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SUMMARY (English) 

 The computations performed by the brain ultimately rely on the 

functional connectivity between neurons embedded in complex networks. It is 

well known that the neuronal connections, the synapses, are plastic, i.e. the 

contribution of each presynaptic neuron to the firing of a postsynaptic neuron 

can be independently adjusted. The modulation of effective synaptic strength 

can occur on time scales that range from tens or hundreds of milliseconds, to 

tens of minutes or hours, to days, and may involve pre- and/or post-synaptic 

modifications. The collection of these mechanisms is generally believed to 

underlie learning and memory and, hence, it is fundamental to understand their 

consequences in the behavior of neurons. 

 Virtually all neurons in the brain receive inputs from excitatory and 

inhibitory synapses, and their response to a brief stimulus is determined by the 

magnitude and net balance of fast excitatory and inhibitory currents. While it is 

well established that both synapse types are plastic, the computational benefit 

of their concerted regulation is not understood. Computer simulations showed 

that excitatory plasticity primarily controls the threshold of the neuronal input-

output function, while balanced changes in excitation and inhibition modify the 

gain, independently of the threshold. These theoretical results generated 

testable predictions that were confirmed experimentally in rat hippocampal 

slices with a collection of electrophysiological techniques. These data support 

the existence of two types of functional synaptic plasticity: threshold and gain 

plasticity. 

 In addition to these long-term changes in synaptic strength it is known 

that the effective synaptic efficacy between two neurons can dynamically 

decrease or increase in a use-dependent manner, on a time scale on the order 

of tens to hundreds of milliseconds. Here, it is shown that this phenomenon, 
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known as short-term synaptic plasticity (STP), enhances the ability of small 

networks of neurons to discriminate time-varying stimuli, such as Poisson 

spike patterns. Additionally, it is proposed that STP may be governed by 

specific learning rules in which synapses ‘learn’ when to be strong – i.e., 

whether to express short-term synaptic depression or facilitation. Computer 

simulations show how the discrimination of spatiotemporal patterns greatly 

benefits from metaplasticity of short-term plasticity. 

 Together, the work presented here contributes to bridging the gap 

between the understanding of synaptic and cellular properties and neural 

systems, by studying network dynamics and plasticity at the level of isolated 

neuronal circuits. 
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SUMÁRIO (Português) 

 As computações efectuadas pelo cérebro dependem, em última 

análise, das conexões entre neurónios embebidos em redes complexas. É 

sabido que estas conexões, as sinapses, são plásticas, i.e. a contribuição de 

cada neurónio pré-sináptico para a activação do neurónio pós-sináptico pode 

ser ajustada independentemente. O controlo do peso efectivo de cada sinapse 

pode ocorrer a diferentes níveis –  em escalas de dezenas ou centenas de 

milisegundos, até minutos, horas ou dias – e pode envolver modificações pré- 

e/ou pós-sinápticas. Está estabelecido que os fenómenos de memória e 

aprendizagem dependem do conjunto destes mecanismos e, portanto, é 

fundamental conhecer e perceber as consequências de todas estas 

modificações sinápticas no comportamento dos neurónios. 

 Praticamente todos os neurónios no cérebro recebem informação de 

sinapses excitatórias e inibitórias, e, portanto, a resposta dos neurónios a 

estímulos transientes é determinada pela magnitude e pelo balanço entre as 

correntes excitatórias e inhibitórias rápidas. Enquanto que está estabelecido 

que ambas as sinapses são plásticas, não é conhecido qual o benefício 

computacional da sua regulação concertada. Simulações computacionais 

mostraram que a plasticidade excitatória controla principalmente o limiar da 

função de entrada-saída (I/O) do neurónio, enquanto que modificações 

paralelas da excitação e inibição modificam o ganho, independentemente do 

limiar. Estes resultados teóricos geraram hipóteses testáveis e que foram 

confirmadas experimentalmente em fatias de hipocampo de rato, através de 

um conjunto de técnicas electrofisiológicas diferentes. Estes dados sugerem a 

existência de dois tipos de plasticidade sináptica funcional: plasticidade do 

limiar e do ganho do neurónio. 
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 Para além das modificações de longo termo da força sináptica é 

sabido que a eficácia efectiva entre dois neurónios pode decrescer ou 

aumentar dinâmicamente dependendo da actividade, numa escala da ordem 

das dezenas às centenas de milisegundos. Aqui mostra-se que este 

fenómeno, denominado de plasticidade sináptica de curto termo, aumenta a 

capacidade de pequenas redes de neurónios de discriminarem estímulus 

temporais, tais como padrões de Poisson. Adicionalmente, é proposto que a 

plasticidade de curto termo pode ser governada por regras específicas em que 

as sinapses “aprendem” quando ser fortes – i.e., quando expressar depressão 

ou facilitação de curta duração. Simulações computacionais mostram que a 

discriminação de padrões espacio-temporais beneficia desta metaplasticidade 

da plasticidade de curta duração. 

 No seu conjunto o trabalho aqui apresentado contribui para preencher 

o vazio entre o conhecimento das propriedades sinápticas e celulares e o 

comportamento de redes neurais complexas, ao estudar plasticidade sináptica 

e as suas consequências funcionais em circuitos neuronais simples. 
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 The brain is the center of the nervous systems of all vertebrate animals 

(Kandel and Schwartz, 1985). The human brain weights approximately 1,400 

grams (Byrne, 2003) and is the most complex biological structure known 

(Shepherd, 1994), with its 100 billion neurons, each of which connecting to as 

many as 1,000 - 10,000 other cells (Kandel and Schwartz, 1985). It is now 

generally accepted that human behavior, consciousness, feelings and emotion 

are intrinsically dependent and related to brain activity (Damásio, 1994). 

Nevertheless, what constitutes the human essence is still a point of scientific 

and philosophical debate (Czerner, 2001; Stevens, 2005). 

 From a scientific point of view, it is safe to say that animal behavior (in 

which humans are included) is limited by the biological substrate of the 

nervous system, namely the number and types of cells and their connectivity 

patterns. Through this highly complex structure flow patterns of neuronal 

activity that on one hand carry representations of the sensorial world and, on 

the other hand, determine and execute the behavioral interaction with the 

external world. 

 One of the fundamental goals of neuroscientists is to understand how 

the brain transmits and processes information, i.e. to ‘crack the neural code’. 

To achieve this goal there is a need to understand how and when ‘simple’ 

cellular phenomena become meaningful neural computations. This thesis is 

positioned somewhere in between the details of molecular biology or 

biochemistry and the large-scale neuronal patterns observable with fMRI or 

EEG, and it attempts to describe how certain subcellular events directly 

modulate the neural output, which ultimately determines behavior. 
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Basic General Concepts 

 There are two main categories of cells in the brain: neurons and glial 

cells. While each of the following properties may not be exclusive of each 

category, in general, neurons differ from glial cells by their ability to generate 

propagated action potentials (also called spikes) and in their ability to 

communicate with other neurons through specialized subcellular structures 

called the synapses. Neurons are polarized cells in the sense that their 

citoarchitecture is divided into specialized compartments with different 

biological functions: the dendrites and the axon (usually one). Neurons receive 

information from certain locations in the dendritic plasma membrane that 

contain neurotransmitter receptors; and release neurotransmitter at specialized 

locations in the axon (the presynaptic terminal) (Byrne, 2003). 

 The work presented here focuses exclusively on neurons as they may 

be the main contributors to information propagation in the brain. There are 

many different cellular types of neurons, but they can be broadly classified into 

two general groups according to the neurotransmitter they release: excitatory 

and inhibitory neurons (Miles, 2000).  

 Due to the action of constantly active ionic pumps (Na+-K+-ATPases), 

the intracellular side of neurons is negatively charged with relation to the 

extracellular milieu, which generates a difference in potential (Wright, 2004) 

(reference values may be around -60 to -70 mV). Thus, if positive ions enter 

the cell the membrane potential will become less negative and the neuron 

depolarizes. Conversely, if negative ions enter the neuron its potential will 

become more negative and the cell hyperpolarizes (Brock et al., 1952a, b). 

 When excitatory neurons become active they generate an action 

potential that travels down the axon, causing the release of glutamate from the 

presynaptic terminals. The released glutamate binds to AMPA (α-amino-3-
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hydroxyl-5-methyl-4-isoxazole-propionate) channels on the postsynaptic side 

resulting in the influx of Na+, causing the postsynaptic neuron to depolarize 

slightly and transiently, i.e., producing an excitatory postsynaptic potential 

(EPSP) (Brock et al., 1952b). If there are sufficient  (~10-30) presynaptic 

terminals releasing glutamate in close temporal proximity (~5-20 ms) the 

summed depolarization in the postsynaptic neuron might reach threshold (~ -

40 mV) and triggers the generation of an action potential in the postsynaptic 

neuron. This flow of neuronal activity throughout networks of neurons is related 

to information transmission in the brain. 

 Roughly 20% of the neurons in the brain are inhibitory (Beaulieu et al., 

1992) and the mechanisms of synaptic transmission and action potential 

generation are similar to described above. However, when inhibitory neurons 

elicit an action potential it is generally the neurotransmitter GABA (Gamma-

aminobutyric acid) that is released instead of glutamate. GABA binds to 

GABAA receptors on the surface of the postsynaptic neuron, causing an inflow 

of Cl- (an inhibitory postsynaptic potential – IPSP) (Brock et al., 1952b), 

causing the neuron to hyperpolarize.. 

 Each cortical neuron receives inputs from many excitatory and 

inhibitory synapses, and during active cortical processing neurons receive a 

barrage of excitatory and inhibitory inputs (Hirsch et al., 1998; Destexhe and 

Pare, 1999; Steriade, 2001). In simple terms, it is the compound interaction 

between the depolarizing and hyperpolarizing effects of EPSPs and IPSPs that 

will determine whether or not the postsynaptic neuron will elicit an action 

potential (Pouille and Scanziani, 2001; Wehr and Zador, 2003; Wilent and 

Contreras, 2005). 

 Another prominent feature of neurons is synaptic plasticity, which 

means that the ability of synapses to depolarize (or hyperpolarize) a neuron 

can increase or decrease. Activity-dependent forms of synaptic plasticity 
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induce changes in the strength of synapses in a way determined by the 

patterns of pre- and/or postsynaptic activity (Malenka and Bear, 2004; 

Caporale and Dan, 2008). 

 There are many forms of synaptic plasticity, but here the focus will be 

on short-term forms of synaptic plasticity (STP), which last tens to hundreds of 

milliseconds, and long-term forms of synaptic plasticity (long-term potentiation, 

LTP; or long-term depression, LTD), which persist for tens of minutes or 

longer. Collectively, the multiple forms of synaptic plasticity are responsible for 

the dynamics of neural circuit function and are thought to play important roles 

in learning and memory (Buonomano and Merzenich, 1998b). 
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Balance of Excitation and Inhibition in Neural 

Microcircuits 

 A virtually ubiquitous network motif in the brain is the disynaptic 

microcircuit, in which an input generates an EPSP via a direct excitatory 

synapse followed by a fast IPSP, via an indirect feed-forward inhibitory 

synapse (Buzsaki and Eidelberg, 1981; Buzsaki, 1984; Ferster, 1986; Pouille 

and Scanziani, 2001; Wehr and Zador, 2003; Wilent and Contreras, 2005; 

Kapfer et al., 2007). 

 Both the excitatory (Bliss and Lomo, 1973; Dudek and Bear, 1992; 

Malenka and Bear, 2004) and inhibitory (Komatsu, 1994; Xie et al., 1995; 

McLean et al., 1996; Lu et al., 2000; Gaiarsa et al., 2002; Chevaleyre and 

Castillo, 2003) synapses are known to undergo long-term plasticity, suggesting 

that the tuning of each plays a critical role in controlling the response of the 

post-synaptic neuron. Previous experimental evidence indicates that excitation 

and inhibition (Ex-Inh) are balanced or co-tuned (Galarreta and Hestrin, 1998; 

Wehr and Zador, 2003, Gabernet and Scanziani), suggesting that this balance 

is important for cortical function and that there are mechanisms in place to 

actively maintain it. 

 Wehr and Zador (Wehr and Zador, 2003) recorded intracellularly from 

neurons in primary auditory cortex of anaesthetized rats and analyzed the 

response of the neuron to brief auditory tones (25-70 ms duration). By 

recording the total synaptic current evoked by the auditory stimulation, while 

voltage-clamping the neuron at different holding potentials, they were able to 

decompose the synaptic response into excitatory and inhibitory conductances. 

Their main observation was that excitatory and inhibitory conductances were 

co-tuned for sound frequency and intensity. In other words, they observed that 
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the stimuli that elicited maximal excitatory synaptic drive would also evoke 

maximal inhibitory synaptic drive. 

 More recently, Froemke et al. (Froemke et al., 2007) also recorded the 

response evoked by brief auditory tones (50 ms duration), from neurons in the 

auditory cortex of anaesthetized rats. After determining the excitatory and 

inhibitory synaptic conductances at different sound frequencies, they paired 

nucleus basalis stimulation (the main source of cortical acetylcholine) with 

tones at a frequency different than the preferred one. They observed that this 

protocol rapidly potentiated tone-evoked EPSCs and depressed IPSCs at the 

paired sound frequency. Interestingly however, they observed that tens of 

minutes after the pairing there was a gradual increase in the IPSCs elicited by 

the paired frequency, thus re-balancing again EPSCs and IPSCs. 

 The functional significance of this balance has not been fully elucidated 

yet, but a number of non-mutually exclusive hypothesis have been put forth 

regarding the function of balanced Ex-Inh, including: 

• keeping excitation in check and preventing epileptic-like activity 

(Freund and Buzsaki, 1996; Galarreta and Hestrin, 1998); 

• controlling the period over which effective EPSP summation can occur 

– the temporal integration window (Wehr and Zador, 2003; Gabernet et 

al., 2005; Wilent and Contreras, 2005); 

• balanced Ex-Inh is critical for computations such as temporal 

processing (Buonomano, 2000); 
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EPSP-Spike potentiation 

 Since the discovery of potentiating and depressing forms of long-term 

synaptic plasticity (Bliss and Lomo, 1973; Dudek and Bear, 1992), there has 

been extensive molecular and physiological characterization of these 

phenomena. Physiological studies classically focus on the enhancement or 

depression of excitatory subthreshold responses; specifically, by looking at the 

slope of EPSPs before and after the plasticity inducing protocol. The initial 

slope of the EPSP is a measure of the synaptic excitatory drive onto the cell 

(Wigstrom and Gustafsson, 1985; McCormick et al., 1993) and thus it is a valid 

measure to assess the changes induced by the plasticity protocols. 

 Aside from the debate regarding the fine details of long-term synaptic 

plasticity, it is important to realize that changes in EPSP strength are only 

functionally significant when they translate into changes in the firing patterns of 

the postsynaptic neuron. Accordingly, early in the development of the field 

there was an interest in understanding the relationship between evoked 

extracellular EPSPs (field EPSPs or fEPSPs – a measure of neuronal input), 

and the simultaneously recorded extracellular population spike amplitude (Pop. 

Spike – the output of the neurons). After the induction of LTP there is an 

increase in the slope of fEPSPs, but it was not known how that would relate 

with the Pop. Spike amplitude.  

 Andersen et al. (Andersen et al., 1980) observed that tetanization of 

the Schaffer collaterals in acute hippocampal slices induced a long lasting left-

shift of this E-S function (fEPSP slope vs. Pop. Spike amplitude). Functionally, 

this would mean that after the LTP induction protocol a fEPSP of the same 

slope could drive more neurons to fire action potentials, and hence the term E-

S potentiation. 

 Kairiss et al. (Kairiss et al., 1987) confirmed these results in the 

perforant path synapse of the dentate gyrus but in addition to the left-shift of 
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the E-S relationship it was also observed a decrease in the E-S slope. The 

slope of these types of Input/Output (I/O) functions is related to the sensitivity 

or gain of the neuronal response: a smaller gain means that a given change in 

the fEPSP is accompanied by a smaller change of the population spike. Kairiss 

et al. suggested that the LTP inducing protocol may also be inducing a parallel 

increase in the strength of inhibitory synapses, which could be the cause of the 

slope change of the E-S curve. 

 A commonality in these earlier studies is that the protocol used to 

induce synaptic plasticity (extracellular tetanic stimulation) was likely to induce 

plasticity at excitatory synapses, but may also induce plasticity of excitatory-to-

inhibitory and inhibitory-to-excitatory synapses as well. 

 More recently, Marder and Buonomano (Marder and Buonomano, 

2004) re-examined the issue of E-S potentiation with the goal of determining 

the mechanisms underlying the observed left-shift of the E-S function. Marder 

and Buonomano performed single-cell intracellular recordings and plotted the 

EPSP slope versus the action potential probability for a series of increasing 

stimulation intensities. Intracellular I/O functions can be defined by two 

parameters: the gain (similar to extracellular I/O functions) and the threshold 

(the EPSP slope that elicits action potentials with 50% probability), which is a 

measure of the position of the curve on the x-axis. To induce LTP Marder and 

Buonomano used an associative pairing protocol, which was shown to elicit 

plasticity at the excitatory synapses with no changes in IPSPs or intrinsic 

excitability. As expected, LTP caused an increase in the EPSP slope, but 

when the stimulation intensity is reduced until the EPSP slope is back to the 

original levels there is also a reduction in the activation of feed-forward 

inhibitory neurons. Thus, after LTP the same EPSP slope is accompanied by 

less inhibition and thus the neuron has an increased probability of firing an 

action potential, explaining the left-shift of the E-S function. 
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Gain Modulation 

 Finally, another line of research that has received considerable 

attention, and that relates to the work presented here, concerns the gain 

modulation of the neuronal Input/Output function. Above, it was discussed that 

increases in excitatory synaptic strength could induce leftward shifts of the I/O 

function (E-S potentiation). Given that, during active cortical processing, 

neurons are being constantly bombarded with excitatory and inhibitory inputs 

from other neurons, we will consider in this section the impact of that 

background synaptic activity on the neuronal I/O characteristics. Gain 

modulation consists in changing the sensitivity of neurons without changing 

their selectivity or, in other words, changing the slope of the relationship 

between input ‘intensity’ and spike output (Cardin et al., 2008).  

 Chance et al. (Chance et al., 2002) analyzed the mechanisms 

underlying gain modulation by recordings from layer 5 pyramidal neurons, in 

rat brain slices, in dynamic clamp mode (Robinson and Kawai, 1993; Sharp et 

al., 1993) with two whole-cell somatic recording electrodes. Briefly, using this 

configuration Chance et al. were able to measure the voltage through one 

electrode and simultaneously inject current through the other electrode, 

directly into the soma of the neuron. To simulate background synaptic noise 

they modeled independent excitatory and inhibitory conductances from many 

‘synapses’, and the computer would calculate in a continuous fashion how 

much current should be injected through the electrode to mimic that synaptic 

activity.  

 In their definition of the neuronal I/O function Chance et al. considered 

the output firing rate of the neuron versus an injected step of constant 

depolarizing current (2-3 sec.). After determining a ‘basal’ I/O response they 

injected the simulated noisy currents and observed that balanced increases in 
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the excitatory and inhibitory ‘synaptic’ conductances had a divisive gain 

modulation effect (the slope of the curve decreases). To determine the 

mechanistic causes underlying this gain modulation they analyzed separately 

the shunting and the membrane potential (Vm) fluctuation contributions, 

caused by increased background activity. They concluded that increased 

shunting shifts additively the curve to the right, while increased Vm fluctuations 

facilitate responses at all depolarizing levels, but more so for smaller driving 

currents. The combination of these two effects results in divisive gain 

modulation.  

 The work of Chance et al. was followed up by Shu et al. (Shu et al., 

2003), where they used UP states in cortical slices to emulate physiologically 

increases in background synaptic activity, essentially confirming the previous 

results.  

 Recently, Cardin et al. (Cardin et al., 2008) attempted to further 

elucidate the cellular mechanisms of gain modulation in vivo. They performed 

intracellular recordings in primary visual cortex of anesthetized cats and 

analyzed the effects on the neuronal I/O function of two different visual stimuli 

(drifting grating and broadband stimuli), which elicit background synaptic inputs 

with different characteristics. The neuronal I/O function was again defined as 

the mean firing rate caused by constant depolarizing current pulses (100 ms) 

of different intensities.  

 Increasing the contrast of drifting grating stimuli caused non-linear 

increases in the Vm standard deviation, membrane depolarization and 

decrease in the input resistance of neurons. Accordingly with previous results 

(Chance et al., 2002; Shu et al., 2003), drifting grating visual stimuli of 

increasing contrast caused a decrease in the slope of the I/O function (gain 

modulation). On the other hand, broadband stimuli of increasing contrasts did 

not induce membrane depolarization or change the input resistance in the 
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recorded neurons, but still caused a linear increase in the Vm standard 

deviation. Curiously, this visually evoked increase in Vm fluctuations alone 

failed to affect neuronal gain, raising the hypothesis that the mechanisms of 

gain modulation in vivo may involve other properties besides input noise 

caused by the input. 

 

Scope of Chapter 2 

 All together, these brief descriptions of some previous work give an 

idea of the state of the art in the fields that relate to the work presented in 

Chapter 2.  

 The gain modulation observed in the studies just mentioned (Chance et 

al., 2002; Shu et al., 2003; Cardin et al., 2008) relied on background synaptic 

input, which may be caused by changes in the state of the animal and thus 

allowing for rapid and online modulation of neural computations. However, 

during longer-term processes, such as learning and memory, it should also be 

possible to modulate the gain of neurons in a more permanent manner. Here, 

it will be considered whether synaptic plasticity could mediate such an effect. 

