

Pedro Miguel de Barros Gomes

LADAR Based Mapping and Obstacle Detection System for

Service Robots

Lisboa

2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157622176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

iii

UNIVERSIDADE NOVA DE LISBOA

Faculdade de Ciências e Tecnologia

Departamento de Engenharia Electrotécnica

Sistema de Mapeamento e Detecção de Obstáculos Baseado em
LADAR para Robôs de Serviço

Pedro Miguel de Barros Gomes

Dissertação apresentada na Faculdade de Ciências e Tecnologia
da Universidade Nova de Lisboa para a obtenção do grau de

Mestre em Engenharia Electrotécnica e de Computadores

Orientador: Prof. Doutor Pedro Alexandre da Costa Sousa

Lisboa

2010

iv

v

NEW UNIVERSITY OF LISBON

Faculty of Sciences and Technology

Electrical Engineering Department

LADAR Based Mapping and Obstacle Detection System for
Service Robots

Pedro Miguel de Barros Gomes

Dissertation presented at Faculty of Sciences and Technology of the New University of
Lisbon to attain the Master degree in Electrical and Computer Science Engineering.

Supervisor: Prof. Doutor Pedro Alexandre da Costa Sousa

Lisbon

2010

vi

vii

Acknowledgements

First of all I would like to express my gratitude to my dissertation supervisor, Prof. Pedro

Sousa, for giving me this opportunity and also for all the motivation, availability and advises.

I would also like to thank the Portuguese SME company Holos, S.A.1 for supporting the

development of this dissertation and for providing the necessary resources.

A very special thanks to my colleagues Rúben Lino and Tiago Ferreira for all the support,

precious help, valuable comments and for all the interesting discussions about this dissertation

and other issues. I would also like to thank João Lisboa for all the relevant comments and

support in some stages of this dissertation. An additional acknowledge to all the employees of

Holos for the good atmosphere at work.

I would also like to express some words of thanks to all friends, colleagues and teachers

who contributed to my professional and personal growth.

Last but not least, I would like to express my deep and sincere gratitude to my parents

João and Lídia and my girlfriend Catarina. They have always been there in the bad moments

giving me strength to never give up. They are the ones to whom I owe more and nothing I can

do will ever thank them for their love, care, friendship and unconditional support.

1
 www.holos.pt

viii

ix

To my parents and my girlfriend

x

xi

Resumo

Ao percorrer ambientes desconhecidos, um robô de serviço móvel precisa de adquirir

informação sobre o ambiente que o rodeia, para poder detectar e evitar obstáculos e chegar

com segurança ao seu destino.

Esta dissertação apresenta uma solução para o problema de mapeamento e detecção de

obstáculos em ambientes estruturados2 interiores ou exteriores, com particular aplicação em

robôs de serviço equipados com um LADAR. Esta solução foi desenhada apenas para

ambientes estruturados e, como tal, ambientes todo-o-terreno estão fora do âmbito deste

trabalho. A utilização de qualquer conhecimento, obtido a priori, sobre o que rodeia o

LADAR também está descartada, ou seja, o sistema de mapeamento e detecção de obstáculos

desenvolvido trabalha em ambientes desconhecidos.

Nesta solução, assume-se que o robô, que transporta o LADAR e o sistema de

mapeamento e detecção de obstáculos, está posicionado sobre uma superfície plana, que é

considerada como sendo o plano do chão. O LADAR é posicionado de uma forma apropriada

para um mundo tridimensional e é utilizado um sensor AHRS para aumentar a robustez do

sistema em relação a variações na orientação do robô que, por sua vez, podem originar falsos

positivos na detecção de obstáculos.

Os resultados dos testes efectuados em ambientes reais, através da incorporação deste

sistema num robô físico, sugerem que o sistema desenvolvido pode ser uma boa opção para

robôs de serviço que operem em ambientes estruturados interiores ou exteriores.

Palavras-Chave: detecção de obstáculos, robôs de serviço, robôs móveis, LADAR,

mapeamento, interior, exterior, AHRS.

2
 Nesta dissertação, a expressão “ambientes estruturados” refere-se a ambientes em que a superfície do chão

deverá ser plana.

xii

xiii

Abstract

When travelling in unfamiliar environments, a mobile service robot needs to acquire

information about his surroundings in order to detect and avoid obstacles and arrive safely at

his destination.

This dissertation presents a solution for the problem of mapping and obstacle detection in

indoor/outdoor structured3 environments, with particular application on service robots

equipped with a LADAR. Since this system was designed for structured environments, off-

road terrains are outside the scope of this work. Also, the use of any a priori knowledge about

LADAR’s surroundings is discarded, i.e. the developed mapping and obstacle detection

system works in unknown environments.

In this solution, it is assumed that the robot, which carries the LADAR and the mapping

and obstacle detection system, is based on a planar surface which is considered to be the

ground plane. The LADAR is positioned in a way suitable for a three dimensional world and

an AHRS sensor is used to increase the robustness of the system to variations on robot’s

attitude, which, in turn, can cause false positives on obstacle detection.

The results from the experimental tests conducted in real environments through the

incorporation on a physical robot suggest that the developed solution can be a good option for

service robots driving in indoor/outdoor structured environments.

Keywords: obstacle detection, service robots, mobile robots, LADAR, mapping, indoor,

outdoor, AHRS.

3
 In this dissertation, the term "structured environments" refers to environments in which the ground surface is

expected to be planar.

xiv

xv

Symbols and Notations

Symbol Description

AHRS Attitude and Heading Reference System

ahrsDriv A Player driver that interacts with an AHRS sensor

ContDriv A Player driver that communicates with a controller

IFR International Federation of Robotics

IMU Inertial Measurement Unit

IP Internet Protocol

LADAR LAser Detection And Ranging or Laser Radar

ladarDriv A Player driver that communicates with a LADAR and acquires its measures

LIDAR LIght Detection And Ranging

LTP Local Tangent Plane

MapOD A Player driver responsible for the mapping and obstacle detection system

NED North-East-Down

RPY Roll-Pitch-Yaw

SLAM Simultaneous Localization And Mapping

SME Small Medium Enterprise

TCP Transmission Control Protocol

����� X coordinate of a reference plane point at angle σ

���� X coordinate of a point that intersects the XY plane

�� X coordinate of a transformed point

	���� Y coordinate of a reference plane point at angle σ

	��� Y coordinate of a point that intersects the XY plane

	� Y coordinate of a transformed point

� Z coordinate of a transformed point

Avgh The average of the heights of all computed points that correspond to each cell

b Y-intercept of a line segment

ch Height of a cell of the elevation map, measured in meters

Chobs Height of a cell of the obstacle map, measured in meters

cv The value of an obstacle map’s cell

cw Width of a cell of the elevation map, measured in meters

xvi

Cwobs Width of a cell of the obstacle map, measured in meters

d The theoretical range provided by the LADAR’s central beam

d1 First measured distance

dn Nth measured distance

dxy Projection of distance d onto the XY plane

h LADAR’s height

Hneg Minimum height that an object that stands below the ground plane must have to

be considered as an obstacle

Hpos Minimum height that an object that stands above the ground plane must have to

be considered as an obstacle

Hσ Height of a hypothetical obstacle at each angle σ

L LADAR’s position on the map

m Number of width cells of the elevation map

mobs Number of width cells of the obstacle map

mzx Slope of a line segment from ZX plane

mzy Slope of a line segment from ZY plane

n Number of height cells of the elevation map

nobs Number of height cells of the obstacle map

Pσ A 3D point at angle σ

Rreal(σ) Real range provided by the LADAR at each angle σ

Rxyσ Projection of distance Rσ onto the XY plane

Rσ LADAR’s theoretical range at each angle σ

α Angular step of the LADAR

ε A threshold for pitch angle, in degrees

η A threshold for pitch angle, in degrees

θ Field of view of the LADAR

ρ A generic angle, in degrees

σ Represents each angle where the LADAR emits a beam

ϕ An angle obtained from LADAR’s tilt (ϕ = 90◦ - tilt)

ω A generic angle, in degrees

��������� A new distance for the reference plane at angle σ

xvii

Contents

Acknowledgements .. vii

Resumo .. xi

Abstract .. xiii

Symbols and Notations ... xv

Contents .. xvii

List of Figures .. xix

1. Introduction ... 1

1.1 Problem Statement ... 3

1.2 Solution Prospect ... 4

1.3 Dissertation Outline ... 5

2. State of the Art .. 7

2.1 Flat terrain assumption ... 7

2.2 Obstacle detection in terrains with slightly variable slope .. 8

2.3 Traversability ... 10

2.4 Representations of the environment .. 10

2.5 Statistical analysis .. 11

2.6 Geometrical relationships .. 12

3. Supporting concepts .. 15

3.1 Coordinate Systems and Coordinate Transformations .. 15

3.1.1 LTP coordinates .. 15

3.1.2 RPY coordinates ... 15

3.2 Player/Stage Project ... 19

4. Mapping and Obstacle Detection system .. 25

4.1 LADAR’s positioning .. 25

4.2 Mapping ... 27

4.2.1 Computation of the reference plane.. 27

4.2.2 Map building .. 29

4.3 Obstacle definition ... 31

4.4 Obstacle detection .. 32

4.5 Map scrolling ... 33

4.6 Robot’s Attitude compensation ... 36

xviii

4.7 Implementation on Player Server .. 41

5. Experimental Results .. 45

5.1 Changing resolution and size of maps ... 47

5.2 The reference plane ... 51

5.3 Changing orientation of ground plane ... 52

5.4 Map scrolling ... 54

5.5 Pitch-Roll compensation ... 59

5.6 Yaw compensation .. 64

6. Conclusions and Future Work .. 69

6.1 Conclusions ... 69

6.2 Future Work .. 71

Bibliography... 73

xix

List of Figures

Figure 2.1 - Visual processing diagram proposed by [Konolige et al., 2008]. 8
Figure 2.2 - Overview of the obstacle detection algorithm proposed by [Batavia and Singh,
2002] ... 9
Figure 2.3 - The three classes used by [Lalonde et al., 2006] to classify the 3D point cloud .. 11
Figure 2.4 - Compatibility relationship defined by [Manduchi et al., 2005] 12
Figure 3.1 – Roll, Pitch and Yaw axes [Grewal et al., 2001]. .. 16
Figure 3.2 – Vehicle Euler Angles defined by Grewal [Grewal et al., 2001]. 16
Figure 3.3 – Rotations through Roll, Pitch and Yaw angles [ACME, 2009]. 17
Figure 3.4 - Transformation from RPY coordinates to NED coordinates [Grewal et al., 2001].
 .. 18
Figure 3.5 - Euler Angles defined by Craig [Craig, 2005]. .. 18
Figure 3.6 - Global architecture of Player/Stage Project .. 21
Figure 3.7 - Run-time process of a Player driver [PSU Robotics RoboWiki, 2010]. 23
Figure 4.1 – LADAR features. d1 and dn are measured distances, α is the angular step and θ is
the field of view. ... 26
Figure 4.2 – Two types of maps obtained using a LADAR. (a): Hallway; (b): 2D map of (a);
(c): 2.5D map of (a). ... 26
Figure 4.3 – LADAR’s positioning for this model. .. 27
Figure 4.4 – Calculation of the reference plane: (a) side view, (b) front view. 28
Figure 4.5 - Side view of the height computing process. Example for an obstacle placed on the
positive Z axis. Hσ is the height in meters and ρ is an angle in degrees. 29
Figure 4.6 - Side view of the height computing process. Example for an obstacle placed on the
negative Z axis. Hσ is the height in meters and ρ is an angle in degrees. 30
Figure 4.7 - Elevation map representation. n represents the number of height cells and m is the
number of width cells. cw and ch represent cell’s width and height, respectively, measured in
meters. L symbolizes LADAR’s position on the map. ... 31
Figure 4.8 - Obstacle map. nobs represents the number of height cells and mobs is the number of
width cells. Cwobs and Chobs represent cell’s width and height, respectively, measured in
meters. L symbolizes LADAR’s position on the map. cv represents each cell’s value. 32
Figure 4.9 - Flowchart of the mapping and obstacle detection system. 34
Figure 4.10 – Effects on the reference plane caused by variations on robot’s attitude. (a) and
(b) - side view of pitch changes. (c) and (d) – front view of roll changes. (e) and (f) – top view
of yaw changes. .. 35
Figure 4.11 – Computation of each XY point of the reference plane. (a) – side view, (b) top
view. ... 36
Figure 4.12 – Example of point transformation. .. 39
Figure 4.13 - Implementation of this system on Player Server .. 41
Figure 4.14 – Run-time process of ladarDriv driver. ... 42
Figure 4.15 - Run-time process of MapOD driver. .. 43

xx

Figure 5.1 – The robot with which these experiments were performed. This robot is being
developed by Holos, S.A., the mapping and obstacle detection system being the work of the
author. .. 45
Figure 5.2 – Elevation and obstacle maps with different sizes and resolutions, all built in the
same hall. (a) – real image of the hall. (b) and (c) – elevation and obstacle maps with 401x401
cells and resolution of 0.05 m. (d) and (e) – elevation and obstacle maps with 201x201 cells
and resolution of 0.1 m. (f) and (g) – elevation and obstacle maps with 101x101 cells and
resolution of 0.2 m. (h) and (i) – elevation and obstacle maps with 41x41 cells and resolution
of 0.5 m. ... 49
Figure 5.3 – Reference plane experiment. (a) and (b) – real scene. (c) – elevation map. (d) –
obstacle map. .. 51
Figure 5.4 – Experiment in which the robot goes down a ramp. (a) – real scene representing
the ramp. (b) and (c) – elevation and obstacle maps taken before the robot start to go down the
ramp. (d) and (e) - elevation and obstacle maps taken when the robot was already going down
the ramp.. 53
Figure 5.5 – Scrolling Procedure, first experiment. Beginning of the path: (a) – real scene, (b)
– elevation map, (c) – obstacle map. End of the path: (d) – real scene, (e) - elevation map, (f)
– obstacle map. ... 55
Figure 5.6 – Scrolling procedure, second experiment. Beginning of the path: (a) – real scene,
(b) – elevation map, (c) – obstacle map. End of the path: (d) – real scene, (e) - elevation map,
(f) – obstacle map. .. 57
Figure 5.7 - Corridor where this experiment was performed. (a) is the real scene, (b) the
elevation map and (c) the obstacle map. .. 59
Figure 5.8 - Negative Pitch example. (a) – robot with negative pitch. (b) and (c) - elevation
and obstacle maps with Pitch-Roll compensation. (d) and (e) - elevation and obstacle maps
without Pitch-Roll compensation. .. 60
Figure 5.9 – Positive Pitch example. (a) – robot with positive pitch. (b) and (c) - elevation and
obstacle maps with Pitch-Roll compensation. (d) and (e) - elevation and obstacle maps
without Pitch-Roll compensation. .. 62
Figure 5.10 - Negative Roll example. (a) – robot with negative roll. (b) and (c) - elevation and
obstacle maps with Pitch-Roll compensation. (d) and (e) - elevation and obstacle maps
without Pitch-Roll compensation. .. 63
Figure 5.11 – Yaw compensation example. Beginning of the path: (a) – real scene, (b) –
elevation map, (c) – obstacle map. Middle of the path: (d) – real scene, (e) - elevation map, (f)
– obstacle map. End of the path: (g) – real scene, (h) - elevation map, (i) – obstacle map. 65

1

1. Introduction

Nowadays, robots perform important roles in our society. They are present on many

different areas such as automotive industry, entertainment, military operations, among others.

In particular, mobile service robots employment has been widespread in the last years and

today these kind of robots can perform several tasks like, for example, guiding tourists in

museums [Chella et al., 2007], house cleaning, elderly care [Graf et al., 2004], interplanetary

exploration [Cheng et al., 2005], or humanitarian demining [Santana et al., 2007].

