
Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Dissertação de Mestrado

Mestrado em Engenharia Informática

Cooperative Memory and
Database Transactions

Ricardo Jorge Freire Dias (26579)

Lisboa
(2008)

Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia
Departamento de Informática

Dissertação de Mestrado

Cooperative Memory and
Database Transactions

Ricardo Jorge Freire Dias (26579)

Orientador: Prof. Doutor João Manuel Santos Lourenço

Dissertação apresentada na Faculdade de
Ciências e Tecnologia da Universidade Nova
de Lisboa para a obtenção do Grau de Mestre
em Engenharia Informática.

Lisboa
(2008)

To my beloved wife Ana

Acknowledgements

First I would like to thank my supervisor Professor João Lourenço for his support and
friendship along this year, and mostly important for believe in me.

To Nuno Preguiça for his critiques and excellent tips which help to improve the
quality of my work.

To my wife Ana who always stood by my side and gave me the motivation I needed
to finish this work.

To my parents who always did everything they could to help me achieving my
objectives.

To my colleagues and friends Ricardo Marques, Ricardo Cardoso, Daniel Martins,
Francisco Castanheiro, Miguel Figueiredo, Bruno Rodrigues, Vitor Gouveia, Nuno Ro-
cha, Liliana Pratt, Filipa Silva and Alexandra Cabrita for their support.

This work was partially supported by Sun Microsystems and Sun Microsystems
Portugal under the “Sun Worldwide Marketing Loaner Agreement #11497”.

vii

Summary

Since the introduction of Software Transactional Memory (STM), this topic has re-
ceived a strong interest by the scientific community, as it has the potential of greatly
facilitating concurrent programming by hiding many of the concurrency issues un-
der the transactional layer, being in this way a potential alternative to the lock based
constructs, such as mutexes and semaphores. The current practice of STM is based
on keeping track of changes made to the memory and, if needed, restoring previous
states in case of transaction rollbacks. The operations in a program that can be re-
versible, by restoring the memory state, are called transactional operations. The way
that this reversibility necessary to transactional operations is achieved is implementa-
tion dependent on the STM libraries being used. Operations that cannot be reversed,
such as I/O to external data repositories (e.g., disks) or to the console, are called non-
transactional operations. Non-transactional operations are usually disallowed inside a
memory transaction, because if the transaction aborts their effects cannot be undone.
In transactional databases, operations like inserting, removing or transforming data in
the database can be undone if executed in the context of a transaction. Since database
I/O operations can be reversed, it should be possible to execute those operations in the
context of a memory transaction.

To achieve such purpose, a new transactional model unifying memory and data-
base transactions into a single one was defined, implemented, and evaluated. This
new transactional model satisfies the properties from both the memory and database
transactional models. Programmers can now execute memory and database operations
in the same transaction and in case of a transaction rollback, the transaction effects in
both the memory and the database are reverted.

Keywords: Transaction, Database Systems, Software Transactional Memory, Concur-
rency Control.

ix

Sumário

Desde a introdução da Memória Transaccional por Software (STM), este tópico tem
recebido grande interesse por parte da comunidade cientı́fica, pois a memória transac-
cional por software tem o potencial de facilitar bastante o problema da programação
concorrente através de um aumento do nı́vel de abstracção das primitivas de sincroni-
zação, como os semáforos ou mutexes. A prática corrente das STMs baseia-se em man-
ter um histórico das modificações da memória durante uma transacção e, se necessário,
restaurar o estado anterior caso a transacção aborte. As operações de um programa que
são reversı́veis, através do restauro de um estado da memória, são chamadas operações
transaccionais. A maneira como esta reversibilidade necessária às operações transac-
cionais é atingida depende da implementação da biblioteca de STM usada. Operações
que não são reversı́veis, tais como I/O para repositório externo de dados ou para a
consola, são chamadas operações não transaccionais. As operações não transaccionais
não são usualmente permitidas no contexto de uma transacção em memória, pois os
seus efeitos não podem ser revertidos no caso da mesma abortar. Nas bases de dados
transaccionais, operações como inserir, remover ou actualizar dados, podem ser rever-
tidas se executadas no contexto de uma transacção. Assim, sendo as operações de I/O
para uma base de dados revertı́veis, deveria ser possı́vel poder realizar essas mesmas
operações no contexto de uma transacção em memória.

Para alcançar tal objectivo, um novo modelo transaccional que unifica as tran-
sacções em memória e em base de dados numa única transacção foi desenvolvido,
implementado e avaliado. Este novo modelo satisfaz as propriedades garantidas por
ambos os modelos transaccionais em memória e em base de dados. Os programadores
podem agora executar operações na memória e na base de dados na mesma transacção,
e no caso de a transacção abortar, então todos os seus efeitos são revertidos quer na
memória como na base de dados.

Palavras-chave: Transacção, Bases de Dados, Memória Transaccional por Software,
Controlo de Concorrência.

xi

Contents

1 Introduction 1
1.1 Overview and Motivation . 1
1.2 Problem Statement and Work Goals . 3
1.3 Contributions Of This Thesis . 5
1.4 Document Outline . 5

2 Related Work 7
2.1 Transaction Model . 7

2.1.1 Transaction Life-Cycle . 8
2.1.2 Nested Transactions . 9

2.2 Concurrency Control . 11
2.2.1 Blocking Synchronization . 12
2.2.2 Non-Blocking Synchronization . 13
2.2.3 Read Write Locks . 13
2.2.4 Timestamp Ordering . 14
2.2.5 Multiversion Timestamp Ordering 15
2.2.6 Optimistic methods . 16

2.3 Transaction Recovery . 16
2.3.1 Undo Log . 17
2.3.2 Redo Log . 17

2.4 Database Transactions . 17
2.4.1 Isolation Levels . 18
2.4.2 Snapshot Isolation . 19
2.4.3 Database and Distributed Transactions 19

2.5 Transactional Memory . 20
2.6 Software Transactional Memory . 21

2.6.1 Non-Transactional Accesses . 23
2.6.2 Software Transactional Memory Features 24
2.6.3 Data Granularity . 26

xiii

CONTENTS

2.6.4 Nested Transactions . 27

2.6.5 Irrevocable Actions . 27

2.6.6 Case Studies . 28

3 CTL Handling System 35

3.1 Motivation . 35

3.2 Concept and Model . 36

3.3 Implementation . 38

3.4 Using the Handlers . 39

3.5 Performance Evaluation . 41

3.6 Related Work . 42

4 Integration of Database and Memory Transactions 45

4.1 Unified Transactional Model . 45

4.2 Implementation . 47

4.3 Using the Model . 49

4.4 Unified Model Problems . 49

4.4.1 Serialization Incompatibilities . 50

4.4.2 Solution Approach . 52

5 Use Case Example 55

5.1 Use Case Description . 55

5.1.1 Database model . 56

5.1.2 Memory Data Structures . 56

5.1.3 Description of Repository Operations 57

5.2 Performance and Comparison Tests . 57

6 Conclusions 63

6.1 Future Work . 64

A Raw Test Data 65

A.1 Handler System Overhead Tests . 65

A.1.1 Load Pattern: 5% put, 5% del, 90% get 66

A.1.2 Load Pattern: 45% put, 45% del, 10% get 67

A.2 Article Repository Performance Tests . 68

A.2.1 Load Pattern: 5% put, 5% del, 90% get 68

A.2.2 Load Pattern: 30% put, 30% del, 40% get 70

A.2.3 Load Pattern: 45% put, 45% del, 10% get 72

xiv

CONTENTS

B CTL Handler System API 75
B.1 Handler Function Types . 75
B.2 Handler System Functions . 76

C CTL Database Integration API 83

xv

List of Figures

1.1 Moore’s Law Diagram. 2
1.2 Example of memory and database transactions interleavings. 4

2.1 State diagram of a transaction. 9
2.2 Example of three different schedules for T1 and T2. 12
2.3 Examples of STM constructs. 22
2.4 Example of non-transactional access with locks. 23
2.5 Example of two approaches for transaction coordination. 24
2.6 Linked list item transfer operation. 25
2.7 Example of the usage of the orElse statement. 26
2.8 Example of an irrevocable operation. 28
2.9 Example of the TL2 API’s use. 30
2.10 Example of the JVSTM API’s use. 32
2.11 Example of the DSTM API’s use. 33

3.1 Calling a transaction code block in a library. 35
3.2 Handlers for STM compensation actions. 37
3.3 Transaction life-time state diagram with handler support. 38
3.4 Handler System API: prepare-commit handler registering functions. 39
3.5 Linked list add operation with handler system support. 40
3.6 Linked list removehead operation. 40
3.7 Linked list removehead operation with handler system support. 41
3.8 Overhead introduced by the handler support in read-dominated envi-

ronment. 42
3.9 Overhead introduced by the handler support in write-dominated envi-

ronment. 43

4.1 Example of two distinct transactions interleavings. 46
4.2 Example of the unified model use. 46
4.3 TxStart front-end for using database transactions. 48

xvii

LIST OF FIGURES

4.4 do commit function handler definition. 48
4.5 Example of inserting an integer into a memory array and into a database

table. 49
4.6 Definition of test application operations. 51
4.7 Trace of the execution of two operations by two threads. 51
4.8 Serialization schedule of memory and database transactions. 52
4.9 Validation algorithm pseudo-code . 54
4.10 Trace of the execution using SELECT as a write. 54
4.11 Trace of the execution using commit validation algorithm. 54

5.1 Application database entity-relation model. 56
5.2 Repository 5% inserts, 5% deletes, 90% lookups with high contention

(top) and low contention (bottom) . 59
5.3 Repository 30% inserts, 30% deletes, 40% lookups with high contention

(top) and low contention (bottom) . 60
5.4 Repository 45% inserts, 45% deletes, 10% lookups with high contention

(top) and low contention (bottom) . 61

xviii

List of Tables

2.1 Table with the lock acquisition possible combinations. 14

2.2 Transaction isolation levels . 18

2.3 TL2 engine properties. 29

2.4 CTL engine properties. 30

2.5 JVSTM engine properties. 31

2.6 DSTM engine properties. 32

A.1 Red-Black Tree, CTL Deferred Update, 30 sec, 1000 keys, 5% put, 5% del,
90% get. Without Handlers . 66

A.2 Red-Black Tree, CTL Deferred Update, 30 sec, 1000 keys, 5% put, 5% del,
90% get. With Handlers No Free . 66

A.3 Red-Black Tree, CTL Deferred Update, 30 sec, 1000 keys, 5% put, 5% del,
90% get. With Handlers Do Free . 66

A.4 Red-Black Tree, CTL Deferred Update, 30 sec, 1000 keys, 45% put, 45%
del, 10% get. Without Handlers . 67

A.5 Red-Black Tree, CTL Deferred Update, 30 sec, 1000 keys, 45% put, 45%
del, 10% get. Without Handlers No Free 67

A.6 Red-Black Tree, CTL Deferred Update, 30 sec, 1000 keys, 45% put, 45%
del, 10% get. Without Handlers Do Free 67

A.7 Article Repository, CTL Deferred Update, 60 sec, 500 keys, 5% put, 5%
del, 90% get. 68

A.8 Article Repository, Lock, 60 sec, 500 keys, 5% put, 5% del, 90% get. . . . 68

A.9 Article Repository, Only Database, 60 sec, 500 keys, 5% put, 5% del, 90%
get. 68

A.10 Article Repository, CTL Deferred Update, 60 sec, 10000 keys, 5% put, 5%
del, 90% get. 69

A.11 Article Repository, Lock, 60 sec, 10000 keys, 5% put, 5% del, 90% get. . . 69

A.12 Article Repository, Only Database, 60 sec, 10000 keys, 5% put, 5% del,
90% get. 69

xix

LIST OF TABLES

A.13 Article Repository, CTL Deferred Update, 60 sec, 500 keys, 30% put, 30%
del, 40% get. 70

A.14 Article Repository, Lock, 60 sec, 500 keys, 30% put, 30% del, 40% get. . . 70
A.15 Article Repository, Only Database, 60 sec, 500 keys, 30% put, 30% del,

40% get. 70
A.16 Article Repository, CTL Deferred Update, 60 sec, 10000 keys, 30% put,

30% del, 40% get. 71
A.17 Article Repository, Lock, 60 sec, 10000 keys, 30% put, 30% del, 40% get. . 71
A.18 Article Repository, Only Database, 60 sec, 10000 keys, 30% put, 30% del,

40% get. 71
A.19 Article Repository, CTL Deferred Update, 60 sec, 500 keys, 45% put, 45%

del, 10% get. 72
A.20 Article Repository, Lock, 60 sec, 500 keys, 45% put, 45% del, 10% get. . . 72
A.21 Article Repository, Only Database, 60 sec, 500 keys, 45% put, 45% del,

10% get. 72
A.22 Article Repository, CTL Deferred Update, 60 sec, 10000 keys, 45% put,

45% del, 10% get. 73
A.23 Article Repository, Lock, 60 sec, 10000 keys, 45% put, 45% del, 10% get. . 73
A.24 Article Repository, Only Database, 60 sec, 10000 keys, 45% put, 45% del,

10% get. 73

xx

1
Introduction

Concurrent programming has been a laborious experience over the past decades, not
only due to the appropriate concurrent programming abstractions available but also
due to the lack of hardware support. Until recently, computers with more than one
processor were only a mirage to the home user and, hence, the development of concur-
rent applications were not a major requirement to software companies. With the ad-
vent of multicore processors, concurrent programming is becoming widespread, and
the need of suitable synchronization primitives led to the development of Software
Transactional Memory.

1.1 Overview and Motivation

Gordon Moore, back in 1965, has observed that the number of transistors per square
inch doubles every 18 months and the rate of growth has been relatively stable since
then (Figure 1.1). As the number of transistors was growing, the processor clock fre-
quency also grew as well, but recently, since the advent of CPUs with GHz clock fre-
quency, the growing of clock frequency has been slowing down, even though the num-
ber of transistors is still rising.

CPU manufacturers started to incorporate more than one core inside a unique pro-
cessor, and this trend lead to a situation where there is more processing power than
what can be used by most applications. The solution is to explore concurrency in ap-
plications whereas sequential processing was used. Now that there is a real demand
on exploring concurrency, concurrent programming needs to become a friendly and

1

1. INTRODUCTION 1.1. Overview and Motivation

Figure 1.1: Moore’s Law Diagram.

easier programming abstraction.

Until now, the practice of multithreaded processing on multiprocessor machines
was, in most cases, done in the academic research environments. The reason for this
fact is the inherent difficulty of designing and programming highly concurrent pro-
grams and data structures. This difficulty is also due to lack of a suitable framework to
deal with concurrency: the usual synchronization constructs (locks and condition vari-
ables), while simple on the paper, may become unpredictable and error prone in com-
plex systems. Additionally there is a problem with scaling: the use of coarse grained
locks in large data structures do not scale. Fine grained locks scale well and but are
prone to many concurrent problems, such as deadlocks and priority inversion.

With the increasing number of cores in a single CPU chip, multiprocessor machines
are widespreading through home desktop computers and laptops. It is time to start
taking advantage of their computational power by developing highly concurrent pro-
grams. To succeed in this task it is, however, necessary to rise the abstraction level of
synchronization constructs currently available. Software Transactional Memory (STM)
is a good approach towards such goal.

In sequential programs, the programmer only had to keep in mind a single control
flow. In concurrent programming this single control flow switched into a set of mul-
tiple concurrent flows, which are impossible to the common human mind to keep up
with. Software transactional memory aims at softening this problem by serializing the

2

1. INTRODUCTION 1.2. Problem Statement and Work Goals

multiple control flows into a single logical one. When using the STM programming
model, the programmer is given much of the feeling of the sequential model, which
greatly facilitates concurrent programming.

STM has its roots on database transactions which are based in the transactional
model. In the transactional model the unit of execution is the atomic code block, en-
closing one or more operations. This code block will execute as a single operation and,
therefore, will not interleave with other code blocks executing concurrently. If any of
the blocks’ operation fails, then none will be executed.

Using some properties of database transactions, STM provides the means to syn-
chronize threads efficiently and to avoid lock based problems, such as deadlocks and
priority inversion. The current best practice of STM is based on keeping track of
changes made to the memory and, if needed, restoring the previous state in case of
a transaction rollback. The operations in a program that can be reversed, by restor-
ing the memory state, are called transactional memory operations. The way that this
reversibility is achieved is dependent of the implementation of each STM framework
being used. Some operations, such as I/O to external data repositories or to console
buffers, however, cannot be reversed. Since these types of operations are not directly
reversible, they should not be used inside memory transactions. To widespread the
adoption of the STM programming model it would be desirable to have a simple
methodology to adapt the current applications to use this new programming model,
and this restriction is a major drawback.

