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AbstrllC( - Despite the great advances in the theory and 
applications of fractional calculus, some topics remain 
unclear making difficult its use in a systematic way. This 
paper studies the fractional difierintegration definition 
problem from a systems point of view. Both local (Grunwald
Letnikov) and global (convolutional) definitions are 

considered. It is shown that the Cauchy formulation must be 
adopted since it is coherent with usual practice in signal 
processing and control applications .. 

I. INTRODUCTION 

Fractional calculus is a area of mathematics that deals 
with derivatives and integrals of non integer order (i.e., 
real or, even, complex) that, often, are joined under the 
name of differintegration. In the last decade, fractional 
calculus has been rediscovered by physicists and engineers 
and applied in an increasing number of fields [1-3J, namely 
in the areas of signal processing, control engineering and 
electromagnetism [4-10, 18-20]. Despite the developments 
that have been made, several topics remain without a clear 
and concise fonnulation. Surprisingly, one of them is the 
definition of Fractional Differintegration (FD). In fact, 
there are several definitions that lead to different results 
[11-13], making difficult the establishment of a systematic 
theory of fractional linear systems. In facing this problem, 
we can assume one of the strategies: 

• Elect one formulation, a priori, on the basis of a 
personal preference; 

• Decide to work in a functional space where all the 
defmitions give the same result [14]. Nevertheless, 
this strategy is interesting only when solving 
differential equations with inputs in the same space; 

• Choose those formulations that assure a 
generalization of common and useful results or 
tools. 

Bearing these ideas in mind, in this paper we will adopt 
the third point of view since it is the one that allows 
building a systematic theo!)' of fractional linear system that 
resambles the theo!)' of linear (integer order) systems. 
The fact of dealing with non-integer order derivatives and 
integrals constitutes one of the major advantages in using 
fractional calculus, because solutions are general functions 
rather than being constrained to the exponential type. 

I Also with INESC 

0-7803-8588-8/04/$20.00 ©2004 IEEE. 

Consequently, we are interested in generalising the useful, 
and well known results, but there are remarkable 
differences in this generalization. Integer-order derivatives 
depend only on the local behaviour of a function, while 
fractional derivatives depend on the whole history of the 
function [IS]. Therefore, the problem is not just a simple 
matter of substituting the integer derivative by the 
fractional derivative; a proper definition of fractional 
derivative is needed. Moreover, it is important that the 
adopted defmition preserves both the properties of the 
integer-order differintegration calculus and the 
fundamental concepts and properties of system theory. 

As said previously there are several distinct defmitions 
of FD that are equivalent for a wide class of functions 
[1,13]. Nevertheless, from an engineering point of view 
most fonnulations reveal compatibility problems with the 
usual signal processing and systems theory practice. In 
fact, in signal processing, we often assume that signals 
have !R as domain and use the Bilateral Laplace and 
Fourier Transfonns as key tools. Based on these tools, are 
dermed the important concepts of transfer function and 
frequency response, with properties that we want to 
preserve in the fractional case. In this line of thought, in 
this article are considered different differintegration 
defmitions from a common framework and compared in 
order to establish a practical mathematical tool. In this 
work, and without loosing generality, we consider two 
possibilities for the definition of FD: 

• An approach based on the generalisation of the usual 
derivative defmition, that is, the Grunwald
Letnikov derivative and integral definitions, 

• A global approach based on a convolutional 
formulation. 

As known, any function can be dermed in a space 
isomorphic to a space in which it has been dermed in. 
Thus, it is possible to define the FD through its properties 
in certain transfonned space corresponding to some 
common transfonns like the Laplace Transfonn (LT). Our 
starting point is the generalization of the well known 
property of the LT, corresponding to the time domain 
differentiation: 
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LllD":/{t)J = sa F(s), a E ill (1) 
where D means derivative, fit) is a signal with (two

sided) Laplace Transform F(s) e). If a. > 0 we have a 
fractional derivative, while if a < 0 is a fractional integral. 
With this formulation the fractional integral and derivative 
are mutually inverse operations, which bring an important 
consequence: the fractional derivative and integral are 
inverse operations that commute (semigroup property): 
Da{DP} = Da+� = D�{DIl}, a, f3 E m (2) 

Unfortunately, this property is not valid in most 
differintegration defmitions [1,13], as it is the so-called 
Miller-Ross sequential derivative [ 1]. 