 Accordingly, we analyzed the changes induced by excitatory and 

inhibitory synaptic plasticity in synaptically determined I/O functions of single 

neurons. In the context of the E-S potentiation field, we contribute by analyzing 

not only the LTP-induced left shifts of I/O functions, but by also analyzing the 

changes in gain, thus completing the possible modifications that may occur to 

the I/O function. In addition, we also determine the contribution of inhibitory 

synaptic plasticity in the modulation of single-neuron I/O functions. 

 These results establish a framework to understand the effects of 

excitatory and inhibitory plasticity on both the gain and threshold shifts of the 

neuronal I/O function. They relate to the balance of excitation and inhibition 



 

16 

because they may provide answers to intriguing questions such as: why are 

there plasticity protocols that potentiate both EPSPs and IPSPs onto the same 

postsynaptic neuron? (Brown et al., 1990; Komatsu, 1994; Xie et al., 1995; 

Shew et al., 2000, Froemke Merzenich). What is the computational benefit of 

this apparently self-defeating form of plasticity? From a computational 

perspective, what is the functional difference between potentiating excitatory 

and depressing inhibitory inputs? 

 One concept that is fundamental throughout this thesis is that, whether 

one is considering small or large networks of neurons, the computations that 

can be performed are ultimately dependent on the conversion of input to 

output by each individual neuron that makes up the network. 

 Here, we propose that one of the functions of the feed-forward 

neuronal circuit architecture, along with the presence of plasticity at both the 

excitatory and inhibitory branches, is to allow neurons to control independently 

the two features that ultimately determine their role in a local computation: the 

gain and threshold of their I/O function.  
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Short-Term Synaptic Plasticity (STP) 

 In the second chapter of this thesis we focused on how long-term 

synaptic plasticity affects the output of neurons, with regards to brief and 

transient synaptically activated inputs (I/O function). The changes in gain and 

threshold that are presented are possible because synapses are plastic and 

their strength can increase or decrease in an activity dependent manner 

(Malenka and Bear, 2004; Caporale and Dan, 2008). In this framework 

synapses are simple communication channels, that increase or decrease how 

‘loud’ they transmit, and the computations and integration of information are 

performed by the neuron, which is often considered the computational unit of 

the brain (Abbott and Regehr, 2004).  

 However, another noteworthy property of synapses is their ability to 

keep track of their history of prior activity through a phenomenon called Short-

Term synaptic Plasticity (STP), in which the effective synaptic strength 

between two neurons can also dynamically decrease or increase but in a use-

dependent manner, on a time scale on the order of tens to hundreds of 

milliseconds.  

 During active cortical processing, neurons (and thus synapses) are 

active at rates between 5-20 Hz, or even higher (Abbott et al., 1997; Steriade 

et al., 2001). Thus, due to the ubiquitous presence of STP, the effective 

synaptic strength between two neurons in the brain will change dynamically 

depending on the frequency of firing of the presynaptic neuron and on the 

specific characteristics of each synapse (Markram and Tsodyks, 1996; Abbott 

et al., 1997; Reyes et al., 1998). 

 While STP was discovered long time ago (in the neuromuscular 

junction, Eccles et al., 1941; Eccles and Mac, 1949), a quick search in 

Pubmed suggests that it has received less attention compared to long-term 
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forms of synaptic plasticity, even though its computational effects in the brain 

may be no less important.  

 

 

Figure 1 – Number of Pubmed results for the respective search term. Searching with 

quotes forces phrase searching. 

 

Mechanisms of STP  

 The mechanisms underlying short-term synaptic plasticity have not 

been completely unraveled yet, but there is a growing consensus that synaptic 

depression due to long trains of stimulating pulses may be attributed to 

depletion of the readily releasable pool of synaptic vesicles (Rosenmund and 

Stevens, 1996; Schneggenburger et al., 2002; Zucker and Regehr, 2002). 

However, paired-pulse depression may rely on alternate mechanisms 
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(Sullivan, 2007). Synapses that have a low probability of vesicle release are 

likely to show some degree of short-term facilitation (Dobrunz and Stevens, 

1997). In these cases, trains of action potentials may cause accumulation of 

residual calcium, which binds to sensor proteins that trigger transmitter 

release, thus enhancing synaptic transmission (Katz and Miledi, 1968; Zucker 

and Regehr, 2002).  

 A recent alternative is that, in some systems, depression and 

facilitation may be caused by common mechanisms, involving Ca2+-dependent 

regulation of Ca2+ sensor proteins that regulate the presynaptic calcium 

channels responsible for triggering transmitter release (Mochida et al., 2008).  

 

Computational Models Incorporating STP 

 Buonomano and Merzenich (Buonomano and Merzenich, 1995) 

showed through computer simulations that STP (specifically, paired-pulse 

facilitation, PPF), together with slow IPSPs, could allow networks of neurons to 

discriminate time-varying stimuli such as brief-pulse intervals, input rates, 

simple temporal patterns or even phonemes. In their paper, the input layer 

feeds to a model of LIV, which in turn feeds a model of LII/III. Importantly, each 

brief, tap-like, stimulus activates the same set of input neurons to make sure 

that the network is not using spatial information, i.e., which input neurons get 

activated. Equally important is the fact that there was no learning or changes in 

the synaptic weights but, due to the time-dependent properties of PPF and 

slow IPSPs, the second stimulus of a pair coming at either 100 or 200 ms after 

the first will elicit different patterns of activation in each layer. A set of output 

neurons was connected to LII/III and a simple supervised learning rule was 

used in those synapses, so that the output neurons could learn the different 

patterns elicited by each of the different stimuli, and in this manner become 

detectors of the trained stimulus. 
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 Other studies have proposed a computational role for STP including 

temporal processing (Buonomano, 2000), working memory (Mongillo et al., 

2008) and gain control (Abbott et al., 1997; Chance et al., 1998; Galarreta and 

Hestrin, 1998). However, most of these studies have not considered synapse 

specific STP, nor ‘plasticity’ of STP itself. 

 

Scope of Chapter 3 

 It is well established that each of the multiple spikes in a train do not 

contribute equally to the depolarization of the post synaptic cell, due to STP 

(Markram and Tsodyks, 1996; Reyes et al., 1998). Given that neurons in the 

cortex are active at high firing rates, it is likely that STP plays a role in shaping 

information processing and transmission. In Chapter 3, we consider the 

computational potential of STP for the discrimination of spatiotemporal spike 

patterns in simple feed-forward neural networks.  

 In addition, multiple forms of STP have been observed in the brain, in a 

synapse specific manner (Markram et al., 1998; Reyes et al., 1998; Rozov et 

al., 2001; Zucker and Regehr, 2002). We propose that this diversity may be 

the result of ‘adaptative’ (or plastic) mechanisms that determine how much and 

for how long a synapse should depress or facilitate, depending on the 

computation at hand. This would imply that STP is much more than a general 

mechanism to regulate gain control or other general properties but takes an 

active role in performing computations, in a synapse specific manner. Indeed, 

we propose that STP itself may be plastic and propose a learning rule for this 

metaplasticity of short-term plasticity. 
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Final Introductory Remarks 

 Throughout this work, we considered two well known properties of 

biological neural networks, namely long-term (Chapter 2) and short-term 

(Chapter 3) forms of synaptic plasticity. We show, using a combination of 

experiments and computer simulations, how the dynamics of synaptic plasticity 

may determine the output of neurons and propose specific examples of how 

these properties could be used by the brain to perform computations. 
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Abstract  

 Ultimately, whether or not a neuron produces a spike determines its 

contribution to local computations. In response to brief stimuli the probability a 

neuron will fire can be described by its input-output function, which depends on 

the net balance and timing of excitatory and inhibitory currents. While 

excitatory and inhibitory synapses are plastic, most studies examine plasticity 

of subthreshold events. Thus, the effects of concerted regulation of excitatory 

and inhibitory synaptic strength on neuronal input-output functions are not well 

understood. Here, theoretical analyses reveal that excitatory synaptic strength 

controls the threshold of the neuronal input-output function, while inhibitory 

plasticity alters the threshold and gain. Experimentally, changes in the balance 

of excitation and inhibition in CA1 pyramidal neurons also altered their input-

output function as predicted by the model. These results support the existence 

of two functional modes of plasticity that can be used to optimize information 

processing: threshold and gain plasticity. 
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Introduction 

 A large number of studies have characterized the mechanisms and 

learning rules underlying synaptic plasticity, and it is generally accepted that 

changes in synaptic strength contribute to learning and memory (Martin et al., 

2000; Malenka and Bear, 2004). However, since alterations in behavior must 

ultimately be caused by changes in neuronal firing, it is not synaptic plasticity 

per se, but how synaptic plasticity modifies the output of neurons, that 

underlies learning. Thus, to understand the relationship between synaptic 

plasticity and learning it is important to elucidate how synaptic plasticity alters 

the input-output characteristics of neurons.  

 We use the term neuronal Input-Output (I/O) function to refer to the 

relationship between the excitatory input to a neuron and the probability it will 

generate an action potential (Fig. 1B,C) (Daoudal and Debanne, 2003; Staff 

and Spruston, 2003; Marder and Buonomano, 2004; Campanac and Debanne, 

2008). A neuron's I/O curve, generally represented as a sigmoidal function, is 

characterized by two components: the threshold and the gain. Here we define 

the I/O threshold as the EPSP slope that elicits a spike 50% of the time (this 

usage is similar to that in the artificial neural network literature in which 

threshold refers to the midpoint of the activation function, Rumelhart et al., 

1986). The gain refers to the rate of change or sensitivity of the I/O function 

(Fig. 1C). The I/O threshold and gain of a neuron are directly related to its 

computational role, as both of these features can be used to quantify the ability 

of neurons to discriminate sensory stimuli (Mountcastle and Powell, 1959; 

Maffei and Fiorentini, 1973; Dean et al., 2005) and optimize the encoding of 

sensory information (Laughlin, 1981). Indeed, at the psychophysical level 

similar measures are used to quantify behavioral performance, where the 

threshold and gain are related to the point of subjective equality and just 

noticeable difference, respectively (Morrone et al., 2005; Lapid et al., 2008). 
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 Previous studies have established that LTP alters the threshold of the 

I/O function – a phenomenon referred to as EPSP-spike (E-S) potentiation 

(Andersen et al., 1980). Specifically, an EPSP of the same strength (as 

measured by the slope), that was not effective in eliciting spikes, can fire the 

cell after the induction of LTP. While the mechanisms underlying the LTP-

induced shift in the I/O function continue to be debated (Daoudal and 

Debanne, 2003; Frick et al., 2004; Marder and Buonomano, 2004; Campanac 

and Debanne, 2008), the balance of excitation and inhibition is known to be an 

important contributing factor. For example, one reason that an EPSP of a 

given size can elicit a spike after LTP, but not before, is due to an increase in 

the excitation/inhibition ratio. After LTP, a smaller stimulation intensity is 

required to elicit the same size EPSP and consequently fewer inhibitory 

neurons will be recruited and those that are will have a longer latency, which 

facilitates the generation of the action potential (Marder and Buonomano, 

2004). However, in contrast to the threshold, previous studies have not 

examined how excitatory plasticity influences the gain of neuronal I/O 

functions. Additionally, to date no general framework exists as to how 

excitatory and inhibitory synaptic plasticity interact to control the I/O function of 

a neuron.  

 To understand how synaptic plasticity alters the behavior of neurons it 

is necessary to characterize the I/O function in response to synaptically 

evoked activity. It is important to note that the issue of long-term changes in 

I/O functions produced by synaptic plasticity is distinct from the rapid ‘online’ 

changes in gain of the firing rate curve – such as the modulation produced by 

the position of the eyes (Trotter and Celebrini, 1999) or attention (McAdams 

and Reid, 2005) – that are critical for many sensory and motor computations 

(Salinas and Thier, 2000). It has been shown that the gain modulation of the 

firing rate curves is dependent on background synaptic activity (Chance et al., 

2002; Murphy and Miller, 2003; Prescott and De Koninck, 2003; Cardin et al., 

2008). These studies typically examine steady-state firing rate in response to 
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injected depolarizing current steps, and address how firing rate is modulated 

on a rapid time scale for online computations. The distinct question addressed 

here pertains to the probability a neuron will spike in response to a brief 

stimulus depending on the strength of the active excitatory and inhibitory 

synapses. The focus on the early response to stimuli is important, particularly 

in sensory systems, because it is the transient response that is critical to many 

sensory computations (Durstewitz and Deco, 2008; Rabinovich et al., 2008) 

and brief sensory stimuli often elicit only one or a few spikes (DeWeese et al., 

2003; Wang et al., 2005). Indeed, in many cases steady-state responses are 

unlikely to contribute to computations (Rolls and Tovee, 1994; Thorpe et al., 

1996; Hung et al., 2005; Rabinovich et al., 2008). 

 While it is established that both EPSPs (Bliss and Lomo, 1973; Dudek 

and Bear, 1992) and IPSPs (Komatsu, 1994; McLean et al., 1996; Lu et al., 

2000; Gaiarsa et al., 2002; Chevaleyre and Castillo, 2003) undergo LTP and 

LTD, the trade-off between different types of synaptic plasticity and the 

computation being performed is not understood. For example, from a 

computational perspective, what is the functional difference between 

potentiating excitatory inputs and depressing inhibitory ones? What is the 

computational benefit of potentiating both EPSPs and IPSPs onto the same 

postsynaptic neuron (Kairiss et al., 1987; Komatsu, 1994; Xie et al., 1995; 

Shew et al., 2000; Lamsa et al., 2005; Froemke et al., 2007), which 

superficially seems self-defeating? 

 To address these questions we first developed a computational model 

which shows that the threshold and gain of neuronal I/O functions can be 

independently controlled by change in excitatory and/or inhibitory synaptic 

strength. We next examined experimentally the prediction of the model by 

determining the I/O function of neurons in response to manipulation of 

excitatory and inhibitory synaptic strengths. Our findings indicate that 

excitatory plasticity in isolation alters the threshold of a neuron’s I/O function 
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while keeping the gain constant. On the other hand, balanced changes in 

synaptic excitation and inhibition can adjust the gain of the neuron's I/O 

function while maintaining a constant threshold. This study establishes a 

framework for understanding the potential function and trade-off between 

invoking excitatory and inhibitory plasticity in isolation or in parallel, and 

proposes that I/O function plasticity could be used to optimize the encoding of 

information. 
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Results 

 

 Theoretical analysis of the effects of excitatory and inhibitory 
plasticity on neuronal I/O functions 

 To examine the effects of changing excitatory and inhibitory synaptic 

strengths on the neuronal I/O function, we simulated a feed-forward disynaptic 

circuit (Fig. 1A) and examined the response of a single postsynaptic excitatory 

neuron (Ex) to increasing input intensity, which we represented as an increase 

in the number of active excitatory and inhibitory synapses (Fig. 1B; see 

Methods). In accordance with real neurons, the likelihood of eliciting an action 

potential is probabilistic as a result of an incorporated “noise” current – 

representing background synaptic activity and other stochastic processes. The 

estimation of the spike probability across increasing intensities was fit with a 

sigmoid function and, as observed experimentally, high intensities led not only 

to an increased probability of firing but also to a decrease in the spike latency 

(Pennartz and Kitai, 1991) (Fig. 1B,C). 
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Fig. 1: Excitatory and inhibitory synaptic strengths control the gain and 
threshold of the neuronal input-output function. 

A) Topology of the simulated feed-forward inhibitory circuit.  

B) Sample voltage responses of the Ex unit at different input intensities (see text), for a 
particular combination of Ex→Ex and Inh→Ex synaptic weights (number 2 in panel D). 
Voltage traces were colored gray after the peak to ease the visualization of 
overlapping lines. 

C) I/O function of the Ex unit in panel B, obtained by plotting the action potential 
probability versus the EPSP slope of the voltage traces (in bins, see text and 
Experimental Procedures). 

D) Parameter scan of the excitatory and inhibitory synapse space. At each coordinate 
an I/O function was determined for the corresponding Ex→Ex and Inh→Ex synaptic 
weights. The numbers in the foreground depict the individual I/O functions plotted in 
panel E. Top: the gain (inverse) of each I/O function is plotted in color (range: [0.09 
1.10] ms/mV). Hot colors depict an I/O function with a shallow slope, while cold colors 
depict an I/O function with a very sharp slope. Black depicts coordinates in which the 
inhibitory synapses were so strong that the Ex unit never fired. In gray the Ex unit fired 
occasionally, but not yielding enough points to be fitted with a sigmoid. Bottom: as 
above, but plotting the threshold of the same I/O curves (range: [10 20] mV/ms). Hot 
colors depict I/O functions with high threshold while cold colors depict I/O functions 
with low threshold. The dashed arrow highlights that a single I/O function is defined by 
two properties (gain and threshold). 

E) Sample individual I/O functions. The gain and threshold of these sigmoids are 
highlighted in the corresponding plots in panel D by the corresponding numbers. 

 

 To understand how different excitatory and inhibitory synaptic weights, 

corresponding to LTD or LTP of EPSPs and/or IPSPs, modify the I/O function 

of a neuron, we parametrically varied the strength of Ex→Ex and Inh→Ex 

synapses. For each pair of synaptic weights, we plotted the threshold and gain 

of the corresponding I/O function, hence describing the behavior of the neuron 

across synapse space (Fig. 1D). These results show that, for fixed levels of 

inhibitory synaptic strength, modifying the strength of a neuron's excitatory 

synapses shifts the threshold to the left or right, but has little effect on the gain 

of the I/O function (Fig. 1E, top). The horizontal shift in the threshold indicates 

that some of the previously subthreshold EPSPs are now suprathreshold. This 

is because, as excitatory synapses get stronger, it is possible to elicit the same 

size EPSP at lower intensities, thus recruiting less inhibition (Marder and 
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Buonomano, 2004). This scenario is equivalent to LTP of the Ex→Ex 

synapses in the absence of other forms of plasticity. In contrast, inhibitory 

plasticity alone altered both the threshold and gain of the I/O function (Fig. 1E, 
bottom). Interestingly, regulating the excitatory and inhibitory synaptic weights 

in a balanced manner allowed neurons to change the gain of their I/O function 

while maintaining the same threshold, essentially establishing an ‘iso-

threshold’ band along the diagonal of the excitatory and inhibitory synapse 

space (Fig. 1E, middle). In contrast to the previously observed shifts in the 

threshold, the change in the gain as a function of excitatory and inhibitory 

synaptic strength has not been previously described experimentally or 

theoretically.  

 These theoretical results suggest that one reason excitatory and 

inhibitory synapses are plastic is to allow for the independent control of the 

gain and threshold of neuronal I/O functions. That is, if the gain has to be 

changed while maintaining the threshold, parallel excitatory and inhibitory 

plasticity should be engaged, whereas if the threshold should be changed 

while maintaining the gain, only excitatory plasticity should be induced.  

 

 Synaptic inhibition increases the threshold and gain of I/O 
functions in CA1 pyramidal neurons 

 To test the above predictions, we performed experiments in which we 

analyzed the I/O function of CA1 pyramidal neurons in hippocampal slices in 

response to manipulations of the strength of the excitatory or inhibitory 

synapses. Like most neurons, CA1 pyramidal cells receive robust feed-forward 

excitation and inhibition; however, in contrast to the majority of cortical areas, 

the CA1 subfield has little recurrent connectivity, thus providing a reasonable 

approximation to the simulated disynaptic circuit used above. Effective 

synaptic strength was manipulated using pharmacology, hyperpolarization, 
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and directly through the induction of single-cell LTP. Given the difficulty in 

inducing plasticity exclusively at Inh→Ex synapses, uncertainties regarding the 

protocols that induce inhibitory plasticity, and the variability of results (Xie et 

al., 1995; Lu et al., 2000; Shew et al., 2000; Gaiarsa et al., 2002; Chevaleyre 

and Castillo, 2003), we limited our manipulations of inhibitory strength to 

pharmacological means to alter Inh→Ex transmission independently of the 

Ex→Ex and Ex→Inh strengths.  

 While recording in whole-cell configuration, we first examined the 

effects of low concentrations (2-3 μM) of the GABAA antagonist bicuculline on 

the neuronal I/O function. As already reported (Abraham et al., 1987; Marder 

and Buonomano, 2003), there was a robust leftward shift of the threshold (Fig. 
2B,C, dark blue vs. red, 9.9±1.1 vs. 4.6±0.6 mV/ms, p<0.001). Here we show 

that in agreement with the above simulations (Fig. 1E, bottom), there was 

also an increase in the gain of the I/O function (0.40±0.06 vs. 0.94±0.08 

ms/mV, p<0.001). Upon washout of the drug, the threshold and gain of the I/O 

function returned to baseline (Fig. 2B,C, light blue, gain: 0.42±0.05 ms/mV, 

threshold: 10.0±1.0 mV/ms). The same results were also observed using 10-

15 μM picrotoxin (baseline threshold: 8.4±0.43mV/ms, gain: 0.60±0.14 ms/mV; 

PTX threshold: 2.0±0.30, gain: 1.30±0.23; n=3; data not shown). 
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Fig. 2: Decrease in inhibitory strength decreases the threshold but increases the 
gain of neuronal I/O functions. 

A) Schematic placement of the stimulating and whole-cell recording electrodes. 

B) Example of a bicuculline experiment. Dark blue: I/O function of an intracellularly 
recorded CA1 pyramidal neuron, in standard ACSF. Red: I/O function of the same 
neuron in the presence of 3 μM bicuculline. Light blue: I/O function after 10 min. 
washout of bicuculline. Inset: Sample voltage traces for each of the conditions. 