The International Federation of Robotics (IFR) defines a service robot as “(…) a robot

which operates semi- or fully autonomously to perform services useful to the well-being of

humans and equipment, excluding manufacturing operations” [IFR, 2009]. Through this

definition one can notice that autonomy is a key feature for a service robot. Therefore, and

mostly on mobile service robots area, mapping is generally considered as one of the most

important topics [Thrun, 2003]. In fact, once exploring an unknown area, the mobile service

robot needs a process to construct a representation of the environment (map) and this can be

used for navigation tasks such as path planning or obstacle detection and avoidance. Despite

the fact that obstacle detection is often performed without using maps, it is also common to

find approaches where mapping and obstacle detection are interconnected, which is the case

in this dissertation. In this thesis, mapping is performed with the purpose to detect obstacles,

i.e. obstacle detection will be accomplished with basis on the construction of terrain maps.

In order to build a map, a robot must be equipped with sensors that enable it to perceive

its surroundings such as LADARs, Stereoscopic Cameras or Ultrasonic Range Sensors. Also,

there are additional sensors that are often used in mapping including Inertial Measurement

Units (IMU), Attitude and Heading Reference Systems (AHRS) or Global Positioning

Systems (GPS).

Ultrasonic Range Sensors are very popular and they are present in many mobile robots

nowadays [Lee et al., 2009]. They have good characteristics including low power

consumption and low cost. However, comparing to other range sensors they exhibit low

angular resolution.

2

LADARs and Stereoscopic Cameras are complementary and are often used

simultaneously [Moghadam et al., 2008], [Matthies et al., 2002] and they both have

advantages and disadvantages. A LADAR generally provides fast and accurate range

measurements and works with big fields of view and at long ranges. However, it only

provides information along the plane of the scanning laser beam and its performance is

affected by weather conditions (such as fog or rain) and by objects reflectivity. On the other

hand, Stereoscopic Cameras can provide 3D data and also color and texture information.

Nevertheless, it generates large amounts of data (including noisy data) comparing to a

LADAR, which can be computationally expensive to process and its measurements are

affected by lightning conditions and by non-textured environments.

As mentioned before, the fusion of these two types of sensors is a common attempt to

overcome their disadvantages and to take part of their main capabilities in order to build

precise and reliable maps. However, in the context of this work a LADAR will be used as the

only sensor for environment perception, mainly due to its accuracy and lower amount of

generated data comparing to stereo vision. Also, the fusion of two or more range sensors will

not be focused in the context of this thesis and, therefore, integration of stereo vision cameras

and LADARs is discarded.

In the 1980s and early 1990s, two approaches for mapping were used: metric and

topological [Thrun, 2003]. Metric maps can represent geometric features of the environment

and two examples of this kind of maps are occupancy grid maps [Elfes, 1987] and feature

maps [Chatila and Laumond, 1985]. In the former case, environments are represented by an

occupancy grid where each cell can indicate the presence of an obstacle and in the latter case

maps contain parametric features such as lines or arcs that intend to describe the environment.

Topological maps can represent environments through connectivity between different places

and an early example of this approach is the work of Kluipers and Byun [Kuipers and Byun,

1991]. In this case, the map contains a set of significant places that can be connected by arcs.

These arcs are usually labeled with information about navigation from one place to another.

Since the 1990s, mapping has generally been named as SLAM (simultaneous localization

and mapping) because many researchers have been trying to solve mapping and localization

(determining a robot’s pose) problems in conjunction [Thrun, 2003]. However this thesis does

not try to contribute to this field of research because we will deal with the mapping problem

assuming that robot’s pose is known at any instant in time.

3

Over the last decades, several approaches have been proposed on the research field of

obstacle detection systems for service robots. Some of the most successful ones are based on

assumptions about terrain’s geometry [Konolige et al., 2008], [Batavia and Singh, 2002], on

performing traversability analysis of the robot’s surroundings [Hamner et al., 2008], on

creating representations of the environment and using them to detect obstacles or safe paths

for the robot [Lacaze et al., 2002], on using statistical analysis of a 3D point cloud in order to

characterize obstacles [Lalonde et al., 2006], or on describing obstacles in terms of

geometrical relationships between 3D points [Manduchi et al., 2005]. These approaches are

reviewed with more detail on chapter two.

The main goal of this dissertation is to present a LADAR-based solution for mapping and

obstacle detection in structured environments, either indoor or outdoor. Off-road terrains are

often unstructured environments and, consequently, they are beyond the scope of this work. In

the context of this work it is assumed that the mapping and obstacle detection system travels

in an unknown environment, i.e. the use of any a priori knowledge about its surroundings is

discarded.

1.1 Problem Statement

As previously stated, this dissertation intends to present a solution for the problem of

mapping and obstacle detection in indoor/outdoor structured environments that is targeted to a

service robot equipped with a LADAR. In the development of such a solution, some main

problems must be taken into consideration:

1. The proposed model must be suitable for structured environments (indoor or outdoor),

where structured surfaces must be correctly mapped and classified either as obstacles

or freespace. As previously referred, off-road terrains are not considered in the context

of this dissertation. Thus, unstructured surfaces may not be correctly mapped or

classified.

2. The proposed model must be robust to variations in service robot’s attitude, i.e.

changes in pitch, roll and yaw angles. These changes on robot’s attitude could lead to

false positives on obstacle detection which, in turn, should be avoided.

4

3. The proposed model must be computationally efficient and cope with real-time

constraints, so that service robot’s safety can be assured.

1.2 Solution Prospect

In order to overcome the problems mentioned on the previous section, this dissertation

proposes the following solutions:

1. In this model, obstacles are defined as surfaces that stand above or below the plane

where the service robot is based and that can prevent a wheeled service robot from

passing through. The LADAR is positioned in order to enable the system to detect

obstacles that stand below LADAR’s height and also negative obstacles (obstacles that

stand below the plane where the service robot is based), which are common in these

environments.

2. The robustness in terms of variations on robot’s attitude is achieved with the help of

an Attitude and Heading Reference System (AHRS) that provides pitch, roll and yaw

angles. This information is added to the mapping and obstacle detection algorithm so

that it can be adapted to the current attitude values.

3. Although this model is based on the construction of terrain maps, which can require

considerable storage capabilities, efforts were made to maintain low complexity on the

algorithm and low computational cost on the performance of the system, mainly in the

choice of an appropriate size and resolution for the maps.

This system is implemented on a framework for mobile robotics applications named

Player/Stage Project that improves the communications between different modules of the

system and increases computational efficiency by executing several navigation tasks

simultaneously.

5

1.3 Dissertation Outline

This dissertation is organized as follows:

Chapter 1: introduces the reader to the subject of mapping and obstacle detection using a

LADAR and lists some problems related to this subject. A solution prospect for these

problems is also presented;

Chapter 2: exposes a brief overview of the state of the art about obstacle detection for service

robots;

Chapter 3: gives an introduction to some supporting concepts used in this work;

Chapter 4: describes the mapping and obstacle detection system proposed;

Chapter 5: presents the experimental results;

Chapter 6: encompasses the conclusions about the developed work and presents some future

work possibilities.

6

7

2. State of the Art

In the last decades, there have been a large number of contributions on the research field

of obstacle detection systems for service robots. This chapter presents an overview of some

approaches that were proposed on this area. In the sections of this chapter, the author’s

intention is to present different approaches to the problem of obstacle detection for service

robots, and not a historical evolution of the research in this area.

On section 2.1 an approach that uses the flat terrain assumption is presented. This method

takes advantage of simplifications in order to simplify and speed up the process of detecting

obstacles. Section 2.2 presents a method that was designed for terrains that show smooth

slope changes and that uses gradient techniques to detect obstacles. A different approach is

exposed on section 2.3. It uses traversability analysis of the robot’s surroundings instead of

taking considerations about terrain’s geometry. Section 2.4 exhibits a method that creates a

representation of the environment and uses it to detect safe paths for the robot. Section 2.5

shows an obstacle detection algorithm that performs statistical analysis of a 3D point cloud in

order to characterize obstacles. Finally, a technique that describes obstacles in terms of

geometrical relationships between 3D points is exhibited on section 2.6.

2.1 Flat terrain assumption

When travelling in outdoor conditions, an autonomous mobile robot may be confronted

with structured environments such as urban terrains or man-made facilities, or with rougher

terrains with great slope variations like the off-road case. Despite that, it is often possible to

find a dominant ground plane. The presence of a ground plane simplifies processing and

reduces the complexity of obstacles characterization. In fact, if a relatively flat ground plane

is assumed, it is possible to simply define obstacles as salient surfaces standing above or

below the ground.

Konolige et al. [Konolige et al., 2008] proposed an obstacle detection algorithm based on

the assumption that the robot travels on a locally flat ground. The authors use a stereo vision

camera to obtain the disparity and color images. The disparity image is used to compute a 3D

8

point cloud of the environment and then the ground plane is determined by a RANSAC

technique [Fischler and Bolles, 1981]. In this model, obstacles are defined as points that lie

too high above the ground plane, but lower than the robot’s height. Sight lines are used to

infer freespace to more distant points and their computation is achieved by finding columns of

ground plane pixels that lead up to a distant obstacle. The color image is applied in path

analysis. This work is illustrated in Figure 2.1.

Figure 2.1 - Visual processing diagram proposed by [Konolige et al., 2008].

This approach presents good results on flat terrains but, at the same time, is very

susceptible to fail on rough ones where the determination of the dominant ground plane,

which is the key feature of this kind of methods, is not very reliable. Besides that, the authors

only consider obstacles as points that stand above the ground plane not taking into

consideration “negative obstacles”, i.e. obstacles that stand below the ground plane, and this is

a great drawback in outdoor navigation.

2.2 Obstacle detection in terrains with slightly variable
slope

In the previous section, obstacle detection was performed on the assumption of a flat

terrain. In this section a more generic method that also deals with non-flat terrains is

presented.

Batavia and Singh [Batavia and Singh, 2002] proposed a process for obstacle detection

that uses a two-axis laser scanner to obtain the input data. This approach is suitable for cases

9

where the terrain changes his slope smoothly enough to define obstacles as discrete

discontinuities.

The two-axis laser scanner used by the authors consists of a single line laser range finder

that operates as a two-axis scanner by being rotated so that the laser scans vertically instead of

horizontally, and then mechanically swept from side to side to provide horizontal coverage. In

their work, the authors consider a “scan” as one line of laser data, scanned vertically, and a

“sweep” as a set of scans, collected by mechanically sweeping the laser from side to side.

Figure 2.2 - Overview of the obstacle detection algorithm proposed by [Batavia and Singh, 2002]

The obstacle detection algorithm is summarized in Figure 2.2 and consists of two phases:

classification and fusion. In the classification phase, each scan line is converted to Cartesian

coordinates and terrain’s gradient is computed along the scan line. A threshold is then applied

to the gradient to classify each pixel as ‘obstacle’ (dark dots on Figure 2.2) or ‘freespace’

(white dots on Figure 2.2). Each classified scan is then saved in a buffer containing a time-

history of scans. This buffer is represented on the block named “Cartesian View” on Figure

2.2. The duration of this ‘time window’ establishes the amount of data that will be fused. In

the fusion phase, obstacle pixels are clustered using a nearest neighbor (NN) criterion and

candidate obstacles are then filtered based on their mass and size.

The two-axis scanning procedure used by the authors is obtained by sweeping a common

(single-axis) laser scanner. In some cases, depending on the purpose of the robot that

incorporates the obstacle detection system, this technique may consume too much time for

real-time operation.

10

2.3 Traversability

Rather than taking geometric considerations about the terrain, there are some approaches

that employ traversability analysis. Instead of determining if a certain region of the

environment is an obstacle or freespace, this kind of obstacle detection systems try to avoid

such a binary decision assigning to each region of the robot surroundings a cost value that

represents the degree of difficulty for the robot to move across that region.

Hamner et al. [Hamner et al., 2008] present an obstacle detection system that performs

traversability analysis. The authors use two laser range finders (one that is fixed and another

that sweeps about an orthogonal axis) and a sliding window of point cloud data (obtained

from both lasers) that is registered over time. Vehicle-sized planar patches are fit to the point

cloud data and this process allows the settlement of three parameters: plane orientation (roll,

pitch), terrain’s roughness (obtained by the residual of the fitting process) and the height of

data points above the plane. This method produces a grid-based traversability map and the

plane fitting process is applied to each cell of the map, in order to acquire the parameters that

are used to compute a hazard score that corresponds to the traversability measure of each cell.

Furthermore, the authors complement the traversability analysis with gradient analysis from

[Batavia and Singh, 2002] presented in section 2.2 in order to improve their results.

The plane fitting process performed in this work has a large computational cost and this is

a main concern in real-time obstacle detection for mobile robots. Although it compensates

some weaknesses of each individual algorithm, the option of combining two different kinds of

analysis for obstacle detection increases the complexity of the system. This system is also

more expensive than other approaches because it makes use of two laser scanners and a

sweeping system.

2.4 Representations of the environment

Another well-known method to perform obstacle detection consists in creating

representations of the environment and using them to detect obstacles or safe paths for the

robot.

Lacaze et al. [Lacaze et al., 2002] propose the creation of

in order to detect the support surface for the vehicle

measurements of a LADAR are geometrically transformed into an elevation map centered on

the vehicle and this is done as the vehicle moves through the terrain.

tile of the map is assigned

threshold is applied to the

Then, the authors try to predict safe trajectories for the vehicle along

through the computation of cost functions

depend on several parameters such as existence

terrain, number of times each cell has been seen by the sensor and pitch and roll along each

trajectory. The authors use a vehicle model to

placing vehicle masks along each

Instead of assessing the content of each tile to try to find obstacles, the authors use the

elevation map to estimate safe trajectories for the robot by calculating cost functions. This

makes the method computatio

vehicle masks, and causes it to have

2.5 Statistical analysis

Lalonde et al. [Lalonde et al., 2006]

detection. In this work the authors present a method that employs statistical analysis of

point cloud that is built incrementally as the robot

Figure 2.3 - The three classes used by [Lalonde et al., 2006] to classify the 3D point cloud

e et al., 2002] propose the creation of an elevation map of the terrain

in order to detect the support surface for the vehicle and to avoid obstacles

measurements of a LADAR are geometrically transformed into an elevation map centered on

his is done as the vehicle moves through the terrain. During this process each

tile of the map is assigned with the number of times it has been seen by the sensor. A

threshold is applied to the elevation map to determine the support surface for the vehicle.

the authors try to predict safe trajectories for the vehicle along

through the computation of cost functions for each potential trajectory

depend on several parameters such as existence of protruding objects, roughness of the

terrain, number of times each cell has been seen by the sensor and pitch and roll along each

he authors use a vehicle model to predict pitch and roll

placing vehicle masks along each potential trajectory in the elevation map.

Instead of assessing the content of each tile to try to find obstacles, the authors use the

elevation map to estimate safe trajectories for the robot by calculating cost functions. This

computationally heavy, especially because of the multiple placing of

, and causes it to have difficulties to deal with real-time constraints.

Statistical analysis

[Lalonde et al., 2006] propose a different technique to perform obstacle

detection. In this work the authors present a method that employs statistical analysis of

incrementally as the robot navigates through the terrain.

The three classes used by [Lalonde et al., 2006] to classify the 3D point cloud

11

n elevation map of the terrain

avoid obstacles. First, the

measurements of a LADAR are geometrically transformed into an elevation map centered on

During this process each

by the sensor. A height

surface for the vehicle.

the authors try to predict safe trajectories for the vehicle along the elevation map

for each potential trajectory. These cost functions

of protruding objects, roughness of the

terrain, number of times each cell has been seen by the sensor and pitch and roll along each

predict pitch and roll along each path by

trajectory in the elevation map.

