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Abstract

The main subject of this paper is the description of the congruences on certain monoids of
transformations on a finite chain Xn with n elements. Namely, we consider the monoids ORn

and PORn of all full, respectively partial, transformations on Xn that preserve or reverse the
orientation, as well as their respective submonoids OPn and POPn of all orientation-preserving
elements. The inverse monoid PORIn of all injective elements of PORn is also considered.
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Introduction and preliminaries

For n ∈ N, let Xn be a finite chain with n elements, say Xn = {1 < 2 < · · · < n}. As usual,
we denote by PT n the monoid (under composition) of all partial transformations of Xn. The
submonoid of PT n of all full transformations of Xn and the (inverse) submonoid of all injective
partial transformations of Xn are denoted by Tn and In, respectively.

Let a = (a1, a2, . . . , at) be a sequence of t (t ≥ 0) elements from the chain Xn. We say that
a is cyclic [anti-cyclic] if there exists no more than one index i ∈ {1, . . . , t} such that ai > ai+1

[ai < ai+1], where at+1 denotes a1. Notice that, the sequence a is cyclic [anti-cyclic] if and only if
a is empty or there exists i ∈ {0, 1, . . . , t − 1} such that ai+1 ≤ ai+2 ≤ · · · ≤ at ≤ a1 ≤ · · · ≤ ai

[ai+1 ≥ ai+2 ≥ · · · ≥ at ≥ a1 ≥ · · · ≥ ai] (the index i ∈ {0, 1, . . . , t−1} is unique unless a is constant
and t ≥ 2). Let s ∈ PT n and suppose that Dom(s) = {a1, . . . , at}, with t ≥ 0 and a1 < · · · < at.
We say that s is an orientation-preserving [orientation-reversing] transformation if the sequence of
its images (a1s, . . . , ats) is cyclic [anti-cyclic]. It is easy to show that the product of two orientation-
preserving or of two orientation-reversing transformations is orientation-preserving and the product
of an orientation-preserving transformation by an orientation-reversing transformation is clearly
orientation-reversing.

1This work was developed within the activities of Centro de Álgebra da Universidade de Lisboa, supported by
FCT and FEDER, within project POCTI/MAT/893/2003 – “Fundamental and Applied Algebra”.
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Denote by POPn the submonoid of PT n of all orientation-preserving transformations of Xn.
As usual, OPn denotes the monoid POPn ∩ Tn of all full transformations of Xn that preserve the
orientation. This monoid was considered by Catarino in [3] and by Arthur and Ruškuc in [2]. The
injective counterpart of OPn, i.e. the inverse monoid POPIn = POPn ∩ In, was studied by the
first author in [9, 11].

Comprehensiver classes of monoids are obtained when we take transformations that either
preserve or reverse the orientation. In this way we get PORn, the submonoid of PT n of all
transformations that preserve or reverse the orientation. Within Tn sits the submonoid ORn =
PORn ∩ Tn and inside In is PORIn = PORn ∩ In.

The following diagram, with respect to the inclusion relation and where Cn denotes the cyclic
group of order n, exposes the relationship between these semigroups:
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The study of transformations that respect the orientation is intrinsically associated to the
knowledge of the ones that respect the order. A transformation s in PT n is called order-preserving
if x ≤ y implies xs ≤ ys, for all x, y ∈ Dom(s). Denote by POn the submonoid of PT n of all partial
order-preserving transformations of Xn. The monoid POn ∩ Tn of all full transformations of Xn

that preserve the order is denoted by On. This monoid has been largely studied by several authors
(e.g. see [1, 15, 16, 18]). The injective counterpart of On is the inverse monoid POIn = POn ∩In,
which is considered, for example, in [5, 7, 8, 10, 12].

In this paper, on one hand we aim to describe the Green relations on some of the monoids
mentioned above and to use the descriptions obtained to calculate their sizes and ranks. This type
of questions were also considered by Catarino and Higgins [4] for OPn and for ORn; by Fernandes
[9] for POPIn and by the authors [13] for PORIn. So, it remains to study the monoids POPn

and PORn and that is done in Section 1.
On the other hand, we want to describe the congruences of the monoids OPn, POPn, ORn,

PORn and PORIn. It was proved by Aı̌zenštat [1], and later by Lavers and Solomon [18], that
the congruences of On are exactly the Rees congruences. A similar result was proved by the first
author [10] for the monoid POIn and by the authors [14] for the monoid POn. Fernandes [9] proved
that the congruences on POPIn are associated with its maximal subgroups. In Section 2, under
certain conditions, on an arbitrary finite semigroup we define a class of congruences associated to
its maximal subgroups. In Section 3, we show that, as in the case of POPIn, all congruences in
the monoids referred above are of this type.

Next, for completion, we recall some notions and fix the notation.
Let M be a monoid. We denote by E(M) its set of idempotents. Let ≤J be the quasi-order on

M defined by
u ≤J v if and only if MuM ⊆ MvM,
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for all u, v ∈ M . Denote by Ju the J-class of an element u ∈ M . As usual, a partial order relation
≤J is defined on the set M/J by setting Ju ≤J Jv if and only if u ≤J v, for all u, v ∈ M . For
u, v ∈ M , we write u <J v and also Ju <J Jv if and only if u ≤J v and (u, v) 6∈ J.

