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The aim of this study is the comparison between different treatments (anatase and two conventional
biocides: Biotin T and Anios) for preventing biodeterioration of mortars. The treatments were applied
both in the laboratory on mortar slabs and in situ on walls of Palacio Nacional da Pena (Sintra, Portugal).
Mortar slabs treated with anatase (pure and Fe3* doped) applied as a coating or by mixing within the
mortar were prepared, and their surfaces characterized by different methodologies. The mortars were
inoculated with cyanobacteria and chlorophyta species, incubated for a period of 4 months and the
chlorophyll content quantified by extraction method and fluorescence emission. For comparison

Ilgfgtﬁizisération purposes untreated mortar slabs were inoculated, incubated and finally treated with the biocides. After
Mortars two weeks the respective chlorophyll contents was quantified.

Photocatalysis In situ studies in two external walls of Palacio Nacional da Pena covered by organisms were also
Anatase performed by direct application of aqueous solutions of the three products, and the efficiency of the
Biocides treatment monitored by spectrophotometry using the CIELAB method. Lichens and other phototrophic

microorganisms were identified by direct observation with a microscope and cyanobacteria, green
microalgae, bacteria and fungi by DNA-based molecular analysis targeting the 16S and 18S ribosomal
RNA genes.

The results show that anatase is a better agent for preventing biodeterioration than the two tested
conventional biocides, both in mortars slabs and in situ studies. In fact, photographic and colorimetric
records made in two external walls of Palacio Nacional da Pena after two weeks of treatments application
showed that lichens and other phototrophic microorganisms disappear from the places where anatase
was applied.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Of all building materials for construction, artificial ones, like
mortars, are the most widely used. Biological decay of mortars is
a serious problem, as approximately 30% of visible alteration on

Ea— building materials is due to microbial impact (Kurth, 2008). Effects
% In this research photocatalytic applications were studied, for the first time, as g p ( )

an alternative method to biocides for the prevention and elimination of the bio-
derma growing on mortars located in cultural heritage buildings. The authors found
out that the treatment with titanium dioxide is more effective in the prevention
and elimination of microorganisms growing on mortars than the conventional
biocides. Titanium dioxide is a non-toxic product that offers an excellent protective
coating. Therefore, titanium dioxide is a good alternative to biocides treatment.
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of microorganisms on building facades are responsible for
aesthetic, biogeophysical and biogeochemical deterioration (Saiz-
Jimenez, 1999). Due to their photoautotrophic nature, photosyn-
thetic microorganisms, like algae and cyanobacteria, are the pio-
neering colonizers of building facades, and therefore, the main
responsible organisms for a further biological colonization
(Tomaselli et al., 2000). The cost of cleaning and treatment
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microbial deterioration on buildings is often difficult to estimate. It
includes cleaning and repairing procedures, as well as cultural
losses due to structural damages, which have been reviewed by
Chen and Blume (2002). Thus, the development of successful
conservation treatments capable of preventing and inhibiting
biodeterioration, rather than the improvement of already existing
biocides, is a very important issue in the cultural heritage buildings
preservation context. Moreover, the identification of the microor-
ganisms colonizing building materials can give very essential
information for the research of new methods capable of avoiding
the biodeterioration process.

Procedures for preventing biodeterioration include intervention
methods. Chemical methods, like the use of biocides, are frequently
applied as a conservation treatment for historic monuments
(Caneva et al, 1996; Nugari and Salvadori, 2003). Recently,
however, the use of biocides is not being well accepted, as these
products do not promote a long term protection, (most frequently
due to the development of resistance mechanisms by microor-
ganisms and also rain water washing), and therefore need to be
repeatedly applied (Russel and Chopra, 1990). Besides the short-
time durability of biocides treatment, the application of these
products involves other sort of problems as they are toxic and can
induce environmental and public health harms (Tiano, 1998).
Therefore, new scientific concepts of ecological treatments are
needed.

In this investigation, heterogeneous photocatalysis of TiO,, in
the form of nanocrystalline anatase, was used to develop self-
cleaning materials that can be applied in cultural heritage building
materials.

The incorporation of photocatalysts to construction materials
(cement, mortars, exterior tiles, glass) confers anti-microbial and
self-cleaning properties, involving no harm to the environment
(Maury Ramirez et al., 2010). Promotion of these properties is due
to the photocatalytic process that occurs on the surface of the semi-
conductor. This process is illustrated in Fig. 1.

Once UV light is absorbed (E > Epandgap) promotion of electrons
(e™) from the valence band to the conduction band occurs, leaving
back positive valence band holes (h™) (Kelerher et al., 2002; Fu
et al., 2005). One of the main paths of this charge carriers (e /h™)
is established on the surface of the semi-conductor lattice, where
redox reactions occur with some molecules present in the atmo-
sphere (Fu et al., 2005). The following equations illustrate the
photocatalytic process, responsible for the degradation of organic
matter:

e-+ 02

C 02
UV-light A <380 nm
C OH:
h*+H,0

Fig. 1. Schematic illustration of TiO, electronic structure characterized by its valence
(VB) and conduction band (CB) energy positions (adapted from Kelerher et al., 2002).

