where
Q =PA!2, (4.7)

The lines in matrix Q represent the music samples while the columns represent new

uncorrelated attributes. See [6] for details about this PCA-based technique.

In order to obtain matrices P and A, we used the Matlab function named PCACOV.
Once the axes of the new space are calculated, a decision concerning the number of
dimensions (columns of Q matrix) to use, needs to be made. There are two known
criteria: one is selecting the first k columns of this matrix such that those k& columns
contain at least 95% of the total variance given by all columns; the other criterion
is based on rejecting the columns for which the corresponding variance (given by
cells in A) is lower than 1. We used this second criterion as it provided a more
reduced number of columns. With this technique, we were able to drastically reduce
our matrix dimensionality from 165 to 7 dimensions with the data set mentioned
above. In other words, we have obtained a new matrix R which is a copy of the
7 leftmost columns of matrix Q. This way we built a k-dimension space in which
music samples will be represented. Now, we are able to submit the resulting matrix

R to the clustering stage as well as to the classification algorithm.

4) Clustering using MBCA - We adopted MBCA to perform clustering. As it was mentioned
in section 3.5.2, MBCA does not need to initially know how many clusters exist as well

as their characteristics (shape, volume and orientation).

We use the MCLUST package [8,9], developed in R! for that purpose (as our system is

IR is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety
of UNIX platforms, Windows and MacOS. More details in http://www.r-project.org/.
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developed in Matlab, an integration was required to use this package). Once configured,
the mclust function is called with matrix R as input. The result obtained is a vector which

tells us which music sample belongs to which group (cluster).

5) Once all the previous steps are concluded, the final result is a vector with the group id for
each one of the submitted samples. That way, we are able to organize our clusters and

identify which music belongs to which cluster.

As it turned out, this approach suits our goal. In this learning/training process, by combining
the techniques discussed above, we do achieve an audio indexing system which is able to group
music files only based on some audio features. So, after this learning phase, it is possible
to query the system in order to know which group is associated to a given music (provided
the music is in the data set), as well as what are the other samples of the same cluster. This
clustering process answers our initially proposed problem, to create an audio indexing solution
based on music genre classification (Chapter 1). Later, we will analyze some results in order to
know how accurate this system can be (Chapter 5).

Even though initially we only proposed to develop a musical genre indexing system that was
able to index the music samples in a data set, as we believed that we could upgrade this system,
we actually went further and developed an extension to this unsupervised clustering approach:
once clusters have been built, a classification process might be developed in order to classify
new test music samples according to what was learned in the learning phase. We present the

details of this classification process in next section (Section 4.2).

4.2 Classification Process

In this section we explain how we are able to classify a music sample (not included in the
training set) after the learning process has been completed. An illustration of the main steps
of such a classification system is plotted in Figure 4.3 and discussed below. It is important to
mention that this process is not autonomous from the clustering process (Section 4.1) since it
needs to use some results obtained from the PCA-based technique previously processed, as well
as the T matrix generated in the clustering phase.

Let us explore, in more detail, each step of this system. To easily understand how it works,

we will follow the sequence shown in Figure 4.3 and explain it step-by-step. In the figure we
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Figure 4.3: Classification process illustration where rectangles represent data (vectors or matri-
ces) while oval boxes are used for transformations/processes.

use rectangles for input/output values while ovals represent computation processes.

1) Based on a new music sample w, the same initial feature set as that extracted in the learning
process will be here used to characterize the music (just one at a time) we want to classify.

This extraction follows exactly the same steps adopted during the clusters creation.

2) The previous step outputs a vector (with as many dimensions as the number of extracted
features) where each cell contains the value for one of the features for music w. We
call this vector c¢,,, where C?VT = [cw,fi>--»Cw,fr]. Each cell of vector ¢,y represents the
value of one feature in the range fi,..., fr of music w. If you remember matrix M (from
Figure 4.1), it is nothing else than a matrix in which each line is a music representation

as vector ¢,,.

3) Vector ¢, needs to be transformed into a new vector that represents music w in the k-

dimensional space built in the clustering process.
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Some values obtained during the learning phase need to be used to process the next few

steps, which transform vector ¢y, into the new vector:

(a)

(b)

()

Standardize ¢y, - As it was done in the learning phase, this transformation aims to
set equal variances (importance) and scale to each column (feature) of the vector ¢,.
Despite ¢, had only one value for each feature, standardization will be processed ac-
cording with all the other music features extracted during the learning phase. Thus,
it creates a new vector d:v that has the same dimension as ¢,,. To standardize c¢,,,
means and standard deviation calculated during the learning process are loaded and
integrated such that each cell of the new d:v vector is obtained with an equation

similar to equation 4.1 used above:

Cw,f, —mean(m_r,)

dy.f = ,
Wl \var(m_ )

where mean and variance results from equation 4.3 and 4.2 respectively. Vector dyy

(4.8)

>T
can be represented as dy, = [dy,f;,...,dw, fr -

Standardize d:v - The next step aims to calculate a similarity vector between music
w and all the training set. For that, we could use equation 4.4 which is a calculation
of a correlation. However, since a correlation using non-standardized variables is
equivalent to a covariance using the standardization of those variables, for reasons
of computational weight, we followed this last option to get the same results. So,
once we have vector d,,, the referred standardization has to be computed to obtain a
new vector yfvT = [Yw,fys--»Yw,fr]- It uses mean and standard deviation of d_v)v, such

that each cell is given by:

dy, f, —mean(d,,.)