The Rees congruence ρI on M associated to an ideal I of M is defined by (u, v) ∈ ρI if and
only if u = v or u, v ∈ I, for all u, v ∈ M . For convenience, we admit the empty set as an ideal. In
what follows the identity congruence will be denoted by 1 and the universal congruence by ω. The
rank of M is, by definition, the minimum of the set {|X| : X ⊆ M and X generates M}. For more
details, see e.g. [17].

A subset C of the chain Xm is said to be convex if x, y ∈ C and x ≤ z ≤ y imply that z ∈ C. An
equivalence ρ on Xm is convex if its classes are convex. We say that ρ is of weight k if |Xm/ρ| = k.
Clearly, the number of convex equivalences of weight k on Xm is

(
m−1
k−1

)
.

Now let G be a cyclic group of order n. It is well known that there exists a one-to-one cor-
respondence between the subgroups of G and the (positive) divisors of n. Since G is abelian, all
subgroups are normal, and so there is a one-to-one correspondence between the congruences of G
and the (positive) divisors of n. These correspondences are, in fact, lattice isomorphisms.

The dihedral group Dn of order 2n (n ≥ 3) can be defined by the group presentation

〈x, y|xn = 1, y2 = 1, yx = x−1y〉

and its proper normal subgroups are:

(1) 〈x2, y〉, 〈x2, xy〉 and 〈x
n
p 〉, with p a divisor of n, when n is even;

(2) 〈x
n
p 〉, with p a divisor of n, when n is odd.

See [6] for more details.
The following concept will be used in Section 3. Let (P1,≤1) and (P2,≤2) be two disjoint

posets. The ordinal sum of P1 and P2 (in this order) is the poset P1 ⊕ P2 with universe P1 ∪ P2

and partial order ≤ defined by: for all x, y ∈ P1 ∪ P2, we have x ≤ y if and only if x ∈ P1 and
y ∈ P2; or x, y ∈ P1 and x ≤1 y; or x, y ∈ P2 and x ≤2 y. Observe that this operator on posets is
associative but not commutative.

1 The monoids POPn and PORn

In this section we describe the Green relations and calculate the sizes and the ranks of the monoids
POPn and PORn. We show that their structure is similar to the one of the monoids POPIn,
PORIn, PT n and In. In particular, in all of them, the J-classes are the sets of all elements with
the same rank and form a chain, with respect to the partial order ≤J. Notice also that all these
monoids are regular.

In what follows, we must have in mind that an element of PORn is either in POPn or it reverses
the orientation. Denote by Porn the set of all orientation-reversing partial transformations of Xn.
Clearly, PORn = POPn∪Porn. In view of the next lemma, we have POPn∩Porn = {s ∈ POPn :
| Im(s)| ≤ 2}.

Lemma 1.1 [4] Let a be a cyclic [anti-cyclic] sequence. Then a is (also) anti-cyclic [cyclic] if and
only if a has no more than two distinct values. �
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It is easy to show that E(PORn) = E(POPn).
Let us consider the permutation of order two

h =
(

1 2 · · · n− 1 n
n n− 1 · · · 2 1

)
.

Clearly, h2 = 1 and h is an orientation-reversing full transformation. We showed in [13] that POPIn

together with h form a set of generators of PORIn. Similarly, by just noticing that, given an
orientation-reversing transformation s, the product sh is an orientation-preserving transformation,
it follows that PORn is generated by POPn ∪ {h}.

We prove that PORn is regular, using the fact that POPn is already known to be regular [9].
It remains to show that all the elements of Porn are regular. Let s be an orientation-reversing
transformation. Then sh ∈ POPn and so there exists s′ ∈ POPn such that (sh)s′(sh) = sh. Thus,
multiplying on the right by h, we obtain s(hs′)s = s and so s is a regular element of PORn.

Next consider the following permutation

g =
(

1 2 · · · n− 1 n
2 3 · · · n 1

)
,

which is an element of POPn such that gn = 1. As in [9, Proposition 3.1], it is a routine matter to
prove the following (non unique) factorisation of an element of POPn:

Proposition 1.2 Let s ∈ POPn. Then there exist i ∈ {0, 1, . . . , n − 1} and u ∈ POn such that
s = giu. �

As an immediate consequence of this proposition, we have:

Corollary 1.3 The monoid POPn is generated by POn ∪ {g}. �

Corollary 1.4 Let s ∈ PORn. Then there exist i ∈ {0, 1, . . . , n − 1}, j ∈ {0, 1} and u ∈ POn

such that s = giuhj. �

Notice that, with the notation of the last corollary, we can always take:

(1) j = 0, if s ∈ POPn;

(2) u ∈ On, if s ∈ ORn.

Therefore, wherever in this paper we take such a factorisation of an element s of PORn, we will
consider j and u as above.

Denote by Mn either the monoid PORn or the monoid POPn.

Proposition 1.5 Let s and t be elements of Mn. Then:

(1) sR t if and only if Ker(s) = Ker(t);

(2) sL t if and only if Im(s) = Im(t);

(3) s ≤J t if and only if | Im(s)| ≤ | Im(t)|.
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Proof. Since Mn is a regular submonoid of PTn, conditions (1) and (2) follow immediately from
well known results on regular semigroups (e.g. see [17]).