Instead of assessing the content of each tile to try to find obstacles, the authors use the

elevation map to estimate safe trajectories for the robot by calculating cost functions. This

because of the multiple placing of

time constraints.

propose a different technique to perform obstacle

detection. In this work the authors present a method that employs statistical analysis of a 3D

the terrain.

The three classes used by [Lalonde et al., 2006] to classify the 3D point cloud

12

This analysis tries to classify the 3D point cloud into three classes: surfaces (ground

surface, rocks), linear structures (wires, branches) and scattered regions (vegetation). The

classification is based on the comparison of the eigenvalues obtained from the calculation of a

covariance matrix for all the points within a neighborhood of a certain point.

As shown on Figure 2.3, scattered regions have no dominant eigenvalue whereas linear

structures present one main eigenvalue and surfaces have two eigenvalues that prevail.

This obstacle detection algorithm is suitable for vegetated terrains and the authors present

good results using measurements from laser scanners but, nonetheless, for structured

environments simpler approaches can be used.

2.6 Geometrical relationships

A method that examines geometrical relationships between points of a 3D point cloud

was developed by Manduchi et al. [Manduchi et al., 2005]. These authors try to detect

obstacles by analyzing slant and altitude of visible surface patches directly in the range image

domain. A visible surface patch is considered an obstacle if its slope is larger than a certain

value θ (the maximum slope a robot can climb) and if it spans a vertical interval larger than a

threshold H (the minimum height an obstacle must have to block robot’s passage). Slant and

altitude measures are taken from the search for pairs of compatible points in the 3D point

cloud.

Figure 2.4 - Compatibility relationship defined by [Manduchi et al., 2005]

13

This compatibility relationship is illustrated in Figure 2.4 and is expressed by the authors

as follows: “The points compatible with a surface point p are those belonging to the two

truncated cones Up and Lp with vertex in p, axis oriented vertically, and limited by the two

planes of equation y = Hmin and y = Hmax respectively ” [Manduchi et al., 2005].

Each point is considered an obstacle point if it has at least one compatible point that

belongs to the same surface. The authors use stereo-vision images and, for each image pixel, a

search for compatible points is executed with the aim of finding obstacle points.

This obstacle detection system has attracted particular interest by several researchers,

mainly due to the distinct definition of an obstacle, which is based on the concept of

compatibility between 3D points. However, this approach has limitations regarding real-time

obstacle detection because its computational cost easily becomes a problem as the number of

3D points increases. Also, this method is very sensitive to incorrect 3D points generated by

stereo-vision, commonly known as outliers.

14

15

3. Supporting concepts

This chapter summarizes some concepts that helped on the development of this mapping

and obstacle detection system. Section 3.1 describes some coordinate systems and coordinate

transformations that are useful in mobile robotics. Section 3.2 presents the Player/Stage

Project, which is an open-source framework that simplifies the development of control

architectures for several applications, including mobile robots.

3.1 Coordinate Systems and Coordinate Transformations

There are many ways of representing a location in the world by a set of coordinates. This

section presents some coordinate systems that are often used in navigation with Inertial

Navigation Systems [Grewal et al., 2001]. Coordinate transformations that are useful in

mobile robotics and, in particular, in this work, are also exposed in this section.

3.1.1 LTP coordinates

Grewal defines Local Tangent Plane (LTP) coordinates as “(…) local reference

directions for representing vehicle attitude and velocity for operation on or near the surface

of the earth” [Grewal et al., 2001]. A frequent orientation for this kind of coordinates has one

horizontal axis (the east axis) in the direction of increasing longitude and the other horizontal

axis (the north axis) in the direction of increasing latitude. A common LTP coordinate system

is the North-East-Down (NED).

In NED, the direction of a clockwise turn is in the positive direction with respect to a

downward axis. This coordinate system is used in many applications because its coordinate

axes coincide with vehicle-fixed roll-pitch-yaw (RPY) coordinates when the vehicle is level

and headed north [Grewal et al., 2001].

3.1.2 RPY coordinates

Grewal [Grewal et al., 2001] defines roll-pitch-yaw (RPY) coordinates as “(…) vehicle-

fixed, with the roll axis in the nominal direction of motion of the vehicle, the pitch axis out the

16

right-hand side, and the yaw axis such that turning to the right is positive”. Figure 3.1

illustrates this coordinate system.

Figure 3.1 – Roll, Pitch and Yaw axes [Grewal et al., 2001].

The angles of rotation about the vehicle roll , pitch and yaw axes are called the Euler

angles [Grewal et al., 2001]. These angles can specify the attitude of the vehicle body with

respect to local coordinates.

Figure 3.2 – Vehicle Euler Angles defined by Grewal [Grewal et al., 2001].

A common convention for Euler angles is illustrated on Figure 3.2 and is defined by

Grewal [Grewal et al., 2001] as a set of three rotations, starting with the vehicle level with roll

axis pointed north, as follows:

• First rotate through the

azimuth (heading) of the vehicle

(east) from north;

• Then, rotate through the

vehicle roll axis to its intended elevation. Elevation is measured positive upward

from the local horizontal plane;

• Finally, rotate through the

vehicle attitude to the specified or

Figure 3.3 illustrates how the rotations

an object, in this case an airplane.

Figure 3.3 – Rotations through

This set of three angular rotations is often used to define a coordinate transformation to

bring one coordinate frame to coincide to another. To achieve this

specified by a rotation matrix. For example, the coordinate transformation from RPY

coordinates to NED coordinates

on Figure 3.4 [Grewal et al., 2001

rst rotate through the yaw angle (Y) about the vehicle yaw

azimuth (heading) of the vehicle roll axis. The azimuth is measured clockwise

(east) from north;

Then, rotate through the pitch angle (P) about the vehicle pitch

axis to its intended elevation. Elevation is measured positive upward

from the local horizontal plane;

Finally, rotate through the roll angle (R) about the vehicle

vehicle attitude to the specified orientation.

illustrates how the rotations through these angles can affect the orientation of

an object, in this case an airplane.

Rotations through Roll, Pitch and Yaw angles [ACME, 2009].

This set of three angular rotations is often used to define a coordinate transformation to

coordinate frame to coincide to another. To achieve this, the rotation of each axis is

specified by a rotation matrix. For example, the coordinate transformation from RPY

coordinates to NED coordinates is given by the product of three rotation matrices, as shown

Grewal et al., 2001].

17

yaw axis to the intended

axis. The azimuth is measured clockwise

pitch axis to bring the

axis to its intended elevation. Elevation is measured positive upward

) about the vehicle roll axis to bring the

these angles can affect the orientation of

[ACME, 2009].

This set of three angular rotations is often used to define a coordinate transformation to

, the rotation of each axis is

specified by a rotation matrix. For example, the coordinate transformation from RPY

of three rotation matrices, as shown

18

Figure 3.4 - Transformation from RPY coordinates to NED coordinates [Grewal et al., 2001].

A similar convention for Euler angles is given by Craig [Craig, 2005]. Given two frames

A and B, the order of rotations is as follows: starting with frame B coincident with a known

frame A, rotate first B about ZB by an angle α, then about YB by an angle ß, and, finally, about

XB by an angle γ. This set of Euler-angle rotations is exemplified on Figure 3.5.

Figure 3.5 - Euler Angles defined by Craig [Craig, 2005].

The final orientation of B relative to A is also given by the product of three rotation

matrices, as follows:

R�� �,�,��α, β, γ� = R��α�R��β�R��γ�
= cos α − sin α 0sin α cos α 00 0 1) ∙ cos β 0 sin β0 1 0−sin β 0 cos β) ∙ 1 0 00 cos γ −sin γ0 sin γ cos γ) =

19

= cos α cos β − sin α cos γ + cos α sin β sin γ sin α sin γ + cos α sin β cos γsin α cos β cos α cos γ + sin α sin β sin γ − cos α sin γ + sin α sin β cos γ− sin β cos β sin γ cos β cos γ) Equation
3.1

If one considers that the Euler angles of Craig’s [Craig, 2005] convention, α, ß and γ,

correspond, respectively, to the Euler angles of Grewal’s [Grewal et al., 2001] convention, Y,

P and R, one can see that the results from Figure 3.4 and from Equation 3.1 are equivalent.

3.2 Player/Stage Project

The Player/Stage Project provides open-source tools that simplify controller

development, particularly for multiple-robot, distributed robot, and sensor network systems

[Vaughan et al., 2003]. This project includes the Player server, and the robot simulators Stage

and Gazebo. According to its authors and developers, the Player server “(…) is probably the

most widely used robot control interface in the world.” [Player Project, 2010].

Player is a network server for robot control [Player Project Wiki, 2010]. When operating

on a robot, Player provides a straightforward interface to the robot’s actuators and sensors

over an IP network. The user can create a Client program that configures devices, reads data

from sensors and writes commands to actuators by interacting with Player over a TCP socket.

Stage is a 2D multiple-robot simulator from the Player project [Player Project Wiki,

2010]. It can simulate a group of mobile robots driving and sensing a two-dimensional

environment. This simulator is prepared to provide virtual robots that make use of simulated

devices instead of physical sensors, taking advantage of several sensor models including

sonars, laser rangefinders, cameras, etc.

Gazebo is a multi-robot simulator for outdoor environments [Player Project Wiki, 2010].

Its basis is similar to Stage, but the robots and sensors are simulated on a three-dimensional

environment.

Player server is the only component of the Player/Stage Project that will be used in this

work and, thus, it’s also the only one of the three components that is explored in more detail

in this chapter.

Player defines a set of standard interfaces, each of which is a specification of the ways

that you can interact with some class of devices [Player Manual, 2010]. For example, the

laser interface specifies a format (messages and their contents) in which a laser range finder

20

can return its measurements (generally, a list of ranges and some scanning parameters). This

interface can be used to interact with different kinds of laser range finders, such as SICK and

Hokuyo Laser Range Finders.

Another key concept in Player is the concept of driver. It is defined by the authors of

Player Project as “A piece of software (usually written in C++) that talks to a robotic sensor,

actuator, or algorithm, and translates its inputs and outputs to conform to one or more

interfaces” [Player Manual, 2010]. The driver’s job is to adapt the specific language of an

equipment or algorithm to the format of the corresponding interface. This way, two different

sensors of the same class can provide data in the same format to Player, using the same

interface. Most Player drivers communicate directly with hardware, but it’s also possible to

use a different kind of driver - the abstract driver - that communicates with other drivers

instead of hardware components. Player has a lot of drivers and abstract drivers already

developed and that are ready to be used by the developer.

The concept of device is closely linked with the concepts above mentioned. A device

represents a connection between a driver (or an abstract driver) and an interface. Each device

is assigned with a specific address that is used for message exchange which occurs between

devices and with the help of interfaces [Player Manual, 2010]. This address can be composed

by several fields such as host, robot (port), interface or index. Only the last two fields are

mandatory [Owen, 2010].

The connection between a driver and an interface is specified in a configuration file,

named config file. The user must write this file containing all the information that Player must

know about the equipment that will be used. This file tells Player which drivers will be used

and which interfaces they provide or require. The declarations of drivers or abstract drivers

on the config file can also contain some parameters related to the sensor or algorithm that

corresponds to the driver or abstract driver, respectively.

The relationships between these three important concepts of Player (interface, driver and

device) can be easily understood with the help of an example: As mentioned before, there are

several drivers that came with Player. One of them is the sicklms200 driver. This driver

controls a SICK LMS200, which is a laser range finder that is popular in mobile robotics

applications. This driver is able to communicate with the SICK LMS200 over a serial port

and receive range data from it. Moreover, the sicklms200 driver translates the range data

received in a specific SICK format to the format defined by the laser interface. Thus, Player

must know that this driver provides a laser interface. To achieve this, the sicklms200 driver

and the laser interface are associated to create a device. This is performed in a config file. An

example of a declaration of a driver on a config file can be given by:

21

On this example, a driver with the name sicklms200 is declared. The device address is

defined on the ‘provides’ section. This address is composed by the laser interface (the

interface through which the driver provides data) and the index of the device which is 0. It

also has a parameter named scanning frequency with the value 50.

The Player/Stage Project has also a set of libraries, named Client Libraries, which allow

the user to communicate with the Player server from an external program. This

communication can be achieved by using Proxies that are defined in the Client Libraries.

Proxies are C++ classes that offer methods to request data and/or send commands from and to

the Player server and they are closely related to the interfaces defined on Player, i.e. for each

interface there should be a corresponding Proxy in the Client Libraries. The user must build a

Client program that uses Proxies to communicate with Player, in order to request data from

sensors and send commands to actuators.

The global architecture of the Player/Stage Project is illustrated on Figure 3.6.

Figure 3.6 - Global architecture of Player/Stage Project

driver

(

 name "sicklms200" // name of the driver

 provides ["laser:0"] // [“interface:index”]

 scanning frequency 50 // parameter

)

22

This figure shows that the Client program built by the user requests data or sends

commands through the methods contained in Proxies. These methods offered by Proxies are

prepared to send messages to drivers in order to deliver those requests and/or commands.

These messages are routed by Player Server that knows which interfaces each driver supports

and which Proxies correspond to those interfaces. Finally, the drivers communicate with the

hardware of the robot to perform the actions desired by the Client.

As referred before, Player has several drivers and abstract drivers already developed.

However, the user may not have the hardware or may not want the algorithms that these

drivers control. In these situations, the user should develop its own driver. For this, it’s

important to know the methods contained on a driver and its run-time process. The methods

that should be present on a driver are:

• Driver (ConfigFile* cf) : The constructor of the driver. It reads all the

information present on the config file that is related to this driver, including the

interfaces it provides and/or requires and some parameters that may have been

defined. The parameter cf represents the config file that loads the driver;

• MainSetup() : This method allocates resources before entering the main loop.

It is also useful to perform initializations or error checking before the main

loop becomes active. In general, the developer should put here everything that

only needs to be done once;

• pthread_testcancel() : This function is prepared to check whether the driver’s

thread should be killed and to cause the driver to break out of the Main () loop

and go to the MainShutdown() method;

• ProcessMessages() : A very important method that processes the messages

present on the message queue. In this method, the driver can receive data (e.g.

from other drivers) and requests (e.g. from Clients). The driver can publish its

data here, if it receives requests for it;

• Main () : The core of driver’s functioning. This method should contain a main

loop and have specific function calls to critical methods, such as

23

ProcessMessages() or pthread_testcancel(). If the driver doesn’t need a

request to publish its data, it can be published in the Main function;

• MainShutdown() : This method is called when the driver is about to be

stopped by Player. It’s useful to deallocate resources, disconnect from ports,

etc;

• ~Driver () : The destructor of the driver.

The run-time process of a Player driver is exemplified on Figure 3.7 [PSU Robotics

RoboWiki, 2010].

Figure 3.7 - Run-time process of a Player driver [PSU Robotics RoboWiki, 2010].

First, the Constructor and the MainSetup methods are executed. Then, the driver enters in

its core function, i.e. the Main loop. In this loop, the driver continuously verifies if Player

wants it to be stopped and also checks for new messages, executes the corresponding actions

and publishes new data. Finally, when the driver is stopped, the MainShutdown and the

Destructor methods are performed.

24

25

4. Mapping and Obstacle Detection system

This chapter presents a mapping and obstacle detection system for service robots that

work in indoor/outdoor structured environments and that are equipped with, mainly, a

LADAR and an AHRS sensor. Section 4.1 shows how the LADAR is positioned in this

system, in order to build elevation maps of the environment. Section 4.2 exposes the mapping

procedure that is responsible for the creation of the elevation map. On Section 4.3, it is

described the obstacle definition used in this model. This definition and the previously

obtained elevation maps are used by a simple obstacle detector, which is described on Section

4.4. This obstacle detection procedure generates a map (obstacle map) that represents only

obstacles and freespace and that is more suitable to be used by a path planner than an

elevation map. Section 4.5 presents the scrolling procedure that is used for the elevation map

and depicts the overall functioning of this mapping and obstacle detection system. Section 4.6

describes the attitude compensation procedure used on this system. This algorithm uses an

AHRS sensor and allows this system to be more robust against variations on robot’s pitch,

roll and yaw angles. Finally, Section 4.7 describes the implementation of this mapping and

obstacle detection system on a platform for robotic applications named Player/Stage.

