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Abstract 

 

Over the past few decades, policy-makers have defined new instruments to address coastal 

ecosystem degradation. Emerging coastal management frameworks highlight the use of the 

best available knowledge about the ecosystem to manage coastal resources and maintain 

ecosystem’s services. Progress is required, however, in translating data into useful knowledge 

for environmental problem solving. This thesis aims to contribute to research assessing 

changes in coastal ecosystems and benefits generated due to management actions (or to the 

lack thereof). The overall objectives are to assess the ecological and economic impacts of 

existing management programmes, as well as future response scenarios and to translate the 

outcomes into useful information for managers. 

To address these objectives, three different approaches were developed:  

 A multilayered ecosystem model  

A multilayered ecosystem model was developed to simulate management scenarios that 

account for the cumulative impacts of multiple uses of coastal zones. This modelling field is 

still at an early stage of development and is crucial, for instance, to simulate the impacts of 

aquaculture activities on the ecosystem, accounting for multiple farms and their interactions 

with other coastal activities. The multilayered ecosystem model is applied in this thesis to test 

scenarios designed to improve water quality and manage aquaculture. 

 An ecological-economic assessment methodology (∆DPSIR approach) 

The Differential Drivers-Pressure-State-Impact-Response (∆DPSIR) approach further 

develops the integrated approach by providing an explicit link between ecological and 

economic information related to the use and management of coastal ecosystems. Furthermore, 

the ∆DPSIR approach provides a framework to synthesise scientific data into useful 

information for the evaluation of previously adopted policies and future response scenarios. 

The ∆DPSIR application is tested using different datasets and scales of analysis, including: (i) 

assessment of the ecological-economic impacts of the scenarios at the waterbody/watershed 

level, using the multilayered ecosystem model outputs, and (ii) evaluation of the ecological-

economic effects of aquaculture options at the individual aquaculture level, using data from 

an abalone farm. These are two important scale of analysis for the development of an 

ecosystem approach to aquaculture. 
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 A dynamic ecological-economic model (MARKET model) 

One of the missing links in ecosystem modelling is with economics. The MARKET model 

was developed to simulate the feedbacks between the ecological-economic components of 

aquaculture production. This model was applied to simulate shellfish production in a given 

ecosystem under different assumptions for price and income growth rates and the maximum 

available area for cultivation. Further application of the MARKET model at a wider scale 

might be useful for understanding the ecological and economic limitations on global 

aquaculture production. 

This integrated ecological-economic modelling and assessment approach can be further 

applied to address new coastal management issues, such as coastal vulnerability to natural 

catastrophes. It can also support implementation of current legislation and policies, such as 

the EU Integrated Coastal Zone Management recommendation or the development of River 

Basin Management Plans following the EU Water Framework Directive requirements. On the 

other hand, the approach can address recurring coastal management needs, such as the 

assessment of the outcomes of past or on-going coastal management plans worldwide, in 

order to detect symptoms of the overuse and misuse of coastal ecosystems. 
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Resumo 

Ao longo das últimas décadas, os decisores políticos têm definido novos instrumentos para 

combater a degradação dos ecossistemas costeiros. Abordagens emergentes de gestão de 

ecossistemas costeiros salientam o uso do melhor conhecimento disponível sobre o 

ecossistema para a gestão dos recursos costeiros. Desenvolvimentos são necessários para 

sintetizar dados em informação relevante para a resolução de problemas ambientais. Esta tese 

visa contribuir para a investigação sobre a avaliação de alterações nos ecossistemas costeiros 

e nos benefícios que estes geram devido a medidas de gestão (ou a falta delas). Os objectivos 

gerais são avaliar os impactes ecológicos e económicos de medidas de gestão adoptadas 

anteriormente, bem como, de cenários de resposta; e traduzir os resultados em informações 

úteis para os gestores.  

Para atingir os objectivos definidos foram desenvolvidas três metodologias:  

 Um modelo de ecossistema multicamadas 

O modelo de ecossistema multicamadas é desenvolvido para simular cenários de gestão que 

integram os impactes cumulativos dos múltiplos usos das zonas costeiras. Esta é uma área da 

modelação do ecossistema ainda numa fase inicial de desenvolvimento e crucial para, por 

exemplo, simular os impactos das actividades aquícolas no ecossistema de forma a incluir a 

interacção entre diversas unidades de produção e com outras actividades costeiras. O modelo 

de ecossistema multicamadas é aplicado para testar cenários concebidos para melhorar a 

qualidade da água e gestão da aquacultura. 

 

 Uma metodologia de avaliação ecológica-económica (∆DPSIR) 

A metodologia ‘Differential Drivers-Pressure-State-Impact-Response’ (∆DPSIR) adiciona 

uma vantagem à abordagem integrada através da ligação explícita entre informação ecológica 

e económica relacionada com o uso e gestão de sistemas costeiros. Adicionalmente, o 

∆DPSIR fornece uma abordagem para sintetizar os dados científicos em informações 

relevantes para gestores sobre a avaliação de políticas adoptadas no passado e de cenários 

para o futuro. A aplicação do ∆DPSIR é testada usando diferentes tipos de dados e escalas de 

análise, incluindo: (i) avaliação do impacto ecológico-económico dos cenários à escala da 

massa de água/bacia hidrográfica usando os resultados do modelo multicamadas, e (ii) 

avaliação dos efeitos ecológico-económicos de diferentes opções da aquacultura a nível de 

uma unidade de produção individual usando os dados de uma aquacultura de abalone. Estas 
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são duas escalas de análise importantes para o desenvolvimento de uma abordagem de 

ecossistema para a aquacultura.  

 

 Um modelo ecológico-económico dinâmico (MARKET) 

Uma das limitações dos modelos de ecossistema é a ligação com a economia. O modelo 

MARKET foi desenvolvido para simular o feedback entre as componentes ecológica e 

económica da produção aquícola. Foi aplicado para simular a produção de bivalves num 

determinado ecossistema, considerando diferentes pressupostos para as taxas de crescimento 

de preço e de salários, e para a área máxima disponível para o cultivo. A aplicação do modelo 

MARKET à escala mais ampla pode ser útil para compreender as limitações ecológicas e 

económicas da produção de aquacultura a nível mundial.  