Next we prove condition (3). First, suppose that s ≤J t. Then there exist x, y ∈ Mn such
that s = xty. Since Im(s) ⊆ Im(ty) and | Im(ty)| = | Im(t)y| ≤ | Im(t)|, then | Im(s)| ≤ | Im(t)|.
Conversely, let s, t ∈ Mn be such that | Im(s)| ≤ | Im(t)|. By Corollary 1.4, there exist i1, i2 ∈
{0, . . . , n − 1}, j1, j2 ∈ {0, 1} and u, v ∈ POn such that s = gi1uhj1 and t = gi2vhj2 . Thus
| Im(s)| = | Im(u)| and | Im(t)| = | Im(v)|, since gi1 , gi2 , hj1 , hj2 are permutations. Hence u ≤J v in
POn (see [15]) and so there exist x, y ∈ POn such that u = xvy. Then

s = gi1uhj1 = gi1xvyhj1 = (gi1xgn−i2)gi2vhj2(h2−j2yhj1) = (gi1xgn−i2)t(h2−j2yhj1),

with gi1xgn−i2 , h2−j2yhj1 ∈ Mn, and so s ≤J t in Mn, as required. �

It follows, from condition (3), that

Mn/J = {J0 <J J1 <J · · · <J Jn},

where Jk = {s ∈ Mn | | Im(s)| = k}, for all 0 ≤ k ≤ n.
On the other hand, given an element s ∈ Mn ∩ In, from conditions (1) and (2) above and from

the corresponding descriptions for the monoids POPIn and PORIn ([9, Proposition 2.4] and [13,
Proposition 5.3], respectively), it follows that the H-class of s in Mn∩In coincides with its H-class
in Mn. Thus, as for the monoid POPIn ([9, Proposition 2.6]), we have:

Proposition 1.6 Let s ∈ POPn be such that 1 ≤ | Im(s)| = k ≤ n. Then |Hs| = k. Moreover, if s
is an idempotent then Hs is a cyclic group of order k. �

Since a transformation s ∈ PORn is both orientation-preserving and orientation-reversing if
and only if | Im(s)| ≤ 2, we have the following:

Corollary 1.7 Let s ∈ PORn be such that 1 ≤ | Im(s)| = k ≤ 2. Then |Hs| = k. Moreover, if s
is an idempotent then Hs is a cyclic group of order k. �

Also, as for the monoid PORIn ([13, Proposition 5.3]), we have:

Proposition 1.8 Let s ∈ PORn be such that 3 ≤ | Im(s)| = k ≤ n. Then |Hs| = 2k. Moreover, if
s is an idempotent then Hs is a dihedral group of order 2k. �

Let s be an element of PORn with rank k, 0 ≤ k ≤ n. Suppose that Im(s) = {b1, . . . , bk}.
Then, considering the kernel classes of s, we obtain two types of partitions of the domain of s into
intervals:

(a) Dom(s) =
⋃̇k

i=1Pi with s =
(

P1 · · · Pk

b1 · · · bk

)
; or

(b) Dom(s) =
⋃̇k+1

i=1 Pi with s =
(

P1 · · · Pk Pk+1

b1 · · · bk b1

)
.
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Notice that, in the first case, P1, . . . , Pk are precisely the kernel classes of s whereas, in the second
one, the kernel classes are P1 ∪ Pk+1, P2, . . . , Pk.

Now let k ∈ {2, . . . , n} and suppose that s is an element of POPn with rank k. If s verifies (a)
then Ker(s) is a convex equivalence on Dom(s) of weight k. On the other hand, if s verifies (b) then
we can associate to s a convex relation of weight k + 1 (with classes P1, . . . , Pk, Pk+1). Therefore
the number of R-classes of rank k with the same domain as s is given by(

|Dom(s)| − 1
k − 1

)
+

(
|Dom(s)| − 1

k

)
=

(
|Dom(s)|

k

)
,

whence the total number of R-classes of rank k is equal to
∑n

j=k

(
n
j

)(
j
k

)
. As

(
n
j

)(
j
k

)
=

(
n
k

)(
n−k
j−k

)
, we

have
∑n

j=k

(
n
j

)(
j
k

)
=

(
n
k

) ∑n
j=k

(
n−k
j−k

)
=

(
n
k

) ∑n−k
j=0

(
n−k

j

)
=

(
n
k

)
2n−k. Since the number of L-classes

of rank k is, clearly, equal to
(
n
k

)
and, by Proposition 1.6, each H-class of rank k has k elements,

the monoid POPn has precisely k
(
n
k

)(
n
k

)
2n−k elements of rank k. Furthermore, by noticing that the

number of transformations of rank 1 of PTn (and so of POPn) is equal to (2n − 1)n, we conclude
the following result:

Proposition 1.9 |POPn| = 1 + (2n − 1)n +
∑n

k=2 k
(
n
k

)22n−k. �

As there is a natural bijection between POPn and Porn (obtained by simply reversing the
sequence of the images), we have |PORn| = 2|POPn| − |{s ∈ POPn | | Im(s)| ≤ 2}|, whence:

Proposition 1.10 |PORn| = 1 + (2n − 1)n + 2
(
n
2

)22n−2 +
∑n

k=3 2k
(
n
k

)22n−k. �

Naturally, at this point, we would like to compute the rank of these monoids.
Let us consider the following elements s0, s1, . . . , sn−1 of POIn:

s0 =
(

2 · · · n− 1 n
1 · · · n− 2 n− 1

)
and

si =
(

1 · · · n− i− 1 n− i n− i + 2 · · · n
1 · · · n− i− 1 n− i + 1 n− i + 2 · · · n

)
,

for i ∈ {1, 2, . . . , n− 1}. Consider also the elements u1, . . . , un−1 of On defined by

ui =
(

1 · · · i− 1 i i + 1 · · · n
1 · · · i− 1 i + 1 i + 1 · · · n

)
,

for 1 ≤ i ≤ n− 1. Since POn = 〈s0, . . . , sn−1, u1, . . . , un−1〉 (see [15]), it follows from Corollary 1.3
that:

