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Abstract. High speed trains, when crossing regions with abrupt changes in vertical stiffness 
of the track and/or subsoil, may generate excessive ground and track vibrations. There is an 
urgent need for specific analyses of this problem so as to allow reliable esimates of vibration 
amplitude. Full understanding of these phenomena will lead to new construction solutions 
and mitigation of undesirable features. In this paper analytical transient solutions of dynamic 
response of one-dimensional systems with sudden change of foundation stiffness are derived. 
Results are expressed in terms of vertical displacement. Sensitivity analysis of the response 
amplitude is also performed. The analytical expressions presented herein, to the authors’ 
knowledge, have not been published yet. Although related to one-dimensional cases, they can 
give useful insight into the problem. Nevertheless, in order to obtain realistic response, vehi-
cle-rail interaction cannot be omitted. Results and conclusions are confirmed using general 
purpose commercial software ANSYS. In conclusion, this work contributes to a better under-
standing of the additional vibration phenomenon due to vertical stiffness variation, permitting 
better control of the train velocity and optimization of the track design. 
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1 INTRODUCTION 

High speed trains, when crossing regions with abrupt changes in vertical stiffness of the 
track and/or subsoil, may generate excessive ground and track vibrations, ballast projections 
and increase the wheel, rail and track deterioration with negative impact on the vehicle stabil-
ity and passengers comfort. Therefore specific methodologies must be established in order to 
determine these vibrations. Full understanding of these phenomena will lead to new construc-
tion solutions and mitigation of undesirable features. 

Detailed information about these vibrations can be gathered from 3D finite element models. 
However, it is known that these analyses require very fine meshes to accurately capture the 
generated waves, giving rise to time consuming computation impractical for ordinary design. 
Analyses incorporating stiffness transitions necessitate more careful treatment in the region of 
the “discontinuity”, which naturally further increases the computing time. 

First insight on these phenomena can be gained from simplified one-dimensional models. 
Steady-state analytical solutions of dynamic response of a beam on elastic or more complex 
foundation under moving loads are widely available [1, 2]. However, introduction of non-
homogeneous properties of the system naturally requires transient response, for which avail-
able results in the literature remain scarce. 

In this paper, analytical transient solutions of dynamic response of one-dimensional sys-
tems with sudden change of foundation stiffness are derived. Results are expressed in terms of 
vertical displacement. The problem is approached from the simplest level. First, a simply sup-
ported beam is considered. Transient solution for moving force is extended to a beam on elas-
tic foundation in Section 2. Dynamic response accounting for localized abrupt stiffness 
change is derived in Section 3 and sensitivity analysis of displacement at some chosen posi-
tion with respect to stiffness is performed in Section 4. Next, in Section 5, the cantilever tran-
sient solution is extended to account for elastic foundation and two cantilevers are joined 
together to form a clamped beam by imposing continuity conditions at the point of foundation 
stiffness change (Section 6). These results permit to study force passage through contiguous 
locations with different foundation stiffness. All presented results are confirmed using general 
purpose finite element code ANSYS. Graphs and numerical results are presented. Neverthe-
less, it must be pointed out that, in order to obtain realistic dynamic response, vehicle spring-
mass-damper system interacting with the rail track must also be considered. This point will be 
object of future research. 

2 MOVING LOAD ON SIMPLY SUPPORTED BEAM ON ELASTIC 
FOUNDATION 

The governing equation describing the dynamic response, under a constant moving load, P, 
of an Euler-Bernoulli’s beam in terms of displacements can be written as [3]: 
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It is assumed that the beam follows linear elastic Hooke’s law, has constant cross-section 
and constant mass per unit length, μ. As usual, small displacements, Navier’s hypothesis and 
Saint-Venant’s principle are adopted. E, I and bμ  stand for Young’s modulus, moment of in-
ertia and circular frequency of damping, respectively; w represents the vertical deflection 
measured from equilibrium position and oriented downwards, x is spatial coordinate meas-
ured from left to right end of the beam and t is the time. It is also assumed that the mass of the 
load is small compared with the mass of the beam and that the load moves with constant 
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speed, c. δ in equation (1) stands for the Dirac function. Denoting by L the total length of the 
beam, boundary and initial conditions read as: 
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Problem (1-3) can be solved by methods of integral transformations. First, Fourier sine fi-
nite integral transformation is implemented and then Laplace-Carson integral transformation 
is applied, enabling to express the displacement in terms of sine series [3]. 