Yw.fi =
el \var(d,,)

4.9)

Calculate Similarity Vector b:v - In order to obtain a similarity vector, we need the
information given by the similarity matrix S, which may also be given by another
matrix Z — later, in this section, we will prove the need of this matrix — such that
each column of Z is a vector z,,, where z?,,T = [Zm,f;»---»Zm, f] TEPLESENtSs the training

set sample m using standardized values. In other words, each of these standardized
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values z, 1, is calculated by:

I, f;, — mean(ty,)

\var(t,.)

(4.10)

vafi =

where 1,, 7 is given by 4.1.

At this step we do need to relate our music w, now represented by yy,, with the
samples analyzed during the learning process, that is the training set samples. To do
that, vector by, represents the similarity vector between y,, and each sample in the
training set:

g =L wrz @.11)
F-1

where F is the number of features extracted.

4) PCA - Now, by using the information obtained by the PCA-based technique from Sec-
tion 4.1, that is with A and P, which reflect the uncorrelated dimensions of the training

space, we can translate the music w, by using similarity vector by, iNtO @ VECLOT 1i)):
T 1
iy, = [ty 1 eons thy ] = by PAT2 (4.12)

where N is the number of samples used in the learning phase. As focused in Section 4.1,
with the data set we used to test our approach we only use k = 7 dimensions, so only the
k leftmost cells of u,, will be used to obtain a final vector vy, that represents music w in

the k-dimensional space built in the clustering process. In other words

Vv = [V 15 o0 Vw k] Where vy, ; = uy,; fori=1,....k (4.13)
Next we will prove why Vis the translation of music w in the k-dimensional learned space.

Proof. Let us suppose we want to classify a sound, say the first music of the training set,

which is available in Z7, the first column of matrix Z. So by:

->T 1 T
by = s/ 4.14
1 =54 (4.14)

. T
being zi' =[z1.1,...,21,F] then



46

LT
bi =I[s1,1,....51.n] (4.15)

where

F
1
S1j= = Y 20z (4.16)
F-1 —

notice that, by statistics theory, equation 4.16 and equation 4.4 are similar since s; ; in
equation 4.4 is a correlation using non-standardized values, and s; ; in equation 4.16 is a

covariance using the standardization of those values.

Then, in order to simplify this proof, let us suppose that we wanted to classify not just
one music from the training set, but the whole training set. Then it is easy to conclude
that: .

B= mZTZ (4.17)
B would be obtained instead of 5] in equation 4.15. Note that B = S because it contains
the similarity vectors between each training set music and the other music samples of the

same data set.

Now let us work with the entire S as if we wanted to translate all training sounds in vectors

in the k-dimension space. Then, from 4.12 we would obtain
A =SPA 12 =SPA~IAL2 (4.18)
but since PTP = I (where I is the identity matrix) and S = PAPT, then

A = PAPTPAIALZ — PAATIAL2 — pAl/2 (4.19)

But PA!/2 = QQ, the matrix characterizing all sounds by the PCA-based method presented
before (see equation 4.7). Since we used a copy of the whole training set for classification

instead of just one music, we obtained a matrix (Q) instead of a vector u].

Then, choosing the k = 7 leftmost columns of this matrix we would obtain the R referred

in Section 4.1, which is the matrix reflecting the whole training set in the k-dimensions
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space. By this, we proved that vy, in equation 4.13 reflects the music we wanted to classify
in the k-dimensions clustering space built in the training phase. O

5) Mahalanobis Distance - We are almost there! Now that we have our music w represented
in the same k dimensions from the learned space, somehow we need to relate the created
clusters with our vector vy,. Mahalanobis distance was adopted for this purpose since it
takes into account the geometric properties of each cluster, which is very important be-
cause distances take different impact depending on the dispersions along each axis [15].
This characteristic is not achieved when using other metrics such as Euclidean or Man-
hattan distances. With this distance calculated between each cluster centroid and our
music sample (vector vy,), the system proposes the class represented by the cluster having
a smaller Mahalanobis distance as the most likely class for music w. In other words, class
p will be associated to vy, if D(v}’v,u},}:p_l) = minD(v;’V,/fi,Ei_l) where D(v;,, (5, Zi 1) is
given by: l

DO i, B = 0 =) Zi 0 — ) (4.20)

where v, corresponds to the new vector to be classified; 4; is the centroid concerning all
samples that belongs to a specific cluster index i with ;= [y;_j,..., i ;] with k dimensions
and y; ; = @ 20eG; gl Where g refers to a music sample of the cluster (group) G; and
|l G; || is the size of that cluster, r,; is the value of the music g for axis / which is available
from matrix R calculated in the training phase (see section 4.1, step 3.c). So, /7 represents,

say, an average music sample of cluster i; X;~! is the inverse matrix of:

Dil,l Dil,z Dil,k
¥ = Dl:2,1 Dl"z,z Diz,k
Dik,l Dik,z Dik,k
and, |
Dil,m =N A~ 1 Z (rgsl _:ui.,l)'(rg,m _:ui.,m) . (421)
1GI-1" &

This matrix reflects the geometric properties of the cloud made by cluster i in the k-
dimension space. So, each cell measures: the variance of the values along an axis; or the

covariance reflecting the correlation/dependence of the values along a pair of axes.
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It is important to notice that most calculations needed in the classification phase, can be
done just once in the training phase which improves the classification performance. For

instance, the clusters’ centroid can be calculated in the learning process.

4.3 Conclusion

In this chapter we presented all details of our unsupervised automatic music genre recogni-
tion system: Section 4.1 presents the learning system and explains its 3 main steps: 1) Feature
Extraction; 2) Matrix Transformations; 3) Classification. Once these steps are concluded, a vec-
tor containing cluster indexes is obtained. Each music from the initial data set is associated with
one, and only one, cluster. Section 4.2 explains a second stage, to classify a new test sample
according with the previous clusters. This system is probably more complex than the previous
one but it does not deal with a higher complexity, on the opposite, it was developed to quickly
answer to a new query. In the next chapter (Chapter 5), we present the results obtained with our

clustering and classification system.