From a system point of view, we are looking for a 
"differintegrator" such that its transfer function is given by 
so., provided that we have fixed a suitable branch cut line, 
since it is a multi-valued expression. There are infmite 
possibilities, but, proceeding as Zavada [16], we choose 
the negative half-axis. It is clear that if we choose this 
branch cut line then we force the region of convergence of 
the LT to be the right (Re(s» 0) or the left (Re(s)< 0) half 
plane. This has an important consequence, namely that the 
differintegrator must be either causal or anti-causal, as in 
the usual negative integer case, contrarily to the common 
integer derivatives that are neither causal nor anti-causal 
(so-called acausal). 

In this line of thought, this paper is organized as 
follows. In sections two and three we discuss two distinct 
perspectives to differintegration, namely the GrUnwald
Letnikov and the convolution approaches, respectively. 
Based on the previous results section four shows an 
example common in signal processing and systems theory 
practice. Finally, section five draws the main conclusions. 

II. GRUNwALD-LETNIKOV DIFFERINTEGRATION 

A. Derivatives 

GrUnwald-Letnikov derivatives are generalisations of 
the usual derivative definitions. Therefore, so. (a > 0) can 
be considered as the limit when hE 9t+ tends to zero in the 
right hand sides of the following expressions: 

a _ . (1 - e-sht 
s - 11m hll (3 a) h�O+ 

a _ . (esk - It' s - 11m ho. (3b) h�O+ 
On the other hand, we can use the binomial series to 

obtain: 

(l-h:-Sht = hlo. � (-Il (%-) e-shk, Re(s) > 0 (4a) 
k=O 

(e'hh� It =(-�t �(_l)k(%-)e'hk, Re(s)<0 (4b) 
k=O 

In the integer order cases, the right sides in the above 
expressions are identicaL With these fonnulae, we can 
write: 

, Exponential order ordinary function or distribution 
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iJ.= lim (-�t L(_I)k(%-)e'hk, Re(s)<O (5b) h�O+ k=O 
Note the right hand sides regions of convergence. This 

means that (5a) and (5b) lead to causal and anti-causal 
derivatives, respectively. These expressions, when inverted 
to the time domain correspond, respectively, to e): 

a I <Xl k(a) D+(t)= lim ha. L:(-l) \k o(t-kh) h�O+ k=O 

DU(t)= lim <-hl)a I (-I{�)O(t+kh) - h�O+ a k=O 
where oCt) is the Dirac delta impulse. 

(6a) 

(6b) 

Let fit) be a limited function and a > O. The 
convolution of (6a) and (6b) with fit) leads to the 
Griinwald-Letnikov forward and backward derivatives: 

I (-I{ (;)f(t - kh) 

la)(t)= lim :..:..k=---.::....O ____ _ + h�O+ ha 

� (_l)k (;)f(t + kh) 

fa) ak=O (t) = lim (-1) :..::..-.::....------ h�O+ ha 

(7a) 

(7b) 

Both expressions agree with the usual derivative 
definition when a is a positive integer. Moreover, 
expression (7a) corresponds to the left-hand sided 
Griinwald-Letnikov fractional derivative while (7b) has the 
extra factor (- 1)", when compared with the right-hand 
sided GrUnwald-Letnikov fractional derivative [13]. 
Therefore, (7a) and (7b) should be adopted for right and 
left signals (4), respectively. In [13] it is studied the 
convergence properties of the above series. It is 
noteworthy that we can have the forward derivative 
without existing the backward one and vice-versa. For 
example, let us apply both defmitions to the functionj(t) = 
eat. If a > 0, expression (7a) converges to Aa)(t) = all e't, 
while (7b) diverges. On the other hand, if fit) = e-ar 
equation (7a) diverges while (7b) converges to {a\t) = 
(_a)'" e-at. 

Within these defillitions, we can apply (7a) or (7b) 
successively for different values of a, leading also to a 
multi-step derivative DO. = Dr> DY d . . . d, with a = p + y 
+ !1 + ... + A.. This means that we have infinite ways of 
performing a fractional derivative. However, the order in 
which the fractional differential operators are concatenated 
is relevant. This is a very important matter that has 

3 We do not address here the problem of the convergence of the series 
(see [17]). 
4 We say that x(t} is a right [left] signal if�(-c(»)=O [x(+oo) = 0). 



originated a lot of problems mainly when solving 
fractional differential equations under non zero initial 
conditions [9]. When 0. is negative, in general, the series is 
divergent and an alternative definition needs to be derived 
as shown in the next section, 

B. Integrals 
The expressions for the GrUnwald-Letnikov derivatives 

are not useful for integration [13]. We should expect this 

b h 1
. 