4.1 LADAR’s positioning

The LADAR is a range sensor that is based on the “time of flight” principle, i.e. each

distance provided by this sensor is computed from the propagation time that a pulse of light

takes to travel from the source to the target and back to the receptor. At each scan, the

LADAR provides a set of distances computed along its field of view (see Figure 4.1).

Usually, the emitted laser beams are deflected using a mirror and, thus, the LADAR scans the

surroundings in a circular manner. The measurements are detected at regular angular steps

and each scan proceeds counterclockwise about the LADAR, i.e. from d1 to dn on Figure 4.1.

This figure illustrates some of the features involved on LADAR’s operation. This kind of

range sensors is also called LIDAR (LIght Detection And Ranging).

Figure 4.1 – LADAR features. d1 and

Typically, the LADAR can be used to build two dimensional or three dimensional maps

of the environment. The 2D approach is normally achieved by

parallel to the floor. If we consider t

obtained with this method is shown in

(a)

Figure 4.2 – Two types of maps obtained using

This kind of maps is acceptable for a two dimensional world where all the objects should

have specific shapes and should be tall enough

However, this method faces many problems presented by the real world such as ob

or above the height of the LADAR

dissertation the LADAR is used

and dn are measured distances, α is the angular step and
view.

can be used to build two dimensional or three dimensional maps

of the environment. The 2D approach is normally achieved by setting the scanning plane

If we consider the hallway presented in Figure 4.2 (a)

obtained with this method is shown in Figure 4.2 (b).

(b)

Two types of maps obtained using a LADAR. (a): Hallway; (b): 2D map of
of (a).

This kind of maps is acceptable for a two dimensional world where all the objects should

shapes and should be tall enough to be detected by the scanning plane.

However, this method faces many problems presented by the real world such as ob

LADAR, tables, sidewalks, fencings, ditches, among

used in a way suitable for a three dimensional world.

26

is the angular step and θ is the field of

can be used to build two dimensional or three dimensional maps

the scanning plane

(a), a typical map

(c)

of (a); (c): 2.5D map

This kind of maps is acceptable for a two dimensional world where all the objects should

to be detected by the scanning plane.

However, this method faces many problems presented by the real world such as objects below

among others. In this

in a way suitable for a three dimensional world. With this

approach it is possible to build two and a half dimensional map

on Figure 4.2 (c).

As stated before, this

robot, with the scanning plane angled down

Figure 4.3. As the robot moves forward, the laser sweeps some space in front of the robot and

a 2D ½ map is being built.

Figure

4.2 Mapping

This section exposes the

describes the computation of the

information that will be added to the

4.2.2).

4.2.1 Computation of t

One of the first operations of

plane, which is the plane that the LADAR

any object inside its field of view

ranges that the LADAR would

and no other object or surface is detected

build two and a half dimensional maps, similar to the o

his model uses a single LADAR which is placed on top of a mobile

, with the scanning plane angled down towards the direction of motion

. As the robot moves forward, the laser sweeps some space in front of the robot and

Figure 4.3 – LADAR’s positioning for this model.

This section exposes the procedure that is behind the creation of the

the computation of the reference plane (section 4.2.1) and also how to get the

dded to the elevation map and how the map is represented

Computation of the reference plane

One of the first operations of the mapping procedure is the computation

, which is the plane that the LADAR “sees”, positioned as on Figure

inside its field of view. In other words, it’s an “empty plane”

the LADAR would provide if it only scans the surface where the robot is standing

and no other object or surface is detected in its field of view. This

27

, similar to the one presented

LADAR which is placed on top of a mobile

the direction of motion, as shown in

. As the robot moves forward, the laser sweeps some space in front of the robot and

creation of the elevation map. It

(section 4.2.1) and also how to get the

is represented (section

computation of a reference

Figure 4.3, without having

” composed by a set of

if it only scans the surface where the robot is standing

This reference plane is

continuously updated due to changes in LADAR’s attitude

real plane4 provided by the LADAR in order to obtain information about terrain’s elevation.

The calculation of the reference plane

which are illustrated on Figure 4.

is on the position (0, 0, h) according to the coordinate system

represents the theoretical range provided by the LADAR

emitted at , = 90°. LADAR’s height is represented by

LADAR’s tilt (ϕ = 90◦ - tilt).

(a)

Figure 4.4 – Calculation

On Figure 4.4 (a) it’s possible to see that dis

equation:

LADAR’s height and tilt remain always with the same value, since the LADAR is

in a fix position. Thus, it would be expected that

long as h and ϕ remain constant

because d will have to be updated due to changes in robot’s attitude, but this

explored on section 4.5.

Then, distance d is used to compute

as follows:

4
 In this dissertation, the term "real plane" refers

LADAR at each scan.

due to changes in LADAR’s attitude and is used to compare with the

provided by the LADAR in order to obtain information about terrain’s elevation.

reference plane is based on some simple trigonometry

.4. In these calculations it is assumed that the LADAR’s lens

) according to the coordinate systems of Figure

provided by the LADAR’s central beam, i.e. the beam that is

ADAR’s height is represented by h and ϕ is an angle obtained from

(b)

alculation of the reference plane: (a) side view, (b) front view.

s possible to see that distance d can be computed by the following

/ � 0
cos 1

height and tilt remain always with the same value, since the LADAR is

it would be expected that distance d would always remain the same as

remain constant and no obstacles are detected. In fact, this will not happen

will have to be updated due to changes in robot’s attitude, but this

used to compute the LADAR’s theoretical range at each angle

In this dissertation, the term "real plane" refers to the plane that contains the set of ranges measured by the

28

used to compare with the

provided by the LADAR in order to obtain information about terrain’s elevation.

is based on some simple trigonometry concepts,

In these calculations it is assumed that the LADAR’s lens

Figure 4.4. Distance d

beam, i.e. the beam that is

is an angle obtained from

view.

can be computed by the following

height and tilt remain always with the same value, since the LADAR is fixed

always remain the same as

In fact, this will not happen

will have to be updated due to changes in robot’s attitude, but this problem will be

the LADAR’s theoretical range at each angle σ (Rσ)

to the plane that contains the set of ranges measured by the

The angle σ represents each angle where the LADAR emits a beam.

obtained by iteratively adding the angular step

field of view.

The reference plane will be composed by the set of

view of the LADAR. Summarizing, the procedure to compute

first computing distance d

angle σ of the field of view.

4.2.2 Map building

As stated before, the

elevation by comparing it with the

scan is performed, and for each angle

compared to the corresponding

hypothetical obstacle. This pro

Figure 4.5 - Side view of the height computing process
axis. H

By looking at Figure 4

can be computed by the following equatio

2� � /
sin ,

represents each angle where the LADAR emits a beam.

obtained by iteratively adding the angular step α (see Figure 4.1) to the starting angle of the

will be composed by the set of Rσ ranges computed along the field of

Summarizing, the procedure to compute the reference plane

d and then using this distance to determine the range

of the field of view.

As stated before, the reference plane is used to obtain information about terrain’s

vation by comparing it with the real plane provided by the LADAR. Hence, e

scan is performed, and for each angle σ, the real range provided by the LADAR

corresponding range Rσ of the reference plane to compute the height of

This procedure is illustrated on Figure 4.5 and Figure

Side view of the height computing process. Example for an obstacle
Hσ is the height in meters and ρ is an angle in degree

4.5 it’s possible to see that the height of a hypothetical obstacle

by the following equation:

3� � cos �4� 5 62� $ 2��78���9
29

represents each angle where the LADAR emits a beam. These angles are

) to the starting angle of the

ranges computed along the field of

reference plane consists of

then using this distance to determine the range Rσ for each

is used to obtain information about terrain’s

provided by the LADAR. Hence, every time a

, the real range provided by the LADAR (Rreal(σ)) is

to compute the height of a

Figure 4.6.

 placed on the positive Z

es.

the height of a hypothetical obstacle (Hσ)

The angle ρ is obtained

For “negative” obstacles, i.e. obstacles placed on the negative Z axis,

similar but, in this case, Rreal(σ) h

expected, the value obtained to H

Figure 4.6 - Side view of the height computing process
axis. Hσ is the height in meters and

If there isn’t any obstacle at a given angle

same value and the value computed for

Finally, the computed height

representation of the terrain’s elevation

LADAR. A grid map was adopted to represent terrain’s elevation in a suitable way

Figure 4.7). This map can be represented by the following

The elevation map is a two

based on the measures taken from the LADAR and it is

placed on the center cell of the map

Each cell in the elevation map represents an area

is obtained from laser’s height h and each range Rσ as follows:

4 � cos:; < 0
2�=

, i.e. obstacles placed on the negative Z axis,

has a bigger value than Rσ, as shown on Figure

Hσ is negative.

Side view of the height computing process. Example for an obstacle placed on the negative Z
is the height in meters and ρ is an angle in degrees.

obstacle at a given angle σ, Rreal(σ) and Rσ will have approximately the

same value and the value computed for 3� will be very close to zero.

height (Hσ) is saved in an elevation map (system’s internal

terrain’s elevation) on a cell corresponding to the range provided by the

A grid map was adopted to represent terrain’s elevation in a suitable way

This map can be represented by the following expression:

> >�?@AB��CB���,D
DE�

DEF

�EG

�EF

is a two-dimensional array of cells (H 5 � containing information

based on the measures taken from the LADAR and it is LADAR-centered, i.e. the

f the map, which is also considered as the origin of the XY plane

represents an area, �IB 5 IJ� m2. Therefore, the total

30

as follows:

 the procedure is

Figure 4.6. Hence, as

Example for an obstacle placed on the negative Z

will have approximately the

(system’s internal

range provided by the

A grid map was adopted to represent terrain’s elevation in a suitable way (see

containing information

, i.e. the sensor is

the origin of the XY plane.

. Therefore, the total area of

31

the map is �H 5 IJ� 5 � 5 IB� m2. Each cell contains the average of the heights of all

computed points that correspond to that cell. A representation of the elevation map used in

this work is shown on Figure 4.7.

Figure 4.7 - Elevation map representation. n represents the number of height cells and m is the number of
width cells. cw and ch represent cell’s width and height, respectively, measured in meters. L symbolizes

LADAR’s position on the map.

Every time a LADAR scan is performed, the elevation map is updated with new

information obtained from the scan. To achieve this, the average height of each cell that

contains new information is updated with the corresponding height values computed from the

new scan, as explained before.

4.3 Obstacle definition

As previously stated, this model intends to be suitable for structured environments. These

environments usually have large planar surfaces where, generally, obstacles are

distinguishable. Thus, in this case, an obstacle can be understood as an object that stands

above or below those large planar surfaces where the service robot is based and that can

prevent a wheeled service robot from passing through. In this model, it is assumed that the

surface where the robot stands is considered as the ground plane and obstacles are classified

in terms of their heights in relation to this ground plane. The obstacle definition used is:

Definition 1: A cell �K, L� of the elevation map is considered an obstacle if the following

condition is met:

32

1. M@AB�K, L� > 3OP� ∪ M@AB�K, L� < 3��C

where M@AB�K, L� is the average height of the cell, 3OP� is the minimum height that an object

that stands above the ground plane must have to be considered as an obstacle and 3��C is the

minimum height that an object that stands below the ground plane must have to be considered

as an obstacle. All the cells that have average heights with values between 3OP� and 3��C are

considered as free space. Consequently, the values for parameters 3OP� and 3��C must be

chosen according to the service robot’s dimensions in order to prevent the robot being damage

when travelling cells considered as free space.

4.4 Obstacle detection

The obstacle detection procedure of this model is very simple and consists in applying the

obstacle definition of section 4.3 to each cell of the elevation map. The information obtained

on the obstacle detection procedure is saved on an obstacle map (see Figure 4.8) that is more

suitable to be transferred to and used by a path planner.

The obstacle map is similar to the elevation map in terms of their appearance.

Nonetheless, the content of each cell is different. In the obstacle map, each cell holds a value

(cv) that represents an obstacle or free space.

Figure 4.8 - Obstacle map. nobs represents the number of height cells and mobs is the number of width cells.

Cwobs and Chobs represent cell’s width and height, respectively, measured in meters. L symbolizes
LADAR’s position on the map. cv represents each cell’s value.

33

Also their heights and widths can be different, because if the obstacle map is intended to

be used by a path planner its size could be smaller than the elevation map’s size in order to

reduce the amount of information that is transferred. For example, the obstacle map can

represent only a “window” of the elevation map maintaining the same resolution (cell’s size).

However, these details must be taken in consideration according to the chosen strategy for the

path planning.

As previously mentioned, the value assigned to each cell of the obstacle map depends on

the results of applying the obstacle detection definition to the elevation map. This value is

assigned according to the following conditions:

IS � T$1, 3��C < M@AB�K, L� < 3OP�1, M@AB�K, L� > 3OP� ∪ M@AB�K, L� < 3��C
U

If a cell of the elevation map is considered an obstacle, the corresponding cell of the

obstacle map is assigned with the value 1. If the cell is considered as free space, the

corresponding cell of the obstacle map is assigned with the value -1. This procedure is

performed only for the cells of the elevation map that contain information in order to increase

the computational efficiency of this procedure. The cells of the obstacle map that correspond

to those of the elevation map that have no information are assigned with the value 0, which

means “unknown terrain”.

4.5 Map scrolling

Before the calculation and addition of new information, there is the possibility of

elevation map’s cells being repositioned according to LADAR’s displacement, but only when

this displacement is larger than a cell’s size. In this scrolling procedure, cells are only

repositioned across the Y axis, i.e. each cell remains in the same column, changing only its

line. Therefore, in order to decide if the scrolling procedure must be executed, the Y axis

projection of LADAR’s displacement is computed (using yaw angle) and this value is the one

that is compared with the cell’s size. Also, only the cells that contain information are

repositioned, which increases the computational efficiency of this procedure.

In summary, for every LADAR scan the mapping and obstacle detection system is

executed as exemplified by Figure 4.9.

Figure 4.9 - Flowchart of the map

Flowchart of the mapping and obstacle detection system.

34

ping and obstacle detection system.

First, and only if LADAR’s displacement is bigger than the size of a cell, the

map is scrolled according to this displacement and

procedure for Yaw compensation

updated according to the LADAR’s

4.9 as Pitch-Roll compensation

is stored so it can be used the next time that this whole procedure, represented on

is performed. Afterwards, the new

obtain information about terrain’s elevation and this new information is added to the

map. Finally, the obstacle detection procedure is performed in order to build the

as explained on section 4.4.

(a)

(c)

(e)

Figure 4.10 – Effects on the
view of pitch changes. (c) and

First, and only if LADAR’s displacement is bigger than the size of a cell, the

olled according to this displacement and Yaw compensation

Yaw compensation is addressed on section 4.6. After that, the

updated according to the LADAR’s pitch and roll angles. This procedure, named on

Roll compensation is also explored on section 4.6. Then, the new

is stored so it can be used the next time that this whole procedure, represented on

is performed. Afterwards, the new reference plane and the real plane are compared in order to

obtain information about terrain’s elevation and this new information is added to the

. Finally, the obstacle detection procedure is performed in order to build the

as explained on section 4.4.

(b)

(d)

(f)

Effects on the reference plane caused by variations on robot’s attitude. (a) and (b)
view of pitch changes. (c) and (d) – front view of roll changes. (e) and (f) – top view of yaw changes.