Esta abordagem integrada ecológico-económica de modelação e avaliação pode ser utilizada 

para responder a novas questões de gestão das zonas costeiras; tais como a vulnerabilidade a 

catástrofes naturais. Pode também ser usada para a implementação de legislação e políticas, 

tais como a recomendação Europeia sobre a Gestão Integrada das Zonas Costeira, ou o 

desenvolvimento dos Planos de Gestão de Bacia Hidrográfica conforme indicado na Directiva 

Quadro da Água. Por outro lado, a abordagem desenvolvida pode também responder a 

necessidades recorrentes dos gestores, nomeadamente avaliar os resultados de planos de 

gestão costeira já finalizados ou a decorrer, com o intuito de detectar os sintomas visíveis de 

abuso e mau uso dos ecossistemas costeiros.  
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Symbols 
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Simple nutrient mass balance model 
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Chapter 1.  Introduction 

This chapter presents the frame of reference for the work developed and provides an overview 

of the thesis. The first part reviews the coastal management challenge and the role of science 

in addressing emerging coastal zone problems. The second part describes the thesis 

objectives, presents the study sites used to develop the work and outlines the thesis structure. 

 



Chapter 1,  INTRODUCTION 

 2

1.1 Background 

1.1.1 Coastal management challenge: addressing emerging coastal zone problems  

Coastal zones comprise important ecosystems (MA, 2005), which generate goods and 

services with a high economic value (Ledoux and Turner, 2002). As a result, a strip 100 km 

wide along the coastline contains nearly 40% of the world population and 61% of the gross 

world product (MA, 2005). Anthropogenic pressures increasingly compromise, directly and 

indirectly, the important benefits generated by coastal systems (MA, 2005; Costanza and 

Farley, 2007). The main human threats to coastal areas include: loss of natural habitats, loss in 

biodiversity and cultural diversity, decline in water quality, vulnerability to global changes 

such as predicted sea level rise, increased negative impacts of coastal disasters, the diversity 

of human activities, competition for space and seasonal variations in pressure (Ehler et al., 

1997; Fabbri, 1998; Humphrey et al., 2000; MA, 2005; Costanza and Farley, 2007). 

Therefore, sustainable development of coastal zones constitutes a challenge for stakeholders 

with a role in coastal management.  

Integrated Coastal Zone Management (ICZM) 

Policy-makers worldwide have defined policy and legislative instruments to address the 

emerging coastal zone problems (Clark, 1996; Borja, 2006; Ducrotoy and Elliott, 2006). One 

of the more widely known and applied is the Integrated Coastal Zone Management (ICZM) 

approach. ICZM is defined as a dynamic management process that brings together the human 

and the ecological dimensions to promote the sustainable use, development and protection of 

coastal zones (Clark, 1996; Olsen, 2003; Forst, 2009). Managers worldwide have adopted 

ICZM within different contexts: 1) to address specific environmental problems emerged in 

coastal zones or to manage coastal vulnerability to natural hazards and climate change (Clark, 

1996; Krishnamurthy et al., 2008); 2) either at national or local levels, as exemplified by 

NRMMC (2006) and Lewis III et al. (1999), respectively; 3) following a top-down approach 

or based on a community-based initiative (Cicin-Sain and Knecht, 1998; Lewis III, et al., 

1999; Belfiore, 2000; Kearney et al., 2007). Table 1.1 presents an overview of worldwide 

coastal management initiatives. Although such synthesis is reductionist about coastal 

management efforts, it illustrates that ICZM initiatives appeared about four decades ago and 

that some countries are currently adopting new programmes.  
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Table 1.1. Overview of major ICZM initiatives worldwide. 
 First initiatives Recent initiatives 
 Date Programme Date Programme 
Australia   2003 Framework for a National Cooperative 

Approach to ICZM 
South 
Australia 

1972 Coast Protection Act 
 

1994
2000

Environ. Protection (Marine) Policy  
Environ. Protection (Water Quality) Policy  

New South 
Wales 

1979 Coastal Protection Act   

Queensland   1995 Coastal Protection and Management Act 
Tasmania   1996 State Coastal Policy  
Victoria   1995 Coastal Management Act 1995 
Western 
Australia 

  2001 CZM Policy 

Brazil 1988 Law 7661, establishes the 
National CZM Plan 

2004 Decree 5300, regulates the National CZM 
Plan and other instruments for ICZM 

Canada   1991
1997
2002

Atlantic Coastal Action Program (ACAP) 
Oceans Act 
Oceans Strategy 

EU   1996 Demonstration programme on ICZM 
   2000 Water Framework Directive (2000/60/EC) 
   2002 ICZM Recommendation 2002/413/EC 

For member states to adopt a National 
strategy on ICZM.  

   2008 Marine Strategy Framework Directive 
(2008/56/EC) 

Baltic Sea   2003
2007

HELCOM ICZM Recommendation 24/10  
The HELCOM Baltic Sea Action Plan 

France 1975 Coastal Conservancy (Law of 
10 July) 

2002 Reform of the Coastal Conservancy's mission 
(law of 27 February) 

1983 Marine Area Zoning Plan 
(SMVM) (law of 7 January) 

1986 Planning, protection, and 
development of Coastal Space 

IOC 
member 
states 

  1997 Integrated Coastal Area Management (ICAM) 
programme adopted by the Intergovernmental 
Oceanographic Commission (IOC) 

New 
Zealand 

  1994
2008

Coastal Policy Statement (NZCPS) 
Proposed review of NZCPS 

USA 1972 
1987 

CZM Act 
National Estuary Program 
(NEP), established by the 
Water Quality Act of 1987 

 

 

The early USA concerted coastal management efforts are stable and in a mature stage 

(Hershman et al., 1999; Hale, 2000; Gibson, 2003). Hershman et al. (1999) and Humphrey 

(2000) describe the key features for its success and its shortcomings. Coastal management 
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programmes on a European scale are more recent (Humphrey et al., 2000; Shipman and 

Stojanovic, 2007). The various EU policies and directives emerged as complementary 

instruments the most important being (Borja, 2006; Ducrotoy and Elliott, 2006; 2008): the 

Water Framework Directive (WFD) of 2000, the ICZM recommendation of 2002 and the 

Marine Strategy Framework Directive (MSFD) of 2008. Table 1.1 shows only a brief sample 

of the programmes adopted within EU. The individual EU member states have different 

approaches to coastal management with a variety and complexity of coastal management 

initiatives and legislations (Gibson, 2003; Rupprecht Consult and IOI, 2006; Shipman and 

Stojanovic 2007). For detailed coastal management initiatives within and across member 

states refer to van Alphen (1995), Barragán (2003), Eremina and Stetsko (2003), Pickaver 

(2003), Veloso-Gomes et al. (2003), Anker et al. (2004), Taveira Pinto and Paskoff (2004), 

Astron (2005), Enemark (2005), Smith and Potts (2005), DOENI (2006), Rupprecht Consult 

and IOI (2006), WAG (2007), Deboudt et al. (2008), DEFRA (2008). Clark (1996), Kay et al. 

