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Resumo

Esta dissertação estuda e implementa uma árvore de sufixos dinâmica e com-

primida. As árvores de sufixos são estruturas de dados importantes no estudo de

cadeias de caracteres e têm soluções óptimas para uma vasta gama de problemas.

Organizações com muitos recursos, como companhias da biomedicina, utilizam

computadores poderosos para indexar grandes volumes de dados e correr algorit-

mos baseados nesta estrutura. Contudo, para serem acessíveis a um publico mais

vasto as árvores de sufixos precisam de ser mais pequenas e práticas. Até recen-

temente ainda ocupavam muito espaço, uma árvore de sufixos dos 700 megabytes

do genoma humano ocupava 40 gigabytes de memória.

A árvore de sufixos comprimida reduziu este espaço. A árvore de sufixos estática e

comprimida requer ainda menos espaço, de facto requer espaço comprimido opti-

mal. Contudo, como é estática não é adequada a ambientes dinâmicos. Chan et al.

[3] descreveram a primeira árvore dinâmica comprimida, todavia o espaço usado

para um texto de tamanho n é O(n log σ) bits, o que está longe das propostas es-

táticas que utilizam espaço perto da entropia do texto. O objectivo é implementar

a recente proposta por Russo, Arlindo e Navarro[22] que define a árvore de sufixos

dinâmica e completamente cumprimida e utiliza apenas nHk + O(n log σ) bits de

espaço.



Abstract

This dissertation studies and implements a dynamic fully compressed suffix tree.

Suffix trees are important algorithms in stringology and provide optimal solutions

for myriads of problems. Suffix trees are used, in bioinformatics to index large

volumes of data. For most aplications suffix trees need to be efficient in size and

funcionality. Until recently they were very large, suffix trees for the 700 megabyte

human genome spawn 40 gigabytes of data.

The compressed suffix tree requires less space and the recent static fully compressed

suffix tree requires even less space, in fact it requires optimal compressed space.

However since it is static it is not suitable for dynamic environments. Chan et.

al.[3] proposed the first dynamic compressed suffix tree however the space used for

a text of size n is O(n log σ)bits which is far from the new static solutions. Our

goal is to implement a recent proposal by Russo, Arlindo and Navarro[22] that

defines a dynamic fully compressed suffix tree and uses only nH0 +O(n log σ) bits

of space.
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Chapter 1

Introduction

1.1 General Introduction

The organization of data and its retrieval is a fundamental pillar for the sci-
entific development. In the 20Th century the science of information retrieval
has matured, its early days may be traced to the development of tabulating
machines by Hollerith in 1890. From the 1960s through to the 1990s several
techniques were developed showing that information retrieval on small docu-
ments was feasible using computers. The Text Retrieval Conference, part of
the TIPSTER program, was sponsored by the US government and focused on
the importance of efficient algorithms for information retrieval of large texts.
The TIPSTER created a infrastructure for the evaluation of text retrieval
techniques on large texts, furthermore when web search engines were intro-
duced in 1993 the area of data retrieval continued to prosper. Search engines
relish on information retrieval and are strong investors in such technology.

We are interested in bio-informatics, this area has been around since the be-
ginning of computer science in the mid 20th century. Bio-informatics takes
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advantage of the latest developments on databases, algorithms, computa-
tional and statistical techniques to study problems that are otherwise too
complex in today’s computers. Exact matching is a sub-task used in sev-
eral problems dealing with DNA, RNA, processed patterns or amino acid
rings. As such developments in this area provide benefits to a wide range of
bio-informatics applications.

1.2 Problem Description and Context

Searching for genes in DNA is a common problem in bio-informatics. Find-
ing a specific gene sequence within the human genome is a big task and
feasible only with the most advanced computers. The results are otherwise
prohibitively time consuming. Several problems arise when searching for
damaged or mutated genes and the algorithms used can consume a lot of
time to process these queries. Problems related to finding a specific string
within other string are referred to as exact string matching. Finding a string
with some form of errors is a inexact string matching. String matching is
not limited to DNA, in fact these problems are of great use for other scien-
tific areas, for example it is essential for large Internet search engines, since
information grows exponentially yearly.

The digital search tree called trie was defined by Ed Fredkin in 1960 [6].
Storing suffixes description through the tree path and text position at leaves.
The trie is also called a prefix tree because all node descendants share a
common prefix. In 1973 Weiner introduced the position tree[25], known
today as suffix tree. It was described by Donald Knuth as "the algorithm
of the year 1973"[10]. The solution for a variety of problems with exact and
inexact string matching can be solved with a suffix tree in optimal or near
optimal time. It is also possible to store the indexes in linear, O(n log n) bits,
space. Other solutions envolve linear search over a large database and are not
good for large problems, for example the human DNA spans 700 megabytes
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which yields an extremely large suffix tree. Suffix trees have problematic
space requirements. Uncompressed suffix trees can use from 10 to 20 times
the size of the original text. A simple implementation of a suffix tree for the
human genome consumes 40 gigabytes, as a consequence this tree requires
secondary memory. In this case operations will slow down so extremely that
it renders the structure useless[10]. Hence several techniques were created to
save space and represent suffix trees in a more practical size.

Suffix arrays were developed by Eugene Myers and Udi Manber and in parallel
by Baeza Yates and Garton Gonet. These data structures are based on
suffix trees but can be stored in much less space[16]. They consists in a
array with the starting positions of all suffixes in the the text arranged by
lexicographical order. Suffix arrays are used to locate suffixes within a string
and can be extended to determine the longest common prefixes of any two
suffixes, however they can support only a limited subset of the operations
provided by the suffix tree, still by adding extra structures it is possible to
simulate a suffix tree algorithm[2].

Another classical attempt to reduce space is the directed acyclic graph. It
represents strings and supports constant time search for suffixes. During
construction isomorphic sub trees are detected and it generates a acyclic
directed graph instead of a tree.

The main achievement and difference between tries and dags is the elimina-
tion of suffix redundancy in the trie. Both tries and dags eliminate prefix
redundancy but only dags eliminate both prefix and suffix redundancy.

The classical online solutions for pattern matching have linear time algo-
rithms. The most well known linear approaches are the Boyer Moore, Knuth
Morris Pratt and Aho Corasick algorithms. These algorithms are well docu-
mented hence it is expected that suffix trees have more room for research. If
size of the text is n, and the size of the patterns is m each and the number
of patterns is α, the Boyer Moore and Knuth Morris Pratt use linear time
to preprocess the patterns and linear time to search the text, O(α× n+m).
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Suffix trees solve the pattern matching problem in the same worst case linear
time O(n+α×m). However because the preprocessed string is the text, and
with a larger α, time is linear on the size of the patterns which normally is
much smaller. When there are several patterns to search the speed advan-
tage of reusing the preprocessed suffix tree is obvious. The linear algorithms
will always spend time preprocessing the patterns and running the text in
linear time while suffix trees only need to preprocess the text once and run
the patterns in linear time.

The Aho Corasick achieves a time similar to suffix trees as it matches a set of
patterns with a text. However the largest speed advantage of suffix trees over
classical linear algorithms appears in problems that are more complex than
exact string matching. For example the longest common substring problem
can be solved in linear algorithms by suffix trees and there are no other
known linear time algorithms. The linear algorithms will always search for a
exact string at every run, however the suffix tree has a structure that allows
it to find all substrings in the same run with little time cost.

Suffix arrays can be enhanced to support all functions that suffix trees do
with similar times and additional structures. Since suffix trees solve different
classes of problems thanks to some properties(suffix links, bottom up and
top down traversal) the enhanced suffix arrays add structures that simulate
all those properties. Though using less space than conventional suffix trees
the overall space cost is high.

The compressed suffix tree with full funcionality presented by Sadakane in
2007 improves on the space used by suffix trees from O(n log n) bits down
to O(n log |σ|) bits[24]. Albeight a significant progress, these results are still
far from the desired space restrictions of a minimal suffix tree. Makinen et
al. [15] developed an entropy bounded compressed suffix tree which improves
the result presented by Sadakane[24]. However that suffix tree does not yet
achieve optimal compressed space as the one presented by Russo, Arlindo
and Navarro [12]. The fully compressed suffix tree presents the smallest
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space result for a compressed suffix tree. It discards the space used by the
compressed suffix tree of Sadakane and achieves a smaller space than the
entropy bounded compressed suffix tree[24]. It achieves a compressed space
suffix tree for the first time, the times of most operations are logarithmic or
near logarithmic. The implementation of this structure recently presented
by Russo has proven this result. This dissertation compares results with the
implementation by Russo.

The recent space reduction by Russo, Arlindo and Navarro takes static suffix
trees down to compressed space[12]. Although this is a important result,
this suffix tree as well as other implementations of similar sizes, is statical.
The lack of dynamic insertions and deletions, makes these implementations
unsuited for problems within a dynamic environment. This has a significant
impact in the space that is used at build time. During this initial fase the
suffix tree needs space that is discarded once construction is complete.

1.3 Proposed Solution

A solution proposed by Russo, Arlindo and Navarro[22] solves both the dy-
namic suffix tree problem and the construction space problem. There is a
cost of adding dynamic capabilitie to the fully compressed suffix tree, which
is a logarithmic slow down on the operations. This dissertation proposes to
implement this dynamic fully compressed suffix tree.

1.4 Main Achievements

Our main achievements are a library with a fully compressed dynamic suffix
tree and experimental tests with a large text. Hence we obtained a small
dynamic suffix tree with efficient operations. Hence we are able to build a
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compressed suffix within reasonable space not overcoming the final space.
We obtain the following results:

• An implementation of a dynamic suffix tree.

• A small dynamic suffix tree, not larger than twice the text.

• Efficient operations whose results are predicted by Russo, Arlindo and
Navarro[22].
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1.5 Simbols and Notations

Table 1.1: The table shows notations used.

Notation Definition
n size of a text
m size of a pattern
α size of a text
δ the sampling
σ the size of a alphabet
T a suffix tree
T−1 the reversed suffix tree
i a index position
v a node
SLink(v) the suffix link of node v
SDep(v) the string depth of node v
TDep(v) the tree depth of node v
LCA(v, v′) the lowest common ancestor of node v and v′
LETTER(v, i) the i-th letter in the path label of v
Parent(v) computes the parent of node v
excess number of opened parentheses minus the number of

closed parentheses in a balanced sequence of paren-
theses

minexcess(l, r) position i between l and r such that excess(l, i) is the
smallest in the range (l, r)

SA suffix array
CSA compressed suffix array
CST compressed suffix tree
FCST fully compressed suffix tree
FMIndex full text index in minute space
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Table 1.2: The table shows notations used.

Notation Definition
BWT Burrow Wheeler transform
LF last to first mapping
M matrix with the cyclic shifts of a text
L the last comumn in M
F first column in matrix M
LCP computes the longest common prefix over a range of

suffixes
ψ(v) psi link of node v
s a string
c a caracter
Sj superblock number j
Bk block number k
Gc the table of class c
Cc computes the number of characters lexicographically

smaller than c in the text
$ a caracter that does not exist in the text
opened unmatched opened parentheses over a balanced se-

quence of parentheses
closed unmatched closed parentheses over a balanced se-

quence of parentheses
I integers sequence
Occ(c, k) counts the number of occurrences of character c before

position k in column L
WeinerLink(v, c) computes the weiner link of node v using letter c
A a bitmap
Rankc(s, i) counts letters ’c’ in s up to position i
Selectc(s, i) computes the index position of the i’Th occurrence in

s
nc number of occurrences of c
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Chapter 2

Related Work

2.1 Text Indexing

In section 2.1.1 we describe the suffix tree data structure which, like other full
text indexes, is an important tool for substring searching problems. However
suffix trees tend to be excessively large, ie 10 to 20 times the text size. Since
suffix trees are very functional hence reducing their space requirements is
crucial. In section 2.1.2 we describe suffix arrays, which are more space
efficient full text indexes.

2.1.1 Suffix Tree

The suffix tree was presented in 1973[25] and its potential was noticeable,
Donald Knuth referred to it as the algorithm of the year. The suffix tree
saved several string problems in optimal time. Such a promising discovery
would be expected to had a wider audience but the first academic papers
were hard to understand and therefore its dissemination stalled. However
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the suffix tree is not complicated although it is not trivial either.

A suffix tree for a text T of size n is a rooted directed tree with n leaves.
Each leaf has a distinct value from 1 to n. All tree edges have a non empty
label with a string. Every path from the root that ends on a leaf i describes a
suffix starting at i. The concatenation of the labels down to the leaf describe
the suffixes so finding a pattern is done with comparisons between the labels
and the pattern. Every internal node except the root must have at least two
children. No two children out of a node may start with the same letter.

Figure 2.1: Suffix tree for the text "mississippi". The values at the leaves
are the initial positions of a suffix in the text. To the right the sub-tree
containing leaves 3, 4, 6 and 7 is in a box. The suffix links of the internal
nodes are shown with dotted arrows.

To perform exact pattern matching, for example, find "ssi" in "mississippi"
using the suffix tree. Start at the root and search for the path with a label
that starts with the first character in the pattern. That is the fourth path
from the left with label "s". The next node has only two paths, one has a
label "si" and the other has "i". Since "s" is already used the text "si" is still
missing. Now choose the node whose label "si" matches the current pattern.
At this point all characters of "ssi" are found. The sub-tree at the end of the
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pattern matching contains all the occurrences of the pattern, each leaf of the
sub-tree represents one occurrence. For the example with "ssi" there are two
occurrences at position 5 and 2, which are respectively the suffixes "ssippi"
and ssissippi". If the pattern was "kitty" the process fails to find a label in
the suffix tree that matched the pattern and conclude that no occurrences
exist.

The suffix link for a node v with path x.α is usually denoted as SLink(v).
The suffix links are defined for nodes and exist from node v to v′, path label of
v′ is α. In Figure 2.1 there are four suffix links represented as arrows between
internal nodes. For example the node with path "issi" has a suffix link leading
to the node with path "ssi". An important case is the suffix links on the
leaves, they are defined as ψ and can be computed in the compressed suffix
array which are explained in section 2.1.2. The weiner link is the opposite
operation of suffix link as it points in the reverse direction. Likewise in this
dissertation the LF mapping is referred as the reverse of ψ because it will
only exist for the leaves.