C) Average gain and threshold for the manipulations described in panel B (n=8). 

 

 

 

Fig. 3: Dissociation of changes in gain and threshold. 

A) Bicuculline followed by hyperpolarization experiment. Dark blue: I/O function of an 
intracellularly recorded CA1 pyramidal neuron, in whole-cell mode in standard ACSF. 
Red: I/O function of the same neuron in the presence of 3 μM bicuculline. Orange: I/O 
function of the same neuron in the presence of bicuculline and hyperpolarized by 12 
mV. Inset: Sample voltage traces for each of the conditions. 
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B) Average gain and threshold for the manipulations described in panel A (n=12). 
Notice that the hyperpolarization, associated with the increase in stimulation intensity 
necessary to make the neuron fire, increases the I/O threshold in a statistically 
significant manner, without inducing significant changes in the gain.  

 

 

 

 Experimental dissociation of shifts in threshold and changes in 
gain 

 In the above experiments it could be argued that an increase in gain is 

inextricably linked to the leftward shift in threshold. To establish that it is 

possible to dissociate changes in threshold and gain, we tonically 

hyperpolarized the cells (mean: 9.7±2.2 mV; range: 5-13 mV) after collecting 

the baseline and bicuculline I/O curves (Fig. 3A,B). Tonic hyperpolarization 

will alter all synaptic driving forces, however, under reduced inhibition (due to 

bicuculline) its primary functional effect is a decrease in excitation (i.e., even 

though EPSP amplitude may be larger, a neuron that was firing will cease to 

do so because the peak EPSP is farther from action potential threshold). Thus, 

hyperpolarization together with the necessary increase in stimulation intensity 

to make the neuron fire shifts the I/O curve rightwards, towards values closer 

to baseline but, interestingly, does not affect the gain (Fig. 3A,B, red vs. 

orange, gain: 0.96±0.09 vs. 0.90±0.08 ms/mV, p>0.50, threshold: 4.4±0.4 vs. 

7.2±0.5 mV/ms, p<10-5). These results show that changes in threshold and 

gain can be dissociated and, indirectly, support the proposal that parallel 

changes in excitation and inhibition may serve to maintain a constant threshold 

while modifying the gain of the I/O function of a neuron (Fig. 1E, middle). 
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 LTP alters the threshold while maintaining the gain of I/O 
functions  

 Early studies on LTP established that it produces a leftward shift of the 

I/O curve (Bliss and Lomo, 1973; Andersen et al., 1980; Bliss et al., 1983). The 

mechanisms underlying the leftward shift remain incompletely understood, in 

part because some of the induction protocols used (e.g., presynaptic high 

frequency stimulation) may induce plasticity at other synapses (Ex→Inh and/or 

Inh→Ex) (Kairiss et al., 1987; Komatsu, 1994; Xie et al., 1995; Shew et al., 

2000) as well as changes in intrinsic excitability or dendritic integration 

(Chavez-Noriega et al., 1990; Daoudal and Debanne, 2003; Xu et al., 2005; 

Campanac and Debanne, 2008). Nevertheless, it has been shown that single-

cell associative pairing protocols can also induce left shifts in the I/O function 

(Marder and Buonomano, 2004), which is consistent with our theoretical 

framework. However, the effect of LTP of excitatory synapses on the gain of 

the neuronal I/O function has not been addressed. 

 To examine this issue we performed intracellular experiments with high 

resistance micropipettes (70-90 MΩ) to prevent washout of LTP (Lamsa et al., 

2005). LTP was induced in single neurons with a pairing protocol that has 

previously been shown not to induce changes in inhibition or intrinsic 

excitability (Barrionuevo and Brown, 1983; Gustafsson et al., 1987; Marder 

and Buonomano, 2004). Specifically, pairing intracellular depolarization (100 

ms) with a train of 4 presynaptic stimuli (40Hz; 60 pairings at 0.2Hz) resulted in 

a 79±17% increase in the EPSP slope (we only included experiments with LTP 

> 10% in this analysis). The induction of LTP caused a left shift (7.4±0.5 vs. 

5.6±0.8 mV/ms, p<0.05) and, in agreement with the theoretical predictions, did 

not induce any change in the gain (0.59±0.07 vs. 0.57±0.07 ms/mV, p>0.80) of 

the neuronal I/O function (Fig. 4B,C).  
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Fig. 4: Potentiation of the excitatory strength decreases the threshold without 
changing the gain of neuronal I/O functions. 

A) EPSP slopes recorded with a sharp microelectrode during the course of an 
associative LTP experiment. Voltage traces on the middle represent average sample 
PSPs from 5 min. after the 1st I/O and 5 min. before the 2nd I/O. The voltage trace on 
the right shows a sample of the pairing depolarization. 

B) I/O functions before and after the associative LTP pairing protocol. The threshold of 
the I/O function decreases (left shift), but the gain is left unchanged. Inset: Sample 
voltage traces for each of the conditions 

C) Average gain and threshold of baseline and LTP I/O curves (n=11). The associative 
pairing protocol results in a decrease in the threshold and no changes in gain of the 
neuronal I/O functions.  
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Fig. 5: LTP induced threshold left shifts with constant gain are not due to global 
changes in excitability. 

A) Schematic placement of the stimulating and cell-attached and field recording 
electrodes. 

B) Example of the potentiation protocol. Left: Sample voltage traces recorded from the 
cell-attached (top) and field (bottom) electrodes at 3 different intensities. There are four 
traces per intensity. Middle: Associative pairing protocol. Presynaptic stimulation was 
paired with 100 ms postsynaptic depolarization 60 times at 1Hz. Right: Voltage traces 
for the same intensities as before (the highest intensity was no longer used to optimize 
the estimation of the I/O functions). Notice the increased action potential probability. 

C) Sample I/O functions before and after the associative pairing protocol illustrated in 
panel B. Top: Paired pathway. The threshold of the I/O function decreases (left shift), 
but the gain is left unchanged. Bottom: Control pathway. The I/O function is 
unchanged supporting the existence of no global changes in excitability. 

D) Average change in gain and threshold, relative to baseline, for the paired and 
unpaired pathways (n = 13). The associative pairing protocol results in a decrease in 
threshold and no changes in gain of the neuronal I/O functions. In contrast, the 
unpaired pathway shows no changes in either the threshold or gain. 
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 As mentioned above the mechanisms underlying the left shift in the I/O 

function (E-S potentiation) remain controversial and other groups have 

suggested that it could be due to changes in intrinsic excitability (Sourdet et 

al., 2003; Frick et al., 2004; Losonczy et al., 2008). A further complicating set 

of issues is that intracellular techniques can alter the neuronal I/O function as a 

result of washout (Kato et al., 1993; Staff and Spruston, 2003; Lamsa et al., 

2005; Xu et al., 2005), changes in cell input resistance, or changes in the 

balance of excitation and inhibition (Zhang et al., 1991; Staley and Smith, 

2001). To avoid any potential methodological artifacts and determine if global 

changes in intrinsic excitability could have influenced the above results we 

performed experiments in tight-seal cell-attached configuration – which does 

not rupture the cellular membrane – and included a second unpaired control 

pathway in the LTP experiments. Given that the cell-attached technique does 

not allow recording subthreshold responses, we estimated the average input to 

the neuron by recording the field EPSP from an electrode placed in stratum 

radiatum in a line perpendicular with the cell body layer (Fig. 5A) (Andersen et 

al., 1980; Zalutsky and Nicoll, 1990). The high resistance cell-attached 

configuration does not rupture the membrane (seal > 1 GΩ), but still allows the 

injection of positive current through the electrode and the recording of the 

spikes (Perkins, 2006; Houweling and Brecht, 2008) (Fig. 5B, middle). By 

pairing this depolarization (100 ms) with single presynaptic stimuli (60 pairings 

at 1Hz), we consistently observed leftward shifts in the I/O functions (11/13 

experiments) and, in agreement with the previous results, no change in gain 

(Fig. 5C,D; threshold: 74±5% p<0.001, gain: 97±12% p>0.80). Importantly, the 

unpaired control pathway onto the same cell showed no horizontal shift or 

change in gain (threshold: 108±10% p>0.70; gain: 108±10% p>0.70). There 

was a significant difference in the threshold between the paired and unpaired 

pathways (p<0.005), but no difference in the gain (p>0.50, Fig. 5D). These 

results establish that the pairing-LTP induced left shift is not a result of general 

changes in intrinsic excitability. Additionally, as in the LTP experiments shown 
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in Figure 4, the fact that there was no change in the gain of the I/O function is 

consistent with the prediction made in Figure 1. However, it should be 

stressed that the interpretation of I/O function in these cell-attached 

experiments is constrained by the fact that the extracellular fEPSP was used to 

construct the I/O function. 

 Together these results demonstrate that LTP produces a leftward shift 

in the absence of a change in gain, and that this effect is not likely to be a 

result of any cell-wide form of intrinsic plasticity. In contrast, a decrease in 

inhibition is accompanied by a change in gain, in addition to the change in 

threshold.  

 

 Mechanisms of the changes in gain and threshold induced by 
synaptic plasticity 

 The simulations and experiments above indicate that increasing 

excitatory (E-LTP) or decreasing inhibitory synaptic strength (I-LTD) both 

produce left shifts in the threshold of the I/O function; however, the latter also 

induces an increase in the gain (the potential computational relevance of these 

forms of plasticity is addressed in the Discussion). Next, we used the 

computational model to understand the origin of the change in gain associated 

with changes in synaptic inhibitory strength. It is important to point out that 

excitatory and inhibitory synaptic plasticity produce fundamentally different 

changes in the post-synaptic potential (PSP) waveform: excitatory plasticity 

changes the slope and peak of the PSP, while changes in inhibition alter the 

peak and width of the PSP (Fig. S1, Buonomano and Merzenich, 1998a; 

Pouille and Scanziani, 2001). As a consequence of the inherent asymmetry 

between excitatory and inhibitory plasticity, imposed primarily by the delay of 

inhibition in relation to excitation, small changes in excitation are proportionally 

more effective in altering the PSP peak than changes in inhibition (Fig. S1). 
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On the other hand, the fact that inhibitory plasticity determines the width of the 

PSP is an important factor in determining the gain of the I/O function because 

the wider the PSP the longer it borders action potential threshold − hence, 

subsequent small increases in the PSP slope will result in sharp increases in 

spike probability and the I/O gain (Fig. S2).  

 There are a number of interrelated properties that jointly contribute to 

determining the I/O gain, and whether or not it changes after synaptic 

plasticity. Below we first address the mechanisms responsible for the observed 

changes in the I/O function in response to inhibitory or excitatory plasticity in 

isolation. Additionally, the issue of I/O gain control is further discussed in the 

Supplemental Material. 

 

 I-LTD 

 Consider a ‘baseline’ I/O function (blue curve in Fig. 6A), and the 

stimulation intensity (S50) which elicits the EPSP slope that defines the 

threshold of this I/O curve (Fig. 6D; that is, the EPSP slope that generates 

action potentials with 50% probability). If one induces I-LTD (Fig. 6A, red 

curve) the EPSP slope at S50 will remain largely unchanged, since it is mainly 

determined by the excitatory strength. Yet, the PSP width and height will 

increase; hence the same EPSP slope will yield action potentials with 

increased probability. To find the new I/O threshold one must decrease the 

stimulation intensity until it yields an EPSP slope where the neuron fires action 

potentials again with 50% probability (Fig. 6A, left red I/O), thus accounting for 

the left shift of the threshold of the I/O curve. But why does the gain change? 

Compared with an I/O of the same threshold, but with the same gain as the 

baseline curve (dark green trace in Fig. 6A, see 'E-LTP' below), changes in 

stimulation intensity will produce a smaller change in the inhibitory 

conductance (gInh) because inhibitory synapses are weaker after I-LTD 



 

46 

(Fig. 6C, left red). This can also be visualized in Fig. 6D, in which the crosses 

and squares represent the peak IPSC and EPSC amplitudes as function of 

stimulation intensity. At stimulation intensities straddling 50% firing probability 

of the I-LTD I/O curve (red line), the red crosses change at a slower rate than 

the green crosses for the corresponding S50 point (yet there is relatively little 

change in the red and green EPSC amplitudes, squares, see below). Hence, 

as intensity increases, the rate of change of excitation is higher than that of 

inhibition (compared to the E-LTP isothreshold case, green lines), resulting in 

a faster transition from a low to high probability state (i.e., a higher gain).  

 

 E-LTP 

 Ex→Ex LTP is similar to Inh→Ex LTD in the sense that both make it 

easier for the cell to fire an action potential at any given EPSP slope, shifting 

the I/O curve leftwards (green line, Fig. 6A). When one increases the strength 

of excitatory synapses, the same stimulation intensity yields a bigger EPSP 

slope, and increased spike probability. Thus, to return to the initial EPSP 

slope, one has to decrease the stimulation intensity, which has the 

consequence of decreasing the recruitment of inhibitory neurons and 

increasing their latency. As a result, the original EPSP slope is now 

accompanied by less inhibition and has increased probability of generating an 

action potential, which means that the whole I/O curve has shifted to the left. 

 However, in the case of potentiation of excitatory synapses (or 

conversely Ex→Ex LTD, light green line, Fig. 6A), the left shift is qualitatively 

different from the left shift caused by decreased inhibitory strength given that 

the gain of the I/O function stays the same. As in the case of I-LTD, E-LTP 

produces an effective shift in the range of stimulation intensities straddling the 

I/O threshold (Fig. 6D). An important consequence of this is that, even in the 

absence of plasticity at the inhibitory synapses, there will be an effective 
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change in the levels of inhibition around the new I/O threshold. As shown in 

Fig. 6D (green crosses) this left shift will result in larger changes in inhibition 

for a given change in stimulation intensity, in the relevant range of the I/O 

curve. Specifically, as a result of the nonlinear and asymptotic nature of the 

IPSC versus stimulation intensity curve, decreasing the relevant stimulation 

intensities effectively produces an increase in the rate of change in inhibition. 

Thus, it is possible to maintain the balance between the rate of change of 

excitation and inhibition even after E-LTP because the IPSC versus stimulation 

intensity function is now operating in a regime with a higher slope (note the 

larger change in IPSC amplitudes over the range in which firing probability 

changes from 25 to 75%, dashed and solid dark green lines, Fig. 6C). In other 

words, the relationship between EPSC and IPSC amplitudes as a function of 

stimulation intensity is relatively constant for I/Os that underwent excitatory 

plasticity (as shown in Fig. S3 for the I/O functions depicted in Fig. 6). Note 

that although the IPSC and EPSC amplitudes are balanced across intensities, 

higher intensities will still be more effective at eliciting spikes because the 

changes in EPSC and IPSC latency favor excitation (see Supplementary 

Material; Fig S6) – for example, in the extreme a strong EPSP can generate a 

spike regardless of inhibitory synaptic strength if voltage crosses spike 

threshold before the Inh neurons fire.  
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Fig. 6: Mechanisms underlying the change in I/O gain produced by synaptic 
plasticity. 

A) Neuronal I/O functions from the model at different values of Ex→Ex and Inh→Ex 
synaptic strength. Blue curve is the "baseline", the green curves result from Ex→Ex 
plasticity and the red/magenta curves from Inh→Ex plasticity. Note that LTD of 
Inh→Ex and LTP of Ex→Ex produced an equal left shift in threshold, however, 
inhibitory plasticity also resulted in an increased gain; conversely, LTP of Inh→Ex and 
LTD of Ex→Ex produced the same right shift, with a decreased gain in the former 
case. The points with 0.25 and 0.75 probability of firing are highlighted in the blue and 
green curves. In the red/magenta curves we highlighted the EPSP slope that yielded 
0.25 or 0.75 in the corresponding isothreshold green curve.  

B) Voltage traces with EPSP slopes highlighted with the circles in panel A (Vm noise 
and action potentials were removed). Dashed and solid lines represent the PSPs that 
would yield ~25% and ~75% probability of firing, respectively (see Panel A).  

C) Inhibitory conductance traces of the corresponding PSP traces in panel B. Notice 
that at the same EPSP slopes, the inhibitory change from 0.25-0.75 is smaller for 
Inh→Ex LTD as compared to Ex→Ex LTP, which causes an I/O function with a higher 
gain. Conversely, the inhibitory change from 0.25-0.75 in Inh→Ex LTP is bigger as 
compared to Ex→Ex LTD, which results in an I/O function with decreased gain. 

D) Same data as in A) but plotted as a function of stimulus intensity (solid sigmoid 
curves). The maximum EPSC (squares) and IPSC (crosses) amplitudes are also 
plotted, in the color corresponding to each of the I/O functions. 

 

 Thus, an important factor underlying the isogain bands of Fig. 1D is the 

relationship between IPSCs as a function of stimulation intensity (crosses in 

Fig. 6D) and EPSCs as a function of intensity (squares in Fig. 6D). More 

specifically, these functions scale in an approximately linear fashion over most 

intensities, consequently, at different intensities the IPSC/EPSC balance is 

approximately constant. Given that excitatory plasticity does not change the 

IPSC/EPSC ratio significantly (Fig. S3), for the reasons that were mentioned 

earlier (Fig. S1), the change in the relevant range of stimulation intensities 

caused by excitatory plasticity also does not alter the IPSC/EPSC ratio 

significantly. If, however, the IPSC versus stimulation intensity function is 

disrupted in a manner that significantly alters the IPSC/EPSC ratios across 

intensities then excitatory plasticity will alter the gain of the I/O (see 



 

50 

Supplementary Materials and Fig. S4). Thus, the model assumptions 

regarding the relationship between inhibition and stimulation intensity are 

crucial. Importantly however, they are supported by experimental findings that 

demonstrate that synaptic drive increases asymptotically as a function of 

intensity (Costa et al., 2002; Kushner et al., 2005) and that excitation and 

inhibition remain balanced across stimulation intensities (Gabernet et al., 

2005). Additionally, the fact that our own experimental findings confirm that E-

LTP does not change the I/O gain, further supports our model.  

 It can be seen that since Ex→Ex potentiation shifts the I/O curve 

leftwards without changing its gain, and that Inh→Ex potentiation can shift the 

I/O rightwards with a decrease in gain (Fig 6A, magenta curve) that the 

appropriate mix of both forms of plasticity could produce no change in the 

threshold together with a decrease in the gain. Thus, simultaneous Ex→Ex 

and Inh→Ex LTP, as reported by (Froemke et al., 2007), may function to 

maintain the threshold of a neuron while decreasing its gain (Fig. 1E, middle; 
Fig. S2) 

 The above discussion of gain control highlights the subtlety and 

nonlinear nature of even a relatively simple disynaptic circuit, particularly in 

relation to the dynamic nature of the balance of excitation and inhibition 

(Marder and Buonomano, 2004). Indeed, it is important to stress that a 

limitation of the above analysis is that it is actually not the balance of excitation 

and inhibition at the peak EPSC and IPSC values that governs whether or not 

a neuron fires, but at earlier and intensity-dependent points near the peak the 

PSP (Supplemental Data, Fig S5). Thus, a detailed and quantitative 

description of the relative contribution of different factors to gain control, 

including the latency and jitter of the inhibitory neurons, will benefit from future 

theoretical studies.  
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Discussion 

 We have used theoretical and experimental techniques to examine how 

changes in the strength of excitatory and/or inhibitory synapses alter the 

response of neurons to transient synaptic stimulation. A large number of 

studies have described how long-term plasticity of excitatory and/or inhibitory 

synapses affect subthreshold responses, however, there has been less focus 

on how these changes alter the input-output characteristics of neurons – which 

is what ultimately determines the computational and behavioral relevance of 

synaptic plasticity. The general intuition regarding LTP of Ex→Ex synapses is 

that it will increase the likelihood of a given input generating a postsynaptic 

spike. However, as shown in our simulation, if LTP is accompanied by a 

parallel increase in the strength of Inh→Ex synapses, additional nonlinear 

behaviors take place. Specifically, the threshold can remain the same, but the 

likelihood of eliciting a spike can increase at low intensities, but actually 

decrease at high intensities (i.e., a decrease in gain; Fig. 1E, middle; Fig. S2).  

 As mentioned in the Introduction, the current study addresses a distinct 

question from those that characterized the modulation of the response of 

neurons by different levels or characteristics of background activity (Ho and 

Destexhe, 2000; Chance et al., 2002; Murphy and Miller, 2003; Shu et al., 

2003; Cardin et al., 2008). Because these previous studies were aimed at 

addressing ‘online’ changes in gain they did not examine the consequences of 

synaptic plasticity, nor the changes in firing probability in response to synaptic 

inputs (but see Prescott and De Koninck, 2003). Additionally, studies using 

direct current injection to emulate excitatory or inhibitory currents do not 

capture the inherent temporal interactions between excitatory and inhibitory 

synapses, which are critical in determining the output of neurons (Pouille and 

Scanziani, 2001; Wehr and Zador, 2003; Marder and Buonomano, 2004; 

Wilent and Contreras, 2005). Here, the issue of how synaptic plasticity of 
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excitatory and inhibitory synapses alters spike probability relates to learning 

and memory and the processing of sensory stimuli. Specifically, in sensory 

areas, computations often rely on the input-output characteristics of cortical 

neurons in response to brief sensory stimuli that tend to elicit a single or a few 

spikes (Kilgard and Merzenich, 1998; Perez-Orive et al., 2002; DeWeese et 

al., 2003; Tan et al., 2004; Hung et al., 2005; Higley and Contreras, 2006). 

