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Resumo 
 

 

Ao percorrer ambientes desconhecidos, um robô de serviço móvel precisa de adquirir 

informação sobre o ambiente que o rodeia, para poder detectar e evitar obstáculos e chegar 

com segurança ao seu destino. 

Esta dissertação apresenta uma solução para o problema de mapeamento e detecção de 

obstáculos em ambientes estruturados2 interiores ou exteriores, com particular aplicação em 

robôs de serviço equipados com um LADAR. Esta solução foi desenhada apenas para 

ambientes estruturados e, como tal, ambientes todo-o-terreno estão fora do âmbito deste 

trabalho. A utilização de qualquer conhecimento, obtido a priori, sobre o que rodeia o 

LADAR também está descartada, ou seja, o sistema de mapeamento e detecção de obstáculos 

desenvolvido trabalha em ambientes desconhecidos. 

Nesta solução, assume-se que o robô, que transporta o LADAR e o sistema de 

mapeamento e detecção de obstáculos, está posicionado sobre uma superfície plana, que é 

considerada como sendo o plano do chão. O LADAR é posicionado de uma forma apropriada 

para um mundo tridimensional e é utilizado um sensor AHRS para aumentar a robustez do 

sistema em relação a variações na orientação do robô que, por sua vez, podem originar falsos 

positivos na detecção de obstáculos. 

Os resultados dos testes efectuados em ambientes reais, através da incorporação deste 

sistema num robô físico, sugerem que o sistema desenvolvido pode ser uma boa opção para 

robôs de serviço que operem em ambientes estruturados interiores ou exteriores. 

 

 

 

Palavras-Chave: detecção de obstáculos, robôs de serviço, robôs móveis, LADAR, 

mapeamento, interior, exterior, AHRS. 

 

 

 

 

 

                                                           
2
 Nesta dissertação, a expressão “ambientes estruturados” refere-se a ambientes em que a superfície do chão 

deverá ser plana. 
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Abstract 
 

 

When travelling in unfamiliar environments, a mobile service robot needs to acquire 

information about his surroundings in order to detect and avoid obstacles and arrive safely at 

his destination. 

This dissertation presents a solution for the problem of mapping and obstacle detection in 

indoor/outdoor structured3 environments, with particular application on service robots 

equipped with a LADAR. Since this system was designed for structured environments, off-

road terrains are outside the scope of this work. Also, the use of any a priori knowledge about 

LADAR’s surroundings is discarded, i.e. the developed mapping and obstacle detection 

system works in unknown environments. 

In this solution, it is assumed that the robot, which carries the LADAR and the mapping 

and obstacle detection system, is based on a planar surface which is considered to be the 

ground plane. The LADAR is positioned in a way suitable for a three dimensional world and 

an AHRS sensor is used to increase the robustness of the system to variations on robot’s 

attitude, which, in turn, can cause false positives on obstacle detection. 

The results from the experimental tests conducted in real environments through the 

incorporation on a physical robot suggest that the developed solution can be a good option for 

service robots driving in indoor/outdoor structured environments. 

 

 

 

Keywords: obstacle detection, service robots, mobile robots, LADAR, mapping, indoor, 

outdoor, AHRS. 

 

 

 

 

  

                                                           
3
 In this dissertation, the term "structured environments" refers to environments in which the ground surface is 

expected to be planar. 
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Symbols and Notations 
 

 

Symbol Description 

AHRS Attitude and Heading Reference System 

ahrsDriv A Player driver that interacts with an AHRS sensor  

ContDriv A Player driver that communicates with a controller 

IFR International Federation of Robotics 

IMU Inertial Measurement Unit 

IP Internet Protocol 

LADAR LAser Detection And Ranging or Laser Radar 

ladarDriv A Player driver that communicates with a LADAR and acquires its measures 

LIDAR LIght Detection And Ranging 

LTP Local Tangent Plane 

MapOD A Player driver responsible for the mapping and obstacle detection system 

NED North-East-Down 

RPY Roll-Pitch-Yaw 

SLAM Simultaneous Localization And Mapping 

SME Small Medium Enterprise 

TCP Transmission Control Protocol 

����� X coordinate of a reference plane point at angle σ 

���� X coordinate of a point that intersects the XY plane  

�� X coordinate of a transformed point 

	���� Y coordinate of a reference plane point at angle σ 

	��� Y coordinate of a point that intersects the XY plane 

	� Y coordinate of a transformed point 


� Z coordinate of a transformed point 

Avgh The average of the heights of all computed points that correspond to each cell 

b Y-intercept of a line segment 

ch Height of a cell of the elevation map, measured in meters 

Chobs Height of a cell of the obstacle map, measured in meters 

cv The value of an obstacle map’s cell 

cw Width of a cell of the elevation map, measured in meters 
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Cwobs Width of a cell of the obstacle map, measured in meters 

d The theoretical range provided by the LADAR’s central beam  

d1 First measured distance 

dn Nth measured distance 

dxy Projection of distance d onto the XY plane 

h LADAR’s height 

Hneg Minimum height that an object that stands below the ground plane must have to 

be considered as an obstacle 

Hpos Minimum height that an object that stands above the ground plane must have to 

be considered as an obstacle  

Hσ Height of a hypothetical obstacle at each angle σ 

L LADAR’s position on the map 

m Number of width cells of the elevation map 

mobs Number of width cells of the obstacle map 

mzx Slope of a line segment from ZX plane 

mzy Slope of a line segment from ZY plane 

n Number of height cells of the elevation map 

nobs Number of height cells of the obstacle map 

Pσ A 3D point at angle σ 

Rreal(σ) Real range provided by the LADAR at each angle σ 

Rxyσ Projection of distance Rσ onto the XY plane 

Rσ LADAR’s theoretical range at each angle σ  

α Angular step of the LADAR 

ε A threshold for pitch angle, in degrees 

η A threshold for pitch angle, in degrees 

θ Field of view of the LADAR 

ρ A generic angle, in degrees 

σ Represents each angle where the LADAR emits a beam 

ϕ An angle obtained from LADAR’s tilt (ϕ = 90◦ - tilt) 

ω A generic angle, in degrees 

��������� A new distance for the reference plane at angle σ 
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1. Introduction 
 

 

Nowadays, robots perform important roles in our society. They are present on many 

different areas such as automotive industry, entertainment, military operations, among others. 

In particular, mobile service robots employment has been widespread in the last years and 

today these kind of robots can perform several tasks like, for example, guiding tourists in 

museums [Chella et al., 2007], house cleaning, elderly care [Graf et al., 2004], interplanetary 

exploration [Cheng et al., 2005], or humanitarian demining [Santana et al., 2007]. 

 

The International Federation of Robotics (IFR) defines a service robot as “(…) a robot 

which operates semi- or fully autonomously to perform services useful to the well-being of 

humans and equipment, excluding manufacturing operations” [IFR, 2009]. Through this 

definition one can notice that autonomy is a key feature for a service robot. Therefore, and 

mostly on mobile service robots area, mapping is generally considered as one of the most 

important topics [Thrun, 2003]. In fact, once exploring an unknown area, the mobile service 

robot needs a process to construct a representation of the environment (map) and this can be 

used for navigation tasks such as path planning or obstacle detection and avoidance. Despite 

the fact that obstacle detection is often performed without using maps, it is also common to 

find approaches where mapping and obstacle detection are interconnected, which is the case 

in this dissertation. In this thesis, mapping is performed with the purpose to detect obstacles, 

i.e. obstacle detection will be accomplished with basis on the construction of terrain maps. 

 

In order to build a map, a robot must be equipped with sensors that enable it to perceive 

its surroundings such as LADARs, Stereoscopic Cameras or Ultrasonic Range Sensors. Also, 

there are additional sensors that are often used in mapping including Inertial Measurement 

Units (IMU), Attitude and Heading Reference Systems (AHRS) or Global Positioning 

Systems (GPS). 

Ultrasonic Range Sensors are very popular and they are present in many mobile robots 

nowadays [Lee et al., 2009]. They have good characteristics including low power 

consumption and low cost. However, comparing to other range sensors they exhibit low 

angular resolution.  
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LADARs and Stereoscopic Cameras are complementary and are often used 

simultaneously [Moghadam et al., 2008], [Matthies et al., 2002] and they both have 

advantages and disadvantages. A LADAR generally provides fast and accurate range 

measurements and works with big fields of view and at long ranges. However, it only 

provides information along the plane of the scanning laser beam and its performance is 

affected by weather conditions (such as fog or rain) and by objects reflectivity. On the other 

hand, Stereoscopic Cameras can provide 3D data and also color and texture information. 

Nevertheless, it generates large amounts of data (including noisy data) comparing to a 

LADAR, which can be computationally expensive to process and its measurements are 

affected by lightning conditions and by non-textured environments.  

As mentioned before, the fusion of these two types of sensors is a common attempt to 

overcome their disadvantages and to take part of their main capabilities in order to build 

precise and reliable maps. However, in the context of this work a LADAR will be used as the 

only sensor for environment perception, mainly due to its accuracy and lower amount of 

generated data comparing to stereo vision. Also, the fusion of two or more range sensors will 

not be focused in the context of this thesis and, therefore, integration of stereo vision cameras 

and LADARs is discarded. 

 

In the 1980s and early 1990s, two approaches for mapping were used: metric and 

topological [Thrun, 2003]. Metric maps can represent geometric features of the environment 

and two examples of this kind of maps are occupancy grid maps [Elfes, 1987] and feature 

maps [Chatila and Laumond, 1985]. In the former case, environments are represented by an 

occupancy grid where each cell can indicate the presence of an obstacle and in the latter case 

maps contain parametric features such as lines or arcs that intend to describe the environment. 

Topological maps can represent environments through connectivity between different places 

and an early example of this approach is the work of Kluipers and Byun [Kuipers and Byun, 

1991]. In this case, the map contains a set of significant places that can be connected by arcs. 

These arcs are usually labeled with information about navigation from one place to another. 

Since the 1990s, mapping has generally been named as SLAM (simultaneous localization 

and mapping) because many researchers have been trying to solve mapping and localization 

(determining a robot’s pose) problems in conjunction [Thrun, 2003]. However this thesis does 

not try to contribute to this field of research because we will deal with the mapping problem 

assuming that robot’s pose is known at any instant in time. 
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Over the last decades, several approaches have been proposed on the research field of 

obstacle detection systems for service robots. Some of the most successful ones are based on 

assumptions about terrain’s geometry [Konolige et al., 2008], [Batavia and Singh, 2002], on 

performing traversability analysis of the robot’s surroundings [Hamner et al., 2008], on 

creating representations of the environment and using them to detect obstacles or safe paths 

for the robot [Lacaze et al., 2002], on using statistical analysis of a 3D point cloud in order to 

characterize obstacles [Lalonde et al., 2006], or on describing obstacles in terms of 

geometrical relationships between 3D points [Manduchi et al., 2005]. These approaches are 

reviewed with more detail on chapter two. 

 

The main goal of this dissertation is to present a LADAR-based solution for mapping and 

obstacle detection in structured environments, either indoor or outdoor. Off-road terrains are 

often unstructured environments and, consequently, they are beyond the scope of this work. In 

the context of this work it is assumed that the mapping and obstacle detection system travels 

in an unknown environment, i.e. the use of any a priori knowledge about its surroundings is 

discarded.  

 

 

1.1 Problem Statement 
 

As previously stated, this dissertation intends to present a solution for the problem of 

mapping and obstacle detection in indoor/outdoor structured environments that is targeted to a 

service robot equipped with a LADAR. In the development of such a solution, some main 

problems must be taken into consideration: 

 

1. The proposed model must be suitable for structured environments (indoor or outdoor), 

where structured surfaces must be correctly mapped and classified either as obstacles 

or freespace. As previously referred, off-road terrains are not considered in the context 

of this dissertation. Thus, unstructured surfaces may not be correctly mapped or 

classified.  

 

2. The proposed model must be robust to variations in service robot’s attitude, i.e. 

changes in pitch, roll and yaw angles. These changes on robot’s attitude could lead to 

false positives on obstacle detection which, in turn, should be avoided.  
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3. The proposed model must be computationally efficient and cope with real-time 

constraints, so that service robot’s safety can be assured. 

 

 

1.2 Solution Prospect 

 

In order to overcome the problems mentioned on the previous section, this dissertation 

proposes the following solutions: 

 

1. In this model, obstacles are defined as surfaces that stand above or below the plane 

where the service robot is based and that can prevent a wheeled service robot from 

passing through. The LADAR is positioned in order to enable the system to detect 

obstacles that stand below LADAR’s height and also negative obstacles (obstacles that 

stand below the plane where the service robot is based), which are common in these 

environments.  

 

2. The robustness in terms of variations on robot’s attitude is achieved with the help of 

an Attitude and Heading Reference System (AHRS) that provides pitch, roll  and yaw 

angles. This information is added to the mapping and obstacle detection algorithm so 

that it can be adapted to the current attitude values.  

 

3. Although this model is based on the construction of terrain maps, which can require 

considerable storage capabilities, efforts were made to maintain low complexity on the 

algorithm and low computational cost on the performance of the system, mainly in the 

choice of an appropriate size and resolution for the maps.  

 

 

This system is implemented on a framework for mobile robotics applications named 

Player/Stage Project that improves the communications between different modules of the 

system and increases computational efficiency by executing several navigation tasks 

simultaneously.  
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1.3 Dissertation Outline 
 

This dissertation is organized as follows: 

 

Chapter 1: introduces the reader to the subject of mapping and obstacle detection using a 

LADAR and lists some problems related to this subject. A solution prospect for these 

problems is also presented; 

 

Chapter 2: exposes a brief overview of the state of the art about obstacle detection for service 

robots; 

 

Chapter 3:  gives an introduction to some supporting concepts used in this work; 

 

Chapter 4:  describes the mapping and obstacle detection system proposed; 

 

Chapter 5:  presents the experimental results; 

 

Chapter 6:  encompasses the conclusions about the developed work and presents some future 

work possibilities. 
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2. State of the Art 
 

 

In the last decades, there have been a large number of contributions on the research field 

of obstacle detection systems for service robots. This chapter presents an overview of some 

approaches that were proposed on this area. In the sections of this chapter, the author’s 

intention is to present different approaches to the problem of obstacle detection for service 

robots, and not a historical evolution of the research in this area. 