Two important concepts are SDep and TDep, they are resp string depth and
tree depth of a node. For example in the suffix tree of "mississippi" the node
with path "issi" has SDep 4 because that is the string size of the path. The
TDep of the same node is 2, because it is the second node from the root. The
LCA is the lowest common ancestor between two nodes. In the suffix tree of
"mississippi" the LCA of the node with path "sissippi$" and the node node
with path "ssi" is the node with path "s" which corresponds to the largest
common prefix between the two strings. The operation LETTER(v, i) refers
to the i-th letter in the path label of v. The operation LAQT (v, d), tree level
ancestor querie of node v and height d, returns the highest ancestor of node
v that has a tree depth smaller or equal to d. The LAQS(v, d) is similar but
uses the string depth instead of tree depth.
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Figure 2.2: A sub-tree of the suffix tree for string "mississippi". The LCA of
nodes 3 and 5 is node 1. For nodes 2 and 1 the LCA is node 1. The SDep
and TDep of node 5 is resp 3 and 2. While SDep and TDep for node 4 is
resp 9 and 3.

2.1.2 Suffix Array

Suffix arrays were defined in 1990 by Manber & Myers[16]. It is a data struc-
ture that contains the suffixes of the text that and occupies less space than a
suffix tree. A suffix arrays for a text T, of size n, is an array SA of integers in
the range 1 to n containing the start location of the lexicographically sorted
suffixes of T . Every position in SA contains a suffix and SA[1] stores the
lexically smallest suffix in T. The suffixes grow lexically at every consecutive
position of SA[i] to SA[i+ 1].

The suffix array has no information about tue string depth or tree structure.
Therefore suffix arrays can be stored in very little space, i.e. an n sized array
with n computer words. To find a pattern within the text a binary search is
computed on the array and get the result in O(m log n) time. To report all
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the α occurrences it uses O(m log n+ α) time [13].

Figure 2.3: Suffix array of the text "mississippi". The figure shows the index
positions (leftmost), the SA values(second column) and the list of suffixes. At
the right and horizontally is the text "mississippi$" with the index positions.

A important operation that can be implemented with suffix arrays is the
longest common prefix of a interval of suffixes, LCP . The longest common
prefix of two suffixes in the tree is the common path the two suffixes share
in the top down tree traversal. For example to determine the LCP of the
suffix "ississippi" and the suffix "issippi", see Figure 2.1. Start at the root
then follow the path with "i", then choose the path with "ssi", at this point
the suffixes path diverge and the pattern "issi" is determined as the longest
common prefix. Note that a node in the suffix tree corresponds to an interval
in the suffix array, therefore finding the LCP of such an interval corresponds
to computing the SDep of that node. The structure used in suffix arrays
for this operation is the LCP table, it stores for each index the length of
the LCP between the current index position and the previous position, i.e.
LCP [i] = Longest Common Prefix{SA[i], SA[i− 1]}.

This table is used to compute the LCP of a larger interval[1]. For a sequence
of integers, as the LCP table, the range minimum querie, RMQ, uses two
index positions (i, j) to return the index of the smallest integer between i
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and j. For example compute the SDep of the sub-tree in Figure 2.2. The vl
and vr are respectively 9 and 12, the smallest integer from index 9 to index
12 in the LCP table computing RMQ(vl+1, vr, LCP ) = 1. Therefore the
SDep of the sub-tree is 1, the LCP of the suffix array index positions 9 to
12 is "s". In figure 2.3 the positions 9 through 12 correspond to suffixes 7, 4,
6 and 3, therefore the common prefix of the suffixes in this sub-tree is "s".

A form of compacting the suffix array was researched in 2000 by Mäkinen[14].
In parallel a concept for compression of a suffix array was found in 2000 by
Grossi & Vitter[9]. These two ideas of compact and compressed suffix arrays
represent notable advances towards space reduction. The compact suffix
array uses the self repetitions in the SA to store it in less space. It was later
proved by Mäkinen and Navarro[13] that the size of the compact suffix array
is related to the text entropy and therefore it is a compressed index.

The compressed suffix array by Grossi & Vitter is based on the idea of allow-
ing access to some position in SA without representing the whole SA array.
The algorithm uses the notion of function ψ which is the suffix link operation
for leaves to decompose the SA.

Compressed suffix arrays can normally replace the text, i.e. they become a
self indexes, i.e. it is possible to extract a part of the text of size l from
the compressed suffix array, this is the Letter operation. Mäkinen et al.[13]
describes a compressed compact suffix array that finds all occurrences of a
pattern in O((m + α) log n time. Compressed suffix array can also compute
Locate(i), i.e. the value of SA[i].

For compressed suffix arrays that support the LF operation, such as the
FMIndex, it is possible to compute the WeinerLink(v, s) for a string s.
This operation is supported by some suffix arrays and returns the suffix tree
node with path s.v[0..].
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2.2 Static Compressed Indexes

The entropy of a string, described in section 2.2.1, is an important concept
to understand the space requirements of compressed data structures. Sec-
tion 2.2.2 explains the Rank and Select operations, which are important
subroutines in state of the art compressed indexes. Section 2.2.3 provides
a simplified description of the Full-Text in minute space (FM-)index. We
also refer to the FM-Indexes as CSA’s since they provide the functionality of
compressed suffix arrays, even though we do not describe other compressed
suffix arrays.

2.2.1 Entropy

The compressibility of a text is measured by its entropy. The k-th order
entropy of a text, represented as Hk, is the average number of bits needed to
encode a symbol after seeing the k previous ones. The 0-Th order entropy,
represented as H0, is the weakest entropy because it will not look for repeti-
tions, only for symbols frequencies. Hk is the strongest and in fact it is the
application of H0 to smaller contexts.

The k-th order entropy for finite text was defined by Manzini [17] in 2001.
T1,n is a text of size n, σ is the alphabet size and nc is the number of
occurrences of symbol c in T. The 0-Th order entropy of T is defined as[10]:

H0(T ) = ∑c∈σ(nc
n

log n
nc

)

Symbols that do not occur in T are not used in the sum. Then sum for each
symbol c, every occurrence of c in the text,nc, and multiply the size in bits,
log n

nc
, used to represent each c. T s is the sub-sequence of T formed by all

the characters that occur followed by the context s. The k-th order entropy
of T is defined by Manzini et. al[10]:
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Hk(T ) = ∑c∈σk( |T
s|
n
H0(T s))

For example it is showed how to compute the first order entropy of "missis-
sippi". To achieve a greater compression using the first letter that precedes
each symbol. For "i", "m", "p" and "s" compute the strings, resp, "mssp", "i",
"pi" and "sisi". Then encode each of these strings with the 0-th order entropy
and obtain a entropy of 0,9.

H1(T ) = 4
11H0(”mssp”) + 1

11H0(”i”) + 2
11H0(”pi”) + 4

11H0(”sisi”)

Given a text and a pattern, full text indexes are commonly used for three
operations. Detecting if the pattern occurs at any position of the text, com-
puting positions of the pattern in the text and retrieving the text. Our goal
is to obtain smaller indexes while maintaining optimal or near optimal speed.
The main achievement, in this area, is an index that occupies space close to
the entropy of the text and operations such as insert, delete and consult close
to O(1).

2.2.2 Rank Select

Suffix arrays and FMindexes need two special operations called Rank and
Select over a sequence of symbols. Suffix arrays are a element of modern
compressed suffix trees and these operations are essential for performance.
We will start by the case when the alphabet is binary and then extend Rank
to arbitrary alphabets. They are simpler to understand than other solutions
and offer constant time while using space near the k-th order entropy of the
array.

Given an array of bits, bitmap A, and a position i, Rank of ”1” over A up to i
is, Rank1(A, i), the number of ”1”’s from A start until position i. Notice that
for bitmaps Rank0(A, i) = i − Rank1(A, i). We assume that the positions
start at 1 and for Rank1(A, i) the caracter at position i also adds to rank.

21



For example rank of position 5 and caracter ”1” is Rank1(0110101, 5) = 3.
For caracter 0 and position 5 use Rank0(0110101, 5) = 5 - Rank1(0110101, 5)
which means there are 2 caracters ”0” up to position 5. In this section we
explain how it is possible to compute Rank in constant time.

Likewise the dual operation Select1(A, j), returns the position in A of the
j-th occurrence of 1. Select must be implemented for both "1" and "0" as
there is no way to obtain one from the other. For example to select the third
caracter "1" is Select1(0110101, 3) = 3 which returns 5.

The complete representation of binary sequences presented here was proposed
by Raman [21], it solves the Rank and Select problem in O(1) time and
nH0 + o(n) bits. The representation is based on a numbering scheme. The
sequence is divided into several chunks of equal size. Each piece is represented
by a pair (c, i) where c is the number of bits set to 1 in the chunk and i is
the identifier to that particular chunk among all chunks with c "1"-bits. The
number of bits set to "1", c, is also refered to as the class of the chunk. Notice
that this grouping will allow shorter identifiers for pieces with assimetrical
number of "1"’s and "0"’s and hence obtaining 0-th order entropy.

The idea is to divide the sequence A into superblocks Si of size (log2 n)
bits. Each superblock is divided into 2 log n blocks Bi of size log n

2 bits and
each block belongs to a class c. Notice that for every class there are several
possible combinations of bits. Each class has a table with all rank answers
for its possible bit combinations.

A block is described with the number of bits set to 1(the class number) and
its position within the class table. A superblock contains a pointer to all
its blocks and the answer to rank at the start of the superblock. It also
stores the relative answer to Rank of each block relative to the start of the
superblock.

This structure is enough to answer Rank in constant time. Consider for
example Rank1(A, i). First we calculate the superblock Sj to which i belongs.
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Then the block number Bk within Sj and using the class number c and the
index position l we consult the class table of c and position l. The Rank
will be calculated adding the superblock Rank plus the relative Rank of the
block plus the Rank of the relative position of i within the class table.

Figure 2.4: To the left is a table with the possible combinations of size 4
and class 2. The right table has all Rank answers for each position of blocks
corresponding to the 6 indexes.

We show table Gc for c = 2 with blocks of size 4. The c = 2 means that
all blocks have two "1"’s and therefore all 6 possible blocks have the rank
calculated for at each position. For this class and index 2 we compute rank
for every position of the block "0101". Rank1 of the first position is 0, then
for each position, the rank is the previous position rank plus one if there is
a "1" at that position in the block or zero otherwise.

For example, for a bitmap A of size 250 number of superblocks will be 4 =
d 250

log2 n
e. The extra 6 bits are due to the round up operation and are padded

with zeros. There will be 16 = 2dlog ne blocks with 4 = d(log n)/2e bits each.
To find Rank1(A, 78) compute the superblock with 86/64 = 1 remainder 14,
therefore superblock S2. The block 14/4 = 3 remainder 2, therefore block
B4. Retrieving the class c = 2 the block and the index i = 5 we consult the
table G2(2, 5). Now Rank1(A, 78) is obtained adding the rank of S2 plus the
relative rank of B4 plus the rank returned by table G2.

To compute Rank and Select over arbitrary alphabets we use the wavelet
tree which were developed by Grossi in 2003[8]. A balanced binary wavelet
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Figure 2.5: The four superblocks are on top, then the 16 blocks corresponding
to the second superblock and at the bottom the binary representation of the
third, fourth and fifth blocks.

tree is a tree whose leaves represent the symbols of the alfabet. Given a
position i in sequence T the algorithm will travel through the nodes until it
reaches a leaf and discovers the corresponding alphabet symbol. This process
will allow us to compute Rank and Select.

The root is associated to the whole sequence T= t1...tn. The left and right
child of root will each have a part of the sequence associated to a half of the
alphabet. This is done by dividing the alphabet of size σ in σ/2, the left
child will have a sequence W with the symbols with value smaller or equal to
σ/2 and the right child larger than σ/2. A position in the left child sequence
is given by concatenating all ti < σ/2 in T. Notice that for every node v
in the tree, the sequence associated to a child of v is complementary to the
sequence associated to the other child. In practice the sequence is not the
concatenation of caracters but the r-th bit from caracters in the order as they
appear in T. The r-th bit is incremented with the tree depth, for the root r
is one. This divides the alphabet at every node. As it descends it will reach
a point where the alphabet is reduced to one symbol. At that point it forms
a leaf. The leaf has information about the total number of caracters which
it represents.
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Figure 2.6: For example the text "mississippi", has a alphabet bit coding
showed on the left. That bit coding generates the two dimensional bit array
shown on the right.

We can use the bitmap at a node and the Rank and Select operations to
map to a child node. To compute the generalized Rank, resp Select we
iteratively apply Rank, resp Select, travelling through the wavelet tree. To
compute Rank we descend from the root to a leaf. To compute select we
move upwards from a leaf to the root. To get the caracter at position i, ti, we
travel the tree by going left or right depending on the value of the bit vector
of the node. If the position i has 0 in node’s v bitmap, W , the ti is on the
left child, else it is on the right child. If the left is chosen we should update
i← Rank0(W, i). Else if we go to the right and update i← Rank1(W, i).

Figure 2.7: The wavelet tree for the text "mississippi".

25



For example we show how to compute Rank of caracter "p" in position = 11
of T . Note that the representation of "p" is "0,1,1", therefore we will compute
Rank0, Rank1 and Rank1 in succession for each node visited. The first
bit in the binary representation of "p" is 1, therefore we should go to the
left child and position ← Rank0(001101100000, 11) results in position = 7.
The second bit for caracter "p" in the alphabet bitmap is "1", therefore we
will go to the right child and update position ← Rank1(10001100, 7) which
computes position = 3. Finally the third bit for caracter "p" is "1", therefore
we should go to the right child and position ← Rank1(011, 3) results in
position = 2. The result of Rankp(mississippi$, 11) is found as we reach the
leaf. There the current position = 2 indicates the rank of the symbol "p" at
11.