35

First, and only if LADAR’s displacement is bigger than the size of a cell, the elevation

Yaw compensation is performed. The

is addressed on section 4.6. After that, the reference plane is

angles. This procedure, named on Figure

is also explored on section 4.6. Then, the new reference plane

is stored so it can be used the next time that this whole procedure, represented on Figure 4.9,

are compared in order to

obtain information about terrain’s elevation and this new information is added to the elevation

. Finally, the obstacle detection procedure is performed in order to build the obstacle map,

plane caused by variations on robot’s attitude. (a) and (b) - side
top view of yaw changes.

4.6 Robot’s Attitude compensation

This section explains the procedure

Figure 4.9. As stated before, changing robot’s attitude (pitch, roll and yaw angles)

the mapping system and increase the number of false positives

pitch and roll variations will affect the reference plane

whereas yaw variations will affect only the elevation map.

how these variations may or may not

In this figure the ground plane is represented by the XY plane and the original

planes are represented by dashed lines.

LADAR’s pitch or roll change, the

affect the distances that belong to this plane. On the other side,

orientation of the reference plane

whenever there are variations on

plane must be updated so that the correct

real plane.

The update of the reference plane

is converted into an XY plane point

4.11.

(a)

Figure 4.11 – Computation of each XY point of the reference plane. (a)

Assuming that the LADAR lens is on the position (0, 0,

systems of Figure 4.11, the distance

Robot’s Attitude compensation

This section explains the procedures Pitch-Roll compensation and Yaw compensation

As stated before, changing robot’s attitude (pitch, roll and yaw angles)

the mapping system and increase the number of false positives on obstacle detection

pitch and roll variations will affect the reference plane and, consequently, the elevation map

yaw variations will affect only the elevation map. Figure 4.10 presents

or may not affect the reference plane.

In this figure the ground plane is represented by the XY plane and the original

sented by dashed lines. By observing Figure 4.10 one can see that whenever

change, the reference plane must be updated because these changes

ect the distances that belong to this plane. On the other side, yaw variations only change the

reference plane but they don’t interfere on its distances. Therefore,

whenever there are variations on pitch or roll values, the distances that comprise the

must be updated so that the correct reference plane is used on the comparison with the

reference plane is achieved as follows: each distance R

plane point (for example, point A of Figure 4.12), as shown on

(b)

Computation of each XY point of the reference plane. (a) – side view, (b) top view.

that the LADAR lens is on the position (0, 0, h) according to the coordinate

, the distance Rxyσ can be obtained by the following equation:

2VW� � 2� ∙ sin X

36

and Yaw compensation of

As stated before, changing robot’s attitude (pitch, roll and yaw angles) may affect

on obstacle detection. Namely,

he elevation map,

presents examples of

In this figure the ground plane is represented by the XY plane and the original reference

one can see that whenever

must be updated because these changes

variations only change the

but they don’t interfere on its distances. Therefore,

values, the distances that comprise the reference

is used on the comparison with the

Rσ at each angle σ

), as shown on Figure

side view, (b) top view.

) according to the coordinate

can be obtained by the following equation:

37

The angle ω is obtained from LADAR’s height h and each range Rσ as follows:

X � cos:; < ℎ2�=

Finally, point Pσ (�����; 	����) is computed using distance Rxyσ and angle σ, as follows:

����� = 2VW� ∙ cos �,� ; 	���� = 2VW� ∙ sin �,�

Then, this point is transformed by a rotation matrix, containing the three axes (X, Y and

Z) and the three rotation angles (pitch, roll and yaw), which is presented on Equation 3.1. As

mentioned before, this step is only performed for pitch and roll variations, thus the

transformations are performed using zero value for yaw. Also, pitch and roll angles used in

these transformations are not absolute, i.e. they are given by the variation between the current

angle and the angle used for the previous scan of the LADAR.

The transformed point will then be obtained by the product between the rotation matrix of

Equation 3.1 and the point (�����, 	����, 0), as follows:

 ��	�
�
) =

 cos α cos β − sin α cos γ + cos α sin β sin γ sin α sin γ + cos α sin β cos γsin α cos β cos α cos γ + sin α sin β sin γ − cos α sin γ + sin α sin β cos γ− sin β cos β sin γ cos β cos γ) ∙ �����	����0)

, where α, ß and γ represent, respectively, yaw, pitch and roll angles.

The next step consists of finding the line segment between the transformed point

���, 	�,
�� and the point where the LADAR lens is placed �0,0, ℎ� and its intersection with

the XY plane. The point where this line segment intersects the XY plane (assumed to be the

ground plane) will then be used to compute the new distance for the reference plane. The

calculation of this line segment is performed for two planes – ZY and ZX – and uses the

characteristic equation of a line which is given by:

 = HZW ∙ 	 + [, for plane ZY;

 = HZV ∙ � + [, for plane ZX;

38

In these equations, mzy and mzx are the slopes of the line segments and b represents the y-

intercepts. In this case, the slopes and y-intercepts are computed as follows:

HZW � �
� $ 0�
	�

HZV � �
� $ 0�
��

[� 0

The intersection of each line segment with the XY plane is computed through the

following equations:

 � 0 ↔ HZW ∙ 	 + [= 0 ↔ 	��� = − [HZW = ℎ ∙ 	��
� − ℎ�

 = 0 ↔ HZV ∙ � + [= 0 ↔ ���� = − [HZV = ℎ ∙ ���
� − ℎ�

The point �����, 	���, 0� is then used to compute the new distance for the reference plane.

This distance will be given by the calculation of the Euclidean distance between point

�����, 	���, 0� and point �0,0, ℎ� as follows:

��������� =]����� − 0�^ + �	��� − 0�^ + �0 − ℎ�^

This last step can be easily understood with the help of an example of a pitch variation

presented in Figure 4.12. Point B is obtained by computing a 3D transformation of point A

with the matrix presented in Equation 3.1. But, to have a new reference plane that is

consistent with real LADAR measurements, it’s necessary to know point C, because the

ground plane (XY plane) is often the “lower limit” of the distances returned by the LADAR

(laser beams can’t “drill” through the ground). Knowing points B and D (considered to be the

point of coordinates (0, 0, h)) it’s possible to find point C, as explained above.

Figure

The new distance that will appear on the

between points C and D. It is wort

some transformed points have bigger

situations, the previous operations are not performed and the new distance of the

plane will be the maximum distance that the LADAR can measure. The procedure explained

so far is performed for each distance

was updated the last time the procedure of

in pitch and roll , as stated

procedure is called to action right before the scrolling procedure but, however, these two

procedures are not always carried out together, i

performed when the displacement of the LADAR is bigger than the size of a cell,

compensation is carried out only when necessary. For example, when the robot is driving

straight ahead Yaw compensation

performed simultaneously,

scrolling procedure is done, i.e. first the map is rotated

subsequently, cells are transferred

On Yaw compensation

performed on the elevation map

angle, because it must maintain on

centered. Just as on Pitch-Roll compensation

not absolute, i.e. it is given by the variation between the current angle and the angle used for

the last time that Yaw compensation

The timing for the rotation of the map depends on the size of

will be occasions when the variation of the

position inside the map. Thus, f

made only when the angle corresponding to the variation of

Figure 4.12 – Example of point transformation.

The new distance that will appear on the reference plane is the

between points C and D. It is worth mentioning that, in some cases such as

some transformed points have bigger z coordinates than the z coordinate of point D. In these

situations, the previous operations are not performed and the new distance of the

the maximum distance that the LADAR can measure. The procedure explained

so far is performed for each distance of the reference plane previously stored

the last time the procedure of Figure 4.9 was carried out) and only for variations

stated before. As previously explained (Figure 4.9

procedure is called to action right before the scrolling procedure but, however, these two

procedures are not always carried out together, i.e. whereas the scrolling procedure is always

performed when the displacement of the LADAR is bigger than the size of a cell,

carried out only when necessary. For example, when the robot is driving

Yaw compensation will not be performed. However, when

performed simultaneously, Yaw compensation is always made first and

scrolling procedure is done, i.e. first the map is rotated (Yaw compensation

subsequently, cells are transferred across the Y axis of the map (scrolling)

Yaw compensation, the reference plane is not modified and the compensation is

elevation map, i.e. the map is rotated according to the

because it must maintain one of its main characteristics, which is being LADAR

Roll compensation, the yaw angle used in the rotation of the map is

not absolute, i.e. it is given by the variation between the current angle and the angle used for

Yaw compensation was carried out.

The timing for the rotation of the map depends on the size of its

will be occasions when the variation of the yaw angle is not sufficient for cells to change

. Thus, for the map to be actually rotated, Yaw compensation

made only when the angle corresponding to the variation of yaw is such that the XY points

39

is the Euclidean distance

h mentioning that, in some cases such as roll variations,

coordinate of point D. In these

situations, the previous operations are not performed and the new distance of the reference

the maximum distance that the LADAR can measure. The procedure explained

previously stored (the one that

and only for variations

Figure 4.9), Yaw compensation

procedure is called to action right before the scrolling procedure but, however, these two

.e. whereas the scrolling procedure is always

performed when the displacement of the LADAR is bigger than the size of a cell, Yaw

carried out only when necessary. For example, when the robot is driving

However, when both procedures are

made first and, after that, the

Yaw compensation) and,

(scrolling).

and the compensation is

the map is rotated according to the variation of yaw

which is being LADAR-

angle used in the rotation of the map is

not absolute, i.e. it is given by the variation between the current angle and the angle used for

 cells, otherwise there

angle is not sufficient for cells to change

Yaw compensation should be

is such that the XY points

40

corresponding to each cell change significantly their position inside the map when rotated

with this angle, i.e. when the rotation of a XY point corresponding to a cell allows this point

to be moved to another cell. Thus, the system follows the next procedure in order to decide

when Yaw compensation is ready to be made: first, it searches for the first cell of the central

column of the map (i.e. the central column’s cell that is closest to the LADAR) that has

information. Then, this cell is converted to an XY point which is rotated by the rotation

matrix of Equation 3.1 with α = -yaw, and ß and γ with zero value. Finally the distances

between the X and Y coordinates of the original point and the corresponding X and Y

coordinates of the transformed point are computed and, if one of these distances is bigger than

the size of a cell, then the information contained by this cell is ready to be moved to a

different cell. In this model, it is assumed that, if the cell of the central column of the map that

is closest to the robot is ready to be rotated, then so is the rest of the map. The rotation of the

whole map is achieved by the following procedure: each cell of the map is converted to an

XY point that is rotated by the rotation matrix of Equation 3.1 with α = -yaw, and ß and γ

with zero value. Then, the information present in the original cell is copied to a new cell that

corresponds to the transformed XY point. Finally the information that remained in the original

cell is erased.

In summary, pitch and roll compensation consists of continuously updating the distances

of the reference plane so that the comparison with the real plane can be reliable, whereas Yaw

compensation is responsible for the rotation of the elevation map in order to maintain this

map centered on the LADAR.

As aforementioned, this whole mapping and obstacle detection system is based on the

assumption that the robot that carries the LADAR stands on a flat surface, which is

considered to be the ground plane. Therefore, a drawback for this system happens when the

ground plane changes its orientation, as for example when the robot tries to go down a ramp.

In this situation, Pitch-Roll compensation will not help because it will try to adjust the

reference plane when it is not supposed, since the attitude variation that affected the LADAR

was caused by a modification on the orientation of the ground plane and not by an object

through which the robot was passing. This can cause the emergence of false positives on

obstacle detection and, therefore, an additional heuristic is necessary to prevent these

problems and to make this system more robust to be used on navigation and path planning,

since it is mainly in this area that this system can be useful. Thus, each time the variation over

time in LADAR’s orientation, since the start of its operation, reaches a significant value, i.e.

whenever the total variation of the pitch angle exceeds a threshold ε, the reference plane is

recalculated as explained on section 4.2.1 and the elevation and obstacle maps are erased.

41

Maps are erased in order to delete all the erroneous elevation information obtained and all the

false obstacles detected during the transition between a ground plane and the other, and the

reference plane is recalculated to prevent that fictional obstacles show up in the next scans.

However, this is only performed in those cases where the pitch angle didn’t vary abruptly

since the last iteration (i.e. when pitch variation since last scan didn’t exceed a certain

threshold η), since this is what happens when the robot’s wheels pass through an object. This

second condition has to be verified, so that the first condition doesn’t interfere with the Pitch-

Roll compensation by giving order to clear the maps and re-compute the reference plane in

situations where variations on robot’s attitude happened due to the passage of the robot

through some object and not due to variations on the orientation of the ground plane.

4.7 Implementation on Player Server

As stated on section 1.2 of Chapter 1, this model was implemented on a framework for

mobile robotics applications named Player/Stage Project. Section 3.2 of Chapter 3 has further

information about this framework and the concepts that will be addressed in this section.

In particular, this model was incorporated on a component of this framework, named the

Player Server. To achieve this, it was developed an abstract driver to perform the tasks

related to this mapping and obstacle detection system and a driver to acquire measures from a

LADAR.

Figure 4.13 - Implementation of this system on Player Server

42

Figure 4.13 illustrates the hierarchy of the Player server architecture used and where the

developed drivers fit into this architecture. The components of this architecture that were

developed for this work are the ladarDriv and MapOD drivers.

The ContDriv and ahrsDriv drivers were not developed specifically for this work but

they are also used to provide their data to MapOD. These two drivers are responsible for the

computation of robot’s displacements through the odometry data provided by two optical

encoders (ContDriv) and for the acquisition of data from the AHRS sensor (ahrsDriv).

The driver ladarDriv is responsible for the communication with the LADAR sensor and

provides the acquired measurements to the MapOD driver. Its operation is based on a simple

sequence of actions (Figure 4.14): when it’s launched, it reads some configuration parameters

of the LADAR (measurement frequency, angular step, IP address, port, etc.) from the config

file and connects to the LADAR on the Constructor method. Then, every x milliseconds the

Main loop is executed. Here ladarDriv gives orders to the LADAR to perform a scan,

receives the set of distances given by this sensor, adapts this information to the laser interface

format and provides it to the drivers that may use it, in this case the MapOD driver. This

driver can also receive requests to send the current configuration parameters of the LADAR

(scanning frequency, angular step, etc), through the ProcessMessages() method.

Figure 4.14 – Run-time process of ladarDriv driver.

The MapOD driver is responsible for all the mapping and obstacle detection system and,

thus, it needs to receive measures from the LADAR and information about robot’s attitude

(AHRS) and robot’s displacements (Optical Encoders). This driver provides an elevation map

and also an obstacle map, which is more suitable for a Planner that may exist on the

43

architecture. Therefore, Figure 4.13 shows MapOD providing an obstacle map to an abstract

driver that represents a Planner (PlannerDriv driver). MapOD starts its operation by reading

from the config file some parameters for the maps (resolution, width and height) and the

identification numbers of the drivers ContDriv, ahrsDriv and ladarDriv (Figure 4.15). The

driver MapOD needs these identification numbers in order to establish connections with the

corresponding drivers through the Player Server, so that it can receive data from them. These

connections are established in the MainSetup() method. The main action of this driver is

present on the ProcessMessages() method. Here, it receives LADAR measures from

ladarDriv and attitude and displacements data from ahrsDriv and ContDriv, respectively.

Whenever a message from ladarDriv is received by MapOD, the whole mapping and obstacle

detection system illustrated on Figure 4.9 is executed. Each map obtained (elevation map and

obstacle map) is provided in tiles (as specified by the map interface), as soon as MapOD

receives the corresponding request on the ProcessMessages() method.

Figure 4.15 - Run-time process of MapOD driver.

Besides the developing of these drivers, it was also created a Client program that uses

some Proxies to interact with the corresponding drivers. This Client allows the user to view

the maps in real-time and also, if desired, to control the movements of the robot through the

computer’s keyboard. Its operation is quite simple and basically consists of periodically

requesting (through the MapProxy) the elevation and obstacle maps to the MapOD driver and

display them using OpenGL [Shreiner et al., 2007].