Some applications make use of a data repository to store their permanent data, and
for this purpose some use transactional databases. Databases have been well studied
in the past decades and they do support all the properties of the transactional model.
Databases use transactions to control concurrency accesses and to maintain consis-
tency. If every database access is done in the context of a transaction there is the guar-
antee that the access will never corrupt the database state and, mostly important, that
it can be reverted. To widely accept software transactional memory as programming
abstraction, it is important to support database accesses within memory transactions.

1.2 Problem Statement and Work Goals

The current practice of STM is based on keeping track of changes made to the main
memory and, if needed, restoring previous states in case of transaction rollbacks. The
way that this reversibility is achieved is implementation dependent on the STM frame-
works being used. Operations that cannot be reversed, such as I/O to external data
repositories (e.g., disks) or to the console buffers, are usually not allowed inside a

3

1. INTRODUCTION 1.2. Problem Statement and Work Goals

memory transaction, as if the transaction aborts their effects cannot be undone.

Another class of I/O operations that are used frequently is database access. Most
applications use databases to store data which needs to persist by different instances of
the application. Such applications usually depend on the concurrency control mecha-
nisms provided by the database system to synchronize concurrent threads which may
exist in the application. In some applications this synchronization is not enough as,
sometimes, applications need to synchronize memory data structures together with the
database. In these cases, the applications mainly use lock based synchronization mech-
anisms to prevent concurrent accesses to shared memory data structures and have to,
simultaneously, be aware of database transactions when accessing data in the database.

Since STM engines implement a high level abstraction layer to synchronize memory
data structures, it would be useful to use them in the context of the applications just
described. But first, there is the need to solve the problem of reverting operations on a
database in the scope of a memory transaction. In transactional databases, operations
like inserting, removing or transforming data in the database can be undone within
the context of a transaction. Since database I/O operations can be reversed, it should
be possible to execute those operations in the context of a memory transaction.

The purpose of this work is to study the relationships between memory and database
transactions, in order to understand how do they affect each other, and how do their
coexistence and cooperation be made sound.

Figure 1.2 shows examples of some of the different interleavings between memory
and database transactions that will be studied in this work (the memory transaction is
delimited by the bracketed atomic construct).

1 atomic {
2 //...
3 beginDBTransaction();
4 //...
5 endDBTransaction();
6 //...
7 }

1 beginDBTransaction();
2 //...
3 atomic {
4 //...
5 }
6 //...
7 endDBTransaction();

1 atomic {
2 //...
3 beginDBTransaction();
4 //...
5 }
6 //...
7 endDBTransaction();

1 beginDBTransaction();
2 //...
3 atomic {
4 //...
5 endDBTransaction();
6 //...
7 }

Figure 1.2: Example of memory and database transactions interleavings.

4

1. INTRODUCTION 1.3. Contributions Of This Thesis

As depicted in Figure 1.2, the plan is to allow total freedom in intertwining memory
and database transactions. To achieve such goal, the cooperation semantics must be
defined in order to fully specify a program behavior in such conditions.

1.3 Contributions Of This Thesis

The focus of this dissertion is the cooperation of database transactions with memory
transactions. To achieve this, the CTL [Cun07] STM engine was adapted to be able
to support apparently irreversible operations, by defining compensating actions, exe-
cuted in key moments of a memory transaction. This support was then used to support
the sound cooperation of database and memory transactions.

The main contributions of this thesis are:

• Handler system — The handler system provides mechanisms to define compensa-
tion actions to revert the effects of operations that cannot be reversed directly by
the STM engine ([DLC08]).

• Database transactions support — We present a unified model between database
and memory transactions which allows the access to a database repository from
within a memory transaction.

• Identification and resolution of isolation anomalies — The integration between data-
base transactions and memory transaction introduced some non expected prob-
lems related to the Isolation property of both memory and database transactions,
which were identified and solved.

1.4 Document Outline

This document is divided in the following chapters:

• Chapter 1. This Chapter introduced the motivations, the problem under study
and highlighted the achieved contributions.

• Chapter 2. This Chapter reports on the state of the art in software transactional
memory and its foundations on the transactional model implemented in database
systems.

• Chapter 3. This Chapter covers the specification and implementation of the han-
dler system, and the evaluation of the overhead introduced by this new feature.

5

1. INTRODUCTION 1.4. Document Outline

• Chapter 4. This Chapter covers the integration of database transactions with
memory transactions by unification of the two models. The semantics of the new
unified model is described as well as its implementation. The serialization prob-
lems found are also analyzed and its solution described.

• Chapter 5. This Chapter presents a use case example, that will be used to func-
tionally validate the main aim of this work. This same use case example will be
used as a benchmark to evaluate the performance of the proposed model against
a more conventional lock based approach.

• Chapter 6. This Chapter summarizes the results of this investigation and brings
out some pointers for future research directions.

6

2
Related Work

To study the cooperation between memory and database transactions, both models
must be studied. This chapter describes both models based on the state of the art
literature.

2.1 Transaction Model

Transactions are known for a long time on the database community. They have been
very well studied and support a set of standard features with standard semantics.

The transactional model is a high level abstraction to deal with concurrency, as it
hides most of its complexity. With the transactional model, a programmer only has
to group sequences of operations into transactions. This will ensure that all of the
operations in the sequence will execute or that none will and, from a concurrency per-
spective, that all operations will execute as an unique atomic operation. If there are
many processes executing the same set of operations, the transactional layer will exe-
cute each set of operations as if it were executing alone in the system as a sequential
program.

The transactional model defines four properties known as ACID properties [SKS06]:

• Atomicity. Either all operations of the transaction are reflected properly in the
system, or none are.

• Consistency. Execution of a transaction in isolation (that is, with no other transac-
tion executing concurrently) preserves the consistency, meaning that the global

7

2. RELATED WORK 2.1. Transaction Model

state moves from one consistent state to another.

• Isolation. Even though multiple transactions may execute concurrently, the sys-
tem guarantees that, for every pair of transactions Ti and Tj , it appears to Ti that
either Tj finished its execution before Ti started or Tj started its execution after
Ti finished. Thus, each transaction is unaware of other transactions executing
concurrently in the system.

• Durability. After a transaction completes successfully, the changes made to the
system will persist, even in the presence of system failures.

A transactional system with these properties allows programmers to develop con-
current programs with minimal changes while using the sequential programming men-
tal scheme. Programs basically become more simple dealing with concurrency control
as the transactional model deals with it.

2.1.1 Transaction Life-Cycle

The life-cycle of a transaction is composed by several states as described in [EN00]:

• Active. The transaction sequence is currently executing.

• Partially committed. The sequence of operations has been concluded and the con-
currency controller checks whether there is an interference with other transac-
tions executing concurrently. Furthermore, integrity constraints are also checked
by the transactional engine.

• Committed. The transaction has been successfully completed.

• Failed. The effects of the transaction on the system must be undone.

• Terminated. The transaction has been successfully completed or has failed. If the
transaction has failed, no effect on the system can be observed.

The state diagram corresponding to a transaction is shown in Figure 2.1. We say
that a transaction has committed only if it has entered the committed state. Similarly,
we say that a transaction has aborted if it has entered the failed state. A transaction is
said to have terminated if it has either committed or failed. Before entering the active
state a transaction is said to be in a state called Begin of Transaction (BOT).

8

2. RELATED WORK 2.1. Transaction Model

Begin active

partially
commited

failed

committed

End

Figure 2.1: State diagram of a transaction.

2.1.2 Nested Transactions

Nested transactions allow to compose two or more previously written transactions into
a single new transaction (also referred to as subtransactions) [Mos81].

The composition of transactions is not a difficult task if assuming that subtrans-
actions will be executed sequentially but, if we specify that the transactions are to be
executed concurrently, then many problems may arise [Mos81]. To solve these prob-
lems the composition should be run as a transaction in its own right, but also provide
concurrency control within the transaction [Mos81]. The natural method is to con-
sider the whole transaction as a microcosm and synchronize its components (called
its subtransactions) with respect to each other in the way whole transactions are syn-
chronized. This results in two levels of transactions: top-level transactions, the kind of
transactions discussed in the previous section; and subtransactions, the separate pieces
composed to make new composite top-level transactions.

A transaction may contain any number of subtransactions, and every subtransac-
tion, in turn, may be composed of any number of subtransactions, resulting in an arbi-
trary deep hierarchy of nested transactions.

As the top-level transactions guarantee the ACID properties, for subtransactions it
is sufficient to provide weaker properties [HR87]. A subtransaction appears atomic
to the surrounding transaction and may commit or abort independently. It may abort
without affecting the outcome of the surrounding transaction. However, the commit
of a subtransaction is totally dependent of its superiors implementation, even if it com-
mits, aborting one of its superiors will undo its effects. All updates of a subtransaction
become permanent only when the enclosing top-level transaction commits. Further-
more, it would be unnecessarily restrictive to require consistency to be preserved by

9

2. RELATED WORK 2.1. Transaction Model

a subtransaction. Therefore, subtransactions only comply to the atomicity and isolation
properties.

There are three main semantic models for nested transactions [ALS06]: flat nested
transactions, close nested transactions and open nested transactions.

Flat Nested Transactions

When flat nested transactions semantic model is used, each subtransaction is inlined
within the parent transaction. If a subtransaction aborts the parent transaction will
abort as well, since the subtransactions operations (reads and writes) are also part of
the parent transaction. When the subtransaction commits the changes are only visible
to the parent transaction and only when the top-level transaction commits the changes
become visible to other top-level transactions.

Close Nested Transactions

This semantic model is the most intuitive, and usually, when we refer to nested trans-
action only, we are referring to close nested transactions. As described in [MH06], in
this model, only transactions with no current children can access data; such accesses
are either reads or writes. Logically, the (globally committed) data are not updated
until a top-level transactions commits. When a transaction reads a value, it sees the
value in the current context, otherwise the value seen by its parent. In this model, two
transactions conflict if both access the same data and at least one of the accesses is a
write, and neither transaction is an ancestor of the other.

When a subtransaction commits, then all of its writes become permanent in the
context of its parent, when a top-level transaction commits then all its writes become
permanent in the (global) system. When a transaction aborts, either for a subtransac-
tion or a top-level transaction, its reads and writes are simply discarded. Importantly,
a child transaction abort does not abort its parent, though the parent may be notified
of the abort and take alternative action of its choosing, including aborting itself. One
interesting property of this model is that a child’s operation will never conflict with its
parent (or any other ancestor).

Open Nested Transactions

Open nested transaction and closed nested transaction models are quite similar. How-
ever, in the former case, the parent and child execute at different levels of abstraction
[Mos06]. Sometimes many conflicts between transactions at the level of memory words
are what is called false conflicts: conflicts that occur at low level of abstraction, but which

10

2. RELATED WORK 2.2. Concurrency Control

are not essential to the semantics of the operations. The subtransactions work with a
low level of abstraction instead of the parent transactions that work at a high level of
abstraction.

When a subtransaction aborts it simply discards the changes made, as in the case
of close nested transactions, and does not abort its parent transaction.

The changes committed by a subtransaction immediately become visible to other
top-level transactions. If the parent transaction decides to abort after a committed
subtransaction, then the parent has to undo the subtransactions effects at a high level
of abstraction, using compensating transactions, and not just simple return to the state
prior to their changes. Thus, from the standpoint of the lower level, the upper level
undo is forward progress.

Linear Nesting

Linear nesting [MH06] is a model for nesting transactions in which the subtransac-
tions of one transaction do not execute concurrently between each others. The seman-
tic model could be one of the three semantics described in previous sections. In this
model, top-level transactions continue to execute concurrently. Another issue is that,
when a subtransaction starts its execution, the parent transaction stops and waits for
the finish of the subtransaction, and after that continues its execution.

2.2 Concurrency Control

One of the goals of the concurrency control is to prevent that concurrent execution
cause unpredicted interleavings in the application programs which lead to malfunc-
tion. This objective addresses the consistency (C) and isolation (I) of the ACID proper-
ties.

The consistency property can be seen as a set of object invariants that define the
conditions that an operation has to satisfy when modifying the system state. To modify
the system state, often the state must be made temporarily inconsistent while it is being
transformed into a new consistent state. A transaction that is started with a consistent
system state may make the state temporarily inconsistent, but will always terminate
by producing a new consistent state. If a set of transactions are executed one at a time
(sequentially), no transaction sees the inconsistent state of any other, this property may
not hold if multiple transactions are executed concurrently. To prevent this situation,
each transaction has to execute isolated from the others in order to give each one a
permanent consistent view of the system state.

The isolation can be achieved by applying the serializability theory, formalized by

11

2. RELATED WORK 2.2. Concurrency Control

Eswaran et al. [EGLT76], which defines how to schedule the actions of two concurrent
transactions in order to appear that they were executed one after another.

The example in Figure 2.2 shows three schedules (S1, S2, and S3) of two transac-
tions (T1 and T2) where the invariant A = B should hold. The schedule S1 is the serial
schedule in which T1 executes before T2. The schedule S2 is equivalent to S1 because,
the invariant is preserved at the end of the execution. The schedule S3 does not pre-
serve the invariant, therefore is not a valid schedule.

T1 T2

1 A = A+100 . . .
2 B = B+100 . . .
3 . . . A = A*2
4 . . . B = B*2

(a) Schedule 1

T1 T2

1 A = A+100 . . .
2 . . . A = A*2
3 B = B+100 . . .
4 . . . B = B*2

(b) Schedule 2

T1 T2

1 A = A+100 . . .
2 . . . A = A*2
3 . . . B = B*2
4 B = B+100 . . .

(c) Schedule 3

Figure 2.2: Example of three different schedules for T1 and T2.

It is very difficult to know a priori which data will be accessed by a transaction,
hence, generating schedules before execution is difficult as well [GR92]. The sched-
ules must be dynamically generated as the execution progresses. Consistent dynami-
cally generated schedules can be achieved with two main synchronization approaches:
blocking and non-blocking synchronization.

2.2.1 Blocking Synchronization

In a concurrent environment, a blocking synchronization approach guarantees mutual
exclusion access, to the same data, by different processes. If a process tries to access
shared data which is already being accessed by another process, then it has to wait
for the data to be freed. This type of approach uses lock based techniques to prevent
other processes from accessing the same data. Locks are acquired by a process before
accessing the shared data and released after the operation is complete.

Blocking synchronization may suffer from problems of deadlocking and priority
inversion, inherited from lock based techniques.

12

2. RELATED WORK 2.2. Concurrency Control

2.2.2 Non-Blocking Synchronization

Non-blocking synchronization guarantees progress of the system as a whole indepen-
dently of the interleavings or any process failures. Non-blocking algorithms are de-
signed under the assumption that synchronization conflicts are rare and should be
handled only as exceptions. When a synchronization conflict is found then the opera-
tion/transaction has to be restarted.

Non-blocking algorithms can be classified according to the kind of progress guar-
antee that they make [FH07, HLMWNS03]:

• Obstruction freedom: “is the weakest guarantee: a thread performing an operation
on the data structure is only guaranteed to make progress as long as it does not
contend with other threads for access to any location (. . .). This requires an out-
of-band mechanism to avoid livelock; exponential backoff is one option.”

• Lock freedom: ensures that at least one thread always makes progress hence “the
system as a whole makes progress, even if there is contention. (. . .) This is suffi-
cient to prevent livelock, although it does not offer any guarantee of per-thread
fairness.”

• Wait freedom: “adds the requirement that every thread makes progress, even if
it experiences contention.” “It ensures that every thread will continue to make
progress in the face of arbitrary delay (or even failure) of other threads.”

A wait free algorithm is always lock free and a lock free algorithm is always ob-
struction free, but not the other way around. Non-blocking synchronization mecha-
nisms avoid liveness problems such as deadlock and priority inversion [HM93], but
do not necessarily avoid other problems like livelock.