To compute Selectc(T, position) the algorithm will start at the leaf of c.
Since the representation of "i" is "0,0,1" we will compute Select1, Select0
and Select0 successively. We will climb the tree up to the root. At each
node v it updates position← Selectb(W, position) (b is 0 or 1 depending on
the corresponding bit in the representation of "i"). For example finding the
position of the second "i" in T is Selecti(mississippi$, 2). First we travel to
the leaf of symbol "i", this can be done with a direct mapping from a array
of the alphabet to the leaves. Since the current node is the right child of
its parent position ← Select1(11110, 2). We travel to the parent and now
position = 2. The next upward climb is from a left child and therefore
position ← Select0(10001100, 2) so position = 3. Reaching the root again
from a left child position ← Select0(001101100000, 3) computes the final
position position = 4.

Operations are done over bitmaps and with the structure explained before,
are solved in constant time. The space required for the bitmaps is not greater
than the original string of ”mississippi$”. The bits were rearrenged in the
tree like structure and therefore all added space is due to a structure to
organize the tree.
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2.2.3 FMIndex

The FMIndex is a full text index which occupies minute space. Since it
compresses and respresents the text the FMIndex is a compressed self index.
The strengh of this index relies on the combination of the Burrows Wheeler
compression algorithm with the wavelet tree data structure.

The Burrows Wheeler Transform (BWT) is a reversible transformation of a
text. A text T of size n is represented in a new text with the same caracters in
a different order but normally with more sequential repetitions and therefore
easier to compress. The stages of the BWT are explained in three steps.

1. A new caracter with lexicographical value smaller than any other in T
is append at the end. Let it be "$".

2. Build a matrix M such that each row is cyclic shift of the string T$,
then sort the rows in lexicographic order.

3. The text L is formed by the last column of M and is the result of the
BWT.

The Figure 2.8 ilustrates the Burrows-Wheeler transformation of a text. The
text "mississippi" becomes "mississippi$" after step 1. Using cyclic shifts
the matrix on the left side of figure is generated. Sorting those rows by
lexicographic order creates the matrix on the right. L is a permutation of
the original text T and so are all other columns in M. Column F is a special
case because it is the lexicopraphically ordered caracters of T$. The relation
between matrix M and suffix arrays becomes evidente if we notice that sorting
the rows of M is sorting the suffixes of T$.

Operation C(c) will report the number of occurrences of caracters lexico-
graphically smaller than c. Occ(c, k) will report all occurrences of caracter
c before position k in column L. Notice that for any row in M all caracters
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Figure 2.8: To the left of the figure is the matrix with successive cyclic
shifts of text "mississippi$". On the right of the figure is the matrix after
lexicographical row ordering with the last and first collumns in boxes.

in L precede the caracters in F. A important function is the last to first col-
umn mapping (LF). LF describes a way to obtain the caracter position in F
corresponding to a given position in L with functions C and Occ [19].

LF (i) = C(L[i]) +Occ(L[i], i)

For example the "p" in mississippi is at position 7 of L. We wish to know
LF (7) so we calculate C(”p”) = 6 and Occ(”p”, 7) = 2. Finally LF (7) = 6+2
shows that the result of moving caracter "p" from L to F results in row 8.
The next operation is fundamental to understand how LF mapping generates
and returns the string T in reverse order. If T is the ith caracter in L then
the caracter at position k − 1 is at the end of the row returned by LF(i).

T [k − 1] = L[LF (i)]

For example suppose we want the caracter before the "s" in position 3 of the
text "mississippi". Notice that in L the first "s" in the text is represented by
position 10. LF (10) = 8 + 4, the LF mapping indicates row 12. The last
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caracter in row 12 is the first "i" in the text. Iterating over L[LF (i)] the
FMIndex returns the full text from the compressed representation of L.

Based on this idea Ferragina and Manzini [4] proposed the backward search
procedure. The backward search finds a pattern P [1, n] within the text find-
ing caracters of the pattern from right to left. This is usefull for the FMIndex
since the LF mapping returns caracters right to left. In matrix M notice that
all answers to a particular pattern are lexicographically similar and are put
in sequential rows. These rows are delimited by the sp and ep indexes, sp
indicates (in lexicographic order of M) the first row with the pattern and ep
the last row.

At the start of the search sp is the position of the first lexicographic oc-
currence of the last caracter of pattern. Since ep points to the last row in
the sequence it should be the row before the next lexicographical caracter.
Therefore sp = C(P [m]) + 1 and ep = C(P [m] + 1). The backward search
starts with the character in position i = m. The algorithm will use a caracter
in position P [i] at each step until it reaches the start of pattern and i = 1
and returns the interval [sp, ep].

The cicle that moves P [i] from i = m down to i = 1 and updates sp and
ep uses the number of occurrences in L of caracter P [i] up to position sp

or ep. The function for sp is sp = C(c) + Occ(c, sp − 1) + 1 and for ep is
ep= C(c) +Occ(ep).

For example we will search for pattern "ss", see Figure 2.9 within "mississippi"
with backward search. First c = P [m] so c = ”s”, hence sp = C(”s”) + 1
so sp = 9, ep = C(”s” + 1) so ep = 12. Now we proceed to the begining
of the pattern as c = [m − 1] so c = ”s”. We update sp and ep, sp =
C(c) + Occ(c, 9 − 1) + 1 so sp = 8 + 2 + 1, ep = C(c) + Occ(c, 12) so
ep = 8 + 4. As c is at the beggining of P the backward search stops and
returns [sp = 11, ep = 12]. The interval describes the only two existing
suffixes that start with pattern "ss" in "mississipi".
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Figure 2.9: Matrix M of the Burrows Wheeler Transform with operations
computed during a backward search.

The space required by FMIndex is nHk+o(n log σ) bits, with k ≥ α logσ log n.
The time to count the number of occurrences is O(m) and time to return l
letters is O(σ(l + log1+ε n)), ε is any constant larger than 0 [19].

2.3 Static Compressed Suffix Trees

Three recent compressed and static suffix trees are discussed in this chapter.
These are different approaches and studying them is important to under-
stand why the dissertation approached this work. First we present the CST
proposed by Sadakane et al [24], section 2.3.1. Section 2.3.2 presents the
FCST proposed by Russo, Arlindo and Navarro [12] which is compared with
the CST described in 2.3.1. The compressed suffix tree by Fischer et al [5]
is presented in section 2.3.3.

2.3.1 Sadakane Compressed

Sadakane in 2007 proposed the first compressed suffix tree that uses linear
space 6n+nHk + o(n log σ) bits [24]. Former suffix trees were represented in
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O(n log n) bits which compared n with the size of a alphabet shows a huge
achievement. For example DNA has a alphabet of size 4, the size of the
human genome is 700 megabytes, hence in this case log n/log σ is at least
14,5. A classical suffix tree for such a problem would span a impressive 40
gigabytes [10].

The problem addressed by Sadakane[24] is to remove the pointers from the
representation. As for every pointer it is necessary log n bits such a result uses
at least O(n log n). To reduce space use Sadakane replaced the commonly
used tree structure with a balanced parentheses representation of the tree.
For a tree with n nodes the parentheses representation uses 2n+o(n) bits[18].
A suffix tree with text of size n has at most n leaves, n−1 internal nodes for
a total 2n − 1 nodes. Therefore a tree can be represented in 4n + o(n) bits
with the parentheses notation.

Figure 2.10: At the top of the figure is a representation of depth first ordering
of the suffix tree for "mississippi". The table at the bottom represents the
order of parentheses for this tree. The first row is the index of the array, the
second is the node number in the suffix tree and the third is the paretheses
representation.

The parentheses tree is built with a ordered tree traversal, the first time a
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node is visited add a left parentheses, then visit all the nodes in the sub-
tree, after all sub-nodes are visited add a right parentheses[18]. The nodes
in the tree are represented by a pair of parentheses. This representation
can be stored by using a bit per parentheses. Therefore the parentheses
tree representation is stored in a bitmap. This is a significant improvement
provided the usual navigational operations are supported.

The total space for this suffix tree is nHk + 6n + o(n) bits. The nHk ac-
counts for a compressed suffix array which is necessary to compute SLink
and read edge-labels, the remaining space is for auxiliary data structures such
as the parentheses representation and a range minimum query data struc-
ture. Interestingly in a note for future work Sadakane referred to the 6n
space problem in the structure. That 6n problem was addressed by Russo,
Arlindo and Navarro[12].

2.3.2 FCST

The fully compressed suffix tree proposed by Russo, Arlindo and Navarro [12]
uses the less space to represent a suffix tree while loosing some speed. There
is an implementation by Russo that achieves optimal compressed space for
the first time.

The FCST is composed of two data structures. A sampled suffix tree S and
a compressed suffix array CSA. The sampled suffix tree plays the same role
in the FCST as Sadakane’s parentheses tree in the CST. The reason why
the sampling is used instead of storing all the nodes is that suffix trees are
self-similar acording to the following lemma:

Lemma 1 SLink(LCA(v, v′)) = LCA(SLink(v), SLink(v′))

To understand this lemma assume that the nodes v and v′ have a path label
X.α.Y.β resp X.α.Z.β. Both have equal prefixes X.α therefore the LCA of
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both nodes is reached with X.α, LCA(v, v′) = X.α. The SLink is applied
to v, v′ and LCA(v, v′)and obtain resp α.Y β, α.Z.β and α. Notice that
LCA(α.Y β, α.Z.β) = α and therefore
SLink(LCA(v, v′)) = LCA(SLink(v), SLink(v′)).

The sampled tree explores this similarity, it is necessary that every node
is, in some sense, close enough to a sampled node. This means that if the
computation starts at a node v and follow suffix links successively, i.e. apply
SLink on the result of SLink of v several times, in a maximum of δ steps
the computation reaches a node sampled in the tree. This is an important
property for a δ sampled tree. Also because the SLink of the root is a
special case that has no result, the root must be sampled. The nodes picked
for sampling are those that SDep(v) ≡δ/2 0 such that exists a node v and a
string |T ′| ≥ δ/2 and v′ = LF (T ′, v), i.e. the remander of SDep(v) and δ/2
is 0.

The sampled suffix tree allows the reduction of space usage on the total tree.
A suffix tree with 2n nodes with a implementation based on pointers uses
O(n log n) bits. A sampled tree requires only O(n

δ
log n) bits, to use only

o(n log δ) bits of space and in this dissertation δ = d(logσ log n) log ne.

Sadakane uses a CSA [9] that requires space of 1
ε
nH0 +O(n log log σ) bits. In

the FCST the CSA is an FM-index[7]. It requires nHk + o(n log σ) bits, with
k ≥ α logσ log n and constant 0 < σ < 1. Note that although Sadakane´s
CSA is faster it would use more space than is desirable.

It is important to map the information from the sampled tree to the CSA
and vice-versa. For this goal the operations in the sampled suffix tree include
LCSA(v, v′), LSA(v) and REDUCE(v). These operations are explained
with detail in section 2.4.3. To obtain the interval over the CSA that cor-
responds to a sampled node it is enough to store a pair of integers in the
sampled tree. In the other direction, however, a injective mapping does not
exist, instead it is used the lowest sampled ancestor, LSA.
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Figure 2.11: The figure shows the suffix tree of the word mississippi. Nodes
filled in gray outline are sampled due to the number of suffix links and to
the string depth. The sampling chosen is 4 so nodes are sampled if SDep is
multiple of 2, and if exists a suffix link chain of length multiple of two. The
thick arrows between leafs are suffix links.

It is now explained how the FCST computes its basic funcion. If v and v′

are nodes and SLinkr(LCA(v, v′)) = ROOT , d = min(δ, r + 1):

Lemma 2

SDep(LCA(v, v′)) = max0≤i≤d{i+ SDep(LCSA((SLinki(v), SLinki(v′)))}.

The operation LCSA is supported in constant time for leaves. SDep is only
applied to sample nodes so its information is stored in the sampled nodes.
The other operation needed to implement the previous lemma is SLink.

Sadakane proved that SLink(v) = LCA(ψ(vl), ψ(vr)) with v 6= ROOT ,
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where vl and vr are the left adn right extremes of the interval that represents
v [3]. This is extended to SLinki(v) = LCA(ψi(vl), ψi(vr)). Remember that
all ψ answers are computadle in constant time. A lemma proded by Russo
et al. concludes:

Lemma 3

LCA(v, v′) = LCA(min{vl, vl′},max{vr, vr′})

From the previous lemma, the definition of ψ and lemma 2 concludes:

SDep(LCA(v, v′)) =

max0≤i≤d{i+ SDep(LCSA((ψi(min{vl, vl′}), ψi(max{vr, vr′})))}

Therefore SLink is not necessary to compute LCA. Hence it is also con-
cluded, using the i from lemma 2 :

Lemma 4:LCA(v, v′) = LF (v[0..i− 1], LCSA(SLinki(v), SLinki(v′))

Therefore it can be solved with the same properties that solved lemma 3.

LCA(v, v′) = LF (v[0..i− 1], LCSA(ψi(min{vl, vl′}), ψi(min{vr, vr′}))

The operation LETTER in FCST is solved with the following:
LETTER(v, i) = SLinki(v)[0] = ψi(vl)[0].

Operation Parent(v) returns the smallest between LCA(vl − 1, vr and
LCA(vl, vr + 1). This works because suffix trees are compact. Child of a
node is computed directly over the CSA. The time complexity of all these
operations is shown in Table 2.1.
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Table 2.1: The table shows time and space complexities for Sadakane static
CST and Russo et al. FCST. The first row has space use and the remaining
rows are time complexities. In the left collumn are operations, the middle
column has time complexities for Sadakane static CST and the right column
has FCST time complexities.

Sadakane CST Russo et al. FCST
Space in bits nHk + 6n + o(n log σ) nHk + o(n log σ)
SDep logσ(log n) log n logσ(log n) log n
Count/Ancestor 1 1
Parent 1 logσ(log n) log n
SLink 1 logσ(log n) log n
SLinki logσ(log n) log n logσ(log n) log n
LETTER(v, i) logσ(log n) log n logσ(log n) log n
LCA 1 logσ(log n) log n
Child log(log n) log n (log(log n))2 logσ
TDep 1 ((logσ(log n)) log n)2

WeinerLink 1 1

2.3.3 An(Other) entropy-bounded compressed suffix

tree

Fischer et al. [5] presented a compressed suffix tree with sub-logarithmic time
for operations and consuming less space than Sadakane’s compressed suffix
tree, detailed in section 2.3.1. They used two ideas to achieve theses results,
first reducing space used for LCP information and secondly discarding the
suffix tree structure using the suffix array intervals to represent tree nodes
and using the LCP information to navigate the tree.