On section 2.1 an approach that uses the flat terrain assumption is presented. This method 

takes advantage of simplifications in order to simplify and speed up the process of detecting 

obstacles. Section 2.2 presents a method that was designed for terrains that show smooth 

slope changes and that uses gradient techniques to detect obstacles. A different approach is 

exposed on section 2.3. It uses traversability analysis of the robot’s surroundings instead of 

taking considerations about terrain’s geometry. Section 2.4 exhibits a method that creates a 

representation of the environment and uses it to detect safe paths for the robot. Section 2.5 

shows an obstacle detection algorithm that performs statistical analysis of a 3D point cloud in 

order to characterize obstacles. Finally, a technique that describes obstacles in terms of 

geometrical relationships between 3D points is exhibited on section 2.6.  

 

 

2.1 Flat terrain assumption 
 

When travelling in outdoor conditions, an autonomous mobile robot may be confronted 

with structured environments such as urban terrains or man-made facilities, or with rougher 

terrains with great slope variations like the off-road case. Despite that, it is often possible to 

find a dominant ground plane. The presence of a ground plane simplifies processing and 

reduces the complexity of obstacles characterization. In fact, if a relatively flat ground plane 

is assumed, it is possible to simply define obstacles as salient surfaces standing above or 

below the ground.   

 

Konolige et al. [Konolige et al., 2008] proposed an obstacle detection algorithm based on 

the assumption that the robot travels on a locally flat ground. The authors use a stereo vision 

camera to obtain the disparity and color images. The disparity image is used to compute a 3D 
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point cloud of the environment and then the ground plane is determined by a RANSAC 

technique [Fischler and Bolles, 1981]. In this model, obstacles are defined as points that lie 

too high above the ground plane, but lower than the robot’s height. Sight lines are used to 

infer freespace to more distant points and their computation is achieved by finding columns of 

ground plane pixels that lead up to a distant obstacle. The color image is applied in path 

analysis. This work is illustrated in Figure 2.1. 

 

 

 
 

Figure 2.1 - Visual processing diagram proposed by [Konolige et al., 2008]. 

 

This approach presents good results on flat terrains but, at the same time, is very 

susceptible to fail on rough ones where the determination of the dominant ground plane, 

which is the key feature of this kind of methods, is not very reliable. Besides that, the authors 

only consider obstacles as points that stand above the ground plane not taking into 

consideration “negative obstacles”, i.e. obstacles that stand below the ground plane, and this is 

a great drawback in outdoor navigation.  

 

 

2.2 Obstacle detection in terrains with slightly variable 
slope 

 

In the previous section, obstacle detection was performed on the assumption of a flat 

terrain. In this section a more generic method that also deals with non-flat terrains is 

presented.   

Batavia and Singh [Batavia and Singh, 2002] proposed a process for obstacle detection 

that uses a two-axis laser scanner to obtain the input data. This approach is suitable for cases 



9 

 

where the terrain changes his slope smoothly enough to define obstacles as discrete 

discontinuities.  

The two-axis laser scanner used by the authors consists of a single line laser range finder 

that operates as a two-axis scanner by being rotated so that the laser scans vertically instead of 

horizontally, and then mechanically swept from side to side to provide horizontal coverage. In 

their work, the authors consider a “scan” as one line of laser data, scanned vertically, and a 

“sweep” as a set of scans, collected by mechanically sweeping the laser from side to side. 

 

 

 
Figure 2.2 - Overview of the obstacle detection algorithm proposed by [Batavia and Singh, 2002] 

 

The obstacle detection algorithm is summarized in Figure 2.2 and consists of two phases: 

classification and fusion. In the classification phase, each scan line is converted to Cartesian 

coordinates and terrain’s gradient is computed along the scan line. A threshold is then applied 

to the gradient to classify each pixel as ‘obstacle’ (dark dots on Figure 2.2) or ‘freespace’ 

(white dots on Figure 2.2). Each classified scan is then saved in a buffer containing a time-

history of scans. This buffer is represented on the block named “Cartesian View” on Figure 

2.2. The duration of this ‘time window’ establishes the amount of data that will be fused. In 

the fusion phase, obstacle pixels are clustered using a nearest neighbor (NN) criterion and 

candidate obstacles are then filtered based on their mass and size. 

The two-axis scanning procedure used by the authors is obtained by sweeping a common 

(single-axis) laser scanner. In some cases, depending on the purpose of the robot that 

incorporates the obstacle detection system, this technique may consume too much time for 

real-time operation.    
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2.3 Traversability 
 

Rather than taking geometric considerations about the terrain, there are some approaches 

that employ traversability analysis. Instead of determining if a certain region of the 

environment is an obstacle or freespace, this kind of obstacle detection systems try to avoid 

such a binary decision assigning to each region of the robot surroundings a cost value that 

represents the degree of difficulty for the robot to move across that region.  

Hamner et al. [Hamner et al., 2008] present an obstacle detection system that performs 

traversability analysis. The authors use two laser range finders (one that is fixed and another 

that sweeps about an orthogonal axis) and a sliding window of point cloud data (obtained 

from both lasers) that is registered over time. Vehicle-sized planar patches are fit to the point 

cloud data and this process allows the settlement of three parameters: plane orientation (roll, 

pitch), terrain’s roughness (obtained by the residual of the fitting process) and the height of 

data points above the plane. This method produces a grid-based traversability map and the 

plane fitting process is applied to each cell of the map, in order to acquire the parameters that 

are used to compute a hazard score that corresponds to the traversability measure of each cell. 

Furthermore, the authors complement the traversability analysis with gradient analysis from 

[Batavia and Singh, 2002] presented in section 2.2 in order to improve their results. 

The plane fitting process performed in this work has a large computational cost and this is 

a main concern in real-time obstacle detection for mobile robots. Although it compensates 

some weaknesses of each individual algorithm, the option of combining two different kinds of 

analysis for obstacle detection increases the complexity of the system. This system is also 

more expensive than other approaches because it makes use of two laser scanners and a 

sweeping system.   

 

 

2.4 Representations of the environment 

 

Another well-known method to perform obstacle detection consists in creating 

representations of the environment and using them to detect obstacles or safe paths for the 

robot.  



 

Lacaze et al. [Lacaze et al., 2002] propose the creation of

in order to detect the support surface for the vehicle

measurements of a LADAR are geometrically transformed into an elevation map centered on 

the vehicle and this is done as the vehicle moves through the terrain.

tile of the map is assigned 

threshold is applied to the 

Then, the authors try to predict safe trajectories for the vehicle along 

through the computation of cost functions

depend on several parameters such as existence

terrain, number of times each cell has been seen by the sensor and pitch and roll along each 

trajectory. The authors use a vehicle model to 

placing vehicle masks along each 

Instead of assessing the content of each tile to try to find obstacles, the authors use the 

elevation map to estimate safe trajectories for the robot by calculating cost functions. This 

makes the method computatio

vehicle masks, and causes it to have 

 

 

2.5 Statistical analysis
 

Lalonde et al. [Lalonde et al., 2006]

detection. In this work the authors present a method that employs statistical analysis of 

point cloud that is built incrementally as the robot 

 

Figure 2.3 - The three classes used by [Lalonde et al., 2006] to classify the 3D point cloud
 

e et al., 2002] propose the creation of an elevation map of the terrain 

in order to detect the support surface for the vehicle and to avoid obstacles

measurements of a LADAR are geometrically transformed into an elevation map centered on 

his is done as the vehicle moves through the terrain. During this process each 

tile of the map is assigned with the number of times it has been seen by the sensor. A 

threshold is applied to the elevation map to determine the support surface for the vehicle.

the authors try to predict safe trajectories for the vehicle along 

through the computation of cost functions for each potential trajectory

depend on several parameters such as existence of protruding objects, roughness of the 

terrain, number of times each cell has been seen by the sensor and pitch and roll along each 

he authors use a vehicle model to predict pitch and roll 

placing vehicle masks along each potential trajectory in the elevation map.

Instead of assessing the content of each tile to try to find obstacles, the authors use the 

elevation map to estimate safe trajectories for the robot by calculating cost functions. This 

computationally heavy, especially because of the multiple placing of 

, and causes it to have difficulties to deal with real-time constraints.

Statistical analysis 

[Lalonde et al., 2006] propose a different technique to perform obstacle 

detection. In this work the authors present a method that employs statistical analysis of 

incrementally as the robot navigates through the terrain.

 
The three classes used by [Lalonde et al., 2006] to classify the 3D point cloud
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n elevation map of the terrain 

avoid obstacles. First, the 

measurements of a LADAR are geometrically transformed into an elevation map centered on 

During this process each 

by the sensor. A height 

surface for the vehicle. 

the authors try to predict safe trajectories for the vehicle along the elevation map 

for each potential trajectory. These cost functions 

of protruding objects, roughness of the 

terrain, number of times each cell has been seen by the sensor and pitch and roll along each 

predict pitch and roll along each path by 

trajectory in the elevation map. 

Instead of assessing the content of each tile to try to find obstacles, the authors use the 

elevation map to estimate safe trajectories for the robot by calculating cost functions. This 

because of the multiple placing of 

time constraints. 

propose a different technique to perform obstacle 

detection. In this work the authors present a method that employs statistical analysis of a 3D 

the terrain.  

 

The three classes used by [Lalonde et al., 2006] to classify the 3D point cloud 
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This analysis tries to classify the 3D point cloud into three classes: surfaces (ground 

surface, rocks), linear structures (wires, branches) and scattered regions (vegetation). The 

classification is based on the comparison of the eigenvalues obtained from the calculation of a 

covariance matrix for all the points within a neighborhood of a certain point. 

As shown on Figure 2.3, scattered regions have no dominant eigenvalue whereas linear 

structures present one main eigenvalue and surfaces have two eigenvalues that prevail. 

This obstacle detection algorithm is suitable for vegetated terrains and the authors present 

good results using measurements from laser scanners but, nonetheless, for structured 

environments simpler approaches can be used. 

 

 

2.6 Geometrical relationships 
 

A method that examines geometrical relationships between points of a 3D point cloud 

was developed by Manduchi et al. [Manduchi et al., 2005]. These authors try to detect 

obstacles by analyzing slant and altitude of visible surface patches directly in the range image 

domain. A visible surface patch is considered an obstacle if its slope is larger than a certain 

value θ (the maximum slope a robot can climb) and if it spans a vertical interval larger than a 

threshold H (the minimum height an obstacle must have to block robot’s passage). Slant and 

altitude measures are taken from the search for pairs of compatible points in the 3D point 

cloud.  

 

 
Figure 2.4 - Compatibility relationship defined by [Manduchi et al., 2005] 
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This compatibility relationship is illustrated in Figure 2.4 and is expressed by the authors 

as follows: “The points compatible with a surface point p are those belonging to the two 

truncated cones Up and Lp with vertex in p, axis oriented vertically, and limited by the two 

planes of equation y = Hmin and y = Hmax respectively ”  [Manduchi et al., 2005].  

Each point is considered an obstacle point if it has at least one compatible point that 

belongs to the same surface. The authors use stereo-vision images and, for each image pixel, a 

search for compatible points is executed with the aim of finding obstacle points.  

This obstacle detection system has attracted particular interest by several researchers, 

mainly due to the distinct definition of an obstacle, which is based on the concept of 

compatibility between 3D points. However, this approach has limitations regarding real-time 

obstacle detection because its computational cost easily becomes a problem as the number of 

3D points increases. Also, this method is very sensitive to incorrect 3D points generated by 

stereo-vision, commonly known as outliers. 
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3. Supporting concepts 
 

 

This chapter summarizes some concepts that helped on the development of this mapping 

and obstacle detection system. Section 3.1 describes some coordinate systems and coordinate 

transformations that are useful in mobile robotics. Section 3.2 presents the Player/Stage 

Project, which is an open-source framework that simplifies the development of control 

architectures for several applications, including mobile robots. 

 

3.1 Coordinate Systems and Coordinate Transformations 
 

There are many ways of representing a location in the world by a set of coordinates. This 

section presents some coordinate systems that are often used in navigation with Inertial 

Navigation Systems [Grewal et al., 2001]. Coordinate transformations that are useful in 

mobile robotics and, in particular, in this work, are also exposed in this section. 

 

3.1.1 LTP coordinates 
 

Grewal defines Local Tangent Plane (LTP) coordinates as “(…) local reference 

directions for representing vehicle attitude and velocity for operation on or near the surface 

of the earth” [Grewal et al., 2001]. A frequent orientation for this kind of coordinates has one 

horizontal axis (the east axis) in the direction of increasing longitude and the other horizontal 

axis (the north axis) in the direction of increasing latitude. A common LTP coordinate system 

is the North-East-Down (NED).  

In NED, the direction of a clockwise turn is in the positive direction with respect to a 

downward axis. This coordinate system is used in many applications because its coordinate 

axes coincide with vehicle-fixed roll-pitch-yaw (RPY) coordinates when the vehicle is level 

and headed north [Grewal et al., 2001].  

 

3.1.2 RPY coordinates 
 

Grewal [Grewal et al., 2001] defines roll-pitch-yaw (RPY) coordinates as “(…) vehicle-

fixed, with the roll axis in the nominal direction of motion of the vehicle, the pitch axis out the 
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right-hand side, and the yaw axis such that turning to the right is positive”. Figure 3.1 

illustrates this coordinate system.  

 

 
Figure 3.1 – Roll, Pitch and Yaw axes [Grewal et al., 2001]. 

 

The angles of rotation about the vehicle roll , pitch and yaw axes are called the Euler 

angles [Grewal et al., 2001]. These angles can specify the attitude of the vehicle body with 

respect to local coordinates.  

 

 

 
Figure 3.2 – Vehicle Euler Angles defined by Grewal [Grewal et al., 2001]. 

 

A common convention for Euler angles is illustrated on Figure 3.2 and is defined by 

Grewal [Grewal et al., 2001] as a set of three rotations, starting with the vehicle level with roll  

axis pointed north, as follows:  

 

 



 

• First rotate through the 

azimuth (heading) of the vehicle 

(east) from north;

 

• Then, rotate through the 

vehicle roll  axis to its intended elevation. Elevation is measured positive upward 

from the local horizontal plane;

 

• Finally, rotate through the 

vehicle attitude to the specified or

 

Figure 3.3 illustrates how the rotations 

an object, in this case an airplane.