2.2.3 Read Write Locks

In this lock based technique there are two types of lock acquisition: one for read access
and another for write access. Read (or shared) locks can be acquired, over the same
object, by different processes in a shared mode. In opposition to write (or exclusive)
locks which can only be acquired, over the same object, by different processes in an
exclusive mode. A process can acquire a read lock, over an object, if there is not any
type of lock already acquired by other process, or if the lock acquired by other process
is also a read lock. A process can acquire a write lock only if there is not any type of
lock already acquired by other process. The table 2.2.3 summarizes the acquire policy.

13

2. RELATED WORK 2.2. Concurrency Control

Read Lock Write Lock
Read Lock Yes No
Write Lock No No

Table 2.1: Table with the lock acquisition possible combinations.

When a process has a read lock over an object, it can upgrade it to a write lock
only if no other process has also a read lock over the same object. If there are other
processes that have read locks over the same object, then the process has to wait for the
other processes to release the read locks. This operation must not be used frequently
because it is very expensive in terms of performance [SATH+06]. Another negative hit
on performance is the fact that for each read, it is necessary to acquire a lock. Other
disadvantage of this technique is that it is prone to the starvation, priority inversion and
deadlock phenomenas.

Frequently, when this technique is used, it is used in conjunction with the two-
phase locking protocol. The two-phase locking protocol is a necessary and sufficient
condition to generate serializable schedules [EGLT76]. This protocol states that there
are two phases: the growing phase and the shrinking phase. In the growing phase the
process only acquires locks, but may not release any lock. In the shrinking phase the
process only releases locks, but may not acquire any new locks. The problem with two-
phase locking is that it lowers the level of concurrency. To increase the concurrency level
different techniques have to be used in trade off of getting inconsistent schedules.

This type of technique is also called pessimistic concurrency control, as it always
blocks if a concurrency conflict arises.

2.2.4 Timestamp Ordering

This technique is an approach to resolve the deadlock problem of lock based tech-
niques. Each transaction T is assigned with a timestamp TS(T). For each transaction
Ti with timestamp TS(Ti) it is possible to create a total order of requests from trans-
actions according to transactions’ timestamps [RSPML78]. If two transactions (T1 and
T2) execute concurrently, and T1 requests access to a data item x that is already being
accessed by T2, then transaction T1 has three options: T1 waits for T2 to finish its access
to x, T1 aborts itself and restarts or T2 is preempted and T1 gets hold of x. The action
taken by T1 is decided by a schedule protocol by comparing the timestamps of the two
transactions. Two possible scheduling protocols are [BK91]:

• WAIT-DIE: “which forces a transaction to wait if it conflicts with a running trans-
action whose timestamp is more recent or to die (abort and restart) if the running
transaction’s timestamp is older (. . .).”

14

2. RELATED WORK 2.2. Concurrency Control

• WOUND-WAIT: “which allows a transaction to wound (preempt by suspending)
a running one with a more recent timestamp or forces the requesting transaction
to wait otherwise (. . .).”

Both protocols use implicit locking when forcing transactions to wait for one an-
other and also both guarantee that a deadlock situation will not arise.

The timestamp ordering technique ensures freedom from deadlock, since no trans-
action waits forever. However, it does not solve the problem of starvation.

2.2.5 Multiversion Timestamp Ordering

The main idea of this technique is that every object in the system is considered to have
a time history and object addresses become <name, time> rather than simply < name >.
In such a system, an object is never updated or deleted, instead is created an history of
versions of the same object in which each version is indexed with the timestamp of the
transaction that produced that version [Gra81, BK91].

When a transaction issues a read operation over an object, the timestamp of the
transaction is added to a readset of the object. The readset of an object has all the
timestamps of the transaction that read the object. When a transaction successfully
writes a new value to an object, then a new version of the object is created with the
same timestamp as that of the transaction requesting the write operation.

This concurrency control technique operates as follows:

Let Ti be a transaction with timestamp TS(Ti). If Ti issues a read operation over
an object Read(x), the value returned by the read operation is the version of the object
x whose timestamp is the largest timestamp smaller than TS(Ti) (i.e., the latest value
written before Ti started). TS(Ti) is then added to the set of read timestamps of the
object. The read operation is always permitted. If Ti issues a write operation over
an object Write(x, v) that assigns a value v to the object x, the write operation will be
permitted only if other transactions with a more recent timestamp than TS(Ti) have not
read a version of the object x whose timestamp is greater than TS(Ti). If this condition
is not satisfied then Ti has to be aborted.

The multiversion timestamp ordering technique has the desirable property that a
read request never fails and is never made to wait. However suffers from two unde-
sirable properties: first, the reading of an object also requires an update of the object
read timestamp set; and, second, the conflicts between transactions are resolved with
rollbacks which may be an expensive alternative.

15

2. RELATED WORK 2.3. Transaction Recovery

2.2.6 Optimistic methods

Optimistic methods are optimistic in the sense that for efficiency, they rely on the hope
that conflicts between transactions will not occur [KR81].

These methods have three phases:

• Read phase: During this phase, a transaction issues read operations storing the
read values in the readset. And all write operations are done in a private shadow
copy of the objects to be written.

• Validation phase: Using the readset of the transaction the concurrency control vali-
dates if there is a serializability conflict with respect to all committed transactions.

• Write phase: If the validation phase was successful then the objects are written
with the values stored in the writeset.

Each transaction is assigned with a timestamp once the read phase has concluded.
Each transaction also has a readset and a writeset. The readset is used to record the
timestamps of every data item it reads. The writeset is used to record the value which
is intended to write in the write phase. In the validation phase a timestamp ordering
based protocol is used to verify the serializability conflicts using the readset of the
transaction.

One of the methods in this category is the versioned write locks. In versioned write
locks technique, each data item has a timestamp number that is updated for every
committed transaction which updated it. When a transaction issues a read operation
then the data item timestamp is added to its readset. On commit, it is verified if the
timestamps of the data item accessed by the transaction were changed by comparing
the actual timestamp with the one recorded in the transaction’s readset. If any of the
timestamps have changed, the transaction must be rolled back, otherwise it may com-
mit. This prevents non-serializable orderings from committing.

The usage of versioned write locks makes reads invisible to writing transactions, as
a consequence, writes may conflict with reads, however the transaction that made the
conflicting read will abort.

2.3 Transaction Recovery

To achieve the atomicity property, and besides the use of concurrency controls mecha-
nisms to guarantee serializable schedules, there is the need to provide recovery mech-
anisms to transactions which suffer from conflicts and need to abort and roll back the

16

2. RELATED WORK 2.4. Database Transactions

execution. Logging techniques are used to keep track of changes made by the trans-
action during its execution. When a transaction needs to roll back, then these logs are
used to recover the system to the state prior to the transaction execution. There are two
types of logging techniques: the undo log and the redo log. Each one of these logging
techniques keep track of the values that are written to the system and the previous
values that were substituted by the new ones. These changes are recorded in a write
log or update log. The difference between the two techniques is mainly in the way that
this write log is managed.

2.3.1 Undo Log

In the undo log technique, every write operation, made by a transaction, records the
current value of the data item in an update log and then substitutes it by the new
tentative value. This strategy is also called in-place update or direct-update.

When a transaction aborts and it is rolled back, then with the use of the update log,
each data item value is rewritten with the previous value in backwards order of their
update. When all the update log entries were processed then the data is restored to the
state it had before the transaction began. When the transaction commits, the update
log is simply discarded.

2.3.2 Redo Log

In the redo log technique, every write operation, made by a transaction, writes the
new tentative value in the update log and the data item value remains unchanged.
This strategy is also called out-of-place update or deferred-update.

When a transaction wants to read a data item value, first it has to look at the update
log to check weather there is an entry for such data item. If that is the case, it reads the
value in the update log, otherwise it reads directly from the data item.

When a transaction aborts and it is rolled back, the transaction only has to discard
the update log, since it did not change any data item value and the system is still in the
state it had before the transaction began. When the transaction commits, it has to read
the tentative values from the update log in forward order and write these values into
the data items.

2.4 Database Transactions

Currently, there are several Database Management Systems (DBMSs) that implement
the transactional model. The main difference between them is in terms of the concur-

17

2. RELATED WORK 2.4. Database Transactions

rency controls used.

The PostgreSQL [Pos] is a database management system which uses multiversion
concurrency control (MVCC) and two phase locking as for base techniques. The MVCC
is based on the multiversion timestamp ordering described in Section 2.2.5. The Oracle
[Ora] also uses a MVCC based concurrency control. In Oracle concurrency model,
read operations do not block write operations and write operations do not block read
operations, this property allows a high degree of concurrency. The DB2 [DB2] uses
lock based concurrency control techniques. DB2 implements strict two-phase locking
for all update transactions, hence write locks are held until commit or rollback time.
MySQL [MyS] also uses a lock base concurrency control methodology.

2.4.1 Isolation Levels

Database systems implement the transactional model, the concurrency control and the
recovery strategies. The purpose of the concurrency control is to achieve the atom-
icity, isolation and consistency properties of transactions. But a concurrency control
that always generates serializable transaction schedules is very restrictive in terms of
throughput. Therefore the ANSI SQL-92 defines four isolation levels to be imple-
mented by the database systems [BBG+95].

The isolation levels are defined by the ANSI SQL-92 in terms of three phenomena
that must be prevented between concurrent transactions: dirty read, non-repeatable read
and phantom read.

The dirty read occurs when a transaction reads data written by a concurrent un-
committed transaction. The non-repeatable read occurs when a transaction rereads
data it has previously read and finds that another committed transaction modified or
deleted the data. The phantom read occurs when a transaction re-executes a query re-
turning a set of rows that satisfies a search condition and finds that another committed
transaction has inserted additional rows that satisfy the condition.

Given these three types of phenomena, four isolation levels were defined, which
are: read uncommitted, read committed, repeatable read and serializable. The table 2.2 de-
scribes the relation between the isolation levels and the phenomena.

Isolation Level Dirty Read Non-repeatable Read Phantom Read
Read Uncommitted possible possible possible
Read Committed not possible possible possible
Repeatable Read not possible not possible possible
Serializable not possible not possible not possible

Table 2.2: Transaction isolation levels

18

2. RELATED WORK 2.4. Database Transactions

Each database system chooses which isolation levels to implement, and not all data-
bases implement all the four isolation levels.

PostgreSQL [Pos] and Oracle [Ora] implements only the read committed and se-
rializable isolation levels. MySQL [MyS] implements all isolation levels. DB2 [DB2]
implements different alternative isolation levels which will not be discussed in this
work.

2.4.2 Snapshot Isolation

In fact, PostgreSQL and Oracle implement a relaxed version of the serializable isolation
level. The isolation level implemented is provided by a multiversion concurrency con-
trol mechanism called Snapshot Isolation [BBG+95]. The idea of snapshot isolation is to
take a consistent snapshot of the data at the time the transaction starts, and all read
and write accesses, made by the transactions, are done in this snapshot.

When an update transaction tries to commit, it has to get a unique timestamp that
is larger than any existing start or commit timestamp. In this way, when two update
transactions try to commit at the same time, the first to get the commit timestamp
wins and commits the updated data, this protocol is based on the first-committer-wins
principle [BBG+95].

All the read accesses made by transactions are made in the snapshot, hence they will
never conflict with concurrent update transactions. This raises the problem that read-
/write conflicts are never detected, and in particular the generated schedules which
are not serializable.

Snapshot isolation does not guarantee serializability but avoids the common isola-
tion anomalies described in the previous section.

2.4.3 Database and Distributed Transactions

Cooperation between database transactions and distributed transactions is an already
known problem in applications servers. The need to coordinate the data flow between
different databases atomically raised the concept of transaction managers which oper-
ate on an external area from databases.

The cooperation between a database transaction and a distributed transaction is
done by the transaction manager which controls the begin, commit or abort of both trans-
actions. When a distributed transaction begins, automatically is initiated a database
transaction, and every operation to the database is done within the context of such a
transaction.

19

2. RELATED WORK 2.5. Transactional Memory

To commit a distributed transaction, which must commit several database trans-
actions atomically: either every transaction commits or every transaction aborts. The
two-phase commit protocol [Gra78] provides a way to achieve this purpose.

In the two-phase-commit protocol , all transactions must first agree whether they will
commit or abort. This phase is called the preparation phase. After this phase all the
transactions must perform the decision agreed in the previous phase. If the decision
was to commit then the transaction manager will request that all the transactions com-
mit, otherwise if the decision was to abort, then the transaction manager will request
that all the transactions abort. This phase is the commit phase.

With the use of this protocol it is possible to commit several transactions atomi-
cally creating the notion of distributed transaction. This model of integration is an
inspiration source to the integration and cooperation problems between memory and
database transactions planned for this work.

2.5 Transactional Memory

Concurrent programming requires constructs to control accesses to critical sections
which may originate data races. Typically these constructs are lock based. Locks pro-
vide mutual exclusion to critical sections and are easy to use when programming small
concurrent applications. When dealing with bigger concurrent applications, locks may
become difficult to use because of their inherent problems like deadlock and lack of
composability.

If a concurrent linked list implemented with locks is used in an operation to remove
an item from one list and insert that item into another list, without exposing the inter-
mediate state where the item is in neither of the lists, then there is the need to access
the list’s concurrency control implementation and break the abstraction of this data
structure.

Lock free implementations, although being deadlock free, do not compose well and
are very difficult to implement. Therefore, there is space for an alternative concurrency
control technique to ease the programming of concurrent applications.

Transactional Memory (TM) was first introduced by Herlihy et al. [HM93] as a hard-
ware architecture. Transactional memory differs from database transactions in the way
that data items are stored. Instead of being in a secondary memory persistent storage,
data items are stored in primary memory. Another difference is the requirement of a
much higher performance in executing memory transactions.

Transactional memory does not ensure all the ACID properties [HMPJH05]. Since
the operations over data items are intentionally stored on volatile storage, there is no

20

2. RELATED WORK 2.6. Software Transactional Memory

need to ensure the durability property. Relational database systems have a very strict
data organization—tables, rows, etc. and have standard integrity rules, like referential
integrity. In this scheme consistency property is very important but in TM, data struc-
tures are more flexible and cannot have consistency verification in the same way as
database transactions do. Therefore consistency property is more relaxed in TM than
in database transactions. TM requires three properties: atomicity, consistency (relaxed)
and isolation.

TM operates on memory words, controlling only two operations, read and write,
and uses the same techniques as database transactions to achieve the atomicity and
isolation properties. Earlier TMs were created using non-blocking synchronization
techniques based on atomic hardware operations [HM93, ST95] but the architectural
support for this model remains subject of ongoing research [HMPJH05].

Software Transactional Memory, based on TM, controls concurrency by using only
software constructs, and aims at overcoming the inflexibility of hardware operations.

2.6 Software Transactional Memory

Software Transactional Memory (STM) was first introduced by Nir Shavit and Dan
Touitou in 1995 paper [ST95]. The methodology is the same of transactional memory
but applied in software. Although the performance is smaller than in Hardware TM, it
has the advantages of applicability and portability among today’s machines.

Using syntactical constructs such as library calls or language keywords, STM pro-
vides the means to drop the complexity of developing concurrent programs. There
are three types of syntactical constructs used by most STMs to define atomic blocks of
code: library calls, language keywords and function wrapping. Figure 2.3(a) shows an
example of a transaction defined by a library call, first introduced by [HLMWNS03].
Figure 2.3(b) illustrates the same content but defined by the atomic programming
language keyword. The code inside the atomic block is going to execute as a trans-
action. This approach was introduced by [HMPJH05]. Figure 2.3(c) shows an example
of a transaction defined within the scope of a function. The execution of the transac-
tion, defined by this way, is controlled via a transaction manager. This approach was
introduced by [HLM06].

Independently of the construct type used, the code block must execute within a
transaction and must hold the three ACI properties. If the transaction returns suc-
cessfully, then all the actions of the transaction were executed and the transaction did
not interfere with any other transaction. Otherwise, if the transaction did not return
successfully, then none of its actions did take effect. These constructs rise the abstrac-

21

2. RELATED WORK 2.6. Software Transactional Memory

1 BeginTransaction();
2 action1();
3 action2();
4 action3();
5 EndTransaction();

(a) Transaction defined by library
call.

1 atomic {
2 action1();
3 action2();
4 action3();
5 }

(b) Transaction defined
by an atomic block.

1 int TransactionXPTO {
2 action1();
3 action2();
4 action3();
5 return 1;
6 }
7

8 //...
9 CallTransaction(TransactionXPTO);

(c) Transaction defined by a function.

Figure 2.3: Examples of STM constructs.

tion level of concurrent programming as they hide the implementation issues of thread
synchronization.