Sadakane’s CST space complexities has a term with 6n bits of space, Fischer
et al. replaces this term with a smaller factor. The 6n term contains infor-
mation for LCP queries and the suffix tree structure using the parentheses
representation. Notice that i + LCP [i] in consecutive positions of the text
is non decreasing [5]. Sadakane et al. defines table Hgt to store only the
differences in unary and thus reduce space to 2n. Fischer et al. replaced Hgt
by U, observing that the table U has the number of 1-bit runs bounded to the
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number of runs in ψ. Encoding this information with additional structures
and reducing U they obtain nHk × (2 log 1

Hk
+ 1

ε
+ O(1)) bits to store the

LCP information, where ε is a constant 0<ε<1.

They define the next smaller querie, NSV and the previous smaller querie
PSV . For a sequence, I, of integers the NSV of position i returns j such that
j > i, I[j] < I[i] and no position between i and j has a smaller integer in I.
The PSV is identical to NSV with j < i. Remember the RMQ is two index
positions (i, j) and I to return the index of the smallest integer between i

and j argmini≤k≤jI[k].

Figure 2.12: The figure shows a LCP table and the operations required to
perform SLink(3,6) with RMQ and PSV,NSV .

The RMQ together with ψ, NSQ and PSQ is enough to navigate the suffix
tree. For an example see Figure 2.12, given a node v(vl, vr) the suffix link
is computation is shown. First notice that RMQ in the interval [vl, vr] will
return the smallest LCP value in that range, let it be h. Next apply the ψ
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function, available in the CSA, to vl and vr] and obtain [x, y]. Now find k
with a LCP (k) = h-1 using RMQ in the interval [x, y], finally to find the
node’s right and left limits [v′l, v′r] apply PSV to x and NSV to y.

They achieve a total space of nHk × (2 log 1
Hk

+ 1
ε

+ O(1)) + o(n log σ) bits
of space while FCST uses nHk + o(n log σ) bits. The extra factor tends to
zero if nHk is close to zero, however it is not common for the entropy to
be close to zero. This solution presents a middle point between FCST and
Sadakane’s CST in both speed and space. Moreover this solution is static,
i.e. it cannot be updated whenever the text changes.

2.4 Dynamic Compressed Indexes

Dynamic FCST’s use dynamic bit sequence as a auxiliary structures. One
such dynamic bit sequence, proposed by Makinen and Navarro [15], is pre-
sented in section 2.4.1. Section 2.4.2 presents the dynamic CST by Chan et.
al [3], which is a alternative to the dynamic FCST proposed by by Russo,
Arlindo and Navarro [22]. The dynamic FCST is described in section 2.4.3
which ends with the comparison of the dynamic FCST and the dynamic CST.

2.4.1 Dynamic Rank and Select

A structure is dynamic if it supports the insertion and removal of text from
a collection. Makinen and Navarro obtained a dynamic FMIndex by first
presenting a dynamic structure for Rank, Select and using a wavelet tree
over the BWT[15]. They show how to achieve nH0 + o(n) bits of space and
O(log(n)) worst case for Rank, Select, insert and delete.

To solve Rank and Select the approach presented is similar to the one dis-
cussed previously as a static solution. The structure consists of superblocks
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and blocks, while the superblocks are in the leaves of a tree the blocks are
arranged in the superblocks.

The tree used to store the superblocks is a binary tree, a red black tree, with
additional data in the nodes to compute operations such as Rank and Select
while traversing the tree. Consider a balanced binary tree on a bit vector
A = a1...an, the left most leaf contains bits a1a2...alogn, the second left leaf
alogn+1 + alogn+2...a2(logn+1) through to the last leaf. Each node v contains
counters p(v) and r(v) resp counting the number of positions stored and the
number of bits set to "1" in the subtree v. This tree with log(n) size pointers
and counters, requires O(n) bits of space[15].

The superblocks contain compacted bit-sequences but we will explain the
operations as if they are not compacted. To compute Rank(A, i) we use the
tree to find the leaf with position i. We use a variable rankResult that is
initially set with value 0. We travel the tree downwards to the leaves, we use
the value of p(left(v)), if it is smaller than i we go to the left subtree of v.
Otherwise we descend to the right node, in which case i and rankResultmust
be updated as i = i−p(left(v)) and rankResult = rankResult+ r(left(v)).
The desired leaf is reached in O(log(n)) time and Rank(A, i) uses extra
O(log(n)) time to scan the bit sequence of the corresponding leaf. When the
leaf is reached the result of scanning the bit sequence for Rank is added to
rankResult. Select(A,i) is similar but we switch the r(v) and p(v) roles.

As an example we will compute Rank1(A, 10), see Figure 2.13. Since 8 =
p(left(root)) is smaller than 10 we descend to the right child of the root and
update rankResult = r(left(root)) and i = 2 = 10 − p(left(root)). The
left child of the current node has p = 4 which is larger than i, therefore we
descent to the left child. The current node is a leaf and we scan the bitmap
to find the local rank of position i = 2. The local rank plus rankResult gives
a total rank of 4.

Consider that the leaves do not contain superblocks but simple bitmaps. We
will now explain insertions and deletions for that situation and later detail the
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Figure 2.13: The figure shows a binary tree with p and r values at the nodes
and bitmaps at the leaves. The path in bold is used to compute Rank of
position 10.

superblock operations. To find where to insert or delete a bit we navigate the
red black tree down to the leaf, like in Rank, and update the bit-sequence by
performing the necessary changes. The next operation is updating the p(v)
and r(v) functions in the path from the leaf up to the root. Eventually insert
and delete will generate overflow or underflow. If we insert a bit in a leaf the
block is bitwise shifted and the bit inserted. This however will make a bit
fall of the end of the block which has to be inserted on the next block. The
underflow problem is similar and both overflow and underflow are discussed
further on. After these split and merge operations the tree must be updated
with new values for p(v) and r(v) as well as rebalancing the tree. If the
bitmaps are compacted the underflow and overflow are handled differently.

This structure with bitmaps on the leaves uses O(n) bits, applying the su-
perblocks hierarchy reduces it to n + o(n) bits. In this case leaves contain
superblocks, i.e. they contain about log2 n bits. The superblocks are struc-
tured to support dynamic operations so it is different from the static case
explained earlier. Each superblock has 2(log n) blocks and each block has
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logn
2 bits. The universal table R in the superblock computes the Rank values

for each block, therefore Rank in the superblock is computed with the help
of table R.

To compute Rank in a superblock we scan through the blocks and table R
adding each Rank until we are at the block with the query position. The bits
within the block are scanned until we reach the desired position and Rank is
computed in O(log n) time. Select is similar to Rank because the universal
table indicates the number of bits within a block. Therefore we travel the
blocks to the block that contains the position querie. At that block we scan
the bits and retrieve Select.

In the structure presented by Veli and Navarro the block and superblock have
no wasted bits, therefore whenever a bit is inserted or deleted a overflow or
underflow problem arises. Overflow propagation to the adjacent leaves may
not be fixed with a constant number of block splits. We will now discuss the
solution to the underflow problem.

In this structure whenever a bit is inserted a bit shift occurs. A block were
a bit is inserted will have a block overflow due to the extra bit that needs
to be inserted in the next block. This propagates through all the blocks
in the superblock and eventually reaches the end of the superblock causing
a superblock overflow. To limit the propagation of overflow we will add
a partial superblock at every O(log n) superblocks. This superblock uses
O(log n) log n bits but might be partially full. It also permits a underfilled
block at it´s end (underfilled because it has less than logn

2 bits. The partial
block needs to be managed with care. It must be padded with dummy
bits to obtain a representation in R and care is needed to notice its real
length during operations. Partial superblocks can waste O(n/O(log n)) bits,
but ensure that we never traverse more than O(log n) superblocks in the
overflow propagation, a density of partial superblocks with at least O(log n)
distance among them. First we check if a partial superblock exists in the
next 2O(log n) superblocks. If we find one, we carry out the propagation
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until we reach it. If there is no partial superblock we propagate through
O(log n) superblocks and create a partial superblock at this location. In both
situations we have to travel O(log n) superblocks and guarantee that every
superblocks is at least O(log n) distant from other superblocks. However the
partial superblocks may overflow, in which case they are no longer partial.
We create a new partial superblock after it and the partial superblock that
overflows becomes a normal superblock. When a partial superblock overflows
it will in some cases have a partial block at its end. They solve this by simply
moving this block to the new partial superblock end. Other overflow blocks
will fill the rest of the partial superblock.

Another operation is the removal of one bit that causes underflow. We ensure
that the superblocks are always full. If some underflow happens in the end
of the superblock, we use the next superblock and move some blocks back.
This propagation is similar to overflow propagation. If we reach a partial
superblock the problem is solved and propagation stops. If the search for
a partial superblock exceeds 2O(log n) steps we allow the underflow in the
O(log n) superblock and it becomes a new partial superblock. If a partial
superblock becomes empty it is removed from the tree.

Insertion and deletion of bits will require the update of p(v) and r(v) values
from the leaf up to the root. However the propagation problem affects only
O(log n) superblocks. When we find the leaf that we wish to create or delete,
the red-black tree uses constant time to rebalance, this will add O(log n) time
per insertion or deletion. When propagating the coloring of the red-black tree
and updating the p(v) and r(v) values the O(log n) blocks are contiguous,
therefore the number of ancestors does not exceed O(log n) + O(log n) =
O(log n). The overall work needed for this maintenance is O(log n).

Veli and Navarro achieve a structure that manages a dynamic bit sequence in
nH0 + o(n) bits and logarithmic time for insert, delete, Rank and Select[15].
This structure is a important background to our dynamic FCST, because it
supports a dynamic FMIndex in nHk + o(n log σ)bits.

42



2.4.2 Dynamic compressed suffix trees

Chan et al. proposed, in 2004, a dynamic compressed suffix tree that uses
O(n log σ) bits of space[3]. They use a mixed version of a CSA plus a FMIn-
dex to speed up their updates, at the time CSA and the FMIndex were used
to provide complementary operations. However new versions of the FMIndex
can also compute the ψ function hence replacing the CSA[3]. The structures
used are named COUNT, MARK and PSI respectively related to the LF,
the SA and the ψ functions. The MARK structure computes SA[i], to do
this it stores some values from the SA array and determines the other values
with the COUNT structure[3]. The COUNT and PSI structures are sup-
ported by an FMIndex that supports insertions and deletions of texts T ′ in
O(|T ′| log n).

Recall that Occ(c, i) returns the number of occurrences of symbol "c" up
to position i of the BWT. For example, a bitmap of size n for character
"c" with each occurrence in the text is computable, notice that Rank1(i)
over this bitmap will return Count(c, i). These bitmaps can be stored in
the structures presented in the previous section. To compute MARK they
use two RedBlacks that store values explicitly. Adding all the red blacks
the total space is O(n log σ) bits. The insertion and deletion of a character
from the text uses O(log n) time while finding a pattern of size m uses
O(m log n+ occ log2 n).

This approach is one of the few dynamic compressed suffix trees available
and therefore is a tool to judge our own dynamic CST performance. Chan et
al.[3] CST uses O(n log σ), however the dynamic FCST uses nHk+o(n log σ),
which is much smaller in general.
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Dynamic Parentheses Representation

Chan et al.[3] proposed a CST in 2007, in this dissertation there is interest
in the approach to the LCA problem. They proposed a way to store the
topology of a suffix tree in O(n) bits of space. The parentheses representation
of the tree topology creates a bitmap of 2n bits that is processed to find
matching and enclosing parentheses. This is done with two structures that
complement each other and answer LCA queries. The two structures are
dynamic, the first supports delete and insert in O( logn

log logn) time, the second
supports these operations in O(log n).

The first structure computes matching parentheses. It is a B-tree with the
parentheses bitmap divided in blocks of size from log2 n

log logn to 2 log2 n
log logn . The

bitmap is distributed on the leaves of the tree, i.e. and concatenating the
leaves in order returns the original parentheses bitmap.

The second structure determines the LCA, witch is the same as double en-
closing parentheses, it is a red black tree with the parentheses bitmap di-
vided in blocks of size from log n to 2 log n. The bitmap is distributed over
the leaves of the tree. Concatenating the leaves in order returns the original
parentheses bitmap and find the nearest enclosing parentheses using auxiliary
structures in the nodes of the red black.

Matching Parentheses

The matching parentheses of a position i in the parentheses representation
is found consulting position i + 1 and if necessary computing the nearest
enclosing parentheses.

For example, the computation of the matching parentheses of two index
positions in a parentheses representation of a suffix tree is shown in Figure
2.14. The index position 18+1 corresponds to a opened parentheses therefore
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Figure 2.14: The figure represents the computation of the matching parenthe-
ses for index position 15 and position 18 over the parentheses representation
of the suffix tree for "mississippi". The first row is the index position of the
bitmap. The second row is the depth first numbering of the nodes and the
third is the parentheses represented by the bitmap. The fourth and fifth rows
are the steps used to compute the matching open parentheses and the sixth
and seventh rows are the computation of the matching closing parentheses.

search incrementing the index position to find the corresponding enclosing
parentheses. For each index position visited add 1 to a counter if it is a opened
parentheses and subtract 1 if it is a closed parentheses. In this example in
Figure 2.14 travel from index 19 to index 31, until our counter reaches -1.
Therefore the matching parentheses of 18 is 31.

The index position 15 corresponds to a closed parentheses, therefore search
backwards for the corresponding enclosing open parentheses. For each index
position visited add 1 to the counter if it is a closed parentheses and subtract
1 otherwise. In this example in Figure 2.14 travel from index 14 to index 4
until the counter reaches -1, therefore the matching parentheses of 15 is 4.