 

Figure 3.3 – Rotations through

 

This set of three angular rotations is often used to define a coordinate transformation to 

bring one coordinate frame to coincide to another. To achieve this

specified by a rotation matrix. For example, the coordinate transformation from RPY 

coordinates to NED coordinates

on Figure 3.4 [Grewal et al., 2001

 

rst rotate through the yaw angle (Y) about the vehicle yaw

azimuth (heading) of the vehicle roll  axis. The azimuth is measured clockwise

(east) from north; 

Then, rotate through the pitch angle (P) about the vehicle pitch

axis to its intended elevation. Elevation is measured positive upward 

from the local horizontal plane; 

Finally, rotate through the roll  angle (R) about the vehicle 

vehicle attitude to the specified orientation. 

illustrates how the rotations through these angles can affect the orientation of 

an object, in this case an airplane. 

Rotations through Roll, Pitch and Yaw angles [ACME, 2009].

This set of three angular rotations is often used to define a coordinate transformation to 

coordinate frame to coincide to another. To achieve this, the rotation of each axis is 

specified by a rotation matrix. For example, the coordinate transformation from RPY 

coordinates to NED coordinates is given by the product of three rotation matrices, as shown 

Grewal et al., 2001]. 
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yaw axis to the intended 

axis. The azimuth is measured clockwise 

pitch axis to bring the 

axis to its intended elevation. Elevation is measured positive upward 

) about the vehicle roll  axis to bring the 

these angles can affect the orientation of 

 
[ACME, 2009]. 

This set of three angular rotations is often used to define a coordinate transformation to 

, the rotation of each axis is 

specified by a rotation matrix. For example, the coordinate transformation from RPY 

of three rotation matrices, as shown 
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Figure 3.4 - Transformation from RPY coordinates to NED coordinates [Grewal et al., 2001]. 

 

A similar convention for Euler angles is given by Craig [Craig, 2005]. Given two frames 

A and B, the order of rotations is as follows: starting with frame B coincident with a known 

frame A, rotate first B about ZB by an angle α, then about YB by an angle ß, and, finally, about 

XB by an angle γ. This set of Euler-angle rotations is exemplified on Figure 3.5. 

 

 

Figure 3.5 - Euler Angles defined by Craig [Craig, 2005]. 

 

The final orientation of B relative to A is also given by the product of three rotation 

matrices, as follows: 

 

R�� �,�,��α, β, γ� = R��α�R��β�R��γ�
=  cos α − sin α 0sin α cos α 00 0 1) ∙  cos β 0 sin β0 1 0−sin β 0 cos β) ∙  1 0 00 cos γ −sin γ0 sin γ cos γ ) = 
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=  cos α cos β − sin α cos γ + cos α sin β sin γ sin α sin γ + cos α sin β cos γsin α cos β cos α cos γ + sin α sin β sin γ − cos α sin γ + sin α sin β cos γ− sin β cos β sin γ cos β cos γ ) Equation 
3.1 

 

 

If one considers that the Euler angles of Craig’s [Craig, 2005] convention, α, ß and γ, 

correspond, respectively, to the Euler angles of Grewal’s [Grewal et al., 2001] convention, Y, 

P and R, one can see that the results from Figure 3.4 and from Equation 3.1 are equivalent. 

 

 

3.2 Player/Stage Project 
 

The Player/Stage Project provides open-source tools that simplify controller 

development, particularly for multiple-robot, distributed robot, and sensor network systems 

[Vaughan et al., 2003]. This project includes the Player server, and the robot simulators Stage 

and Gazebo. According to its authors and developers, the Player server “(…) is probably the 

most widely used robot control interface in the world.” [Player Project, 2010]. 

Player is a network server for robot control [Player Project Wiki, 2010]. When operating 

on a robot, Player provides a straightforward interface to the robot’s actuators and sensors 

over an IP network. The user can create a Client program that configures devices, reads data 

from sensors and writes commands to actuators by interacting with Player over a TCP socket.  

Stage is a 2D multiple-robot simulator from the Player project [Player Project Wiki, 

2010]. It can simulate a group of mobile robots driving and sensing a two-dimensional 

environment. This simulator is prepared to provide virtual robots that make use of simulated 

devices instead of physical sensors, taking advantage of several sensor models including 

sonars, laser rangefinders, cameras, etc. 

Gazebo is a multi-robot simulator for outdoor environments [Player Project Wiki, 2010]. 

Its basis is similar to Stage, but the robots and sensors are simulated on a three-dimensional 

environment. 

Player server is the only component of the Player/Stage Project that will be used in this 

work and, thus, it’s also the only one of the three components that is explored in more detail 

in this chapter. 

Player defines a set of standard interfaces, each of which is a specification of the ways 

that you can interact with some class of devices [Player Manual, 2010]. For example, the 

laser interface specifies a format (messages and their contents) in which a laser range finder 
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can return its measurements (generally, a list of ranges and some scanning parameters). This 

interface can be used to interact with different kinds of laser range finders, such as SICK and 

Hokuyo Laser Range Finders.  

Another key concept in Player is the concept of driver. It is defined by the authors of 

Player Project as “A piece of software (usually written in C++) that talks to a robotic sensor, 

actuator, or algorithm, and translates its inputs and outputs to conform to one or more 

interfaces” [Player Manual, 2010]. The driver’s job is to adapt the specific language of an 

equipment or algorithm to the format of the corresponding interface. This way, two different 

sensors of the same class can provide data in the same format to Player, using the same 

interface. Most Player drivers communicate directly with hardware, but it’s also possible to 

use a different kind of driver - the abstract driver - that communicates with other drivers 

instead of hardware components. Player has a lot of drivers and abstract drivers already 

developed and that are ready to be used by the developer.  

The concept of device is closely linked with the concepts above mentioned. A device 

represents a connection between a driver (or an abstract driver) and an interface. Each device 

is assigned with a specific address that is used for message exchange which occurs between 

devices and with the help of interfaces [Player Manual, 2010]. This address can be composed 

by several fields such as host, robot (port), interface or index. Only the last two fields are 

mandatory [Owen, 2010]. 

The connection between a driver and an interface is specified in a configuration file, 

named config file. The user must write this file containing all the information that Player must 

know about the equipment that will be used. This file tells Player which drivers will be used 

and which interfaces they provide or require. The declarations of drivers or abstract drivers 

on the config file can also contain some parameters related to the sensor or algorithm that 

corresponds to the driver or abstract driver, respectively.  

The relationships between these three important concepts of Player (interface, driver and 

device) can be easily understood with the help of an example: As mentioned before, there are 

several drivers that came with Player. One of them is the sicklms200 driver. This driver 

controls a SICK LMS200, which is a laser range finder that is popular in mobile robotics 

applications. This driver is able to communicate with the SICK LMS200 over a serial port 

and receive range data from it.  Moreover, the sicklms200 driver translates the range data 

received in a specific SICK format to the format defined by the laser interface. Thus, Player 

must know that this driver provides a laser interface. To achieve this, the sicklms200 driver 

and the laser interface are associated to create a device. This is performed in a config file. An 

example of a declaration of a driver on a config file can be given by: 
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On this example, a driver with the name sicklms200 is declared. The device address is 

defined on the ‘provides’ section. This address is composed by the laser interface (the 

interface through which the driver provides data) and the index of the device which is 0. It 

also has a parameter named scanning frequency with the value 50. 

The Player/Stage Project has also a set of libraries, named Client Libraries, which allow 

the user to communicate with the Player server from an external program. This 

communication can be achieved by using Proxies that are defined in the Client Libraries. 

Proxies are C++ classes that offer methods to request data and/or send commands from and to 

the Player server and they are closely related to the interfaces defined on Player, i.e. for each 

interface there should be a corresponding Proxy in the Client Libraries. The user must build a 

Client program that uses Proxies to communicate with Player, in order to request data from 

sensors and send commands to actuators.  

The global architecture of the Player/Stage Project is illustrated on Figure 3.6.  

 

 
Figure 3.6 - Global architecture of Player/Stage Project 

driver 

( 

      name "sicklms200" // name of the driver 

       provides ["laser:0"] // [“interface:index”] 

      scanning frequency 50 // parameter 

) 
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This figure shows that the Client program built by the user requests data or sends 

commands through the methods contained in Proxies. These methods offered by Proxies are 

prepared to send messages to drivers in order to deliver those requests and/or commands. 

These messages are routed by Player Server that knows which interfaces each driver supports 

and which Proxies correspond to those interfaces. Finally, the drivers communicate with the 

hardware of the robot to perform the actions desired by the Client. 

As referred before, Player has several drivers and abstract drivers already developed. 

However, the user may not have the hardware or may not want the algorithms that these 

drivers control. In these situations, the user should develop its own driver. For this, it’s 

important to know the methods contained on a driver and its run-time process. The methods 

that should be present on a driver are: 

 

• Driver (ConfigFile* cf) : The constructor of the driver. It reads all the 

information present on the config file that is related to this driver, including the 

interfaces it provides and/or requires and some parameters that may have been 

defined. The parameter cf represents the config file that loads the driver; 

 

• MainSetup() : This method allocates resources before entering the main loop. 

It is also useful to perform initializations or error checking before the main 

loop becomes active. In general, the developer should put here everything that 

only needs to be done once; 

 

• pthread_testcancel() : This function is prepared to check whether the driver’s 

thread should be killed and to cause the driver to break out of the Main () loop 

and go to the MainShutdown() method; 

 

• ProcessMessages() : A very important method that processes the messages 

present on the message queue. In this method, the driver can receive data (e.g. 

from other drivers) and requests (e.g. from Clients). The driver can publish its 

data here, if it receives requests for it; 

 

• Main () : The core of driver’s functioning. This method should contain a main 

loop and have specific function calls to critical methods, such as 
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ProcessMessages() or pthread_testcancel(). If the driver doesn’t need a 

request to publish its data, it can be published in the Main function;  

 

• MainShutdown() : This method is called when the driver is about to be 

stopped by Player. It’s useful to deallocate resources, disconnect from ports, 

etc; 

 

• ~Driver () : The destructor of the driver.  

 

 

The run-time process of a Player driver is exemplified on Figure 3.7 [PSU Robotics 

RoboWiki, 2010].  

 

 

 

Figure 3.7 - Run-time process of a Player driver [PSU Robotics RoboWiki, 2010]. 

 

First, the Constructor and the MainSetup methods are executed. Then, the driver enters in 

its core function, i.e. the Main loop. In this loop, the driver continuously verifies if Player 

wants it to be stopped and also checks for new messages, executes the corresponding actions 

and publishes new data. Finally, when the driver is stopped, the MainShutdown and the 

Destructor methods are performed. 
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4. Mapping and Obstacle Detection system 
 

 

This chapter presents a mapping and obstacle detection system for service robots that 

work in indoor/outdoor structured environments and that are equipped with, mainly, a 

LADAR and an AHRS sensor. Section 4.1 shows how the LADAR is positioned in this 

system, in order to build elevation maps of the environment. Section 4.2 exposes the mapping 

procedure that is responsible for the creation of the elevation map. On Section 4.3, it is 

described the obstacle definition used in this model. This definition and the previously 

obtained elevation maps are used by a simple obstacle detector, which is described on Section 

4.4. This obstacle detection procedure generates a map (obstacle map) that represents only 

obstacles and freespace and that is more suitable to be used by a path planner than an 

elevation map. Section 4.5 presents the scrolling procedure that is used for the elevation map 

and depicts the overall functioning of this mapping and obstacle detection system. Section 4.6 

describes the attitude compensation procedure used on this system. This algorithm uses an 

AHRS sensor and allows this system to be more robust against variations on robot’s pitch, 

roll  and yaw angles. Finally, Section 4.7 describes the implementation of this mapping and 

obstacle detection system on a platform for robotic applications named Player/Stage. 

 

4.1 LADAR’s positioning 
 

The LADAR is a range sensor that is based on the “time of flight” principle, i.e. each 

distance provided by this sensor is computed from the propagation time that a pulse of light 

takes to travel from the source to the target and back to the receptor. At each scan, the 

LADAR provides a set of distances computed along its field of view (see Figure 4.1). 

Usually, the emitted laser beams are deflected using a mirror and, thus, the LADAR scans the 

surroundings in a circular manner. The measurements are detected at regular angular steps 

and each scan proceeds counterclockwise about the LADAR, i.e. from d1 to dn on Figure 4.1. 

This figure illustrates some of the features involved on LADAR’s operation. This kind of 

range sensors is also called LIDAR (LIght Detection And Ranging). 

 

 



 

Figure 4.1 – LADAR features. d1 and

 

Typically, the LADAR can be used to build two dimensional or three dimensional maps 

of the environment. The 2D approach is normally achieved by 

parallel to the floor. If we consider t

obtained with this method is shown in 

 

 

(a) 

Figure 4.2 – Two types of maps obtained using 

 

This kind of maps is acceptable for a two dimensional world where all the objects should

have specific shapes and should be tall enough

However, this method faces many problems presented by the real world such as ob

or above the height of the LADAR

dissertation the LADAR is used

and dn are measured distances, α is the angular step and 
view. 

can be used to build two dimensional or three dimensional maps 

of the environment. The 2D approach is normally achieved by setting the scanning plane 

If we consider the hallway presented in Figure 4.2 (a)

obtained with this method is shown in Figure 4.2 (b). 

 

(b) 

Two types of maps obtained using a LADAR. (a): Hallway; (b): 2D map of
of (a). 

This kind of maps is acceptable for a two dimensional world where all the objects should

shapes and should be tall enough to be detected by the scanning plane. 

However, this method faces many problems presented by the real world such as ob

LADAR, tables, sidewalks, fencings, ditches, among

used in a way suitable for a three dimensional world.
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is the angular step and θ is the field of 

can be used to build two dimensional or three dimensional maps 

the scanning plane 

(a), a typical map 

 

(c) 

of (a); (c): 2.5D map 

This kind of maps is acceptable for a two dimensional world where all the objects should 

to be detected by the scanning plane.  

However, this method faces many problems presented by the real world such as objects below 

among others. In this 

in a way suitable for a three dimensional world. With this 



 

approach it is possible to build two and a half dimensional map

on Figure 4.2 (c). 

As stated before, this 

robot, with the scanning plane angled down

Figure 4.3. As the robot moves forward, the laser sweeps some space in front of the robot and 

a 2D ½ map is being built. 

 

Figure 

 

4.2 Mapping  
 

This section exposes the 

describes the computation of the 

information that will be added to the 

4.2.2). 

 

4.2.1 Computation of t
 

One of the first operations of 

plane, which is the plane that the LADAR

any object inside its field of view

ranges that the LADAR would

and no other object or surface is detected 

build two and a half dimensional maps, similar to the o

his model uses a single LADAR which is placed on top of a mobile 

, with the scanning plane angled down towards the direction of motion

. As the robot moves forward, the laser sweeps some space in front of the robot and 

 

Figure 4.3 – LADAR’s positioning for this model. 