Changes in I/O threshold as a result of LTP of Ex→Ex synapses have been 

well documented experimentally (Bliss and Gardner-Medwin, 1973; Bliss and 

Lomo, 1973; Andersen et al., 1980; Staff and Spruston, 2003) and are due, at 

least in part, to changes in the relative balance of excitation and inhibition 

(Marder and Buonomano, 2004), although changes in intrinsic excitability or 

dendritic integration may also contribute to the shift in I/O threshold (Sourdet et 

al., 2003; Staff and Spruston, 2003; Frick et al., 2004; Campanac and 

Debanne, 2008). To the best of our knowledge, this is the first report of 

synaptic-dependent changes in the gain of the neuronal I/O function, which are 

primarily linked to inhibitory plasticity. 

  

 Excitatory and Inhibitory Plasticity 

 Postsynaptic potentials elicited by sensory stimuli are almost always 

composed of an excitatory and inhibitory component (Wehr and Zador, 2003; 

Tan et al., 2004; Higley and Contreras, 2006). One of the questions posed in 

the Introduction was what would be the functional and computational 

difference between increasing the strength of excitatory and decreasing the 

strength of inhibitory synapses. While the computational role of excitatory 

plasticity has been embedded within a solid theoretical framework since Hebb 

(Hebb, 1949; von der Malsburg, 1973; Bienenstock et al., 1982; Miller et al., 

1989), the computational role of inhibitory synaptic plasticity remains much 

more speculative. As with excitatory plasticity, inhibitory plasticity is likely to 
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play multiple roles both in maintaining the proper homeostatic balance and 

preventing runaway excitation (Rutherford et al., 1997; Karmarkar and 

Buonomano, 2006). It is also likely to play a role in mnemonic plasticity (Kim 

and Linden, 2007), in masking excitatory responses during experience-

dependent plasticity (Zheng and Knudsen, 1999; Foeller et al., 2005) or 

contribute to the development of cortical maps (Hensch, 2004), 

 Here we propose a more detailed computational framework regarding 

the function of inhibitory plasticity. Specifically, that in contrast to excitatory 

plasticity, changes in inhibition allow neurons to control the gain of their I/O 

function. Indeed the fact that evoked activity generally elicits an EPSC followed 

by an IPSC (a delay produced by the additionally ‘synaptic step’) ensures the 

inhibitory plasticity is well suited to control the width of the PSP (- the 

integration window, Pouille and Scanziani, 2001; Gabernet et al., 2005) and 

thus the gain of the neural I/O function. An interesting corollary is that 

excitatory and inhibitory plasticity in parallel may provide a mechanism by 

which neurons can alter the I/O gain while maintaining their I/O threshold.  

 

 Computational Relevance 

 The computational advantage of controlling the threshold and gain of 

neurons has been examined in a number of contexts (Laughlin, 1981; Dean et 

al., 2005). To illustrate how the ability to alter the threshold and/or gain of an 

I/O function can optimize the encoding of information we provide a simple 

example in Figure 7. We considered a small population of neurons, with the 

same I/O function, and quantified the information about the intensity of the 

stimulus (EPSP slope) that is encoded in the response of the population (the 

total number of spikes). The mutual information (Im) will depend both on the 

distribution of the stimulus as well as on the I/O function of the neurons (Fig. 

7A). For example, for the broad distribution shown in Fig. 7B there is an 
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optimal I/O gain that will allow the neurons to encode 1.83 bits. If the stimulus 

distribution becomes more narrow (decrease in entropy), the previous gain is 

no longer optimal – however changing the gain can bring the system back into 

an optimal range (Fig. 7C).  Thus, the ability to adjust the gain of the I/O 

function, while maintaining threshold, would allow neurons to increase their 

information capacity, which we propose may be achieved by balanced synaptic 

changes in excitation and inhibition.  
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Fig. 7: Neurons can maximize the information transmission by adjusting their I/O 
function. 

A) Left: I/O functions with different gains. Right: Information that a population of 15 
neurons with the same I/Os would be able to convey, as a function of their gain and in 
response to the Gaussian distributed stimuli depicted in panel B. 

B) Plot of the stimulus distribution used in panel A, and the I/O function that maximizes 
mutual information (Im = 1.83 bits, green curve in panel A). Hs is the entropy of the 
stimulus, which corresponds to the maximal mutual information.  

C) If the stimulus distribution changes (upper panel), the I/O function depicted in panel 
B would carry less information (blue sigmoid, 1.42 bits). However by adjusting the I/O 
function the neuron's response can now code for 1.60 bits. Note that the maximal 
information Hs also varies according to the distribution. 
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Fig. 8: I/O Threshold and Gain Plasticity. 

In disynaptic circuits, plasticity of the excitatory synapses onto a neuron leads to 
horizontal shifts of the I/O function without changing the gain (threshold plasticity, 
dashed black sigmoids). Balanced changes in excitation and inhibition change the gain 
of the I/O function without changing the threshold (gain plasticity, gray sigmoids). 
Different combinations of excitatory and inhibitory plasticity can produce arbitrary 
plasticity of threshold and gain.  

 

Conclusion 

 Our results indicate that orchestrated regulation of excitatory and 

inhibitory synaptic strength provides control over both the threshold and gain of 

I/O functions, which in turn could be used to optimize information processing. If 

this notion is correct it would imply that a set of learning rules is in place that 

would endow neurons with two general modes of I/O plasticity. Threshold 

plasticity, consisting primarily of changes in excitation, would leave gain 

unchanged. Gain plasticity, consisting of parallel changes in excitation and 

inhibition, would allow altering the gain independently of the threshold (Fig. 8). 
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Methodology 

Model 

Simulations were performed with NEURON (Hines and Carnevale, 1997). 

Each neuron was simulated as an integrate-and-fire unit. The excitatory unit 

(Ex) had two compartments, representing the soma and an apical dendrite; 

inhibitory units (Inh) had a single compartment. The total synaptic weight onto 

each Inh neuron was distributed so that increases in intensity corresponded to 

increases in the number of Inh neurons recruited, and progressively decreased 

their latency (Marder and Buonomano, 2004). I/O curves were determined in 

the same manner as for experimental intracellular recordings, by measuring 

the EPSP slope and spike probability at all intensities, and the gain and 

threshold were determined as described bellow. Further details and 

parameters are presented in the Supplemental Material online. We also 

performed the simulations shown in this paper using a Hodgkin-Huxley 

implementation of the Ex unit and the results were qualitatively similar (data 

not shown). 

Calculation of the change in inhibitory conductance (∆gInh) relied on the 

difference of peak gInh at the points corresponding to approximately 25 and 

75% probability of firing. We used the inhibitory conductance because it is 

independent of the driving force, and thus of the excitatory component. 

Mutual Information. The information transmission simulations were performed 

in MATLAB. Briefly, stimuli were withdrawn from a normal distribution with 

variance 2 or 0.25 and activated a population of 15 neurons, each with the 

same I/O function represented in the figure. Whether or not a neuron spikes in 

response to a given EPSP was determined directly from the I/O function. The 

mutual information is given by srrsm HHHI −+=  where 
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∑−=
i

iii PPH )(log2 . The response 'r' corresponds to the number of active 

neurons and 'sr' is the joint probability of the stimulus and the response. 

 

Electrophysiology 

Slice preparation. Experiments were performed at a temperature of 31±1°C on 

acute 400 µm transverse hippocampal slices from 17- to 28 day old Sprague 

Dawley rats in standard ACSF (see Supplemental Material online). 

Recordings. Electrodes were positioned in area CA1. Whole-cell recordings 

were considered acceptable if they met the following criteria: resting potential 

below -55 mV, input resistance larger than 80 MΩ and overshooting action 

potentials. Sharp recordings were considered acceptable if they met the 

following criteria: resting potential below -55 mV, input resistance of 30 MΩ, 

and overshooting action potentials. In tight-seal cell-attached recordings if the 

seal dropped to <1GΩ the experiment was aborted. Most commonly, seal 

values were ~5GΩ. A second microelectrode was placed extracellularly, in 

stratum radiatum positioned along a line perpendicular to the cell body layer, to 

record fEPSPs. 

Electrical stimulation. Electrodes were positioned in the stratum radiatum close 

to the CA3-CA1 border. In experiments with a control pathway the second 

electrode was placed in the stratum radiatum towards the subiculum; the test 

and control pathway were chosen randomly. The distance between the 

recording and stimulating sites was between 150 and 450 µm. Biphasic, 

constant current, 100 µsec stimuli were delivered at 10-15 sec intervals (if 

applicable, out of phase and alternately to each pathway). Stimulation 

intensities ranged from 30-300 μA. 



Methodology | Chapter 2 

59 

I/O curves. A series of 60-90 pulses were given at different stimulation 

intensities, covering a range of responses from subthreshold to supramaximal. 

I/O curves were constructed by binning the totality of the EPSP (fEPSP) slopes 

and plotting the centre of the bin versus the percentage of successful action 

potentials in that bin, for the corresponding experimental condition. The data 

points were fitted with a sigmoid: S = 1/(1 + exp [(E50 - E)/k]), where E50 is 

the EPSP (fEPSP) slope that yields action potentials 50% of the times (the I/O 

threshold). The gain was determined by calculating the slope of the linear 

portion of the sigmoid (between 0.25 and 0.75). 

Pairing Protocol. After completion of the baseline I/O curve, single pulse or 4 

pulse (40Hz) extracellular stimulation was paired with cellular depolarization by 

injecting positive current through the recording electrode for 100 ms, so that 6-

10 action potentials were elicited. The delay between the extracellular 

stimulation and the onset of the depolarization was 2 ms. The pairing was 

repeated 60 times at 1 or 0.2 Hz. The second I/O function was determined 10 

min. after the pairing protocol. 

Statistics. For statistical comparisons of I/O curves, we analyzed the change in 

threshold and gain. For intracellular experiments paired t-tests were 

performed. The absolute fEPSP values depend on several factors, including 

distance of the stimulating electrode and placement of the field electrode. For 

this reason, the data was normalized to baseline in the extracellular 

experiments and t-tests were performed to assess if the ratio was significantly 

different from 1; and paired t-tests were performed to compare the control and 

experimental groups. All values are expressed as mean±SEM. 

The composition of the solutions used and further experimental details are 

presented in the Supplemental Material online. 
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Supplemental Figures 

 

 

Figure S1: Ex and Inh plasticity differ in their effects on PSP waveforms.  

Because inhibition is delayed in relation to excitation, inhibitory plasticity does not 
change the PSP slope but alters the PSP peak and width. Additionally, relatively small 
changes in Ex strength compared to Inh strength (measured as changes in 
conductance) are needed to produce similar changes in the PSP peak. The traces 
correspond to the levels of plasticity necessary to produce equal shift in the threshold 
(Fig. 6), measured at the same stimulation intensity (the intensity of the threshold of 
the ‘baseline’ blue condition). 
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Figure S2: Gain control is 
dependent on PSP width and 
the rate of change of inhibition.  

For iso-threshold curves (A) the 
spiking probability will be the same 
at the EPSP slope corresponding 
to the I/O threshold, however, the 
integration time window (PSP 
width) is different due to different 
inhibition levels (wider PSPs less 
inhibition) (B). Importantly, the rate 
of change of inhibition across the 
same range of EPSP slopes 
(dashed lines in panel A) is smaller 
for higher gains. Smaller changes 
in inhibition across the same 
EPSP slope range result in 
sharper gains because the 
increase in EPSP slope is not 
accompanied by a proportional 
increase in inhibition.  The brown 
(low gain) and blue traces (high 
gain) correspond to strong and 
weak excitatory and inhibitory 
synapses, respectively. 
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Figure S3: The IPSC/EPSC amplitude ratio is similar after Ex but not Inh 
plasticity. 

Similarly to Fig. 6, dark and light green correspond to Ex→Ex LTP and Ex→Ex LTD, 
and red and magenta to Inh→Ex LTD and Inh→Ex LTP respectively. The IPSC/EPSC 
amplitude ratio as a function of stimulus intensity changes much more dramatically 
after Inh plasticity than Ex plasticity (see Supplemental Data text). Towards stimulation 
intensities where few Inh neurons are active the Inh/Ex balance always favors 
excitation, additionally in these areas there is variability in the gains of the iso-gain 
curves.  
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Figure S4: Altering the recruitment of inhibitory neurons prevents the 
occurrence of isogain curves induced by Ex plasticity. 

 These I/O curves were obtained after modifying the Ex→Inh synaptic strengths, and 
thus the recruitment of inhibitory neurons as a function of stimulus intensity. (A) Green 
corresponds to degrees of LTP and blue to LTD. Note that in panel B, in contrast to 
Fig 6D, for any given I/O curve the relationship between EPSC and IPSC amplitudes 
changes across stimulation intensities  – accounting for the loss of the isogain property 
after excitatory plasticity. The ratio of Inh to Ex is maximal in intensities of 7 to 8, which 
is reflected in the IPSC/EPSC ratio plotted in C. But for a given intensity, after plasticity 
there is little change in the ratio, because as explained in the text, small changes in Ex 
are capable of producing dramatic changes in firing probability (additionally larger 
EPSPs increase the IPSC amplitude). 
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Figure S5: Isogain curves have the same change in IPSC/EPSC ratio at the times 
of the action potential. 

Here the IPSC and EPSC values were measured at the approximate time of an action 
potential or at the time of the PSP maximum when no action potential occurred. The Y 
coordinate represents the difference of the IPSC/EPSC ratios, along a fixed range of 
EPSP slopes that straddled the I/O threshold. The color scheme is the same as in Fig. 
6. Note that the points with similar Y values (green, blue, light green) are those with 
similar gains (Fig. 6A). As stimulation intensity increases the IPSC/EPSC ratio (again, 
at the approximate time of the spike) decreases, accounting for the fact that spike 
probability increases within any given I/O curve. The faster this change occurs (e.g., 
red point) the higher the gain will be. 
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Figure S6: Constant IPSC/EPSC amplitude ratios may still underlie different 
probabilities of firing. 

PSP waveforms for the default ‘baseline’ curve (shown in blue in Fig. 6 and S1). PSPs 
corresponding approximately to 10, 25, 50, 75, and 90% firing probability (spikes 
removed). Note that across this range the peak IPSC/EPSC amplitude ratio is the 
same (see Fig. S3), however, because the increases in Ex are more effective in 
changing the slope and peak, firing probability increases.  
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Supplemental Information Regarding the Mechanisms 

Underlying Gain Control 

 We established that changes in excitatory and inhibitory synaptic 

strength both shift the threshold of the I/O function while inhibitory plasticity 

also changes the gain. In other words, excitatory plasticity by itself maintains 

the gain, thus creating the ‘isogain’ bands shown in Fig. 1D. The mechanisms 

underlying the gain change after inhibitory plasticity and the gain maintenance 

after excitatory plasticity are the result of a number of interrelated properties 

including: (1) excitatory and inhibitory synaptic plasticity differentially alter the 

waveform of the PSP; (2) given that both Ex and Inh plasticity by themselves 

alter the I/O threshold, there is an effective change in the relevant ‘operating’ 

stimulation intensity values for the I/O curves; (3) the relationship between net 

excitation and inhibition as a function of stimulus intensity is also critical to the 

results observed here.  

 

Q1. What determines the gain of isothreshold I/O curves? 

 In order to understand the mechanisms underlying gain control it is 

useful to consider the case where different curves have the same threshold but 

different gains. Supplemental Fig. 2 shows an example of PSPs at the same 

threshold (P(spike) = 0.5; spikes removed) from I/Os with different gains 

(which were obtained by parallel changes in excitatory and inhibitory synaptic 

strength). Why are the I/O gains different? As shown in Fig. S2 (inset), wider 

PSPs at threshold are related to isothreshold I/Os with higher gain, because a 

given subsequent increase in EPSP slope will lead to greater increase in 

P(spike). Specifically, isothreshold curves of high gain have weaker inhibitory 

synaptic strength (parameter scan in Fig. 1D), and thus broader PSPs (as 

known from experimental findings, e.g., inset of Fig. 2B) (Buonomano and 
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Merzenich, 1998a; Pouille and Scanziani, 2001). As a consequence, across a 

given ∆EPSP slope, the changes in inhibitory conductances (or IPSCs) will be 

smaller in higher gain curves (Fig. S2C) − precisely because the Inh synapses 

are weaker (note that the excitatory synapses are also weaker, thus to span 

the same range of ∆EPSP slopes the stimulation intensity must change more, 

potentially recruiting more inhibition, however even with this factor, the net 

effect is that inhibition changes much more slowly, see Fig. 6C). Hence, a 

given increase in EPSP slope is not kept in check by a corresponding increase 

in inhibition, resulting in a sharp I/O curve. The reverse is true for lower gain 

I/O functions (high inhibitory strength). 

 For isothreshold curves, over a fixed range of ∆EPSP slopes we can 

consider the net change in excitation constant (same EPSP slopes) across 

different gains. Thus, the change in gain is attributable to the different rate of 

change of inhibition as a function of stimulus intensity (or EPSP slope); 

specifically, for high gain curves inhibition changes more slowly over the same 

range of EPSP slopes. These results establish that, in these conditions, gain 

control is not a result of changes in shunting inhibition or noise as described 

previously for I/O functions defined by the firing rate versus injected steady-

state current (Chance et al., 2002) (importantly, the results shown in Fig. S2 

are qualitatively similar when noise is removed from the inhibitory neurons). 

 

Q2. Why does I-LTD result in a higher gain I/O curve? 

 In explaining why excitatory and inhibitory plasticity have different 

functional consequences it is important to remind the reader that Ex plasticity 

and Inh plasticity “look” different. That is, as shown in Fig. S1 and known from 

experiments (Buonomano and Merzenich, 1998a; Pouille and Scanziani, 

2001), Ex plasticity changes the PSP slope and peak, while Inh plasticity does 

not change the slope but changes the peak (and its timing) and width. 
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Additionally, it should be clear from this figure that, percent wise, changes in 

Ex strength are much more effective in altering the shape of the PSP than 

changes in Inh. 

 To understand the differential effects of excitatory or inhibitory plasticity 

on gain control it is useful to compare the case in which both forms of plasticity 

generate equal shifts in the I/O threshold. Starting from a baseline I/O curve 

(blue line in Fig. 6), why does I-LTD change the gain while a degree of E-LTP 

that results in the same I/O threshold does not (green and red lines in Fig. 6)? 

To find the new threshold after plasticity both conditions require decreasing 

stimulation intensity (although the E-LTP case will require a larger decrease in 

intensity, because the EPSPs are stronger, Fig. 6D). In these new operating 

regimes, the IPSCs change slower in the I-LTD case as a function of EPSP 

slope or stimulation intensity (Fig. 6C,D), again due to the weaker inhibitory 

synaptic strength. In the E-LTP condition the IPSC amplitude does not change 

much as a function of stimulus intensity (more specifically, gInh does not 

change, but IPSC amplitudes change a bit due to the increased driving force). 

Smaller changes of IPSCs as a function of stimulation intensity (or EPSP 

slopes) will, in turn, result in increases in gain (this is intuitive because the 

increases in EPSP slope are not counteracted by a 'parallel' increase in 

inhibition).  

 

Q3. Why does E-LTP result in the same gain as compared to ‘baseline’?  

 As stated above, when the I/O threshold shifts left (after E-LTP or I-

LTD) there is an effective shift in the relevant range of stimulation intensities 

(Fig. 6D). An important consequence of this is that, even in the absence of 

inhibitory synaptic plasticity, there will be an effective change in the levels of 

inhibition near the new I/O threshold. Because the function that describes 

IPSC amplitude vs. stimulation intensity increases asymptotically (crosses in 
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Fig. 6D) a left shift in the operating range will result in larger changes in 

inhibition for a given change in stimulation intensity. Thus, it is possible to 

maintain the balance between excitation and inhibition even after E-LTP 

because the IPSC function is now operating in a regime with a higher slope. 

Using the curves of Fig. 6 again as an example, it can be seen in Fig. 6D that 

as a function of stimulation intensity, E-LTP results in a sharper change in the 

firing probability than baseline. This is because excitatory synapses are 

stronger, thus a small increase in stimulation intensity should correspond to a 

greater increase in the EPSP slope and consequently increase the probability 

of firing. However, notice how the rate of change of the IPSC vs. stimulation 

intensity function at the left shifted operating intensities is also sharper. 

Ultimately, after the left shift, the ratio of IPSC/EPSC amplitudes at the new 

operating regime is still similar when compared with the original IPSC/EPSC 

ratio (at the original operating regime). As described in the Results section the 

relationship between EPSCs and IPSCs (peak values) as a function of 

stimulation intensity is relatively constant for I/Os that underwent excitatory 

plasticity (Fig. S3). Note that although the peak IPSC and EPSCs are 

balanced across intensities, that increased intensities are still more effective at 

eliciting spikes because the changes in EPSC and IPSC latencies favor 

excitation (Fig. S6). Fig. S3 shows that the balance between Inh and Ex is 

fairly constant both across different stimulation intensities and after Ex 

plasticity. Why is this the case? Ex plasticity does not change the ratio 

significantly because relatively small changes in Ex strength produce large 

changes in firing probability and the Inh function does not changes at all 

(additionally, the ratios are measured as currents and the increases in EPSC 

also increase IPSC amplitude indirectly through driving force). In contrast, as 

shown in Fig. S1, larger changes in inhibitory strength are required to produce 

an equivalent shift in the I/O threshold and hence the Inh/Ex ratio changes in a 

much more dramatic fashion.  
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 To highlight the importance of the relationship between inhibition and 

stimulation intensity and excitation and stimulation intensity, we performed 

simulations in which the IPSC versus stimulation intensity function was altered 

in a manner that it no longer parallels the EPSC versus stimulation intensity 

function. In this case the Inh/Ex ratios are altered as a function of stimulus 

intensity and isogain curves are not observed after Ex plasticity (Fig. S4, thus 

the different thresholds − different ‘operating values’ − will have different 

Inh/Ex ratios). 