5. Results

This chapter presents all the results obtained from our system. Many test were performed
and we discuss them next. We start mentioning which data set was used in our test (Section 5.1)

and then, the most relevant figures are shown and analyzed (Section 5.2).

5.1 Data Collection and Validation

It is important to remember that our system is an unsupervised music genre recognizer.
Thus, beyond analyzing the classification results (Section 5.2.2.3), there is also a need to ana-
lyze the clustering results, that is, the clusters created by our learning system. After an analysis
of many studies related with automatic music genre recognition (Section 3.3), it would be in-
teresting to use a data set which already has been object of study to easily compare our results
to other studies that used the same data collection (yet, this may not be enough to do a direct
comparison, as we will discuss later in this chapter). That is why the results presented are based
on a data collection proposed by G.Tzanetakis called GTZAN ! which has 10 different genres
each with 100 different music samples [42]. In addition, we added a new genre (with 100 music
samples) to the GTZAN data collection since we also would like to analyze a Portuguese typical
music genre named Fado.

Therefore, our data collection has 1100 music files (all stored as 22050 Hz, 16-bit, mono
audio files) representing 11 different music genres: blues, classical, country, disco, fado, hiphop,
jazz, metal, pop, reggae and rock.

Once we have the data previously labeled, we can validate our clustering and classification
results based on such labeling. To reinforce our main idea, we do not want to use such informa-
tion to influence any results and, therefore, this information is not used in the learning process.
Yet, this labeling is used to validate the results obtained. Assuming that this labeling is correct,
an error calculation can be performed. The error percentage for a set of N music samples is

obtained in the following way:

1. Get the most represented genre g; for each cluster i; g; will be seen as the correct genre

labeling for this cluster;

Thttp://marsyas.info/download/
49
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2. Calculate the number of outliers o;, that is, the number of music titles from cluster ; which
actually are not labeled as g; - we use the concept of outliers in this case since those music

samples are different of the others;

3. Process this information to get an error percentage rate, € = (100 * > ; 0;)/N

5.2 Discussion

5.2.1 Learning Process

As earlier explained (Section 4.1) our system aims to create several clusters based on music
features such that it organizes and distinguishes music from different genres. In this section
we present all details concerning the training data set used, features details and obtained re-
sults. The referred results presented in this section are shown using accuracy rate or error rate

depending on which interpretation is more convenient.

5.2.1.1 The Training Data Set

As mentioned above, we use a data collection of 1100 music titles. In order to train the
system and test its clustering capabilities, we use a subset of samples from this data collection:
a set of 15 music files were chosen from each genre (the first 15 from each genre in the data
collection) to form the training set. This training set was named as "Data set A". We believe
that 15 music samples from each genre (in a total of 165 music samples) are enough to get
some results to analyze the accuracy of our implementation. Here we assume that all musics

are correctly manually labeled.

A second training data set, "Data set B", was also created with less genres than "Data set
A" nevertheless, it maintains the same number of music samples per genre. We selected the
following 4 distinct genres to be represented in this data set: Classical, Fado, Metal and Reggae.
Each genre is represented with 15 music titles, giving a total of 60 samples. Just like "Data set

A", this data set is based on the main data collection (1100 music files).
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5.2.1.2 Features

As mentioned in Section 3.1, many music features used for genre recognition purposes
were studied . By analyzing that section it is easy to conclude that some feature sets are clearly
more studied than others, and after a comparison between their achieved results, we chose a
combination of features to test our system. In addition, we also used some extra properties that
we believed could improve the performance of the recognizer. Their implementation details are
explained below.

To extract most of the features, two principal libraries were used: Marsyas v0.2 > and MIR-
toolbox 1.2.4 3 [41]. While MIRtoolbox is an integrated set of functions developed in Matlab to
extract musical features from audio files, using several different approaches, Marsyas is a well

known software used in MIR that is also a great tool to feature extraction.

‘ttf” + ‘mfces’ - A feature set named timbral texture features was explored during our test
phase. As explained in Section 3.1, it is composed by: Spectral Centroid, Spectral Rolloff,
Spectral Flux, ZCR, Low Energy and MFCCs. For this set, a STFT is applied using

windows of 512 samples, with a hop size of 512 samples and a Hamming window.

These properties, excluding MFCCs, are extracted using MARSYAS software for each
short-time frame. For MFCCs extraction, we used some functions developed in Matlab
which are integrated in an Auditory Toolbox developed by Malcolm Slaney [36]. More

information about this toolbox can be found here *.

‘scentroid’,‘srolloff’,‘sflux’,‘zcr’,‘lener’ - As mentioned earlier, some of these spectral values
can be calculated either after STFT (‘ttf”) or over the entire audio spectrum; we explore
both approaches. To extract these same features only based on the audio spectrum, the
MIRToolbox is used. Each one of these properties results in a single value per sample,

except the ‘sflux’ values which corresponds to the SSD calculation over the temporal

2Marsyas (Music Analysis, Retrieval and Synthesis for Audio Signals) is an open source software framework
for audio processing with specific emphasis on Music Information Retrieval applications. It has been designed and
written by George Tzanetakis (gtzan @cs.uvic.ca) with help from students and researchers from around the world.
Marsyas has been used for a variety of projects in both academia and industry. More information concerning this
software can be found in http://marsyas.info/.

3MIRtoolbox offers an integrated set of functions written in Matlab, dedicated to the extraction from
audio files of musical features such as tonality, rhythm, structures, etc. ~The objective is to offer an
overview of computational approaches in the area of Music Information Retrieval. = More details in
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox.