TiOy + hv — TiOy + e~ + ht (1)
e+ 03 = Oy~ 2)
h* + Hy0 — HO* + H' (3)
HO-* + organic matter — xCO; + yH,0 (4)

Due to its high redox potencial and band gap (E° = 2.8 V;
Egap = 3.2 eV), the anatase variety of titanium dioxide, in the form
of nanocrystalline powder, is one of the most widely used semi-
conductors for photocatalysis processes. The fact that this
compound is non-toxic, very photoactive, photoestable, and
produces colourless films when applied to materials, is a benefit
(Diamanti et al., 2008; Chen and Poon, 2009). Therefore the idea of
applying anatase (TiO;) on/in building materials, as an alternative
to the use of conventional biocides, is a promising approach that
will be developed in this investigation.

2. Materials and methods
2.1. Selection of treatments

Three treatments were selected. Two conventional biocides,
Biotin T® (C.T.S Espafia), frequently used in cleaning interventions on
monuments, and Anios D.D.S.H® (Laboratories Anios), a biocide
used as an antiseptical product for hospital procedures. The first one
is a commercial biocide that has alkyl-benzyl-dimethyl-ammonium
chloride and isopropyl alcohol as the active principle. The second
product is a mixture of n,n-didecyl-n-methyl-poly(oxyethyl)
ammonium propionate with alkyl-propylene-diamineguanidium
acetate.

As an alternative product to biocides, anatase photocatalyst (P25
obtained from Degussa; predominantly nanocrystalline anatase
with specific surface area of 50 m? g~! and a particle size approx-
imately 20 nm) was selected. Additionally, in order to test, in
laboratory, the improvement of photocatalytic efficiency, Fe3+-
doped anatase (0.5 wt %) particles were prepared by wet impreg-
nation of pure anatase on a solution of Fe(NO3)3.9H,O (Sigma
Aldrich®) and fired at 500 °C.

2.2. Application of the treatments

In order to evaluate the anti-microbial effect of the three
products previously selected, the experimental work described
below was performed following two different lines: one, in which
the products were directly applied on mortar covered walls of the
Palacio Nacional da Pena (Sintra, Portugal); and other in which the
products were applied in mortar samples manufactured in labo-
ratory, following the same composition of the previously
mentioned walls mortars. These are mixed binders mortars that
some authors (Silva, 2002; Pereira, 2008) consider most suitable for
coating walls. The mortars followed the composition of the renders
used on the Palacio Nacional da Pena.

Laboratory experiments were made first, and then the in situ
treatments were applied.

2.2.1. Laboratory experiments

Two kinds of mortars slabs were manufactured in the laboratory
(AC and AQz). Both were composed of two mixed binders (cement
and lime), with the same composition ratio, but with different
kinds of sand.
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The mortars were manufactured using Portland cement, (CEM
II/B-L 32,5 R), high calcium hydroxide (Ridel-de Haen 31219) and
sand. The mortar AC was prepared using a non-washed yellow river
sand, extracted from the sandpit of Corroios, similar to the one used
in Paldcio da Pena, while the mortar AQz was prepared with
washed quartz sand (SiO, >96%), since silica (SiO,) is considered to
be a very efficient support for anatase application due to its high
superficial area (Chen, 2005).

Fig. 2 shows the two kinds of mortars manufactured. The
cement: lime: sand proportion was 1:4:12 by volume, respectively.
All mortars were executed using wood casts (4.5 x 2 x 2 cm). After
7 days the mortar slabs were removed from the casts, and left
curing in a room at 20 & 2 °C and 50 + 5% RH, during 50 days.

During the manufacturing process of the mortars, the anatase
treatment was applied, following two different methodologies:

On the first one, nanocrystalline anatase powder was applied by
direct addition during the manufacturing process of the mortar, at
the following proportion, by volume: 12:4:4:1 — sand: lime:
anatase: Portland cement.

The second methodology was done having in mind the
improvement of the photocatalytic efficiency of the mortars.
Therefore an application of iron-doped anatase, containing Fe*> at
0.5 wt%, was prepared (Navio et al., 2008). After fired at 500 °C, the
product obtained, Fe—TiO;, was applied on the mortars slabs by the
same proportion of the previous methodology: 12:4:4:1 — sand:
lime: Fe—anatase: Portland cement.

Fig. 3 illustrates a scheme of the application methodology of the
treatments on the mortars slabs. This scheme shows untreated
mortars sets, anatase-containing mortars sets and iron-doped
anatase-containing mortars sets. After the treatments applied, all
mortars were sterilized and placed, in triplicate (in order to assure
representative results), inside closed Petri glass dishes (@15 cm)
with water on the bottom. Afterwards they were inoculated with
a photosynthetic culture and incubated on an exterior terrace.