44

45

5. Experimental Results

This chapter presents a set of experiments that were carried out in order to demonstrate

the capabilities and weaknesses of the developed mapping and obstacle detection system and

its applicability to indoor/outdoor structured environments. This system was developed to be

part of a service robot that is being developed by Holos, S.A. The experiments were

conducted in real environments and with the developed system incorporated on this service

robot, which is illustrated on Figure 5.1.

(a) (b)

Figure 5.1 – The robot with which these experiments were performed. This robot is being developed by
Holos, S.A., the mapping and obstacle detection system being the work of the author.

This robot carries several sensors, including a LADAR which is the main sensor used in

this system. It also has an AHRS sensor and two optical incremental encoders, which are also

necessary for full operation of the developed system. In the context of these experiments, the

AHRS sensor is used to obtain roll , pitch and yaw angles and the encoders are a means for

capturing the distance travelled by the robot.

46

The LADAR used in these experiments is a SICK LMS111 which has a maximum field

of view of 270° and a scanning range up to 20 meters. It can be configured to scan with

angular steps of 0.25° or 0.5° and with a measurement frequency of 25 or 50 Hz [SICK,

2008]. The communication is achieved through Ethernet connection.

The AHRS sensor is an Xsens Mti that is composed by an accelerometer, a gyroscope

and a magnetometer, all with three axes [Xsens, 2008]. The communication protocol is RS-

232 and it has an RS-232/USB converter. The Xsens Mti can handle 5G accelerations and has

a rate of turn of, approximately, 300º/s.

The optical incremental encoders have 500 ppr (points per revolution) and output pulses

as they rotate. By counting these pulses it is possible to obtain how many revolutions (or

fractions of) the motor has turned and thereby compute the displacement of the robot. These

encoders are connected to two 150W Maxon motors and the number of pulses of each encoder

is provided by a Roboteq AX3500 motor controller [Roboteq, 2007].

If nothing is said otherwise, in the following experiments the LADAR is configured with

a field of view θ = 120º (between 30º and 150º), a measurement frequency of 25 Hz and an

angular step α of 0.25º. It is placed on the top of the robot at an approximate height h of 1.08

meters and with a tilt angle of approximately 7.5 degrees, i.e. ϕ is set to 82.5 degrees.

The widths, heights and cell’s sizes of the elevation and obstacle maps have also been set

to the values presented on Table 5.1, if nothing is said otherwise.

Name Description Value

m Number of width cells of the elevation map 101

n Number of height cells of the elevation map 101

cw Width of a cell of the elevation map, measured in meters 0.2

ch Height of a cell of the elevation map, measured in meters 0.2

mobs Number of width cells of the obstacle map 101

nobs Number of height cells of the obstacle map 101

Cwobs Width of a cell of the obstacle map, measured in meters 0.2

Chobs Height of a cell of the obstacle map, measured in meters 0.2

Table 5.1 - Widths, heights and cell’s sizes of the elevation and obstacle maps.

Therefore, the obstacle and elevation maps have a range of approximately 20x20 meters.

Hpos and Hneg have been set to +10 cm and -10 cm, respectively.

47

As described in the previous chapter, this system was implemented on the Player Server

and a Client program was developed to display the results of the experiments. Both Player

Server and Client run on the operating system Linux with Ubuntu distribution. The Player

drivers responsible for all the mapping and obstacle detection system, as well as the Client

program, have been implemented in C++. The Player Server runs on the robot’s side, on a

ZOTAC GeForce 9300 – ITX with an Intel Q9650 Core 2 Quad 3 GHz and 4GB RAM. The

Client runs on a laptop equipped with an Intel Core 2 Duo 1.66 GHz processor and 1GB

RAM.

The results of all experiments are presented by snapshots or measurements taken on the

Client side. In these experiments, in order to allow the reader a better visualization and

understanding of the results, each type of cell content is drawn in a different color. Therefore,

and if nothing is said otherwise, cells from the elevation map with average heights between -3

and +3 centimeters are considered as belonging to the ground plane and thus are drawn in

blue. Also, cells that are below the ground plane are drawn in yellow and cells that are above

the ground plane are drawn in black and grey. In the obstacle map, cells considered as

freespace are drawn in green and cells considered as obstacles are drawn in red. The cell

drawn in orange in each map represents LADAR’s position. Moreover, every map image

contains a line segment of 1 meter length (also drawn in orange) that intends to be a scale for

the map in order to enable the reader a better perception of the distances between the robot

and the obstacles and, also, of the displacements of the robot.

5.1 Changing resolution and size of maps

This experiment intends to demonstrate the ability to customize the size and resolution of

elevation and obstacle maps and the effects of this customization on the detail of the

information presented in these maps and also its impact on the algorithms that use these maps.

As explained on chapter 4, both maps built by this system are represented by two-

dimensional arrays of cells. Therefore, the number of cells of each map is always given by

H 5 , in the elevation map’s case, and by HP_� 5 P_� in the obstacle map’s case. The

amount of memory occupied by these maps and the processing time of an algorithm that uses

these maps depend on their size (number of cells). For example, in order to draw the elevation

map on OpenGL, the Player Client runs through every cell of the map. Thus, the number of

iterations of the drawing algorithm can be given by the number of cells of the map. Table 5.2

represents this number of iterations for four different map sizes.

48

Map width, m Map height, n Number of iterations, K` � H ×

41 41 1681

101 101 10201

201 201 40401

401 401 160801

Table 5.2 – Number of iterations for the algorithm that draws the maps with four different map sizes.

By observing Table 5.2 it is clear that the larger the map, the greater the number of

iterations of the drawing algorithm. The processing time of this drawing algorithm is closely

connected with the number of iterations needed to complete the algorithm.

As aforementioned, the amount of memory occupied by these maps also depends on their

size. Considering that the content of each cell of the elevation map occupies 4 bytes of

memory and the content of each cell of the obstacle map occupies 1 byte of memory and that

both maps have the same size, i.e. HP_� = P_� = H = , Table 5.3 shows the number of

bytes occupied by each map with four different map sizes.

Map

width, m

Map

height, n

Memory occupied by elevation

map = H × × 4 (bytes)

Memory occupied by obstacle

map = H × × 1 (bytes)

41 41 6724 1681

101 101 40804 10201

201 201 161604 40401

401 401 643204 160801

Table 5.3 – Amount of memory occupied by the elevation and obstacle maps with four different map

sizes.

The values presented in Table 5.3 are also in accordance with what was said previously,

i.e. as the map size increases, the amount of memory used also increases.

In order to evaluate the effects of the configuration of these maps on the detail of the

information, it was performed an experiment where it was taken a set of elevation maps, and

the corresponding obstacle maps, representing the same scene - the hall from Figure 5.2 (a) -

but with different sizes and resolutions. All of these maps have a range of approximately 20 x

20 meters but each one achieves this range with a certain size and resolution.

49

(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

Figure 5.2 – Elevation and obstacle maps with different sizes and resolutions, all built in the same hall. (a)
– real image of the hall. (b) and (c) – elevation and obstacle maps with 401x401 cells and resolution of

0.05 m. (d) and (e) – elevation and obstacle maps with 201x201 cells and resolution of 0.1 m. (f) and (g) –
elevation and obstacle maps with 101x101 cells and resolution of 0.2 m. (h) and (i) – elevation and

obstacle maps with 41x41 cells and resolution of 0.5 m.

50

Elevation maps are illustrated in the left column of Figure 5.2, from images (b) to (h), by

increasing order of cell’s size and descending order of number of cells. The corresponding

obstacle maps are represented in the right column of Figure 5.2.

By observing Figure 5.2 one can clearly see that resolution decreases as the size of the

cells increases. On the one hand, the map should have small cells in order to present a good

resolution because in this way the area occupied by the objects and its position relative to the

LADAR is more consistent with the real scene. On the other hand, if the map has small cells it

is necessary to have a big number of cells in order to maintain the range of the map and this

can be computationally heavy, as discussed earlier in this section. In fact, in the elevation and

obstacle maps of Figure 5.2 (b) and (c) there is a good accuracy on the information as can be

seen, for example, by the distance between the first pillar and the left wall that is consistent

with Figure 5.2 (a) (approximately 1.7 meters). However, these maps have a large number of

cells which can make them too heavy to be used by this mapping and obstacle detection

system or to be transferred by its Player driver to some other drivers of the architecture, such

as a Planner driver, or to a Client that wants to draw the maps. The elevation and obstacle

maps of Figure 5.2 (h) and (i) have a much smaller size but the resolution decreases a lot and

the information’s accuracy is affected, as shown, once again, by the distance between the first

pillar and the left wall, which is now 1 meter in these maps. The maps from Figure 5.2 (d),

(e), (f) and (g) can achieve a much better accuracy than the ones from Figure 5.2 (h) and (i)

presenting a much smaller size than the ones from Figure 5.2 (b) and (c).

Another experiment was made to measure the processing time of the algorithm that draws

the elevation maps of Figure 5.2. Table 5.4 represents the results of this experiment.

Map width (cells),

m

Map height (cells),

n

Resolution

(meters)

Processing time

(milliseconds)

41 41 0.5 0.863

101 101 0.2 4.838

201 201 0.1 24.095

401 401 0.05 85.074

Table 5.4 – Processing time (on Client side) for the algorithm that draws the elevation map with four

different map sizes.

The results of Table 5.4 show that, as expected, the processing time of the algorithm

increases with the size of the map. As also expected, these results are consistent with the

information from Table 5.2.

51

In this experiment, the maps that show more balance between the accuracy of the

information and the computational load are the ones presented on Figure 5.2 (d), (e), (f) and

(g) which have a resolution of 0.1 meters and a size of 201x201 cells ((d) and (e)) and 0.2

meters of resolution and a size of 101x101 cells ((f) and (g)). These maps have good accuracy

and they don’t imply a very high computational load. Therefore, in all the remaining

experiments of this dissertation, the maps will have one of these two configurations.

5.2 The reference plane

The purpose of this experiment is to prove the correct computation of the reference plane.

As explained on chapter 4, the reference plane is composed by a set of ranges which the

LADAR, positioned as on Figure 4.3, would provide if it only scans the ground plane and no

other object or surface is detected inside its range and field of view. The reference plane is

very important for the creation of the elevation map because it is used on the computation of

the heights of each cell by being compared to the real plane provided by the LADAR.

In this experiment the robot was positioned in a place wide enough so that the LADAR

can “catch” the ground plane in its entire field of view. This place can be seen on Figure 5.3

(a) and (b).

(a) (b)

(c) (d)

Figure 5.3 – Reference plane experiment. (a) and (b) – real scene. (c) – elevation map. (d) – obstacle map.

52

The field of view of the LADAR, θ, was configured with an angle of 90 degrees (between

45 and 135 degrees) in this experiment. Also, the limits among which it is considered that a

cell belongs to the ground plane were extended to average heights between -6 and +6

centimeters.

If the reference plane is correct, the elevation map should only show cells from the

ground plane, because, at each angle where a beam is emitted, both distances from the

reference plane and the real plane have similar values and the computed heights should be

close to zero. As expected, the elevation map from Figure 5.3 (c) presents only blue cells,

which together approximately make up a horizontal line. This line represents the portion of

the ground plane which is detected by the LADAR. The obstacle map (Figure 5.3 (d)) is also

in agreement considering all cells as freespace.

5.3 Changing orientation of ground plane

As explained on section 4.6, situations where the ground plane changes its orientation

bring problems to this mapping and obstacle detection system. An additional heuristic that

uses two thresholds for the pitch angle (also explained on section 4.6) was implemented to try

to solve these problems. The purpose of this experiment is to evaluate the usefulness of this

additional heuristic, placing the robot in a situation where the orientation of the ground plane

is altered. In this experiment the robot is asked to travel straight on towards north (top of

maps) at a speed of 0.2 ms-1. During its path, the robot will descend a ramp, which is

illustrated in Figure 5.4 (a). Prior to the experiment, the threshold for pitch total variation ε

was set to 0.5 degrees and the threshold for pitch variation relative to the last scan η was set to

0.1 degrees. The snapshot of Figure 5.4 (b) and (c) was taken before the robot start to go

down the ramp and the snapshot of Figure 5.4 (d) and (e) was taken at a time when the robot

was already walking down the ramp.

In the elevation map of Figure 5.4 (b) the main problem caused by changes on the

orientation of the ground plane is evident. In this map there are a large number of yellow

cells, which are cells with negative average heights. This is not incorrect because, in fact, the

points where LADAR’s beams touch these surfaces are below the ground plane where the

robot is standing. However, this will mean that many of these cells are regarded as obstacles

on the obstacle map (Figure 5.4 (c)), leaving the robot in a dead-end situation. Thus, it

becomes necessary that, when the robot is on the ramp, this situation can be corrected.

53

(a)

(b) (c)

(d) (e)

Figure 5.4 – Experiment in which the robot goes down a ramp. (a) – real scene representing the ramp. (b)
and (c) – elevation and obstacle maps taken before the robot start to go down the ramp. (d) and (e) -

elevation and obstacle maps taken when the robot was already going down the ramp.

During the passage of the robot to the ramp, the total variation of the pitch angle reaches

the threshold ε because, in the ramp, the robot presents a pitch angle of +1 degree. Therefore,

during this transitional period the reference plane is recalculated and the two maps are erased

and, once on the ramp, the robot builds a new elevation map that is much more consistent

with the real scene, as can be seen on Figure 5.4 (d). As a consequence, the obstacle map is

now much more realistic because it has several traversable cells that correspond mostly to the

portion of ground plane "swept” by the LADAR. Unlike the former, this obstacle map is now

able to be provided to a planner to be used for path planning or navigation and this was the

main concern that led to the incorporation, in this system, of this heuristic that deals with

variations on the orientation of the ground plane.

54

5.4 Map scrolling

This section exposes the results of some experiments carried out to evaluate the

performance of the scrolling procedure. As mentioned on chapter 4, this procedure is executed

only when robot’s displacement is greater than the size of a cell of the map, i.e. each time the

displacement of the robot reaches the size of a cell, the map is scrolled by one cell. In these

experiments, the measures of two optical incremental encoders are used to compute the

displacements of each front wheel of the robot and, after that, it is computed the average of

these two displacements. Since the robot doesn’t have any sensor that provides its curvature

angle, it is not possible to compute the displacement of the central point of the front axle of

the robot through kinematic equations. Therefore, it is assumed that the average of the

displacements of each wheel corresponds to the displacement of the central point of the front

axle. As explained on chapter 4, cells are only repositioned across the Y axis. Therefore, in

order to decide if the scrolling procedure must be executed, the Y axis projection of the

displacement of the central point is computed (using yaw angle) and this value is the one that

is compared with the cell’s size. If the robot is driving straight ahead, the displacements for

the two wheels are almost equal, as also will be the displacement of the central point, which,

in turn, will be approximately equal to its Y axis projection.

In these experiments the robot is asked to travel towards north (top of maps) at a speed of

0.2 ms-1. It will be expected that the robot walks straight on, not making any turns, so that the

scrolling procedure can be analyzed without the influence from Yaw compensation.

In the first experiment, the robot is asked to travel a small path with a total extent of 4.2

meters, which is a little more than the distance between the two pillars of Figure 5.5 (a). This

figure shows images of the real scenes, and most of the data contained on elevation and

obstacle maps captured by the LADAR at the beginning and at the end of this path. Prior to

this experiment, the threshold for pitch total variation ε was set to 0.5 degrees and the

threshold for pitch variation relative to the last scan η was set to 0.1 degrees.

By comparing the elevation and obstacle maps at the beginning of the path with the same

maps at the end of the path, one can see that the distances between the various surfaces of the

scene suffer a few changes, mainly due to inconsistencies between the scrolling procedure and

the addition of new information to the maps. Despite that, the elevation map remains

essentially consistent with the real scene.