4http://cobweb.ecn.purdue.edu/ malcolm/interval/1998-010/
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function of the spectral flux values (obtained with a frame length of 50ms and a hop
factor of 0.5).

‘rmsFrame’ + ‘rms’ - To extract RMS feature, two solutions are followed: to ‘rmsFrame’,
a STFT transformation is calculated with a frame length of 50ms and half overlapping.
A MIRToolbox function gives us a temporal evolution of the energy which is used to
calculate the SSD values that will represent this feature; and ‘rms’ is simply calculated

over the entire magnitude spectrum.

‘kurt’, ‘skew’, ‘entro’ - Some statistical features are directly calculated over the spectrum
(spectral kurtosis, spectral skewness and spectral entropy). Each one of these features

are extracted using MIRToolbox functions.

‘specStat’ - Once the STFT transformation is applied, the SSD are calculated for each frame,
i.e., for each magnitude spectrum, we calculate statistical values to represent each spec-

trum (mean, median, variance, skewness, kurtosis, min- and max-value).

‘centBandUnif’ - An analysis over each frame of the STFT can bring us two other features:
Uniformity and Bandwidth. Already explained in section 3.1, we calculate each one
of these properties over each frame of the signal in analysis. Another property can be
calculated as shown in [11, 23]: differences between uniformity and bandwidth values

from consecutive frames present another feature set that can characterize our samples.

Some rhythm features are also explored. Mentioned in section 3.1.2, we extract: beat prop-

erties and rhythm patterns properties.

‘beat’ - Beat properties are extracted using the MARSYAS software and they follow exactly the

same criteria as mentioned in [42].

‘tempo’ - As beat the properties from the MARSYAS software were not as complete as we
would like, we decide to also use the MIRToolbox to obtain the autocorrelation function
for each music. Once the function is calculated, we process the SSD over the autocor-
relation function. This analysis brings us an important descriptor of music repetitions
(autocorrelation). Tempo estimation (bpm) is also added to these values to compose the

feature set.

‘rssd_rh’ - Rhythm patterns were extracted with a Matlab function® presented in [21]. Details

5http://www.ifs.tuwien.ac.at/rnir/audiofe:atureextraction.html
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about its implementation were already presented in section 3.1.2.

5.2.1.3 Results (Test A)

With so many different features it would be extremely difficult to test all the possible com-
binations of features and see which combination(s) is/are the best(s). Although, we established
some criteria to minimize the chance to have a feature combination that would have clearly
better results than all the others and it would not be tested. We tested several combinations of
features for each training set used. For each combination, an error percentage is calculated.
Even though we tested many combinations of features, here we report the results of only a few

of those combinations: those with lower error rate.

Our first experience, "Test A", uses combinations of features extracted from "data set A".
These features are: ‘ttf” ‘rssd_rh’ ‘beat’ ‘rmsFrame’ ‘mfccs’ ‘lener’ ‘scentroid’ ‘zcr’ ‘srolloff’
‘sflux” ‘rms’ ‘kurt’ ‘skew’ ‘entro’ ‘centBandUnif” ‘tempo’ ‘specStat’. As it would be expected,
several combinations present the same error percentage as well as the same cluster composition.
This reveals that some of the listed features do not characterize significantly our musics, at least,

in what concerns music genre analysis.

As mentioned above, here we only report the results of a few of the tested combinations. In
table 5.1 we present the error percentage as well as the feature combination extracted to obtain
those results. Since this error percentage may not be enough to understand the accuracy of our
system, we plot the result of each clustering process as an image that relates the learned clusters
to genres, that is, to the initial labeling. In each illustration of Figure 5.1 we have all the 165
musics from "data set A" represented with dots (.) or crosses (x). In the vertical axis, each music
is grouped according to its genre (based on the initial labeling): we have 11 musical genres
represented each with 15 music samples. To easily understand the created cluster, different
samples from different genres were plotted in different colors. The horizontal axis represents
the learned clusters where each number represent a cluster id. With these illustrations we can

now analyze in detail which clusters where created and which musics are grouped together.

If you remember how our system is implemented (Chapter 4, more precisely Section 4.1),
there is a similarity matrix S which is created during the leaning process. Each cell of this ma-
trix represents the similarity between two music samples. We plot these matrices in Figure 5.2
for each feature combination here analyzed. Each matrix plots the similarity between 165 mu-

sics ("Data set A") where red colors are used to higher values while blue ones concern lower
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similarity values. Since we are dealing with similarity matrices, the objects in the horizontal
axis are the same as in the vertical axis, although, we labeled them differently: in the y axis we
define the music genres in analysis while in the x axis we deal with the "music number".

As presented in table 5.1, our best® accuracy result was obtained with a combination of 3
feature sets: ‘ttf’, ‘rssd_rh’, ‘lener’. An accuracy of 55% was obtained, in other words, in a data

set with 165 musics, 90 musics where well classified.

Based on the error calculation explained above, we have 45% of wrong classified musics.
Although, as we can see in Figure 5.1a, particularly looking at cluster number 3, we have musics
labeled as Fado, Jazz and Blues, which cannot necessarily be considered as a wrong clustering
since boundaries between these genres are thin! Nevertheless, some music genres are easily
identified.

Looking to the classical samples, grouped in cluster 4, all the 15 musics were grouped in
the same cluster. As well as Classical musics, Fado musics were also combined together (13
out of 15) in cluster number 8. From 15 Reggae samples, only 2 are not in cluster number 2,
being all the other grouped together. Hiphop samples were also grouped together (12 out of 15)
despite other several samples labeled as disco "sharing" cluster number 7. From the 15 musics
labeled as Metal, only 4 were grouped in an "outsider" cluster. For all the other genres (Rock,
Pop, Jazz, Country and Blues), they have been clustered into, at least, 4 clusters. This means
that the features used are not capable to completely discriminate all musical genres in a clearly
way such that MBCA is able to create the correct clusters.