In all mortar slabs, chlorophyll a (Chla) values were quantified
after inoculation and after the four months period of incubation in
order to evaluate the biological growth.

Afterwards the untreated mortars slabs were then treated with
the two biocides: Anios and Biotin T.

Anios was applied without any dilution and Biotin was applied
diluted at 2% (v/v) in distilled water. After 2 weeks, the effect of the
application of the biocides was evaluated by chlorophyll a quanti-
fication techniques.

2.2.2. Inoculation

In order to evaluate the anti-microbial effect of the treatments,
the mortars slabs were inoculated with a mixed culture of photo-
synthetic microorganisms: two green microalga, Stichococcus
bacillaris and Chlorella ellipsoidea, and one cyanobacterium, Gleo-
capsa dermochroa in BG-11 liquid culture medium. These

photosynthetic microorganisms were selected, because they occur
very frequently on stone monuments in European countries of the
Mediterranean Basin (Miller et al., 2006; Macedo et al., 2009). All
mortars were inoculated with 100 ul of each culture. After inocu-
lation, the mortars slabs were incubated at an exterior terrace,
exposed to natural conditions, during 4 months (January,
23rd—May, 23rd, 2009). Moisture levels were maintained by adding
sterile water (10 ml), periodically, to the bottom of the Petri dishes.

2.2.3. In situ experiments on the Paldcio Nacional da Pena, (Sintra)

In situ experiments were performed on two external walls of the
Palacio Nacional da Pena, (Sintra). One of the walls is located on the
Arches Yard, facing ENE, not receiving direct sunlight. This wall is
extensively colonized by lichenic and algal communities and
presents high humidity. The other wall is located on the D. Carlos
Terrace, facing east, and receiving direct sunlight during much part
of the day. Lichens are scattered distributed in this wall

Aqueous solutions of the three products (anatase and the two
biocides) were applied directly on small areas (50 cm?) of the
selected walls on D. Carlos Terrace and on the Arches Yard. These
areas were chosen on the basis of homogeneity of substrate and
biological growth. Biotin T was applied at 2% (v/v) by brush. Anios
was directly applied by spray, without any dilution, and Anatase at
1% (v/v) in distilled water, was also applied by spray.

2.3. Anatase characterization

The purity and crystallinity of anatase and iron-doped anatase
samples were examined by Raman Spectroscopy, with a Labram
Laser made by Jobin Yvon, using a 632.8-nm He—Ne ion laser as an
excitation source. The laser power on the samples was 2.5 mW.

Surface morphology of iron-doped anatase was analyzed by
scanning electron microscope (SEM) with a JEOL Scanning Micro-
scope T330A. Elementary characterization was carried out using
energy dispersive X-ray analysis (EDX).

In order to understand the effect of doping anatase on light
absorption, samples of pure anatase and iron-doped anatase were
analyzed with a Shimadzu UV-2501PC to measure the UV—Visible
diffuse reflectance of specimens, using BaSO4 as a reference
sample.

2.4. Analysis of the microbial communities present on the two
external walls of Paldcio Nacional da Pena

A first survey on the walls was conducted for lichen and algal
identification. These organisms represented the bulk of the
biomass colonizing the walls. Representative specimens were
collected and studied in the laboratory and species were identified
or confirmed according to Clauzade and Roux (2002). Abundance
was also taken into account. Then, microbial communities

Fig. 2. Mortar slabs used for the laboratory experiments; 1) — AC mortar; 2) — AQz mortar.
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Fig. 3. Schematic representation of the lab experiments conducted on the mortar slabs. Laboratory experiments comprehend untreated mortars sets, Anatase-containing mortars

sets and iron-doped Anatase-containing mortars sets.

composed of bacteria and fungi, associated to the lichens and algae,
and representing a very minor biomass moiety, were investigated
using molecular tools. DNA present in the samples collected from
the two external walls of the Palacio were extracted using the
Nucleospin Food DNA Extraction Kit (Macherey—Nagel, Diiren,
Germany). The 16S and 18S rRNA genes were used for the identi-
fication of prokaryotes (bacteria and cyanobacteria) and eukaryotes
(fungi and microalgae) respectively, as described Miller et al.
(2008). Amplification of DNA was carried out by PCR and amplifi-
cation products were used for two different protocols. The first
analysis consisted in obtaining bacterial community fingerprints by
DGGE and the second analysis was aimed to obtain 16S gene clone
libraries used for sequencing as described Miller et al. (2008).
Plasmids were purified using the JetQuick Plasmid Purification Spin
Kit (Genomed, Lohne, Germany) and sequenced by SECUGEN
Sequencing Services (CSIC, Madrid, Spain). Sequence chromato-
grams were edited using the software Chromas, version 2.01
(Technelysium, Tewantin, Australia). Identities searches were per-
formed using BLAST (NationalCenter for Biotechnology Informa-
tion; http://blast.ncbi.nlm.nih.gov/Blast.cgi).