55

(a)

(b) (c)

(d)

(e) (f)

Figure 5.5 – Scrolling Procedure, first experiment. Beginning of the path: (a) – real scene, (b) – elevation
map, (c) – obstacle map. End of the path: (d) – real scene, (e) - elevation map, (f) – obstacle map.

56

Moreover, the positioning of the robot in relation to the several existing surfaces is also in

agreement with the real scenes, as can be seen on Figure 5.5 (b) through the position of the

robot in relation to the first pillar at the beginning of the path, and also on Figure 5.5 (e)

where one can see that, at the end of the path, the robot is positioned next to the second pillar,

which is in line with the real scene of Figure 5.5 (d). There is also a small deviation on the

right side wall due to the fact that the robot did not exactly travel in a straight line, i.e. there

was a small deviation in its path and, because these cells have a considerable size (20x20

centimeters), this effect becomes more visible. The obstacle maps are consistent with the

respective elevation maps, as can be seen by the obstacle map of Figure 5.5 (f) where the

majority of cells considered as freespace belong to the portion of ground plane that was

“swept” by the LADAR.

When the robot reached the end of the path, the displacement computed through the

encoders had a value of 4.4 meters. Therefore, there is an error of 0.2 meters in relation to the

total extent of the path (4.2 meters), i.e. in this experiment the total error of the encoders

represents less than 5% of the total extent. However, as the reader will see in the next

experiment, this error tends to increase over time, as the path increases its extension.

In the second experiment, the robot travelled a longer path between two marks drawn on

the ground. The total extent of this path is 20 meters and, this time, the threshold for pitch

total variation (ε) was set to 0.7 degrees. Also, the limits among which it is considered that a

cell belongs to the ground plane were extended to average heights between -6 and +6

centimeters. Once again, Figure 5.6 shows images of the real scene, elevation maps and

obstacle maps at the beginning and at the end of this path.

By looking at the elevation maps of Figure 5.6 there is one detail that gets our attention

immediately. In these maps there is an area of grey cells (more visible on the map of Figure

5.6 (e)) on the left side, between the robot and the sidewalk at his left, where, at first, there

should only be cells that belong to the ground plane (blue ones). Along this path the robot

maintains a roll angle around -2 degrees and the Pitch-Roll compensation procedure

continuously adjusts the reference plane due to variations on this angle and also on the pitch

angle. However, the surface on the left side of the robot (where the parking lines are drawn) is

not exactly on the same plane (it is slightly above) of the surface where the robot is standing.

This means that, for each LADAR beam that touches this area, the real distance provided by

the LADAR is smaller than the corresponding distance of the reference plane, because the

latter is adjusted in relation to the surface where the robot is standing which, once again, has

not exactly the same orientation of the surface on the left side of the robot.

57

(a)

(b) (c)

(d)

(e) (f)

Figure 5.6 – Scrolling procedure, second experiment. Beginning of the path: (a) – real scene, (b) –
elevation map, (c) – obstacle map. End of the path: (d) – real scene, (e) - elevation map, (f) – obstacle

map.

58

The comparison between these two distances will give rise to cells with a reasonable

average height. In fact, there is a slight gradient of elevation between the robot and the left

sidewalk. This situation could pose a problem to the robot because the obstacle map, in line

with elevation map, believes that most of this area is an obstacle. Nevertheless, this is not a

serious problem because, if, by chance, the robot turned left towards the sidewalk, the

threshold for pitch total variation (ε) would be exceeded (because, for the robot, the ground

plane changes its orientation) and the maps would be erased and the reference plane

recomputed. Thus, these obstacles, which in reality do not exist, would probably disappear.

Moreover, in the elevation map obtained at the end of the path it is possible to see that

there are some cells that were left without information (white cells). This may be due to small

errors in the discretization of LADAR’s measures, i.e. when the elevation information

computed based on LADAR’s measures is added to the elevation map, and also to

inconsistencies in Yaw compensation, which, in turn, should not be executed but, since the

robot does not travel exactly in a straight line, there are always small deviations in its path and

Yaw compensation turns out to be made, leading to small errors in the transfer of information

between cells. The existence of these “empty” cells on the elevation map causes the

corresponding cells of the obstacle map to be considered as “unknown” terrain.

Despite that, the elevation map remains essentially consistent with the real scene, as the

majority of the cells belong to the ground plane. Also, the LADAR “catches” other surfaces

on the right side of the robot, such as some vegetation and two vehicles which can be seen on

Figure 5.6 (a). On the elevation map of Figure 5.6 (e) there are some blue cells behind the

ones that represent the vehicle that is next to the robot. This is not incorrect because, the

LADAR first detects the ground surface that is beneath the vehicle (represented by those blue

cells) and, only when it moves a little forward is that it starts to detect the vehicle. The

obstacle maps are consistent with the respective elevation maps, as can be seen by the

obstacle map of Figure 5.6 (f) where the majority of cells considered as freespace belong to

the large area of ground plane that was “swept” by the LADAR and other surfaces such as the

two vehicles, the sidewalk on the left side, some vegetation on the right side and also a part of

the ground plane on the left side of the robot (as explained before) are labeled as obstacles.

When the robot reached the end of the path, the displacement computed through the

encoders had a value of 21.41 meters. Therefore, there is an error of 1.41 meters in relation to

the total extent of the path (20 meters), i.e. in this experiment the total error of the encoders

represents approximately 7% of the total extent of the path. Thus, as mentioned earlier in this

section, there is an increase in the total error of the encoders as the distance travelled by the

robot becomes larger. Finally, the positioning of the robot in relation to the several existing

59

surfaces is not totally in agreement with the real scenes, due to this error of the encoders. For

example, on the real scene at the end of the path, although is not possible to see on Figure 5.6

(d), the vehicle is a little further away from the robot than the maps from Figure 5.6 (e) and (f)

suggest.

5.5 Pitch-Roll compensation

This experiment was carried out to try to prove the adaptability of the mapping procedure

to some changes in robot’s attitude, so that the obstacle detection procedure can be more

reliable. As explained on chapter 4, the main idea of Pitch-Roll compensation is to

continuously adjust the reference plane to the current attitude of the LADAR, so that the

comparison between the reference plane and real plane provided by the LADAR, which, in

turn, is the basis for the creation of the map and the subsequent detection of obstacles, can be

as much consistent as possible.

The first experiment of this section intends to simulate the passage of a robot through

objects that interfere significantly in its orientation.

(a) (b) (c)

Figure 5.7 - Corridor where this experiment was performed. (a) is the real scene, (b) the elevation map and
(c) the obstacle map.

Figure 5.7 represents the real scene where this experiment was performed as well as its

elevation and obstacle maps. In this experiment, the threshold for pitch variation relative to

the last scan η is set to 0.1 degrees and the threshold for pitch total variation ε was set to 0.5

degrees.

60

Figure 5.8, Figure 5.9 and Figure 5.10 represent three different cases of attitude changes

caused by the objects through which the robot was passing. By passing through these objects

the robot was positioned at, respectively, a pitch of -4.5 degrees, a pitch of 2.5 degrees and a

roll of -5.2 degrees. In this experiment, each case is analyzed through maps built with and

without Pitch-Roll compensation, so that the reader can have a better perception of the

advantages of using Pitch-Roll compensation. Moreover, the reader should notice that the

snapshots presented on the following figures of this section were taken after the maps have

been erased and redrawn at the exact moment when the robot is on top of objects, so that the

reader can clearly see the effects of this element on the whole mapping and obstacle detection

system.

(a)

(b) (c) (d) (e)

Figure 5.8 - Negative Pitch example. (a) – robot with negative pitch. (b) and (c) - elevation and obstacle
maps with Pitch-Roll compensation. (d) and (e) - elevation and obstacle maps without Pitch-Roll

compensation.

In the first case, the two front wheels of the robot are passing through the objects (Figure

5.8 (a)). In this situation, the attitude of the robot is affected and pitch has a negative value,

which in this case is -4.5 degrees. With this positioning, the LADAR is able to “see” further

61

ahead and, consequently, its beams “touch” the ground few meters ahead and “touch” the

walls a little higher. Therefore, if Pitch-Roll compensation correctly adapts the reference

plane to the real plane, these changes should be reflected on the elevation map. By looking at

Figure 5.8 (b), one can see that the heights of left and right walls increased in comparison to

the elevation map of Figure 5.7 (b). The ground plane is not detected on this map because it is

outside its range when the robot has this positioning. Thus, the map doesn’t show any blue

cells. In line with the elevation map, the corresponding obstacle map of Figure 5.8 (c) only

presents red cells, which means that all the detected surfaces are obstacles for the robot.

If the elevation map is built without Pitch-Roll compensation, the reference plane is not

updated in order to be aligned with the real plane and this will origin the emergence of

fictitious obstacles and errors on the computed heights of the detected surfaces. The elevation

map of Figure 5.8 (d) presents some of these problems. The heights of left and right walls

didn’t increase and some surfaces with negative heights (yellow cells) and some other

surfaces considered to be from the ground plane (blue cells) appeared. In yellow cell’s case

this happens because the distances from the real plane are bigger than the distances from the

reference plane, due to the fact that the two planes are not aligned, and the computed height is

negative. Negative and ground plane surfaces shouldn’t appear because, as mentioned earlier,

at this positioning the LADAR cannot detect the ground plane inside the range of the map.

As a consequence, the obstacle map of Figure 5.8 (e) considers some cells as freespace where,

actually, it should only “see” obstacles.

In the second case, there is the reverse process. The two rear wheels of the robot are

passing through the objects (Figure 5.9 (a)) and the attitude of the robot is also affected but,

this time, pitch has a positive value of 2.5 degrees. With this positioning, LADAR’s range

decreases when compared to Figure 5.7. Therefore, the ground plane should be detected

closer to the robot. By looking at Figure 5.9 (b), one can confirm this circumstance because

blue cells are drawn much closer to the robot. In line with the elevation map, the

corresponding obstacle map of Figure 5.9 (c) has some green cells (freespace), mainly across

the ground plane’s extension, considering the remaining cells as obstacles.

On the elevation map without Pitch-Roll compensation, once again the reference plane is

not aligned with the real plane and the elevation map (Figure 5.9 (d)) presents a small wall

where it should show the ground plane. This small wall is obtained because, across this set of

angles, the distances of the real plane are much smaller than the distances of the reference

plane, which leads to objects with positive and insurmountable heights for the robot. The

obstacle map (Figure 5.9 (e)), in line with the elevation map, considers all the surfaces as

62

obstacles and puts the robot in a dead-end situation, forcing him to back off to avoid obstacles

that do not actually exist.

(a)

(b) (c) (d) (e)

Figure 5.9 – Positive Pitch example. (a) – robot with positive pitch. (b) and (c) - elevation and obstacle
maps with Pitch-Roll compensation. (d) and (e) - elevation and obstacle maps without Pitch-Roll

compensation.

The third case shows a different situation. Here, the right front and rear wheels of the

robot are the ones that pass through the objects, as shown by Figure 5.10 (a). In this situation

the robot has a roll of -5.2 degrees. In this position, LADAR’s beams emitted to the right of

the central beam “touch” the ground a little ahead of the central beam, whereas LADAR’s

beams emitted to the left of the central beam “touch” the ground a little behind the central

beam. Also, the walls of the right side are also detected a little higher than left side walls.

Thereby, instead of having a horizontal line where the ground plane is detected, the elevation

map has now a diagonal line, as shown by Figure 5.10 (b) and by the green cells considered as

freespace on the obstacle map of Figure 5.10 (c).

On the maps without Pitch-Roll compensation, the reference plane was not updated and

is positioned as if the robot was still placed as on Figure 5.7. Therefore, the comparison

63

between the reference plane and the real plane will not be correctly performed and the

elevation map will have errors, as can be seen on Figure 5.10 (d).

(a)

(b) (c) (d) (e)

Figure 5.10 - Negative Roll example. (a) – robot with negative roll. (b) and (c) - elevation and obstacle
maps with Pitch-Roll compensation. (d) and (e) - elevation and obstacle maps without Pitch-Roll

compensation.

In this figure one can see that, on the right side of LADAR’s central beam, some cells

with negative heights show up because real plane’s distances are bigger than reference

plane’s distances. On the left side of LADAR’s central beam, real plane’s distances are

smaller than reference plane’s distances and some cells with positive heights show up. The

ground plane almost disappears and it is only represented by a few blue cells that are

positioned on the direction of LADAR’s central beam, which is correct because the central

beam is not affected by roll variations. The obstacle map of Figure 5.10 (e), as expected,

incorrectly considers some cells located on the diagonal line of the ground plane as obstacles

but still considers several cells as freespace, due to the fact that the roll angle caused by these

objects is not very high. If this angle had a greater value, the errors committed by the

64

elevation map should be clearer on the obstacle map, because the heights of the cells that

belong to those fictitious objects would increase and only the cell corresponding to the central

beam would be considered as freespace.

5.6 Yaw compensation

This section presents the results of an experiment that was carried out in order to assess

the performance of the Yaw compensation procedure. As explained on section 4.6, Yaw

compensation is performed by the rotation of the elevation map according to the variation of

yaw angle. In this experiment, first the robot is asked to travel straight ahead at a speed of 0.2

ms-1 and, at a certain moment, the robot is asked to make a left turn of, approximately, 90

degrees, finishing his path after the end of the curve. At the end of this path, the total variation

for the yaw angle given by the AHRS sensor is approximately 92 degrees.

The path taken by the robot is shown on Figure 5.11 (a), (d) and (g), which represent,

respectively, the beginning, middle and end of the path. The elevation and obstacle maps

taken at each of these moments are represented on Figure 5.11 (b) and (c) (beginning), Figure

5.11 (e) and (f) (middle) and Figure 5.11 (h) and (i) (end).

(a)

(b) (c)

65

(d)

(e) (f)

(g)

(h) (i)

Figure 5.11 – Yaw compensation example. Beginning of the path: (a) – real scene, (b) – elevation map, (c)
– obstacle map. Middle of the path: (d) – real scene, (e) - elevation map, (f) – obstacle map. End of the

path: (g) – real scene, (h) - elevation map, (i) – obstacle map.

66

In this experiment, the threshold for pitch total variation (ε) was set to a high value (0.9

degrees), so that the maps were not deleted and, thus, one can observe the whole map rotation.

Also, the limits among which it is considered that a cell belongs to the ground plane were set

to average heights between -5 and +5 centimeters.

In the elevation map obtained at the beginning of the path one can see several aspects of

the real scene of Figure 5.11 (a), such as the wall on the right side of the robot, a portion of

the ground plane and a wall and some vegetation on the left side of the robot. Also, the

LADAR captures some cells beyond the portion of the ground plane that was also captured.

This portion of ground plane is placed immediately before the walls and door which are in

front of the robot. Therefore, the only reason why the LADAR captures points that are beyond

these two surfaces is because these are made of glass and this is a kind of material that causes

problems to the LADAR. In the next two situations this detail will be clearer. The obstacle

map is consistent with the elevation map as it considers all surfaces as obstacles, except for

the portion of ground plane, which is correctly considered as freespace.

After the robot has traveled half way, the elevation map has been significantly rotated

(Figure 5.11 (e)). Although there is some drag when the map rotates (which leads to an

increase on the areas of the surfaces previously mapped), the different surfaces maintain their

position relatively to the robot. At this point, the real scene (Figure 5.11 (d)) shows that the

robot is facing the vegetation (the same vegetation which, on the beginning of the path, was

on the left side of the robot), and the elevation and obstacle maps are consistent with this fact.