This section exposes the procedure that is behind the creation of the 

the computation of the reference plane (section 4.2.1) and also how to get the 

dded to the elevation map and how the map is represented

Computation of the reference plane 

One of the first operations of the mapping procedure is the computation

, which is the plane that the LADAR “sees”, positioned as on Figure 

inside its field of view. In other words, it’s an “empty plane”

the LADAR would provide if it only scans the surface where the robot is standing

and no other object or surface is detected in its field of view. This 
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, similar to the one presented 

LADAR which is placed on top of a mobile 

the direction of motion, as shown in 

. As the robot moves forward, the laser sweeps some space in front of the robot and 

 

creation of the elevation map. It 

(section 4.2.1) and also how to get the 

is represented (section 

computation of a reference 

Figure 4.3, without having 

”  composed by a set of 

if it only scans the surface where the robot is standing 

This reference plane is 



 

continuously updated due to changes in LADAR’s attitude 

real plane4 provided by the LADAR in order to obtain information about terrain’s elevation.

The calculation of the reference plane

which are illustrated on Figure 4.

is on the position (0, 0, h) according to the coordinate system

represents the theoretical range provided by the LADAR

emitted at , = 90°. LADAR’s height is represented by 

LADAR’s tilt ( ϕ = 90◦ - tilt). 

 

 

(a) 

Figure 4.4 – Calculation

 

On Figure 4.4 (a) it’s possible to see that dis

equation: 

LADAR’s height and tilt remain always with the same value, since the LADAR is 

in a fix position. Thus, it would be expected that 

long as h and ϕ remain constant

because d will have to be updated due to changes in robot’s attitude, but this 

explored on section 4.5.  

Then, distance d is used to compute 

as follows: 

 

                                                           
4
 In this dissertation, the term "real plane" refers 

LADAR at each scan. 

due to changes in LADAR’s attitude and is used to compare with the 

provided by the LADAR in order to obtain information about terrain’s elevation.

reference plane is based on some simple trigonometry 

.4. In these calculations it is assumed that the LADAR’s lens 

) according to the coordinate systems of Figure 

provided by the LADAR’s central beam, i.e. the beam that is 

ADAR’s height is represented by h and ϕ is an angle obtained from 

(b) 

alculation of the reference plane: (a) side view, (b) front view.

s possible to see that distance d can be computed by the following 

/ �  0
cos 1 

 

height and tilt remain always with the same value, since the LADAR is 

it would be expected that distance d would always remain the same as 

remain constant and no obstacles are detected. In fact, this will not happen 

will have to be updated due to changes in robot’s attitude, but this 

used to compute the LADAR’s theoretical range at each angle 

In this dissertation, the term "real plane" refers to the plane that contains the set of ranges measured by the 
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used to compare with the 

provided by the LADAR in order to obtain information about terrain’s elevation. 

is based on some simple trigonometry concepts, 

In these calculations it is assumed that the LADAR’s lens 

Figure 4.4. Distance d 

beam, i.e. the beam that is 

is an angle obtained from 

view. 

can be computed by the following 

height and tilt remain always with the same value, since the LADAR is fixed 

always remain the same as 

In fact, this will not happen 

will have to be updated due to changes in robot’s attitude, but this problem will be 

the LADAR’s theoretical range at each angle σ (Rσ) 

to the plane that contains the set of ranges measured by the 



 

 

The angle σ represents each angle where the LADAR emits a beam. 

obtained by iteratively adding the angular step 

field of view. 

The reference plane will be composed by the set of 

view of the LADAR. Summarizing, the procedure to compute 

first computing distance d

angle σ of the field of view. 

 

4.2.2 Map building  
 

As stated before, the 

elevation by comparing it with the 

scan is performed, and for each angle 

compared to the corresponding

hypothetical obstacle. This pro

 

 

Figure 4.5 - Side view of the height computing process
axis. H

 

By looking at Figure 4

can be computed by the following equatio

 

2� �  /
sin , 

represents each angle where the LADAR emits a beam. 

obtained by iteratively adding the angular step α (see Figure 4.1) to the starting angle of the 

will be composed by the set of Rσ ranges computed along the field of 

Summarizing, the procedure to compute the reference plane

d and then using this distance to determine the range 

of the field of view.  

 

As stated before, the reference plane is used to obtain information about terrain’s 

vation by comparing it with the real plane provided by the LADAR. Hence, e

scan is performed, and for each angle σ, the real range provided by the LADAR

corresponding range Rσ of the reference plane to compute the height of 

This procedure is illustrated on Figure 4.5 and Figure 

Side view of the height computing process. Example for an obstacle 
Hσ is the height in meters and ρ is an angle in degree

4.5 it’s possible to see that the height of a hypothetical obstacle

by the following equation: 

3� � cos �4� 5 62� $ 2��78���9 
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represents each angle where the LADAR emits a beam. These angles are 

) to the starting angle of the 

ranges computed along the field of 

reference plane consists of 

then using this distance to determine the range Rσ for each 

is used to obtain information about terrain’s 

provided by the LADAR. Hence, every time a 

, the real range provided by the LADAR (Rreal(σ)) is 

to compute the height of a 

Figure 4.6.  

 
 placed on the positive Z 

es. 

the height of a hypothetical obstacle (Hσ) 



 

The angle ρ is obtained 

 

 

For “negative” obstacles, i.e. obstacles placed on the negative Z axis,

similar but, in this case, Rreal(σ) h

expected, the value obtained to H

 

 

Figure 4.6 - Side view of the height computing process
axis. Hσ is the height in meters and 

 

If there isn’t any obstacle at a given angle 

same value and the value computed for 

Finally, the computed height

representation of the terrain’s elevation

LADAR. A grid map was adopted to represent terrain’s elevation in a suitable way

Figure 4.7). This map can be represented by the following 

 

 

The elevation map is a two

based on the measures taken from the LADAR and it is 

placed on the center cell of the map

Each cell in the elevation map represents an area

is obtained from laser’s height h and each range Rσ as follows:

4 � cos:; < 0
2�= 

, i.e. obstacles placed on the negative Z axis, 

has a bigger value than Rσ, as shown on Figure 

Hσ is negative.  

Side view of the height computing process. Example for an obstacle placed on the negative Z 
is the height in meters and ρ is an angle in degrees. 

obstacle at a given angle σ, Rreal(σ) and Rσ will have approximately the 

same value and the value computed for 3� will be very close to zero. 

height (Hσ) is saved in an elevation map (system’s internal 

terrain’s elevation) on a cell corresponding to the range provided by the 

A grid map was adopted to represent terrain’s elevation in a suitable way

This map can be represented by the following expression: 

> >�?@AB��CB���,D
DE�

DEF

�EG

�EF
 

is a two-dimensional array of cells (H 5 � containing information 

based on the measures taken from the LADAR and it is LADAR-centered, i.e. the 

f the map, which is also considered as the origin of the XY plane

represents an area, �IB 5 IJ� m2. Therefore, the total 
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as follows: 

 the procedure is 

Figure 4.6. Hence, as 

 
Example for an obstacle placed on the negative Z 

will have approximately the 

(system’s internal 

range provided by the 

A grid map was adopted to represent terrain’s elevation in a suitable way (see 

containing information 

, i.e. the sensor is 

the origin of the XY plane. 

. Therefore, the total area of 
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the map is �H 5 IJ� 5 � 5 IB� m2. Each cell contains the average of the heights of all 

computed points that correspond to that cell. A representation of the elevation map used in 

this work is shown on Figure 4.7. 

 

 

 
Figure 4.7 - Elevation map representation. n represents the number of height cells and m is the number of 
width cells. cw and ch represent cell’s width and height, respectively, measured in meters. L symbolizes 

LADAR’s position on the map. 

 

Every time a LADAR scan is performed, the elevation map is updated with new 

information obtained from the scan. To achieve this, the average height of each cell that 

contains new information is updated with the corresponding height values computed from the 

new scan, as explained before.  

 

4.3 Obstacle definition 
 

As previously stated, this model intends to be suitable for structured environments. These 

environments usually have large planar surfaces where, generally, obstacles are 

distinguishable. Thus, in this case, an obstacle can be understood as an object that stands 

above or below those large planar surfaces where the service robot is based and that can 

prevent a wheeled service robot from passing through. In this model, it is assumed that the 

surface where the robot stands is considered as the ground plane and obstacles are classified 

in terms of their heights in relation to this ground plane. The obstacle definition used is: 

 

Definition 1: A cell �K, L� of the elevation map is considered an obstacle if the following 

condition is met: 
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1. M@AB�K, L� > 3OP�  ∪  M@AB�K, L� < 3��C 

 

where  M@AB�K, L� is the average height of the cell, 3OP� is the minimum height that an object 

that stands above the ground plane must have to be considered as an obstacle and 3��C is the 

minimum height that an object that stands below the ground plane must have to be considered 

as an obstacle. All the cells that have average heights with values between 3OP� and 3��C are 

considered as free space. Consequently, the values for parameters 3OP� and 3��C must be 

chosen according to the service robot’s dimensions in order to prevent the robot being damage 

when travelling cells considered as free space. 

 

4.4 Obstacle detection 
 

The obstacle detection procedure of this model is very simple and consists in applying the 

obstacle definition of section 4.3 to each cell of the elevation map. The information obtained 

on the obstacle detection procedure is saved on an obstacle map (see Figure 4.8) that is more 

suitable to be transferred to and used by a path planner. 

The obstacle map is similar to the elevation map in terms of their appearance. 

Nonetheless, the content of each cell is different. In the obstacle map, each cell holds a value 

(cv) that represents an obstacle or free space.  

 

 

 
Figure 4.8 - Obstacle map. nobs represents the number of height cells and mobs is the number of width cells. 

Cwobs and Chobs represent cell’s width and height, respectively, measured in meters. L symbolizes 
LADAR’s position on the map. cv represents each cell’s value. 
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Also their heights and widths can be different, because if the obstacle map is intended to 

be used by a path planner its size could be smaller than the elevation map’s size in order to 

reduce the amount of information that is transferred. For example, the obstacle map can 

represent only a “window” of the elevation map maintaining the same resolution (cell’s size). 

However, these details must be taken in consideration according to the chosen strategy for the 

path planning. 

As previously mentioned, the value assigned to each cell of the obstacle map depends on 

the results of applying the obstacle detection definition to the elevation map. This value is 

assigned according to the following conditions: 

 

IS � T$1, 3��C <  M@AB�K, L� < 3OP�1,  M@AB�K, L� > 3OP�  ∪  M@AB�K, L� < 3��C
U 

 

If a cell of the elevation map is considered an obstacle, the corresponding cell of the 

obstacle map is assigned with the value 1. If the cell is considered as free space, the 

corresponding cell of the obstacle map is assigned with the value -1. This procedure is 

performed only for the cells of the elevation map that contain information in order to increase 

the computational efficiency of this procedure. The cells of the obstacle map that correspond 

to those of the elevation map that have no information are assigned with the value 0, which 

means “unknown terrain”. 

 

4.5 Map scrolling 
 

Before the calculation and addition of new information, there is the possibility of 

elevation map’s cells being repositioned according to LADAR’s displacement, but only when 

this displacement is larger than a cell’s size. In this scrolling procedure, cells are only 

repositioned across the Y axis, i.e. each cell remains in the same column, changing only its 

line. Therefore, in order to decide if the scrolling procedure must be executed, the Y axis 

projection of LADAR’s displacement is computed (using yaw angle) and this value is the one 

that is compared with the cell’s size. Also, only the cells that contain information are 

repositioned, which increases the computational efficiency of this procedure. 

In summary, for every LADAR scan the mapping and obstacle detection system is 

executed as exemplified by Figure 4.9.  

 



 

Figure 4.9 - Flowchart of the map

 
 

Flowchart of the mapping and obstacle detection system.
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ping and obstacle detection system. 



 

First, and only if LADAR’s displacement is bigger than the size of a cell, the 

map is scrolled according to this displacement and 

procedure for Yaw compensation

updated according to the LADAR’s 

4.9 as Pitch-Roll compensation

is stored so it can be used the next time that this whole procedure, represented on

is performed. Afterwards, the new 

obtain information about terrain’s elevation and this new information is added to the 

map. Finally, the obstacle detection procedure is performed in order to build the 

as explained on section 4.4.

 

 

(a) 

(c) 

(e) 

Figure 4.10 – Effects on the 
view of pitch changes. (c) and

First, and only if LADAR’s displacement is bigger than the size of a cell, the 

olled according to this displacement and Yaw compensation

Yaw compensation is addressed on section 4.6. After that, the 

updated according to the LADAR’s pitch and roll  angles. This procedure, named on

Roll compensation is also explored on section 4.6. Then, the new 

is stored so it can be used the next time that this whole procedure, represented on

is performed. Afterwards, the new reference plane and the real plane are compared in order to 

obtain information about terrain’s elevation and this new information is added to the 

. Finally, the obstacle detection procedure is performed in order to build the 

as explained on section 4.4.  

 

(b) 

 

(d) 

 

(f) 

Effects on the reference plane caused by variations on robot’s attitude. (a) and (b) 
view of pitch changes. (c) and (d) – front view of roll changes. (e) and (f) – top view of yaw changes.
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First, and only if LADAR’s displacement is bigger than the size of a cell, the elevation 

Yaw compensation is performed. The 

is addressed on section 4.6. After that, the reference plane is 

angles. This procedure, named on Figure 

is also explored on section 4.6. Then, the new reference plane 

is stored so it can be used the next time that this whole procedure, represented on Figure 4.9, 

are compared in order to 

obtain information about terrain’s elevation and this new information is added to the elevation 

. Finally, the obstacle detection procedure is performed in order to build the obstacle map, 

 

 

 

 

 

 

plane caused by variations on robot’s attitude. (a) and (b) - side 
top view of yaw changes. 



 

4.6 Robot’s Attitude compensation
 

This section explains the procedure

Figure 4.9. As stated before, changing robot’s attitude (pitch, roll and yaw angles) 

the mapping system and increase the number of false positives

pitch and roll variations will affect the reference plane 

whereas yaw variations will affect only the elevation map.

how these variations may or may not 

In this figure the ground plane is represented by the XY plane and the original 

planes are represented by dashed lines. 

LADAR’s pitch or roll  change, the 

affect the distances that belong to this plane. On the other side, 

orientation of the reference plane

whenever there are variations on 

plane must be updated so that the correct 

real plane. 