2.5. Evaluation of efficacy of the treatments

In the laboratory experiments, evaluation of the treatments
efficacy was based on the assessment of microbial growth, by
quantification of chlorophyll a content on the mortars slabs, relating
it to the different treatments applied. Quantification of chlorophyll
a content was estimated by its chlorophyll a fluorescence emission,
using an optical fiber, and upon chlorophyll a extraction method.

Three fluorescence emission measures were performed before,
immediately after inoculation, and after the period of incubation,
using a spectro-fluorometer (SPEX Fluorolog-3 Model FL3-22),
fitted with an optical fiber (Horiva-Jove-Yvon Model F3000). The
optical fiber was placed perpendicular to the mortar surface, and to
assure always the same distance of irradiation, an “O-ring” was
placed between the optical fiber and the mortar slab. All samples
were excited at 430 nm.

Chlorophyll a content was also quantified, immediately after
inoculation and after the period of incubation, upon extraction
method, using dimethyl sulfoxide (DMSO) as a solvent
(Wollenweider, 1979). For both chlorophyll a quantification

techniques, biologic growth ratio was calculated, meaning the ratio
between after incubation chlorophyll a values and after inoculation
chlorophyll a values.

Regarding the in situ experiments on Palacio Nacional da Pena,
evaluation of efficacy of the treatments was carried out by colour
measurements and photograph records before and after two weeks
of application of the treatments.

Colour measurements were performed using a portable spec-
trophotometer (Minolta CM-508i). The results are the mean value of
ten measures per area. CIELAB method was used in order to char-
acterize the surface colour by three parameters: L* (lightness), a*
and b*(chromatic coordinates), defined by CIE (Commission Inter-
nationale de I'Eclairage). Total colour variation (AE*) was calculated
on the same spot, as a spatial difference between two points, cor-
responding to the initial colour, before the treatment applied and to
the colour after treatment applied:

AE* = J(AL*? + Aa*?> + Ab*?), being AL* = L*(after
treatment) — L*(before treatment); Aa* = a*(after treatment) — a*
(before treatment); Ab* = b* (after treatment) — b* (before
treatment).

3. Experimental results
3.1. Anatase characteristics

Pure anatase (P25-Degussa) and iron-doped anatase films show
the anatase crystal phase confirmed in the Raman spectrum by five
peaks at 144, 197, 397, 518 and 640 cm~!, originated by anatase
tetragonal structure (3Eg + 2B1_g 4+ 1Apg). The anatase structure is
maintained upon doping with iron.

SEM image of an iron-doped anatase sample is shown in Fig. 4.
In this figure is observed aggregates and discrete particles of mixed
Fe—TiO, oxides. EDX analysis determined the elementary compo-
sition of the iron-doped anatase. It confirmed the presence of
a Fe—Ti phase (Fe:Ti = 23,63: 76,37 wt%), suggesting that the
doping process was efficient.

The doping effect on light absorption is shown in Fig. 5. After the
doping process has been completed, the colour of the sample
turned from white to yellow, as the absorption of the iron-doped
films shifted more to the visible region (400—700 nm), when
compared with the un-doped TiO; film. The shift to the visible
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aggregate

Fe-TiO,
particles

Fig. 4. SEM image of an iron-doped Anatase sample.

region of the iron-doped anatase films decreases the TiO, band gap
(Egap), but at the same time enhances the semi-conductor perfor-
mance when activated under sunlight, since sunlight is composed
of approximately 5—10% of UV light (A < 390 nm) and 45% of
Visible light.

3.2. Microbial communities present on the two external
walls of Paldcio Nacional da Pena

3.2.1. Lichen and algal communities

The distribution of lichens and algae in Palacio Nacional da Pena
is closely related to the microclimatic conditions of the walls. These
are determined by the orientation of each wall, as the level of
exposure to sunlight seems to be a primary factor, influencing both
the likelihood of lichen colonization and the thallus type. The
community present in the Arches Yard has a dark colour and
covered most part of the walls. This was composed of Trentepohlia
sp. as a majoritary member, followed by Opegrapha calcarea Sm.,
Bacidia cf. scopulicola (Nyl.) A.L.Sm., Ramalina sp., and cf. Cystocoleus

" g~
| , Ba SO,
H TiO, T
© ‘
(8]
3 | |
3
©
L
©
o | 1
R
ZéO I 3é0 ‘ 540 I 760 I

Wavelength {(nm)

Fig. 5. Diffuse reflectance spectra of Anatase and Fe-doped Anatase films.

sp. In the area protected from insolation developed O. calcarea Sm.,
while in the area with some more light and wind was settled
Ramalina sp. Bacidia cf. scopulicola appeared close to Opegrapha
calcarea, while Cystocoleus appeared in semiexposed areas, next to
Ramalina sp. Trentepohlia occupy most part of the wall, no matter
their exposure and water availability. The occurrence of Trente-
pohlia indicates a high degree of atmospheric humidity. If the
atmospheric conditions are drier (for example by wind action) then
lichens are dominating. In these case Cystocoleus sp., lichen that has
Trentepohlia as photobiont, is the dominant. The lichenization of
Trentepohlia as Cystocoleus allows these algae to colonize a new and
more arid microhabitat (Chapman and Waters, 2002). In fact, the
filamentous Trentepohlia is one of the most common green algae
photobionts (Nash, 1996).