.
. d' f: ecause -1 -sk � - IS a poor approxunatlOn an , ill act, 

-e s 

. . . h 1 + e-sh 1. . 
the bIlInear expressIOn -2 -1 -sh '" - IS supenor. Therefore, - e s 
we can adopt the second approximation to defme the 
fractional integration, leading to a more suitable fonn for 
the fractional integral computation. For small h E 9\+: 
1 (h 1 + e·s�o. ha � 0. -sk. 5 

Sa '::'\21 _ e-iii) = 2" "'" Cn e • Re(s) > 0 ( ) 
n=O 

where 

c�= I(-l)\
-;)��k) n�O 

k=O 

(8) 

(9) 

is the convolution of the coefficients of two binomial 
series. We can give another form to (9). As 

a) = (-It(�)k (10) 
where (a). = a(a+I) ... (a+n-I) is the Pochhammer 

symbol and remarking that n! = (-It(-nMn-k)! and (a). = 
(-I t.( -o-n+ 1 Ma)n-k for k � n, we obtain: 

Ca=(-It� � (aU-nbs (-It (11) n n! (-a-n+l)k k! k=O 
or 
a n� Cn =(-1) n! 2FJ[(0.,-n,-0.-n+ 1,-1] (12) 

where 2FJ is the Gauss Hypergeometric function. 
Consequently, approximation (8) leads to a GrUnwald
Letnikov like fractional integral of order a for a function 

j{t): 

h" 00 a r)(t) = lim 2" L Cn j(t - nh), a < 0 (13) 
h--+O+ n = 0 

For causal signals and h > 0, the series in (7a) and (13) 
become finite summations. The formulation (12) is 

interesting because it allows us to compute Cil 
recursively. n 

In fact, although the Gauss hypergeometric function does 
not have a closed form for those arguments, it satisfies the 
following recursion [6]: 

j{ ) - 20. � I) (n-I)(n-2)� 2) (14) n - a+n-}1 n- + (a,+n-l)(a+n-2fn-
withj(O) = 1, andj(I) = 2. 

III. CONVOLUTIONAL DIFFERINTEGRATION 

Here we are going to look for a linear system ( the 
Differintegrator) that has s" - with Re(s»O or Re(s)<O) -

5 The anti-causal case is similar 

as Transfer Function. To fmd its Impulse Response, we 
look for the inverse Laplace transfonn of sa, o(a)(t), with a 
E 9\. So the differintegration of a signalj(t) is given by the 
convolution of j(t) with o(a)(t). To present this 
convolutional differintegration definition, we introduce the 
following distributions: 

( v) t-I o± (t)=±r(v)u(±t),O<v<1 
and 

(n) {± �;�;U(±t) for n < 0 
o± (I) = 

o(n)(t) for n � 0 

(15) 

(16) 

where nEZ, s(a)(t) is the a differintegrator of 8(t) and 
u(t) is the Heaviside unit step. 

The differintegrations usually used [2} can be classified 
as right and left sided, respectively: 

�a\t) = [t{t) u(t - a)] * o�)(t) * 0tV)(t) (17a) 

�o.)(t) = [t{t) u(b - t)] * o�)(-t) * o�-V)(_t) (17b) 
The orders are given by (l = n - v, n being the least 

integer greater than a and 0 < v < 1. In particular, if a is 
integer then v = 0 (i). We must remark that, from our point 
of view, only the cases a = -00 and b = +00 cases are 
acceptable. Otherwise, we are incorporating signal 
characteristics into a defmition that we think it is not 
correct. We must state a definition valid for all functions. 
In other words, the definition must be the same 
independently of the signal being differintegrated, With 
this in mind, we rewrite (17a) and (l7b) as: 

jo.\t) = fit) * oCn)(t) * o(-v)(t) (18a) 
r + + 

�o.)(t) = j{t) * o�\-t) * o�-V)(_t) (I8b) 
The LT of (18a) and (ISb) are s"X(s) and (-stX(s), 

respectively, that differ on the factor (-It. This means 
that it is not a backward differintegration and so it is also 
unacceptable. From these considerations, we are led to the 
expressions for the forward and backward 
differintegrations with general format given by: 

.4o.)(t);:: fit) * o�)(t) * o�V)(t) (19a) 

,lo.)(t) == fit) * 8�)(t) * oc:v)(t) (19b) 
With these formulae. integration and derivation are 

inverse operations. From different orders of commutability 
and associability in the double convolution we can obtain 
distinct fonnulations. For example, in the forward case we 
have successively the Riemann-Liouville, the Caputo and 
the Generalised functions differintegration [2]: 

I!)(t) = 8�)(t) * �t) * o�-V)(t)} 
I!) (1) == �t) * o�)(t)} * S�-V\t) 

(20a) 
(20b) 