In this image (Figure 5.1a) we can also see that with 11 genres our learning system creates
only 9 different clusters, which is not as perfect as we would like, although it is important to
analyze and see how we can improve such accuracy. Later on, in Chapter 6, we discuss about
future work that can be done to improve the system.

If we now look at the similarity matrix created during the learning process for this feature
combination (Figure 5.2a), we can see that there are too many red colors beyond the diagonal. In
a perfect solution, we would like to present a similarity matrix such that the similarity between
musics with the same musical genre would be very high (values near 1) whereas similarity
between musics with different genres would be lower (near 0). In this case, along the diagonal

we would have red squares (with a 15%15 dimension) while all the other values would be near

%How can we say if this is really our best result? We based our classification accuracy on the error percentage
obtained! Since, we did not test every possible combination of features, this does not mean that the clusters
obtained with these features are better than all the others.
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Feature Combination Error Rate (%) | Covariance Matrix | Result Fig.

‘ttf”, ‘rssd_rh’, ‘lener’ 45 Figure 5.2a) Figure 5.1a)

‘ttf’, ‘rssd_rh’, ‘beat’, ‘scentroid’ 48 Figure 5.2b) Figure 5.1b)
‘ttf’, ‘rssd_rh’, ‘beat’, ‘rmsFrame’, ‘sflux’ 50 Figure 5.2¢) Figure 5.1c¢)
‘ttf”, ‘rssd_rh’, ‘sflux’ 50 Figure 5.2d) Figure 5.1d)

‘ttf”, ‘rssd_rh’, ‘specStat’ 51 Figure 5.2¢) Figure 5.1e)
‘rssd_rh’ 52 Figure 5.2f) Figure 5.1f)

Table 5.1: Best results achieved in "Test A".

zero and present a blue color.

We will not do such a thorough analysis of the remaining images in Figures 5.1 and 5.2. We
will only highlight some interesting or important details about these images.

In a more global observation of Figure 5.1, it can be observed that some feature combina-
tions correctly group samples from a specific genre while other combinations are more suitable
to correctly group other musical genres. Let us look at Figure 5.1c or Figure 5.1e in which all
the 15 Fado musics are correctly grouped, while using other combinations this does not happen.
As well as Fado musics, we can highlight other similar situations (for instance, Reggae music
in Figure 5.1f). The developed system does not perform any feature selection such that only the
best features are submitted to the MBCA algorithm and we believe that with such selection an
improvement could be achieved. We will discuss this subject and other important conclusions
concerning "Test A" in the next Chapter (Chapter 6).

In the next section, we will use our system with a different data set, "Data set B", to see how

the system performs with less musical genres.

5.2.1.4 Results (Test B)

As in "Test A", we use the same feature range to this second experience. Following the
same processing methods (Section 4.1), a learning process will be performed over "Data set B"
(see Section 5.1 for more details). Like we did before, we plot an image for each one of the
best six results obtained in which we can see how many clusters were created as well as the
musics belonging to each cluster (Figure 5.3). In Figure 5.4 the respective similarity matrices

are plotted.

With "Data set B" the results are really good! In table 5.2 the best 6 feature combination are
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Figure 5.1: Results illustration of learning system for "Test A" - MBCA clusters.
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Figure 5.2: Results illustration of learning system for "Test A" - Similarity Matrices.
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Nr. Feature Combination Error (%) | Covariance Matrix | Result Fig.
1. ‘ttf”, ‘rssd_rh’, ‘beat’, ‘rmsFrame’, ) )

‘mfccs’, “centBandUnif’ 0 Figure 5.4a Figure 5.3a
2. ttf’, rss‘d_rh 3 b‘eat , rm’sFrame , 0 Figure 5.4b Figure 5.3b

mfccs’, ‘specStat
3. ‘ttf”, ‘rssd_rh’, ‘centBandUnif’ 0 Figure 5.4c Figure 5.3c
4. ‘ttf”, ‘rssd_rh’, ‘specStat’ 2 Figure 5.4d Figure 5.3d
5. ttf”, rfsd_rh, : beat’, ¥n}s‘Frame , 1,nfccs , 3 Figure 5.4¢ Figure 5.3¢
lener’, ‘scentroid’, ‘specStat
6. ttf ; rssd’_r‘h , beat‘ ,,rfnsF’ra‘lme , mf?cs , 3 Figure 5.4f Figure 5.3
lener’,‘scentroid’, ‘zcr’, ‘specStat

Table 5.2: Best results achieved in "Test B".

shown and we achieved an error rate of 0% (features combinations nr.1, 2 and 3). This shows
that with a smaller number of genres, our system is able to achieve perfect clustering (at least

compared with the initial labeling!).

As we have 3 combinations which presents an error of 0% we can do a comparison and see
if there is one combination that achieves better results. Based on table 5.2, it is clear that with
combination nr.3 we do need to analyze less features than with the other ones. On the other
hand, if we look at the clusters created, combination nr.2 presents a perfect cluster combination
since it exactly creates 4 cluster with the 15 correct musics. Although this does not mean that
the other analysis are incorrect or worse. It may actually be the case that combinations nr.1 and

3 are learning sub-genres within Classical, Fado and Metal.

Analyzing Figure 5.4, the presented similarity matrices are much more better looking than
the ones obtained in "Test A". From these images it is hard to define which is the most well
defined similarity matrices. It is clear that the squares along the diagonal are well defined (with
red colors panel) which is a great sign concerning the similarity between musics with the same

musical genre.