The semantics of an atomic block is a more complex subject and it has not yet been
formally specified, although some attempts have been made [Sco06]. Database trans-
actions execute in a closed environment, and applications do all the computation and
invoke database transactions to store or retrieve data. There is no connection between
the application environment and the database transactions environment. In contrast,
memory transactions are strongly coupled to the application environment and, there-
fore, its semantics should consider other issues. Examples are the language features
like retry and orElse (see Sections 2.6.2), the interaction between code inside atomic
blocks and the non-transactional code outside atomic blocks, or irrevocable actions (see
Section 2.6.5).

The semantics of a transaction can be easily described with an existing global lock
which every transaction has to acquire when started, hindering in this way other trans-
actions from executing. A transaction then releases the lock once the last operation
is concluded. Using this global lock, transactions are serialized one after another. Of
course this is just an abstraction to describe the transaction semantics, as it would elim-
inate any form of concurrency and destroy the purpose of transactions in the first place.

Another behavior that must be identified and described relates to a transaction
which is aborted explicitly or by means of a conflict with other transaction. There
are two possible semantics: the exactly-once semantics and the at-most-once semantics.
The exactly-once semantics implies that, if a transaction is aborted, it must be restarted,

22

2. RELATED WORK 2.6. Software Transactional Memory

until it commits. The at-most-once semantics implies that, if a transaction is aborted, it
does not restart again unless the application code explicitly restarts it.

2.6.1 Non-Transactional Accesses

Non-transactional accesses happen when a shared variable is concurrently accessed
by code inside of an atomic block (transactional access) and also by code outside of an
atomic block, and they both modify the shared variable originating a data race. The
behavior of such code containing data races is undefined and depends on the imple-
mentation of a computer’s memory consistency model. To understand more clearly
this phenomenon take the example with locks in Figure 2.4. Thread1 increments vari-
able x inside an atomic block, and Thread2 change variable x value without any trans-
actional protection. Since the behavior is unpredictable, some STM engines decided
to not permit such accesses [HLMWNS03, HLM06], others give the programmer the
responsibility of avoiding non-transactional accesses, others will execute all the opera-
tions in the context of a transaction.

Thread1

1 atomic {
2 y = x;
3 x++;
4 if (x != y+1) fireMissiles();
5 }

Thread2

1 // ...
2 x = 2;
3 // ...

Figure 2.4: Example of non-transactional access with locks.

Another issue presented in [BLM05, MBL06] shows that different semantics have
to be taken into account when dealing with non-transactional code. The author de-
fines two transactional semantics: strong and weak atomicity. Strong atomicity is de-
fined as a transactional semantics that gives the guarantee of atomicity between trans-
actional and non-transactional code. Weak atomicity, is a transactional semantics in
which transactions are atomic only with respect to other transactions (i.e., their execu-
tion may be interleaved with non-transactional code). When a program is executing
transactional code, it is important to know which semantics is implemented because
a program may show different behavior between the two semantics and it has been
shown that in some cases it could deadlock.

23

2. RELATED WORK 2.6. Software Transactional Memory

2.6.2 Software Transactional Memory Features

Conditional Waiting

Conditional waiting is a programming technique widely used to coordinate the execu-
tion of multiple threads. It uses conditional variables and allows a thread to wait until
a certain condition becomes true. Harris et al. [HF03] have introduced the conditional
critical region (CCR), this kind of functionality was not available to plain transactions,
and no transaction could be coordinated in respect to some shared condition/variable.
A CCR is a block of code in which a transaction must wait for a single condition to be
true, before starting executing the block. Later, another approach was used by the same
authors [HMPJH05] which introduced the retry statement to coordinate transactions.
Figure 2.5 illustrates a shared buffer implemented with the two approaches.

Conditional Critical Region
1 int stack[MAX_STACK];
2 int items = 0;
3

4 void push(int d) {
5 atomic {
6 stack[items] = d;
7 items++;
8 }
9 }

10

11 int pop() {
12 int d;
13 atomic(items > 0) {
14 d = stack[items];
15 items--;
16 }
17 return d;
18 }

retry Statement
1 int stack[MAX_STACK];
2 int items = 0;
3

4 void push(int d) {
5 atomic {
6 stack[items] = d;
7 items++;
8 }
9 }
10

11 int pop() {
12 int d;
13 atomic {
14 if (items > 0)
15 d = stack[items];
16 else
17 retry;
18 items--;
19 }
20 return d;
21 }

Figure 2.5: Example of two approaches for transaction coordination.

The CCR semantics is simple: the transaction has to wait while the condition is
false. Once the condition becomes true, the transaction may execute. The semantics
of the retry statement is more complex: the transaction executes normally, but when
the retry statement is called, the transaction is rolled back and waits until any of the
variables read in the previous execution is modified. Using the previous example in

24

2. RELATED WORK 2.6. Software Transactional Memory

Figure 2.5, if a transaction retries, it only restarts when at least one of the variables
items or stack changes. Since the variable items and stack are always modified
at the same time when some thread pushes an element on to the stack, the waiting
transaction will restart only after the returning of the push function. The retry state-
ment is more flexible than the CCR approach as the logic before a retry is issued can
be more complex than a simple expression, e.g., it is not easy with the CCR approach
to wait for all the elements of an array to have a specific value.

Another STM engine named Atomos [CMC+06] also has the retry statement, but
it allows to specify which locations (watch set) that trigger the re-execution of an atomic
block. With a watch set is possible to reduce the locations space search, thus improving
the performance.

Composability

One important feature of STM is composability. Composition is the process of creating
software from components—abstractions whose internal details are hidden. Defining
a block of code to execute as a transaction, ignoring the implementation details, al-
lows the ability of transaction composability. Lacking of such a feature, programming
is far more difficult and error-prone as the programmer cannot rely on the specified
interface of an object and instead must understand its implementation. Take as an ex-
ample the problem of transferring one item from one linked list into another, which
was not possible with lock based synchronization without exposing the data structure
concurrency control implementation. Using STM composability feature, it is possible
to execute this operation considering that each linked list operation (insert, remove,
etc. . .) is implemented as a transaction, and the transferring operation as an enclosing
transaction as well. Figure 2.6 shows an example of such item transfer operation using
STM methodology. This examples shows that the intermediate state, where the item is
in neither of the lists, is not seen by any other transaction because it is enclosed in an
atomic block.

1 void switchItem(List l1, List l2, int pos) {
2 atomic {
3 Item i;
4 i = remove(l1,pos);
5 if (i != null) //if item exists
6 add(l2, i);
7 }
8 }

Figure 2.6: Linked list item transfer operation.

25

2. RELATED WORK 2.6. Software Transactional Memory

Composable Alternatives

Harris et al. [HMPJH05] introduced the orElse statement. This statement is another
mechanism to coordinate transactions, in conjunction with the retry statement, and
allows to compose alternatives. In the following example, in Figure 2.7, illustrates the
use of the orElse primitive. The example shows a transaction waiting for data from
two different stacks using the orElse statement. The pop function is the same used in
Figure 2.5 with the retry statement. Since b1.pop() and b2.pop() are both transac-
tions, then b1.pop() orElse b2.pop() starts by executing b1.pop(). If b1.pop()
returns by committing or aborting the transaction then the orElse finishes without
executing b2.pop(). If b1.pop() blocks by executing a retry statement, then the
orElse starts executing the transaction b2.pop(). If b2.pop() returns by com-
mitting or aborting the transaction then the orElse finishes execution. If b2.pop()
blocks by executing a retry statement, then the orElse waits for a location read by
either b1.pop() or b2.pop() changes, and then re-executes itself in the same man-
ner.

orElse Statement
1 void waitForStacks(Stack b1, Stack b2) {
2 atomic {
3 int d;
4 do {
5 d = b1.pop();
6 orElse
7 d = b2.pop();
8 } while(...);
9 }

10 }

Figure 2.7: Example of the usage of the orElse statement.

2.6.3 Data Granularity

STM engines must define which storage unit will be used to detect conflicts between
transactions. There are two main types of granularity: word-based, which detect con-
flicting accesses to a memory word or adjacent, fixed-size group of words; and object-
based, which detects a conflicting access to an object even if the transactions referenced
different fields. Both of them must store metadata associated with each grain unit.

26

2. RELATED WORK 2.6. Software Transactional Memory

Word-Based

Word-based or block-based STMs have been first proposed by Harris et al. in [HF03].
This type of granularity has the size of a memory word or the size of a cache line. These
STMs have more room for concurrency as the granularity is finer. Since the granularity
is finer, it allows more concurrency between transactions and conflicts are less frequent.
The metadata associated with each word must be stored in an auxiliary table, such
as a hash table. In this case, mapping from a memory address to metadata can be
expensive, reducing the overall performance. This type of granularity is particularly
important for aggregate data structures, such as arrays, which many transactions may
concurrently access if they can be logically partitioned.

Object-Based

Object-based STMs [HLMWNS03] have a coarser granularity than word-based STMs.
The size of object-based granularity is the size of an object. The metadata is stored
adjacent to the object in the form of an hidden field of the object. Simultaneous accesses
from different transactions to different fields of the same objects may conflict. This type
of granularity gives more performance than word-based, since it does not need to call
the transactional engine every time that a transaction accesses some item, but it also
lowers the concurrency level between transactions.

2.6.4 Nested Transactions

There are three semantic models of nested transactions implemented in STM engines.
They are as those described in Section 2.1.2 and, to our knowledge, all of them fol-
low the linear nesting model which is easier to implement in a programing language
environment.

2.6.5 Irrevocable Actions

STM transactions execute an atomic code block and if everything went well they com-
mit; if something went wrong they abort. The abort of a transaction implies that all
the changes made by the transaction must be undone, hence every operation inside an
atomic code block must be reversible. However, some operations are not reversible,
like I/O to external data repositories (e.g., disks) or operating system calls which
change the state of kernel data structures. Consequently they should not be allowed.
Figure 2.8 shows an example of an irrevocable operation that cannot be undone if the

27

2. RELATED WORK 2.6. Software Transactional Memory

transaction aborts. Until now, there is no general solution to all these types of irrevo-
cable operations, solutions exist on a case-by-case basis.

1 void irrevocablePrint() {
2 atomic {
3 //...
4 System.out.println("hello world!")
5 //...
6 }
7 }

Figure 2.8: Example of an irrevocable operation.

Preventing I/O operations from occurring inside transactions is not an easy task for
the STM engines and, therefore, this responsibility is frequently left to the programmer.
One exception is the STM Haskell [HMPJH05] which has a very expressive type sys-
tem and divides all operations into either transactional operations or I/O operations.
The compiler statically prevents I/O operations from occurring inside memory trans-
actions.

Another solution is to allow I/O operations in transactions only if the I/O supports
transactional semantics, so the STM system can rely on another abstraction to revert
changes. Databases and some file systems are transactional. However, the granularity
of these systems’ transactions may not match the requirements of an atomic block.

In transactional databases, operations like inserting, removing or transforming data
in the database can be undone if done in the context of a transaction. Since database
I/O operations can be reversed, it should be possible to execute those operations in the
context of a memory transaction1.

Another approach is to use compensating operations, in order to undo the changes
made by transactions. But such compensating operations are very difficult to write
because of some operations’ complex semantics, and some cannot be compensated.
Chapter 3 reports on supporting compensating actions for an STM framework.

2.6.6 Case Studies

This section presents a brief description of some STM engines and their characteristics
in terms of the properties described in previous sections.

1This is the main theme of this dissertation.

28

2. RELATED WORK 2.6. Software Transactional Memory

TL2

The TL2 STM engine was presented in [DSS06]. Table 2.3 summarizes the properties
of this engine.

Strong or Weak Atomicity Weak
Granularity Word-based
Recovery Strategy Deferred Update
Concurrency Control Optimistic (Versioned Write Locks)
Synchronization Blocking
Inconsistent Reads Validation
Nested Transaction Not supported

Table 2.3: TL2 engine properties.

This STM engine has word-based granularity and does not prevent non-transactional
accesses. It uses a deferred update method as recovery strategy and, for concurrency
control, uses a variant of versioned write locks (see Section 2.2.6). This engine was im-
plemented as a library for C programming language and has the advantage of having
transactional memory blocks stored at the same memory space as normal blocks allo-
cated by non-transactional code. This fact allows transactional blocks to be recycled
and to be used by non-transactional code with the help of a quiesce algorithm, which
waits for all activity of some transactional data block to be ceased before deallocation.
The implementation of the timestamp, used by the versioned write locks, is based in
the global version-clock algorithm [DSS06]. The idea of the global version-clock algo-
rithm is to have a global variable that is incremented once by each transaction that
writes to memory, and is read by all transactions. The clock increment operation must
be atomic to prevent data races. Another advantage of this engine is the ease of inte-
gration with legacy code, because it requires no modifications to the system libraries
used by most applications. For every read operation, the timestamp of the word read is
validated against the timestamp of the transaction which is reading it. At commit time
the readset is also entirely validated, in order to detect if another transaction wrote a
value to the same data item after the read that is being validated.

CTL

CTL, based in the TL2 engine, was developed by Cunha [Cun07]. It implements some
new features and also solves some bugs found in the original TL2 engine [LC07]. Ta-
ble 2.4 summarizes the properties of the modified engine.

This new engine supports object-based granularity, direct-update as a recovery
strategy, user explicit aborts and automatic transaction re-execution in case of abortion.

29

2. RELATED WORK 2.6. Software Transactional Memory

Strong or Weak Atomicity Weak
Granularity Word-based/Object-based
Recovery Strategy Deferred Update/Direct Update
Concurrency Control Optimistic (Versioned Write Locks)
Synchronization Blocking
Inconsistent Reads Validation
Nested Transaction Partially Closed Nested

Table 2.4: CTL engine properties.

The TL2 engine was implemented in a SPARC architecture and CTL was implemented
to the x86 architecture. Another improvement was transaction nesting support, which
uses a mixed semantics between closed and flat nested transactions. If a subtransaction
aborts explicitly, it rolls back without aborting the parent transaction (as in closed nest-
ing) but if it aborts because of a conflict with another transaction, it rolls back the entire
parent transaction (as in flat nesting). The bugs found in the TL2 engine were mainly in
validation of memory inconsistencies. The quiesce algorithm for recycling transactional
memory data blocks was converted, and also the performance of the read operations
on transactional data blocks was improved. The automatic transaction re-execution af-
ter an abort makes use of an exponential backoff algorithm which forces a transaction
to wait for some time before its re-execution. Figure 2.9 illustrates an example of the
CTL (and TL2) API’s use.

1 long *counter = (long *)malloc(sizeof(long));
2 long get() {
3 return counter;
4 }
5 void inc() {
6 Thread *self = TxNewThread();
7 intptr_t addr;
8 long value;
9 TxStart(self);
10 addr = TxLoad(self, &counter);
11 value = (*(long *)addr)+1;
12 TxStore(self,&counter,&value);
13 TxCommit(self);
14 }

Figure 2.9: Example of the TL2 API’s use.

30

2. RELATED WORK 2.6. Software Transactional Memory

JVSTM

This STM engine was developed in the context of Cachopo’s PhD thesis [Cac07]. This
engine is better suited for long-running read-only transactions than most of the STM
engines [CRS06]. Table 2.5 summarizes the properties of this engine.

Strong or Weak Atomicity Weak
Granularity Object-based
Recovery Strategy Deferred Update
Concurrency Control Multiversion Concurrency Control
Synchronization Non-Blocking (lock-free)
Inconsistent Reads Do Not Exist
Nested Transaction Closed Nested

Table 2.5: JVSTM engine properties.

This engine implements a concept of versioned boxes which is based in the history
objects created by the multiversion concurrency control (see Section 2.2.5). Hence,
this engine’s concurrency control is optimistic and its synchronization is non-blocking,
providing lock-free guarantees. JVSTM also supports closed nested transactions. Ver-
sioned boxes can be seen as a replacement for memory locations or transactional vari-
ables. During the execution of a transaction, the read and write operations are done in
versioned boxes which hold the data values. For each write operation another version
is created and tagged with the transaction timestamp. For read operations, the version
box returns the version with the highest timestamp less than the current transactions
timestamp. A particularity of this engine is that read-only transactions never abort
because of concurrency conflicts, as well as write-only transactions. Only read-write
transactions can conflict, thus aborting. This STM engine has deferred update as recov-
ery strategy, since every version created by a write operation is stored privately to the
transaction and only on commit time it is stored as a public version box. In Figure 2.10
is an example of the JVSTM API’s use.