The update of the reference plane

is converted into an XY plane point

4.11.  

 

(a) 

Figure 4.11 – Computation of each XY point of the reference plane. (a) 

 

Assuming that the LADAR lens is on the position (0, 0, 

systems of Figure 4.11, the distance 

 

 

Robot’s Attitude compensation 

This section explains the procedures Pitch-Roll compensation and Yaw compensation 

As stated before, changing robot’s attitude (pitch, roll and yaw angles) 

the mapping system and increase the number of false positives on obstacle detection

pitch and roll variations will affect the reference plane and, consequently, the elevation map

yaw variations will affect only the elevation map. Figure 4.10 presents

or may not affect the reference plane. 

In this figure the ground plane is represented by the XY plane and the original 

sented by dashed lines. By observing Figure 4.10 one can see that whenever 

change, the reference plane must be updated because these changes 

ect the distances that belong to this plane. On the other side, yaw variations only change the 

reference plane but they don’t interfere on its distances. Therefore, 

whenever there are variations on pitch or roll  values, the distances that comprise the 

must be updated so that the correct reference plane is used on the comparison with the 

reference plane is achieved as follows: each distance R

plane point (for example, point A of Figure 4.12), as shown on

 

(b) 

Computation of each XY point of the reference plane. (a) – side view, (b) top view.

that the LADAR lens is on the position (0, 0, h) according to the coordinate 

, the distance Rxyσ can be obtained by the following equation:

2VW� � 2� ∙ sin X 
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and Yaw compensation of 

As stated before, changing robot’s attitude (pitch, roll and yaw angles) may affect 

on obstacle detection. Namely, 

he elevation map, 

presents examples of 

In this figure the ground plane is represented by the XY plane and the original reference 

one can see that whenever 

must be updated because these changes 

variations only change the 

but they don’t interfere on its distances. Therefore, 

values, the distances that comprise the reference 

is used on the comparison with the 

Rσ at each angle σ 

), as shown on Figure 

 

side view, (b) top view. 

) according to the coordinate 

can be obtained by the following equation: 
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The angle ω is obtained from LADAR’s height h and each range Rσ as follows: 

 

X � cos:; < ℎ2�= 

 

Finally, point Pσ (�����; 	����) is computed using distance Rxyσ and angle σ, as follows: 

 

����� = 2VW� ∙ cos �,� ;  	���� = 2VW� ∙ sin �,� 

 

Then, this point is transformed by a rotation matrix, containing the three axes (X, Y and 

Z) and the three rotation angles (pitch, roll  and yaw), which is presented on Equation 3.1. As 

mentioned before, this step is only performed for pitch and roll  variations, thus the 

transformations are performed using zero value for yaw. Also, pitch and roll  angles used in 

these transformations are not absolute, i.e. they are given by the variation between the current 

angle and the angle used for the previous scan of the LADAR.  

The transformed point will then be obtained by the product between the rotation matrix of 

Equation 3.1 and the point (�����, 	����, 0), as follows:   

 

 ��	�
�
) = 

 cos α cos β − sin α cos γ + cos α sin β sin γ sin α sin γ + cos α sin β cos γsin α cos β cos α cos γ + sin α sin β sin γ − cos α sin γ + sin α sin β cos γ− sin β cos β sin γ cos β cos γ ) ∙  �����	����0 ) 
 

 

, where α, ß and γ represent, respectively, yaw, pitch and roll  angles. 

The next step consists of finding the line segment between the transformed point 

���, 	�, 
�� and the point where the LADAR lens is placed �0,0, ℎ� and its intersection with 

the XY plane. The point where this line segment intersects the XY plane (assumed to be the 

ground plane) will then be used to compute the new distance for the reference plane. The 

calculation of this line segment is performed for two planes – ZY and ZX – and uses the 

characteristic equation of a line which is given by: 

 


 = HZW ∙ 	 + [ , for plane ZY; 


 = HZV ∙ � + [ , for plane ZX; 
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In these equations, mzy and mzx are the slopes of the line segments and b represents the y-

intercepts. In this case, the slopes and y-intercepts are computed as follows: 

 

HZW � �
� $ 0�
	�  

 

HZV � �
� $ 0�
��  

 

[ � 0 

 

The intersection of each line segment with the XY plane is computed through the 

following equations: 

 


 � 0 ↔ HZW ∙ 	 + [ = 0 ↔ 	��� = − [HZW = ℎ ∙ 	��
� − ℎ� 

 


 = 0 ↔ HZV ∙ � + [ = 0 ↔ ���� = − [HZV = ℎ ∙ ���
� − ℎ� 

 

The point �����, 	���, 0� is then used to compute the new distance for the reference plane. 

This distance will be given by the calculation of the Euclidean distance between point 

�����, 	���, 0� and point �0,0, ℎ� as follows: 

 

��������� = ]����� − 0�^ + �	��� − 0�^ + �0 − ℎ�^ 

 

This last step can be easily understood with the help of an example of a pitch variation 

presented in Figure 4.12. Point B is obtained by computing a 3D transformation of point A 

with the matrix presented in Equation 3.1. But, to have a new reference plane that is 

consistent with real LADAR measurements, it’s necessary to know point C, because the 

ground plane (XY plane) is often the “lower limit” of the distances returned by the LADAR 

(laser beams can’t “drill” through the ground). Knowing points B and D (considered to be the 

point of coordinates (0, 0, h)) it’s possible to find point C, as explained above.  

 



 

 

Figure 

 

The new distance that will appear on the 

between points C and D. It is wort

some transformed points have bigger 

situations, the previous operations are not performed and the new distance of the 

plane will be the maximum distance that the LADAR can measure. The procedure explained 

so far is performed for each distance 

was updated the last time the procedure of

in pitch and roll , as stated

procedure is called to action right before the scrolling procedure but, however, these two 

procedures are not always carried out together, i

performed when the displacement of the LADAR is bigger than the size of a cell, 

compensation is carried out only when necessary. For example, when the robot is driving 

straight ahead Yaw compensation

performed simultaneously, 

scrolling procedure is done, i.e. first the map is rotated

subsequently, cells are transferred 

On Yaw compensation

performed on the elevation map

angle, because it must maintain on

centered. Just as on Pitch-Roll compensation

not absolute, i.e. it is given by the variation between the current angle and the angle used for 

the last time that Yaw compensation

The timing for the rotation of the map depends on the size of 

will be occasions when the variation of the 

position inside the map. Thus, f

made only when the angle corresponding to the variation of 

Figure 4.12 – Example of point transformation. 

The new distance that will appear on the reference plane is the 

between points C and D. It is worth mentioning that, in some cases such as 

some transformed points have bigger z coordinates than the z coordinate of point D. In these 

situations, the previous operations are not performed and the new distance of the 

the maximum distance that the LADAR can measure. The procedure explained 

so far is performed for each distance of the reference plane previously stored

the last time the procedure of Figure 4.9 was carried out) and only for variations 

stated before. As previously explained (Figure 4.9

procedure is called to action right before the scrolling procedure but, however, these two 

procedures are not always carried out together, i.e. whereas the scrolling procedure is always 

performed when the displacement of the LADAR is bigger than the size of a cell, 

carried out only when necessary. For example, when the robot is driving 

Yaw compensation will not be performed. However, when 

performed simultaneously, Yaw compensation is always made first and

scrolling procedure is done, i.e. first the map is rotated (Yaw compensation

subsequently, cells are transferred across the Y axis of the map (scrolling)

Yaw compensation, the reference plane is not modified and the compensation is 

elevation map, i.e. the map is rotated according to the 

because it must maintain one of its main characteristics, which is being LADAR

Roll compensation, the yaw angle used in the rotation of the map is 

not absolute, i.e. it is given by the variation between the current angle and the angle used for 

Yaw compensation was carried out.  

The timing for the rotation of the map depends on the size of its 

will be occasions when the variation of the yaw angle is not sufficient for cells to change 

. Thus, for the map to be actually rotated, Yaw compensation

made only when the angle corresponding to the variation of yaw is such that the XY points 
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is the Euclidean distance 

h mentioning that, in some cases such as roll  variations, 

coordinate of point D. In these 

situations, the previous operations are not performed and the new distance of the reference 

the maximum distance that the LADAR can measure. The procedure explained 

previously stored (the one that 

and only for variations 

Figure 4.9), Yaw compensation 

procedure is called to action right before the scrolling procedure but, however, these two 

.e. whereas the scrolling procedure is always 

performed when the displacement of the LADAR is bigger than the size of a cell, Yaw 

carried out only when necessary. For example, when the robot is driving 

However, when both procedures are 

made first and, after that, the 

Yaw compensation) and, 

(scrolling).  

and the compensation is 

the map is rotated according to the variation of yaw 

which is being LADAR-

angle used in the rotation of the map is 

not absolute, i.e. it is given by the variation between the current angle and the angle used for 

 cells, otherwise there 

angle is not sufficient for cells to change 

Yaw compensation should be 

is such that the XY points 
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corresponding to each cell change significantly their position inside the map when rotated 

with this angle, i.e. when the rotation of a XY point corresponding to a cell allows this point 

to be moved to another cell. Thus, the system follows the next procedure in order to decide 

when Yaw compensation is ready to be made: first, it searches for the first cell of the central 

column of the map (i.e. the central column’s cell that is closest to the LADAR) that has 

information. Then, this cell is converted to an XY point which is rotated by the rotation 

matrix of Equation 3.1 with α = -yaw, and ß and γ with zero value. Finally the distances 

between the X and Y coordinates of the original point and the corresponding X and Y 

coordinates of the transformed point are computed and, if one of these distances is bigger than 

the size of a cell, then the information contained by this cell is ready to be moved to a 

different cell. In this model, it is assumed that, if the cell of the central column of the map that 

is closest to the robot is ready to be rotated, then so is the rest of the map. The rotation of the 

whole map is achieved by the following procedure: each cell of the map is converted to an 

XY point that is rotated by the rotation matrix of Equation 3.1 with α = -yaw, and ß and γ 

with zero value. Then, the information present in the original cell is copied to a new cell that 

corresponds to the transformed XY point. Finally the information that remained in the original 

cell is erased. 

In summary, pitch and roll  compensation consists of continuously updating the distances 

of the reference plane so that the comparison with the real plane can be reliable, whereas Yaw 

compensation is responsible for the rotation of the elevation map in order to maintain this 

map centered on the LADAR.  

As aforementioned, this whole mapping and obstacle detection system is based on the 

assumption that the robot that carries the LADAR stands on a flat surface, which is 

considered to be the ground plane. Therefore, a drawback for this system happens when the 

ground plane changes its orientation, as for example when the robot tries to go down a ramp. 

In this situation, Pitch-Roll compensation will not help because it will try to adjust the 

reference plane when it is not supposed, since the attitude variation that affected the LADAR 

was caused by a modification on the orientation of the ground plane and not by an object 

through which the robot was passing. This can cause the emergence of false positives on 

obstacle detection and, therefore, an additional heuristic is necessary to prevent these 

problems and to make this system more robust to be used on navigation and path planning, 

since it is mainly in this area that this system can be useful. Thus, each time the variation over 

time in LADAR’s orientation, since the start of its operation, reaches a significant value, i.e. 

whenever the total variation of the pitch angle exceeds a threshold ε, the reference plane is 

recalculated as explained on section 4.2.1 and the elevation and obstacle maps are erased. 
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Maps are erased in order to delete all the erroneous elevation information obtained and all the 

false obstacles detected during the transition between a ground plane and the other, and the 

reference plane is recalculated to prevent that fictional obstacles show up in the next scans. 

However, this is only performed in those cases where the pitch angle didn’t vary abruptly 

since the last iteration (i.e. when pitch variation since last scan didn’t exceed a certain 

threshold η), since this is what happens when the robot’s wheels pass through an object. This 

second condition has to be verified, so that the first condition doesn’t interfere with the Pitch-

Roll compensation by giving order to clear the maps and re-compute the reference plane in 

situations where variations on robot’s attitude happened due to the passage of the robot 

through some object and not due to variations on the orientation of the ground plane.  

 

4.7 Implementation on Player Server 
 

As stated on section 1.2 of Chapter 1, this model was implemented on a framework for 

mobile robotics applications named Player/Stage Project. Section 3.2 of Chapter 3 has further 

information about this framework and the concepts that will be addressed in this section.  

In particular, this model was incorporated on a component of this framework, named the 

Player Server. To achieve this, it was developed an abstract driver to perform the tasks 

related to this mapping and obstacle detection system and a driver to acquire measures from a 

LADAR.  

 

 
Figure 4.13 - Implementation of this system on Player Server 
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Figure 4.13 illustrates the hierarchy of the Player server architecture used and where the 

developed drivers fit into this architecture. The components of this architecture that were 

developed for this work are the ladarDriv and MapOD drivers. 

The ContDriv and ahrsDriv drivers were not developed specifically for this work but 

they are also used to provide their data to MapOD. These two drivers are responsible for the 

computation of robot’s displacements through the odometry data provided by two optical 

encoders (ContDriv) and for the acquisition of data from the AHRS sensor (ahrsDriv).  

The driver ladarDriv is responsible for the communication with the LADAR sensor and 

provides the acquired measurements to the MapOD driver. Its operation is based on a simple 

sequence of actions (Figure 4.14): when it’s launched, it reads some configuration parameters 

of the LADAR (measurement frequency, angular step, IP address, port, etc.) from the config 

file and connects to the LADAR on the Constructor method. Then, every x milliseconds the 

Main loop is executed. Here ladarDriv gives orders to the LADAR to perform a scan, 

receives the set of distances given by this sensor, adapts this information to the laser interface 

format and provides it to the drivers that may use it, in this case the MapOD driver. This 

driver can also receive requests to send the current configuration parameters of the LADAR 

(scanning frequency, angular step, etc), through the ProcessMessages() method. 

 

 

 
Figure 4.14 – Run-time process of ladarDriv driver. 

 

The MapOD driver is responsible for all the mapping and obstacle detection system and, 

thus, it needs to receive measures from the LADAR and information about robot’s attitude 

(AHRS) and robot’s displacements (Optical Encoders). This driver provides an elevation map 

and also an obstacle map, which is more suitable for a Planner that may exist on the 
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architecture. Therefore, Figure 4.13 shows MapOD providing an obstacle map to an abstract 

driver that represents a Planner (PlannerDriv driver). MapOD starts its operation by reading 

from the config file some parameters for the maps (resolution, width and height) and the 

identification numbers of the drivers ContDriv, ahrsDriv and ladarDriv (Figure 4.15). The 

driver MapOD needs these identification numbers in order to establish connections with the 

corresponding drivers through the Player Server, so that it can receive data from them. These 

connections are established in the MainSetup() method. The main action of this driver is 

present on the ProcessMessages() method. Here, it receives LADAR measures from 

ladarDriv and attitude and displacements data from ahrsDriv and ContDriv, respectively. 