Corollary 1.11 POPn = 〈s0, . . . , sn−1, u1, . . . , un−1, g〉. �

Also, as gn−1uig = ui+1, for 1 ≤ i ≤ n − 2, s0 = gn−1(s1g)n−1 and si = gi−1s1g
n−i+1, for

1 ≤ i ≤ n− 1, we get:

Corollary 1.12 POPn = 〈s1, u1, g〉. �
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Finally, since any generating set of POPn must clearly contain a permutation, a non-permuta-
tion full transformation and a non-full transformation, we must have:

Theorem 1.13 POPn has rank 3. �

Next we observe that, given an orientation-reversing partial transformation s, we have sh ∈
POPn, whence sh = x1x2 · · ·xk, for some x1, x2, . . . , xk ∈ {s1, u1, g} and k ∈ N. Thus s = sh2 =
x1x2 · · ·xkh and so we may conclude the following:

Corollary 1.14 PORn = 〈s1, u1, g, h〉. �

Let A be a set of generators of PORn. As for POPn, the set A must contain at least one non-
permutation full transformation and one non-full transformation. On the other hand, for n ≥ 3,
the group of units of PORn is the dihedral group Dn, which has rank two. Hence we must also
have two permutations in A. We have proved the next result.

Theorem 1.15 For n ≥ 3 the monoid PORn has rank 4. �

2 Congruences associated to maximal subgroups

In this section we construct a family of congruences associated to maximal subgroups of a J-class
that satisfies certain conditions. As we will show in Section 3, this family provides a description
for the congruences of the monoids we want to consider.

We start with a simple technical lemma.

Lemma 2.1 Let S be a semigroup and let s, t, u ∈ S be such that s is regular and sH t. Then there
exist v1, v2 ∈ S such that v1s = us, v1t = ut, sv2 = su, tv2 = tu, v1sR v1 R v1t and sv2 L v2 L tv2.

Proof. It is well known (e.g. see [17]) that ss′ = tt′ and s′s = t′t, for some inverses s′ of s and
t′ of t. Let v1 = uss′ = utt′ and v2 = s′su = t′tu. Then v1s = us, v1t = ut, sv2 = su and
tv2 = tu. On the other hand, as ss′ R s, tt′ R t, s′sL s and t′t L t, we obtain v1 = uss′ Rus = v1s,
v1 = utt′ Rut = v1t, v2 = s′su L su = sv2 and v2 = t′tu L tu = tv2, as required. �

Let S be a finite semigroup and let J be a J-class of S. Denote by B(J) the set of all elements
s ∈ S such that J 6≤J Js. It is clear that B(J) is an ideal of S. We associate to J a relation πJ on
S defined by: for all s, t ∈ S, we have s πJ t if and only if

(a) s = t; or

(b) s, t ∈ B(J); or

(c) s, t ∈ J and sH t.

Lemma 2.2 [9]The relation πJ is a congruence on S. �
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Assume that J is regular and take a group H-class H0 of J . Also, suppose that there exists a
mapping

ε : J −→ H0

s 7−→ s̃

which satisfies the following property: given s, t ∈ J such that st ∈ J , there exist x, y ∈ H0 such
that

b H t implies s̃b = xs̃b̃ (1)
aH s implies ãt = ãt̃y. (2)

The existence of such a map for the monoid In (and for some of its submonoids) was showed
by the first author in [9].

To each congruence π on H0, we associate a relation ρπ on S defined by: given s, t ∈ S, we have

s ρπ t if and only if s πJ t and s, t ∈ J implies s̃ π t̃.

Theorem 2.3 The relation ρπ is a congruence on S.

Proof. First, observe that ρπ is an equivalence relation, since H and π are equivalence relations
and B(J) ∩ J = ∅. So, it remains to prove that ρπ is compatible with the multiplication.

Let s, t ∈ S be such that s ρπ t and assume that s 6= t. Let u ∈ S. As s πJ t and πJ is a
congruence, we have us πJ ut and su πJ tu. In order to prove that us ρπ ut, suppose that us, ut ∈ J .
Then us, ut 6∈ B(J) and, as B(J) is an ideal, s, t 6∈ B(J). Since s 6= t, we must therefore have
s, t ∈ J and sH t. Also we get s̃ π t̃. Now, by Lemma 2.1, there exists v1 ∈ S such that v1s = us,
v1t = ut and v1sR v1 R v1t. Hence we have s, v1, v1s ∈ J . As t H s, it follows from condition (1)
that ṽ1s = xṽ1s̃ and ṽ1t = xṽ1t̃, for some x ∈ H0. Thus, as π is a congruence,

ũs = ṽ1s = xṽ1s̃ π xṽ1t̃ = ṽ1t = ũt

and so us ρπ ut. Similarly, we prove that su ρπ tu, as required. �

3 On the congruences of OPn, POPn, ORn, PORIn and PORn

The goal of this section is to describe the congruences of the monoids OPn, POPn, ORn, PORIn

and PORn. We will use a method that generalises the process developed by the first author to
describe the congruences of the monoid POPIn [9]. In fact, this new technique will also comprise
that case.