DSTM

DSTM was introduced in Herlihy’s paper [HLMWNS03] and was the first dynamic
STM engine that did not require a programmer to specify a transaction’s memory usage
in advance. Table 2.6 summarizes the properties of this engine.

This engine uses non-blocking synchronizing techniques which guarantee obstruc-
tion-freedom. DSTM was implemented as a Java programming language library. This
engine is object-based and uses deferred update as recovery strategy. The deferred
update is implemented using an object cloning technique. Each transaction writes into

31

2. RELATED WORK 2.6. Software Transactional Memory

1 public class Counter {
2 private VBox<Long> count = new VBox<Long>(0L);
3 public long getCount() {
4 return count.get();
5 }
6 public @Atomic void inc() {
7 count.put(getCount() + 1);
8 }
9 }

Figure 2.10: Example of the JVSTM API’s use.

Strong or Weak Atomicity Weak
Granularity Object-based
Recovery Strategy Deferred Update
Concurrency Control Optimistic
Synchronization Non-Blocking
Inconsistent Reads Validation
Nested Transaction Flat Nested

Table 2.6: DSTM engine properties.

a private clone of the object and, at commit time, the object is replaced by its clone. A
conflict can occur when validating the readset at commit time or if a transactions tries
to write on an object which was already written by an uncommitted transaction. This
engine also implements flat nested transactions and does not prevent non-transactional
accesses. Figure 2.11 shows an example of the DSTM API’s use.

More recently Herlihy presented a new version of the DSTM engine which, instead
of focusing on the basic model of computation and on run-time techniques as the pre-
vious version, intends to provide a safe, convenient and flexible API for application
programmers. DSTM2 [HLM06] is a flexible STM engine which permits the use of
different synchronization techniques and recovery strategies, as framework plug-ins.
DSTM2 creates transactional objects using the factory pattern. A programmer can im-
plement his own factory in order to test different properties of STM engines.

32

2. RELATED WORK 2.6. Software Transactional Memory

1 public class Counter {
2 private long counter = 0;
3 void inc() { counter++; }
4 long get() { return counter; }
5 }
6 //...
7 long incrementAndGet() {
8 long value;
9 Counter counter = new Counter;

10 TMObject tmObject = new TMObject(counter);
11 TMThread thread = (TMThread)Thread.currentThread();
12 thread.beginTransaction();
13 Counter c = (Counter)tmObject.open(WRITE);
14 c.inc(); // increment the counter
15 value = c.get(); // get the counter value
16 thread.commitTransaction();
17 return value;
18 }

Figure 2.11: Example of the DSTM API’s use.

33

3
CTL Handling System

The CTL handling system aims at allowing the library programmers to specify a set of
compensating operations/actions. These compensating actions may revert the effects
of some operations that would, otherwise, be irreversible.

3.1 Motivation

Using the transactional memory model in every day programming may seem to be
a simple idea, but it may turn out to be a nuisance. When developing a library, the
programmer aims at creating a black box behind a well defined interface, hiding all the
implementation details from the library user. If such libraries are to be used in concur-
rent environments, programmers must protect them against concurrency hazards, and
Software Transactional Memory can be an approach towards such a goal. However,
this approach can raise problems as illustrated in Fig. 3.1.

Figure 3.1: Calling a transaction code block in a library.

The fact is that an application is not solely made of memory changes and, typically,

35

3. CTL HANDLING SYSTEM 3.2. Concept and Model

need to perform other operations that are not reversible by the STM libraries, such
as write data into a file, read data from a socket, and memory management (alloca-
tion/deallocation).

If a library code block is to be executed within a memory transaction whose bound-
aries (start and end of the transaction) are defined by the library user at the application
level, then the library developer has control over neither the start nor the end of the
transaction.

Allocating and freeing memory are irrevocable operations and, thus, cannot be
executed freely inside a memory transaction. Although these operations are non-
transactional, some of them are compensable. This means that the operations can be
undone not by reverting their effects but by executing a second operation that will
compensate for the effects of the first one. However, not all irrevocable operations are
compensable and those that are compensable must obey to an isolation restriction: the
effects of an irrevocable, but compensable, operation may only be compensated if no
other concurrent transaction depends on (the effects of) the operation to be compen-
sated.

Memory management (allocation and deallocation of memory) falls into the class
of irrevocable but compensable operations. Allocating a memory block may be com-
pensated by freeing that memory block. But freeing a memory block cannot be always
compensated by allocating another memory block, as the initial memory contents may
have been lost. Assuming that this irrevocable operations may be compensated, one
must define when to execute the compensating operations.

We propose a solution that is, simultaneously, generic and elegant. Generic because
it can be used to solve this and many other problems of the same type, that may arise
when using the STM programming model. Elegant because allows the software library
to execute compensating operations without the intervention and/or knowledge from
the library user, respecting the philosophy of the black box model.

3.2 Concept and Model

Our proposal allows the programmer to create inverse functions and to decide when
such inverse functions must (and will) be executed. Such a functionality is accom-
plished by the use of handlers. Handlers will be executed at important moments in the
life-time of a transaction, as illustrated in Figure 3.2.

These important moments are:

• Pre-commit handlers: These handlers are executed in the context of the transaction
to be committed. The memory validation step was done prior to the execution of

36

3. CTL HANDLING SYSTEM 3.2. Concept and Model

commit

tx_body

abort

pre_commit_handlers()

pos_commit_handlers()

pre_abort_handlers()

pos_abort_handlers()

Figure 3.2: Handlers for STM compensation actions.

the pre-commit handlers, thus, they execute knowing that the memory transac-
tion may commit;

• Post-commit handlers: These handlers are executed after committing the transac-
tion and, therefore, are outside the transactional context;

• Pre-abort handlers: These handlers are executed just before aborting, therefore in
the context of the transaction to be aborted. If the STM engine supports automatic
retry of a transaction, these handlers are executed just before retrying;

• Post-abort handlers: These handlers are executed right after aborting the transac-
tion, therefore outside the scope of a transaction.

All these type of handlers must be registered within the context of a transaction
(inside the bounds of a transaction). The life-time of any type of handler is determined
by the time of registration until the end of a transaction, either by committing or abort-
ing/retrying. On registering a handler, the programmer may, optionally, pass some
data to the handler. This data will be considered later when the handler is executed.

Pre-commit handlers are divided into two categories: prepare-commit handlers and
commit handlers. The former may decide to allow (or not) the memory transaction to
commit. The latter are still executed before committing the transaction, but the trans-
action will irreversibly commit. These handlers are executed sequentially: all prepare-
commit handlers are executed in first place, followed by all of the commit handlers.

These two type of handlers permit to execute a two-phase-commit protocol (see Sec-
tion 2.4.3) between several transactional subsystems in which one of them is the mem-
ory transaction.

Figure 3.3 represents the execution of each type/category of handler as a state in a
transaction life-time state diagram.

Although pre-commit and pre-abort handlers are executed within the context of
the transaction, they cannot make use of transactional memory accesses, as the mem-
ory transaction has already been validated and new transactional accesses to memory

37

3. CTL HANDLING SYSTEM 3.3. Implementation

Begin active

partially
commited

pre-abort

committed

Endfailed

pos-
commit

pos-abort

prepare
commit

commit

Figure 3.3: Transaction life-time state diagram with handler support.

could require new validations to be carried out. Thus, the programmer has the re-
sponsibility of preventing and managing any data-races that may arise when process-
ing/executing handlers.

3.3 Implementation

The model described in the previous section was implemented as an extension to CTL
[Cun07], a Software Transactional Memory library for the C programming language.

Each handler is identified as a function pointer that is registered in the handler
system. There are two different types of function pointers:

1 typedef int (*ctl_prepare_handler_t)(void *);

2 typedef void (*ctl_handler_t)(void *);

The type ctl_prepare_handler_t declares a pointer to a function to be executed
as a prepare-commit handler.

This function has one parameter that will point to a user-defined data structure to
be passed as an argument to the handler when it is executed, and returns a boolean
(true=1 or false=0) indicating respectively that the overall transaction can proceed, or
that it must abort. If all of the prepare-commit handlers return true, the commit handlers
will be executed and the memory transaction will commit, otherwise none of the com-
mit handlers will be executed and the transaction will abort.

Each transaction has a list for each type of handlers. Each handler has an integer
priority attribute, with small numbers corresponding to a low priority and big num-
bers corresponding to a higher priority. The priority controls the order in which the
handlers are executed. Handlers with a higher priority are executed before handlers

38

3. CTL HANDLING SYSTEM 3.4. Using the Handlers

with a lower priority. Within the same priority, handlers are executed by registering
order.

The API contains two functions for each type of handler: one requires the program-
mer to explicitly specify the priority attribute while the other does not, assuming a
default priority.

Figure 3.4 shows the registering function for the prepare-commit handlers. When reg-
istering the handler, it is possible to pass user defined data to be used inside the han-
dler. This data must be passed as a void pointer.

1 void ctl_register_prepare_handler_priority (
2 ctl_prepare_handler_t handler, void *args, int priority);
3

4 void ctl_register_prepare_handler (
5 ctl_prepare_handler_t handler, void *args);

Figure 3.4: Handler System API: prepare-commit handler registering functions.

Handlers are eliminated once the associated transactions commit or abort. In CTL,
transactions aborting due to a concurrency conflict are automatically restarted. In this
case, the handlers are eliminated after executing the last pre-abort handler and before the
transaction is restarted. Also, pos-abort handlers will only be executed for user-aborted
transactions, otherwise transactions are restarted automatically and always succeed
with a commit state.

3.4 Using the Handlers

We will illustrate how to use the handler system, as described above, to solve the prob-
lem introduced in Section 3.1, where a library needs to manage memory inside memory
transactions.

When implementing the add operation of a linked list, this operation needs to allo-
cate memory for a new list node. If this memory allocation is executed inside a memory
transaction and the transaction aborts, it is automatically restarted and, a new list node
will be allocated. The previous list node will be dangling and will originate a memory
leak in the program. In this case the library developer could register a pre-abort handler
to free the just allocated memory in case of the abort/restart of the transaction.

Figure 3.5 illustrates the use of a pre-abort handler to compensate for the operation of
memory allocation, when the transaction aborts while adding a new node to a linked
list.

39

3. CTL HANDLING SYSTEM 3.4. Using the Handlers

1 void freevar (void *args) {
2 free (args);
3 }
4 void add (List *list, void *item) {
5 Node *node;
6 node = malloc (sizeof (*node));
7 ctl_register_pre_abort_handler (freevar, (void *)node);
8 node->next = NULL;
9 node->value = item;

10 TxStore (&(list->tail->next), node);
11 TxStore (&(list->tail), node);
12 }

Figure 3.5: Linked list add operation with handler system support.

The inverse problem of compensating (postponing) for a memory deallocation prob-
lem is also easy to solve with a pos-commit handler. As an example, we will consider the
removing of the head node of the linked list, as illustrated in Fig. 3.6.

1 void *removehead (List *list) {
2 Node *node;
3 void *value;
4 node = (Node *)TxLoad (&(list->head);
5 TxStore (&(list->head), node->next);
6 value = (void *)TxLoad (&(node->value));
7 free (node);
8 return value;
9 }

Figure 3.6: Linked list removehead operation.

If this removehead() function is called inside a memory transaction, and the trans-
action aborts after the free() operation, the transactions will be restarted and the
function will be called once again, but now the head pointer list->head is pointing
to an invalid memory block, because it was already released in the call to free in the
previous execution. To solve this problem, one must delay the memory deallocation
until the transaction commits. This can be achieved by registering a pos-commit handler
to free the respective node as depicted in Fig. 3.7.

This solution could be supported at either programming language/compiler or li-
brary level. The library based solution was just described. A compiler based solution
would have the compiler to transparently generate all the necessary code for register-
ing the handlers and calling the replacement front-ends instead of the original func-
tions.

40

3. CTL HANDLING SYSTEM 3.5. Performance Evaluation

1 void freevar (void *args) {
2 free(args);
3 }
4 void *removehead(List *list) {
5 Node *node;
6 void *value;
7 node = (Node *)TxLoad (&(list->head);
8 TxStore (&(list->head), node->next);
9 value = (void *)TxLoad (&(node->value));
10 ctl_register_pos_commit_handler (freevar, node);
11 return value;
12 }

Figure 3.7: Linked list removehead operation with handler system support.

In terms of general library development, each library can register the appropriate
handlers to delay or reverse its effects to the commit/abort time, without the library
user being aware of such handlers.

3.5 Performance Evaluation

We performed a set of simple tests to evaluate the overhead introduced by the handler
system into the CTL engine. The tests consist on series of operations on a set. The set is
a Red Black Tree implementation. The implementation provides three functions — put,
delete and get. The set elements have a key and a value and all functions are indexed
by the key. Duplicate keys are not allowed and adding an element with an already
existing key just updates its value. Only the put and delete operations make use of
the handler system. In the put method, a pre-abort handler is registered to compensate
for the creation of a new node inside of a transaction, and in the delete method, a pos-
commit handler is registered to defer the free of a node memory until the commit of the
transaction.

The tests are divided in two types characterized by two different load patterns. The
test load pattern is composed by different probabilities for each of the three methods
provided by the set implementation. The first load pattern, that is meant to simulate a
read dominant context, is composed by 5% of puts, 5% of deletes and 90% of gets. The
second load pattern, is meant to simulate a write dominant context, and is composed
by 45% of puts, 45% of deletes, and 10% of gets.

The tests were performed on a Sun Fire X4600 M2 x64 server with eight dual-core
AMD Opteron Model 8220 processors @ 2.8 GHz with 1024 KB cache, and the obtained
results are depicted in Figures 3.8 and 3.9. We ran tests with as much as 64 threads

41

3. CTL HANDLING SYSTEM 3.6. Related Work

competing for the 16 available processors.
The graphics show three different executions: one with no handlers support, an-

other with the handler support activated but with empty handlers, and another with
handler support activated and executing the appropriate code inside the handlers (in
this case executing the free operation).

As depicted in Figure 3.8, all the three different executions are at the same level of
performance, meaning that if we do not use the handlers (because most operations are
read-only), there is no performance penalty from the handler system.

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

 1 2 4 8 16 32 64

O
pe

ra
tio

ns
/s

ec
on

d

Number of threads

CTL CMT X86_32 / Red-Black Tree / 30 sec / 1000 keys / 5% put, 5% del, 90% get / Malloc Optimized

without handler
with handler

with handler do free

Figure 3.8: Overhead introduced by the handler support in read-dominated environ-
ment.

Figure 3.9 shows that the performance penalty inherent to the registration and ex-
ecution of the handlers is not high besides that, using the handler system, the code is
freeing the memory when necessary.

3.6 Related Work

Tim Harris in [Har05], also uses callback handlers in the form of external actions to
provide support for operations with side-effects, such as console I/O, in the Java pro-
gramming language. This work was derived from an earlier approach by the same
author in [Har03]. These external actions are implemented using a copy of the heap in
the moment of the invocation of an I/O operation inside a transaction. This invocation
is delayed until the end of the transaction, and then executes the I/O operation in the

42

3. CTL HANDLING SYSTEM 3.6. Related Work

0

500000

1000000

1500000

2000000

2500000

3000000

 1 2 4 8 16 32 64

O
pe

ra
tio

ns
/s

ec
on

d

Number of threads

CTL CMT X86_32 / Red-Black Tree / 30 sec / 1000 keys / 45% put, 45% del, 10% get / Malloc Optimized

without handler
with handler

with handler do free

Figure 3.9: Overhead introduced by the handler support in write-dominated environ-
ment.

same context (using the heap copy) in which the invocation was made. A drawback
of this approach is that, if used to implement libraries as described in this paper, the
library would have to have control over start and end of the transaction.

Other related work is DSTM2 [HLM06], which provides the ability to register meth-
ods (in the form of Callable<Boolean> objects) to be called when important trans-
actional events occur. The authors simply state that it is possible to register methods
to be executed after a transaction commits or aborts.

43

4
Integration of Database and Memory

Transactions

The main objective of this dissertation is to study the relationships between memory
transactions and database transactions and, if possible, make them cooperate. In this
chapter we will present our unified model between database and memory transactions
and the respective implementation as well.