The structure presented by Chan et al. [3] proposes that for each node
v of the B-tree, information is stored for the computation of size, closed,
opened, nearOpen, farOpen, nearClose and farClose. size stores the num-
ber of parentheses in the sub-tree of v, closed and opened store the total of
closed and opened parentheses in the sub-tree. The structures nearOpen
stores the number of opened parentheses whose match can be found in the
sub-tree of the B-tree and the farOpen stores the number of opened paren-
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theses is not found in that sub-tree, the nearClose and farClose are identical
to nearOpen and farOpen but for the closed parentheses.

Figure 2.15: The figure presents the computation of opened values for bitmap
blocks. The example shown is computed over the parentheses bitmap of the
suffix tree of "mississippi". Notice that the opened values are computed from
left to right. The first row is the index position of the bitmap. The second
row is the parentheses representation. The third row is the values computed
for each index position during the computation of the opened values for each
block. The fourth row is the result of opened for each block.

Computing the opened parentheses over blocks of bitmaps is done from left
to right over the index. Start from the left of each block with a counter value
at 0. For example in Figure 2.15 starting at the first index, and for blocks
of size 4, add 1 for each index positions"1", "2" because they have opened
parentheses, then subtract 1 because index 3 has a closing parentheses. Then
add one for index position "4" which has a opened parentheses, therefore this
block has opened value 2. The counter is never less than 0.

Figure 2.16: The figure presents the computation of closed values for bitmap
blocks. The example shown is computed over the parentheses bitmap of the
suffix tree of "mississippi". Notice that the closed values are computed from
right to left. The first row is the index position of the bitmap. The second
row is the parentheses representation. The third row is the values computed
for each index position during the computation of the closed values for each
block. The fourth row is the result of opened for each block.

The closed parentheses computation is symmetrical to the computation of
the opened parentheses. Therefore it is done from right to left over the index.
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Start by the last index of each block and a counter with value 0. For example
in 2.16 starting at index 4, and for blocks of size 4, do not subtract "1" for the
open parentheses in index "4" because subtracting would make the counter
negative. Add "1" to the counter for index position 3 and subtract one for
index 2. At index 1 do nothing and the final closed value is 0.

Figure 2.17: The figure presents the computation of closed and opened val-
ues for large ranges. The example shown is computed over the parentheses
bitmap of the suffix tree of "mississippi". Notice that the closed values are
computed from right to left. The first row is the index position of the blocks.
The second row is the values opened and closed computed for each block.
The third row is the result of opened and closed for two adjacent blocks and
the fourth row is the total opened and closed for the bitmap.

The idea to compute opened and closed is extended to larger blocks using
the results of each block. For example to compute the opened of blocks 3 and
4, Figure 2.17, use the opened of block 2 and subtract the closed of block 4
witch is less than zero, therefore retain zero. Now add the opened of block
4 and obtain the opened value 1. The symmetrical is done for closed and
iterating this rule for a larger range will also compute the opened and closed
values.

Enclosing Parentheses

The second structure computes the double enclosing of two parentheses, i.e.
the index of a pair of parentheses that contains two given index positions,
(l, r) in the parentheses representation. The excess(l, r) operation computes
the number of opening parentheses minus the number of closing parenthe-
ses for the range (l, r). Notice that unlike the values computed for opened
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and closed these values can be negative. The operation minexcess(l, r)
determines the index position in the range (l, i), i ≤ r, with the smallest
excess(l, i) and smallest i. Then compute the enclosed parentheses of this
index position with the B-Tree described earlier to find the LCA of index
positions (l, r).

Figure 2.18: The figure shows the tree topology of the suffix tree for the
text "mississippi". The numbers in the tree nodes represent the numbering
in depth first of the suffix tree, in white and dark circles are the nodes used
for resp LCA(4,8) and LCA(11,15).

The LCA operations, in Figure 2.18, are computed over the parentheses
bitmap with the double enclose operation. The double enclose returns the
right parentheses of the son of LCA(4,8), therefore the enclose of the that
position obtains LCA(4, 8). Figure 2.18 also shows the parentheses repre-
sentation of the tree with the computation of the lowest common ancestor of
nodes (4,8) and nodes (11,15), resp index positions (7,16) and (20,28). The
operations enclose and double enclose are used to compute the LCA, in the
case (7,16) the minexcess(7, 16) = 15, which is computed in figure 2.18. The
open enclosed parentheses of 15 which is node 0 at index 1. In the second
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example (20,28) the minexcess(20, 28)=24. The open enclosed parentheses
of 24 is at position 18, which corresponds to node 9.

2.4.3 Dynamic FCST

The static fully compressed suffix tree, FCST, cannot be used in a dynamic
environment. As such there is a need to add a dynamic funcionality. Recently
a dynamic version of FCST was proposed by Russo, Arlindo and Navarro[22].
A limiting factor to build the static FCST is the need for the uncompressed
suffix tree, which spawns a large amount of space. Due to this requirement
the FCST uses a large amount of space at build time. A dynamic FCST
however can be constucted in optimal space, i.e. the construction process
does not need more space than the final tree.

The dynamic FCST has much smaller space requirements than other imple-
mentations of compressed suffix trees[22]. The tradeoff is more time for most
operations but space can be down to as much as a quarter of Chan et al.[15]
space for DNA.

As promised in section 2.3.2 we will start by explaining the reduce operation.
A bitmap B is mantained to compute the operation Reduce(v). This bitmap
starts with all positions set to "0", moreover for every sampled node v =
(vl, vr) positions Select0(B, vl) and (Select0(B, vr) + 1) are set to "1", figure
2.19. Reduce(v) determines the position in the sampled tree where v should
be, it finds the position of the paretheses to the left of the possible location
of v, Reduce(v) = Rank1(B, Select0(B, v + 1)) − 1. The operation for the
lowest sampled ancestor LSA does the mapping between the sampled tree
and CSA. To solve LSA we compute Reduce(v) and obtain the parentheses
for v, if that parentheses is a "(" the LSA is at that position, if it is ")" LSA
is the Parent(Reduce(v)).

For example we compute Reduce(10) in the suffix tree with the text "mis-
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sissippi". In bitmap B of Figure 2.19 Select0(B, 10 + 1) = 22, therefore
Rank1(B, 22) − 1 = 10. Consulting position 10 in the parentheses ar-
ray we compute a closing, ")" parentheses. We also Compute Reduce(4),
Select0(B, 4 + 1) = 10, therefore Rank1(B, 10)− 1 = 4. Consulting position
4 in the parentheses array we compute a opening, "(" parentheses.

We now compute the LSA of leaf 10 in figure 2.19. The operation Reduce(10)
indicates that leaf 10 should be after position 9, however returns the right
parentheses, ")", of node 9. This indicates that Parent(9) is the LSA of 10.
We will also compute LSA of leaf 4 however in this case Reduce(4) returns
a "(" which indicates that we have found the sampled leaf node 4, as we can
see in Figure 2.19.

The static FCST as well as the dynamic FCST composed of a CSA, a sampled
suffix tree and mapping between these structures. Operations such as SLink,
LETTER, SDep, LCA,LSA, LCSA, Parent are supported by the dynamic
FCST. The CSA designed by Mäkinen et al.[15] is used in dynamic FCST
and has polylogarithmic time for operations with optimal space complexity.

To achieve compression in construction time the dynamic FCST starts with
a empty text collection and progressively adds elements to its collection. The
static approach requires a uncompressed suffix tree so it can compute which
are the sampled nodes and erase the nodes not required for sampling. Taking
advantage of the dynamic operations allows the progressive construction of
the sampled tree without full information.

With the simultaneous construction of the sampled tree and the CSA some
operations in these structures can take avantage of each other. However the
build steps of CSA and the sampled tree have to be similar. The dynamic
FCST specified by Russo, Arlindo and Navarro[22] uses a dynamic CSA
designed by Mäkinen et al.[15] which has polylogarithmic time for operations
and optimal space complexity. The CSA inserts caracters from right to left.
The Weiner algorithm[25] for suffix trees works in the same way. Specifically
the CSA starts inserting the last caracter and then progresses backwards in
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the text. For each caracter it will find the insertion position by using the
LF mapping, it then adds the caracter to the CSA as needed. Notice that
LF indicates a suffix of size (t + 1) that contains the current suffix of size t
plus a caracter at the start. Remember that LF is the oposite of the suffix
link operation. These operations are used to travel in oposite directions of
the suffix tree. The Weiner algorithm usesWeinerLinks [25], for an internal
node v theWeinerLink(c, n) corresponds to the point in the suffix tree whose
path-label is c.v as it is very similar to CSA construction algorithm. The data
structure to help build the suffix tree is a CSA therefore synchronization
with the CSA insertion algorithm will allow for CSA to provide Parent and
WeinerLink.

To delete a text we will first locate the node that corresponds to the text.
Then using SLinks remove the following nodes that correspont to suffixes of
the text. Doing this syncronized with CSA will keep it coherent and maintain
the suffix tree as a support structure. The CSA goes from right to left while
deleting with LF, this can be changed to use ψ and go left to right[15].

Correct sampling is defined as a maximum distance from one node to a
sampled node. Distance is the number of suffix links needed to perform on
v before finding a sampled node. The sampled tree T requires that for every
node v there is a sampled SLinki(v) and i < δ. Therefore maximum distance
of δ will allow a worst case to reach a sampled node after δ − 1 suffix links.

The reversed tree TR of T is a important concept to understand how the
sampling property works. Russo et al. defined the reverse tree TR as a
minimal labeled tree[23]. Such that all nodes v in T have a corresponding
node vR with the reverse path-label of v. For a node v with a path label
"sppi$" the corresponding vR will have "$ipps". The mapping between a
node in T and TR is done with function R. A important relation that comes
from R is SLink(v) = R−1(Parent(R(v))), for every node v the parent of vR

is the suffix link of v.

The tree height of a node represents the distance from a node to its farhest
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Figure 2.19: The figure shows to the left the reversed tree of the suffix tree
for "mississippi". To the right is the sampled tree without suffix links and
with the leafs sorted as they appear in the SA. Bitmap B bit values are
distributed below the nodes to which they correspond in the suffix tree.

leaf and is represented as Height(vR). we sample the nodes with Height(vR)≥
δ/2 and TDep(vR) ≡δ/2 0. Note that because SLink removes one letter at a
time the reverse tree is a trie, i.e. all edges in TR are labelled with a single
letter. So SDep(v) = TDep(vR).

An insertion or deletion of a node in the tree will not change the string depth
of other nodes. As the SDepth of T is the TDepth of TR this will not change
either. All modifications to TR will happen on the leaves, with elimination or
insertion of new nodes. Another way to express this concept is that insertion
or deletion in T will not break the suffix links chains. It will work at the
ends of such a chain by inserting or deleting a node in TR.
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At insertion we need to check if some unsampled nodes need to be added to
the sampled tree. Suppose Weiner algorithm subroutine determines insertion
of a nodeX.v. To check the sampling consistency we will search for a ancestor
in TR whose tree heigth increased. This happens because a leaf (X.v)R is
added as a descendant of vR which may increase heigth. Checking is done
by travelling upwards from vR through TR. We compute SDep because it
is needed as TDepR. If the distance from a node (v′)R to (X.v)R is δ/2
and TDep((v′)R) ≡δ/2 the node v′ meets the sampling condition and will be
sampled.

For example we will compute the sampling caused when leaf 6 is inserted
in the suffix tree of Figure 2.19. Assume this node does not exist, therefore
node 6 in the reversed suffix tree does not exist and node 12 is not sampled.
We insert the node 6 therefore the tree depth of TR increases and we need
to check the σ = 4 nodes above node 6. We reach height=2 at node 12,
therefore it is a possible node for sampling however we need to check if there
is another node at a distance grater than or equal to σ/2. Progressing up the
tree we compute that node 4 is sampled and node 12 in TR has tree height
σ/2, therefore node 12 is added to the sampled tree.

Removing a node from T is the same as removing the correspondent leaf from
TR. Assume we remove the node X.v, to check consistency we will compute
if some node in the sampled tree should be removed. In the same way as for
insertion the reverse tree is scanned upwards and SDep is checked. If v′ is
found such that(SDep(v) − SDep(v′)) < δ/2 then v′ is a node that might
need to be remove from sampling. But another path in the tree might need
that node sampled, this happens if Height(v′R) ≥ δ/2 is true for some other
descendant. To control this the sampled tree will store in each sampled node
the number of descendants with distance δ/2. Whenever that count reaches
zero, the node will be removed from sampling.

The operations Insert and Delete use O((log n+ t)δ) time, on top of that are
some extra operations to manipulate the structure with the topology of S.
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However these added operations do not overcome the O((log n + t)δ) time.
The dynamic operations on the CSA of FCST uses the result by Gonzalez et
al.[7] which improves on Mäkinen et al.[15].

The dynamic sampled tree uses a parentheses tree structure S such as the
one Chan et al.[15] describes. This structure, with a list of O(n/δ) nodes, uses
O(n/δ) bits and spendsO(log n) time for FindMatch, Enclose, DoubleEnclose,

Insert and Delete, 2.4.2.

To find the sampled parent of v, ParentS(v), the parentheses structure uses
Enclose(v). This operation finds the nearest pair of parentheses that con-
tain v. For the LCA(v1, v2) the DoubleEnclose(v1, v2) will find the closest
parentheses that contain both nodes. The Rank and Select operations are
used over the parentheses sequence to manage additional information over
nodes. A structure over a bitmap of n bits with Rank, Select, Insert and
Delete uses O(log n) time and nHo +O(n/

√
log n) bits.

The dynamic FCST stores SDep and a counter for each sampled node. The
Weiner algorithm has a property that states that string depth does not vary,
and makes changes on the SDep unnecessary. Information for SDep and
the counter are kept in S. A sampling of node v means it is inserted in the
structure, likewise removal if unsampling. The counters are saved in S but
the values will change over insertions and deletions of nodes.
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Table 2.2: The table shows time and space complexities for Chan et al.
dynamic CST and Russo et al. dynamic FCST. The first row has space
use and the remaining rows are time complexities. In the left collumn are
operations, the middle column has the time complexities for Chan et al.
dynamic CST and the right column has time complexities for the dynamic
FCST.