 For the sake of completeness it should be pointed out that, as 

mentioned in the main text, it is actually not the peak EPSC and IPSC that 

determines if a cell fires, but their relationship at earlier time points during near 

the end of the rising phase of the PSP. Analysis of the ratio of the change in 

IPSCs and EPSCs (over the same ∆EPSP slope) at around threshold crossing 

reveals similar values for isogain curves, which are different when the gain 

changes (Fig. S5) (these curves will of course not be flat across stimulation 

intensities). Importantly, analysis of the peak EPSCs and IPSCs amplitudes 

seems to capture many of the main characteristics of I/O behavior in disynaptic 

circuits. However, further studies should focus on providing a quantitative 

description of the trade-off between excitatory and inhibitory latencies and 

amplitudes, as well as the timing, recruitment and jitter of the inhibitory neuron 

population in controlling the gain of neurons in response to brief synaptic 

stimuli.  

 

Q4. Why do threshold points of isothreshold curves have the same 
probability of firing (50%) if they have different levels of inhibition? 

 Isothreshold I/O curves are obtained with different combinations of 

parallel changes in excitatory and inhibitory synaptic weights. The fact that 

different excitatory synaptic strengths yield the same PSP slope is only 
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possible due to a corresponding change in stimulation intensity, which will 

activate more or less excitatory inputs (lower excitatory synaptic strengths 

require higher stimulation intensities to yield the same PSP slope). High gain 

isothreshold I/O curves have higher operating stimulation intensities and as a 

consequence there will be a shortening of the latency of the evoked inhibition 

(inhibitory neurons will fire earlier), which is observed in the inset of Fig. S2B 

(specifically, note that the rising phase of the blue PSP started to be affected 

by inhibition before the others). On the other hand, because inhibitory 

synapses are also weaker in high gain I/O curves, the "EPSP cut-off" effect is 

not so dramatic and the overall result is a broader but lower amplitude PSP (as 

compared with the brown trace in which inhibition kicks in later but it more 

strongly cuts off the PSP − low I/O gain, strong Ex/Inh synapses, lower 

stimulation intensity). In summary the combination of high stimulation 

intensities and weak synaptic strengths (high gain conditions) results in earlier 

onset of weaker inhibition – producing ‘shorter’ but wider PSPs. Low 

stimulation intensities and strong synaptic strengths (low gain conditions) 

result in bigger but narrower PSPs (Fig. S2B). 

 

Q5. Additional point related with the behavior of the model 

 It is important to emphasize how complex and nonlinear even a trivial 

disynaptic circuit model behaves, specifically with regards to the 

consequences of changes in latency associated with changes in the 

stimulation intensity. This situation is well illustrated by the light green and 

magenta curves of Fig. 6, at EPSP slopes ~15mV/ms. The magenta curve has 

stronger inhibitory synapses and elicits bigger IPSCs at all stimulation 

intensities, so, why is there a higher probability of firing at this point in the I-

LTP condition? The explanation has to do with differences in the latency of 

recruitment of inhibition. Specifically, even though peak IPSCs are much 
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stronger after I-LTP, the IPSC actually have slightly shorter onset latency after 

E-LTD. Why is this the case? Because after E-LTD excitatory synapses are 

weaker, hence higher stimulation intensities are required to achieve the same 

EPSP slope, thus inhibitory neurons are recruited slightly earlier.  
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Supplemental Methods 

 

Electrophysiology 

Slice preparation. Experiments were performed on acute 400 µm transverse 

hippocampal slices from 17- to 28 day old Sprague Dawley rats as described 

previously (Marder and Buonomano, 2003). Briefly, the hippocampus was 

dissected out and submerged in 1-4°C solution composed of (in mM): 206 

sucrose, 2.8 KCl, 2 MgSO4, 1 MgCl2, 1.25 NaH2PO4, 26 NaHCO3, 1 CaCl2, 

10 glucose, and 0.4 ascorbic acid. The hippocampus was then placed on an 

agar block and slices were cut from the dorsal portion using a vibratome 

(Leica, Nussloch, Germany). Slices were immediately placed in a beaker (at 

room temperature) filled with oxygenated Artificial Cerebral Spinal Fluid 

(ACSF) composed of (in mM): 119 NaCl, 2.5 KCl, 1.3 MgSO4, 1.0 NaH2PO4, 

26.2 NaHCO3, 2.5 CaCl2, and 10 glucose. After an equilibration period of at 

least 1.5 hr, slices were transferred individually to a submerged recording 

chamber (RC-26GLP, Warner Instruments) perfused at a rate of 3 ml/min with 

ACSF maintained at a temperature of 31±1°C. Cells were recorded 

electrophysiologically from the cell body layer in area CA1 of the hippocampus 

using blind techniques. Cells were presumed to be pyramidal neurons based 

on characteristic electrophysiological properties including rapid spike 

accommodation.  

Whole-cell recordings. Patch pipettes were pulled from borosilicate glass (1.5 

mm O.D./1.17 mm I.D. Warner Instruments or 1.5 mm O.D./0.86 mm I.D A-M 

Systems) using a Flaming/Brown (Sutter Instruments) or a PC-10 (Narishige) 

electrode puller (4 to 8 MΩ). Cell recordings in area CA1 were considered 

acceptable if they met the following criteria: resting potential below -55 mV, 

input resistance larger than 80 MΩ and overshooting action potentials. Internal 
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solution was composed of (in mM): 100/110 K-gluconate; 20/10 KCl; 4 ATP-

Mg; 10 Phosphocreatine; 0.03/0.3 GTP; 10 HEPES and adjusted to a pH of 

7.3 with KOH and 290 mOsm by adding sucrose.  

Sharp recordings. Micropipettes were pulled from borosilicate glass (1.2 mm 

O.D./0.68 mm I.D.) using a Flaming/Brown electrode puller (Sutter 

Instruments). Their resistance when filled with 3M potassium acetate varied 

from 70 to 90 MΩ. Cell penetrations were considered acceptable if they met 

the following criteria: resting potential below -55 mV, input resistance of 30 

MΩ, and overshooting action potentials. 

Tight-seal cell-attached recordings. Pipettes were pulled from borosilicate glass 

(1.5 mm O.D./0.86 mm I.D A-M Systems) using a PC-10 (Narishige) electrode 

puller (~5 MΩ). The procedure to achieve tight-seal configuration was the 

same as above, but no negative pressure to break-in was applied. If 

throughout the experiment the seal dropped to <1GΩ the recording was 

aborted. Most commonly, seal values were around ~5GΩ. A second 

microelectrode filled with ACSF (3-5 MΩ) was placed extracellularly, in stratum 

radiatum positioned along a line perpendicular to the cell body layer, to record 

fEPSPs. 

Electrical stimulation. Extracellular stimulation was performed with platinum-

iridium bipolar electrodes coated with platinum black (Frederick Haer Co., 

Bowdoinham, ME). Electrodes were positioned in the stratum radiatum close 

to the CA3-CA1 border. In experiments with a control pathway the second 

electrode was placed in the stratum radiatum towards the subiculum; the test 

and control pathway were chosen randomly.  The distance between the 

recording and stimulating sites was between 150 and 450 µm. Biphasic, 

constant current, 100 µsec stimuli were delivered at 10-15 sec intervals. 

Stimulation intensities ranged from 30-300 μA. 
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I/O curves. Five to twenty minutes after obtaining a seal (extracellular 

recordings) or breaking in (whole-cell recordings), a series of 60-90 pulses 

were given at different stimulation intensities, covering a range of responses 

from subthreshold to supramaximal. Intracellular I/O curves were constructed 

by binning the totality of the EPSP slopes and plotting the center of the bin 

versus the percentage of successful action potentials in that bin, for the 

corresponding experimental condition. Cell-attached I/O curves were 

constructed in a similar fashion but using fEPSP slopes instead of intracellular 

EPSP slopes. Curve fitting was done using a custom-written MATLAB 

program. The program provided the best fit using a sigmoid with two free 

parameters: S = 1/(1 + exp [(E50 - E)/k]), where E50 is the EPSP or fEPSP 

slope that yields action potentials 50% of the times (the threshold) and k is 

inversely related to the linear slope of the sigmoid. The gain was determined 

by calculating the slope of the linear portion of the sigmoid (between 0.25 and 

0.75). 

Pharmacology. 2-3 µM bicuculline methiodide was dissolved in oxygenated 

ACSF, from a 6mM stock solution prepared in water. A 40 mM picrotoxin stock 

solution was prepared in DMSO and picrotoxin was added from there to 

oxygenated ACSF to achieve final concentrations of 10-15 µM. DMSO 

concentration in the ACSF did not exceed 0.04%. Drugs were purchased from 

Sigma, St. Louis, MO. Bicuculline and picrotoxin were 5-10 min. washing in 

before determining the respective I/O function, and bicuculline was 10-15 min. 

washing out before determining the washout I/O function. We could not wash 

out picrotoxin in less than 15 min. 

Pairing Protocol. After completion of the baseline I/O curve, single pulse or 4 

pulse (40Hz) extracellular stimulation was paired with cellular depolarization by 

injecting positive current through the recording electrode for 100 ms, so that 6-

10 action potentials were elicited. The delay between the extracellular 

stimulation and the onset of the depolarization was 2 ms. The pairing was 
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repeated 60 times at 1 or 0.2 Hz. The second I/O function was determined 10 

min. after the pairing protocol. 

Statistics. For statistical comparisons of I/O curves, we analyzed the change in 

threshold and gain. For intracellular experiments paired t-tests were 

performed. The absolute fEPSP values depend on several factors, including 

distance of the stimulating electrode and placement of the field electrode. For 

this reason, the data was normalized to baseline in the extracellular 

experiments and t-tests were performed to assess if the ratio was significantly 

different from 1; and paired t-tests were performed to compare the control and 

experimental groups. All values are expressed as mean±SEM. 

 

Model 

All simulations were performed with NEURON (Hines and Carnevale, 1997). 

Each unit was simulated as an integrate-and-fire unit. The excitatory (Ex) unit 

had two compartments, representing the soma and an apical dendrite; 

inhibitory (Inh) units had a single compartment. The circuit incorporated 20 

excitatory inputs, allowing a possible range of intensities from 1 to 20, 

corresponding to the number of activated inputs. Each input synapsed onto the 

dendrite of the Ex unit (Ex→Ex) and to the 10 Inh units (Ex→Inh), which in turn 

had a single synapse each onto the soma of the Ex unit (Inh→Ex) (Fig. 1A). 

The total synaptic weight onto each Inh neuron was differentially distributed so 

that increases in intensity corresponded to increases in the number of Inh 

neurons recruited and progressive decrease in their latency (Marder and 

Buonomano, 2004) to mimic what is observed experimentally. Specifically, the 

first synapse of each Inh had strength 1.36x10-3 μS and the remainder 
54 1095.2101.2 −− ××+× i  μS  for i = [1 nInh-1]. The increase in stimulation 

intensity generates a nonlinear increase in the peak inhibitory conductance 
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that is well fit by a hyperbolic ratio function 
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, where Int is the stimulation 

intensity, asymp
peakgInh  is the function asymptote, n is a constant and 50Int  is the 

intensity that yields the half-maximum gInhpeak). The Ex→Inh synaptic strength 

constants are robust, however if the drive of the inhibitory neurons is too weak 

or too strong, then inhibition will be zero or saturate over the relevant range of 

stimulus intensities, and excitatory plasticity will induce an increase or 

decrease in gain of the I/O function. Ex→Inh synaptic strength was the same 

for all simulations presented here (except Fig. S4). 

The synaptic delays and cellular parameters were chosen to reflect published 

electrophysiological data on excitatory and inhibitory cells in the hippocampus 

(Brown et al., 1981; Spruston and Johnston, 1992; Karnup and Stelzer, 1999). 

Inh units exhibited a lower threshold and faster time constant than Ex units, so 

they were easier to drive than Ex units, consistent with evidence that single-

action potentials in pyramidal neurons can trigger spikes in inhibitory neurons 

(Miles, 1990; Marshall et al., 2002). 

Integrate-and-fire units. Membrane time constants were 30 ms for the Ex unit 

(gpas = 0.1 mS/cm2; C = 3 µF/cm2) and 15 ms for the Inh units (gpas = 0.1 

mS/cm2; C = 1.5 µF/cm2). Resting Vm was -60 mV for all the units, the 

thresholds were -40 mV for the Ex unit and -50 mV for the Inh units, and the 

reset potentials -53 and -65 mV respectively (to prevent multiple high 

frequency action potentials in Inh units). A random amount of noise current, 

withdrawn from an uniform distribution, in the range of ±20 pA for the Ex unit 

and ±10 pA for the Inh units was injected at each time step (dt = 0.05 ms) and 

resulted in a voltage SD of 0.35 mV, which is on the upper side of the mean 

value of the in vitro data we are comparing it to. Increase or decrease in noise 

levels decrease or increase the gain of I/O functions in the overall, 
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respectively, but do not affect qualitatively the changes in gain and I/O 

threshold produced by synaptic plasticity. Noise levels were constant across 

simulations. 

Synapses. The input units were connected to the Ex and Inh units by excitatory 

synapses with AMPARs, and the Inh units were connected to the Ex unit by 

inhibitory synapses with GABAARs. The synaptic delays were 1.4 ms for 

Ex→Ex, 1 ms for Ex→Inh and 0.6 ms for Inh→Ex. AMPA and GABAA synaptic 

currents were simulated using a kinetic model as described previously 

(Destexhe et al., 1994; Buonomano, 2000). The reversal potentials were 0 mV 

for the excitatory synapses (EEx) and -70 mV for the inhibitory synapses (EInh). 

The forward (alpha) and backward (beta) rate constants that determine 

transmitter binding to receptors were as follows: excitatory synapses: alpha = 

1.5 ms-1mM-1, beta = 0.75 ms-1; inhibitory synapses: alpha = 0.5 ms-1mM-1, 

beta = 0.15 ms-1. 

I/O curves. In hippocampal slice experiments, a wide range of intensities, 

which activate a variable number of Schaffer collateral axons, are used to 

determine the I/O curves. Thus, the model I/O functions were determined by 

sequentially activating an increasing number of inputs, corresponding to an 

increase in stimulation intensity. The lowest intensity was simulated by a spike 

in a single input, and higher intensities were simulated by recruiting additional 

input units. Each input unit only fired one spike per trial. At each intensity, the 

neuron was stimulated 50 times. I/O curves were constructed in the same 

manner as for experimental intracellular recordings (described above), by 

measuring the EPSP slope and spike probability at all intensities. The gain and 

threshold of each I/O curve were also determined in the same manner as the 

experimental I/O curves. 
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Abstract 

 While short-term synaptic plasticity (STP) is ubiquitously observed in 

neocortical synapses, its contributions to neural computations are not 

understood. Here we show that the incorporation of STP into simple neural 

network models significantly enhances their ability to discriminate 

spatiotemporal stimuli. Additionally, we propose that STP itself undergoes 

long-term plasticity, and show that discrimination of temporal patterns is further 

enhanced by metaplasticity of STP. We present an extension to traditional 

associative forms of long-term synaptic plasticity in which synapses can ‘learn’ 

when to be weak or strong – e.g., when a postsynaptic cell fires towards the 

end of a train of presynaptic pulses short-term facilitation should be expressed, 

however if the postsynaptic cell fires at the beginning of the train, then 

depression should occur. This form of temporal synaptic plasticity allows 

simple feed-forward networks to solve computational problems that are 

otherwise unsolvable. 
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Introduction 

 It is well established that synapses are plastic and that their 

contribution to information transmission can decrease or increase in an 

activity-dependent manner (Malenka and Bear, 2004; Caporale and Dan, 

2008). However, another ubiquitous property of synapses is the sensitivity to 

the history of their prior activity, a phenomenon called short-term synaptic 

plasticity (STP), in which the effective synaptic strength between two neurons 

dynamically decreases or increases in a use-dependent manner, on a time 

scale on the order of tens to hundreds of milliseconds. Indeed, STP is a 

defining feature of neocortical synapses, and has been proposed to contribute 

to a number of different functional roles including temporal processing 

(Buonomano and Merzenich, 1995; Buonomano, 2000), working memory 

(Mongillo et al., 2008) and gain control (Chance et al., 1998; Galarreta and 

Hestrin, 1998). 

 Excitatory synapses between neocortical neurons exhibit short-term 

depression and facilitation (Reyes and Sakmann, 1999; Cheetham et al., 2007; 

Hardingham et al., 2007), and both types of STP are believed to be produced 

primarily by presynaptic mechanisms (Zucker and Regehr, 2002). Short-term 

synaptic depression may arise from the depletion of the readily releasable pool 

of synaptic vesicles (Schneggenburger et al., 2002), while short-term synaptic 

facilitation is associated with the accumulation of residual calcium in the 

presynaptic terminal, which can enhance subsequent transmitter release (Katz 

and Miledi, 1968; Burnashev and Rozov, 2005). 

 In the brain, neurons express multiple forms of STP in a synapse-

specific manner, which suggests there may be a continuum of possible 

‘flavors’ of STP that lie in between purely depressing and purely facilitating 

synapses (passing through compound forms that may initially facilitate and 

then depress on consecutive action potentials (Markram et al., 1998; Dittman 
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et al., 2000; Gupta et al., 2000; Rozov et al., 2001). A number of different 

mathematical models have been shown to capture the diversity of types of 

short-term synaptic plasticity (Gingrich and Byrne, 1985; Varela et al., 1997; 

Markram et al., 1998).  

 It is well established that STP can change after the induction of LTP or 

LTD in neocortical synapses (Markram and Tsodyks, 1996; Bender et al., 

2006; Hardingham et al., 2007), and that it differs at different developmental 

stages (Reyes and Sakmann, 1999; Zhang, 2004) and among different cortical 

areas (Atzori et al., 2001). However, it remains unknown whether STP itself is 

controlled by specific learning rules; e.g., can a synapse switch from 

depressing to facilitating, or adjust the temporal profile of depression or 

facilitation, to better process time-varying stimuli? 

 Here, we first show that STP is necessary to solve even simple 

computational problems, and that it enhances the discrimination of more 

complex spatiotemporal patterns. In addition, we propose that STP itself may 

be governed by specific learning rules, and that such a form of synapse-

specific temporal plasticity further enhances the computational ability of 

cortical circuits to process spatiotemporal patterns. 
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Methodology 

 To examine the contribution of STP to the discrimination of 

spatiotemporal stimuli we used a simple feed-forward network, in which the 

afferents convey the time-varying patterns generated by the stimuli. These 

inputs synapse onto integrate-and-fire postsynaptic neurons which act as the 

classifiers. 

 We implemented pre- and postsynaptic learning rules in an essentially 

independent manner. The presynaptic learning rule, ‘Temporal Synaptic 

Plasticity’ (see below), governs the dynamics of short-term synaptic plasticity – 

determining not only whether short-term depression or short-term facilitation is 

induced but also their respective temporal profiles. The postsynaptic learning 

rule is responsible for governing the traditional postsynaptic ‘weight’ of the 

synapse. Here we considered a conventional form of associative synaptic 

plasticity (STDP, Figs. 3 and 4), or the tempotron learning rule (Figs. 2 and 5) 

(Gutig and Sompolinsky, 2006). However, since the mechanisms of STP and 

STDP are not fully understood, and because postsynaptic mechanisms may 

contribute to STP (Rozov and Burnashev, 1999; Bagal et al., 2005) it is also 

possible that postsynaptic mechanisms are involved in determining the short-

term synaptic dynamics.  

 

 Model neuron: Postsynaptic neurons were modeled as conductance 

based integrate and fire (IAF) units: 

)()()()1( VEgVEgVg
dt

tdV
InhInhExExL −+−+⋅−=  

where gL = 0.1 (0.05 in Figs. 1 and 2), EEx = 3 and EInh = -3. If V(t) > 1 a spike 

was elicited and V(t+dt) was reset to 0. Upon arrival of a presynaptic action 
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potential gEx and gInh increased by the effective synaptic efficacy (see bellow) 

and decayed exponentially back to zero with time constant τEx = τInh = 5 ms. 

For the experiments shown in Figs. 2 and 5, a ‘noise current’ withdrawn from a 

normal distribution with mean 0 and standard deviation 0.015 was also 

present.  

 

 Simulation of short-term synaptic plasticity (STP): STP was simulated 

as described previously (Markram et al., 1998; Maass and Markram, 2002). 

This model of STP is characterized by three parameters, U, τR and τF, which 

represent the fraction of synaptic efficacy used by the first action potential (AP) 

in a train, the time constant of recovery from depression (R), and the time 

constant of synaptic facilitation (F). At any point in time, R and F of each 

synapse are described by the following equations: 
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The initial values of R and F are 1 and U, respectively. ∆t represents the time 

since the last presynaptic spike tpre represents the time of the last presynaptic 

spike. If there is a presynaptic spike at time t, immediately after synaptic 

release F(t) is increased by U(1-F(t)) and subsequently recovers back to U 

with time constant τF,. Hence, F is related to the degree of facilitation and its 

initial value (U) represents an unfacilitated synapse. R is related to the degree 

of depression, and recovers to 1 with time constant τR. Presynaptic efficacy 

was determined by the product of R(t) and F(t). Total effective synaptic efficacy 

was obtained by multiplying the presynaptic efficacy with the postsynaptic 
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weight, w (see STDP bellow). In Fig. 1C U = 0.5; τR = 1 or 25 ms and τF = 1 

ms. In Fig. 3B the weights w were 1.00 and 0.08 for the "PPF only" and "PPD 

only" conditions, respectively. 