(1997), Cicin-Sain and Knecht (1998), Hale (2000) and Krishnamurthy et al. (2008) provide 

detailed ICZM case studies developed worldwide. 

For individual ICZM programmes to evolve, comprehensive evaluations are required. It is 

important that ICZM program output evaluation is combined with ‘state-of-the-coast’ 

information to show, for instance, whether new program goals may be needed and to allow an 

ICZM program to evolve to an improved version (Olsen et al., 1997; Hershman et al., 1999; 

Stojanovic et al., 2004; Billé, 2007). However, most of the evaluation efforts focus on 

measuring the evolution of the ICZM process outputs (Olsen, 2003; Pickaver et al., 2004; 

Stojanovic et al., 2004; Billé, 2007). Worldwide and independently of maturity of the ICZM 

process, there is a lack of measurements of its effectiveness, i.e. of the consequent changes in 

the state of the coastal systems, its resources and associated benefits (Knecht et al., 1996, 

1997; Kay et al., 1997; Olsen et al., 1997; Hershman et al., 1999; Humphrey et al., 2000; 

Billé, 2007; McFadden, 2007). Table 1.2 presents a synthesis of the few studies that evaluated 

the effectiveness of ICZM programmes. Among other reasons, the difficulty to select criteria 

to measure performance of the system stands out. The difficulty stems from (i) unclear set of 

objectives of ICZM, (ii) complexity of coastal ecosystems, and (iii) data requirements 

(Burbridge, 1997; Stojanovic et al., 2004). Problems for defining a specific set of indicators 

for all coastal systems are greater at the national or broader level due to different 

susceptibility and resilience of ecosystems, pressures these are subject and issues to be tackled 

(Pickaver et al., 2004). The diversity of coastal systems and of the pressures on them require 

flexibility in the development and implementation of ICZM programmes, which on the other 

hand call for flexible assessment approaches (Humphrey et al., 2000; Olsen, 2003).  
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Table 1.2. Examples of evaluation of the effectiveness of ICZM programmes. 

Programme / Domain Description Source 

Perceptions of the 
performance of 24 state 
CZM programmes in the 
USA, undertaken in 
1993-1995. 

Evaluation was based on a survey about perceived 
performance on four major coastal management issues: (1) 
protection of coastal resources, (2) management of coastal 
development, (3) improved public access, and (4) reduction 
of losses due to coastal hazards. 

Knecht et al., 
1996 

USA National CZM 
effectiveness study, 
undertaken in 1995-1997 

Objective is to determine success of 5 of the core 
objectives of the USA CZM Act of 1972: (1) protection of 
estuaries and coastal wetlands, (2) protection of beaches, 
dunes, bluffs and rocky shores, (3) provision of public 
access to the shore, (4) revitalisation of urban waterfronts, 
and (5) accommodation of seaport development. 
Although based on limited data it evaluates programme 
success based “on-the-ground outcomes”. 

Hershman et 
al., 1999 

Tampa Bay Estuary    
Program (USA) 

The programme includes the definition of specific goals to 
address the identified issues to be managed. Quantitative 
criteria were selected to evaluate the program outcomes. 
These include for instance areal extent of seagrasses and 
populations of birds.  

Lewis III et 
al., 1999 

The development of indicators and tools to evaluate ICZM at different levels is ongoing as 

analysed by Hoffmann (2009). For instance, Cordah Ltd (2001) and Belfiore et al. (2006) 

consolidated a suite of indicators developed worldwide for ICZM. At the European level 

assessment tools are also being developed in a collaboration between managers and the 

research community (Ducrotoy and Elliott, 2006). An important feature of this effort is the 

inclusion of measurable indicators as common tools to quantify both the progress of 

implementation of ICZM and the sustainable development of the coastal zone (Breton, 2006). 

These worldwide efforts are valuable contributions for making the assessment about the 

evolution of coastal zones the standard rather than the exception in the ICZM process.  

 

Ecosystem-Based Management (EBM) 

Complementary to ICZM, ecosystem-based management (EBM) emerged recently as a 

scientific consensus that highlights the use of the best available knowledge about the 

ecosystem in the management of marine resources, with an emphasis on maintaining 

ecosystem service functions (Browman and Stergiou, 2005; Murawski, 2007; Murawski et al., 

2008; Forst, 2009). The EBM approach recognises the need to consider the cumulative 

impacts of the range of activities that act on the coastal ecosystems for its sustainable 

management (Halpern et al., 2008).  The concept of ecosystem-based approach first appeared 
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in the 1970’s, not specifically related with coastal zones (Slocombe, 1993). Grumbine (1994) 

and Slocombe (1998) review the origins and principles of EBM and provide lessons for 

implementing it. An important feature that both authors highlight is that EBM is about 

integrating environment and development. They emphasise that in the real systems humans 

are within rather than separated from nature. Slocombe (1998) suggests that an effective EBM 

(i) starts with a synthesis of information for future research and management, (ii) monitors 

features to follow changes, (iii) uses local knowledge, and (iv) is practical, and if resources 

are limited it needs to focus research on knowledge that is meaningful to management. The 

definition of operational goals is an important challenge for EBM implementation, according 

to Slocombe (1998). In one of the first references of EBM for coastal zones, Imperial and 