Chan et al. dynamic CST Russo et al. dynamic
FCST

Space in bits nHk +On+ o(n log σ) nHk + o(n log σ)
SDep logσ(log n) log2 n logσ(log n) log2 n
Count/Ancestor log n 1
Parent log n logσ(log n) log2 n

SLink log n logσ(log n) log2 n

SLinki logσ(log n) log2 n logσ(log n) log2 n

LETTER(v, i) logσ(log n) log2 n logσ(log n) log2 n

LCA log n logσ(log n) log2 n

Child logσ(log n) log2 n (logσ(log n)) log2 log logσ
TDep 1 ((logσ(log n)) log n)2

WeinerLink log n log n
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Chapter 3

Design and Implementation

This chapter presents the design of our dynamic data structures for the
DFCST.

3.1 Design

The top abstraction of the software library is the run, config and tester files.
However the FCST class has the functions of the dynamic suffix tree and is
therefore relevant to present its description in section 3.2. The diagram in
Figure 3.1 omits most data fields and shows the most relevant instance level
relationships and class level relationships.
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Figure 3.1: The figure shows the resumed class diagram for the implementa-
tion. In the pink circle are the higher level classes such as DFCST, FMI and
the LSA. The green circle has the parentheses tree and in the blue circle is
the bit tree.

3.2 DFCST

The dynamic FCST is formed by three data structures: these are the FMI;
the B bitmap and the Sampled Tree. The data structure used by the dynamic
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FCST is represented in Figure 3.2, the data structure is explained with detail
and the suffix tree information is simulated.

Figure 3.2: The suffix tree structure and the DFCST structure presented in
parallel.

The main operations for this dissertation are the insertion and removal of
a single letter from the text. This allows a dynamic suffix tree to function,
grow and contract.

3.2.1 Design Problems

The implementation of a node insert in the dynamic FCST discovered a
new problem, the degree of parenthood between the inserted node and other
sampled nodes is unknown. This is solved determining the tree depth of the
inserted node and its parent in the sampled tree. The difference between tree
depths is the relative position of the new node among its brothers.
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For example, when some internal node is inserted within the sampled tree
the left and right child leaf of the node is known. However this information
is not enough to determine where to insert the string depth in the sampled
tree. In Figure 3.3 the case 1 and case 2 are both possible in the insertion of
the node "A". Case 1 creates the inconsistent suffix tree because the string
depth within the sampled tree was stored at the wrong position.

Figure 3.3: A sampling creates a sampled node with the wrong string depth.
On top is the original suffix tree with the sampled tree. On the bottom is
the suffix tree after node A becomes sampled and the two cases possible for
the sampling.

Other situation arises when inserting the zero of a new leaf in bitmap B. In
Figure 3.4 is the insertion of a left child to "S1". The middle image is the right
solution where the "0" is inserted a "1" to the left of the "0" related to "S2".
Notice that both cases are correct if we consider that the operation considers
the correct position is to the left of "S2". However the lack of information
to backtrack one "1" will cause the right tree in the image, which creates a
inconsistent suffix tree.
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Figure 3.4: Leaf insertion creating a sampling error. On the left is the original
tree. The center tree is the correct tree after inserting the left leaf. The right
tree is the inconsistent tree that can be generated.

3.2.2 DFCST Operations

This section describes some critical operations of the DFCST, the operations
are the insert and remove, the LCA, the Parent and Child.

Insert Letter

To insert a letter the operation first computes the weiner node of the new
letter. The initial weiner node is the root, when inserting a letter the previous
weiner node is used to compute the new Weiner node, the LF and Parent
operations are iterated over the old weiner node until the root is found or LF
is successful. If LF is successful it returns the new weiner node, otherwise
the root is reached and the child, using the inserted letter, of the root node
is the new weiner node. If child is unsuccessful the Weiner node is the root.

The new weiner node may require a new sampled node, therefore the insert
operation computes the closest sampled node up to a maximum distance δ,
a node A is distant by one unit from node B if SuffixLink(A) = B. If such
distance is reached and no sampled node is found the node at distance δ/2
requires sampling.
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Figure 3.5: The weiner node computation over a suffix tree.

To sample a node, insert two "1"s in bitmap B, one at the left and one at the
right of the "0"s which corresponds to the left and right limits of the node. To
determine the position within the sampled tree compute the tree depth of the
lowest common sampled ancestor of the node left and right. Next compute
the tree depth of the left of the lowest common sampled ancestor. The
difference between these two tree depths indicates the relationship between
the new sampled node and the sampled brothers and the deviation of the
insert position within the sampled tree.

The new leaf is computed when a new letter is inserted in the FMI since
it corresponds to the dollar position in the BWT. Furthermore to store the
leaf in bitmap B, the difference between the tree depth of the leaf lowest
sampled ancestor and the Weiner node lowest sampled ancestor tree depth
is computed to determine the new leaf position. This is due to the problem
described in 3.4.

Remove Letter

The removable leaf is the largest suffix of the suffix tree. The remove opera-
tion computes the parent of this leaf to obtain the Weiner Node. Furthermore
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it removes the sampling of the Weiner Node and the sampling of the leaf.
The sampling removal and insertion are symmetric. Finally it removes the
largest suffix position from the FMI which corresponds to the suffix leaf in
bitmap B.

LCA

To compute the LCA of two nodes we iterate delta times the Suffix Link
delta times, for each iteration compute the LSA string depth. Compute LF
over the node with the largest string depth. This is the reverse operation
of SuffixLink and therefore computing the reverse path the same number of
times will return the LCA.

Figure 3.6: Computation of the LCA of two nodes A and B using the LSA,
Psi and SDep.

Parent

Parent of a node is computed with the LCA operation over two nodes. To
compute the parent of node v(l, r), compute the LCA of (l − 1, r) and the
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LCA of (l, r + 1). The minimum of the LCAs left sides is the Parent(v) left
side, the maximum of the right sides is the right side of Parent(v) and the
maximum LCAs string depth is the string depth of the Parent(v).

Child

The child operation is computed with a binary search over the range of a
node. This binary search determines the sub interval of the node which has
the letter desired for the child suffix. To determine letter, the binary search
iterates Psi and Letter up to the string depth desired for the child.
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Figure 3.7: Child computation with a binary search. On top is a subtree of
a suffix tree. In the rectangles are the positions of the indexes and between
the rectangles is computation of the their positions in the next iteration of
the binary search.
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3.3 Wavelet Tree

The implementation of the wavelet tree in Figure 3.8 shows all the data
required for the wavelet tree of the suffix tree with the text "mississippi$".

Figure 3.8: A implementation of the wavelet tree data structure using a
binary tree.

It is possible to answer all queries over the wavelet tree with this binary tree
and the coding bit set array. However notice that answering a query such
as counting the number of letters "m" requires several operations over three
bitmaps. Notice also that the binary tree is static, meaning it will never grow
more nodes than in its initial size and it will not remove nodes.

3.3.1 Optimizations

One optimization is to transform the Binary tree in a Heap. This is im-
plemented in the thesis and Figure3.9 shows the binary tree and the Heap
structure of the text "mississippi$".
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Figure 3.9: The wavelet tree data structure using a heap.

The Heap is a pointers matrix and all access operations dispense the oper-
ations related with travelling in the nodes of the binary tree, therefore this
is faster than the previous proposed implementation. Furthermore, the algo-
rithm determines if the NBitTree structure is used or not, in which case it
dispenses its creation.

Compacting

The wavelet tree can be compacted, notice in Figure 3.9 there are three
bitmaps with repeated information. This is because there are paths in the
binary tree where the wavelet tree only stores repeated information. There-
fore this information is replaced with counters and the changes necessary to
deal with this new operation were introduced. The removal of unnecessary
information can be seen as a tree trimming or a form of compacted wavelet
tree.

The bitmap with the dollar sign is the left bottom bitmap, this bitmap only
needs to store the amount of letters and the dollar position. Also notice that
operations over these bitmaps no longer need to be computed within a bit
tree and therefore cost constant time.
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Figure 3.10: Compact wavelet tree data structure implemented with a binary
tree and bitmaps stored in bit trees.

3.3.2 Operations

The operations letterCount and C require several operations over the bitmaps
to answer very straight forward queries such as a letter count. Therefore it
makes sense create a counter for each letter. With this counter these queries
are answered in near constant time.

The operations for insert; remove; access; sortedAccess;Rank and Select

are implemented as explained theoretically. However I choose to use a differ-
ent algorithm to implement the sortedAccess. It is much more efficient in a
real scenario than the theoretical proposal because it does not require rank
or select over the wavelet tree. It returns the letter in near constant time.

The operation sortedAccess, as opposed to the access operation, consults
a position in the wavelet tree and returns the letter inserted in order as it
appears in the first column of the BWT, which is also the same letter in the
suffix array.

The sortedAccess of position 10 is the letter ’s’, notice the number of letters
from ’$’ through to ’m’ is 8, therefore smaller than 10 and cannot be the letter
in that position. However adding the number of letters ’s’ to the previous
letters exceeds position 10. Therefore the sortedAccess of that position is
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Figure 3.11: The left column is the lexicographically sorted text return by
sorted access. The center column represents the BWT of the text, returned
by the access function. The box to the right is the information stored to
simulate the left column.

’s’.

Figure 3.12: The implemented wavelet tree data structure. A heap with bit
trees, with three bit trees replaced by a three pairs of booleans and integers.
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3.4 Bit Tree

This dissertation was supposed to use a data structure developed byWolfgang
Gerlach and used by Veli Mäkinen in his CST et al [20] to solve the dynamic
rank and select problem over a bitmap. However the dynamic FCST depends
on this structure for space and for speed, therefore a very compact and fast
structure was needed to solve this problem and the results obtained from the
data structure by Gerlach would compromise the implementation.

However during the implementation of the parentheses tree based on the pro-
posal by Chan et. al [3] and Veli Mäkinen et al [15], it became evident that
it was also a bit tree for rank, with some other more complex data struc-
tures on it to support operations like enclosing parentheses and matching
parentheses. With that in mind the select function was added and I removed
all operations as well as data structures not essential or related to rank and
select to create our bit tree prototype.

The bit tree created is a B+. The B+ does not spread the elements through
the internal and leaf nodes, it stores the elements only in the leafs. This
may seem as waste of space since some nodes are not used to store elements,
however the loss of space is not significant. The B+ arity decreases the weight
of the internal nodes and almost all space is used in the leafs. Therefore the
programmer is able to concentrate efforts to reduce the space used in the
leafs.

3.4.1 Optimizations

A very large global variable is used for operations management, this allows
some important buffer features such as constant time access to any tree depth
layer within the tree path.
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• Removed the memory allocation calls for new bit sets in the NBitLeaf-
Bitmap and allocated large blocks of memory instead

• Removed the memory allocation calls for new NBitLeafBitmap in the
NBitLeafBitmap and allocated large blocks of memory instead

• The tree redistributes the bitmaps when one bitmap is too full to pre-
vent new memory allocations

• The tree redistributes the nodes when one is too full to prevent new
memory allocations

• The dynamic pointers storing childs in internal nodes compensate the
excessive memory allocation in the leafs. Allowing a very large trim in
overall space because there are no unused allocated leafs

• The leaf does not need to have children node pointers like the internal
nodes. This overhead of 8 bytes per bitmap block exists in the solution
by Gerlach

• I used a very large global variable for operations management, so there
is no need for father pointers

• Used only the essential structures as unsigned variables and as few
bytes as I expect they will ever need

The removal of calls to "new" and "malloc" are significant improvements from
my initial results because the memory manager of the operating system uses
plenty of memory to store information on these two calls. Another significant
improvement is the buffer system.

3.4.2 Buffering Tree Paths

Operations in the b+ tree are expensive since all operations require iterative
scans over the child’s at each node level. For example the configuration cho-
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sen for the prototype has arity 100 and can generate a tree with tree depth
5 or 8, therefore descending the tree requires some processing. Furthermore
several operations, such as enclose, insert or delete require a tree path to
compute siblings and travel through the various tree levels. Therefore there
is no reason not to store this tree path and in the advent the next opera-
tion occurs in the same leaf area, trying to adjust the tree path instead of
recalculating it is less expensive.

The buffer stores a pointer to the consulted bitmap and the operation is
performed over that position. The tree path is stored since a buffer is stored
for each tree level of the b+ data structure. Therefore if a new desired path
is dissimilar to the buffered path, the algorithm attempts to adjust to the
new operation path rather than recalculating the whole path. The buffered
tree path is a array and either the buffer is successful or the buffer is too
dissimilar and is discarded in constant time. Since this is not essential to the
thesis this buffer feature was not completely extended to the internal nodes.

For example, inserting a bit at a position involves computing a tree path and
finding the right bitmap in the leaf. The tree path is calculated recursively
computing three integers each time it descends a level, a bit position relative
to that level, a rank relative to that position, and the child where to descend
to the next level. The tree path stores the current node and the index
to descend to the next tree depth. In case the current node is a leaf it
additionally stores the relative position of the start of the leaf; the relative
rank to that position; the relative position to the bitmap where the bit is; the
relative rank to that bitmap; the position where the bit is and the relative
rank to that position.

The buffering stores information on some ranges of positions. It is possible
to calculate if the result of the operation is within the leaf range with some
data about the range start and end. The leaf buffering stores one such range,
and the leaf index buffering uses the index information to split the leaf in
two parts. If the result is within the leaf the scan is processed before or after
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the buffered index depending on the result position.

Figure 3.13: Above is the the bit tree internal nodes and one leaf with the
index buffered. Bellow are two possible cases of the bitmap level buffering,
before or after the buffered index and in the leaf.

In Figure 3.13 shows the buffered positions that are the result of any oper-
ation over the bit tree. A new operation will use the buffer following three
steps:

1. If the result coincides with the "Position Buffer" go to 5

2. If the result is out of the limits of the buffered leaf go to 6
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3. If the result is after the "Leaf Index Buffer" scan after the index to
compute the result, go to 5

4. Do a scan starting at the beginning of the leaf to compute the result

5. Store the new buffered index, position and data needed. Terminate
operation

6. Failed to use buffer, do a tree traversal to compute the result. Termi-
nate operation

This allows us to answer the next operation over that leaf without computing
all the previous steps to descend through the tree. The tree arity can be very
large and the buffer will have a large impact on operations speed as it will
prevent some internal nodes scanning. The size of the leaf has impact on the
number of times the buffer is used, therefore the larger the bitmap blocks
and the arity, the larger the leaf will be and the number of random times the
buffer is used will increase.