 

 Temporal Synaptic Plasticity (TSP): There are a number of different 

potential implementations for the plasticity of the U, τR and τF variables. For 

the results shown in Fig. 4 we used an implementation in which it was 

assumed that at the time of the positively reinforced postsynaptic spike it is 

desirable that both the running values of presynaptic variables R and F be 

relatively high. That is, R should have been largely recovered and F should still 

be significantly elevated, representing the presence of facilitation. The 

equilibrium based equations described below drive the three variables towards 

steady states that favor facilitation at the time of the reinforced postsynaptic 

spike. 

 We hypothesized that the changes in U, τR and τF should depend on 

the level of activity of the presynaptic terminal at the time of the postsynaptic 

spike, tpost. The variable Si(t) reflects the amount of activity at the presynaptic 

terminal i, and can be thought of as a saturating presynaptic Ca2+ sensor. Si 

changes according to: 
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Where τS and Smax represent the decay time constant and maximal value of S, 

respectively. The presynaptic spike train at synapse i is represented by 

∑ −
n

n
itt )( )(δ  , where the Dirac function δ(t) equals 0 at all values except 

when there is a presynaptic spike at time t, when it equals 1. 
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 At the time of the postsynaptic spike the presynaptic variable Ui (which 

in this model relates to Pr) was updated by:  
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Where UF   corresponds to the equilibrium value of F at the time of the last 

presynaptic spike. tpre represents the time of the last presynaptic spike to 

precede tpost. Thus if the postsynaptic spike occurs after one presynaptic spike 

(S<1) U will converge towards Umax, and favor PPD, if it occurs after more than 

one presynaptic spike (S>1) it will converge towards UF . Fi(tpre-dt) equals the 

value of F immediately before the time of the last presynaptic spike. 

 Similarly, plasticity of the time constant variables τR and τF were 

governed according to:  
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Where 
i

i

U
UtFtFN −

=
)()( , which represents the normalized value of the 

facilitated state.   +R  and +F  are related to the equilibrium values of R and F 

at the time of the postsynaptic spike, respectively.  Uα , +Dλα  and +Fλα  are 

gain constants. 

 In Fig. 5A, where we use Poisson stimuli, the time of the ‘desired’ 

postsynaptic spike is unknown, hence we used the tempotron learning rule 

(see below) to govern postsynaptic plasticity and determine the time of positive 

or negative reinforcement. Accordingly, if a neuron did not fire to a positive 

pattern, U was changed according to Eq. 5, and τR and τF: 
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Where tpost is the time of the maximal postsynaptic voltage. Given the presence 

of trains of spikes at each input the target equilibrium state of the variables τR 

and τF are dependent on the presynaptic activity levels (Si(t)). This is the 

general form of the TSP learning rule, which also capture the rule used above. 

 Conversely, if a neuron fired an action potential to a negative pattern τR 

and τF were updated according to: 
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Where  −F  and  −R  are equivalent to  +R  and  +F  during negative 

reinforcement, and tpost denotes the time of the postsynaptic action potential. 

As with the case of the errors to the positive pattern, this was only true if 

Si(tpost)>1. 

 Both pre- and postsynaptic plasticity were modulated with a kernel that 

equals 1 at tpost and decays to 0 for the preceding time points (with time 

constant τK) – thus preventing plasticity of short-term plasticity at synapses that 

fired significantly before the postsynaptic spike. U was bounded between [0.10 

0.90], ∆ τF and ∆ τR between [1 1200] and ∆w was divided by U to normalize 

the changes in synaptic strength. 
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 The desired steady-state values and gain constants used in the 

simulations presented here were determined empirically, and are presented in 

Table 1. For visualization purposes and to maximize the difference in the 

peaks among the different intervals (to the extent allowed by the STP model 

itself) we used UF  = 0.65, +R  = 0.05 and +F = 0.37 in Fig. 4. 

 

 Spike timing-dependent plasticity: STDP was implemented according to 

(Song et al., 2000): 
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Where wi is assumed to be controlling the synaptic weight and ∆t = tpost - tpre. 

In both Fig. 3B and Fig. 4B-D initial weights were 0.05 and Ap = Ad = 5x10-4, 

τp = 30 ms and τd = 40 ms. During training the postsynaptic neuron was 

depolarized 20 ms after the last spike of pathway P1 (Fig. 3C) or 5 ms after 

the last spike of the target interval (Fig. 4).  

 

 Supervised learning rule: In Figs. 2 and 5 we used tempotron learning 

rule (Gutig and Sompolinsky, 2006). Neurons had 10 incoming synapses, with 

initial strength [0 0.01] withdrawn from a uniform distribution. The learning rate 

was 10-3 and in Fig. 5 the synaptic weights were bounded between [10-9 and 

0.15], so there were no inhibitory synapses. Neurons were allowed to learn the 

respective Poisson pattern for an average of 500 presentations of each 

stimulus (see bellow). 
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 Poisson spike trains: Stimuli were composed of 10 inputs and the 

duration of each pattern was 250 ms. At each time point the presence or 

absence of a spike was drawn from a uniform distribution, and set to yield an 

average rate of [10 12.5 15 17.5 20] Hz (Fig. 2) or 20Hz (Fig. 5). A relative 

refractory period of 5 ms was imposed, which recovered with a time constant 

of 2 ms. Each stimulus set consisted of five Poisson patterns which were 

presented pseudo-randomly, for a total of 5x500 presentations. During testing 

the stimuli were presented in order and the reverse of the patterns used for 

training were included. 10 or 20 of these sets were built with different seeds 

(Figs. 2 and 5, respectively). 

 

 Statistics: In Figs. 2C and 5B the error bars represent the standard 

error to mean. The presented p-value results from t-tests performed pair wise 

among groups. 
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UF  0.5 

+R  0.1 

+F  0.4 

−R  0.2 

−F  0.2 

αU 0.05 

ατR+ 10 

ατF+ 10 

ατR- 25 

ατF- 20 

τK 10 ms 

τS 1000 ms 

Smax 4 

 

Table 1: Values of the constants used in the computer simulations. 
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Results 

 We first considered a ‘toy’ problem in which the task of a single 

conductance-based integrate-and-fire neuron (see Methods) is to distinguish 

between input patterns conveyed by two presynaptic neurons, A and B. Each 

pattern consisted of two spikes 25 ms apart, thus, there are four possible 

patterns: AA, AB, BA or BB (Fig. 1A). The goal of the postsynaptic neuron is to 

respond exclusively to the AB pattern; i.e., generate an action potential when 

AB, but not the other patterns, is presented. One can intuit that there is no 

solution to this task (when static synapses are used) because any weight 

vector [wA, wB] that produces a spike to AB will also spike in response to AA 

or BB. The behavior of the postsynaptic neuron to the four different stimulus 

over the relevant range of synaptic weights, wA and wB, is shown in Fig. 1C 
(top). For each pair of synaptic weights we presented the four stimuli and 

represented in color which stimuli yielded an action potential. If, for a given wA 

and wB, the neuron fired only to the AA stimulus (and not AB, BA and BB) that 

coordinate would be red. If it fired to AA and BA the coordinate would be pink, 

and so on, according to the color cube in Fig. 1B. 
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Figure 1: Classical synaptic 
plasticity alone cannot solve 
the XAB problem. 

A) XAB problem: One neuron 
receives two inputs (A and B) 
and its goal is to fire an action 
potential exclusively to the 
sequence AB (but not AA, BA or 
BB). 

B) Figure legend: The colors 
correspond to which stimuli the 
neuron fired. If the neuron fired 
exclusively to AB we colored the 
response green (bottom green 
voltage traces of C). Firing 
exclusively to AA or exclusively 
to BB was colored red. Thus, 
according to the cube, if the 
neuron fires to BA and AA the 
response is colored pink (and so 
on for the other possible 
combinations).  

C) Parameter scan of the 
synaptic weights of inputs A and 
B. For each combination of 
synaptic weights, the 4 possible 
stimuli were presented 
consecutively. Some sample 
voltage traces are illustrated on 
the right, colored according to 
which stimuli the neuron fired 
(color cube). TOP, No STP: In 
black the weights are too weak 
so the neuron never fires an 
action potential. In red the weight 
of input A is strong so the neuron 
fires exclusively to the sequence 
AA (or exclusively to BB if B is 
strong). Notice that there are no 

combinations of weights that provide a response exclusively to BA (or AB). BOTTOM, 
STP: If the synapses exhibit paired-pulse depression the neuron can exclusively 
respond to BA (blue) (or AB, green). Essentially, short term depression prevents the 
neuron from firing to AA in a region where before it was firing to AA and BA (notice the 
color changed from pink to blue) allowing an exclusively BA response (or, conversely, 
preventing to fire to BB, yellow to green, allowing for an exclusively AB response). 
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 In Fig. 1C (top) it can be seen that the ‘exclusively BA’ solution cannot 

be achieved because the postsynaptic neuron will also fire in response to AA 

(pink voltage traces, on the right), thus, one can see that the presence of 

short-term depression could prevent this. Accordingly, we implemented 

moderate levels of short-term synaptic depression in the same model (τR = 25 

ms, see Methods) and re-run the parameter scan (Fig. 1C, bottom). 

Importantly, now there are regions of the synaptic space in which it is possible 

to detect exclusively AB (green) or BA (blue). This is possible because some 

coordinates that were firing before to AA and BA (pink) or BB and AB (yellow), 

now fire exclusively to BA or AB because the synaptic responses to the 

second pulse in AA or BB depress. This toy problem provides an example of a 

task which cannot be solved by a simple feed-forward network with ‘static’ 

synapses (that do not exhibit STP). 

 

 STP improves forward versus reverse selectivity by 
establishing temporal asymmetry 

 Next we analyzed the computational advantages of endowing 

synapses with STP in tasks based on the discrimination of complex 

spatiotemporal patterns. Neurons were trained to discriminate Poisson spike 

patterns (Fig. 2A, left) by adjusting the synaptic weights according to a 

supervised learning rule (Gutig and Sompolinsky, 2006). In brief, if the 

postsynaptic neuron did not fire to the target (‘positive’) stimulus the weights of 

the synapses whose activity contributed to the maximum voltage were 

increased in a manner proportionally to that contribution (see Methods). On the 

other hand, if the postsynaptic neuron fires at any point during a ‘negative’ 

stimulus the synaptic weights of each synapse are decreased in proportion to 

their contribution to the incorrect spike. 
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 At each trial we randomly presented one of five Poisson spike patterns 

(each pattern consisted of 10 inputs) with average firing rates ranging from 10 

to 20 Hz (see Methods). We used different mean spike rates to make the 

problem more challenging; specifically, it is difficult to generate selective 

responses to low-frequency patterns. The goal of the output neuron is to adjust 

its 10 synaptic weights in a manner that it fires an action potential selectively to 

its target Poisson pattern. In the absence of STP, the tempotron learning rule 

performed very well, yielding 1-2% errors (Fig. 2B). The inclusion of synaptic 

STP (the same STP parameters for the 10 synapses), whether depressing or 

facilitatory, did not alter the learning procedure significantly. 

 However, when we tested performance not only in response to the 5 

original Poisson stimuli, but to their reverse patterns as well, the performance 

degraded significantly to 42±2% errors (an error is a failure to detect the 

positive pattern or firing to any of the non-target patterns, Fig. 2C, blue solid 

bar). Analyzing the errors in more detail reveals that the neuron is mostly firing 

specifically to the negative patterns that are the reverse of the positive target 

patterns (Fig. 2C, blue dotted bar, 38±2%). Analysis of the times of the 

postsynaptic action potential in the forward and reverse patterns indicates 

approximately symmetric spike times (Sup. Fig. 1, left histograms). The lack of 

selectivity to the forward versus reverse patterns indicates that discrimination 

relies in large part not on the temporal structure of the stimulus, but on the 

detection of synchronous spikes characteristic of a particular stimulus. The 

presence of STP significantly increased the discrimination of forward versus 

reverse spatiotemporal patterns. Specifically, short-term depression (U=0.5; 

τR=400 and τF=1 ms) produced 16±3% errors (of which only 3±1% are 

specific to the reverse of the positive pattern, Fig. 2C, solid and dotted bars 

respectively) and short-term facilitation 28±3X% errors (18±3%X to the 

reverse). 
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Figure 2: Short-term plasticity improves forward versus reverse selectivity of 
spatiotemporal Poisson patterns. 

A) Poisson patterns: Each training set consists of 5 FWD Poisson patterns with rates 
ranging from 10-20Hz. Each pattern has 10 inputs which synapse to one post-synaptic 
neuron whose goal is to fire an action potential selectively, to just one of the patterns 
(supervised learning, see text). The bottom trace depicts an example of the voltage in 
response to the 20Hz pattern shown. 

B) Performance during training on the FWD patterns. Blue line depicts learning without 
short-term plasticity and the red and green lines depict learning with some levels of 
depression and facilitation, respectively (see text). 

C) Performance during testing, when the reverse of the patterns used for training were 
included in the stimulus set. Short-term plasticity, whether depression or potentiation, 
enhances pattern selectivity. Solid bars quantify total errors. Dotted bars quantify the 
errors when the neuron fired to the reverse of the target pattern (n = 10). 
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Supplemental Figure 1: STP establishes a temporal asymmetry. 

A) Histograms of the spike times of the neuron during testing, when the forward and 
reverse patterns are presented (solid and dotted bars, respectively). Each row 
represents a different sample stimulus pattern. Columns depict different STP 
conditions (the same as in Fig. 2). Notice how static synapses (no STP) have nearly 
symmetric spike time histograms when the FWD and REV stimuli are presented. 
Short-term depression or facilitation break that symmetry. The spike raster at the top 
depicts a 10 Hz FWD stimulus, which leads to the response of the solid bars in the first 
row.  

B) Selectivity Index. The selectivity index quantifies the selectivity of the response 
towards the trained pattern, with regard to its reverse. A value of 1 means that training 
resulted in responses exclusively to the trained pattern. A value of 0 signifies that the 
neuron responds both to the trained pattern and to its reverse. 
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 STP is intrinsically temporal and allows synapses to carry a history of 

their recent past events. We have shown that a corollary of this property is that 

when a stimulus is reversed, the pattern perceived by the neuron will be 

effectively different from a simple mirror image of the original. The results 

above suggest that STP improves selectivity of forward versus reverse stimuli 

by breaking the symmetry when a pattern is reversed (Sup. Fig. 1, red and 

green histograms). Note that we chose to train the network on the forward 

patterns, and test it on the untrained reverse patterns, in order to parallel 

experimental findings. For example, in songbirds, HVC neurons respond 

selectively to the forward song, but not to the reverse song, even though the 

bird was presumably never exposed to the reverse song in its lifetime (Doupe, 

1997).  

 

 Metaplasticity of Short-term Plasticity: Solving the shift 
problem 

 The previous results show that STP improves the discrimination of 

spatiotemporal stimuli. In these simulations the synapses were dynamic (they 

exhibited STP), however, STP itself was static; i.e. it was hardwired into the 

synapses and did not exhibit any adaptation or learning related to the stimuli 

being decoded. Additionally, each synapse in the network exhibited 

qualitatively and quantitatively the same form of STP. We next asked if 

different types of STP at different synapses could further enhance 

performance, and whether there are suitable learning rules to guide STP into 

regimes that optimize neural computations.  
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Figure 3: Metaplasticity of short-term plasticity. 

A) Shift Problem. The goal is to discriminate between the shift (top row, left) and 
synchronous patterns (top row, right). 

B) Same STP in both inputs does not solve the shift problem. The traces depict the 
voltage contribution of each input (light and dark blue) to the total postsynaptic voltage 
(red). Paired-pulse facilitation or paired-pulse depression in both inputs cannot solve 
the problem because the neuron’s peak response (red trace) will always be to the 
second or first pulse of the Synch pattern, respectively. Each input exhibits PPF or 
PPD depending on whether its synapse has a low or high Pr, respectively. 

C) Eq.1. A simple learning rule that adjusts the probability of release (Pr) at each 
synaptic terminal solves the shift problem. S is a variable that reflects the number of 
presynaptic spikes (see Methods). Bottom: Pairing postsynaptic depolarization (I) – 
which acts as the ‘supervisor’ – with the coincident presynaptic spikes of the Shift 
pattern results in PPF at synapse 1 and PPD at synapse 2, in addition to conventional 
postsynaptic LTP at both synapses. The rationale is that the time of postsynaptic 
depolarization in relation to a presynaptic spike train determines whether those 
synapses will show PPD (early pairing) or PPF (late pairing). By pairing postsynaptic 
depolarization with either the first or second spikes of the synchronous pattern the 
postsynaptic neuron will also learn to respond selectively to it (not shown). 

 

 To address this issue we initially considered another toy problem that a 

simple feed-forward network with static synapses cannot solve. In the “shift 

problem” each of two input neurons fire twice with a 100 ms interspike interval, 

onto a single postsynaptic neuron; in the shift pattern the onset of the first input 

neuron occurs 100 ms before that of input 2, while in the synchronous pattern 

both inputs fire at the same time (Fig. 3A). The goal of the neuron is to fire 

exclusively to the shift pattern but not the synchronous. This problem cannot 

be solved, even if synapses exhibit STP dynamics (of the same kind, Fig. 3B).  

 On the other hand, there are possible solutions if the different synapses 

exhibit qualitatively different forms of STP. For example, the postsynaptic 

neuron can respond selectively to the shift pattern if Input 1 exhibits paired-

pulse facilitation (PPF) and input 2 paired-pulse depression (PPD) (Fig. 3C, 

right panels). 
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 One of the determinants of whether a synapse exhibits PPF or PPD is 

the presynaptic probability of vesicle release (Pr) – high and low Pr values are 

associated with PPD and PPF, respectively (Debanne et al., 1996; Dobrunz 

and Stevens, 1997). It is possible for the simple circuit presented in Fig. 3A to 

solve the shift problem if we assume the presence of a physiological learning 

rule that controls Pr, together with conventional STDP (assumed to be 

governing postsynaptic efficacy) (Fig. 3C). For example, we implemented a 

rule that altered Pr as expressed in Eq. 1: if the presynaptic neuron has only 

spiked once before the postsynaptic spike (S≤1) Pr increases (favoring PPD), 

in contrast if it has spiked more than once (S>1) Pr decreases (favoring PPF). 

As it can be seen on the right panels of Fig. 3C, physiologically plausible Eq. 1 

combined with STDP guides synapses towards suitable synaptic weights and 

an appropriate combination of PPF and PPD that lead the neuron to fire to the 

shift but not to the synchronous patterns, as desired. 

 

 Temporal Synaptic Plasticity: A Novel Learning Rule for 
Metaplasticity of STP 

 The actual mechanisms underlying STP remain incompletely 

understood and rely on a number of properties in addition to Pr (Zucker and 

Regehr, 2002). Nevertheless, as implemented in the above simulation, STP is 

often modeled by two time- and activity-dependent variables that determine 

the presynaptic effective synaptic strength: R, which represents the fraction of 

synaptic resources available; and F, which represents the fraction of R that is 

actually used at each release event. Hence, the presynaptic effective synaptic 

strength is given by the product of R and F (see Methods, Markram et al., 

1998). R and F are modulated by three parameters: U (related to Pr), τR (time 

constant of recovery from depression) and τF (time constant of synaptic 

facilitation). A learning rule that governs these three STP parameters and 
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takes into account the recent history of presynaptic activity at the time of the 

postsynaptic spike can not only control whether PPD or PPF is expressed, but 

also the timing at which the voltage peaks (Fig. 4, see Methods). As an 

example, we considered the case in which a neuron receives only one input, 

which is activated twice, with an interval of 50, 100 or 200 ms between pulses. 

The goal is to train the neuron to become selective to the middle (100 ms) 

interval, by repetitively pairing the second pre-synaptic spike of this interval 

with post-synaptic depolarization (Fig. 4A, right), which adjusts both the 

synaptic weight and the STP parameters (see Methods). 

 This rule for metaplasticity of STP performs well and finds a solution 

that, at the time of the paired spike, causes the synapse to be mostly 

recovered from depression while not displaying exaggerated levels of 

facilitation (Fig. 4B, R and F, top right). For example, if initially the neuron did 

not fire to the second pulse of the 100 ms interval, because the synapse had 

not recovered yet from the first pulse, then τR would be decreased so that 

recovery from depression (R) would occur faster. Parallely, if there was too 

little facilitation at the time of the second pulse then τF would be increased so 

that facilitation (F) contributed to generate an action potential at the time of the 

pairing (Fig. 4B, left panel). This model is based on equilibrium values for R 

and F, at the time of the paired spike. Otherwise, if the synapse recovers too 

quickly from depression the neuron would also fire to the second pulse of the 

shorter (50 ms) interval; or, conversely, if there was too much facilitation the 

neuron would fire to the second pulse of the 200 ms interval as well, thus 

loosing the ability to be interval selective. 

 



 

110 

 



Results | Chapter 3 

111 

Figure 4: Temporal synaptic plasticity can produce interval selective responses. 

A) Selective discrimination of a medium duration interval. Left: The model neuron 
receives only one input pathway, which is stimulated with 3 different patterns (paired-
pulse intervals of 50, 100 or 200 ms). Right: The 100 ms interval is reinforced by 
depolarizing the neuron after the arrival of the second spike. The synaptic weight is 
adjusted according to STDP. 