Also, the portion of ground plane previously “caught” by the LADAR is now overlapped by

cells corresponding to the glass wall that is now on the right side of the robot (to avoid

confusion, from now on this wall will be referred to as “main glass wall”) and which,

meanwhile, was also captured by the LADAR. As mentioned before, the number of cells that

correspond to surfaces which are beyond the main glass wall is now much higher than at the

beginning of the path. The obstacle map now considers almost all cells of the scene as

obstacles (except for some of those surfaces that are beyond the main glass wall) due to the

fact that the portion of ground plane previously captured is now almost entirely covered. In

the same place where previously were freespace cells that corresponded to this portion of

ground plane, are now several obstacle cells which represent a part of the main glass wall.

When the robot reaches the end of the path, the elevation map (Figure 5.11 (h)) suffered a

rotation of approximately 90 degrees relative to the initial elevation map (Figure 5.11 (b)).

The areas of the previously captured surfaces didn’t change substantially in relation to the

previous elevation map (Figure 5.11 (e)) and the positions of these same surfaces relative to

the robot are consistent with the real scene (Figure 5.11 (g)). For example, the positions, on

67

the real scene, of the vegetation on the right side of the robot and, also, of the wall and the

door in front of the robot are consistent with the positioning of the cells that represent those

surfaces on the elevation map. In the second half of the path, the LADAR continued to detect

surfaces that are beyond the main glass wall (which, once again, is the wall that the robot was

facing at the beginning of the path) but, on the other hand, the LADAR didn’t detect any

surfaces beyond the wall (also made of glass) that is at his front at the end of the path,

because, in the real scene, this glass wall has the blinds closed preventing the LADAR from

detecting anything beyond that. The obstacle map, once again, is in line with the elevation

map, as it has several obstacle cells and only a few freespace cells, which correspond mostly

to the blue cells of the elevation map.

68

69

6. Conclusions and Future Work

This chapter summarizes this dissertation, discusses the main capabilities and weaknesses

showed by the proposed mapping and obstacle detection system on the experimental results,

provides a set of conclusions and suggests some improvements to be made in future work.

6.1 Conclusions

This dissertation presented a solution for the problem of mapping and obstacle detection

in indoor/outdoor structured environments, with particular application on service robots

equipped with a LADAR. This solution works in unknown environments and it is based on

the assumption that the robot, which carries the LADAR and the mapping and obstacle

detection system, is based on a planar surface which is considered to be the ground plane.

The mapping module of the system creates a terrain map, which is then used to detect

obstacles. The obstacle detection module generates a map that represents only obstacles and

freespace. An AHRS sensor is used to increase the robustness of the system to variations on

robot’s attitude, which, in turn, can cause false positives on obstacle detection. It were also

developed a scrolling procedure that updates the maps in accordance with the displacements

of the robot and an additional procedure to deal with situations where the ground plane

changes its orientation. Moreover, the developed solution was implemented on a framework

for mobile robotics applications named Player/Stage Project that improves the

communications between different modules of the system and increases computational

efficiency by executing several navigation tasks simultaneously.

Several experimental tests were conducted in real environments and, by analyzing the

experimental results, some conclusions can be drawn.

The need for this system to comply with real-time constraints makes it very important to

choose an appropriate size and resolution for the maps. Given this choice, it is also clear that

there is a relationship between the detail of the information and the computational load of the

maps (processing time and amount of memory occupied) that needs to be respected so that

real-time constraints are met and robot’s safety can be assured.

The computation of the reference plane is very important for the creation of the elevation

map and it was shown that the reference plane is computed properly because, in a situation

70

where the LADAR only captured the ground plane, the reference plane corresponded very

closely to the real plane provided by the LADAR and, as a result, the maps only showed cells

that belong to the ground plane.

The component of this system that deals with situations where the ground plane changes

its orientation makes this system more reliable and useful for navigation and path planning,

because, when the transition between two ground planes occurs, it allows the removal of

fictitious obstacles and the creation of new maps much more consistent with the real scene.

However, the use of two thresholds leads to the need of their adjustment depending on the

environment where the robot will operate.

Experimental results also demonstrate that Pitch-Roll compensation is a very important

element for this system because, as shown, it allows the construction of elevation maps which

are more consistent with what is “seen” by the LADAR at each moment and, consequently, it

helps to reduce the number of false positives on obstacle maps, which contributes to a greater

efficiency and reliability on obstacle detection. It was also demonstrated that Yaw

compensation works well in its essence, because the map is properly rotated and the captured

surfaces change their position relative to the robot in agreement with what happens in reality.

However, this procedure has a considerable drawback, because there is some drag when the

map is rotated, especially at the beginning of the curves, which leads to an increase on the

areas of the surfaces previously mapped. This may be caused by errors on the algorithm of

rotation of the map (especially in the decision about when the map is ready to be rotated), but

also on the acquisition of the yaw angle. In this system, the yaw angle is obtained through the

AHRS sensor and, among the three angles provided by this sensor, the yaw angle is the one

which is less accurate because it is computed by magnetometers, which are very sensitive to

external influences. This lower accuracy of the yaw angle may have influence on the drag of

the maps. This drawback can cause significant issues to the robot, especially if it intends to

change direction in a tight space, such as making a turn to enter an indoor corridor.

The experiments also indicate that the map’s scrolling procedure fulfills its mission but,

still, it suffers from some errors related to changes on the distances between the various

surfaces and objects of the real scene with the movement of the robot (mainly due to

inconsistencies between the scrolling procedure and the addition of new information to the

maps) and also errors related to the computation of the displacement of the robot through the

encoders (that may arise in the calculation of the displacements, but also on odometry data

provided directly by the encoders), which, in turn, tend to increase as the distance travelled by

the robot becomes larger.

71

In general, the experimental results indicate that the proposed model provides an

appropriate solution for the problem of mapping and obstacle detection in indoor/outdoor

structured environments. Throughout the several experiments, most structured surfaces and

objects were efficiently mapped and those which could be an obstacle for the robot were also

correctly detected by the algorithm of obstacle detection. However, the experiments carried

out seem to indicate that the system finds more problems in outdoor than in indoor

environments, mainly due to changes (smooth, but still with influence) on the ground surface,

which, in turn, can produce false positives in obstacle detection. The author believes that, as a

first approach, these problems could be minimized by reducing the range of the LADAR (by

increasing its tilt angle and/or lowering its height), which would reduce the area of the surface

considered by the system as the ground plane. Thus, the probability of having changes on that

same surface within the field of view of the LADAR could be reduced. Nevertheless, due to

reasons related with the construction of the service robot for which this system was

developed, it was not possible to change the positioning of the LADAR and perform more

tests. This and other improvements will have to remain for future work.

6.2 Future Work

Below, this section suggests some possibilities for future work based on the experimental

results obtained and on the conclusions of the previous section:

• Try to reduce the errors in the scrolling procedure of the maps through the use of a

complete localization system to obtain the displacements of the robot. Instead of using

robot’s odometry, it would be used a more precise localization system, which could

lead to a reduction on the errors, as well as on their propagation over time, as the

distances traveled by the robot increase;

• To improve Yaw compensation. Experimental results revealed that there is some drag

on the cells when the map rotates, which can be problematic for the robot when

moving in tight spaces. As explained on the previous section, one cause for this drag

may be related to the fact that the yaw angle provided by the AHRS sensor is not

accurate. Thus, it would be interesting to explore a new method to obtain the

yaw/heading of the robot to try to improve the results;

72

• To develop a mechanism to regulate and fix (“offline”) the positioning of the LADAR,

so that it is possible to modify its range depending on what is needed. For this system

in particular, the possibility of reducing LADAR’s range would reduce the area of the

surface considered by the system as the ground plane, which could lead to improved

results on outdoor structured environments, since these environments, although in a

smooth way, are a bit rougher than the indoor environments. Within this subject, it

could also be investigated the possibility of developing an algorithm for detection of

smooth slopes on the elevation map, in order to improve obstacle detection when the

robot is faced with such situations;

• To explore the detection of dynamic obstacles. So far, this system considers all

surfaces as static, i.e. each detected surface remains on the maps until eventually the

maps are erased. However, there are objects that can move in front of the robot (like a

human that passes in front of the robot) and, accordingly, it would be interesting to

develop a mechanism that could distinguish between objects that remain in front of the

robot and those who are no longer there, so that the last ones could be removed from

the map;

• To investigate the detection of some unstructured objects. Even in structured

environments, there is often the existence of unstructured objects such as grass or low

vegetation. In this system, such objects will often be considered as obstacles when, in

many cases, they could be overcome by the robot. Therefore, it would be interesting

that this system had the ability to distinguish some unstructured objects, either by the

integration of new sensors (e.g., to have information about the color of the objects) as

well as by the development of algorithms that, based on the maps built, could detect

some unstructured surfaces.

73

Bibliography

[ACME, 2009] ACME Worldwide Enterprises, Inc., F-16 Dynamic Motion Seat, retrieved in

December 2009, http://www.acme-worldwide.com/dynamic_motion_seat_F16.htm.

[Batavia and Singh, 2002] Batavia, P., and Singh, S. (2002). Obstacle detection in smooth

high curvature terrain. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 3062-3067.

[Broten and Collier, 2006] Broten, G. and Collier, J. (2006). Continuous motion, outdoor,

2
;
^D grid map generation using an inexpensive nodding 2-D laser rangefinder. In

Proceedings of the 2006 IEEE International Conference on Robotics and Automation, pages

4240-4245.

[Chatila and Laumond, 1985] Chatila, R., and Laumond, J.-P. (1985). Position referencing

and consistent world modeling for mobile robots. In Proceedings of the 1985 IEEE

International Conference on Robotics and Automation, pages 138- 145

[Chella et al., 2007] Chella, A., Liotta, M., and Macaluso, I. (2007). CiceRobot: a cognitive

robot for interactive museum tours. Industrial Robot: An International Journal, 34(6): 503-

511.

[Cheng et al., 2005] Cheng, Y., Maimone, M., and Matthies, L. (2005). Visual Odometry on

the Mars Exploration Rovers. In Proceedings of the 2005 IEEE International Conference on

Systems, Man and Cybernetics, pages 903- 910

[Craig, 2005] Craig, J. (2005). Introduction to Robotics – Mechanics and Control, third

edition. ISBN:0-13-123629-6. Pearson Education, Inc., New Jersey.

[Elfes, 1987] Elfes, A. (1987). Sonar-based real-world mapping and navigation. IEEE

Journal of Robotics and Automation, 3(3): 249-265.

[Fischler and Bolles, 1981] Fischler, M. and Bolles, R. (1981). Random sample consensus: a

paradigm for model fitting with applications to image analysis and automated cartography.

Communications of the ACM. 24: 381-395.

[Graf et al., 2004] Graf, B., Hans, M., and Schraft, R. (2004). Care-O-bot II—Development

of a Next Generation Robotic Home Assistant. Autonomous Robots, 16(2): 192-205.

[Grewal et al., 2001] Grewal, M., Weill, L., and Andrews, A. (2001). Global Positioning

Systems, Inertial Navigation, and Integration. ISBN:0-471-20071-9. John Wiley & Sons,

Inc., New York.

74

[Hamner et al., 2008] Hamner, B., Singh, S., Roth, S. and Takahashi, T. (2008). An efficient

system for combined route traversal and collision avoidance. Autonomous Robots, 24(4):

365-385.

[IFR, 2009] International Federation of Robotics (IFR), Service Robot, retrieved in

November 2009, http://www.ifr.org/service-robots/.

[Konolige et al., 2008] Konolige, K., Agrawal, M., Bolles, R., Cowan, C., Fischler, M. and

Gerkey, B. (2008). Outdoor mapping and navigation using stereo vision. In Experimental

robotics – the 10th international symposium on experimental robotic. Springer Tracts in

Advanced Robotics. 39: 179-190.

[Kuipers and Byun, 1991] Kuipers, B., and Byun, Y.-T. (1991). A robot exploration and

mapping strategy based on a semantic hierarchy of spatial representations. Journal of

Robotics and Autonomous Systems, 8: 47-63.

[Lacaze et al., 2002] Lacaze, A., Murphy, K. and DelGiorno, M. (2002). Autonomous

mobility for the demo III experimental unmanned vehicles. In Association of Unmanned

Vehicle Systems International Conference on Unmanned Vehicles (AUVSI’02).

[Lalonde et al., 2006] Lalonde, J-F., Vandapel, N., Huber, D., and Hebert, M. (2006). Natural

Terrain Classification Using Three-Dimensional Ladar Data for Ground Robot Mobility.

Journal of Field Robotics, 23(10): 839-861.

[Lee et al., 2009] Lee, Y.-C., Lim, J. H., Cho, D.-W., and Chung, W. K. (2009). Sonar Map

Construction for Autonomous Mobile Robots Using a Data Association Filter. Advanced

Robotics, 23: 185-201.

[Manduchi et al., 2005] Manduchi, R., Castano, A., Talukder, A., and Matthies, L. (2005).

Obstacle Detection and Terrain Classification for Autonomous Off-Road Navigation.

Autonomous Robots, 18(1): 81-102.

[Matthies et al., 2002] Matthies, L., Xiong, Y., Hogg, R., Zhu, D., Rankin, A., Kennedy, B.,

Hebert, M., Maclachlan, R., Won, C., Frost, T., Sukhatme, G., McHenry, M., and Goldberg,

S. (2002). A portable, autonomous, urban reconnaissance robot. Robotics and Autonomous

Systems, 40(2-3): 163-172.

[Moghadam et al., 2008] Moghadam, P., Wijesoma, W., and Feng, D. (2008). Improving

Path Planning and Mapping Based on Stereo Vision and Lidar. In 10th Intl. Conf. on Control,

Automation, Robotics and Vision, pages 384 – 389.

[Owen, 2010] Owen, J. (2010), How to Use Player/Stage, 2nd Edition, retrieved in April

2010, http://www-users.cs.york.ac.uk/~jowen/player/playerstage-tutorial-manual.pdf.

[Player Manual, 2010] Player Manual, The Player Robot Device Interface, retrieved in April

75

2010, http://playerstage.sourceforge.net/doc/Player-2.0.0/player/index.html.

[Player Project Wiki, 2010] Player Project Wiki, About the Player Project, retrieved in April

2010, http://playerstage.sourceforge.net/wiki/Main_Page.

[Player Project, 2010] The Player Project - Free Software tools for robot and sensor

applications, The Player Project, retrieved in April 2010, http://playerstage.sourceforge.net/.

[PSU Robotics RoboWiki, 2010] PSU Robotics RoboWiki, Player/Stage Drivers, retrieved

in April 2010, http://psurobotics.org/wiki/index.php?title=Player/Stage_Drivers.

[Roboteq, 2007] Roboteq (2007). AX3500 Motor Controller User’s Manual. Roboteq, Inc.

[Santana et al., 2007] Santana, P., Barata, J., and Correia, L. (2007). Sustainable robots for

humanitarian demining. International Journal of Advanced Robotic Systems, 4(2): 207-218.

[Shreiner et al., 2007] Shreiner, D., Woo, M., Neider, J., and Davis, T. (2007). OpenGL

Programming Guide – Sixth Edition. ISBN:0-321-48100-3. Pearson Education, Inc., Boston.

[SICK, 2008] SICK (2008). LMS100/111/120 Laser Measurement Systems. Operating

Instructions. SICK AG.

[Thrun, 2003] Thrun, S. (2003). Robotic mapping: a survey. In Lakemeyer, G. and Nebel, B.,

editors, Exploring artificial intelligence in the new millennium, pages 1 - 35. ISBN:1-55860-

811-7. Morgan Kaufmann Publishers, San Francisco.

[Vaughan et al., 2003] Vaughan, R., Gerkey, B., and Howard, A. (2003). The Player/Stage

Project: Tools for Multi-Robot and Distributed Sensor Systems. In Proceedings of the 11th

International Conference on Advanced Robotics, pages 317-323.

[Xsens, 2008] Xsens (2008). MTi and MTx User Manual and Technical Documentation.

Xsens Technologies B.V.