This buffer only stores one possible path therefore the operations will take
advantage of this buffer if they are within that path range. Every new oper-
ation overwrites the buffer because I consider that operations are more likely
to use the buffer of the previous operation than the buffer of some other
operation before that.

The path buffer is used to accelerate the insert and remove operation. When
the critical bitmap occurs the bitmaps brothers are accessed in constant
time and without any additional scans. This property extends to the nodes
(internal or leafs) who become critical and need the brother nodes to re-
balance.

The path buffer does not subsist if the operation that creates the buffer
changes the structure of the tree. This is the case when inserts and deletes
create a critical bitmap that requires a redistribution of the bitmaps and

73



possibly reshuffle the nodes balance. All other situations generate a valid
buffer.

All operations are equivalent to the Rank1 operation. The insert; delete
and getPosition count the number of bits down the tree path to reach a
certain position. To buffer the Rank1 of that position the operation stores
the number of "1"s the position is computed. The position as well as Rank1
is buffered, therefore the buffer is used for these operations.

Rank0(n) is the position n minus Rank1 (n), therefore Rank0 creates a Rank1
buffer and uses the buffered Rank1. Select is different to compute. However
it is the reverse of Rank and therefore it is possible with some additional
programming to transform Select in Rank. This is done in the bit tree.
Select0 and Select1 both can use the buffer Rank1 for their operations and
also create a buffer Rank1 without any loss of computations.

Other important point in time reduction is that the tree avoids memory allo-
cations. Therefore prevents large memory copies to fill those new allocations.
The tree also avoids small bitmaps redistribution’s, if it needs to re-balance
two bitmaps it will make the maximum re-balance in a single copy. For ex-

Figure 3.14: The redistribution operation of a critical bitmap block.

ample, in Figure 3.14 the central bitmap has 20 bits and is critical because it
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has reached the maximum capacity. Therefore it will try to re-balance with
one of its brother bitmaps. For chance one of its brothers (the one to his
right) has plenty of room, more exactly 8 empty spaces. Therefore the left
bitmap inserts 4 bitmaps at the start of the right bitmap.

3.5 Parentheses Bit Tree

The parentheses bit tree is based on the proposal by Chan et al [3] for paren-
theses maintenance and on the proposal by Veli et al [15] for the bitmap
maintenance. The parentheses bit tree represents a tree with variable number
of child’s and operations getNode, parent, child, lca, insertNode and remove
node. All nodes have a integer identifier. In the bit tree this identifier is the
position of the node within the bit tree.

The parentheses bit tree is built on a B+ data structure, the structure for the
bit tree is created with bitmaps in the leafs and functionality added in the
form of Rank. Therefore this structure can provide insert, delete, rank and
getBit. This is explained in the bit tree chapter, however it is implemented in
a fundamentally different way in the Parentheses Bit Tree because the space
bit ratio is not as demanding. Therefore some techniques to improve the bit
ratio in the Bit Tree are not implemented in this data structure.

The buffer technique used in this implementation is different of the one de-
scribed in 3.4.2. This is because transforming one operation in another equiv-
alent is easier with Position, Rank and Select than it is with LCA or open
enclose. However adding extra data and extra features this implementation
is to fulfill the objective. All operations are converted into a buffered opera-
tion, this operation is both a Rank1 operation and a Position operation, the
data stored includes the normal tree path and a extra path with parentheses
information to allow the Parentheses operations that travel the tree path.
These more complex operations such as enclosed parentheses, Parent, LCA,
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open enclose, also generate a buffer unless they compromise the path buffer
when travelling the tree.

This dissertation needs a tree with LCA, Parent, Child, and requires a vari-
able number, n, of child’s. This needs a call to new and a pointer to a array
like structure of pointers to various child’s. Therefore space is at least (3 +
n) * 4 bytes. However this is the theoretical value, in fact the space is larger,
even for a small n. This structure requires two "new" operations for each
node, one to allocate the node, and other to allocate the array of child’s.
The operating system memory manager has to store data for each "new" call.
A "new" call allocates multiples of a processor word, therefore for example if
this word is 32 bytes and the operation requests 8 bytes, the new call allo-
cates 32 bytes. If the operation requests 34 bytes, it allocates 64 bytes. It
also uses a pointer to the reserved memory, a byte counter, a owner ID, a
pointer to the class where "new" is called, and other data witch adds to the
requested memory.

The DFCST requires two integers per node to store string depth and a
counter for the dependent nodes operation. It also requires Rank and Select
over the suffix tree nodes. The parentheses bit tree has Rank and Select of
nodes, however it does not store two integers per node. Therefore the mod-
ified parentheses bit tree is a DFCST parentheses bit tree with a overhead
of two integers per node. This overhead is in fact larger than two integers
because the bit tree structure requires a array for every new integer, for every
bit in the bit tree there are two integers, therefore because a node has two
bits it uses 4 integers. The wasted space is presented in Figure 3.15 as 0’s in
the rows for string depth and for dependent links.

The space overhead is large, and since the first array is a bitmap, and both
the String Depth and Dependent Links are 4 bytes arrays, nearly all space is
in the 4 bytes arrays. Therefore it is very advantageous to remove space over-
head in these integers arrays. For every opening bit "1" exists a corresponding
"0" bit. The bit tree is able to compute this bit with a matching parentheses
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Figure 3.15: On top is the representation of the parentheses tree leaf data
needed by the DFCST. The arrows represent direction where a node info is
stored, it is the technique used to compact the leafs. Below is the corre-
sponding leaf information as is implemented.

operation. Therefore the data structure stores data in the matching closed
parentheses of a node. There is a overhead of computing the matching closed
parentheses, however the space gains are large.

3.5.1 The Siblings Problem

The operations Parent, Child and Sibling are solved in the parentheses bit
tree in two levels of abstraction. To solve the problem of Parent, Child and
Sibling within the bitmap uses the matching and enclosing parentheses as
proposed by Chan et al [3]. However the B+ tree data structure that stores
these bitmaps is also required to solve this problem, to do this within the
B+ four options were considered:

1. Store a pointer to the parent in each node.

• The father is calculated in constant time.

• To calculate a child the operation scans the N children and select
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the node required.

• To calculate a sibling calculate the father and then do a scan to
find the sibling.

• This option requires a parent pointer in each node.

2. Store a pointer to the parent and respective child number in each node.

• The father is calculated in constant time.

• To calculate a child do a scan of the N children and select the
node required.

• To calculate a sibling calculate the father and then increment or
decrement the child number of the node.

• This option requires a parent pointer in each node and a integer
that stores the node child number in the parent node.

• The dynamic structure requires nodes rotations, the rotation of
the first child of a node will need to decrement or increase all
the children position information. This problem extends to other
situations such as node splitting and merging.

3. No additional data is stored in the tree structure. If a node is reached
it is because the node parent and child number is already computed,
the same is recursively true for the parent’s parent, therefore this data
can be used.

• The father is calculated in constant time.

• To calculate a child do a scan of the N children and select the
node required.

• To calculate a sibling first calculate the father and then increment
or decrement the child number of the node.

• Use a auxiliary array that is updated every time a node is visited.

4. Using solution 3 and creating a support for a binary scan to determine
a child node.
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• The father is calculated in constant time.

• To calculate the child use the binary search.

• To calculate a sibling first calculate the father and then increment
or decrement the child number of the node.

• Use a auxiliary array that is updated every time the operations
visit a node.

• Each bit insertion or deletion requires a scan of the Parent nodes,
their auxiliary arrays that perform the binary search, and the
arrays of Children nodes.

• A binary search for a Child node is unique to the type of operation
being computed, for example Rank and Position are calculated
differently and each operation needs its own array of binary search
within each node.

The Sibling computation of this B+ tree data structure is important because
the operations supported in the parentheses tree such as the matching paren-
theses travel sideways in the bitmap, whenever the end of a bitmap block is
reached it is necessary to compute the blocks Sibling in the tree data struc-
ture. It is also important to avoid storing additional data for each bitmap.
Therefore the development choice is number 3, this option lead to the de-
velopment of the buffering path in the tree because the buffer uses this tree
path for its operations.
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Chapter 4

Experimental results

This chapter presents the performance results of the developed prototype and
their comparison with similar prototypes. Section 4.1 presents the results
of the prototype for dynamic Rank and Select, that uses a B+ tree, and
compares with the implementation by Gerlach et al [25], that uses a red black,
RB, tree. Section 4.2 shows the performance of the parentheses tree. Section
4.3 discusses the results obtained before and after compacting the wavelet
tree. The chapter finishes with section 4.4 were we present a comparison
between the DFCST, the FCST and the CST.

Table 4.1: Test machine descriptions.

Machine Windows Machine Linux
Operating system Microsoft Windows Ubuntu
Operating system ver-
sion

Media Center Edition
SP3

9.10

Ram 1 gigabyte at 200 Mhz 2 gigabytes at 666 Mhz
Processor AMD Turion Q6600 Quad Core
Processor Speed 2.00 Ghz 2.40 Ghz

The test results presented in sections 4.1 and 4.2 were performed in the
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windows machine described in table 4.1. The results presented in section
4.4 used the linux machine, with the exception of the results presented in
table 4.3. The tests in table 4.3 could not be all computed in the same
machine, since the FCST was not developed for windows and the CST was
not developed for linux. However since it is a space test and does not require
time performance the CST used the windows machine, the DFCST and the
FCST used the linux machine.

4.1 Bit Tree

The bit-tree is the data structure that supports a dynamic bit array with
Rank and Select operations, therefore it is an essential component of the
wavelet tree and of the B bitmap in the DFCST. Furthermore the parenthe-
ses tree is a similar data structure and the bit tree performance is an im-
portant indicator of the parentheses performance. The operations over the
bit-tree consume a relevant portion of the overall time and therefore speed
improvements over this data structure have a direct impact in the overall
time of the DFCST implementation.

The tests for this data structure were performed over an 100 megabit ran-
dom bitmap. The space ratio represents the number of bits necessary to
represent 1 bit in the bitmap. For example, a space ratio of 2 means that
the data structure consumes 2 bits for every bit inserted, therefore if a 100
megabits bitmap is inserted, the data structure uses 200 megabits, using 100
megabits in the data management structure of the tree and 100 megabits in
the bitmaps.

We tested two different bitmap creation methods, the sequential bitmap in-
sertion and the random bitmap insertion. The sequential creation simulates
the bitmap where the insertions are very close, for example while reading
from a file all insertions are in the same position. The buffer stores the last
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insertion tree path and since the next insertion is within a close range of the
previous, the tree path is not recalculated, see section 3.4.2. The random
creation uses random insert positions. This means that very few operations
are buffered and the tree is sparser than the one generated by the sequential
creation.

4.1.1 Determining the arity of the B+ tree

The tests in this section were designed to determine the most efficient arity
for the B+ trees. To determine the best arity are considered the space
used, the time spent building the tree and the time necessary for a batch of
operations. The space ratio in this section is the number of bits used by the
data structure for every bit inserted. The tests in this section were performed
over a bitmap with 100 megabits. A batch of operations is 2000 000 Select1,
Select0, Rank0 and Rank1 operations, in a total of 10 000 000 operations.
The operations are alternated among each other during the batch and the
arguments for each operation are random.

Figure 4.1: The space ratio for bit trees with arity 10, 100 and 1000. The
ideal space represents the ratio of 1 bit spent for every 1 bit inserted.

In the first test, see Figure 4.1, the space ratio shows a considerable difference
between arity 10 and arity 100, however this difference is less significant
between arity 100 and arity 1000. Space is a very important measure of
performance of dynamic FCST, hence an arity of 100 or 1000 is preferable.
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Figure 4.2: Time spent building a 100 megabit bit tree.

The second test, see Figure 4.2, shows the build time of the bit-tree. This
Figure 4.2 shows a large difference between arity 100 and arity 1000 when
building the B+ tree with random insertions, arity 100 needs less space during
construction when compared to arity 1000 and has a lower space ratio than
arity 10.

Figure 4.3: Time spent computing a batch of operations on a 100 megabit
bit tree. The x axis represents the buffer intensive operations versus the low
buffering operations.

In the last test, see Figure 4.3, the difference between arity 100 and arity
1000 is seen when there are few successfully buffered operations. Arity 100
is faster at building a random bitmap than arity 1000, which has a much
lower space ratio than arity 10 and is faster for operations than arity 1000.
Therefore in this dissertation the B+ trees use arity 100 for the remainder
of the tests.
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4.1.2 Performance

The performance of the B+ bit tree implemented during this dissertation is
compared to the Red Black bit tree developed by Gerlarch. The implemen-
tation by Gerlach is based on Mäkinen and Navarro [15], and Sadakane et.al
[11], however the bit tree implemented in this dissertation is based Chan et.
al [3] and Mäkinen and Navarro [15].

Figure 4.4: The space ratio for the RB bit tree and the B+ bit tree. The RB
is the red black bit tree implemented by Gerlach. The ideal space represents
the ratio of 1 bit spent for every 1 bit inserted.

The space ratio test, figure 4.4, shows a logarithmic curve relating the space
used by the bit trees and the bitmap block size, however the logarithmic
curvature of the red RB tree is larger than the curvature of the B+ bit
tree. Therefore the B+ is always in advantage although both bit trees have
similar space ratios as the block size increases. Block sizes larger than 4096
are not tested because they are very slow and therefore not interesting for
the implementation of the dynamic FCST.

The construction time degrades with a logarithmic curve as the block size
increases. The sequential and random B+ builds are very different when the
block size is smaller than 512, as sequential constructions use less than half
the time of a random construction. The experiments show, consistently, that
the B+ can be built in less time than the red black.