Hennessey (1996) identified the USA National Estuary Program (NEP) as a promising 

ecosystem-based approach to managing estuaries. The particularity of NEP is to focus on 

solutions for problems identified on each estuary (Imperial and Hennessey, 1996). For each 

estuary is implemented a comprehensive conservation and management plan which contains 

an action plan to address problems identified and a monitoring programme to measure 

effectiveness of activities. Furthermore, the plan sets the funding and the institutional context 

to implement the estuarine programmes. At the European level, there are also several 

examples of EBM, for example for the Baltic Sea, North Sea and Wadden Sea (Enemark, 

2005; HELCOM, 2007; Ducrotoy and Elliott, 2008). In Canada, the Atlantic Coastal Action 

Program (ACAP) is an ecosystem and community-based approach to integrated planning and 

management of the environment that has unique features such as the power sharing among 

stakeholders (McNeil et al., 2006). The Environment Canada launched it in 1991 and the 

process consists of development and implementation of management plans, partnership 

building, local involvement and action and scientific research to improve and maintain the 

environmental integrity of coastal communities (McNeil et al., 2006). The ACAP established 

an alternative process to environmental and socio-economic management of coastal zones 

involving interested stakeholders since the beginning to identify problems and solutions. The 

evaluation of ACAP focuses on the environmental results and consists of accounting the 

measures adopted and avoided the avoided pressures, e.g., area of enhanced wildlife habitat or 

weight of mercury eliminated from waste stream. According to Environment Canada, the 

ACAP is effective on an ecosystem basis (McNeil et al., 2006).  
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Ecosystem Approach to Aquaculture (EAA) 

Sustainable development of mariculture represents a particular challenge for coastal 

ecosystem and resources managers for the combination of the following reasons (GESAMP, 

2001): 

 Aquaculture relevance for food security (Ahmed and Lorica, 2002); 

 Rapid growth of aquaculture industry (Duarte et al., 2007a) estimated as about 8.8% 

per annum since 1970 (FAO 2006); 

 Generalised concern that the increasing demand for aquaculture can drive coastal 

degradation, such as habitat loss, pollution, overexploitation of fisheries for fishmeal 

and oil, due to unsustainable aquaculture practices (MA, 2005); 

 Some aquaculture solutions, including those of extractive species (Neori et al., 2004), 

are advocated for mitigating some of aquaculture’s impacts on coastal ecosystems, for 

instance cultivation of seaweeds and shellfish (Ferreira et al., 2007a; Gren et al., 2009; 

Stephenson, et al., 2009); 

 Aquaculture aesthetic impacts cause conflicts with other users of coastal zones 

(Dempster and Sanchez-Jerez, 2008; Gibbs, 2009); 

 Impacts of aquaculture activities are cumulative among farms and additive to the 

impacts of other development pressures in the coastal zone, consequently aquaculture 

development must be addressed beyond the individual farm level, at the ecosystem 

level (GESAMP, 2001; Ferreira et al., 2008a; Soto et al., 2008);  

 The future of the aquaculture industry relies on sustainable coastal development 

because ultimately it depends on healthy coastal waters (GESAMP, 2001). 

For the above-mentioned reasons an ecosystem approach to aquaculture (EAA), integrated 

with management of other coastal developments, is required for sustaining aquaculture 

expansion (GESAMP, 2001; FAO, 2007; Soto et al., 2008). According to FAO, EAA is 

defined as: “An ecosystem approach to aquaculture (EAA) strives to balance diverse societal 

objectives, by taking account of the knowledge and uncertainties of biotic, abiotic and human 

components of ecosystems including their interactions, flows and processes and applying an 

integrated approach to aquaculture within ecologically and operationally meaningful 

boundaries. The purpose of EAA should be to plan, develop and manage the sector in a 

manner that addresses the multiple needs and desires of societies, without jeopardizing the 

options for future generations to benefit from the full range of goods and services provided by 

aquatic ecosystems.” (FAO, 2007). 
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1.1.2 Role of science for coastal management 

The complexity of the phenomena occurring in coastal ecosystems and their management 

requires the interaction among managers and researchers of a range of disciplines (Fabbri, 

1998). The effective integration of science with management is important for better policy 

formulation and policy-making for achievement of both environmental and development 

needs and goals (Slocombe, 1993; Peirce, 1998; Turner, 2000; Cheong, 2008). Currently the 

role of applied environmental science to support coastal management and address legal 

requirements is increasing (Ducrotoy and Elliott, 2006). In order to communicate science to 

managers, researchers must follow a problem-oriented approach and distil the outputs into 

accessible and useful information for managers (Nobre et al., 2005; Dennison, 2008; 

Hoffmann, 2009). Such an approach calls for the integration of scientific methodologies and 

disciplines across different scales (IMPRESS, 2003; McFadden, 2007). In particular, the 

adoption of an EAA poses several challenges to the scientific community (GESAMP, 2001; 

Soto et al., 2008). For instance, guidance about more sustainable aquaculture options at the 

farm level (Neori et al., 2004; Robertson-Andersson et al., 2008; Ayer and Tyedmers, 2009) 

and understanding of cumulative impacts within coastal ecosystem for determination of, for 

instance, carrying capacity with respect to aquaculture activity (Ferreira, et al. 2008a). 

Overall, ecosystem-based tools capable of providing insights about complex ecological 

processes and interaction with socio-economic systems are valuable to support the sustainable 

use of high demanded coastal zones. The most commonly applied tools include (Cicin-Sain 

and Knecht, 1998; Neal et al., 2003): spatial modelling tools, such as geographical 

information systems (GIS) and remote sensing; catchment and coastal ecosystem modelling; 

participatory work with stakeholders; integrated environmental assessment, benefit-cost 

studies and economic valuation. The aim of these tools is to provide information to the 

decision-making process or its evaluation and not to replace decision-makers (Van Kouwen et 

al., 2008). The enhanced understanding scientific methodologies provide can be particularly 

useful in conflict resolution processes inherent to ICZM (Fabbri, 1998; McCreary et al., 

2001). The development of integrative tools requires the interaction of all stakeholders in 

order to ensure (Cicin-Sain and Knecht, 1998; Van Kouwen et al., 2008) that (i) tools address 

relevant issues for coastal management, and (ii) managers can use the tools and their outputs. 

The state-of-the-art about ecosystem-based tools is detailed in Chapter 6. 