Whenever a message from ladarDriv is received by MapOD, the whole mapping and obstacle 

detection system illustrated on Figure 4.9 is executed. Each map obtained (elevation map and 

obstacle map) is provided in tiles (as specified by the map interface), as soon as MapOD 

receives the corresponding request on the ProcessMessages() method. 

 

 

 
Figure 4.15 - Run-time process of MapOD driver. 

 

Besides the developing of these drivers, it was also created a Client program that uses 

some Proxies to interact with the corresponding drivers. This Client allows the user to view 

the maps in real-time and also, if desired, to control the movements of the robot through the 

computer’s keyboard. Its operation is quite simple and basically consists of periodically 

requesting (through the MapProxy) the elevation and obstacle maps to the MapOD driver and 

display them using OpenGL [Shreiner et al., 2007].  
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5. Experimental Results 
 

 

This chapter presents a set of experiments that were carried out in order to demonstrate 

the capabilities and weaknesses of the developed mapping and obstacle detection system and 

its applicability to indoor/outdoor structured environments. This system was developed to be 

part of a service robot that is being developed by Holos, S.A. The experiments were 

conducted in real environments and with the developed system incorporated on this service 

robot, which is illustrated on Figure 5.1.  

 

 

  

(a) (b) 

Figure 5.1 – The robot with which these experiments were performed. This robot is being developed by 
Holos, S.A., the mapping and obstacle detection system being the work of the author. 

 

This robot carries several sensors, including a LADAR which is the main sensor used in 

this system. It also has an AHRS sensor and two optical incremental encoders, which are also 

necessary for full operation of the developed system. In the context of these experiments, the 

AHRS sensor is used to obtain roll , pitch and yaw angles and the encoders are a means for 

capturing the distance travelled by the robot. 
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The LADAR used in these experiments is a SICK LMS111 which has a maximum field 

of view of 270° and a scanning range up to 20 meters. It can be configured to scan with 

angular steps of 0.25° or 0.5° and with a measurement frequency of 25 or 50 Hz [SICK, 

2008]. The communication is achieved through Ethernet connection. 

The AHRS sensor is an Xsens Mti that is composed by an accelerometer, a gyroscope 

and a magnetometer, all with three axes [Xsens, 2008]. The communication protocol is RS-

232 and it has an RS-232/USB converter. The Xsens Mti can handle 5G accelerations and has 

a rate of turn of, approximately, 300º/s.  

The optical incremental encoders have 500 ppr (points per revolution) and output pulses 

as they rotate. By counting these pulses it is possible to obtain how many revolutions (or 

fractions of) the motor has turned and thereby compute the displacement of the robot. These 

encoders are connected to two 150W Maxon motors and the number of pulses of each encoder 

is provided by a Roboteq AX3500 motor controller [Roboteq, 2007]. 

If nothing is said otherwise, in the following experiments the LADAR is configured with 

a field of view θ = 120º (between 30º and 150º), a measurement frequency of 25 Hz and an 

angular step α of 0.25º. It is placed on the top of the robot at an approximate height h of 1.08 

meters and with a tilt angle of approximately 7.5 degrees, i.e. ϕ is set to 82.5 degrees.  

The widths, heights and cell’s sizes of the elevation and obstacle maps have also been set 

to the values presented on Table 5.1, if nothing is said otherwise.  

 

Name Description Value 

m Number of width cells of the elevation map 101 

n Number of height cells of the elevation map 101 

cw Width of a cell of the elevation map, measured in meters 0.2 

ch Height of a cell of the elevation map, measured in meters 0.2 

mobs Number of width cells of the obstacle map 101 

nobs Number of height cells of the obstacle map 101 

Cwobs Width of a cell of the obstacle map, measured in meters 0.2 

Chobs Height of a cell of the obstacle map, measured in meters 0.2 

 
Table 5.1 - Widths, heights and cell’s sizes of the elevation and obstacle maps. 

 

Therefore, the obstacle and elevation maps have a range of approximately 20x20 meters. 

Hpos and Hneg have been set to +10 cm and -10 cm, respectively. 
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As described in the previous chapter, this system was implemented on the Player Server 

and a Client program was developed to display the results of the experiments. Both Player 

Server and Client run on the operating system Linux with Ubuntu distribution. The Player 

drivers responsible for all the mapping and obstacle detection system, as well as the Client 

program, have been implemented in C++. The Player Server runs on the robot’s side, on a 

ZOTAC GeForce 9300 – ITX with an Intel Q9650 Core 2 Quad 3 GHz and 4GB RAM. The 

Client runs on a laptop equipped with an Intel Core 2 Duo 1.66 GHz processor and 1GB 

RAM.   

The results of all experiments are presented by snapshots or measurements taken on the 

Client side. In these experiments, in order to allow the reader a better visualization and 

understanding of the results, each type of cell content is drawn in a different color. Therefore, 

and if nothing is said otherwise, cells from the elevation map with average heights between -3 

and +3 centimeters are considered as belonging to the ground plane and thus are drawn in 

blue. Also, cells that are below the ground plane are drawn in yellow and cells that are above 

the ground plane are drawn in black and grey. In the obstacle map, cells considered as 

freespace are drawn in green and cells considered as obstacles are drawn in red. The cell 

drawn in orange in each map represents LADAR’s position. Moreover, every map image 

contains a line segment of 1 meter length (also drawn in orange) that intends to be a scale for 

the map in order to enable the reader a better perception of the distances between the robot 

and the obstacles and, also, of the displacements of the robot.  

 

5.1 Changing resolution and size of maps 
 

This experiment intends to demonstrate the ability to customize the size and resolution of 

elevation and obstacle maps and the effects of this customization on the detail of the 

information presented in these maps and also its impact on the algorithms that use these maps.  

As explained on chapter 4, both maps built by this system are represented by two-

dimensional arrays of cells. Therefore, the number of cells of each map is always given by 

H 5 , in the elevation map’s case, and by HP_� 5 P_� in the obstacle map’s case. The 

amount of memory occupied by these maps and the processing time of an algorithm that uses 

these maps depend on their size (number of cells). For example, in order to draw the elevation 

map on OpenGL, the Player Client runs through every cell of the map. Thus, the number of 

iterations of the drawing algorithm can be given by the number of cells of the map. Table 5.2 

represents this number of iterations for four different map sizes. 



48 

 

Map width, m Map height, n Number of iterations, K` �  H ×  

41 41 1681 

101 101 10201 

201 201 40401 

401 401 160801 

 
Table 5.2 – Number of iterations for the algorithm that draws the maps with four different map sizes. 

 

By observing Table 5.2 it is clear that the larger the map, the greater the number of 

iterations of the drawing algorithm. The processing time of this drawing algorithm is closely 

connected with the number of iterations needed to complete the algorithm.  

As aforementioned, the amount of memory occupied by these maps also depends on their 

size. Considering that the content of each cell of the elevation map occupies 4 bytes of 

memory and the content of each cell of the obstacle map occupies 1 byte of memory and that 

both maps have the same size, i.e. HP_� = P_� = H = , Table 5.3 shows the number of 

bytes occupied by each map with four different map sizes. 

 

Map 

width, m 

Map 

height, n 

Memory occupied by elevation 

map  = H ×  × 4 (bytes) 

Memory occupied by obstacle 

map  = H ×  × 1 (bytes) 

41 41 6724 1681 

101 101 40804 10201 

201 201 161604 40401 

401 401 643204 160801 

 
Table 5.3 – Amount of memory occupied by the elevation and obstacle maps with four different map 

sizes. 

 

The values presented in Table 5.3 are also in accordance with what was said previously, 

i.e. as the map size increases, the amount of memory used also increases. 

In order to evaluate the effects of the configuration of these maps on the detail of the 

information, it was performed an experiment where it was taken a set of elevation maps, and 

the corresponding obstacle maps, representing the same scene - the hall from Figure 5.2 (a) - 

but with different sizes and resolutions. All of these maps have a range of approximately 20 x 

20 meters but each one achieves this range with a certain size and resolution. 
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(a) 

  

(b) (c) 

  

(d) (e) 

  

(f) (g) 

  

(h) (i) 

Figure 5.2 – Elevation and obstacle maps with different sizes and resolutions, all built in the same hall. (a) 
– real image of the hall. (b) and (c) – elevation and obstacle maps with 401x401 cells and resolution of 

0.05 m. (d) and (e) – elevation and obstacle maps with 201x201 cells and resolution of 0.1 m. (f) and (g) – 
elevation and obstacle maps with 101x101 cells and resolution of 0.2 m. (h) and (i) – elevation and 

obstacle maps with 41x41 cells and resolution of 0.5 m.  
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Elevation maps are illustrated in the left column of Figure 5.2, from images (b) to (h), by 

increasing order of cell’s size and descending order of number of cells. The corresponding 

obstacle maps are represented in the right column of Figure 5.2. 

By observing Figure 5.2 one can clearly see that resolution decreases as the size of the 

cells increases. On the one hand, the map should have small cells in order to present a good 

resolution because in this way the area occupied by the objects and its position relative to the 

LADAR is more consistent with the real scene. On the other hand, if the map has small cells it 

is necessary to have a big number of cells in order to maintain the range of the map and this 

can be computationally heavy, as discussed earlier in this section. In fact, in the elevation and 

obstacle maps of Figure 5.2 (b) and (c) there is a good accuracy on the information as can be 

seen, for example, by the distance between the first pillar and the left wall that is consistent 

with Figure 5.2 (a) (approximately 1.7 meters). However, these maps have a large number of 

cells which can make them too heavy to be used by this mapping and obstacle detection 

system or to be transferred by its Player driver to some other drivers of the architecture, such 

as a Planner driver, or to a Client that wants to draw the maps. The elevation and obstacle 

maps of Figure 5.2 (h) and (i) have a much smaller size but the resolution decreases a lot and 

the information’s accuracy is affected, as shown, once again, by the distance between the first 

pillar and the left wall, which is now 1 meter in these maps. The maps from Figure 5.2 (d), 

(e), (f) and (g) can achieve a much better accuracy than the ones from Figure 5.2 (h) and (i) 

presenting a much smaller size than the ones from Figure 5.2 (b) and (c).   

Another experiment was made to measure the processing time of the algorithm that draws 

the elevation maps of Figure 5.2. Table 5.4 represents the results of this experiment.  

 

Map width (cells), 

m 

Map height (cells), 

n 

Resolution 

(meters) 

Processing time 

(milliseconds) 

41 41 0.5 0.863 

101 101 0.2 4.838 

201 201 0.1 24.095 

401 401 0.05 85.074 

 
Table 5.4 – Processing time (on Client side) for the algorithm that draws the elevation map with four 

different map sizes. 

The results of Table 5.4 show that, as expected, the processing time of the algorithm 

increases with the size of the map. As also expected, these results are consistent with the 

information from Table 5.2. 
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In this experiment, the maps that show more balance between the accuracy of the 

information and the computational load are the ones presented on Figure 5.2 (d), (e), (f) and 

(g) which have a resolution of 0.1 meters and a size of 201x201 cells ((d) and (e)) and 0.2 

meters of resolution and a size of 101x101 cells ((f) and (g)). These maps have good accuracy 

and they don’t imply a very high computational load. Therefore, in all the remaining 

experiments of this dissertation, the maps will have one of these two configurations. 

 

5.2 The reference plane 
 

The purpose of this experiment is to prove the correct computation of the reference plane. 

As explained on chapter 4, the reference plane is composed by a set of ranges which the 

LADAR, positioned as on Figure 4.3, would provide if it only scans the ground plane and no 

other object or surface is detected inside its range and field of view. The reference plane is 

very important for the creation of the elevation map because it is used on the computation of 

the heights of each cell by being compared to the real plane provided by the LADAR.  

In this experiment the robot was positioned in a place wide enough so that the LADAR 

can “catch” the ground plane in its entire field of view. This place can be seen on Figure 5.3 

(a) and (b).  

 

 

  

(a) (b) 

  

(c) (d) 

Figure 5.3 – Reference plane experiment. (a) and (b) – real scene. (c) – elevation map. (d) – obstacle map. 
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The field of view of the LADAR, θ, was configured with an angle of 90 degrees (between 

45 and 135 degrees) in this experiment. Also, the limits among which it is considered that a 

cell belongs to the ground plane were extended to average heights between -6 and +6 

centimeters. 

If the reference plane is correct, the elevation map should only show cells from the 

ground plane, because, at each angle where a beam is emitted, both distances from the 

reference plane and the real plane have similar values and the computed heights should be 

close to zero. As expected, the elevation map from Figure 5.3 (c) presents only blue cells, 

which together approximately make up a horizontal line. This line represents the portion of 

the ground plane which is detected by the LADAR. The obstacle map (Figure 5.3 (d)) is also 

in agreement considering all cells as freespace.  

 

5.3 Changing orientation of ground plane 
 

As explained on section 4.6, situations where the ground plane changes its orientation 

bring problems to this mapping and obstacle detection system. An additional heuristic that 

uses two thresholds for the pitch angle (also explained on section 4.6) was implemented to try 

to solve these problems. The purpose of this experiment is to evaluate the usefulness of this 

additional heuristic, placing the robot in a situation where the orientation of the ground plane 

is altered. In this experiment the robot is asked to travel straight on towards north (top of 

maps) at a speed of 0.2 ms-1. During its path, the robot will descend a ramp, which is 

illustrated in Figure 5.4 (a). Prior to the experiment, the threshold for pitch total variation ε 

was set to 0.5 degrees and the threshold for pitch variation relative to the last scan η was set to 

0.1 degrees. The snapshot of Figure 5.4 (b) and (c) was taken before the robot start to go 

down the ramp and the snapshot of Figure 5.4 (d) and (e) was taken at a time when the robot 

was already walking down the ramp. 