The dynamic suffix tree has many situations where the insertions are se-
quential. For example, more than half the insertions in Bitmap B are leaf
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Figure 4.5: The time in seconds, y axis, is the time necessary to build a 100
megabit bit tree. On the right is the B+ random and sequential. The RB is
the red black bit tree implemented by Gerlach.

samplings, notice that inserting a leaf in Bitmap B involves inserting two
bits in sequential positions. Therefore the time for constructing a dynamic
FCST will be somewhere between the worst case possible that is a random
B+ build and the best case of a sequential B+ build.

Figure 4.6: In the y axis is the time in seconds spent to complete a batch of
operations. The x axis represents size of the bitmap blocks, from 64 bits to
4096 bits. RB is the red black bit tree implemented by Gerlach.

The operations time shows that it is much faster to use smaller bitmap block
size than larger blocks, it also shows that the B+ is always faster than the
RB for each block size. In every test, both in speed, build time or space,
and for every block size, the B+ bit tree is more efficient, therefore it is the
selected structure to use in the dynamic FCST.
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4.1.3 Comparing Results

This section compares three possible configurations of the bit trees presented
in figure 4.7, for each configuration there is a criteria: smallest space ratio,
under the title "Lowest Space Ratio Test"; similar ratio, under the title "Bal-
anced Space Ratio Test"; fastest operations, under the title "Speed Test".

Figure 4.7: From left to right, lowest space ratio configuration compares the
bit trees at their best space ratio, balanced ratio test compares the bit trees
at a usable space ratio, the speed test compares both bit trees for their fastest
configuration. Time values are in seconds.

The smallest ratio the bit trees achieve, in the tests, occurs when the block
size is 4096. The bottom of the left column in Figure 4.7 shows that the B+
has a lower space ratio and therefore should be selected under this criteria.
It also is faster to build and faster for operations. However this large block
size has slow operations, therefore in the dynamic suffix tree smaller bitmap
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blocks are used.

The best operation times occur when the block size is 64. The right column
in figure 4.7 has the results of this test, notice that the B+ is faster for
operations and build time. In the bottom of figure 4.7 notice the very large
difference between the space ratios, it shows that there is a large space cost
when the RB speed increases, however it exists a smaller cost for the B+.
The balanced criteria demands block sizes where the space ratio value is
smaller than 2. Space is a decisive factor for the dynamic FCST therefore a
bit tree that occupies more than twice the size of the inserted bit array is not
acceptable. The block size with a ratio under 2 for the RB that achieves the
fastest operation time is the 2048 block size. The B+ with the closest ratio
inferior to the RB, with a 2048 block size, is the 128 bits block. Therefore
these two configurations are compared in the middle column of figure 4.7.

The operations time is very different, the RB used 933 seconds to complete
the operations batch while the B+ needed 68 seconds, therefore the B+ uses
7% of the time used by the RB. The build time of the RB is 1662 and the
build time for the B+ is in the worst case 367 and in the best case 160,
therefore it uses between 22% and 9% of the RB build time.

The space ratio of the largest bitmap block size in the B+ uses 91% of the
equivalent RB bit tree, the smallest bitmap block size of the B+ uses 16%
of the equivalent RB bit tree. The speed for consult operations in the B+
is 64% of the RB in the smallest bitmap block size and 79% for the largest
bitmap bock size. The build time for the B+ smallest bitmap is 72% of the
equivalent RB, and the largest bitmap block size build time is 55% of the
equivalent RB.
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4.1.4 Dynamic Environment Results

The implemented B+ bit tree is the chosen structure for the dynamic bit
arrays in this dissertation, however a test of the performance under stress
conditions using a mix of insertions and deletions is required determine if
the tree loses performance. Figure 4.8 presents the results of evaluating
the random environment where for every two random insertions one random
deletion occurs.

Figure 4.8: The figure shows the graphic comparing the construction without
deletions and the construction with alternated deletions.

The performance of the bit tree maintains the same level for the mixed test
and the random test for bitmaps up to 2048 block size. The bit trees with
blocks 2048 and 4096 have a lower occupation rate because they have very
large leafs allocated, the large leafs do not often contract when deletions
occur.

4.2 Parentheses Bit Tree

This section compares the parentheses tree to a simulated tree that performs
the same operations. A tree was not developed for the purpose of this test
however the space use is simulated as realistically as possible. For example,
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the test involves 1000 000 nodes in each tree, therefore the test measures the
space used by the allocation of 1000 000 nodes with the characteristics of the
nodes used for a tree with the required DFCST operations. The simulated
tree structure is not designed to support the Rank and Select operations
that the parentheses bit tree supports. The node structure has a array of
child pointers, each suffix tree has at least two children. Therefore the child
counter is initialized at two:

• unsigned long: Child Counter = 2

• Node**: Child Nodes = new Node[2]

• Node*: father

• unsigned long: node identifier

These tests do not have a comparison with another dynamic parentheses bit
tree structure because there is no other know implementation, therefore the
tests are directed at space performance of two optimizations implemented.

Figure 4.9: The figure shows a graphic with the number of bytes per node
ratio for a simulated tree, the same tree stored in a parentheses tree data
structure, a simulated tree for the DFCST, the DFCST stored in a paren-
theses tree data structure, the compact version of the DFCST parentheses
tree.

The results show that a parentheses tree uses 2.9% of the space used by a
simulated tree with the essential functions. The DFCST requires 2 integers
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to store data on the string depth and a link counter per node. Therefore
a tree for the DFCST would require extra 8 bytes, 128.3 bytes, the normal
parentheses tree uses 15.2% of this space and the compact parentheses bit
tree uses 8.9%.
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4.3 Wavelet Tree

Figure 4.10: The figure shows the graphic comparing the space used for each
inserted letter, in a test with 100 megas of DNA, using the normal and the
compact wavelet trees.

To compare the wavelet trees performance the test uses a batch of operations,
each operation has random parameters. A total of 1000000 iterations over
each possible operation was executed and measured. The space test used 100
megas of DNA and was measured using the Windows Management Console.

Figure 4.11: The figure shows the graphic comparing the speed needed to
complete a batch of operations with the normal and the compact wavelet
trees.

The results of the compact wavelet tree show that it uses on average 29% less
space and 28% less time than the normal wavelet tree. The compact wavelet
tree is smaller and faster than the normal wavelet tree for every bitmap block
size, therefore the compacted wavelet tree is used in the DFCST prototype.
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4.4 DFCST

This section presents the data obtained in performance tests of the DFCST.
First in section 4.4.1 the tests results demonstrate that the DFCST achieves
very different performances according to the specified sampling or the bit
trees specifications. Afterwards the space usage and operations time of the
DFCST is showed and compared with the FCST. The space ratio in this
section is the number of bytes used by the compressed suffix tree divided by
the number of inserted letters.

4.4.1 Space used by the DFCST

The space use is fundamental for the DFCST, and the advantage of un-
derstanding and determining the performance of the DFCST lies with the
sampling distance and the wavelet tree bitmap size configuration. Figure 4.12
shows the relation between the size of the sampled tree and the wavelet tree
as the sampling distance increases. The space used decreases as the sampling
increases, since fewer nodes are stored in the sampled tree the parentheses
tree uses less space. The figure 4.12 also shows that as the bitmap sizes in
the wavelet tree increase, the space used for the wavelet tree decreases. This
is in accordance to previous tests results that indicate that bit trees with
larger bitmaps use less space, see figure 4.8.

4.4.2 The DFCST operations time

The time for each operation depends mainly on the sampling distance δ and
the wavelet tree configuration. Therefore it is necessary to study the variation
caused by the different possible choices. The results show that the increase
of the sampling distance causes a deterioration of the operations speed.
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Figure 4.12: DFCST space in bytes for each DNA letter. Test uses 3 megas
of DNA.

Figure 4.13: DFCST speed results over 3 megas of DNA.

4.4.3 Comparing the DFCST and the FCST

A important objective in this dissertation is the comparison of the DFCST
and the FCST. The comparison is presented in this section and has three
important aspects, these are the space required to build the data structures,
the space used after the data structures are complete and the operations
time.

The table 4.2 shows that the operations time are similar in both implemen-
tations. The DFCST is expected to be slower than the FCST since all oper-
ations are affected by a O(log n) factor necessary to maintain the structure
dynamic. However the results show that this factor has little practical im-
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Table 4.2: The table shows DFCST and FCST time to complete a operation
in milliseconds. (*) Insertion and removal are not possible in the static FCST.

DFCST FCST
Parent 2.195 1.76
SLink 0.441 1.107
LCA 1.454 1.156
LETTER 0.00007 0.0058
SDEP 1.362 0.085
Insert 5.67 *
Remove 6.86 *

pact. The speed similarities occurs because the configuration of the DFCST
is using a smaller sampling distance than the FCST. If a larger sampling
distance is used in the DFCST the speed will deteriorate, however the space
use will improve substantially, see 4.4.1 and 4.4.2.

Table 4.3: The table shows DFCST, FCST and CST space use in megabytes
for 50 mega dna letters.

DFCST FCST CST
Final Space 73.2 29.3 161.9
Build Space 73.2 619.2 562.9

The table 4.3 shows that the space used in the construction of the FCST
is very large compared to the final space, while the DFCST is very stable
and does not exceed the final space. The final space of the DFCST is more
than twice the space used by the final FCST, however if a different config-
uration is used the DFCST can ocupy 35 megabytes. The configuration for
35 megabytes DFCST with 50 mega of dna has a sampling of 256 and a bit
tree bitmap block size of 512, see 4.12.
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Chapter 5

Conclusions and Future work

5.1 Conclusions

Suffix trees are a key element in the future of large data indexing. Thus, it
is important for such large volumes of data to apply compression techniques
and the use of dynamic structures. This dissertation implemented a software
library of a dynamic compressed suffix trees, following a iterative software
development approach. This iterative approach allowed improvements that
achieve the desired space performance. From the user point of view, the
system creates a suffix tree, with its basic operations plus the operations of
inserting and removing letters from a text file. From the programmer view
the system software library is modular and there are four data structures
that can be integrated in other projects: the DFCST, the B+ Bit Tree, the
Compact Wavelet Tree and the B+ Parentheses Tree.

The main contribution and goal of this work is an implementation of the
DFCST. Experimental results show that our prototype can obtain the small-
est dynamic suffix trees. Compared with static suffix trees it is the second
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smallest (after the static FCST). The DFCST does not use prohibitive space
during construction like other compressed suffix trees implementations and
the final space is considerably low even compared to the smallest compressed
suffix trees. Although it is a dynamic data structure, the performance of the
operations is very competitive when compared to static compressed suffix
trees.

The results show that the space used in the management of the dynamic
data structures has a considerable weight compared to the space used by the
indexed data itself. Therefore efforts to improve the dynamic data structures
can result in large space gains, even larger gains than the effect of compressing
the indexed data.

The compact wavelet tree is a data structure that improves the normal
wavelet tree. The results show that it performs considerably faster and us-
ing less space. This is due to the tree trimming which avoids unnecessary
computations and data storage. The results prove that the technique used to
compact the wavelet tree is realistic and viable for future implementations.

The bit tree results show that this implementation is a good alternative to
known implementations of a dynamic bit array for rank and select. Therefore
future projects that require this type of data structure can choose to use this
implementation including the NBitTree files in their projects.

The implemented dynamic parentheses tree is the only dynamic data struc-
ture implementation of this kind known to us. The results show that it can
replace a normal tree structure by a much smaller representation and shows
that additional fields can be added with the same space loss as a normal tree
data structure has. Therefore it is a possible choice for future projects that
require succinct space and dynamic tree capabilities.

The results show that the dynamic fully compressed suffix tree is a good step
to achieve a small and dynamic suffix tree. With future improvements it can
become a useful tool for further research in bio-informatics.
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5.2 Future work

The implemented DFCST has some limitations and can still be improved to
obtain better speed and lower space requirements. Faster data structures
allow larger bitmaps and therefore lower space use. Smaller space use in
data structures, such as the sampled tree, allow a smaller sampling distance
resulting in faster computations.

The reverse buffered path lacks the functionality to regress through the in-
ternal nodes. To achieve this the method that is being used at the level
of bitmap blocks and leaf nodes can used at the internal nodes level and
therefore take advantage of this feature.

The use of threads can save time in several operations. In the wavelet tree
the use of a CPU with several cores renders higher gains. For example if
the alphabet has 5 letters, as the case of the DNA plus the dollar letter,
the wavelet tree has three levels. The insert and remove letter operations
compute the bitmaps where the bits are modified, which is determined with
the letter encoding, furthermore the bit position within the bitmaps is de-
termined iteratively for each level with Rank. However the time dominant
operation is the bit shift, therefore since we know the bitmaps and respective
bits positions we can delegate the bits insertion to other threads and proceed
with the computations. Using one processor for each level will thus reduce
speed, in this alphabet case, to one third. Other possible improvement can be
used in the insert operation using the weiner algorithm which has operations
which do not need to be sequential. The operation can insert simultaneously
in the B bitmap and in the wavelet tree, hence saving insertion time.

The use of several processors and the buffered tree path will increase the
buffer probability of success. The bit tree can be prepared to store as many
buffered paths as requested, for every operation each processor verifies a
buffered paths to see it is the result of the current operation. This increases
significantly the probability of one buffered path being correct or close to
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the result and generate the result in constant time. This also allows a race
among threads starting in different positions of the tree and converging to
the operation result, the thread that returns first stops the operation.

The parentheses bit tree lacks one optimization which is implemented in the
bit tree. This optimization decreases space use significantly and involves allo-
cating all leaf bitmaps within the leaf as a superblock and not as individually
allocated blocks. This will save a call to the "new" for each block decrease
the space used by each leaf node. The parentheses bit tree does not need to
use unsigned short for the management of the blocks, it should use unsigned
char and thus reduce the space used with data management structures at the
leaf level by nearly half.

To reduce the space used by the DFCST, the bitmaps within the bit and
parentheses trees can be compressed. The data structure used to represent
the bitmap array are the type bitset, therefore if a interface replaces the
bitset with compacted operations the overall project will use the compacted
operations. The data structure for the parentheses tree is a array of integers
which regularly stores integers whose values are close to 1, therefore it is
highly compressible.

If stricter space requirements are needed the bit tree should try to re-compact
sparse bitmaps more often. This can be achieved by a algorithm which for
every insertion attempts a local merge of bitmaps.
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