4.1 Unified Transactional Model

The integration between two transactional models could, conceptually, be quite easy if
both satisfy the same semantics and the same properties. In this case, where we have
memory and database transactions, memory transactions satisfy only a subset of the
properties satisfied by database transactions. Memory transactions do not satisfy the
Durability property and satisfy Consistency property only partially. Each transactional
system could have different concurrency control implementations, or different recov-
ery mechanisms, and therefore, their integration could be not so straight forward.

In the transactional model, each transaction is defined by its bounds. These bounds
are defined, generally, by syntactical constructs. When using two transactional models,
simultaneously, there are two types of transactions and, hence, the bounds for each
type of transaction must be defined separately. Let TX1 BEGIN and TX1 END be the
bounds delimiter for one transactional model, and let TX2 BEGIN and TX2 END be the
bounds delimiter for the other transactional model. These four operations could be

45

4. INTEGRATION OF DATABASE AND MEMORY TRANSACTIONS 4.1. Unified Transactional Model

interleaved in four different ways, as depicted in Figure 4.1.

1 TX1_BEGIN();
2 //...
3 TX2_BEGIN();
4 //...
5 TX2_END();
6 //...
7 TX1_END();

1 TX2_BEGIN();
2 //...
3 TX1_BEGIN();
4 //...
5 TX1_END();
6 //...
7 TX2_END();

1 TX1_BEGIN();
2 //...
3 TX2_BEGIN();
4 //...
5 TX1_END();
6 //...
7 TX2_END();

1 TX2_BEGIN();
2 //...
3 TX1_BEGIN();
4 //...
5 TX2_END();
6 //...
7 TX1_END();

Figure 4.1: Example of two distinct transactions interleavings.

The semantics for each of the interleavings presented in Figure 4.1 is not intu-
itive. We could consider a nested transaction semantics for the interleavings where
one transaction is embedded within the other transaction, but for the other two, it is
not clear what is the behavior if one of the transactions commits or aborts.

In the unified model there will be only one transaction bounds delimiters. Consid-
ering the previously examples, the unified model will only consider the outer trans-
action delimiters and ignores the inner delimiters. The transaction will satisfy all the
properties for both models. In this concrete case, where transactional memory will be
unified with database transactions, the former will satisfy the ACI properties, and the
latter will satisfy the ACID properties. Figure 4.2 presents an example of the use of
the unified model. Be the TX BEGIN and the TX END the overall transaction bounds
delimiters, any operation within this bounds will be committed only at the time of the
TX END execution. If the transaction aborts for any operations, independently of the
transactional model to which they belong to, the overall transaction aborts.

1 TX_BEGIN();
2 x = select x from table_1 where id=4;
3 y = 3;
4 insert into table_2 values (x, y);
5 TX_END();

Figure 4.2: Example of the unified model use.

The semantics of our unified model is very simple, actually it is like any other trans-

46

4. INTEGRATION OF DATABASE AND MEMORY TRANSACTIONS 4.2. Implementation

actional model. In the user perspective it is like that all the operations, in database or
in memory, are at the same level, and the unified transactional system will take care of
all the work.

The commit phase in this unified model will have to commit all the underlying
transactions, belonging to the different transactional engines, in an atomic way. Based
on the theory of distributed transactions, using the two-phase-commit protocol [Gra78],
it is possible to commit N transactions, from N different transactional engines, in an
atomic way.

In the two-phase-commit protocol, all transactions must first agree on whether they
will commit or abort. This phase is called the preparation phase. After this phase all the
transactions must perform the decision agreed in the previous phase. If the decision
was to commit then all the transactions commit, otherwise, if the decision was to abort,
then all the transactions abort. This phase is the commit phase.

In our unified model, we can unify several transactions into a single one and pre-
form a two-phase-commit in order to commit all of them.

4.2 Implementation

The unified model described in the previous section will be implemented using the
CTL handler system described in Chapter 3. The problem of dealing with two different
transactional models at the same time is that the commit phase of both transactional
models must be atomic: or both transactional models commit or both abort.

The handler system, provided by CTL, gives the possibility of making a two-phase-
commit with respect to the memory transaction, by registering prepare-commit handlers
and commit handlers associated with the respective memory transaction.

Since the memory transaction is already part of the two-phase-commit protocol, only
the database transaction needs to be added to the protocol. The database operations
are done using an ODBC interface for the C language. This allows to use any ODBC
compliant database management system.

In order to add the database transaction to the two-phase-commit executed by CTL
handler system, three handlers must be created: one for the prepare phase, other for
the commit phase and another for the abort phase. But, not all the DBMS support
the prepare phase, and the ODBC interface does not support as well. So, with the
ODBC interface, it is only possible to commit the database transaction and it is not
possible to reverse it once done. With this limitation, our implementation supports
only one DBMS per memory transaction. Without the prepare phase, the commit of
the database transaction will be done in the prepare-commit handler and, if the commit

47

4. INTEGRATION OF DATABASE AND MEMORY TRANSACTIONS 4.2. Implementation

is successful, the result of the prepare-commit handler will also be successful and the
memory transaction will also commit. If the database commit is not successful, hence
the database transaction has aborted, then the prepare-commit handler will also fail and
the memory transaction will be rolled back executing the pre-abort handler. In case of
any operation fails, during the execution of a transaction, the overall transaction will
abort and the pre-abort handler will abort the database transaction.

To ease the work of registering all the necessary handlers to allow the usage of a
database transaction inside a memory transaction, we created a front-end to the CTL
TxStart function, in which all the necessary handlers are registered.

Figure 4.3 shows the definition of this front-end. The first and third parameters are
the same as for the TxStart function. The second parameter is the database connec-
tion handler for the ODBC interface. First it will start the memory transaction calling
the TxStart function, then it will register both the do commit function as the prepare-
commit handler, and the do abort function as the pre-abort handler. The definition of the
do commit and the do abort are similar, both only call the ODBC SQLEndTran func-
tion with the appropriate flag indicating whether to commit or abort. Figure 4.4 shows
the do commit function. The database transaction is implicitly started by ODBC upon
the first operation over the database, and it will end upon the commit or abort of the
transaction.

1 void TxDBStart(Thread *Self, HDBC dbc, int roflag) {
2 TxStart(Self,roflag);
3 _ctl_register_prepare_handler(Self, do_commit, dbc);
4 _ctl_register_pre_abort_handler(Self, do_abort, dbc);
5 }

Figure 4.3: TxStart front-end for using database transactions.

1 int do_commit(Thread *Self, void *args) {
2 SQLRETURN ret;
3 ret = SQLEndTran(SQL_HANDLE_DBC, (HDBC)args, SQL_COMMIT);
4 if (!SQL_SUCCEEDED(ret)) {
5 return 0;
6 }
7 return 1;
8 }

Figure 4.4: do commit function handler definition.

The database connection handler passed to the TxDBStart function determines
which database is going to be used in the current memory transaction. It is possible

48

4. INTEGRATION OF DATABASE AND MEMORY TRANSACTIONS 4.3. Using the Model

in another memory transaction to use a different database, but not more than one per
memory transaction. The user can still use the TxStart function if he is not going to
operate with the database.

4.3 Using the Model

This unified model is very easy to use, even for programmers with little experience in
using transactional memory engines, and database programming using ODBC inter-
faces. In practice, a programmer will create memory transactions, and inside it he can
use the ODBC API to operate over the database.

Figure 4.5 shows the definition of a transaction which inserts an integer into a mem-
ory integer array and into a database table. The runQuery function is wrapping the
ODBC API to make database queries. If this insert function is executed by several
threads in parallel it will detect conflicts both at memory and database levels, and it is
guaranteed that it will change memory and database atomically.

1 int array[MAX] = {0};
2 int curr = 0;

1 void insert(Thread *Self, HDBC dbc, int num) {
2 TxDBStart(Self,dbc,0);
3 int *pos = TxLoad(Self, &array[curr]);
4 TxStore(Self, *pos, num);
5 char buf[128];
6 sprintf(buf, "insert into int_table values
7 (%d);", num);
8 runQuery(dbc, buf);
9 TxCommit(Self);

10 curr++;
11 }

Figure 4.5: Example of inserting an integer into a memory array and into a database
table.

4.4 Unified Model Problems

Some problems were found while testing the implementation of the work described
in previous sections, using CTL engine in deferred update mode with a PostgreSQL
database management system.

The test application was very simple. It implemented a memory cache of integer

49

4. INTEGRATION OF DATABASE AND MEMORY TRANSACTIONS 4.4. Unified Model Problems

numbers that were present in a database table. The test application has three opera-
tions:

• Insert: Inserts a number in the cache and inserts the same number in the database
table. If the number already exists in database it does not do anything more.

• Delete: Deletes a specified number from the database table and from the memory
cache.

• Get: Finds a specified number from the cache, if it does not find it, tries to find it
in the database table. If it is in the database, then adds the number to the cache.

Each operation is defined as a transaction. Every time the memory cache is full, a
random cache position is chosen to be freed. The delete operation in the memory cache
reads all the elements in the cache until it finds what is looking for, if it does not find
it, it does not do anything more.

The three operations were called randomly by more than one thread at a time. The
definition of each operation is depicted in Figure 4.6. The operations that access the
memory cache and the database are self described by their name.

Several tests were made to validate the coherence between the data present in mem-
ory and the data present in database. The assertion test was: every data that is in mem-
ory must be also in the database. An assertion failure meant that a coherency problem
was found. To understand what caused the assertion failure, operations’ traces were
captured and analyzed to find out which operation interleavings were made.

4.4.1 Serialization Incompatibilities

Frequently the assertion defined in the previous section failed. We captured traces
with the interleavings of the operations, to find out which sequence of operations was
breaking the assertion. Figure 4.7 shows the interleaving of two operations executed by
two threads. Thread A executes a delete operation for the number 10, and thread B
executes a get operation also for the number 10. Dashed lines indicate thread context
switching.

The problem depicted in the trace in Figure 4.7 is that thread B commits a transac-
tion that stores in memory a value read from the database which was removed mean-
while by a committed transaction executed by thread A. In our perspective, the result
of such interleaving must have been either thread B aborts the transaction when ex-
ecutes TxCommit, or the database system blocks the request or aborts the database
transaction when thread B executes select from db.

50

4. INTEGRATION OF DATABASE AND MEMORY TRANSACTIONS 4.4. Unified Model Problems

1 void insert(Thread *Self, HDBC dbc, CACHE ch, int n) {
2 TxDBStart(Self, dbc, 0);
3 if (insert_in_db(dbc, n)) {
4 // successful inserted in db
5 insert_in_cache(ch, n);
6 }
7 TxCommit();
8 }

1 void delete(Thread *Self, HDBC dbc, CACHE ch, int n) {
2 TxDBStart(Self, dbc, 0);
3 if (delete_from_db(dbc, n)) {
4 // successful deleted from db
5 delete_from_cache(ch, n);
6 }
7 TxCommit();
8 }

1 int get(Thread *Self, HDBC dbc, CACHE ch, int n) {
2 int *res;
3 TxDBStart(Self, dbc, 0);
4 if ((res = get_from_cache(ch, n)) == NULL) {
5 // does not exists in cache
6 if (select_from_db(dbc, n)) {
7 // exists in database
8 insert_in_cache(ch, n);
9 *res = n;

10 }
11 }
12 TxCommit();
13 return *res;
14 }

Figure 4.6: Definition of test application operations.

Thread A delete(10) Thread B get(10)
TxDBStart

delete from db
delete from cache (read-only)

TxDBStart
get from cache
select from db
insert in cache

TxCommit
TxCommit

Figure 4.7: Trace of the execution of two operations by two threads.

51

4. INTEGRATION OF DATABASE AND MEMORY TRANSACTIONS 4.4. Unified Model Problems

The reason for the trace shown to happen, is that the memory transaction and the
database transaction are running in different isolation levels. PostgreSQL implements
snapshot isolation [BBG+95], in contrast to CTL implementation of total serialization. In
the select from db operation, PostgreSQL is retrieving the last committed value
present when the respective transaction started, and at time of commit it does not need
to verify this read, because in terms of database transaction, it is like the database trans-
action of thread B occurred before the database transaction of thread A. As a result of
the unification of the two transactional models, this type of serialization is not admis-
sible, because the memory transaction of thread B is serialized as if it occurred after
the memory transaction of thread A. Figure 4.8 shows the result serialization schedule
for both memory transactions and database transactions in this particular case.

Transaction

A
Transaction

B

Transaction

B
Transaction

A

Memory Transaction

Database Transaction

Figure 4.8: Serialization schedule of memory and database transactions.

In order to be able to unify the two models, the serialization schedules generated
dynamically by both models must be the same, and this applies always to the use of
more than one database engine in the same transaction.

4.4.2 Solution Approach

This problem only occurs when SELECT (read-only) statements are used inside trans-
actions, and the respective DBMS does not support total serialization isolation level.
One way of solving this problem is using a DBMS that implements total serialization
isolation level. We have executed the same test with a DB2 database management sys-
tem and no problems were found.

Another possible solution to the problem is to fully serialize snapshot isolation sched-
ules. Since the problem is that snapshot isolation does not detect read-write conflicts, we
must detect ourselves. There are two possibilities of treating the conflict: detect and

52

4. INTEGRATION OF DATABASE AND MEMORY TRANSACTIONS 4.4. Unified Model Problems

solve the conflict at the moment the read operation is done or log all transactions op-
erations and detect and solve the conflict at commit time.

In the first approach, we will force the read operations to be treated as write opera-
tions by the DBMS [FLO+05]. In this way, read-write conflicts disappear because all op-
erations turn into write operations. A simple way to do it, is for each SELECT statement
in our program of a data item Di, to update the value of the data item V (Di) to itself
V (Di) = V (Di). This update needs to be done before the SELECT statement, to acquire
a write lock before reading the value. This solution will transform all read operations
into write operation and therefore a performance overhead will exist. The PostgreSQL
database [Pos] implements a SQL statement to address such problem, the statement
SELECT FOR UPDATE or SELECT FOR SHARE can be used to force SELECT state-
ments to be treated as updates. The difference between the two statements is that FOR
UPDATE acquires an exclusive lock of the rows being accessed by the SELECT state-
ment, and the FOR SHARE acquires a shared lock, thus permitting other SELECT FOR

SHARE statements to not block. If any row is locked by an exclusive or shared lock, any
write attempt to the locked row will block.

To implement the second approach, all read and write operations made by the
database transactions must be registered in a log. When a database transaction tries
to commit, its operations must be validated and if a read-write conflict is found the
transaction must abort.

Each read operation will be identified as R(Ti, x), meaning transaction Ti read data
item x, and each write operation will be identified as W (Ti, x) with similar meaning.
Each transaction has also a S(Ti) identifying the time that transaction Ti started and
E(Ti) identifying the time that transaction Ti ended (committed). To find if there was
a conflict when committing a transaction Ti then, for each R(Ti, x) in the readset of
transaction Ti, there is a conflict if there exists a W (Tj, x) in the writeset for some Tj

where S(Ti) < E(Tj) < E(Ti), i 6= j. This means that if there was a write operation
in data item x made by a transaction Tj that committed between the start and end of
the transaction Ti, then there was a read-write conflict, and transaction Ti must abort.
Figure 4.9 shows the pseudo-code of the validation algorithm.

The use of this approach for all the transactions has a strong impact in the perfor-
mance. Another problem with this solution is that most DBMS do not provide the
information necessary to apply the validation algorithm, such as transactions readsets
and writesets. In this case, such information must be collected manually with even
higher performance impact.

Applying the first solution described above to the application that generated the
trace presented in the previous section, should result in a trace like the one depicted

53

4. INTEGRATION OF DATABASE AND MEMORY TRANSACTIONS 4.4. Unified Model Problems

1 foreach R(Ti, x)
2 foreach Tj %j!=i
3 if E(Tj) > S(Ti) and E(Tj) < E(Ti)
4 if exists W(Tj, x)
5 ABORT TRANSACTION
6 endif
7 endif
8 endfor
9 endfor

Figure 4.9: Validation algorithm pseudo-code

in Figure 4.10. If we apply the second solution, then the trace should be like the one
depicted in Figure 4.11.

Thread A delete(10) Thread B get(10)
TxDBStart

delete from db
delete from cache (read-only)

TxDBStart
get from cache

select from db (blocks)
TxCommit

TxCommit

Figure 4.10: Trace of the execution using SELECT as a write.