In the elevation map of Figure 5.4 (b) the main problem caused by changes on the 

orientation of the ground plane is evident. In this map there are a large number of yellow 

cells, which are cells with negative average heights. This is not incorrect because, in fact, the 

points where LADAR’s beams touch these surfaces are below the ground plane where the 

robot is standing. However, this will mean that many of these cells are regarded as obstacles 

on the obstacle map (Figure 5.4 (c)), leaving the robot in a dead-end situation. Thus, it 

becomes necessary that, when the robot is on the ramp, this situation can be corrected. 
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(a) 

 
 

(b) (c) 

 
 

(d) (e) 

Figure 5.4 – Experiment in which the robot goes down a ramp. (a) – real scene representing the ramp. (b) 
and (c) – elevation and obstacle maps taken before the robot start to go down the ramp. (d) and (e) - 

elevation and obstacle maps taken when the robot was already going down the ramp. 

 

During the passage of the robot to the ramp, the total variation of the pitch angle reaches 

the threshold ε because, in the ramp, the robot presents a pitch angle of +1 degree. Therefore, 

during this transitional period the reference plane is recalculated and the two maps are erased 

and, once on the ramp, the robot builds a new elevation map that is much more consistent 

with the real scene, as can be seen on Figure 5.4 (d). As a consequence, the obstacle map is 

now much more realistic because it has several traversable cells that correspond mostly to the 

portion of ground plane "swept” by the LADAR. Unlike the former, this obstacle map is now 

able to be provided to a planner to be used for path planning or navigation and this was the 

main concern that led to the incorporation, in this system, of this heuristic that deals with 

variations on the orientation of the ground plane.  
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5.4 Map scrolling 
 

This section exposes the results of some experiments carried out to evaluate the 

performance of the scrolling procedure. As mentioned on chapter 4, this procedure is executed 

only when robot’s displacement is greater than the size of a cell of the map, i.e. each time the 

displacement of the robot reaches the size of a cell, the map is scrolled by one cell. In these 

experiments, the measures of two optical incremental encoders are used to compute the 

displacements of each front wheel of the robot and, after that, it is computed the average of 

these two displacements. Since the robot doesn’t have any sensor that provides its curvature 

angle, it is not possible to compute the displacement of the central point of the front axle of 

the robot through kinematic equations. Therefore, it is assumed that the average of the 

displacements of each wheel corresponds to the displacement of the central point of the front 

axle. As explained on chapter 4, cells are only repositioned across the Y axis. Therefore, in 

order to decide if the scrolling procedure must be executed, the Y axis projection of the 

displacement of the central point is computed (using yaw angle) and this value is the one that 

is compared with the cell’s size. If the robot is driving straight ahead, the displacements for 

the two wheels are almost equal, as also will be the displacement of the central point, which, 

in turn, will be approximately equal to its Y axis projection.  

In these experiments the robot is asked to travel towards north (top of maps) at a speed of 

0.2 ms-1. It will be expected that the robot walks straight on, not making any turns, so that the 

scrolling procedure can be analyzed without the influence from Yaw compensation.  

In the first experiment, the robot is asked to travel a small path with a total extent of 4.2 

meters, which is a little more than the distance between the two pillars of Figure 5.5 (a). This 

figure shows images of the real scenes, and most of the data contained on elevation and 

obstacle maps captured by the LADAR at the beginning and at the end of this path. Prior to 

this experiment, the threshold for pitch total variation ε was set to 0.5 degrees and the 

threshold for pitch variation relative to the last scan η was set to 0.1 degrees. 

By comparing the elevation and obstacle maps at the beginning of the path with the same 

maps at the end of the path, one can see that the distances between the various surfaces of the 

scene suffer a few changes, mainly due to inconsistencies between the scrolling procedure and 

the addition of new information to the maps. Despite that, the elevation map remains 

essentially consistent with the real scene. 
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(a) 

  

(b) (c) 

 

(d) 

 

 

(e) (f) 

Figure 5.5 – Scrolling Procedure, first experiment. Beginning of the path: (a) – real scene, (b) – elevation 
map, (c) – obstacle map. End of the path: (d) – real scene, (e) - elevation map, (f) – obstacle map. 
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Moreover, the positioning of the robot in relation to the several existing surfaces is also in 

agreement with the real scenes, as can be seen on Figure 5.5 (b) through the position of the 

robot in relation to the first pillar at the beginning of the path, and also on Figure 5.5 (e) 

where one can see that, at the end of the path, the robot is positioned next to the second pillar, 

which is in line with the real scene of Figure 5.5 (d). There is also a small deviation on the 

right side wall due to the fact that the robot did not exactly travel in a straight line, i.e. there 

was a small deviation in its path and, because these cells have a considerable size (20x20 

centimeters), this effect becomes more visible. The obstacle maps are consistent with the 

respective elevation maps, as can be seen by the obstacle map of Figure 5.5 (f) where the 

majority of cells considered as freespace belong to the portion of ground plane that was 

“swept” by the LADAR. 

When the robot reached the end of the path, the displacement computed through the 

encoders had a value of 4.4 meters. Therefore, there is an error of 0.2 meters in relation to the 

total extent of the path (4.2 meters), i.e. in this experiment the total error of the encoders 

represents less than 5% of the total extent. However, as the reader will see in the next 

experiment, this error tends to increase over time, as the path increases its extension.  

In the second experiment, the robot travelled a longer path between two marks drawn on 

the ground. The total extent of this path is 20 meters and, this time, the threshold for pitch 

total variation (ε) was set to 0.7 degrees. Also, the limits among which it is considered that a 

cell belongs to the ground plane were extended to average heights between -6 and +6 

centimeters. Once again, Figure 5.6 shows images of the real scene, elevation maps and 

obstacle maps at the beginning and at the end of this path. 

By looking at the elevation maps of Figure 5.6 there is one detail that gets our attention 

immediately. In these maps there is an area of grey cells (more visible on the map of Figure 

5.6 (e)) on the left side, between the robot and the sidewalk at his left, where, at first, there 

should only be cells that belong to the ground plane (blue ones). Along this path the robot 

maintains a roll  angle around -2 degrees and the Pitch-Roll compensation procedure 

continuously adjusts the reference plane due to variations on this angle and also on the pitch 

angle. However, the surface on the left side of the robot (where the parking lines are drawn) is 

not exactly on the same plane (it is slightly above) of the surface where the robot is standing. 

This means that, for each LADAR beam that touches this area, the real distance provided by 

the LADAR is smaller than the corresponding distance of the reference plane, because the 

latter is adjusted in relation to the surface where the robot is standing which, once again, has 

not exactly the same orientation of the surface on the left side of the robot. 
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(a) 

  

(b) (c) 

 

(d) 

  

(e) (f) 

Figure 5.6 – Scrolling procedure, second experiment. Beginning of the path: (a) – real scene, (b) – 
elevation map, (c) – obstacle map. End of the path: (d) – real scene, (e) - elevation map, (f) – obstacle 

map. 
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The comparison between these two distances will give rise to cells with a reasonable 

average height. In fact, there is a slight gradient of elevation between the robot and the left 

sidewalk. This situation could pose a problem to the robot because the obstacle map, in line 

with elevation map, believes that most of this area is an obstacle. Nevertheless, this is not a 

serious problem because, if, by chance, the robot turned left towards the sidewalk, the 

threshold for pitch total variation (ε) would be exceeded (because, for the robot, the ground 

plane changes its orientation) and the maps would be erased and the reference plane 

recomputed. Thus, these obstacles, which in reality do not exist, would probably disappear. 

Moreover, in the elevation map obtained at the end of the path it is possible to see that 

there are some cells that were left without information (white cells). This may be due to small 

errors in the discretization of LADAR’s measures, i.e. when the elevation information 

computed based on LADAR’s measures is added to the elevation map, and also to 

inconsistencies in Yaw compensation, which, in turn, should not be executed but, since the 

robot does not travel exactly in a straight line, there are always small deviations in its path and 

Yaw compensation turns out to be made, leading to small errors in the transfer of information 

between cells. The existence of these “empty” cells on the elevation map causes the 

corresponding cells of the obstacle map to be considered as “unknown” terrain. 

Despite that, the elevation map remains essentially consistent with the real scene, as the 

majority of the cells belong to the ground plane. Also, the LADAR “catches” other surfaces 

on the right side of the robot, such as some vegetation and two vehicles which can be seen on 

Figure 5.6 (a). On the elevation map of Figure 5.6 (e) there are some blue cells behind the 

ones that represent the vehicle that is next to the robot. This is not incorrect because, the 

LADAR first detects the ground surface that is beneath the vehicle (represented by those blue 

cells) and, only when it moves a little forward is that it starts to detect the vehicle. The 

obstacle maps are consistent with the respective elevation maps, as can be seen by the 

obstacle map of Figure 5.6 (f) where the majority of cells considered as freespace belong to 

the large area of ground plane that was “swept” by the LADAR and other surfaces such as the 

two vehicles, the sidewalk on the left side, some vegetation on the right side and also a part of 

the ground plane on the left side of the robot (as explained before) are labeled as obstacles.  

When the robot reached the end of the path, the displacement computed through the 

encoders had a value of 21.41 meters. Therefore, there is an error of 1.41 meters in relation to 

the total extent of the path (20 meters), i.e. in this experiment the total error of the encoders 

represents approximately 7% of the total extent of the path. Thus, as mentioned earlier in this 

section, there is an increase in the total error of the encoders as the distance travelled by the 

robot becomes larger. Finally, the positioning of the robot in relation to the several existing 
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surfaces is not totally in agreement with the real scenes, due to this error of the encoders. For 

example, on the real scene at the end of the path, although is not possible to see on Figure 5.6 

(d), the vehicle is a little further away from the robot than the maps from Figure 5.6 (e) and (f) 

suggest. 

  

5.5 Pitch-Roll compensation 
 

This experiment was carried out to try to prove the adaptability of the mapping procedure 

to some changes in robot’s attitude, so that the obstacle detection procedure can be more 

reliable. As explained on chapter 4, the main idea of Pitch-Roll compensation is to 

continuously adjust the reference plane to the current attitude of the LADAR, so that the 

comparison between the reference plane and real plane provided by the LADAR, which, in 

turn, is the basis for the creation of the map and the subsequent detection of obstacles, can be 

as much consistent as possible.  

The first experiment of this section intends to simulate the passage of a robot through 

objects that interfere significantly in its orientation.  

 

 

 
 

 

(a) (b) (c) 

Figure 5.7 - Corridor where this experiment was performed. (a) is the real scene, (b) the elevation map and 
(c) the obstacle map. 

Figure 5.7 represents the real scene where this experiment was performed as well as its 

elevation and obstacle maps. In this experiment, the threshold for pitch variation relative to 

the last scan η is set to 0.1 degrees and the threshold for pitch total variation ε was set to 0.5 

degrees. 
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Figure 5.8, Figure 5.9 and Figure 5.10 represent three different cases of attitude changes 

caused by the objects through which the robot was passing. By passing through these objects 

the robot was positioned at, respectively, a pitch of -4.5 degrees, a pitch of 2.5 degrees and a 

roll  of -5.2 degrees. In this experiment, each case is analyzed through maps built with and 

without Pitch-Roll compensation, so that the reader can have a better perception of the 

advantages of using Pitch-Roll compensation. Moreover, the reader should notice that the 

snapshots presented on the following figures of this section were taken after the maps have 

been erased and redrawn at the exact moment when the robot is on top of objects, so that the 

reader can clearly see the effects of this element on the whole mapping and obstacle detection 

system.  

 

 

 

(a) 

 

 

 

 

(b) (c) (d) (e) 

Figure 5.8 - Negative Pitch example. (a) – robot with negative pitch. (b) and (c) - elevation and obstacle 
maps with Pitch-Roll compensation. (d) and (e) - elevation and obstacle maps without Pitch-Roll 

compensation. 

In the first case, the two front wheels of the robot are passing through the objects (Figure 

5.8 (a)). In this situation, the attitude of the robot is affected and pitch has a negative value, 

which in this case is -4.5 degrees. With this positioning, the LADAR is able to “see” further 
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ahead and, consequently, its beams “touch” the ground few meters ahead and “touch” the 

walls a little higher. Therefore, if Pitch-Roll compensation correctly adapts the reference 

plane to the real plane, these changes should be reflected on the elevation map. By looking at 

Figure 5.8 (b), one can see that the heights of left and right walls increased in comparison to 

the elevation map of Figure 5.7 (b). The ground plane is not detected on this map because it is 

outside its range when the robot has this positioning. Thus, the map doesn’t show any blue 

cells. In line with the elevation map, the corresponding obstacle map of Figure 5.8 (c) only 

presents red cells, which means that all the detected surfaces are obstacles for the robot.  

If the elevation map is built without Pitch-Roll compensation, the reference plane is not 

updated in order to be aligned with the real plane and this will origin the emergence of 

fictitious obstacles and errors on the computed heights of the detected surfaces. The elevation 

map of Figure 5.8 (d) presents some of these problems. The heights of left and right walls 

didn’t increase and some surfaces with negative heights (yellow cells) and some other 

surfaces considered to be from the ground plane (blue cells) appeared. In yellow cell’s case 

this happens because the distances from the real plane are bigger than the distances from the 

reference plane, due to the fact that the two planes are not aligned, and the computed height is 

negative. Negative and ground plane surfaces shouldn’t appear because, as mentioned earlier, 

at this positioning the LADAR cannot detect the ground plane inside the range of the map.  

As a consequence, the obstacle map of Figure 5.8 (e) considers some cells as freespace where, 

actually, it should only “see” obstacles. 

In the second case, there is the reverse process. The two rear wheels of the robot are 

passing through the objects (Figure 5.9 (a)) and the attitude of the robot is also affected but, 

this time, pitch has a positive value of 2.5 degrees. With this positioning, LADAR’s range 

decreases when compared to Figure 5.7. Therefore, the ground plane should be detected 

closer to the robot. By looking at Figure 5.9 (b), one can confirm this circumstance because 

blue cells are drawn much closer to the robot. In line with the elevation map, the 

corresponding obstacle map of Figure 5.9 (c) has some green cells (freespace), mainly across 

the ground plane’s extension, considering the remaining cells as obstacles. 

On the elevation map without Pitch-Roll compensation, once again the reference plane is 

not aligned with the real plane and the elevation map (Figure 5.9 (d)) presents a small wall 

where it should show the ground plane. This small wall is obtained because, across this set of 

angles, the distances of the real plane are much smaller than the distances of the reference 

plane, which leads to objects with positive and insurmountable heights for the robot. The 

obstacle map (Figure 5.9 (e)), in line with the elevation map, considers all the surfaces as 
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obstacles and puts the robot in a dead-end situation, forcing him to back off to avoid obstacles 

that do not actually exist.  