With such results, we felt that a second step would be almost mandatory: we are talking
about a classification process! With an accuracy rate of 0% with 4 music genres (60 samples),
we believed that we could perform a classification process with successful results. As described
in Section 4.2 a classification system was implemented despite it was not our first goal. In the

next section (Section 5.2.2) we present some results from our classification system.
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Figure 5.3: Results illustration of learning system for "Test B" - MBCA clusters.
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Figure 5.4: Results illustration of learning system for "Test B" - Similarity Matrices.
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5.2.2 Classification Process

Once the learning process is concluded, we are able to classify any other music according
with the created clusters. A detailed explanation of the implemented system can be read in
Section 4.2. In this section we discuss some interesting results that we obtained testing the
classification system. In this classification process, a submitted music is always associated with
one of the existing clusters, that is, the musics in the test set have the labels as the musics in the

training set.

5.2.2.1 The Test Data Set

With an accuracy rate of 100% in the learning process, we are "forced" to use the same data
set which obtained these results. This result was obtained with "Data set B", and therefore we
will only use musics belonging to the 4 genres represented in "Data set B": Classical, Fado,
Metal and Reggae. As the reader may recall from Section 5.1, our data collection has 1100
musics from 11 different genres. As the learning phase used the first 15 musics from each of
the 4 genres, we now will classify the remaining 85 musics from each genre, with a total of 340

(85musics*4genres) musics to classify.

5.2.2.2 Features

As previously discussed in Section 5.2.1.4, we achieved an error of 0% with 3 different
feature set combinations. Here we analyze the results of the classification process for each one
of these 3 combinations, see table 5.2. The combination number is given by the first column

presented in the referred table.

5.2.2.3 Classification Results

As result from the clustering process, we obtain, with the data set used, a cluster id (cluster
to which the music sample is closer) and all the Mahalanobis distances (that is, the distances of
the new music to each of the learned clusters). To easily understand the accuracy of our system,
we present: a confusion matrix for each combination, that shows the clusters assigned to the
samples in the test set (tables 5.3, 5.4 and 5.5); and a table with the accuracy rates for each
combination (table 5.6).

It is important to remember that we only use combinations in which the learning process gets
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0% error rate, that way, we can label each cluster with a music genre. Thus, in the confusion
matrices, the first line corresponds to the music genre associated to each cluster number. For
instance, using combination number 1 we have obtained 7 clusters from learning process (see
Figure 5.3a) so, as each cluster only has one music genre represented, we can associate this label
to the cluster number. That way the two firsts lines from each confusion matrix will associate
one cluster to a music genre (based on the learning process). For each set of musics submitted to
our classification process (85 musics from 4 different genres), we will add a new line in which
each cell represents the number of musics classified in the cluster identified by an id. Table 5.6
works as a summary of all the confusion matrices. To all combinations an accuracy rate is
calculated and plotted as well as the number of correctly classified musics.

Let us analyze the different confusion matrices obtained. Based on combination number
1 (table 5.3), we notice that several musics labeled as Classical were classified as Reggae (27
musics) and Metal (17 musics). This is strange and it is not easy to explain. Perhaps the clas-
sical samples used during the learning process were not enough to establish a correct "range"
for Classical musics. Other than Classical musics, this feature combination achieved a reason-
able performance. In 340 musics, using this combination, our classification system correctly
classified 260 musics (76.5%).

Before a discussion concerning feature combination number 2, let us first analyze the results
from combination number 3. This combination present the worst result with an accuracy rate
of 73.8%. Since this combination is composed by only 3 features, it is comprehensible that the
results obtained were not that good once extracted from a larger number of musics.

Combination number 2 achieves an accuracy of 81.8%. This was the best result during
the classification test. Analyzing Figure 5.3b, only 4 clusters were created during the learning
process. Indeed, with only 4 clusters, it helps our classification system to easily choose which
cluster is the more appropriate to the submitted music.

As discussed in Section 4.2, Mahalanobis distance is calculated between each learned cluster
centroid (a vector) and the music to be classified, that is a test music (another vector). In order to
know to which group the test music belongs, this distance is calculated for all the 340 musics.
Obviously, it makes no sense to present all the calculated distances, yet, we would like to
highlight some of the obtained results that we consider important.

As our best accuracy result was achieved with feature combination number 2, we present in
Table 5.7 several distances calculated for 4 test music samples. Each line represents a different

music and for each music we start by plotting the correct cluster, next the group number to



Classical | Fado | Metal | Reggae
1 2 314 |5|6 7 Accuracy Rate (%)
Classical |26 | 15 | O | O | O | 17 27 48,2
Fado 0 0O |[28/41|0]| 6 10 81,2
Metal 0 0 00077 8 90,6
Reggae | 0 0 0|1 011 73 85,9

Table 5.3: Confusion matrix of classification process using feature set combination nr.1. Num-

ber of musics labeled with a specific genre associated to a cluster id (7 clusters).

Classical | Fado | Metal | Reggae
1 3 4 Accuracy Rate (%)
Classical 69 10 6 81,2
Fado 8 63 4 10 74,1
Metal 0 82 3 96,5
Reggae 0 21 64 75,3

Table 5.4: Confusion matrix of classification process using feature set combination nr.2. Num-

ber of musics labeled with a specific genre associated to a cluster id (4 clusters).

Classical | Fado | Metal | Reggae
1 2131415 6 Accuracy Rate (%)
Classical 51 0]01(33|0 1 60,0
Fado 0 28 129280 0 67,0
Metal 0 0|0 |81 1 98,8
Reggae 0 0]0 (260 59 69,4

Table 5.5: Confusion matrix of classification process using feature set combination nr.3. Num-

ber of musics labeled with a specific genre associated to a cluster id (6 clusters).