Thread A delete(10) Thread B get(10)
TxDBStart

delete from db
delete from cache (read-only)

TxDBStart
get from cache
select from db
insert in cache

TxCommit
TxAbort (and tries again)

Figure 4.11: Trace of the execution using commit validation algorithm.

54

5
Use Case Example

In this chapter we will describe an application developed to validate the use of the
unified model described in Chapter 4. This application makes use of both database
and memory data structures to create a retrieval system.

5.1 Use Case Description

The application developed as a use case can store and retrieve scientific articles from
a database. The articles can be indexed by author name, by keywords, or both. The
article repository has an interface with four functions: insert an article, remove an
article, find by author, and find by keyword. Each function accesses different shared
data structures, as well as database tables in order to maintain consistency between
memory and database.

The application is divided in two components: a server, and a client. The server will
manage the repository allowing concurrent calls to the repository interface. The client
is a single threaded component and its only purpose is to make calls to the server. The
idea of using the unified model in this application is to have in memory the articles
indexation structure which is also in database. If the application is closed then all
information persists in database, when the application runs again then all indexation
information is loaded into memory. Using our unified model is very simple to maintain
the consistency between the database and its partial replica in memory with higher
levels of performance.

First are described the database entity-relation model and the memory data struc-

55

5. USE CASE EXAMPLE 5.1. Use Case Description

tures used, and then each function of the repository interface will be described in detail.

5.1.1 Database model

The database scheme is very simple, it has three entities: articles, authors, and key-
words. An article is represented by an internal id, a title, and the file path to the article
document. An author is represented by its name (we assume that each author name is
unique). A keyword is represented by the respective keyword.

Each article can have a number, higher than one, of authors and keywords. And
there cannot exist an article in the database without authors and keywords. In Fig-
ure 5.1 presents the entity-relation model of the database scheme just described.

Article

KeywordAuthor

Figure 5.1: Application database entity-relation model.

The relation between authors and articles is supported by an association table where
each row makes the link between an author and an article. The rows stored in this as-
sociation table are the articles indexing structure and will be also replicated in memory.
The same applies to the relation between keywords and articles.

5.1.2 Memory Data Structures

The indexing structure in memory is represented by a singly linked list and a hash
table. The structure is simple: one hash table for indexing authors and another for
indexing keywords, and each element of the hash table is a list of article identifiers
which are associated with the author or the keyword.

The singly linked list was implemented using CTL to protect it from concurrency
problems. This list implements three operations: add an element, remove an element,
and get an element from the list. Each operation uses the handler system, described in
Chapter 3, to manage list nodes memory allocation and deallocation. The add opera-
tion, adds an element to the head of the list. The remove operation removes the nth
element from the list. The get operation, gets the nth element from the list.

56

5. USE CASE EXAMPLE 5.2. Performance and Comparison Tests

The hash table is separate chaining and was also implemented using CTL to protect
it from concurrency problems. It implements three operations: add an element, remove
an element, and get an element from the hash table. Similar to the linked list, each hash
table operation also uses the handler system support.

5.1.3 Description of Repository Operations

Inserting an article in the repository is an operation with several steps. First the article
is inserted in the database. If the database insertion is succeeded, because the article is
not yet in the database, then for each author of the article the association between the
author and the article is inserted in the database and also in the list of articles stored in
an element of the hash table indexed by the author’s name.

The remove operation is implemented as follows: for each author and keyword, of
the specified article, are removed all the respective associations between authors and
article, and keywords and article from the memory hash tables and from the database.

Finding an article in the repository, by author or by keyword is implemented as
follows: get the article list from the respective hash table, and for each article in the list
retrieve it from database.

The operations of insert and remove from the database repository only use INSERT
and DELETE SQL statements, and do not use any SELECT statement. In this particular
application does not arise the problem identified in Section 4.4 and therefore, we can
use any database implementing snapshot isolation to test this application.

5.2 Performance and Comparison Tests

To perform comparison tests, the same application was implemented using locks. Each
repository operation was protected with a global lock. This approach was not the best
option for performance but aimed at keeping the simplicity as it would be if using
STM. We also implemented another approach, this one just using the database without
memory data structures. In this approach all operations access only the database. The
find operation which previously was implemented using only memory accesses, in this
approach, is implemented querying the database with SELECT statements.

The tests preformed were analyzed in six different environments: a read dominant
context, a write dominant context, and a read-write dominant context; all in both low
and a high contention context. The operations of inserting and removing from the
repository are read-write operations, and finding an article by author or by keyword
are read-only operations. The tests are characterized by three types of operations: in-
sertions, removals, and gets. Each operation has a predefined probability defined as

57

5. USE CASE EXAMPLE 5.2. Performance and Comparison Tests

an application parameter. The number of articles to be inserted in the repository will
control the contention level and will be also defined as an application parameter.

The tests were performed on a Sun Fire X4600 M2 x64 server with eight dual-core
AMD Opteron Model 8220 processors @ 2.8 GHz with 1024 KB cache. The database
management system used was a PostgreSQL 8.3.

Figures 5.2, 5.3 and 5.4 show the results obtained for the different configurations.
The first remark is that in all tests the CTL implementation surpassed the lock im-

plementation. This was the expected result as database access times are much higher
than memory access times and, in the lock implementation, a thread executing an op-
eration acquires an exclusive lock and since locks are held a long time, no operations
can be executed concurrently. With CTL, if there are no conflicts, all operations execute
concurrently, and no thread has to wait for others.

The contention level is also a determinant factor in the performance of the CTL
implementation. With high contention, transactions tend to conflict more with each
other, having a lower performance than in a low contention environments.

The load pattern also influences the three implementations. In a read dominant
context the performance of all three implementations is higher, and lowers as the per-
centage of write operations increases.

Comparing the CTL implementation with a more realistic implementation using
only the database to access data, we can see that CTL implementation is better in all
low contention environments and it is not significantly worse in high contention en-
vironments. The technique of keeping some information in memory to boost perfor-
mance of read operations is relatively simple to implement using our unified model
and the performance gains over the database only approach are evident.

58

5. USE CASE EXAMPLE 5.2. Performance and Comparison Tests

0

1000

2000

3000

4000

5000

6000

 1 2 4 8 16 32 64

O
pe

ra
tio

ns
/s

ec
on

d

Number of threads

Article Repository / 60 sec / 500 keys / 5% put, 5% del, 90% get

CTL Deferred
Locks

Only Database

0

1000

2000

3000

4000

5000

6000

7000

8000

 1 2 4 8 16 32 64

O
pe

ra
tio

ns
/s

ec
on

d

Number of threads

Article Repository / 60 sec / 10000 keys / 5% put, 5% del, 90% get

CTL Deferred
Locks

Only Database

Figure 5.2: Repository 5% inserts, 5% deletes, 90% lookups with high contention (top)
and low contention (bottom)

59

5. USE CASE EXAMPLE 5.2. Performance and Comparison Tests

0

200

400

600

800

1000

1200

1400

 1 2 4 8 16 32 64

O
pe

ra
tio

ns
/s

ec
on

d

Number of threads

Article Repository / 60 sec / 500 keys / 30% put, 30% del, 40% get

CTL Deferred
Locks

Only Database

0

200

400

600

800

1000

1200

1400

1600

 1 2 4 8 16 32 64

O
pe

ra
tio

ns
/s

ec
on

d

Number of threads

Article Repository / 60 sec / 10000 keys / 30% put, 30% del, 40% get

CTL Deferred
Locks

Only Database

Figure 5.3: Repository 30% inserts, 30% deletes, 40% lookups with high contention
(top) and low contention (bottom)

60

5. USE CASE EXAMPLE 5.2. Performance and Comparison Tests

0

100

200

300

400

500

600

700

800

900

1000

 1 2 4 8 16 32 64

O
pe

ra
tio

ns
/s

ec
on

d

Number of threads

Article Repository / 60 sec / 500 keys / 45% put, 45% del, 10% get

CTL Deferred
Locks

Only Database

0

200

400

600

800

1000

1200

 1 2 4 8 16 32 64

O
pe

ra
tio

ns
/s

ec
on

d

Number of threads

Article Repository / 60 sec / 10000 keys / 45% put, 45% del, 10% get

CTL Deferred
Locks

Only Database

Figure 5.4: Repository 45% inserts, 45% deletes, 10% lookups with high contention
(top) and low contention (bottom)

61

6
Conclusions

This work has presented a solution to the problem of integrating database transactions
with memory transactions. The path to achieve such a solution led to the creation of an
handler system which allows a user to create compensating actions to revert the effects
of apparently irreversible operations within the context of a memory transaction.

The handler-based technique presented in this thesis is a generic and elegant ap-
proach to solve the problem of executing irrevocable (but compensable) operations in
the context of a software memory transaction, at a negligible cost. It can also be used to
easily revert irrevocable (but, again, compensable) operations inside a library that will
be executed within a memory transaction. This technique is not tied to any specific
problem neither to any specific solution. It is also independent of the specific model
or implementation of the STM framework. The proposed technique only depends on
the programmer to correctly use the handlers and create the operationally effective
solution.

This handler system was the basis of the integration of database and memory trans-
actions. Using the two-phase-commit protocol to commit both, memory and database
transactions, CTL becomes the first STM engine to implement this integration. With the
front-end for the CTL transaction start function, users are able to access the database
data very easily from within a memory transaction. Besides ease of use of this tech-
nique, also the performance gains, relatively to a lock based approach, are an advan-
tage.

Other contribution of this work was the identification and its resolution of the prob-
lem raised by the differences between database and memory transaction isolation lev-

63

6. CONCLUSIONS 6.1. Future Work

els. Most STM engines provide serializable schedules and, most DBMS provide more
relaxed approaches. To integrate database and memory transactions, both engines
must generate equal schedules, otherwise consistency errors may occur.

6.1 Future Work

The implemented unified model was the simplest that could be done, but it is a starting
point for the study of more advanced features. Support for more than one database
transaction simultaneously is a feature that was limited only by the technology used
to communicate with the database. Using another API that supports the distributed
transaction XA protocol, it should be simple to implement such a support.

Other interesting feature is the support for nesting transactions (closed nesting) in
our unified model. As database accesses are very time expensive, using nested trans-
action would avoid repeating database accesses.

Adapting our unified model to support speculative database accesses, is also an in-
teresting feature with some usefulness. Being able to access speculatively the database
and, at the time of receiving the real value, the transactional engine would decide au-
tomatically if the current transaction continues or abort its execution.

The handler system could also be improved by letting a user to use transactional
API inside the handlers that execute inside the transaction. This way a user could
access shared memory positions, increasing in this way the functionality and usability
of the handler system.

64

A
Raw Test Data

A.1 Handler System Overhead Tests

65

A. RAW TEST DATA A.1. Handler System Overhead Tests

A.1.1 Load Pattern: 5% put, 5% del, 90% get

Threads Total Operations Operations/second Total aborts
1 29088933 969385 0
2 53181533 1772233 2426
4 98722308 3289888 13512
8 172572663 5751041 52215
16 239139152 7969286 121222
32 191076724 6368072 105782
64 95643569 3187700 74302

Table A.1: Red-Black Tree, CTL Deferred Update, 30 sec, 1000 keys, 5% put, 5% del,
90% get. Without Handlers

Threads Total Operations Operations/second Total aborts
1 27751290 924772 0
2 51707668 1723106 45345
4 95922885 3196513 257845
8 169897360 5661735 1019467
16 241453922 8046527 3419825
32 196551385 6550618 3870733
64 102384266 3412436 4408400

Table A.2: Red-Black Tree, CTL Deferred Update, 30 sec, 1000 keys, 5% put, 5% del,
90% get. With Handlers No Free

Threads Total Operations Operations/second Total aborts
1 28043822 934538 0
2 51531958 1717240 52320
4 94596643 3152318 286527
8 164760035 5490610 1220105
16 229804999 7658377 3629943
32 198939790 6630223 3927133
64 112093040 3735751 4353330

Table A.3: Red-Black Tree, CTL Deferred Update, 30 sec, 1000 keys, 5% put, 5% del,
90% get. With Handlers Do Free

66

A. RAW TEST DATA A.1. Handler System Overhead Tests

A.1.2 Load Pattern: 45% put, 45% del, 10% get

Threads Total Operations Operations/second Total aborts
1 18543212 617942 0
2 26084615 869249 52050
4 43722849 1457097 255696
8 71441946 2380684 909669

16 75353200 2511154 1364061
32 53866017 1795187 1020079
64 17088337 569481 375548

Table A.4: Red-Black Tree, CTL Deferred Update, 30 sec, 1000 keys, 45% put, 45% del,
10% get. Without Handlers

Threads Total Operations Operations/second Total aborts
1 17075964 569036 0
2 25159362 838428 172020
4 39921454 1330343 740708
8 58295765 1942687 2054860

16 78430610 2613725 4914808
32 41393083 1379493 6903115
64 13101266 436642 5897352

Table A.5: Red-Black Tree, CTL Deferred Update, 30 sec, 1000 keys, 45% put, 45% del,
10% get. Without Handlers No Free

Threads Total Operations Operations/second Total aborts
1 16369415 545498 0
2 23867026 795366 184577
4 39858796 1328246 909087
8 64887403 2162409 3410701

16 75844541 2527561 7970603
32 58946580 1964559 7547202
64 18468035 615556 5589514

Table A.6: Red-Black Tree, CTL Deferred Update, 30 sec, 1000 keys, 45% put, 45% del,
10% get. Without Handlers Do Free

67

A. RAW TEST DATA A.2. Article Repository Performance Tests

A.2 Article Repository Performance Tests

A.2.1 Load Pattern: 5% put, 5% del, 90% get

Contention: 500 keys

Threads Total Operations Operations/second Total aborts
1 166136 2748 0
2 170469 2822 165538
4 266720 4415 417455
8 332079 5500 734307
16 330438 5477 603804
32 332885 5516 527604
64 333818 5532 570060

Table A.7: Article Repository, CTL Deferred Update, 60 sec, 500 keys, 5% put, 5% del,
90% get.

Threads Total Operations Operations/second Total aborts
1 162735 2693 0
2 166062 2748 0
4 162582 2692 0
8 168818 2793 0
16 163079 2698 0
32 164289 2718 0
64 163346 2703 0

Table A.8: Article Repository, Lock, 60 sec, 500 keys, 5% put, 5% del, 90% get.

Threads Total Operations Operations/second Total aborts
1 58507 968 0
2 95854 1586 0
4 151386 2507 0
8 227568 3770 0
16 244586 4050 0
32 218117 3613 0
64 226025 3743 0

Table A.9: Article Repository, Only Database, 60 sec, 500 keys, 5% put, 5% del, 90% get.

68

A. RAW TEST DATA A.2. Article Repository Performance Tests

Contention: 10000 keys

Threads Total Operations Operations/second Total aborts
1 139150 2303 0
2 163784 2711 11067
4 267491 4429 32463
8 393465 6516 83208

16 419859 6960 95791
32 430640 7135 139903
64 441408 7315 331421

Table A.10: Article Repository, CTL Deferred Update, 60 sec, 10000 keys, 5% put, 5%
del, 90% get.

Threads Total Operations Operations/second Total aborts
1 139881 2316 0
2 142854 2364 0
4 140942 2334 0
8 139072 2302 0

16 138748 2296 0
32 139467 2307 0
64 138454 2292 0

Table A.11: Article Repository, Lock, 60 sec, 10000 keys, 5% put, 5% del, 90% get.

Threads Total Operations Operations/second Total aborts
1 51712 856 0
2 79773 1320 0
4 119721 1982 0
8 178514 2958 0

16 220177 3645 0
32 214663 3556 0
64 215118 3563 0

Table A.12: Article Repository, Only Database, 60 sec, 10000 keys, 5% put, 5% del, 90%
get.

69

A. RAW TEST DATA A.2. Article Repository Performance Tests

A.2.2 Load Pattern: 30% put, 30% del, 40% get

Contention: 500 keys

Threads Total Operations Operations/second Total aborts
1 28384 469 0
2 28567 473 25029
4 46318 766 70342
8 59812 990 188161
16 52713 873 296890
32 60405 1001 436798
64 65374 1083 440279

Table A.13: Article Repository, CTL Deferred Update, 60 sec, 500 keys, 30% put, 30%
del, 40% get.

Threads Total Operations Operations/second Total aborts
1 27268 451 0
2 27873 460 0
4 27295 451 0
8 28114 465 0
16 27414 453 0
32 27059 447 0
64 27309 451 0

Table A.14: Article Repository, Lock, 60 sec, 500 keys, 30% put, 30% del, 40% get.