Although there are details that differ from one case to the other, we will present the proof in a
way that solves the problem simultaneously for all these monoids.

To prove our main result, Theorem 3.3, we need to fix some notation and recall some properties
of the monoids OPn, ORn, POPIn, PORIn, POPn and PORn presented in [4, 9, 13] or in this
paper.

First, remember that OPn = 〈On, g〉, POPIn = 〈POIn, g〉, POPn = 〈POn, g〉, ORn =
〈On, g, h〉, PORIn = 〈POIn, g, h〉 and PORn = 〈POn, g, h〉.

Let us fix T ∈ {On,POIn,POn} and let M be either the monoid 〈T, g〉 or the monoid 〈T, g, h〉.
Both T and M are regular monoids (moreover, if T = POIn then M and T are inverse monoids)
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and, for the partial order≤J, the quotients T/J and M/J are chains. More precisely, for S ∈ {T,M},
we have

S/J = {JS
0 <J JS

1 <J · · · <J JS
n }, if T ∈ {POIn,POn},

and
S/J = {JS

1 <J · · · <J JS
n }, if T = On,

where JS
k denotes the J-class of S of the elements of rank k, for k suitably defined. Since S/J is

a chain, the sets IS
k = {s ∈ S | | Im(s)| ≤ k}, with 0 ≤ k ≤ n, together with the empty set (if

necessary), constitute all the ideals of S (see [10]). Observe also that T is an aperiodic monoid
(i.e. T has only trivial subgroups); the H-classes of rank k of 〈T, g〉 have precisely k elements, for
1 ≤ k ≤ n; and the H-classes of rank k of 〈T, g, h〉 have precisely 2k elements, for 3 ≤ k ≤ n, and
k elements, for k = 1, 2.

For a J-class JM
k of M (necessarily regular, since M is regular), with 1 ≤ k ≤ n, we want to

find a particular group H-class Hk in JM
k and a mapping ε : JM

k −→ Hk satisfying the conditions
of Theorem 2.3. Notice that, we have B(JM

k ) = JM
0 ∪JM

1 ∪ · · · ∪JM
k−1 or B(JM

k ) = JM
1 ∪ · · · ∪JM

k−1.

Given s ∈ PTn with Dom(s) = {i1 < · · · < ik}, where 1 ≤ k ≤ n, define s ∈ Tn by, for every
x ∈ Xn,

(x)s =


(i1)s, if 1 ≤ x ≤ i1
(ij)s, if ij−1 < x ≤ ij and 2 ≤ j ≤ k
(ik)s, if ik < x ≤ n.

It is clear that s and s have the same rank. Moreover:

(a) If s ∈ POn then s ∈ On;

(b) If s ∈ POPn then s ∈ OPn; and

(c) If s ∈ PORn then s ∈ ORn.

Fix 1 ≤ k ≤ n and consider the following elements of In (which are permutations of {1, . . . , k}):

ε =
(

1 · · · k
1 · · · k

)
, γ =

(
1 2 · · · k − 1 k
2 3 · · · k 1

)
and η =

(
1 2 · · · k − 1 k
k k − 1 · · · 2 1

)
.

Let Jk be the J-class of M of the elements of rank k. If T ∈ {POIn,POn}, take the following
elements:

ek = ε, gk = γ and hk = η.

When T = On, consider the following full transformations of Xn:

ek = ε, gk = γ and hk = η.

Notice that hkg
i
k = gk−i

k hk, for 1 ≤ i ≤ k.
Denote by Hk the H-class of M of the idempotent ek and observe that:

(a) If M = 〈T, g〉, then Hk is the cyclic group of order k generated by gk; and

(b) If k ≥ 3 and M = 〈T, g, h〉, then Hk is the dihedral group of order 2k generated by gk and hk.
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Let s ∈ Jk. Suppose that {a1 < · · · < ak} is the transversal of the kernel of s formed by the
minimum element of each kernel class. Let Im(s) = {b1 < · · · < bk} and take the injective partial
order-preserving transformations

σL =
(

1 · · · k
a1 · · · ak

)
, σR =

(
b1 · · · bk

1 · · · k

)
and

σ′
L =

(
a1 · · · ak

1 · · · k

)
, σ′

R =
(

1 · · · k
b1 · · · bk

)
.

Define sL, sR, s′L, s′R ∈ T by:

(a) sL = σL, sR = σR, s′L = σ′
L and s′R = σ′

R, if T ∈ {POIn,POn};

(b) sL = σL, sR = σR, s′L = σ′
L and s′R = σ′

R, if T = On.

Clearly, sL R ek L sR and sLs′L = ek = s′RsR.
Now let bp1 , . . . , bpk

∈ {b1, . . . , bk} be such that bp`
= a`s, for 1 ≤ ` ≤ k. There exists i ∈

{0, . . . , k − 1} such that bpi+1 < · · · < bpk
< bp1 < · · · < bpi if s is orientation-preserving, or

bpi+1 > · · · > bpk
> bp1 > · · · > bpi if s is orientation-reversing. It can be proved in a routine

manner that sLssR = gk−i
k if s is orientation-preserving, or sLssR = gk−i

k hk if s is orientation-
reversing.