There are three major research areas to support ICZM and EBM: (i) increase of knowledge 

about complex coastal processes, such as the cumulative impacts of coastal zone multiple 
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pressures, (ii) development of tools to communicate science to managers, and (iii) interaction 

of coastal environment and socio-economics. These research areas are discussed below. 

Increase of knowledge about complex coastal processes 

A knowledge gap highlighted as crucial for coastal management is to understand the 

cumulative impacts of natural and anthropogenic pressures on coastal ecosystem state, and on 

the goods and services these areas provide (Halpern et al., 2008). Ecological modelling is 

recognised as an important tool for coastal management, which can contribute for 

understanding coastal ecosystem processes including the above mentioned research gap 

(Turner, 2000; Fulton et al., 2003; Greiner, 2004; Hardman-Mountford et al., 2005; 

Murawski, 2007; Forst, 2009). In particular, more recently the requirement for models at the 

ecosystem level capable of simulating the cumulative impacts of multiple uses has been 

highlighted (Fulton et al., 2003; Ferreira et al., 2008a). Nevertheless, modelling approaches 

that are able to simulate the cumulative impacts of coastal activities on these ecosystems are 

still at an early stage of development. Such developments are particularly important for 

determination of ecological carrying capacity required for the sustainable expansion of 

aquaculture (Ferreira et al., 2008a; Dempster and Sanchez-Jerez, 2008; Soto et al., 2008). 

Chapter 2 provides further details about contributions of ecosystem modelling and state-of-

the-art of relevant modelling approaches. 

Tools to communicate science to managers 

Integration and synthesis of complex knowledge from different disciplines into useful 

information to coastal managers and the public at large is a progressing and challenging field 

to environmental scientists (Harris, 2002; McNie, 2007; Cheong, 2008). Integrated 

Environmental Assessment (IEA) methodologies can enhance communication between 

scientists and policy-makers, since those methodologies aim to present an interdisciplinary 

synthesis of scientific knowledge (Tol and Vellinga, 1998; Harris, 2002). IEA outcomes 

normally provide insight regarding complex phenomena, which can guide decision-making 

and policy development for ecological resources management (Toth and Hizsnyik 1998). The 

Drivers-Pressure-State-Impact-Response (DPSIR) is a well-known IEA framework (Peirce, 

1998) used to communicate science to coastal managers and in particular to bridge the 

science-management scales gap (Elliott, 2002). Chapter 3 further reviews the use of IEA 

frameworks for coastal management.  Ecological modelling in particular can benefit from the 

integration with IEA methodologies to distil the outcomes of complex models into useful 

information for managers (Nobre et al., 2005). A review about integration of IEA 
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methodologies with ecological models is presented in Chapter 4 (Section 4.1). Because it 

involves human interpretation, one of the IEA caveats is subjectivity and dependence on the 

analyst point of view (Tol and Vellinga, 1998). That is a criticism specifically pointed out to 

the DPSIR approach (Svarstad et al., 2008). Tol and Vellinga (1998) recommend that for the 

use of IEA full potential the methodologies for integrating knowledge need to improvement. 

Specifically for the DPSIR, Svarstad et al. (2008) suggest the expansion of the framework to 

incorporate social and economic concerns, rather than just report about the state of the 

environment. 

At the EU level several tools are being developed, specifically to support implementation of 

coastal management related legislation and policy (Ducrotoy and Elliott, 2006). Specific 

examples include: (i) GIS as a decision support tool to be used in the development of the 

National Strategy for ICZM of the Catalan coast following the EU recommendation (Sardá et 

al., 2005), (ii) GIS use for division of ecosystems into homogenous management units as 

required by the WFD (Ferreira et al., 2006; Balaguer et al., 2008), (iii) tool to assist in the 

classification of marine angiosperms, one of the WFD biological elements for coastal and 

transitional waters (Best et al., 2007), (iv) benthic community-based biotic indices to evaluate 

ecosystem status and condition, in support of WFD implementation (Pinto et al., 2009). Borja 

et al. (2008) reviews at the worldwide level, existing integrative assessment tools capable to 

support recent legislation developed in several nations to address ecological quality or 

integrity.  

A particular area where efforts need to be developed is the production of methodologies to 

assess the impacts of the ICZM initiatives on coastal ecosystems (Olsen et al., 1997), 

including the changes in the benefits these generate. Chapter 3 presents existing 

methodologies that aim to support sound-decision making. 

Interaction of coastal environment and socio-economics 

Understanding the linkages between the natural and anthropogenic systems is crucial for 

ICZM and EBM (Turner, 2000; Westmacott, 2001; Boissonnas et al., 2002; Bowen and Riley, 

2003; Cheong, 2008). Firstly, the aim of ICZM is to promote the sustainable development of 

coastal ecosystems including both ecological and socio-economic components. Secondly, 

coastal management and planning must account for the ‘costs’ of resource degradation. 

Finally, the measurement of the effectiveness of ICZM initiatives must screen not only the 

consequent changes on the ecological state of the ecosystem but also changes of the socio-

economic benefits generated in coastal areas. In particular, economic valuation methods are 
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crucial to account for ecosystem goods and services in decision-making (Boissonnas et al., 

2002; Lal, 2003; Farber et al., 2006; Costanza and Farley, 2007).  

The DPSIR approach results of the effort to integrate the natural and anthropogenic systems, 

and to combine science with management (Cheong, 2008). DPSIR is a widely used 

conceptual framework for integrated coastal management that provides a conceptual scheme 

of how socio-economic activities interact with the natural systems (Elliott, 2002; Ledoux and 

Turner, 2002; Bowen and Riley, 2003; IMPRESS, 2003; Bidone and Lacerda, 2004; GTOS, 

2005; Hofmann et al., 2005; Scheren et al., 2004; Borja et al., 2006; Nobre, 2009). In simple 

terms, the DPSIR establishes the link between the human activities (‘Drivers’), corresponding 

loads (‘Pressures’), resulting changes of the ‘State’ of the ecosystem (i.e. the ‘Impact’) and 

the actions adopted by the coastal managers and decision-makers (Response). However, this 

IEA methodology lacks the formal definition of a consistent linkage between ecological and 

economic indicators over time (Nobre, 2009). The DPSIR approach and the interaction 

between the natural and anthropogenic systems is further analysed in Chapter 3. 