Threads Total Operations Operations/second Total aborts
1 17588 291 0
2 26203 433 0
4 40365 668 0
8 62042 1027 0
16 79545 1317 0
32 78067 1293 0
64 83454 1383 0

Table A.15: Article Repository, Only Database, 60 sec, 500 keys, 30% put, 30% del, 40%
get.

70

A. RAW TEST DATA A.2. Article Repository Performance Tests

Contention: 10000 keys

Threads Total Operations Operations/second Total aborts
1 23429 387 0
2 27047 447 1141
4 43988 727 4499
8 68716 1138 14687

16 90947 1507 35703
32 91830 1521 60385
64 78896 1307 124938

Table A.16: Article Repository, CTL Deferred Update, 60 sec, 10000 keys, 30% put, 30%
del, 40% get.

Threads Total Operations Operations/second Total aborts
1 23427 388 0
2 23601 390 0
4 23494 388 0
8 23444 387 0

16 23282 385 0
32 23652 391 0
64 23073 381 0

Table A.17: Article Repository, Lock, 60 sec, 10000 keys, 30% put, 30% del, 40% get.

Threads Total Operations Operations/second Total aborts
1 15912 263 0
2 22394 370 0
4 33654 557 0
8 51354 851 0

16 69128 1145 0
32 69788 1156 0
64 69340 1148 0

Table A.18: Article Repository, Only Database, 60 sec, 10000 keys, 30% put, 30% del,
40% get.

71

A. RAW TEST DATA A.2. Article Repository Performance Tests

A.2.3 Load Pattern: 45% put, 45% del, 10% get

Contention: 500 keys

Threads Total Operations Operations/second Total aborts
1 18805 311 0
2 19020 314 13318
4 30292 501 40364
8 39270 650 111900
16 35679 591 190234
32 38087 631 266670
64 43042 713 258884

Table A.19: Article Repository, CTL Deferred Update, 60 sec, 500 keys, 45% put, 45%
del, 10% get.

Threads Total Operations Operations/second Total aborts
1 18695 309 0
2 18569 307 0
4 18535 306 0
8 18836 311 0
16 18552 307 0
32 18655 308 0
64 18843 311 0

Table A.20: Article Repository, Lock, 60 sec, 500 keys, 45% put, 45% del, 10% get.

Threads Total Operations Operations/second Total aborts
1 12175 201 0
2 17586 291 0
4 27520 455 0
8 42492 704 0
16 55064 912 0
32 54597 904 0
64 58368 967 0

Table A.21: Article Repository, Only Database, 60 sec, 500 keys, 45% put, 45% del, 10%
get.

72

A. RAW TEST DATA A.2. Article Repository Performance Tests

Contention: 10000 keys

Threads Total Operations Operations/second Total aborts
1 15734 260 0
2 17969 297 840
4 29377 486 3028
8 46570 771 8233

16 57720 956 22495
32 61667 1021 41943
64 49731 824 63248

Table A.22: Article Repository, CTL Deferred Update, 60 sec, 10000 keys, 45% put, 45%
del, 10% get.

Threads Total Operations Operations/second Total aborts
1 15717 260 0
2 15475 256 0
4 15518 256 0
8 15508 256 0

16 15574 257 0
32 15840 262 0
64 15877 262 0

Table A.23: Article Repository, Lock, 60 sec, 10000 keys, 45% put, 45% del, 10% get.

Threads Total Operations Operations/second Total aborts
1 11646 192 0
2 15579 257 0
4 23572 390 0
8 36427 603 0

16 48335 800 0
32 49362 818 0
64 50076 829 0

Table A.24: Article Repository, Only Database, 60 sec, 10000 keys, 45% put, 45% del,
10% get.

73

B
CTL Handler System API

B.1 Handler Function Types

1 typedef void (*_ctl_handler)(Thread *Self, void *args)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• args Pointer to a void type variable. Can be used to pass data
into the handler.

Description: • Type used for commit, pos-commit, pre-abort, pos-abort han-
dlers.

75

B. CTL HANDLER SYSTEM API B.2. Handler System Functions

1 typedef int (*_ctl_prepare_handler)(Thread *Self, void *args)

Return: • int returns 1 if succeeded or 0 otherwise.

Parameters: • Self Transaction Manager descriptor.

• args Pointer to a void type variable. Can be used to pass data
into the handler.

Description: • Type used for prepare-commit handlers.

B.2 Handler System Functions

1 void _ctl_register_prepare_handler_priority(

2 Thread *Self,

3 _ctl_prepare_handler handler,

4 void *args,

5 int priority

6)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• handler Handler function pointer.

• args Pointer to a void type variable. Can be used to pass data
into the handler.

• priority Define the handler priority.

Description: • Registers a prepare-commit handler indicating explicitly its pri-
ority.

76

B. CTL HANDLER SYSTEM API B.2. Handler System Functions

1 void _ctl_register_prepare_handler(

2 Thread *Self,

3 _ctl_prepare_handler handler,

4 void *args

5)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• handler Handler function pointer.

• args Pointer to a void type variable. Can be used to pass data
into the handler.

Description: • Registers a prepare-commit handler with default priority number
10.

1 void _ctl_register_commit_handler_priority(

2 Thread *Self,

3 _ctl_handler handler,

4 void *args,

5 int priority

6)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• handler Handler function pointer.

• args Pointer to a void type variable. Can be used to pass data
into the handler.

• priority Define the handler priority.

Description: • Registers a commit handler indicating explicitly its priority.

77

B. CTL HANDLER SYSTEM API B.2. Handler System Functions

1 void _ctl_register_commit_handler(

2 Thread *Self,

3 _ctl_handler handler,

4 void *args

5)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• handler Handler function pointer.

• args Pointer to a void type variable. Can be used to pass data
into the handler.

Description: • Registers a commit handler with default priority number 10.

1 void _ctl_register_pos_commit_handler_priority(

2 Thread *Self,

3 _ctl_handler handler,

4 void *args,

5 int priority

6)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• handler Handler function pointer.

• args Pointer to a void type variable. Can be used to pass data
into the handler.

• priority Define the handler priority.

Description: • Registers a pos-commit handler indicating explicitly its priority.

78

B. CTL HANDLER SYSTEM API B.2. Handler System Functions

1 void _ctl_register_pos_commit_handler(

2 Thread *Self,

3 _ctl_handler handler,

4 void *args

5)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• handler Handler function pointer.

• args Pointer to a void type variable. Can be used to pass data
into the handler.

Description: • Registers a pos-commit handler with default priority number 10.

1 void _ctl_register_pre_abort_handler_priority(

2 Thread *Self,

3 _ctl_handler handler,

4 void *args,

5 int priority

6)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• handler Handler function pointer.

• args Pointer to a void type variable. Can be used to pass data
into the handler.

• priority Define the handler priority.

Description: • Registers a pre-abort handler indicating explicitly its priority.

79

B. CTL HANDLER SYSTEM API B.2. Handler System Functions

1 void _ctl_register_pre_abort_handler(

2 Thread *Self,

3 _ctl_handler handler,

4 void *args

5)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• handler Handler function pointer.

• args Pointer to a void type variable. Can be used to pass data
into the handler.

Description: • Registers a pre-abort handler with default priority number 10.

1 void _ctl_register_pos_abort_handler_priority(

2 Thread *Self,

3 _ctl_handler handler,

4 void *args,

5 int priority

6)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• handler Handler function pointer.

• args Pointer to a void type variable. Can be used to pass data
into the handler.

• priority Define the handler priority.

Description: • Registers a pos-abort handler indicating explicitly its priority.

80

B. CTL HANDLER SYSTEM API B.2. Handler System Functions

1 void _ctl_register_pos_abort_handler(

2 Thread *Self,

3 _ctl_handler handler,

4 void *args

5)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• handler Handler function pointer.

• args Pointer to a void type variable. Can be used to pass data
into the handler.

Description: • Registers a pos-abort handler with default priority number 10.

81

C
CTL Database Integration API

1 void TxDBStart(Thread *Self, SQLHDBC dbc, int roflag)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• dbc ODBC database connection handler.

• roflag Transaction is read-write if roflag is 0, it is read-only
otherwise.

Description: • Starts a memory transaction with support for accesses to the
database associated with the dbc handler.

1 void TxStart(Thread *Self, int roflag)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• roflag Transaction is read-write if roflag is 0, it is read-only
otherwise.

Description: • Starts a memory transaction.

83

C. CTL DATABASE INTEGRATION API

1 int TxCommit(Thread *Self)

Return: • Always returns the value 1.

Parameters: • Self Transaction Manager descriptor.

Description: • Commits a transaction, if transaction started with TxDBStart

function it will also commit the database transaction.

1 intptr_t TxLoad(Thread *Self, intptr_t *addr)

Return: • Value of the transactional variable with

address addr.

Parameters: • Self Transaction Manager descriptor.

• addr Address of a transactional variable.

Description: • Loads the value of a given transactional variable address. The
transaction aborts and retries if the variable has changed since
the beginning of this transaction.

1 void TxStore(Thread *Self, intptr_t *addr, intptr_t value)

Return: • void

Parameters: • Self Transaction Manager descriptor.

• addr Address of a transactional variable.

• value Value to be stored.

Description: • Stores the value value on the transactional variable with address
addr. The transaction aborts and retries if the variable has
changed since the beginning of this transaction.

84

Bibliography

[ALS06] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. Memory models
for open-nested transactions. In MSPC ’06: Proceedings of the 2006 work-
shop on Memory system performance and correctness, pages 70–81, New
York, NY, USA, 2006. ACM.

[BBG+95] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil,
and Patrick O’Neil. A critique of ansi sql isolation levels. In SIGMOD
’95: Proceedings of the 1995 ACM SIGMOD international conference on
Management of data, pages 1–10, New York, NY, USA, 1995. ACM.

[BK91] Naser S. Barghouti and Gail E. Kaiser. Concurrency control in ad-
vanced database applications. ACM Comput. Surv., 23(3):269–317, 1991.

[BLM05] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin. Decon-
structing transactions: The subtleties of atomicity. In Fourth Annual
Workshop on Duplicating, Deconstructing, and Debunking. Publisher un-
kownn, Jun 2005.

[Cac07] João Cachopo. Development of Rich Domain Models with Atomic Actions.
PhD thesis, Universidade Técnica de Lisboa, Jully 2007.

[CMC+06] Brian D. Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong
Chung, Chi Cao Minh, Christos Kozyrakis, and Kunle Olukotun. The
atomos transactional programming language. SIGPLAN Not., 41(6):1–
13, 2006.

[CRS06] João Cachopo and António Rito-Silva. Versioned boxes as the basis for
memory transactions. Sci. Comput. Program., 63(2):172–185, 2006.

[Cun07] Gonçalo Cunha. Consistent state software transactional memory. Mas-
ter’s thesis, Universidade Nova de Lisboa, November 2007.

85

BIBLIOGRAPHY

[DB2] Db2 database management system. http://www.ibm.com/DB2.

[DLC08] Ricardo Dias, J. M. S. Lourenço, and G. Cunha. Developing libraries us-
ing software transactional memory. In Proceedings of CoRTA (Compilers,
Related Technologies and Applications). Instituto Politécnico de Bragança
- ESTG, 07 2008.

[DSS06] Dave Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In
Distributed Computing, volume 4167, pages 194–208. Springer Berlin /
Heidelberg, October 2006.

[EGLT76] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
consistency and predicate locks in a database system. Commun. ACM,
19(11):624–633, 1976.

[EN00] Ramez Elmasri and Shamkant B. Navathe. Fundamentals of Database
Systems. Addison Wesley, 2000.

[FH07] Keir Fraser and Tim Harris. Concurrent programming without locks.
ACM Trans. Comput. Syst., 25(2):5, 2007.

[FLO+05] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil,
and Dennis Shasha. Making snapshot isolation serializable. ACM
Trans. Database Syst., 30(2):492–528, 2005.

[GR92] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1992.

[Gra78] Jim Gray. Notes on data base operating systems. Operating Systems,
pages 393–481, 1978.

[Gra81] Jim Gray. The transaction concept: virtues and limitations (invited pa-
per). In VLDB ’1981: Proceedings of the seventh international conference on
Very Large Data Bases, pages 144–154. VLDB Endowment, 1981.

[Har03] Tim Harris. Design choices for language-based transactions. Technical
report, UCAM-CL-TR, August 2003.

[Har05] Tim Harris. Exceptions and side-effects in atomic blocks. Sci. Comput.
Program., 58(3):325–343, 2005.

86

BIBLIOGRAPHY

[HF03] Tim Harris and Keir Fraser. Language support for lightweight trans-
actions. In OOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN
conference on Object-oriented programing, systems, languages, and applica-
tions, pages 388–402, New York, NY, USA, 2003. ACM.

[HLM06] Maurice Herlihy, Victor Luchangco, and Mark Moir. A flexible frame-
work for implementing software transactional memory. In OOPSLA
’06: Proceedings of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications, pages 253–262,
New York, NY, USA, 2006. ACM.

[HLMWNS03] Maurice Herlihy, Victor Luchangco, Mark Moir, and III William
N. Scherer. Software transactional memory for dynamic-sized data
structures. In PODC ’03: Proceedings of the twenty-second annual sym-
posium on Principles of distributed computing, pages 92–101, New York,
NY, USA, 2003. ACM.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architec-
tural support for lock-free data structures. In ISCA ’93: Proceedings of
the 20th annual international symposium on Computer architecture, pages
289–300, New York, NY, USA, 1993. ACM.

[HMPJH05] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy.
Composable memory transactions. In PPoPP ’05: Proceedings of the tenth
ACM SIGPLAN symposium on Principles and practice of parallel program-
ming, pages 48–60, New York, NY, USA, 2005. ACM.

[HR87] Theo Haerder and Kurt Rothermel. Concepts for transaction recovery
in nested transactions. In SIGMOD ’87: Proceedings of the 1987 ACM
SIGMOD international conference on Management of data, pages 239–248,
New York, NY, USA, 1987. ACM.

[KR81] H. T. Kung and John T. Robinson. On optimistic methods for concur-
rency control. ACM Trans. Database Syst., 6(2):213–226, 1981.

[LC07] João Lourenço and Gonçalo Cunha. Testing patterns for software trans-
actional memory engines. In PADTAD ’07: Proceedings of the 2007 ACM
workshop on Parallel and distributed systems: testing and debugging, pages
36–42, New York, NY, USA, 2007. ACM.

87

BIBLIOGRAPHY

[MBL06] Milo Martin, Colin Blundell, and E. Lewis. Subtleties of transactional
memory atomicity semantics. IEEE Computer Architecture Letters, 5(2),
2006.

[MH06] J. Eliot B. Moss and Antony L. Hosking. Nested transactional memory:
model and architecture sketches. Sci. Comput. Program., 63(2):186–201,
2006.

[Mos81] J. Eliot B. Moss. Nested transactions: an approach to reliable distributed
computing. PhD thesis, Massachusetts Institute of Technology, April
1981.

[Mos06] J. E. B. Moss. Open nested transactions: Semantics and support. In
WMPI, Austin, TX, February 2006.

[MyS] Mysql database management system. http://www.mysql.com.

[Ora] Oracle database management system. http://www.oracle.com.

[Pos] Postgresql database management system. http://www.

postgresql.com.

[RSPML78] Daniel J. Rosenkrantz, Richard E. Stearns, and II Philip M. Lewis. Sys-
tem level concurrency control for distributed database systems. ACM
Trans. Database Syst., 3(2):178–198, 1978.

[SATH+06] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao
Minh, and Benjamin Hertzberg. Mcrt-stm: a high performance soft-
ware transactional memory system for a multi-core runtime. In PPoPP
’06: Proceedings of the eleventh ACM SIGPLAN symposium on Principles
and practice of parallel programming, pages 187–197, New York, NY, USA,
2006. ACM.

[Sco06] Michael L. Scott. Sequential specification of transactional memory se-
mantics. In Workshop on Languages, Compilers, and Hardware Support for
Transactional Computing (TRANSACT), June 2006.

[SKS06] Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database Sys-
tem Concepts. McGraw-Hill, fifth edition, 2006.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory. In PODC
’95: Proceedings of the fourteenth annual ACM symposium on Principles of
distributed computing, pages 204–213, New York, NY, USA, 1995. ACM.

88