 

 

 

(a) 

 
 

 
 

(b) (c) (d) (e) 

Figure 5.9 – Positive Pitch example. (a) – robot with positive pitch. (b) and (c) - elevation and obstacle 
maps with Pitch-Roll compensation. (d) and (e) - elevation and obstacle maps without Pitch-Roll 

compensation. 

 

The third case shows a different situation. Here, the right front and rear wheels of the 

robot are the ones that pass through the objects, as shown by Figure 5.10 (a). In this situation 

the robot has a roll  of -5.2 degrees. In this position, LADAR’s beams emitted to the right of 

the central beam “touch” the ground a little ahead of the central beam, whereas LADAR’s 

beams emitted to the left of the central beam “touch” the ground a little behind the central 

beam. Also, the walls of the right side are also detected a little higher than left side walls. 

Thereby, instead of having a horizontal line where the ground plane is detected, the elevation 

map has now a diagonal line, as shown by Figure 5.10 (b) and by the green cells considered as 

freespace on the obstacle map of Figure 5.10 (c).  

On the maps without Pitch-Roll compensation, the reference plane was not updated and 

is positioned as if the robot was still placed as on Figure 5.7. Therefore, the comparison 
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between the reference plane and the real plane will not be correctly performed and the 

elevation map will have errors, as can be seen on Figure 5.10 (d). 

 

 

 

(a) 

 

 

 

 

(b) (c) (d) (e) 

Figure 5.10 - Negative Roll example. (a) – robot with negative roll. (b) and (c) - elevation and obstacle 
maps with Pitch-Roll compensation. (d) and (e) - elevation and obstacle maps without Pitch-Roll 

compensation. 

 

In this figure one can see that, on the right side of LADAR’s central beam, some cells 

with negative heights show up because real plane’s distances are bigger than reference 

plane’s distances. On the left side of LADAR’s central beam, real plane’s distances are 

smaller than reference plane’s distances and some cells with positive heights show up. The 

ground plane almost disappears and it is only represented by a few blue cells that are 

positioned on the direction of LADAR’s central beam, which is correct because the central 

beam is not affected by roll  variations. The obstacle map of Figure 5.10 (e), as expected, 

incorrectly considers some cells located on the diagonal line of the ground plane as obstacles 

but still considers several cells as freespace, due to the fact that the roll  angle caused by these 

objects is not very high. If this angle had a greater value, the errors committed by the 



64 

 

elevation map should be clearer on the obstacle map, because the heights of the cells that 

belong to those fictitious objects would increase and only the cell corresponding to the central 

beam would be considered as freespace. 

 

5.6 Yaw compensation 
 

This section presents the results of an experiment that was carried out in order to assess 

the performance of the Yaw compensation procedure. As explained on section 4.6, Yaw 

compensation is performed by the rotation of the elevation map according to the variation of 

yaw angle. In this experiment, first the robot is asked to travel straight ahead at a speed of 0.2 

ms-1 and, at a certain moment, the robot is asked to make a left turn of, approximately, 90 

degrees, finishing his path after the end of the curve. At the end of this path, the total variation 

for the yaw angle given by the AHRS sensor is approximately 92 degrees.  

The path taken by the robot is shown on Figure 5.11 (a), (d) and (g), which represent, 

respectively, the beginning, middle and end of the path. The elevation and obstacle maps 

taken at each of these moments are represented on Figure 5.11 (b) and (c) (beginning), Figure 

5.11 (e) and (f) (middle) and Figure 5.11 (h) and (i) (end). 

 

 

 

(a) 

 
 

(b) (c) 
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(d) 

 

 

(e) (f) 

 

(g) 

 
 

(h) (i) 

Figure 5.11 – Yaw compensation example. Beginning of the path: (a) – real scene, (b) – elevation map, (c) 
– obstacle map. Middle of the path: (d) – real scene, (e) - elevation map, (f) – obstacle map. End of the 

path: (g) – real scene, (h) - elevation map, (i) – obstacle map. 
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In this experiment, the threshold for pitch total variation (ε) was set to a high value (0.9 

degrees), so that the maps were not deleted and, thus, one can observe the whole map rotation. 

Also, the limits among which it is considered that a cell belongs to the ground plane were set 

to average heights between -5 and +5 centimeters. 

In the elevation map obtained at the beginning of the path one can see several aspects of 

the real scene of Figure 5.11 (a), such as the wall on the right side of the robot, a portion of 

the ground plane and a wall and some vegetation on the left side of the robot. Also, the 

LADAR captures some cells beyond the portion of the ground plane that was also captured. 

This portion of ground plane is placed immediately before the walls and door which are in 

front of the robot. Therefore, the only reason why the LADAR captures points that are beyond 

these two surfaces is because these are made of glass and this is a kind of material that causes 

problems to the LADAR. In the next two situations this detail will be clearer. The obstacle 

map is consistent with the elevation map as it considers all surfaces as obstacles, except for 

the portion of ground plane, which is correctly considered as freespace.  

After the robot has traveled half way, the elevation map has been significantly rotated 

(Figure 5.11 (e)). Although there is some drag when the map rotates (which leads to an 

increase on the areas of the surfaces previously mapped), the different surfaces maintain their 

position relatively to the robot. At this point, the real scene (Figure 5.11 (d)) shows that the 

robot is facing the vegetation (the same vegetation which, on the beginning of the path, was 

on the left side of the robot), and the elevation and obstacle maps are consistent with this fact. 

Also, the portion of ground plane previously “caught” by the LADAR is now overlapped by 

cells corresponding to the glass wall that is now on the right side of the robot (to avoid 

confusion, from now on this wall will be referred to as “main glass wall”) and which, 

meanwhile, was also captured by the LADAR. As mentioned before, the number of cells that 

correspond to surfaces which are beyond the main glass wall is now much higher than at the 

beginning of the path. The obstacle map now considers almost all cells of the scene as 

obstacles (except for some of those surfaces that are beyond the main glass wall) due to the 

fact that the portion of ground plane previously captured is now almost entirely covered. In 

the same place where previously were freespace cells that corresponded to this portion of 

ground plane, are now several obstacle cells which represent a part of the main glass wall.  

When the robot reaches the end of the path, the elevation map (Figure 5.11 (h)) suffered a 

rotation of approximately 90 degrees relative to the initial elevation map (Figure 5.11 (b)). 

The areas of the previously captured surfaces didn’t change substantially in relation to the 

previous elevation map (Figure 5.11 (e)) and the positions of these same surfaces relative to 

the robot are consistent with the real scene (Figure 5.11 (g)). For example, the positions, on 
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the real scene, of the vegetation on the right side of the robot and, also, of the wall and the 

door in front of the robot are consistent with the positioning of the cells that represent those 

surfaces on the elevation map. In the second half of the path, the LADAR continued to detect 

surfaces that are beyond the main glass wall (which, once again, is the wall that the robot was 

facing at the beginning of the path) but, on the other hand, the LADAR didn’t detect any 

surfaces beyond the wall (also made of glass) that is at his front at the end of the path, 

because, in the real scene, this glass wall has the blinds closed preventing the LADAR from 

detecting anything beyond that. The obstacle map, once again, is in line with the elevation 

map, as it has several obstacle cells and only a few freespace cells, which correspond mostly 

to the blue cells of the elevation map. 
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6. Conclusions and Future Work 
 

 

This chapter summarizes this dissertation, discusses the main capabilities and weaknesses 

showed by the proposed mapping and obstacle detection system on the experimental results, 

provides a set of conclusions and suggests some improvements to be made in future work. 

 

6.1 Conclusions 
 

This dissertation presented a solution for the problem of mapping and obstacle detection 

in indoor/outdoor structured environments, with particular application on service robots 

equipped with a LADAR. This solution works in unknown environments and it is based on 

the assumption that the robot, which carries the LADAR and the mapping and obstacle 

detection system, is based on a planar surface which is considered to be the ground plane.  

The mapping module of the system creates a terrain map, which is then used to detect 

obstacles. The obstacle detection module generates a map that represents only obstacles and 

freespace. An AHRS sensor is used to increase the robustness of the system to variations on 

robot’s attitude, which, in turn, can cause false positives on obstacle detection. It were also 

developed a scrolling procedure that updates the maps in accordance with the displacements 

of the robot and an additional procedure to deal with situations where the ground plane 

changes its orientation. Moreover, the developed solution was implemented on a framework 

for mobile robotics applications named Player/Stage Project that improves the 

communications between different modules of the system and increases computational 

efficiency by executing several navigation tasks simultaneously.  

Several experimental tests were conducted in real environments and, by analyzing the 

experimental results, some conclusions can be drawn. 

The need for this system to comply with real-time constraints makes it very important to 

choose an appropriate size and resolution for the maps. Given this choice, it is also clear that 

there is a relationship between the detail of the information and the computational load of the 

maps (processing time and amount of memory occupied) that needs to be respected so that 

real-time constraints are met and robot’s safety can be assured. 

The computation of the reference plane is very important for the creation of the elevation 

map and it was shown that the reference plane is computed properly because, in a situation 
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where the LADAR only captured the ground plane, the reference plane corresponded very 

closely to the real plane provided by the LADAR and, as a result, the maps only showed cells 

that belong to the ground plane. 

The component of this system that deals with situations where the ground plane changes 

its orientation makes this system more reliable and useful for navigation and path planning, 

because, when the transition between two ground planes occurs, it allows the removal of 

fictitious obstacles and the creation of new maps much more consistent with the real scene. 

However, the use of two thresholds leads to the need of their adjustment depending on the 

environment where the robot will operate. 

Experimental results also demonstrate that Pitch-Roll compensation is a very important 

element for this system because, as shown, it allows the construction of elevation maps which 

are more consistent with what is “seen” by the LADAR at each moment and, consequently, it 

helps to reduce the number of false positives on obstacle maps, which contributes to a greater 

efficiency and reliability on obstacle detection. It was also demonstrated that Yaw 

compensation works well in its essence, because the map is properly rotated and the captured 

surfaces change their position relative to the robot in agreement with what happens in reality. 

However, this procedure has a considerable drawback, because there is some drag when the 

map is rotated, especially at the beginning of the curves, which leads to an increase on the 

areas of the surfaces previously mapped. This may be caused by errors on the algorithm of 

rotation of the map (especially in the decision about when the map is ready to be rotated), but 

also on the acquisition of the yaw angle. In this system, the yaw angle is obtained through the 

AHRS sensor and, among the three angles provided by this sensor, the yaw angle is the one 

which is less accurate because it is computed by magnetometers, which are very sensitive to 

external influences. This lower accuracy of the yaw angle may have influence on the drag of 

the maps. This drawback can cause significant issues to the robot, especially if it intends to 

change direction in a tight space, such as making a turn to enter an indoor corridor. 

The experiments also indicate that the map’s scrolling procedure fulfills its mission but, 

still, it suffers from some errors related to changes on the distances between the various 

surfaces and objects of the real scene with the movement of the robot (mainly due to 

inconsistencies between the scrolling procedure and the addition of new information to the 

maps) and also errors related to the computation of the displacement of the robot through the 

encoders (that may arise in the calculation of the displacements, but also on odometry data 

provided directly by the encoders), which, in turn, tend to increase as the distance travelled by 

the robot becomes larger. 



71 

 

In general, the experimental results indicate that the proposed model provides an 

appropriate solution for the problem of mapping and obstacle detection in indoor/outdoor 

structured environments. Throughout the several experiments, most structured surfaces and 

objects were efficiently mapped and those which could be an obstacle for the robot were also 

correctly detected by the algorithm of obstacle detection. However, the experiments carried 

out seem to indicate that the system finds more problems in outdoor than in indoor 

environments, mainly due to changes (smooth, but still with influence) on the ground surface, 

which, in turn, can produce false positives in obstacle detection. The author believes that, as a 

first approach, these problems could be minimized by reducing the range of the LADAR (by 

increasing its tilt angle and/or lowering its height), which would reduce the area of the surface 

considered by the system as the ground plane. Thus, the probability of having changes on that 

same surface within the field of view of the LADAR could be reduced. Nevertheless, due to 

reasons related with the construction of the service robot for which this system was 

developed, it was not possible to change the positioning of the LADAR and perform more 

tests. This and other improvements will have to remain for future work. 

 

6.2 Future Work 
 

Below, this section suggests some possibilities for future work based on the experimental 

results obtained and on the conclusions of the previous section: 

 

• Try to reduce the errors in the scrolling procedure of the maps through the use of a 

complete localization system to obtain the displacements of the robot. Instead of using 

robot’s odometry, it would be used a more precise localization system, which could 

lead to a reduction on the errors, as well as on their propagation over time, as the 

distances traveled by the robot increase; 

 

• To improve Yaw compensation. Experimental results revealed that there is some drag 

on the cells when the map rotates, which can be problematic for the robot when 

moving in tight spaces. As explained on the previous section, one cause for this drag 

may be related to the fact that the yaw angle provided by the AHRS sensor is not 

accurate. Thus, it would be interesting to explore a new method to obtain the 

yaw/heading of the robot to try to improve the results; 
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• To develop a mechanism to regulate and fix (“offline”) the positioning of the LADAR, 

so that it is possible to modify its range depending on what is needed. For this system 

in particular, the possibility of reducing LADAR’s range would reduce the area of the 

surface considered by the system as the ground plane, which could lead to improved 

results on outdoor structured environments, since these environments, although in a 

smooth way, are a bit rougher than the indoor environments. Within this subject, it 

could also be investigated the possibility of developing an algorithm for detection of 

smooth slopes on the elevation map, in order to improve obstacle detection when the 

robot is faced with such situations; 

 

• To explore the detection of dynamic obstacles. So far, this system considers all 

surfaces as static, i.e. each detected surface remains on the maps until eventually the 

maps are erased. However, there are objects that can move in front of the robot (like a 

human that passes in front of the robot) and, accordingly, it would be interesting to 

develop a mechanism that could distinguish between objects that remain in front of the 

robot and those who are no longer there, so that the last ones could be removed from 

the map; 

 

• To investigate the detection of some unstructured objects. Even in structured 

environments, there is often the existence of unstructured objects such as grass or low 

vegetation. In this system, such objects will often be considered as obstacles when, in 

many cases, they could be overcome by the robot. Therefore, it would be interesting 

that this system had the ability to distinguish some unstructured objects, either by the 

integration of new sensors (e.g., to have information about the color of the objects) as 

well as by the development of algorithms that, based on the maps built, could detect 

some unstructured surfaces. 
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