The wall of D. Carlos Terrace was covered by Caloplaca group
citrina; Fulgensia sp.; Squamarina cf. lentigera; Toninia candida; and
cf. Pyrenocollema sp. irregularly distributed as patches. In addition,
the cyanobacterium Scytonema sp. and the moss Tortula sp. were
found. In this terrace, the areas subjected to water run-off or soaked
by water developed cf. Pyrenocollema sp., and Scytonema sp. In the
exposed areas with a stable surface appeared Caloplaca group
citrina. In the places with fissures, where some dust was accumu-
lated, the presence of squamulose thalli of Fulgensia sp., Squamarina
cf. lentigera, T. candida and the moss Tortula sp. were observed.

3.2.2. Molecular biology

The purpose of a molecular study was to know the microorgan-
isms associated to the lichenic and algal communities. These asso-
ciated microorganisms were a very minor proportion in biomass with
respect to the presence of lichenic thalli and Trentepohlia filaments.
Table 1 presents the algae, identified by molecular biology methods,
from the two external walls of Palacio Nacional da Pena. The micro-
algae detected in this study were mainly Trentepohlia and other
Chlorophyta. Trentepohlia occurred only in the Arches Yard. However,
Chlorophyta chloroplasts appeared in D. Carlos Terrace. This is
because oligonucleotide primers originally developed for the specific
amplification of 16S rRNA gene segments from cyanobacteria not
only targeted cyanobacterium sequences, but also sequences derived
from phototrophic eukaryotes (Burja et al., 2006).

Trentepohlia can be considered a terrestrial algae and usually
presents an orange or red-brown colouration (Graham and Wilcox,
2000). Regarding D. Carlos Terrace, the DNA analysis only allows us
to determine Chlorophyta chloroplast, which probably belongs to
lichen phycobionts

Table 2 presents the results of the prokaryotic microorganisms
identified. The bacteria biodiversity is significantly higher in the
Arches Yard than in D. Carlos Terrace. This can be explained by the
fact that the Arches Yard wall receives less sunlight and it is usually
more humid than the D. Carlos Terrace wall, which is subjected to

Table 1
Phylogenetic affiliations of algae identified in the two external walls of Palacio
Nacional da Pena.

Phylogenetic affiliation® Similarity (%) Primer Location

Trentepohlia sp. (DQ399592) 99 EukA—EukB  Arches Yard

Trentepohlia sp. (DQ399592) 98 EukA—EukB  Arches Yard

Trentepohlia sp. (DQ399592) 97 EukA—EukB  Arches Yard

Chlorophyta chloroplast 93 616F-1510R  D. Carlos Terrace
(AB374385)

Chlorophyta chloroplast 99 Cya 106F-Cya D. Carlos Terrace
(Fj028695) 781R

Chlorophyta chloroplast 98 Cya 106F-Cya D. Carlos Terrace
(EU751597) 781R

2 Closest relatives obtained by comparison with the NCBI database. Accession
numbers of the closest related database entries are given between brackets.
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Table 2
Phylogenetic affiliations of prokaryotic microorganisms identified in the two
external walls of Paldcio Nacional da Pena.

Phylogenetic affiliation® Similarity (%) Primer Location

Uncultured Cyanobacteria 98 616F-1510R  Arches Yard
(AJ292689)

Uncultured Cyanobacteria 97 616F-1510R  D. Carlos Terrace
(EU621967)

Uncultured Cyanobacteria 94 616F-1510R  D. Carlos Terrace
(Fj480240)

Uncultured Cyanobacteria 92 Cya 106F-Cya D. Carlos Terrace
(EU409853) 781R

Nostoc punctiforme (DQ185258) 98 Cya 106F-Cya D. Carlos Terrace
781R

Hymenobacter sp. (EU382214) 96 616F-1510R  Arches Yard

Uncultured Hymenobacter 96 616F-1510R  D. Carlos Terrace
(AF408296)

Flexibacteraceae bacterium 95 616F-1510R  Arches Yard
(EU155013)

Sphingomonas sp. (F]429181) 94

Uncultured Sphingomonadaceae 97
(AM697066)

Uncultured Sphingomonadaceae 94
(AB473921)

Uncultured Bacteroidetes 93
(F|790565)

Uncultured bacterium 94
(DQ532204)

616F-1510R  Arches Yard
616F-1510R  Arches Yard

616F-1510R  Arches Yard

616F-1510R  Arches Yard

616F-1510R  Arches Yard

2 Closest relatives obtained by comparison with the NCBI database. Accession
numbers of the closest related database entries are given between brackets.

the sunlight almost all day. Also because the abundant biomass in
the Arches Yard represents a better substratum than the scattered
lichen colonies found in D. Carlos Terrace wall. Bacteria need high
moisture values (or substratum water activity) and organic matter
from exudates of lichen hyphae to develop (Chen and Blume, 2002).