Additionally, the inclusion of the economic component in dynamic ecological models is 

required in order to simulate the feedback between the ecological and socio-economic 

systems (Bockstael et al., 1995; Nobre et al., 2009). First attempts to integrate the ecological 

and economic models date back to the 1960’s (Westmacott, 2001). Currently integrated 

ecological-economic modelling is an evolving discipline that has increased recently 

(Drechsler et al., 2007). Several difficulties exist, such as the difference in scales at which 

normally these two systems are simulated or analysed (Nijkamp and van den Bergh 1997; 

Turner, 2000; Drechsler and Watzold, 2007; Nobre et al., 2009). Existing efforts for 

integration of ecological and economic models are detailed in Chapter 5. 

1.2 Thesis overview 

1.2.1 Objectives  

Anthropogenic activity is generating a negative feedback through the significant direct and 

indirect socio-economic benefits provided by coastal ecosystems; increasing human pressure 

on coastal zones (Boissonnas et al., 2002) is causing degradation and consequently decreases 

the benefits that these ecosystems deliver (Bowen and Riley, 2003; MA, 2005; Costanza and 

Farley, 2007). Emerging coastal management frameworks use the best available knowledge 

about the ecosystem to manage marine resources and functions (Fluharty, 2005; Murawski, 

2007; Forst, 2009). More progress is needed regarding the process of translating data into 
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useful knowledge for environmental problem solving, and this is also true with regards to 

coastal zones (Dennison, 2008). Managers and policy-makers require analytical and 

assessment methodologies capable of (i) generating understanding about coastal ecosystems 

and their interaction with the socio-economic system, and (ii) synthesising research outcomes 

into useful information in order to define effective responses and evaluate previously adopted 

actions (McNie, 2007; Stanners et al., 2008).  

 

This thesis aims to contribute to research on the assessment of changes in coastal ecosystems 

and in benefits generated due to management actions (or lack of actions). The overall 

objectives are to (i) assess the ecological and economic impacts of previously adopted policies 

as well as future response scenarios, and (ii) translate the outcomes into useful information for 

stakeholders with a management role. 

 

Table 1.3. Key stages of the integrated ecological-economic modelling and assessment methodology 
development. 

Development 
stage 

Methodology Discipline Spatial scale Event 
analysis 

 MD1 & A2 Multilayered ecosystem 
model (MEM) 

Natural sciences Ecosystem 
(catchment-coastal) 

Forecast 

MD1 & A2 Ecological-economic 
assessment 

methodology (EEAM) 

Natural sciences and 
socio-economics 

Ecosystem 
(catchment-coastal) 

Hindcast 

 Ecosystem Approach to 
Aquaculture: 

   

A2 MEM + EEAM Natural sciences and 
socio-economics 

Ecosystem 
(catchment-coastal) 

Hindcast 
/ Forecast 

A2 EEAM Natural sciences and 
socio-economics 

Individual farm Forecast 

MD1 & A2 Dynamic ecological-
economic model 

Natural sciences and 
socio-economics 

Ecosystem Forecast 

1MD – methodology development; 2A – application of methodology. 

The research work is divided into the key stages synthesised in Table 1.3 and described next. 

The multilayered ecosystem model aims to simulate the cumulative impacts of multiple uses 

of coastal zones. A coupled ecological-economic assessment methodology is required as a 

complement to the modelling approach in order to (i) provide useful information for managers 

about impacts on the coastal environment of previously adopted ICZM programmes based on 

data surveys as well as about future response scenarios if used together with a simulation 
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model, and (ii) provide an explicit link between ecological and economic information related 

to the use and management of a coastal ecosystem within a specific timeframe. To address the 

challenges of sustainable aquaculture research and management and, specifically, to support 

an ecosystem approach to aquaculture, the multilayered ecosystem model and the ecological-

economic assessment methodology are used both in combination and individually. Finally, 

the ecological-economic link is dynamically coupled, in order to take into account feedback 

between the ecological and economic systems. 

1.2.2 Study sites  

The research work used different study sites (Figure 1.1) for the application of the various 

methodologies. The rationales for study site selection were the different requirements of each 

methodology, the characteristics of the study sites and the available dataset, as described next. 

Figure 1.1. Study sites. 

 The main study site was a Chinese bay, the Xiangshan Gang, with a large amount of 

aquaculture production and multiple catchment uses. Management efforts to improve water 

quality are currently under way in this bay.  This study site represents a challenge to the 

local coastal managers because of the multiple uses of the catchment area and marine 
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ecosystem, such as large aquaculture areas.  Xiangshan Gang represents an emblematic 

coastal ecosystem for the simulation of catchment effects on water quality and aquatic 

resources. The case study consisted of the simulation of management scenarios that 

account for changes in multiple uses. Development scenarios, designed in conjunction with 

local managers and aquaculture producers, included a reduction of fish cages and the 

treatment of wastewater. The integrated modelling and assessment approach was applied to 

evaluate the cumulative impacts of the development scenarios on the Xiangshan coastal 

environment. The model outputs were used to support an ecosystem approach to 

aquaculture (EAA) in Xiangshan Gang at the waterbody/watershed level. The Xiangshan 

Gang was also used as a study site to model the explicit link between the ecological and 

economic systems, in which the MARKET model was applied to simulate shellfish 

production. The SPEAR research project that took place between 2004 and 2008 (EU 

Framework VI, INCO-DEV-1 - CT-2004-510706, Ferreira et al., 2008b) provided the 

means for carrying out advanced integrated modelling work. 

 A southwest European coastal lagoon, Ria Formosa, which exhibits considerable 

interaction between the ecological and socio-economic systems, was used as a case study 

to illustrate the development and application of the ecologic-economic assessment 

methodology. On the one hand, this coastal zone includes sites of environmental 

importance recognised by several international conventions and directives. On the other 

hand, Ria Formosa supports several economic activities that comprise the main source of 

employment and income in the region (Nobre, 2009). This coastal zone is a well-studied 

system where accessible datasets are available and other ecosystem-based tools have been 

applied. As such, Ria Formosa was also used to review ecosystem-based tools used for 

coastal research and management, including those developed in this thesis. 