B) Training selectivity to a 100 ms interval. Left: Values of the parameters U, τR and τF 
during training. Right: In the end of training, the parameters are such that paired-pulse 
facilitation peaks at approximately 100 ms, thus creating a neuron that fires 
preferentially to the trained interval (voltage traces). TOP: In this case the solution 
achieved ‘intermediate’ values of τR and τF such that at 50 ms the synapse is still 
recovering (R) and there is not too much facilitation at 200 ms (F). 

C and D) Left: as in B). Right: Responses after training to the short (50 ms) and long 
(200 ms) intervals. 

 

 Similarly, if the postsynaptic spike is paired with the second presynaptic 

spike of a 50 ms interval, τR and τF settle at relatively small values, whereas for 

a 200 ms interval, they settle at higher values (Fig. 4C,D) such that the neuron 

fires exclusively to the target interval. 

  

 Temporal Synaptic Plasticity Applied to the Discrimination of 
Poisson Spike Patterns 

 The same STP learning rule enhances the ability of model neurons to 

discriminate complex spatiotemporal patterns (Fig. 5). Initially, neurons were 

trained to discriminate forward Poisson patterns (20 Hz) with the tempotron 

learning rule (Gutig and Sompolinsky, 2006), and tested in the same manner 

as described in Fig. 2, by including the reverse patterns. Similarly to what has 

been shown, in the absence of STP and temporal synaptic plasticity, neurons 

were responsive to the untrained reverse stimuli (37±2% total errors, Fig. 5, 

blue bar). 
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 In a second set of experiments, random STP parameters were included 

at each of the synapses and the postsynaptic neuron was trained as above 

(while the STP parameters themselves were held constant during training). 

This procedure increased spatiotemporal selectivity significantly (28±2% 

errors, green bar). 

 In a third set of simulations that were initiated with the same random 

STP parameters, training with the tempotron together with temporal synaptic 

plasticity, which modifies the STP parameters of each synapse individually, 

dramatically decreased the total number of errors (8±2%, red bar). At the end 

of these simulations, the STP parameters of each synapse were shuffled 

across synapses, and then trained with the tempotron alone (i.e., the shuffled 

STP values were held constant during training). This procedure resulted in 

increased percentage of errors (31±4%, orange bar), similar to the levels of the 

‘Random STP / No TSP’ condition (green bar). This important control shows 

that temporal synaptic plasticity can optimize the discriminatory selectivity of 

simple feed-forward networks in a synapse specific manner and that this effect 

is not due the distribution of STP parameters – that is, performance relies on 

specific types of STP at the appropriate synapses. 
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Figure 5: Temporal synaptic plasticity enhances the discrimination of complex 
spatiotemporal patterns.  

A) Discrimination of Poisson spike patterns: Schematics of the circuit and sample 
Poisson patterns (20 Hz). Neurons were trained to detect exclusively one forward 
stimulus (FWD) and tested on the dataset that included the reverses (REV). 

B) Percentage of errors during testing: Notice that the inclusion of synapses with 
random (but static) STP values before training improves performance significantly 
(green). However, using Temporal Synaptic Plasticity (TSP) to tune STP further 
decreases the number of errors (red). In orange is depicted the percentage of errors 
when the model is re-trained using the shuffled STP values obtained after training with 
TSP (n = 20). 
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Discussion 

 

 The results presented here highlight the computational advantages of 

endowing synapses with short-term plasticity. We presented concrete toy 

computations that cannot be performed without STP and demonstrated that it 

significantly increases spatiotemporal pattern selectivity. We showed that STP 

and metaplasticity of STP provide a built-in temporal asymmetry that ensures 

that the forward and reverse stimuli are easily distinguishable – a characteristic 

of spatiotemporal selective cells observed in vivo (Doupe, 1997), and an 

observation consistent with the lack of perceptual similarity between forward 

and reversed stimuli, such as speech. 

 The general hypothesis presented here is that the relative timing of the 

pre- and postsynaptic spikes do not simply modulate long-term plasticity, as 

established by STDP (Debanne et al., 1994; Markram et al., 1997; Bi and Poo, 

1998), but may serve as a ‘teacher’ signal to determine whether the synapse 

should be depressing or facilitating, as well as the time course of these forms 

of short-term synaptic plasticity. The simplest experimental prediction of this 

hypothesis is that when pairing postsynaptic activity with a train of presynaptic 

spikes, the position of the postsynaptic spikes should shape short-term 

plasticity in a predictable manner. For example, a postsynaptic spike paired 

with the first or last of a pair of presynaptic spike should favor PPD and PPF, 

respectively; because the contribution of the EPSP to the postsynaptic spike 

would be optimized by depression (increased use of presynaptic efficacy) if the 

post spike occurs early, or by facilitation if the post spike occurs late. It should 

be noted that this prediction has been tested at least twice in CA1 synapses 

with negative results (Buonomano et al., 1997; Buonomano, 1999). However, 

since these studies were performed it has been established that CA1 and 

neocortical LTP appear to be fundamentally different, for example neocortical 
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STDP relies on presynaptic changes and a complex biochemical network 

potentially involving metabotropic glutamate receptors, endocannabinoids, 

nitric oxide, and presynaptic NMDA receptors (Bender et al., 2006; Sjostrom et 

al., 2007; Rodriguez-Moreno and Paulsen, 2008). Furthermore, any 

experimental test of this hypothesis should take into account that plasticity of 

short-term plasticity may require de-novo protein synthesis and thus emerge 

only a few hours after induction (Huang et al., 1994). 

 Short-term synaptic depression and facilitation are caused directly or 

indirectly by the action of calcium ions within the presynaptic terminal (Zucker 

and Regehr, 2002; Mochida et al., 2008). A recent alternative is that, in some 

systems, depression and facilitation may be caused by common mechanisms 

involving Ca2+-dependent regulation of Ca2+ sensor proteins that modulate the 

presynaptic calcium channels responsible for triggering transmitter release 

(Mochida et al., 2008). This unifying and interesting hypothesis could open the 

possibility for bidirectional modulation of short-term plasticity through the 

modulation of Ca2+ sensor proteins (CaS). 

 Temporal synaptic plasticity extends traditional Hebbian plasticity into 

the temporal domain by proposing that synapses learn not only whether they 

should be strong or weak, but when they should be strong. This feature could 

play an important adaptive role in allowing synapses to tune themselves 

according to experience, in a fashion that improves temporal computations and 

the processing of time-varying stimuli. The presence of two learning rules 

operating in parallel may help explain the complexity of neocortical associative 

plasticity and why in some instances the same induction protocol can induce 

either LTD or LTP (Ismailov et al., 2004; Hardingham et al., 2007). 

Additionally, the presence of two independent learning rules governing pre- 

and postsynaptic efficacy provide a framework to understand the current 

neocortical plasticity experimental data which indicates the presence of parallel 

pre-and postsynaptic changes under control of a complex network of 
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biochemical processes (Bender et al., 2006; Sjostrom et al., 2007; Rodriguez-

Moreno and Paulsen, 2008). 
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 The brain’s ability to learn and perform complex computations relies in 

large part on the strength of the connections between neurons. Here, two well 

known properties of biological neural networks that govern synaptic strength 

were considered: long-term (Chapter 1) and short-term (Chapter 2) synaptic 

plasticity. It was shown, using a combination of experiments and computer 

simulations, how the dynamics of synaptic plasticity may determine the output 

of neurons, thus establishing a link between subcellular phenomena and 

neural computations. 

 It is not the strength of each synapse in isolation that determines what 

computation occurs, but the net interaction between many excitatory and 

inhibitory synapses. Specifically, the role of a neuron in a computation is 

determined by whether or not it fires an action potential, which depends on the 

information conveyed by excitatory and inhibitory synapses activated by a 

particular stimulus. Here, it was established how changes in excitatory and 

inhibitory synaptic strength interact to shape the behavior of a neuron, and 

thus its role in information processing. If synaptic plasticity is believed to be 

involved in learning and memory, it cannot be overstated the importance of 

understanding in detail its consequences in the output of neurons. 

 Specifically, it was shown that excitatory synaptic plasticity can control 

the threshold of neuronal I/O functions, while balanced changes in excitatory 

and inhibitory synaptic strength determine the gain. One issue that was not 

considered was the timing of the action potential. It was shown that the gain of 

a neuron’s I/O function is intimately related with the width of the integration 

window, which in turn is known to be directly related with the timing and jitter of 

the action potential (Pouille and Scanziani, 2001). Sharper I/O responses will 

have good threshold detection characteristics but on the other hand, given that 

the integration window is wide, will have later and more variable spike times. 

Shallower I/O responses are not so precise regarding the intensity of the 

eliciting stimulus, but they have the advantage that they are sensitive to a 
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broader dynamic range of inputs and in addition have earlier and more 

accurate spike times. 

 This work may contribute to the understanding of why excitation and 

inhibition are co-tuned in vivo. However, future work remains to be done to 

determine the learning rules that lead to the development of these 

microcircuits and their balanced regimes.  

 Regarding short-term synaptic plasticity, we provided specific examples 

of computations that could benefit from this ubiquitous phenomenon. In the 

simulations, however, we modeled STP as continuous variations in synaptic 

strength and, in reality, synaptic transmission is quantal and probabilistic 

(Debanne et al., 1996; Dobrunz and Stevens, 1997). Our simplification is 

reasonable if one assumes multiple release sites per neuron or a 

representation of the average activity of multiple release events. Nevertheless 

it could be interesting to attempt to model vesicle release as a probabilistic 

event on a trial by trial basis. It may help in the discrimination of spatiotemporal 

patterns, as it could allow for a broader, combinatorial, sampling of the 

parameter space (Seung, 2003).  

 In addition, it should be noted that some of the presented toy problems 

are not meant to be faithful representations of what happens in vivo; they 

should be seen simply as illustrations of the computations that could potentially 

be performed. For example, it was shown that short-term plasticity coupled 

with spike-timing dependent plasticity could lead a single neuron to perform 

interval discrimination and become interval selective. This is highly unlikely, 

and indeed it has been proposed that these type of computations are 

performed by the brain not at the single neuron level but in the high-

dimensional state of neural networks, using physiological time-varying 

properties, of which STP is an example (Karmarkar and Buonomano, 2007). 
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 Nevertheless, we presented a novel approach which consists in using 

synapse specific STP in neural network models to improve the discrimination 

of spatiotemporal patterns. Importantly we provide a learning rule that adjusts 

the magnitude and temporal profile of STP in an attempt to further optimize the 

performance of stimulus discrimination. In principle, this approach could be 

applied to more complex tasks such as speech recognition. 

 Above any particular result, it is expected that the work presented here 

will increase the awareness that understanding the brain requires that well 

characterized synaptic and cellular properties be placed in a global context. 

Specifically, it is the balance of excitation and inhibition together, as well as the 

dynamic changes in synaptic strength, that determine in a highly interactive 

and nonlinear fashion whether a neuron will fire in response to its input. It is 

expected that the work presented here is of interest to cellular 

electrophysiologists, system neuroscientists, computational neuroscientists 

and the learning and memory community in general, because all changes in 

behavior are ultimately a product of changes in the firing of neurons embedded 

within complex neural networks.  
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Introduction

Spike-timing-dependent plasticity (STDP) refers to a
form of associative synaptic plasticity in which the
temporal order of the presynaptic and postsynaptic
action potentials determines the direction of plasticity,
that is, whether synaptic depression or potentiation is
induced. In the most common form of STDP, long-
term potentiation (LTP) is induced if the presynaptic
spike precedes the postsynaptic spike (pre!post). In
contrast, if the postsynaptic spike happens before the
presynaptic spike (post!pre), then long-term depres-
sion (LTD) is induced. In addition to the order of the
pre- and postsynaptic spike, STDP is sensitive to
the interspike interval (ISI), the time elapsed between
the two spikes. In general, short intervals produce
maximal plasticity, while longer intervals produce little
or no change in synaptic strength.
STDP represents an important form of synaptic

plasticity for both experimental and computational
reasons. Experimentally, LTP and LTD have often
been induced by distinct protocols, and the relation-
ship between these protocols as well as their physio-
logical relevance has not always been clear. STDP
formalizes the conditions for the induction of both
LTP and LTD into a single learning rule. STDP is
attractive as a computational learning rule because
the direction of synaptic plasticity reflects the causal
relationship between pre- and postsynaptic activity.
If the presynaptic spike consistently precedes a post-
synaptic spike, it is likely that the former contributes
in eliciting the latter, and this contribution will
be ‘reinforced’ through potentiation. In contrast, if
the presynaptic spike consistently fires after the post-
synaptic spike, no causal relationship between pre-
and postsynaptic activity is present, and depression
will ensue.

STDP and Hebbian Plasticity

The psychologist Donald Hebb postulated that if a
presynaptic neuron ‘‘repeatedly or persistently takes
part in firing’’ a postsynaptic neuron the synapse
between them would be potentiated. This form of
plasticity has come to be known as Hebbian or asso-
ciative synaptic plasticity. However, Hebb’s original
postulate left two important issues unaddressed.
First, what is the learning rule that underlies

‘decreases’ in synaptic strength? Second, what is the
effective time window between pre- and postsynaptic
activity that will result in potentiation? STDP
addresses both these issues by establishing the specific
conditions and temporal requirements for the induc-
tion of both LTP and LTD.

In a typical protocol, a single presynaptic spike is
repetitively (e.g., every 1 s for 1min) elicited 0–25ms
before or after a postsynaptic action potential. Here,
intervals consisting of pre!post pairings will be de-
fined as ‘positive’ ISIs, while post!pre pairings will
be referred to as ‘negative’ ISIs. By examining the
direction and magnitude of plasticity over a range of
ISIs, we can plot the so-called ‘STDP function’
(change in synaptic strength vs. ISI), schematized in
Figure 1. The STDP function characterizes plasticity
at a given synapse, and represents the ‘time windows’
for the induction of both LTP (green) and LTD (red).
Because both LTP and LTD are maximal for short
intervals, differences of only a few milliseconds result
in a sharp discontinuity at �0 ms. In addition to the
amplitude and duration of both time windows, an-
other important feature of the STDP function is their
ratio. For example, under the simplified assumption
that pre- and postsynaptic spikes occur in isolation
and randomly at all possible ISIs, one can see that if
the LTP and LTDwindows are equal in area there will
be no net change in the overall synaptic strength.
However, if the LTD area is larger than its LTP coun-
terpart, random pre- and postsynaptic events will
lead to a decrease in synaptic strength toward zero.
Conversely, synaptic strength will saturate if the LTP
area is larger. While not all the experimental data are
in agreement, it is clear that in some cases the STDP
functions do exhibit larger LTD windows, and thus
are consistent with a potential role of STDP in synap-
tic competition (see below).

STDP functions similar to the one schematized in
Figure 1 have been characterized in a number of dif-
ferent preparations including excitatory neocortical
synapses, the retinotectal projection in Xenopus, and
dissociated hippocampal cell cultures. Nevertheless,
STDP is not universally observed, and thus the follow-
ing points should be noted.

1. Not all synapses seem to undergo STDP in response
to the pairing of single pre- and postsynaptic action
potentials. For example, most evidence suggests
that pairing of single pre- and postsynaptic spikes
in the Schaffer-collateral!CA1 synapse in hippo-
campal slices does not result in synaptic changes
that follow a function similar to the one depicted in
Figure 1. At these synapses, the induction of LTP
seems to require a burst of postsynaptic spikes.
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2. The shape of the STDP function is highly variable.
The peak or total area of the LTP and LTD
windows are dependent not only on the types of
synapses being examined, but on the exact induc-
tion protocol, pre- and postsynaptic cell type, and
even on the position of the synapse along the
dendritic arbor.

3. The standard STDP function is based on isolated
single pre- and postsynaptic spikes, and does not
necessarily describe synaptic plasticity in response
to more complex patterns of activity.

Linearity of STDP

What would happen if the presynaptic spike consis-
tently preceded and followed the postsynaptic spike by
ISIs that individually would contribute with the same,
but opposite, amount of LTP and LTD? If the result of
such an experiment yielded no change in the synaptic
strength, it would be said that individual ISIs were
independent and that the contributions of each of the
intervals summate linearly. In contrast, if, for instance,
LTP was observed, STDP would be nonlinear and LTP
would be dominant. Under experimental conditions, it
is possible to constrain the spike patterns to single
isolated spikes; however, in vivo data show that bursts
of spikes or complex ongoing temporal patterns of
spikes are commonly elicited in response to a given
stimuli. Thus, in order to understand the computation-
al role of STDP in vivo, it is necessary to address the
issue of linearity or nonlinearity of STDP, and define
the rules governing plasticity in response to complex
patterns of pre- and postsynaptic activity.
Experimental studies have examined the issue

of linearity by using protocols with spike triplets
(e.g., pre!post!pre or post!pre!post) or quadru-
plets. It is clear that STDP is not strictly linear; how-
ever, the precise nature of the interaction of complex
spike patterns on the LTP and LTD components of

STDP is still emerging. Empirically determining the
higher-order features of STDP is a challenging task,
because the potential arrangements of spike patterns
undergo a combinatorial explosion. Thus, a detailed
understanding of the higher-order properties of STDP
will likely rely on the elucidation of the underlying
mechanisms. Specifically, if the critical cellular, syn-
aptic, and biochemical mechanisms governing STDP
can be quantitatively characterized, it should be pos-
sible to accurately predict the direction and magni-
tude of synaptic plasticity in response to any arbitrary
patterns of pre- and postsynaptic spikes.

Mechanisms

Over the past decades, considerable emphasis has
been placed on elucidating the mechanisms under-
lying LTP and LTD; similar efforts are currently
focused on understanding the mechanisms underlying
STDP. Two critical features of STDP must be
accounted for at the mechanistic level:

1. Order. How can a synapse detect differences of a
few milliseconds regarding the temporal order of
presynaptic and postsynaptic spikes, and account
for the sharp discontinuity observed at approxi-
mately 0ms ISIs?

2. Interval. Independently of the issue of temporal
order, what are the mechanisms that allow synapses
to be sensitive to the pre!post and post!pre inter-
vals? Specifically, why does a long positive (or nega-
tive) ISI produce little LTP (or LTD), while a short
interval produce stronger LTP (or LTD)?
The mechanisms responsible for the interval sensi-

tivity of the LTP component of STDP are generally
accepted as being the same as those underlying asso-
ciative LTP. Specifically, the N-methyl-D-aspartate
(NMDA) receptors function as coincidence detectors
of pre- and postsynaptic activity. A presynaptic spike
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Figure 1 (a) A hypothetical STDP function is depicted. Positive or negative interstimulus intervals give rise to LTP or LTD, respectively.

No appreciable plasticity is induced at the synapse for large ISIs. Note the sharp discontinuity at 0, and that a longer-lasting LTDwindow is

depicted. (b) A positive ISI is defined as the time interval between an initial presynaptic spike and a consecutive postsynaptic spike, which

will lead to LTP. For negative ISIs, the postsynaptic cell fires before the presynaptic, and LTD will ensue.
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results in the release of glutamate, which binds to the
NMDA receptor. Subsequent depolarization caused
by a postsynaptic spike produces a voltage-dependent
extrusion of the Mg2þ ion that impedes Ca2þ influx
at rest. Only when both of these events occur in close
temporal proximity will the NMDA channels allow
the critical influx of Ca2þ. Since glutamate can
remain bound to the NMDA receptor for at least
tens of milliseconds, if the postsynaptic spike occurs
shortly after the presynaptic event, glutamate will still
be bound and Ca2þ influx will ensue. Thus, it appears
that the binding kinetics of the NMDA receptor can
account for the timing of the LTP window of STDP.
Specifically, at large positive ISIs, little or no gluta-
mate will remain bound to the postsynaptic NMDA
receptor resulting in little or no LTP; however, at
short intervals, maximal glutamate will be bound,
and high levels of Ca2þ influx will be achieved, thus
inducing maximal LTP. Consistently, there is robust
experimental data showing that the blockade of
NMDA receptors blocks the LTP component of
STDP. For these reasons, the properties of the
NMDA receptor likely underlie both the order and
interval sensitivity components of STDP potentiation.
It is not immediately clear how the NMDA recep-

tors could account for both the interval and order
sensitivity of the LTD window of STDP. If the post-
synaptic neuron fires before the presynaptic one, the
membrane of the postsynaptic cell should have
returned to close to its resting potential before gluta-
mate is released from the presynaptic terminal (par-
ticularly for long negative ISIs); thus, the released
glutamate should be ineffective in leading to Ca2þ

influx. It could be argued that a small degree of
Ca2þ influx occurs in response to a presynaptic action
potential even when it occurs after a postsynaptic
spike, and that this is sufficient for the induction of
LTD. This argument, however, leads to a scenario in
which presynaptic stimulation by itself could induce
LTD (which is generally not the case).
Conflicting results have been reported regarding

the ability of NMDA antagonists to block the LTD
component of STDP; however, at least in some pre-
parations, it seems clear that postsynaptic NMDA
receptors are not involved in the induction of LTD
in response to post!pre pairings. If NMDA receptors
are not necessary for detecting the order and interval
of negative ISIs, a second coincidence detector would
be required, that is, the presence of a postsynaptic
followed by a presynaptic spike must be detected by
another biochemical pathway that triggers the induc-
tion of LTD. This two-coincidence detector model of
STDP assumes the presence of a second biochemical
locus that is capable of detecting the order and inter-
val of post!pre spikes. One candidate mechanism

for the second coincidence detector is the meta-
botropic glutamate receptor pathway. In this model,
post!pre spiking leads to a low-level Ca2þ rise enter-
ing through voltage-dependent Ca2þ channels
(VDCCs) that would prime the activation of the
G-protein-mediated cascade, which would in turn be
triggered by the presynaptic action potential via
metabotropic glutamate receptors.