Regarding Bacteria domain, biodiversity is significantly higher
in the Arches Yard than in D. Carlos Terrace, as correspond to a more
humid microclimate and higher organic matter availability.
Members of the Sphingomonadaceae, Flexibacteraceae, Bacteroidetes
and Hymenobacter were retrieved. However, the similarities of
these bacteria are enough low to ascribed the sequences to
a determined phylogenetic affiliation.

In Table 3 are presented the fungi identified. Most of the fungi
were identified in the Arches Yard while in D. Carlos Terrace it was
possible to retrieve some lichens.

4. Evaluation of efficacy of the applied treatments
4.1. Laboratory experiments

As shown in Fig. 6, fluorescence emission spectra of the mortars
slabs before inoculation assure that no photosynthetic

Table 3
Phylogenetic affiliations of fungi/lichens identified in the two external walls of
Palacio Nacional da Pena.

Phylogenetic affiliation® Similarity (%) Location

Uncultured Ascomycete (EU409872) 97 Arches Yard
Capnobotryella sp. (A]972857) 99 Arches Yard
Cercospora sp. (AY840527) 99 Arches Yard
Mycosphaerella sp. (EU167605) 98 Arches Yard
Ramichloridium sp. (EU041798) 97 Arches Yard
Zasmidium sp. (DQ681315) 96 Arches Yard
Xanthoria elegans/parietina 97 D. Carlos Terrace
(AF088254/AF241541)
Caloplaca trachyphylla (DQ641412) 90 D. Carlos Terrace

2 Closest relatives obtained by comparison with the NCBI database. Accession
numbers of the closest related database entries are given between brackets.
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Fig. 6. Fluorescence emission spectra of the mortars slabs before and after inoculation:
full line AQz mortar; traced line AC mortar. Each of these spectra is the average of all
the replicates spectra.

microorganisms were present on the slabs, as no emission on the
correspondent spectra region of Chla was detected (650—700 nm).
Immediately after inoculation of the mortars slabs, fluorescence
emission was once again measured. Chla is present, as a strong peak
was detected at 683 nm, proving that all mortars were inoculated
with success.

After the period of incubation (4 months), fluorescence spectra
and quantification of Chla concentration upon extraction method
were once again measured. Quantification of chlorophyll a content
techniques (spectro-fluorescence and upon extraction method)
allowed the evaluation of efficacy of the treatments. However, it must
be stressed that the results obtained with the extraction method and
the spectro-fluorescence method give different kinds of information,
as the first one allows the quantification of the chlorophyll a content
on the total mortars slabs volume and not just of its surface, as the
spectro-fluorescence technique does. Sometimes, this fact has strong
consequences on the data interpretation, as referred by Miller et al.
(2010), namely when there is endolithic growth.

Tables 4 and 5 show the chlorophyll a values obtained by
spectro-fluorescence and by extraction method, immediately after
inoculation, after incubation and after application of the biocides,
for AC mortar and AQz mortar, respectively. In general, all treat-
ments were efficient, as all treated mortars present a lower chlo-
rophyll a content than the untreated mortars for both types of
mortars (Tables 4 and 5). However, the best results were obtained
for the mortars slabs treated with TiO, and Biotin T. As observed on
Tables 4 and 5, these treatments present the lowest photosynthetic
growth ratio of all treatments. However, these results show that
only mortars slabs treated with anatase were able to mineralize
organic matter, as the chlorophyll a content obtained after treat-
ment was lower than the one estimated immediately after inocu-
lation (Tables 4 and 5) and the growth ratio was approximately nule
for AC and AQz mortars. These results prove the efficient photo-
catalysis power of TiO, on the degradation of organic matter,
Although the mechanism of biological inactivation is yet not very
well understood, Wu et al. (2009), suggested that the anti-bacterial
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Table 4

Chlorophyll a values (mean of triplicates) obtained by spectro-fluorescence and by extraction method for AC mortar after inoculation, after incubation and after the application

of the biocides.