Next let aq1 , . . . , aqk
∈ {a1, . . . , ak} be such that b` = aq`

s, for 1 ≤ ` ≤ k, and consider the
following injective partial transformation:

σ′ =
(

b1 · · · bk

aq1 · · · aqk

)
.

Define ŝ ∈ M by:

(a) ŝ = σ′, if T ∈ {POIn,POn};

(b) ŝ = σ′, if T = On.

Clearly, ŝ is an inverse of s and it is easy to show that s = sŝs′LsLssRs′R and sLsŝs′L = ek.
Next consider the mapping

ε : Jk −→ Hk

s 7−→ s̃ = sLssR.

Observe that, given s, t ∈ Jk such that sH t, we have sL = tL, sR = tR, s′L = t′L and s′R = t′R.
Moreover, since sŝ and tt̂ are idempotents of Jk with the same kernel and the same image, we also
have sŝ = tt̂.

Lemma 3.1 Let s, t ∈ M be such that s, t, st ∈ Jk. Then there exist `1, `2 ∈ {0, 1, k− 1} such that

(1) b R t implies s̃b = g`1
k s̃b̃;

(2) aL s implies ãt = ãt̃g`2
k .
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Proof. Suppose that s reverses the orientation and t preserves the orientation. Let

s =
(

P1 · · · Pi Pi+1 · · · Pk Pk+1

s1 · · · si si+1 · · · sk s1

)
and

t =
(

Q1 · · · Qj Qj+1 · · · Qk Qk+1

t1 · · · tj tj+1 · · · tk t1

)
with possibly Pk+1 = ∅ or Qk+1 = ∅. Then Im(s) = {si+1 > · · · > sk > s1 > · · · > si} and
Im(t) = {tj+1 < · · · < tk < t1 < · · · < tj}, for some 0 ≤ i, j ≤ k− 1. Hence we have s̃ = gk−i

k hk and
t̃ = gk−j

k . As s, t, st ∈ Jk, then Im(s) is a transversal of Ker(t) and we have two possible situations:

(a) If si ∈ Q1, . . . , s1 ∈ Qi, sk ∈ Qi+1, . . . , si+1 ∈ Qk, then

st =
(

P1 · · · Pi Pi+1 · · · Pk Pk+1

ti · · · t1 tk · · · ti+1 ti

)
.

Since (Pi−j)st = {tj+1} if 0 ≤ j ≤ i − 1 and (Pi−j+k)st = {tj+1} if i ≤ j ≤ k − 1, it follows
that s̃t = gk−i+j

k hk, whence s̃t = s̃t̃.

(b) If si ∈ Q2, . . . , s1 ∈ Qi+1, sk ∈ Qi+2, . . . , si+1 ∈ Qk+1, then

st =
(

P1 · · · Pi+1 Pi+2 · · · Pk Pk+1

ti+1 · · · t1 tk · · · ti+2 ti+1

)
and so (Pi−j+1)st = {tj+1} if 0 ≤ j ≤ i and (Pk+i−j+1)st = {tj+1} if i + 1 ≤ j ≤ k − 1.
Therefore, in both cases, s̃t = gk+j−i−1

k hk and so s̃t = gk−1
k s̃t̃ = s̃t̃gk.

If s preserves the orientation or t reverses the orientation, it is a routine matter to show that, in
the situation analogous to (a), we always have s̃t = s̃t̃. On the other hand, the situation analogous
to (b) can be summarised by the following table:

s t `1 `2

orientation-preserving orientation-preserving 1 1
orientation-reversing orientation-preserving k − 1 1
orientation-preserving orientation-reversing 1 k − 1
orientation-reversing orientation-reversing k − 1 k − 1

Finally, as elements R-related have the same kernel and elements L-related have the same image,
it is clear that `1 does not depend of the element of the R-class of t (s fixed) and `2 does not depend
of the element of the L-class of s (t fixed), as required. �

The next proposition follows from this lemma and Theorem 2.3.

Proposition 3.2 Let k ∈ {1, . . . , n} and let π be a congruence on Hk. Then ρπ is a congruence
on M . �
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Notice that, if π is the universal congruence of Hk, then the relation ρπ is the congruence πJk

of M . On the other hand, if π is the identity congruence of Hk, then the relation ρπ is the Rees
congruence of M associated to the ideal IM

k−1. Thus, for k = 1, the relation ρπ is the identity
congruence of M and, for 2 ≤ k ≤ n, there exist s ∈ B(Jk) = IM

k−1 and t ∈ Jk, whence (s, t) 6∈ ρπ

and so ρπ is not the universal congruence of M .
At this point, we can state our main result.

Theorem 3.3 The congruences of M ∈ {OPn,POPIn,POPn,ORn,PORIn,PORn} are exactly
the congruences ρπ, where π is a congruence on Hk, for k ∈ {1, . . . , n}, and the universal congru-
ence.