In order to account for the effect of elastic foundation, characterized by Winkler’s constant  
k, an additional term must be introduced into equation (1), which takes the following form: 
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The additional term changes the image of Laplace-Carson transformation. Nevertheless, 
basically the same procedure as in [3] can be used to obtain the final expression for the verti-
cal displacements. In order to validate this procedure, an equivalent model was created using 
ANSYS software [4]. Element BEAM 54 of ANSYS library, with the capacity of introduction 
of elastic foundation, was used. Rayleigh damping was introduced by means of the coefficient 

b2ω=α . Since ANSYS does not allow moving load implementation, for each time step a 
new force position had to be considered according to the load speed and the element size. The 
computational results matched almost exactly the analytical solution, confirming the suitabil-
ity of the strategy adopted for the analysis and suggesting that it is possible to solve numeri-
cally other situations impossible to treat analytically. 

Verification graphs are shown for representative cases, without attempt to adjust material 
and geometrical properties to some real representation of railway track. Parameters ξ, ψ and ζ 
can be introduced in order to characterize the magnitude of velocity, c, and the damping level, 

bω . Thus, ξ and ζ stand for the ratio of circular frequency of the load, ω, and first circular fre-
quency of the free vibration of simply supported beam without, ( )1ω , and with, ( )1

~ω , elastic 
foundation. Similarly, ψ is the ratio between the damping circular frequency bω  and ( )1ω . One 
could then write: 
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To assess the match between analytical and numerical results, a beam with L=10m, 
EI=1000Nm2, P=1N and μ=0,06kg/m was considered. Several combinations of ξ, ψ and ζ 
were chosen. In Figures 1 and 2, graphs for the cases ξ=0.476, ψ=0.5, ζ=0.5 and ξ=2, ψ=5, 
ζ=2.1 are plotted for ten positions of the load along the beam length, namely at each precise 
meter. It can be observed that the violet analytical curves completely overwrite the numerical 
blue ones, which shows the excellent agreement previously mentioned. 
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Figure 1: Vertical displacement for ξ=0.476, ψ=0.5 and ζ=0.5, plotted for 10 positions of the moving load      
(violet curve: analytical solution; blue curve: numerical results) 

 
Figure 2: Vertical displacement for ξ=2, ψ=5 and ζ=2.1, plotted for 10 positions of the moving load               

(violet curve: analytical solution; blue curve: numerical results) 
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3 MOVING LOAD ON SIMPLY SUPPORTED BEAM ON ELASTIC 
FOUNDATION WITH LOCALIZED CHANGE IN VERTICAL STIFFNESS 

In this case it is necessary to add an additional term to Equation (4) in the following way: 

( ) ( ) ( ) ( ) ( ) ( ) ( )Pctxt,xwkxxt,xkw
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where 0x  corresponds to the position of the sudden stiffness change and 0k  stands for the ad-
dition of Winkler’s constant at the position 0x . Therefore, this effect corresponds to the intro-
duction of a discrete elastic spring. Although it is impossible to solve Equation (6) exactly, an 
approximate solution is proposed herein using an approach similar as another described in [3] 
for a different context. It is assumed that: 
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where W(j,t) stands for the image of w(x,t) in Fourier sine finite integral transformation. After 
merging Equation (7) into (6), the procedure to obtain the final solution is similar to the one 
described in previous section. It can then be written: 
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Obviously, when 0k =0, Equations (8-10) reduce to the problem (1-3) addressed in the pre-
vious section. 

Analytical (approximate) results according to (8-10) were compared with numerical ones. 
Significant increase in elastic foundation from 2m/N1k =  to localized 0k =1000N/m at posi-
tion L3.0x0 =  was considered. To measure this localized effect, parameter κ is introduced: 

 
kL
k0=κ . (11) 

Keeping the definition of parameters ξ, ψ and ζ from previous section, the case for ξ=2, ψ=0.5, 
ζ=2.1 and κ=100 is presented in the graphs depicted in Figures 3, 4 and 5. For the sake of 
comparison, the analytical solution for the case without 0k  introduction (orange curve) is also 
included. Three different force positions are shown: at 0.2L (before the localized stiffness in-
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crease); at 0.3L (coincident with the localized stiffness increase) and at 0.7L (after the local-
ized stiffness increase). 