AC mortar Spectro-Fluorescence % growth ratio Extraction Method % growth ratio
(cps at 683 nm) (ng Chla)

Untreated After Inoculation 5.6 x 10° 100 89 x 107> 100
After 4 months 5.5 x 10° 3.7 x 1072

Anatase After Inoculation 5.5 x 10° 0 12 x 107 0
After 4 months 7.7 x 10* 12 x 1074

Fe—Anatase After Inoculation 5.6 x 10° 11 5.0 x 10 12.5
After 4 months 6.4 x 10° 26 x 103

Anios D.D.S.H After Inoculation 5.6 x 10° 0 89 x 10° 32
After 2 weeks 1.9 x 10° 12 x 1072

Biotin T After Inoculation 5.6 x 10° 0 89 x 10~° 0.2
After the 2 weeks 7.5 x 10* 6.2 x 10°°

% growth ratio values are always referent to the untreated slabs of each mortar. Being the growth ratio of untreated mortars a maximum value = 100%.

effect of TiO, is attributed to the destruction of the bacterial cell
wall and membrane by the photocatalytic oxidation process of TiO5,
There is yet a lack of data regarding the specific mechanism of cell
death, however what we know is that hydroxyl radicals generated
by the anatase photocatalyst are very potent oxidants that can in
fact mineralize organic matter:

HO* + organic matter — xCO; + yH;0

Iron-doped anatase (Fe—anatase) treatment showed good
results but not as good as those estimated for pure TiO; treatment.
This may be due to an excessive addition of iron on the crystal
lattice, producing large aggregates of hematite that decreased the
anatase photocatalytic activity (Asilturk et al., 2009). Concerning
the conventional biocides treatments, results in Tables 4 and 5
show that application of Biotin T was much more efficient than
Anios, for both types of mortars.

Therefore the following index of efficacy of treatment (in
decreasing order) is presented, on the basis of chlorophyll a content
obtained by extraction method.

Anatase > Biotin T > Anatase—Fe > Anios

4.2. In situ experiments in Paldcio Nacional da Pena

After application of treatments, chromatic changes were
detected on both selected areas. Tables 6 and 7 show colour vari-
ation on D. Carlos Terrace and Arches Yard, respectively.

Total colour variation (AE*) of the different treatments applied
appears to show the same pattern: application of anatase treatment
appears to be more efficient than Biotin T, and much more efficient
that Anios.

Increase of L* parameter after anatase application is more
significant that the two biocides treatments. The L* parameter is

Table 5

responsible for the luminosity and shining of the surface (black-
—white; 0/100). Therefore, increasing of the L* parameter after the
anatase treatment is due to the disappearance of dark organic
matter. The increase of croma parameter a* (green-red; —60/+60)
after anatase treatment, is also significant and is due to the
decrease of green hue (corresponding to the elimination of
photosynthetic microorganisms). Figs. 7 and 8 show the visual
alteration of the surface after two weeks of application of the
treatments on both walls. As it is possible to see in these photo-
graphs anatase and biotin aqueous solutions were the best treat-
ments, as almost all biological growth was removed after two
weeks. Anios treatment showed the worst results on both selected
walls of the Palace, and therefore is not considered suitable to apply
in cultural heritage for preventing biodeterioration.

5. Discussion

The Palacio Nacional da Pena stands on the top of a hill above
the town of Sintra, surrounded by a vast forested area and is
a UNESCO World Heritage. This monument constitutes one of the
major expressions of 19th century Romanticism in the world. The
walls of the Palace were colonized by lichens and algae and the
species distribution depends on the orientation, water availability,
building material, etc. The identification of the lichens was based
on morphological, anatomical and chemical data and follow
Clauzade and Roux (2002). However, when using molecular tools
we found identities that they do not correspond exactly with the
conventional identifications. This is because, apparently, database
of lichens are far from complete and, therefore molecular identifi-
cations, are in some cases incorrect. Crespo and Pérez-Ortega
(2009) reported that there is a lack of correlation between phylo-
genetic and morphological data, at least for characters normally
used in lichen systematics.

Chlorophyll a values (mean of triplicates) obtained by spectro-fluorescence and by extraction method for AQz mortar, after inoculation, after incubation and after the

application of the biocides.

AQz mortar Spectro-Fluorescence % growth ratio Extraction Method % growth ratio
(cps at 683 nm) (ng Chla)

Untreated After Inoculation 2.6 x 10° 100 6.9 x 107 100
After 4 months 5.8 x 10° 1.5 x 107!

Anatase After Inoculation 8.5 x 10° 0 1.6 x 1074 0.03
After 4 months 9.0 x 10* 1.2 x10°*

Fe—Anatase After Inoculation 55 x 10° 0 1.1 x 1074 46
After 4 months 4.7 x 10° 1.1 x 1072

Anios D.D.S.H After Inoculation 2.6 x 10° 19 6.9 x 107> 17
After the biocide 1.1 x 108 2.5 % 1072

Biotin After Inoculation 2.6 x 10° 0 69 x 107° 23
After the biocide 1.1 x 10° 34 x107°

% growth ratio values are always referent to the untreated slabs of each mortar. Being the growth ratio of untreated mortars a maximum value = 100%.
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Table 6