Accuracy Rate (%) | Correctly Classified
Combination nr.1 76.5 260/340
Combination nr.2 81.8 278/340
Combination nr.3 73.8 251/340

Table 5.6: Accuracy results of a classification process for 3 different feature combinations.
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Correct Group | Selected Group | Dist. to G1 | Dist. to G2 | Dist. to G3 | Dist. to G4
1 1 0.805338 | 42.22051 19.78257 13.32368
1 1 1.862967 | 51.04241 | 21.69921 15.07404
1 4 9.005724 50.9507 19.63604 | 8.784079
1 3 17.53428 | 29.53328 | 17.22235 | 20.50123

Table 5.7: Mahalanobis distance examples calculated from 4 distinct musics based on feature
combination number 2. The first column represent the correct group index, the second corre-
sponds to the attributed group by our system, and next, the Mahalanobis distances calculated
are shown (each distance is from the music to a specific cluster). Distances in bold are those
chosen by the system.

which the music was associated by our system and, finally, the distances for each different
cluster centroid. The top two lines (in green background) show correct classifications in which
the musics are grouped to cluster number 1. In the bottom 2 lines (in a red background), we
have wrong classifications where musics are classified as belonging to cluster 3 or 4, while they
should be classified as belonging to cluster number 1.

In a closer analysis, if we look at the firsts two lines (green ones), we can see that a music
that "belongs" to cluster 1 is correctly associated to that cluster. A significant difference between
distances is obvious and the music in analysis is clearly closer from group 1 than from all the
others. In the other hand, the two red lines represent wrong classifications. Despite music titles
belong to group number 1, our system classifies them in cluster number 4 and 3, respectively.
In fact, looking at the Mahalanobis distances calculated for both, we can see that there is no
significant differences between the distances to the closest cluster and the second closest cluster.
Our system associates the analyzed music to the closest cluster despite the slightly differences
presented between distances, i.e., in the last table line the system concludes that the music
belongs to cluster number 3 as it presents a distance of: 17.22235; although, it presents a very
similar distance to cluster 1: 17.53428. A slight difference between distances may be handled
with some attention as it does not clearly identify a single cluster as the correct one for the
tested music: a possible future criterion to be considered.

The implemented system is able to classify new test musics, thus, our second goal was
achieved. Despite the achieved results are already very good, we believe that these results can
still be improved, and our classification system can be upgraded. In the next chapter (Chapter 6)

we discuss some future work that may be important to improve the systems accuracy.



6 . Conclusion and Future Work

The proposed system is now implemented and tested. With 2 distinct systems, learning
(Section 4.1) and classification (Section 4.2), our main goal was achieved. Only based on audio
features, our learning system is able to create music clusters using a Model-Based approach
(MBCA). Once the features have been extracted, a redundancy reduction was required to reduce
the dimension of our data, for that purpose, a PCA-based technique was adopted. Our second
implementation, the classification system, performs a feature extraction over the test music and
compares it with the previously clustered samples. This comparison is based on Mahalanobis

distances between the tested music and all the created clusters.

This chapter discusses the proposed music genre classifier as well as some improvements
that we believe would lead to even better results. As mentioned in Chapter 1, our initial and
main goal was to develop a system which is able to learn several music clusters according to
the music samples’ genres only based on feature analysis and with no previous knowledge on
the musics’ genres. This first goal was successfully achieved with the creation of the learning
system (see Section 4.1 for details), which was successfully implemented. In addition, we also
aimed to go further and create a classification system grounded on the results achieved in the

learning phase. This second goal was also successfully achieved (see Section 4.2 for details).

As a global appreciation, it is interesting to see that, despite the criticism concerning the
use of an unsupervised model in a music genre recognition system, the achieved results show
that even with such an approach, we are able to obtain clusters as expected by a common
human taxonomy. With this model approach, we obtain clusters following the initial labeling
proposed, creating one cluster for each music genre. This kind of approach has the advantage
to be totally independent from any influence coming from a human taxonomy. Thus, such
system is able to create several music clusters only based on audio features. It is also useful
to distinguish between songs that may present no significant differences for human taxonomy
but in fact belongs to distinct clusters. For instance, someone who is not able to distinguish
differences between Classical songs may have a temptation to group all similar samples in one
group. Nevertheless, with an unsupervised music genre recognition, this kind of mistake can be

avoided.
65
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6.1 Learning Process

As our system follows an unsupervised approach (see Section 2.2.2.2 for details) a valida-
tion technique had to be adopted. We used manual labeling of the data to validate the clustering
results, that is, the accuracy rate was calculated with basis on the data collection existing la-
beling. It may seem a contradiction to create an unsupervised classification system and get an
accuracy rate based on a previously labeled data set. While it can be senseless, it is the best ap-
proach, in our opinion, to easily validate our system and see how accurate it can be. Of course
that with an unsupervised approach there is not a perfect validation method as we begin with
nothing else but a music data set completely "naked" of information besides its audio charac-
teristics, thus, created clusters can be correct even if some samples, previously labeled with one
genre, are grouped in a cluster which is composed by samples labeled with a different genre, in
other words, our music samples can be correctly grouped even if a previous labeling does not
say so. As previously discussed, a Human labeling will always be fuzzy and could not be seen
has a universal truth. Again, we do need a reference basis for validation purposes, and that is

why we decide to use the initial labeling to have accuracy percentages.

With a data set composed by 1100 music samples from 11 different genres (Blues, Classical,
Country, Disco, Fado, Hip-Hop, Jazz, Metal, Pop, Reggae and Rock, we achieved an accuracy
rate of 55%. This result was the best from several tests in which different feature sets where
used, in other words, we did not use always the same features, we combined them into different
sets and verified the accuracy of the system using the distinct feature combinations. Our best
accuracy was obtained using a combination of 3 feature sets: ‘ttf’, ‘rssd_rh’ and ‘lener’ (see
Section 5.2.1.3 for details). It is not a perfect result accuracy, although, as we are following an
unsupervised approach for music genre classification, it would be unexpected to obtain higher
accuracies 1in a first experience. In a total of 11 music genres, it is comprehensible that some
genres present less specific audio properties than others, turning a clustering process much
harder. Thus, we believe that with some updates in our methodology a higher result can be

obtained.