 

Figure 3: Vertical displacement for ξ=2, ψ=0.5, ζ=2.1 and κ=100, plotted at the position 0.2L of the moving load 
(blue curve: numerical results; violet and orange curves: analytical solutions with and without k0, respectively) 

 
Figure 4: Vertical displacement for ξ=2, ψ=0.5, ζ=2.1 and κ=100, plotted at the position 0.3L of the moving load 
(blue curve: numerical results; violet and orange curves: analytical solutions with and without k0, respectively) 
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Figure 5: Vertical displacement for ξ=2, ψ=0.5, ζ=2.1 and κ=100, plotted at the position 0.7L of the moving load 
(blue curve: numerical results; violet and orange curves: analytical solutions with and without k0, respectively) 

It is seen that the high value of 0k  does not cause any irregularity in the vertical deflection 
profile; in fact, maximum deflection is lower than in the original case, due to the fact that 0k  
works as an additional flexible beam support, reducing the “beam span”. However, this is not 
in accordance with what is experienced by real rail vehicles. One of the obvious reasons for 
this discrepancy is that in such cases interaction of spring-mass-damper system of the vehicle 
with the beam structure cannot be omitted. Nevertheless, it is observed that the approximate 
analytical solution agrees reasonably with the numerical one. This allows for direct sensitivity 
analysis and, in the other hand, making the beam sufficiently long, conclusions can be drawn 
for real situations, without influence of the support conditions. 

In order to evaluate the efficiency of this solution, a case approaching real conditions is 
analysed. It is assumed that the beam corresponds to the full superior structure of a railway 
track, including rails, sleepers, ballast and sub-ballast. Dimensions of the beam cross-section 
equal to 4m×1m, material properties E=200MPa, ρ=1800kg/m3 and a load P=100kN moving 
at constant velocity c=45,3m/s=163,2km/h are adopted. Beam length is extended to 100m and 
Winkler’s constant is taken as 200kN/m2. Actually this value is quite a low estimate for a real 
soil. The reason for this is that the numerical solution becomes unreliable for very strong 
foundation, because then first natural frequencies, ( )j

~ω , are very similar and this can disorder 
their sequence and consequently attribute different weight to waves forms in transient solution. 
Analytical solution is more stable numerically, nevertheless, significant number of sine series 
must be taken into account. Results were calculated by computer package Matlab [5] where 
1000 series members were implemented. Analytical and numerical values fit well, as shown 
in Figure 6. However, the assumption subjacent to Equation (7) for localized stiffness increase 
is approximate and the coincidence of numerical and analytical values may be occasional. 
Hence, further research is needed in order to validate and improve this approach. 
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Figure 6: Vertical displacement for c=45,3m/s, no damping and k=200kN/m2, plotted for 10 positions of the 

moving load P=100kN 
(violet curve: analytical solution; blue curve: numerical results) 

 

At the present, extension of results to consider harmonic loads, multiple loads, other types 
of damping and simplified vehicle models are under development. 

4 SENSITIVITY ANALYSIS OF DYNAMIC RESPONSE OF MOVING LOAD ON 
SIMPLY SUPPORTED BEAM ON ELASTIC FOUNDATION WITH 
LOCALIZED ABRUPT CHANGE IN VERTICAL STIFFNESS 

All derivatives of solution (8-10) can be done in an analytical way. For instance: 
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and 
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Implementation of equations presented above is straightforward. 

5 MOVING LOAD ON CANTILEVER BEAM ON ELASTIC FOUNDATION 

In order to study sudden elastic foundation stiffness change, implemented in whole region, 
cantilever dynamic response must be extended to account for elastic foundation. Then two 
cantilever solutions, corresponding to beams clamped on left and right hand side, with differ-
ent value of Winkler constant can be connected together by continuity conditions. 

General expression of transient vertical displacement of beam with various boundary con-
ditions subjected to a moving load can be written in the following form, [3]: 
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and 
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L
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2
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Constants from equation (16), jλ , jA , jB , jC , must be determined numerically in order to 
satisfy given boundary conditions. Irrespectively of the beam being clamped on the right or on 
the left hand side, jλ  correspond to roots of the following equation: 

 0coshcos1 jj =λλ+  (18) 

and jA  is calculated from: 

 
jj

jj
j coshcos

sinhsin
A

λ+λ
λ+λ

−= . (19) 

Then for right clamping jj AC = , j1Bj ∀=  and for left clamping jj AC −= , j1Bj ∀−= . 
Governing equation is again Equation (4) and the natural frequencies are given by: 
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πλ

=ω
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μ
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L
~

4
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for beams without and with elastic foundation, respectively. 