Denote by Con(S) the lattice of the congruences on a semigroup S.
Recall that Con(T ) is formed only by the Rees congruences of T ∈ {On,POIn,POn} (see

[1, 10, 14]).
On the other hand, it is clear that Con(OP1) = Con(OR1) = {1} and Con(M) = {1, ω} if

M ∈ {POPI1,PORI1,POP1,POR1}.
To prove Theorem 3.3 we start by establishing some auxiliary results.
Let c1, . . . , cn ∈ Tn be the constant mappings such that Im(ci) = {i}, for all 1 ≤ i ≤ n. Notice

that, if s, t ∈ Tn are such that cis = cit, for all 1 ≤ i ≤ n, then we must have s = t.
The version of this property for partial transformation is the following: let c1, . . . , cn ∈ PTn be

the n partial identities of rank one such that Dom(ci) = Im(ci) = {i}, for all 1 ≤ i ≤ n. Then,
given s, t ∈ PTn such that cis = cit, for all 1 ≤ i ≤ n, we must also have s = t.

In what follows, c1, . . . , cn denote the constant mappings of Tn if T = On, and the partial
identities of rank one of PTn if T ∈ {POn,POIn}. In both cases c1, . . . , cn ∈ T . Moreover, for all
1 ≤ i ≤ n and s ∈ M , we have cis ∈ T . In fact, cis is either a constant map of image {(i)s} or the
empty map.

Let ρ be a congruence on M and consider ρ = ρ ∩ (T × T ). Then ρ is a Rees congruence of T
and so ρ = ρIT

k−1
, for some 1 ≤ k ≤ n + 1.

This notation will be used in the sequel.

Lemma 3.4 If k = 1 then ρ = 1.

Proof. First notice that k = 1 if and only if ρ = 1. Let s, t ∈ M be such that s ρ t. Then cis ρ cit
and, since cis, cit ∈ T , we have cis ρ cit, whence cis = cit, for all 1 ≤ i ≤ n. Thus s = t and so
ρ = 1, as required. �

From now on, consider k ≥ 2.

Lemma 3.5 ρIM
k−1

⊆ ρ.

Proof. It suffices to show that s ρ t, for all s, t ∈ IM
k−1. Let s, t ∈ IM

k−1.
(1) If s, t ∈ T then s, t ∈ IT

k−1 and so s ρ t, whence s ρ t.
(2) If s ∈ M \T and t ∈ T then, by Corollary 1.4, there exist i ∈ {0, 1, . . . , n−1}, j ∈ {0, 1} and

u ∈ T such that s = giuhj . Since s J u, we get gn−ish2−j = u ∈ IT
k−1. As c1 ∈ IT

k−1, we have u ρ c1,
whence u ρ c1. Then s = giuhj ρ gic1h

j . On the other hand, since gic1h
j ∈ IT

k−1 (in fact, gic1h
j is a

constant map), we also have gic1h
j ρ t. Hence gic1h

j ρ t and so s ρ t.
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(3) Finally, suppose that s, t ∈ M \ T . By Corollary 1.4, there exist i1, i2 ∈ {0, 1, . . . , n − 1},
j1, j2 ∈ {0, 1} and u, v ∈ T such that s = gi1uhj1 and t = gi2vhj2 . Since s ρIM

k−1
t, it follows that

u ρIM
k−1

gn−i1+i2vh2−j1+j2 . If gn−i1+i2vh2−j1+j2 ∈ M \T then, by (2), we have u ρ gn−i1+i2vh2−j1+j2 .

On the other hand, if gn−i1+i2vh2−j1+j2 ∈ T then, by (1), again we have u ρ gn−i1+i2vh2−j1+j2 .
Hence s = gi1uhj1 ρ gi2vhj2 = t, as required. �

Lemma 3.6 Let s, t ∈ M be such that s ρ t. Then | Im(s)| ≥ k if and only if | Im(t)| ≥ k.

Proof. It suffices to show that | Im(s)| ≥ k implies | Im(t)| ≥ k. So, suppose that | Im(s)| ≥ k.
(1) If s, t ∈ T then s ρ t. Since s 6∈ IT

k−1, we have s = t, whence | Im(t)| ≥ k.
(2) Next consider s ∈ T and t ∈ M \ T . If t ∈ IM

k−1 then t ρIM
k−1

c1 and so t ρ c1, by Lemma 3.5.
Hence s ρ c1. By (1), we obtain s = c1 and this is a contradiction, for c1 has rank one. Therefore
| Im(t)| ≥ k.

(3) Finally, if s ∈ M \T , by Corollary 1.4, there exist i ∈ {0, 1, . . . , n− 1}, j ∈ {0, 1} and u ∈ T
such that s = giuhj . Then gn−ish2−j = u ∈ T and u ρ gn−ith2−j . Since u J s and | Im(s)| ≥ k, by
(1) or (2), we deduce that | Im(t)| = | Im(gn−ith2−j)| ≥ k, as required. �

Lemma 3.7 Let s ∈ M . Then there exists an inverse s′ ∈ M of s such that s′s ∈ E(T ).

Proof. Let s ∈ M . By Corollary 1.4, there exist i ∈ {0, 1, . . . , n − 1}, j ∈ {0, 1} and u ∈ T such
that s = giuhj . Let u′ ∈ T be an inverse of u and consider s′ = h2−ju′gn−i. Then s′ is an inverse
of s and s′s = h2−ju′gn−igiuhj = h2−ju′uhj ∈ E(T ), as required. �

Lemma 3.8 Let t ∈ M and let D be a transversal of Ker(t). Then there exists an inverse t′ ∈ M
of t such that Im(t′) = D.

Proof. Consider the injective partial transformation ξ defined by Dom(ξ) = Im(t) and, for all
x ∈ Dom(ξ), (x)ξ is the unique element in D ∩ (x)t−1. Define t′ by:

(a) t′ = ξ, if T ∈ {POIn,POn};

(b) t′ = ξ, if T = On.