Once the accuracy rate is obtained, we have the temptation to compare these results with
those from other music genre classification studies. Although, there have been several such
studies (see Chapter 3), a direct comparison could not be plausible since most studies follow a
supervised approach and we believe that differences between each methodology (supervised and

unsupervised) are too many to compare such methods. Still, from the 2 known unsupervised
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approaches [31, 35] we only can compare our results with X.Shao et al. [35] study since it
presents an accuracy percentage while A.Rauber et al. do not present the accuracy results [31].
Then, X.Shao and his team achieved an accuracy result of 89% based on a data set with 50
musics from 4 music genres (Pop, Country, Jazz and Classic). Although our 55% accuracy is
worst, we must keep in mind that it is obtained with 65 musics from 11 genres data set. As we
will see below, our accuracy will increase as soon as we reduce the number of music genres.
There is another important detail that may not be ignored: in such comparison, the different

data sets used may drastically change the accuracy rate between studies.

In a second test to our learning system, we used a training set with less genres. This data
set had 65 musics where 4 different genres are represented: Classical, Fado, Metal and Reggae.
Proceeding exactly as described in Section 4.1, an accuracy rate of 100% was obtained. This
result is very satisfactory since we were able to perfectly create 4 clusters without any wrong
classified music. As mentioned above, the only study with an unsupervised model which present
an accuracy result achieved an accuracy of 89% with 4 genres [35]. As we already mentioned, a
direct comparison is not fair since they are not based in the same data set (in this study they do
not provide the used data set) then, we can only mention this article to be aware about another

unsupervised model based approach to classify musics by their genres.

From this 2 tests some conclusions can be drawn. We are aware that an accuracy of 55%
does not present a perfect result for a music genre clustering system. Although, once we reduce
the number of genres, the accuracy results clearly improves (100% with 4 genres). As it would
be difficult to present all the performed tests and we were looking for a high accuracy rate, we
would like to highlight that even with 5/6 genres the accuracy result was good (around 90%).
More results may be shown in a future work thus, we are pleased with the obtained accuracy

despite we always pursue better performances.

6.2 Classification Process

In order to test the classification phase, we used the feature combination that lead to 100%
clustering accuracy in the clustering phase. As shown in Section 5.2.2.3, we achieved a classifi-
cation accuracy of 82% using a test set composed of 340 musics from 4 genres (Classical, Fado,
Metal and Reggae). Looking at the classification results obtained with combination number 2

(Table 5.4), Metal musics are easily classified compared with the other genres. In 85 Metal
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musics, only 3 musics were not correctly classified, being classified as Reggae. Between the
other 3 styles, there is not a huge difference, around 65 musics are correctly classified from the
85 submitted.

During this classification phase, Mahalanobis distance between a music (being classified)
and each one of the clusters centroids (created during the learning phase) is determined. Once
all the distances are calculated, the system picks the closest group and associates it to the music.
Analyzing 4 different distances plotted in Table 5.7 some conclusions can be drawn. Once all
Mahalanobis distances are calculated, it would be interesting to analyze the differences between
these distances to prevent wrong classifications. That way, if the smallest distance is too close
to the second smallest distance, we could, for instance, give the classification a smaller degree

of confidence or associate the test sample with more than one cluster.

Finally, it is important to highlight that there is no rejection in our classification system.
This means that each submitted music is always associated with one existing cluster and cannot

be considered as from another genre not represented by the training set.

6.3 Future Work

Since we already analyzed our systems results, let us now discuss about some possible
improvements that could lead to a better performance. We are pleased about the obtained results,
nevertheless, during the implementation stage, some details were not treated with too much
attention since an initial schedule had to be respected and we tried to achieve all our initial

goals. Let us try to give you an idea of how these systems could reach higher accuracy results.

Starting by the foundations of our system, and by foundations we mean the extracted fea-
tures, an important set of features was analyzed and tested. As we referred in Section 3.1 there
are many other audio features that we do not explore in this work but could be very important to
discriminate the represented genres and smooth the classification process difficulty. We have no
doubt about the importance of a continuous necessity to explore more features since the better
the features characterize and discriminate audio properties, the better our system would create
clusters. Also concerning features, during the learning phase, there are some details that could
make a difference. Notice that we do not explore a possible "filtering" over the extracted fea-
tures to only process those that present higher variances between musics. This approach would

be important to get "better looking" similarity matrices.
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Considering the classification system, we do believe that an analysis of the variances be-
tween the calculated Mahalanobis distances would be important. As mentioned in the above
section, small differences between those distances can be problematic for our classification sys-
tem. We do not allow our system to associate one music with more than one cluster, thus, a
strict choice of the group that is based only on the smallest distance could be not as good as we
wanted to. With small variances between distances, it would be interesting, perhaps, to asso-
ciate the analyzed music to more than one cluster or alternatively, to associate a lower degree
of confidence to the results. As for those test samples that are too far away from all clusters, we
could also consider to totally reject them.

We are conscious that many updates can be performed in the proposed methodology. With
our approach, we wanted to raise a discussion about this model (unsupervised clustering) since
we believe that music genres do not present clear boundaries between each others. That way,
a supervised system would be tendentious as it would be trained based on a previously labeled
data set. The obtained results show that it is possible to achieve good accuracy results using an

unsupervised model to automatic music genre recognition.
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