 The third study site is an abalone aquaculture located in South Africa, the Irvine and 

Johnston (I & J), Cape Cultured Abalone Pty, Ltd, which offers a detailed dataset about 

farm’s ecological and economic performance.  This site presented a valuable case study to 

exemplify the assessment of different aquaculture practices at the individual farm level 

because the farm recently changed to an IMTA system with macroalgae. In addition, 

previous research made a unique dataset available that includes not only environmental 

data from the farm but also its cost structure and revenue information (Robertson-

Andersson, 2007; Robertson-Andersson et al., 2008; Sankar, 2009).   

 

The study sites are further detailed in the relevant chapter (Figure 1.2). 
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1.2.3 Thesis outline  

In order to attain the objectives described above, the work was developed step by step, as 

described in chapters 2 to 6, followed by a general discussion chapter. This thesis is organised 

as follows (Figure 1.2): 

Figure 1.2. Thesis organisation. 

Multilayered ecosystem modelling (Chapter 2) 

This chapter describes the development and use of the multilayered ecosystem model. The 

modelling approach combines the simulation of the biogeochemistry of a coastal ecosystem 

with the simulation of its main forcing functions, such as catchment loading and aquaculture 

activities. A key feature of the multilayered ecosystem model is the simulation of cumulative 

impacts in the coastal ecosystem. The model is used to investigate the impacts of different 

management scenarios and monitoring options on the condition of Xiangshan Gang. This 

work was developed in collaboration with a multidisciplinary team that provided the required 
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sub-models for the catchment, hydrodynamic and aquatic resources simulation (Ferreira et al., 

2008b). 

Integrated ecological-economic assessment (Chapter 3) 

This chapter introduces the differential DPSIR (∆DPSIR) methodology, an adaptation of the 

general DPSIR approach (Nobre, 2009). The ∆DPSIR includes an explicit linkage between 

ecology and economy within a specific timeframe. This assessment methodology is developed 

as a tool to analyse the relationship between the ecosystem state and the use of aquatic 

resources. The ∆DPSIR aims to provide the scientific-based information required by 

managers and decision-makers to evaluate the ecological and economic impacts of previously 

adopted policies, as well future response scenarios, on the coastal environment. The 

application of the ∆DPSIR is illustrated through an analysis of developments in a southwest 

European coastal lagoon between 1985 and 1995. 

Ecosystem approach to aquaculture (Chapter 4) 

This chapter integrates the work developed in Chapters 2 and 3 to develop an ecosystem 

approach to aquaculture (EAA). The relevant scales for the EAA application are (Soto et al., 

2008) (1) the farm level, (2) the waterbody and respective watershed/aquaculture zone, and 

(3) the global, market-trade scale. Herein, two case studies are presented to evaluate 

aquaculture options at the waterbody/watershed level and at the farm level:  

4.1 Waterbody/watershed level assessment: evaluation of model scenarios 

The application of the ecosystem model outputs and the ∆DPSIR to evaluate 

development scenarios at the waterbody/watershed level is illustrated in this 

section.  

4.2 Farm level assessment: evaluation of real data 

Herein, a detailed dataset is analysed to evaluate aquaculture options at the farm 

level. The ∆DPSIR is applied to quantify the ecological and economic benefits of 

shifting from an abalone monoculture to an abalone-seaweed integrated multi-

trophic aquaculture (IMTA). 
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Ecological-economic dynamic modelling (Chapter 5) 

The dynamical link between the ecological and economic components is described in this 

chapter (Nobre et al., 2009). A coupled ecological-economic model has been developed for 

simulation of aquaculture production. First, the Modelling Approach to Resource economics 

decision-maKing in EcoaquaculTure (MARKET) was developed as a conceptual framework. 

Second, the MARKET approach was implemented to integrate an aquatic resources model 

with an economic model in the context of shellfish production in a Chinese coastal 

embayment. This work included inputs from an economic team for the definition of the 

economic functions for the case study (Nobre et al., 2009). 

Integration of ecosystem-based tools (Chapter 6) 

This chapter presents state-of-the-art ecosystem-based tools used for coastal research and 

management, including those developed in this thesis (Nobre and Ferreira, 2009). A 

consolidated demonstration of the application of such tools for coastal management is carried 

out using the Ria Formosa and catchment area as a case study.  
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Chapter 2.  Multilayered ecosystem modelling  

Context 

As mentioned in Chapter 1, improving knowledge about complex coastal processes requires 

that the coastal ecosystem be modelled with tools capable of simulating the cumulative 

impacts of multiple uses. Such developments are still at an early stage but are potentially 

important for the sustainable expansion of aquaculture. For instance, they could allow for 

calculation of ecosystem carrying capacity that accounts for effects of multiple farms and 

other coastal activities on the ecosystem. 

Summary 

This chapter describes the multilayered ecosystem model and its application to Xiangshan 

Gang, a Chinese coastal bay with large aquaculture production and multiple catchment uses, 

where management efforts to improve water quality are underway. This integrated modelling 

approach combines the simulation of the biogeochemistry of a coastal ecosystem with the 

simulation of its main forcing functions, such as catchment loading and aquaculture activities. 

The case study consists of simulation scenarios designed together with local managers and 

aquaculture producers that account for changes in multiple uses. The integrated modelling 

approach is applied to simulate the cumulative effects of the reduction of fish cages and 

treatment of wastewater on the Xiangshan Gang coastal environment.  
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This chapter corresponds to a manuscript currently in second-stage 

review in Estuarine Coastal and Shelf Science: 

Assessment of coastal management options by means of multilayered 

ecosystem models, by Nobre, A.M., Ferreira, J.G., Nunes, J.P., Yan, 

X., Bricker, S., Corner, R., Groom, S., Gu, H., Hawkins, A.J.S., 

Hutson, R., Lan, D., Lencart e Silva, J.D., Pascoe, P., Telfer, T., Zhang, 

X., Zhu, M. 
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Assessment of coastal management options by means of multilayered 
ecosystem models 

INTRODUCTION 

Coastal zones provide considerable benefits to society while at the same time human activities 

exert pressure on coastal ecosystems, therefore threatening those same benefits (Nobre, 2009). 