It is a routine matter to show that t′ ∈ M and t′ is an inverse of t with image D, as required. �

Lemma 3.9 Let s, t ∈ M be such that s ρ t and | Im(s)| ≥ k. Then sH t.

Proof. Let s′ and t′ be inverses of s and t, respectively, such that s′s, t′t ∈ T , by Lemma 3.7. As
s ρ t, then s′st′t ρ s′tt′t = s′t ρ s′s. Since s′s, s′st′t ∈ T , we have s′s ρ s′st′t. Now, as | Im(s′s)| =
| Im(s)| ≥ k, it follows that s′s = s′st′t and so s = (st′)t. Similarly, as | Im(t)| ≥ k, by Lemma 3.6,
we also have t = (ts′)s, whence sL t.

Next let D be a transversal of Ker(t). By Lemma 3.8, there exists an inverse t′ of t such that
Im(t′) = D. As | Im(t′t)| = | Im(t)| ≥ k and t′t ρ t′s, by the argument above, it follows that t′t L t′s.
Since t′t L t L s, we get t′sL s and so D = Im(t′) contains a transversal of Ker(s). As s and t
are L-related, the transversals of Ker(s) and Ker(t) have the same number of elements, whence D
must also be a transversal of Ker(s). We conclude that any transversal of Ker(t) is a transversal
of Ker(s) and vice-versa. Thus Ker(s) = Ker(t) and so sR t. Therefore sH t, as required. �
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Lemma 3.10 Let s, t ∈ M be such that s 6= t and sH t. Then there exists z ∈ T such that
| Im(zs)| = | Im(zt)| = | Im(s)| − 1 and (zs, zt) 6∈ L.

Proof. First, notice that, s and t have the same image and the same kernel. Next let D be a
transversal of Ker(s). As s 6= t, there exists i ∈ D such that is 6= it. Let τ be the partial identity
with domain D \ {i} and define z by:

(a) z = τ , if T ∈ {POIn,POn};

(b) z = τ , if T = On.

Clearly, z ∈ T and | Im(zs)| = | Im(s)| − 1 = | Im(t)| − 1 = | Im(zt)|. On the other hand, as
Im(zs) = Im(s)\{is} and Im(zt) = Im(t)\{it} = Im(s)\{it} and is 6= it, we have Im(zs) 6= Im(zt)
and so (zs, zt) 6∈ L, as required. �

Finally, we can prove Theorem 3.3.

Proof of Theorem 3.3. Let ρ be a congruence of M . Let 1 ≤ k ≤ n + 1 be such that ρ =
ρ∩ (T ×T ) = ρIT

k−1
. By Lemma 3.4, we have ρ = 1, for k = 1. Thus we can consider k ≥ 2. On the

other hand, ρIM
k−1

⊆ ρ, by Lemma 3.5, and so if k = n+1 the relation ρ is the universal congruence
on M . Hence, in what follows, we can also assume k ≤ n.

Let s, t ∈ M be such that s ρ t and | Im(s)| > k. By Lemma 3.9, we have sH t. Suppose that
s 6= t and let m = | Im(s)|. By Lemma 3.10, there exists z ∈ T such that | Im(zs)| = | Im(zt)| = m−1
and (zs, zt) 6∈ L. On the other hand, as m−1 ≥ k and zs ρ zt, by Lemma 3.9, we have (zs, zt) ∈ H,
which is a contradiction. Thus s = t.

Now let π be the congruence of Hk induced by ρ, i.e. π = ρ ∩ (Hk × Hk). As ρIM
k−1

⊆ ρ, to

prove that ρ = ρπ it remains to show that, for all s, t ∈ JM
k , we have s ρ t if and only if s ρπ t. Take

s, t ∈ JM
k . First, suppose that s ρ t. By Lemma 3.9, we have sH t and so s πJk

t. Moreover, sL = tL
and sR = tR, whence s̃ = sLssR ρ sLtsR = tLttR = t̃ and so s̃ π t̃. Thus s ρπ t. Conversely, assume
that s ρπ t. Then sH t and s̃ π t̃. Hence sL = tL, sR = tR, s′L = t′L, s′R = t′R and s̃ ρ t̃. Now consider
the inverses ŝ and t̂ of s and t, respectively. Then sŝ = tt̂ and so

s = sŝs′L(sLssR)s′R ρ sŝs′L(sLtsR)s′R = tt̂t′L(tLttR)t′R = t,

as required. �

Let k ∈ {1, . . . , n}. Let π1, π2 ∈ Con(Hk). If π1 ⊂ π2, it is easy to show that ρπ1 ⊂ ρπ2 . On
the other hand, it is clear that given k1, k2 ∈ {1, . . . , n} such that k1 < k2, π1 ∈ Con(Hk1) and
π2 ∈ Con(Hk2), we have ρπ1 ⊂ ρπ2 .

Denote by Dk the lattice of the congruences of the group Hk, for 1 ≤ k ≤ n. By Theorem 3.3,
we have the following description of Con(M).

Theorem 3.11 The lattice of the congruences of the monoid M is isomorphic to the ordinal sum
of lattices D1 ⊕D2 ⊕ · · · ⊕ Dn ⊕D1. �

Example 3.12 Consider the monoid POR6. Applying the last result, we get the following Hasse
diagram for Con(POR6):
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