Colour variation measured on D. Carlos Terrace wall.
Treatments AL* Aa* Ab* AE*
Anatase 5.36 5.00 —2.57 7.77
Biotin T 3.26 3.99 -1.67 5.42
Anios 0.45 3.16 -1.88 3.70

Table 7

Colour Variation measured on the Arches Yard wall.
Treatments AL* Aa* Ab* AE*
Anatase 10.49 3.31 -5.25 12.19
Biotin T 6.68 3.08 —2.46 7.76
Anios —0.59 1.34 —4.86 5.08

Although cyanobacteria appear in both walls, Nostoc puncti-
forme was only detected in D. Carlos Terrace. Nostoc primarily
occurs in terrestrial habitats, frequently in association with fungi in
lichens. This cyanobacterium is capable of fixing nitrogen directly
from the air and it can transform molecular nitrogen gas into
ammonia, which can then be assimilated into amino acids, proteins
and other nitrogen-containing cellular constituents. This nitrogen-
fixation capacity allows this cyanobacterium to live under severe
environmental conditions or extreme habitats. For instance, deserts
and grasslands lichens are typically associated with an array of soil
cyanobacteria such as Nostoc species to form desert crust consortia
(Graham and Wilcox, 2000). This might explain why N. punctiforme
grow well in the walls of D. Carlos Terrace which are dryer and
receive more sun than the Arches Yard. The others cyanobacteria
also appear to prefer D. Carlos Terrace, in fact, only one cyanobac-
teria has been found in the walls of Arches Yard. Ortega-Calvo et al.
(1993) surveyed the cyanobacteria and chlorophyta colonizing the
walls of Salamanca and Toledo cathedrals. They found that samples
taken near ground level (the case of Arches Yard) are characterized
by the absence of cyanobacteria, which were however present in
places exposed to sunlight, at 50 m height (the case of D. Carlos
Terrace). Some authors (Garcia-Pichel and Castenholz, 1993) state
that many cyanobacteria can inhabit environments with intense
solar radiation since they present distinct mechanisms to prevent
UV photodamage among which are the negative photomovements
and the synthesis of UV sunscreen compounds.

- KODAK Color Contral Patches

g

Fig. 7. Photograph of the tested areas on the arches Yard wall, after two weeks of the
application of the treatments.

Fig. 8. Photograph of the tested areas on the D. Carlos terrace wall, after two weeks of
the application of the treatments.

Among the bacteria identified, the most abundant are sphingo-
monads, which are widely distributed in nature, having been isolated
from many different soil and water habitats, as well as from plant root
systems, clinical specimens, and other polluted environments.

Some of the fungi identified were previously related with
building deterioration. Recently, Sert et al. (2007) identified new
species of the genus Capnobotryella on monument surfaces. Their
occurrence on marble monuments is associated with aesthetical
degradation due to the colour changes and black spots. Others fungi
are plant pathogens, such as Mycosphaerella and Cercospora
(Goodwin et al., 2001).

Concerning the experiments performed in the laboratory and in
Paldcio Nacional da Pena walls, both demonstrate the high efficacy
of anatase treatments for preventing (and treating) biodeteriora-
tion of mortars. The use of anatase photocatalysis, on or in building
materials will be able to spare financial costs for cleaning and
repairing procedures, as it is a more preventive and cheaper
treatment than biocides. The microorganisms present in the Palacio
Nacional da Pena walls should be monitored by molecular biology
methods and also by colorimetric method for at least 12 months, on
a monthly basis, in order to make sure that the Anatase treatment
has a long lasting effect.

However, for the lichens and mosses colonizing mortars,
a previous mechanical removal can facilitate the Anatase action. We
found different morphologies of lichen thalli; fruticose like in
Ramalina sp., squamulose like in Squamarina sp. and crustose like
Caloplaca sp. All of them have stratified thalli, with an external
cortex layer constituted by hyphal cells. The cortex protect the algal
layer and avoid the Anatase action on great part of the vegetative
body. Furthermore, the rhizines that penetrate into the mortars are
protected by the lichen thallus against Anatase and these hyphal
cells, if airborne algal cells are captured, can generate a new lichen
thallus. A similar process can be assumed for mosses, and rhizines
can be protected in deeper mortar layers from the Anatase action.

6. Conclusions

Nowadays, from the conservation viewpoint it is important to
control biodeterioration process with new environmentally
friendly technologies. Therefore, this research allowed the authors
to conclude that anatase photocatalyst is a better agent for pre-
venting biodeterioration than the conventional biocides, conferring
an excellent protective coating and self-cleaning properties to
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building materials. Moreover it is non-toxic and by consequence
a good alternative to conventional biocides.

Although, it will be necessary to develop a further scientific
research on anatase photocatalysis self-cleaning applications, the
potential of combined nanotechnology and preventive conserva-
tion will allow a positive compromise for an environmental method
of preventing biodeterioration of building materials.
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