Computational Relevance and Correlates
of STDP In Vivo

Competition

In general, computational models of cortical plastici-
ty require two critical components: (1) an associative
form of synaptic plasticity that allows correlated
inputs to be strengthened and (2) competition,
which is required to prevent neurons from responding
to multiple sets of correlated patterns (stimuli). In
contrast to other models, it has been proposed that
STDP may be able to satisfy both these conditions
with a single learning rule.

In its simplest sense, in STDP, competition arises
between synapses that fire before and after a postsyn-
aptic spike. Synapses from presynaptic neurons that
fire before the postsynaptic action potential will be
strengthened and take control of the postsynaptic
behavior, while the synapses from neurons that fire
later will be weakened. A competitive role for STDP
predicts that the area of the LTD window should be
larger than that of LTP. As mentioned above, this
insures that in response to random background activ-
ity the net synaptic change is negative. While STDP
can clearly implement competition between synapses,
it should be stressed that the competition is dependent
on the temporal relationship between the stimuli,
that is, for different sets of correlated inputs to com-
pete they must occur in close temporal proximity.
If the two stimuli are separated by an intervals well
outside the STDP window, there can be no interaction
(and thus no competition) between stimuli over
these time frames (note that LTD produced by spon-
taneous activity would be common to both stimuli).
Thus, while STDP does provide a potential mecha-
nism for competition, it does not by itself provide a
universal one.

Computational Relevance and Neural Correlates
of STDP In Vivo

In vitro STDP is generally studied by directly eliciting
action potentials in the pre- and postsynaptic neu-
rons. However, a number of studies have examined
the putative in vivo correlates of STDP in the context
of external stimuli. The order sensitivity of STDP
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predicts that if two stimuli, A and B, are reliably
presented in the order A!B and in close temporal
proximity, a receptive field asymmetry should develop.
Specifically, responses to A should increase and
those to B decrease. Indeed, several experimental
studies have measured stimulus-induced shifts in
receptive fields in response to exposure to ordered
stimuli. These include experiments in which the sti-
muli A and B corresponded to orientation of bars of
light, visual position, or spatial receptive (i.e., the
receptive fields of hippocampal place cells). Taken
together, these results support the notion that STDP
operates in vivo, and plays an important role in shap-
ing neural responses.
While STDP likely contributes to the order-

sensitive shifts in receptive field properties, it does
not generate order selectivity. In the above example,
consistent pairing of stimuli A!B results in strength-
ening of synapses driven by stimulus A and weaken-
ing of those from B, but nevertheless the neuronal
response to A!B should be approximately equal to
the response to B!A. Thus, the order sensitivity of
STDP does not by itself generate order-selective neu-
ronal responses.
Experience-dependent changes in the receptive fields

of cortical neurons have also been interpreted in the
context of STDP. For example, plasticity can be
induced by cutting all but one whisker of the mystacial
pad of a rat. In the barrel of a cut whisker, two changes
are observed: a decreased response to the normally
dominant whisker and an increased response to the
spared whisker. It has been proposed that STDP can
contribute to this phenomenon. Specifically, the
decreased response of layer II/III pyramidal neurons
to the previously dominant whisker appears to be due
to LTD of synapses from layer IV. It has been shown
that this LTD is consistent with STDP and the order
of activation of these neurons. Specifically, in the
deprived barrel, L-II/III pyramidal neurons may fire
before the L-IV neurons, resulting in LTD.

Timing

STDP is highly sensitive to the interval between the
pre- and postsynaptic spikes; however, the role of
STDP in generating timed responses remains unclear.
If a presynaptic spike consistently occurs 25ms
before the postsynaptic spike, the synaptic strength
between the two neurons will increase. Assuming that
this potentiation can influence cell firing, the postsyn-
aptic neuron will spike at progressively shorter laten-
cies, until the synaptic strength saturates or the interval
decreases toward the monosynaptic delay latency.
Thus, the original temporal interval used in the train-
ing is not effectively reproduced. As a result, STDP

maintains the order of activation and favors early
responses, but the patterns produced after STDP do
not capture the temporal structure of the training sti-
muli. Nevertheless, STDP could take part in setting up
specific spatiotemporal patterns of network activity
that could play a role in temporal processing.

See also: Adult Cortical Plasticity; Developmental Synaptic

Plasticity: LTP, LTD, and Synapse Formation and

Elimination; Hebbian Plasticity; Long-Term Depression:

Cerebellum; Long-Term Depression (LTD): Metabotropic

Glutamate Receptor (mGluR) and NMDAR-Dependent

Forms; Long-TermPotentiation (LTP):NMDAReceptorRole;

Long-Term Potentiation and Long-Term Depression in

Experience-Dependent Plasticity; Long-Term Potentiation

(LTP); Metabotropic Glutamate Receptors (mGluRs):

Functions; Spike-Timing-Dependent Plasticity Models;

Synaptic Plasticity: Learning and Memory in Normal Aging.
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Summary 

 A large body of data has focused on the transmission of information 

from one neuron to another; however, little is known about the flow of 

information through polysynaptic chains of recurrently connected neurons. 

Commonly, studies of neuronal dynamics have been performed in cultures that 

grow on multi-electrode arrays which, by definition, do not maintain the 

physiological network structure (Beggs and Plenz, 2003; Eytan et al., 2003; 

van Pelt et al., 2005). Additionally, these types of studies usually rely on the 

recording of the average activity of many cells (local field potentials) and often 

analyze activity patterns in the scale of seconds to hours overlooking events 

that may occur at a finer and cortically relevant time scale. 

 Within the cortical network in vitro model systems, organotypic slices 

growing on top of a porous membrane (Stoppini et al., 1991) provide a valid 

representation of the cortical in vivo system, as they preserve most of the 

native anatomical cortical structure in a thick 3D organization (which 

dissociated or roller tube neuronal cultures do not) and develop endogenous 

spontaneous activity (acute slices show little or no spontaneous activity) 

(Johnson and Buonomano, 2007). It has been shown that in this system the 

development of the cortical anatomy, structure and physiology resembles 

satisfactorily the in vivo development (Gahwiler et al., 1997; De Simoni et al., 

2003). 

 Here, it was attempted to characterize the propagation of activity in 

cortical circuits in vitro, by using multi-electrode extracellular recordings to 

simultaneously record from tens of cells individually. While the preliminary data 

seemed promising, most often the slices would develop "bursts" of 

synchronized neuronal activity which rendered the sorting of individual units 

impractical. So far there may still be no reports in the literature that analyze the 

dynamics of multiple single-units in organotypic slices. 
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 The global activity patterns that these organotypic cultures develop 

were characterized, and it is shown that the structure of these patterns is not 

hardwired as they can be modified developmentally through pharmacological 

manipulations. 
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Methods 

 

Organotypic slice preparation  

 Organotypic slices were prepared using the interface method (Stoppini 

et al., 1991; Buonomano, 2003). Sprague Dawley rats (7 d of age) were 

anesthetized with isoflurane and decapitated. The brain was removed and 

placed in chilled cutting media. Coronal slices (400 μm thickness) containing 

primary somatosensory or auditory cortex were cut using a vibratome and 

placed on Millipore (Billerica, MA) filters (MillicellCM) with 1 ml of culture 

media. Culture media was changed 1 and 24 h after cutting and every 2–3 d 

thereafter. Cutting media consisted of Eagle’s minimum essential medium 

(EMEM; catalog number 15-010; MediaTech, Herndon, VA) plus 3 mM MgCl2, 

10 mM glucose, 25 mM HEPES, and 10 mM Tris base. Culture media 

consisted of EMEM plus 4 mM glutamine, 0.6 mM CaCl2, 1.85 mM MgSO4, 30 

mM glucose, 30 mM HEPES, 0.5mM ascorbic acid, 20% horse serum, 10 U/L 

penicillin, and 10 g/L streptomycin. In some experiments the total Mg2+ 

concentration in the culture media was 10 mM. Slices were incubated in 5% 

CO2 at 35°C and used while 3-week old. 

Electrophysiology 

 Experiments were performed in “culture media artificial CSF” (CM-

ACSF) composed of (in mM) 125 NaCl, 5.1 KCl, 2.6 MgSO4, 26.1 NaHCO3, 1 

NaH2PO4, 25 glucose, and 2.6 CaCl2. CM-ACSF matches the concentration of 

the ions in the culture media and differs from “classical” ACSF in KCl (2.5 mM) 

and MgSO4 (2 mM) (Stoppini et al., 1991). The internal solution for whole-cell 

recordings contained (in mM) 100 K-gluconate, 20 KCl, 4 ATP-Mg, 10 

phospho-creatine, 0.03 GTP-Na, and 10 HEPES and was adjusted to pH 7.3 
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and 300 mOsm. Intracellular recordings were made from regular-spiking, 

supragranular pyramidal neurons (Dong and Buonomano, 2005) located ~500 

μm from the external surface of the cortex using infrared differential 

interference contrast visualization. Intracellular data was acquired at 10 kHz 

and low passed at 1.5 kHz. 

 Extracellular activity was acquired with a 10-channel Dagan Ex-1000 

amplifier (Dagan Co, MN), with a FHC 4-electrode matrix (platinum-iridium, 

spacing between electrodes 250 μm FHC, Bowdoin, ME) and wires in the 

stereotrode configuration (wires twisted in pairs). By bundling the electrodes in 

pairs, each wire in a given pair will record similar, but slightly different, 

deviations in the local potential caused by neuronal activity. The small 

differences result in a different waveform recorded by each electrode in the 

stereotrode, and this effect is used to increase the accuracy of the spike 

sorting. Stereotrodes were made by twisting two platinum/iridium wires 

(Kanthal, diameter: 0.0007’’; coating: PAC) and evenly heating them with a 

heat gun, until the coating is partially melted which confers some stiffness, and 

then fitted into a polyimide tube (Phelps Dodge, ID: 0.0044’’, OD: 0.0060’’). 

One of the ends of the bundle was then slightly burned, to fully remove the 

PAC coating, and each individual wire was soldered to the headstage adaptor. 

The other end of the bundle, which will penetrate the slice, was cut at an angle 

with a sharp scissor and placed in gold plating solution (Sifco Selectron), 

where current pulses were applied in order to obtain a final impedance of 

approximately 200 Kohm through each of the wires. The bundle was finally 

mounted in a holder and connected to the amplifier headstage. The signal was 

amplified 10.000x, sampled at 10-25kHz and bandpassed between 300Hz – 

3kHz to allow for the isolation of the single unit responses. The data 

acquisition and analysis were done with custom-written MATLAB software, 

except for the spike sorting procedure where we used MClust (MClust-3.3, A. 

D. Redish et al.) to cluster putative neuronal single units. 
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 When necessary, slices were stimulated with bipolar electrodes (2-

electrode matrix, platinum-iridium, 150 μm spacing, FHC, Bowdoin, ME) 

placed in LII/III-IV and single bipolar ±100 μs pulses (up to 150 μA) were 

applied every 10-20 s to elicit synaptic responses.  

Quantification of spontaneous activity 

 For each slice, a minimum of 5 min of spontaneous activity was 

recorded. Spontaneous events were defined as those in which the 10 point 

moving average of the sum of the voltage potential of the 10 recording 

electrodes crossed a threshold of 30 μV. Extracellular events separated by 

less than 20 ms were merged.  
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Results 

 

Multi-Unit Extracellular Recordings 

 A single extracellular electrode can potentially record the activity of 

many (up to ~10) different neurons and most of the times it is desirable to 

cluster the spike waveforms in an attempt to sort the spikes that belong to 

each neuron. Essentially, spike sorting groups the spike waveforms by 

similarity and the underlying assumption is that similar waveforms should 

relate to the same neuron. 

 

 

Figure 1 – Example of an extracellular recording (one electrode only). 
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Figure 2 – Sample waveforms from the trace above, which were colored according to 

similarity. 

  

 In reality it is possible that similar waveforms belong to different 

neurons, if they are approximately equidistant from the recording electrode. 

The accuracy of detection can thus be improved by using bundles of two 

electrodes (stereotrodes) and performing the unit identification taking in 

consideration the waveforms recorded by both electrodes simultaneously. 

Figure 3 depicts the clustering results of one such sorting procedure where 4 

different putative units were identified by the clustering algorithm (see 

Methods). 
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Figure 3 – Clustering results from waveforms recorded from 2 electrodes in the stereotrode 

configuration. Each point depicts a pair of waveforms (one from each electrode) and the 

different colors depict putative individual units. 

  

 Once the units have been isolated it is possible to know when each 

neuron fired action potentials, and this revealed very diverse neuronal 

behavior in response to extracellular stimulation (Figure 4). 

 

Figure 4 – Diversity of neuronal responses. Sample histograms showing the cumulative 

activity of 3 putatively different units following a stimulation pulse (at 500 ms). The unit on 

the left fires preferentially ~30-50 ms after the pulse and the unit on the center ~130 ms 

after the pulse. The unit on the right has a much higher firing rate but does not show any 

clear peak (x-axis: Time (ms), bin size: 20 ms; y-axis: Count). 
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 One of the questions that could be asked is whether neuronal activity 

propagates randomly through these recurrent neuronal networks or whether 

there is some degree of re-activation of the polysynaptic pathways. Figure 5 

depicts a cross-correlation of the spike times of the first two units shown in 

Figure 4. This data suggests that unit 2 tends to fire 70 ms after unit 1, even 

though both cells are spatially close to each other (both located in the vicinity 

of the extracellular recording electrode). 

 

Figure 5 – Cross-correlation of the spike times from two first units shown above. There is a 

clear peak at ~70ms which suggests that unit 2 tends to fire 70 ms after unit 1.  

 

Dynamics of Organotypic Networks: Synchronized Bursts 

 ‘Active’ cortical processing is believed to rely on desynchronized, 

sparse and transient network activity (Durstewitz and Deco, 2008) and the 

initial expectations were to record extracellularly the activity of multiple 

individual neurons. Instead, it was observed that organotypic slices develop 

mostly long periods of silent network activity followed by short episodes when 

there is a “burst” of correlated activity across the whole slice (lasting from tens 

to hundreds milliseconds) (Figure 6).  
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Figure 6 – Example of a 2-second extracellular multi-unit recording. The four uppermost 

voltage traces correspond to activity recorded using single electrodes from the FHC matrix. 

The six lowermost traces reflect activity recorded from the electrodes bundled in pairs 

(stereotrodes). Despite the fact that the electrodes were positioned in different cortical 

locations, the neuronal activity arises and terminates nearly simultaneously in 9 out of the 

10 electrodes. The red boxes on top indicate the periods of what was qualified as a “burst” 

of activity (see bellow). 

 

 This highly synchronized activity profile renders the task of sorting 

spikes of single cells unfeasible because if multiple neurons are firing action 

potentials simultaneously the effects in the extracellular potential will summate 

which renders the classification of individual units unpractical (Figure 7). 
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Figure 7 – Example of the MClust cluster cutting window. The recorded waveforms form a 

continuum and the isolation of individual cluster is ambiguous.. 

 

 Nevertheless, neuronal activity clusters into short lived, well defined 

periods, suggesting that there are rules in place that shape cortical networks to 

respond in such manner. Furthermore, it could be insightful to understand why 

and how the network spontaneously evolves onto this burst mode in the 

incubator as, given that the network is devoid of external inputs, it might 

unravel the “default” intrinsic rules that regulate cortical activity development. 

Hence, these activity patterns were characterized and quantified. 

 A “burst” was defined as the period during which the summation of 

neuronal activity across all the electrodes is above a pre-determined threshold 

(Methods). Once bursts were detected the following properties were quantified: 

- Burst Duration – the time elapsed between the onset of a burst and its 

end; 

- Inter-burst Interval – the period between the end of a burst and the 

onset of the next one; 
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- Percentage ON Time – the relative time the cortical network spends in 

the burst mode; 

- Burst Rate – the number of bursts per unit time; 

 

 

Figure 8 – Same data as before, displaying the properties that were quantified for each 

slice. The top line depicts a moving average of the sum of the 10 channels. 

 These patterns of activity seem to be independent of the recording 

electrode position and occur slice wide. The results of these experiments are 

summarized in Figure 9. 
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Figure 9 – Group data from slices cultured in standard conditions. 

 These results suggest that in an organotypic slice, deprived of any 

external input, the cortical network spontaneously evolves into a mode in 

which there are bursts of highly synchronized activity that last approximately 

about 120 ms, re-occurring every 10-15 s. Next, we asked the question: is it 

possible to perturb the development of these bursts? 

 

Pharmacological Perturbation of the Development of Cortical 
Bursts 

 Several forms of long-term synaptic plasticity depend on calcium entry 

through glutamatergic NMDA channels (Malenka and Bear, 2004; Caporale 

and Dan, 2008). However, when glutamate binds and the channel opens there 

is still a magnesium ion blocking the pore, the extrusion of which is voltage 
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sensitive and required for calcium to flow into the cell (Nowak et al., 1984). 

Magnesium is an ion that is present in the culture media under normal 

conditions (2.6 mM) but increasing its concentration should interfere with the 

normal functioning of NMDA channels. Hence, in an attempt to perturb the 

development of the neural dynamics, through putative perturbations of long-

term synaptic plasticity, the magnesium concentration in the culture media was 

increased to a total of 10 mM for two days prior the recording session. 

 In agreement with the hypothesis above, significant changes in the 

profile of the network activity were observed (Figure 10). High magnesium in 

the culture medium seems to lead to a “breakdown” of the bursts: neuronal 

activity gets shorter in duration but more frequent. Interestingly, however, it 

was not possible to find statistically significant changes in the average burst 

ON time, even though there is a visible trend towards a difference. The 

existence of clear changes in the bursts characteristics paralleled by an overall 

maintenance of the total active time may suggest the existence of homeostatic 

mechanisms that ensure that the overall network activity is kept within 

approximately constant levels. 
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Figure 10 – Comparison of the burst properties between slices grown under standard 

culture conditions and cultures grown in high Mg2+ for two days prior recording. The black 

bars are the same as presented in Figure 9. p-values are indicated (t-test). 

 While more experiments would have to be performed to elucidate the 

mechanisms responsible for these changes, these results establish that the 

global patterns of activity in cortical networks are modifiable. 

 The experiments above analyzed exclusively extracellular data but, 

what is the neurons’ subthreshold behavior, during bursts and between bursts? 

 

 

 



| Appendix B 

153 

Intracellular Recordings in Organotypic Slices 

 Presented bellow are isolated and non-quantitated examples of some 

phenomena observed in these slices. 

 

Figure 11 – Simultaneous extracellular and intracellular recordings from a slice grown in 

control conditions. During the extracellular bursts the neuron’s resting membrane potential 

is depolarized and fires action potentials. Between bursts there are no action potentials, 

even though the membrane is depolarized for hundreds of milliseconds. 

 

 

Figure 12 – The same intracellular recording as above but with several overlapped 

intracellular voltage traces. The traces were aligned at the rising phase of the PSP at -45 

mV. The black traces depict mean (thick trace) ± SEM (thin traces) of the subthreshold 

responses (colored red). This example suggests that the overall subthreshold profile may 

repeat multiple times. 
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Figure 13 – Same procedure as in Figure 11 but from a slice cultured in 10 mM 

magnesium, for two days prior to recording. The extracellular bursts are shorter in duration 

and the intracellular response is remarkably shorter too. 

 

 

Figure 14 – Simultaneous intracellular paired recordings from two cells in a control cultured 

slice. The arrows point to events in the voltage trace that appear to have similar onset 

times, which may suggest some degree of correlation of subthreshold responses in 

different cells (Buonomano 2000). 
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Discussion 

 The original goal of simultaneously recording from tens of multiple 

single units was not achieved satisfactorily due to the development of 

synchronized extracellular burst activity, which does not allow the resolution of 

individual spike waveforms. In principle it could be possible to increase the 

impedance of the recording electrodes to record from less neurons, but given 

that active cortical processing may rely on desynchronized activity this goal 

was not pursuit. 

 Nevertheless, the work presented here characterized the global 

patterns of cortical activity developed in organotypic slices. The results shown 

with the manipulation of the culture media (increased Mg2+) are a proof of 

principle that some statistics of spontaneous activity patterns are plastic and 

can be modified. It is interesting that the overall level of activity was not altered 

significantly, possibly supporting the existence of active mechanisms of 

homeostatic plasticity. However, while the present work showed how the 

composition of the culture media influences the development of spontaneous 

activity patterns, the mechanisms through which it occurs are still unknown. If 

these results are to be pursuit further it would be important to directly 

determine the role of NMDA receptors, if any. Their involvement is speculative 

at the present, but they could be a likely candidate given their dependence on 

magnesium.  

 As a final remark, it is intriguing that while the organotypic protocol is 

well established, the ionic composition of the culture media is different from 

‘standard’ ACSF (and it has just been shown how the media composition is 

critical for development). It could be worth to culture organotypic slices in 

media that mimics the physiological cerebro-spinal fluid and just see if the 

development is different from the current conditions. In addition, it is known 

that chronic stimulation of organotypic slices decreases overall levels of 
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spontaneous activity (Johnson and Buonomano, 2007), and that random 

electrical stimulation of cortical networks results in overall desynchronization of 

neuronal activity (Wagenaar et al., 2005). Possibly, a physiological culture 

media coupled with external stimulation could yield desynchronized sparse 

activity that would better mimic active cortical processing, allowing extracellular 

recordings to resolve tens of single units and making possible an analysis of 

cortical processing and information propagation at the level of many single 

cells. 
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