• All the above formulae remain valid in the case of integer integration, 
provided that we put B(II)(I) = B(t). 
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J!\t) = f(t) * {15�)(t) * 8�-V)(t)}, (20c) 

where nEZ, 0 :S v < 1. We must remark that (20a) 
corresponds to a v order integration followed by an n 
integer order derivative, while in (20b) we have the reverse 
situation. Concerning equation (20c), the convolution 
inside brackets is a generalised function given by 
[2,18,21]: 

15T)(t) ={8�)(t
) 

* 15�-V\t)}-����) u(t), (21) 
(l3=n-v) which can be considered as the Impulse Response 
of the fractional differintegrator. With it we can perform 
the computation in one step. Moreover, this formulation is 
a generalization of the well-known Cauchy integral. It is 
not difficult to obtain the corresponding backward 
formulations. 

IV. SELECTING A DIFFERINTEGRATION 

From previous sections it seems clear that: 
• the above three fonnulations are equivalent when 

looked from the LTpoint of view. 
• contrarily to the Grilnwald-Letnikov differintegration 

and (20c) in (20a) and (20b) the computation is done in 
two steps. 

We can combine all the differintegrations in the sense 
that we can decompose the order as 13=131+132+�3+ ... +13. 
and use anyone to compute the 131 (i = 1, ... , n) 
differintegration. This can lead us to a complicated 
situation or to results that are far from which we were 
waiting for. Consider the following problem. We want to 
check if x(t) is the solution of the differential equation 
X(312)(t) + a x(I13)(t) + b iI/5)(t) = 0, a, b E 91, for t> O. We 
can have the options: 
a) In the Riemann-Liouville formulation (20a), we have 

to compute 3 integrals and 4 integer derivatives. In 
fact, if we want to compute the above derivatives 
sequentially we have to do the following sequence of 
computations: x(l/5)(t) = D[D-415x(t)] � X(II3)(t) = 

D[D-13IlS X(l15)(t)] -+ P12)(t) = D{D{D-SI6 x(ll3)(t)]}. 
b) In the Caputo fonnulation (20b) we have the same 

operations but the derivatives and integrations are in 
reverse order: x(lIS)(t) = D-4/5 [Dx(t)] � x(l13)(t) = 

D-13/15 [DX(1I5l(t)]-+ X(312)(t) = D-516 {D[Dx(1/3l(t)]}. 
c) In the Cauchy defmition (20c) we have 3 fractional 

derivatives: X(l15}(t) = DlI\(t) -+ il13l(t) = 

d'IS[iIl5l(t)] -+ i312l(t) = D716[iIl3)(t)]. 
On the other hand, we must remark that each time we 
perform an integer order derivative, we are inserting initial 
conditions that may be meaningless in the problem at hand. 
In the sequence of operations presented above, we 
introduce the following initial conditions [1,2,14]: 
a) Riemann-Liouville case: D-415x(t)I�, D-2I3x(t)It=(}l

D-I12x(t)IA}l-, and DI12x(t)IF(}l-' To understand thes� 
results, we only have to remember that D[j{t)u(t)] = 

D[f"l(t)].u(t) + ja)(0+).8(t). 
b) Caguto case: x(t)I�, DI/5x(t)lr-o, DI13x(t)lr-o, and 

D43x(t)IFO. In this case, the fractional integration does 
not insert an initial condition, contrarily to the integer 
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order derivative. Then, we have D-1l[j{t)u(t)]' = 

D--u[f(t).u(t) + j{0+).8(f)1, leading to the result. 
c) Cauchy case: x(t)IFo, DI 5x(t)IFO, and DII3X(t)\r-o. This 

result directly from the equation. Of course, we can 
use other initial conditions by specifying other 
derivatives, even not ''visible'' in the equation. We 
can write, for example: X(3/2l(t) + O.x(l)(t) + O .. pf2\t) 
+a x(l13)(t) + b X(IIS)(t) = 0 and insert the corresponding 
initial conditions [14]. 

From these considerations we must conclude that 
Cauchy's is the most useful differintegration, because: 

• It does not need superfluous derivative computations 
• It does not insert unwanted initial conditions 
• It is more flexible and allows a sequential 

computation. 

V. CONCLUSIONS 

This paper presented two general frameworks for 
differintegration defmitions, namely local and global 
fonnulations. The fIrst approach is the Grilnwald-Letnikov 
defInition that is a generalisation of the common 
derivative. It was proposed a new defmition for the integral 
case suitable for numerical algorithms. The global 
definition has a convolutional fonnat. Among the 
approaches within this formulation it was choosen the 
Cauchy defintion because it enjoys all the characteristics 
required in signal processing and control applications. 
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