The free end of the cantilever must allow introduction of non-zero vertical force and mo-
ment, which will correspond to transversal force and bending moment of the full clamped 
beam after connection. Then ( )t,jW  reads as: 
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for right and left clamping, respectively, and 
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For the sake of comparison, similar parameters as in Section 2 are introduced according to: 

 
L
c1λ=ω ,

( )1
~ω
ω

=ξ ,
( )1

b

ω
ω

=ψ ,
( )1ω
ω

=ζ  (24) 

with Equation (20) implemented. Verification of derived formulas was again performed in 
ANSYS. Moving load and/or prescribed variation of free end internal forces was tested. In 
every case analyzed, the match between analytical and numerical solutions was excellent. 

6 MOVING LOAD ON CLAMPED BEAM ON ELASTIC FOUNDATION WITH 
SUDDEN DROP IN VERTICAL STIFFNESS 

In order to model the dynamic response of a clamped beam with sudden drop/increase in 
vertical stiffness, two cantilever solutions, corresponding to beams clamped on left and right 
hand side, with different value of Winkler constant are connected together by continuity con-
ditions. The point of Winkler constant discontinuity corresponds to the point of beam continu-
ity, therefore equilibrium of internal forces must be preserved and equality of vertical 
displacement and of its spatial derivative (rotation) must be maintained at that point. The in-
ternal forces (the unknowns) can be simply introduced by same values in both clamped beam 
solutions and solved from the equations imposing continuity of vertical displacement and ro-
tation at the point of Winkler constant discontinuity. 

Solution of this problem is not straightforward and must be done numerically, although pa-
rameters dependence is preserved. In more detail, the main difficulty lies in Equation (21), 
where the function z, given by (22) must be integrated over time when the actual time varia-
tion of internal forces is unknown. Nevertheless, linear variation can be assumed within each 
time step. Then, in the way described above, internal forces can be solved at each time step 
and, obviously, values Vi and Mi for i=1,…,n can be used to determine piecewise linear dis-
tribution and to calculate Vn+1 and Mn+1. Unfortunately none of the previous integrations can 
be used in next time step, due to the convolution form of the integral. 

Correctness of this procedure was tested in ANSYS. First, clamped beam of L=20m was 
solved numerically and internal forces from its middle section were extracted at each time 
step. Then, deflection curves were completely rebuilt assuming that two cantilever beams 
form the full structure. Thus, in the first half of the time needed for the load to cross the struc-
ture, the left cantilever solution accounted for the moving load and prescribed internal forces 
variation at the “free” end. The right cantilever was loaded during this period only by pre-
scribed internal forces variation. Then, when the force passed the middle section, solutions 
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switched their role. Coincidence of results is again very good. In Figures 7 to 9, graphs of de-
flection curves calculated numerically and recovered analytically are shown. For the sake of 
simplicity, only the following cases are presented: ξ=ζ=1 and ψ=0 for positions of the load at 
0.1, 0.2,…, 1m and results on the right hand side; ξ=ζ=1 and ψ=0 for positions of the load at 1, 
1.1, 1.2, …, 2m and results on the left hand side; ξ=0.268, ψ=2 and ζ=1 for positions of the 
load at 1, 1.1, 1.2, …, 2m and results on the right hand side. 

 

Figure 7: Vertical displacement for  ξ=1, ψ=0 and ζ=1, plotted for 10 positions of the moving load from 0 to 1m 
(violet curve: analytical solution; blue curve: numerical results) 

 

Figure 8: Vertical displacement for  ξ=1, ψ=0 and ζ=1, plotted for 11 positions of the moving load from 1 to 2m 
(violet curve: analytical solution; blue curve: numerical results) 
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Figure 9: Vertical displacement for ξ=0.268, ψ=2 and ζ=1, plotted for 11 positions of the moving load from 1 to 
2m (violet curve: analytical solution; blue curve: numerical results) 

7 CONCLUSIONS 

In this paper, analytical transient solutions of dynamic response of one-dimensional sys-
tems with sudden change of foundation stiffness are derived. Abrupt localised in-
crease/decrease is solved approximately, sudden drop/increase in foundation stiffness valid in 
whole region is solved exactly. However, assumptions about time variation of internal forces 
at the section of discontinuity must be adopted and the analytical solution will include nu-
merical procedure. In both cases, results are expressed in terms of vertical displacement. Sen-
sitivity analysis of the response amplitude is also performed. The analytical formulation for 
this problem, to the authors’ knowledge, has not been published yet. Although related to one-
dimensional cases, this study can give first insight into the problem of excessive ground vi-
brations caused by high speed trains crossing regions with abrupt changes in vertical stiffness 
of the track and/or subsoil. 
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