To promote the sustainable use of coastal zone resources an ecosystem approach is of 

considerable value, firstly in understanding the causal relationships between environmental 

and socio-economic systems, and the cumulative impacts of the range of activities developed 

in coastal ecosystems (Soto et al., 2008; Nobre and Ferreira, 2009), and secondly to manage 

coastal resources and biodiversity (Browman and Stergiou, 2005; Murawski et al., 2008). 

Marine Ecosystem-Based Management (EBM) is an emerging scientific consensus 

complementary to Integrated Coastal Zone Management (ICZM). EBM highlights the need to 

use the best available knowledge about the ecosystem in order to manage marine resources, 

with an emphasis on maintaining ecosystem service functions (Browman and Stergiou, 2005; 

Murawski, 2007; Murawski et al., 2008). In particular, improved planning and management 

of aquaculture production is highlighted as one of the sustainability issues related to coastal 

zone development and management that must urgently be addressed (GESAMP, 2001). 

Recently, several initiatives have occurred to support the development of an Ecosystem 

Approach to Aquaculture (EAA), which aims to integrate aquaculture within the wider 

ecosystem in order to promote the sustainability of the industry (Soto et al., 2008).  

Ecosystem modelling is a powerful tool that can contribute the required scientific grounding 

for the adoption of such an Ecosystem-Based Management approach (Fulton et al., 2003; 

Greiner, 2004; Hardman-Mountford et al., 2005; Murawski, 2007). Specifically, modelling 

can be useful to: (i) provide insights about ecological interactions within the ecosystem 

(Raillard and Ménesguen, 1994; Plus et al., 2003; Dowd, 2005; Grant et al., 2008; Sohma et 

al., 2008; Dumbauld et al., 2009), (ii) estimate the cumulative impacts of multiple activities 

operating on a given coastal area at an integrated catchment - marine ecosystem scale (Soto et 

al., 2008), and (iii) evaluate the susceptibility of an ecosystem to pressures by means of 

scenario simulation (Hofmann et al., 2005; Nobre et al., 2005; Roebeling et al., 2005; 

Marinov et al., 2007; Ferreira et al., 2008a). James (2002), Fulton et al. (2003), and Moll and 

Radach (2003) have reviewed ecological models used in the simulation of the hydrodynamics 

and biogeochemistry of aquatic ecosystems. Such models vary widely according to their 

target application. For instance, aquaculture carrying capacity models can be developed at the 

farm scale (e.g., Ferreira et al., 2007a; Cromey et al., 2009; Ferreira et al., 2009) or at the 
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ecosystem scale (e.g., Dowd, 2005; Ferreira et al., 2008a). These models can focus on specific 

features of the environment such as seston biodeposition (Cromey et al., 2009; Weise et al., 

2009), or can integrate the ecosystem biogeochemistry (Plus et al., 2003; Dowd, 2005; Grant 

et al., 2008; Ferreira et al., 2008a). Ecological models can also focus on how the 

environmental parameters affect the physiology of cultured species (e.g., Raillard and 

Ménesguen, 1994; Gangnery et al., 2004) or how aquaculture production affects the 

ecosystem as a whole (e.g., Grant et al. 2008; Weise et al. 2009). The role of models in 

evaluating the ‘disturbances’ caused by bivalve mariculture on coastal systems may be 

especially important in the USA where increasing regulations are in some cases being 

implemented on the basis of a rather strict interpretation of the precautionary principle, with a 

consequent restriction of aquaculture activities (Dumbauld et al., 2009). Concurrently, 

substantial efforts are also ongoing on the simulation of interactions between catchment and 

coast, for instance the work developed under the EuroCat (‘European catchments, catchment 

changes and their impact on the coast’) research project (Salomons and Turner, 2005). The 

work presented by Artioli et al. (2005), Hofmann et al. (2005) and Nikolaidis et al. (2009) 

exemplifies the existing modelling approaches including the interface between the biophysical 

and socio-economic models for the catchment and coastal systems.  

Overall, if a model is to contribute to an Ecosystem-Based Management approach, it should 

integrate the range of key processes relevant to the questions asked, and thus allow simulation 

of the resulting cumulative impacts of human activities. For instance, to assist in the 

determination of ecological carrying capacity of aquaculture production, a model must 

include inputs from the multiple aquaculture farms situated in a given ecosystem and include 

simulation of other relevant activities, for example those within the catchment area that affect 

the coastal ecosystem such as agriculture and wastewater discharge and eventual treatment 

(Soto et al., 2008). Additionally, and particularly important for management, is the use of 

models for scenario simulation (Roebeling et al., 2005). This practice implies that 

management-relevant scenarios are developed to test changes in multiple uses or to explore 

impacts of global environmental changes (Hofmann et al., 2005; Nobre et al., 2005; Marinov 

et al., 2007; Ferreira et al., 2008a). This type of approach is crucial for EBM and requires 

close interaction with managers, decision-makers, and ecosystem and resource users (Ledoux 

et al., 2005; Nunneri and Hofmann, 2005). In addition, ecosystem stakeholders must be able 

to understand the information that models provide and also contribute information on the 

issues to be managed, so that model development addresses their particular needs. Ecological 

modelling was introduced as a management tool in the 1970’s (Jørgensen and Bendoricchi, 

2001); since then modelling tools have often proven useful in supporting the application and 
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implementation of several legislative and management programmes worldwide, as 

exemplified in Table 2.1.  

Table 2.1. Examples of modelling tools used for the application of legislation and management 
programmes worldwide. 

Legislation / 

management actions 

Model application Country 

/ region 

European Water 

Framework Directive 

(WFD, Directive 

2000/60/EC) 

Hofmann et al. (2005), Artioli et al. (2005) and Volk et al. 

(2008) 

Europe 

CSIRO’s Water for 

Healthy Country 

‘Floodplain renewal’ 

program 

‘Landscape toolkit’ developed for the management of the 

coastal strip adjacent to the Great Barrier Reef (Roebeling et al., 

2005) 

Australia

USA National Estuarine 

Eutrophication 

Assessment (NEEA) 

program 

Eutrophication assessment model (Bricker et al., 2003). Also 

applied outside USA (Whitall et al., 2007; Borja et al., 2008). 

USA, 

Europe 

and Asia 

USA Clean Water Act 

(CWA). 

Calculation of the total maximum daily load (TMDL) of a 

pollutant that a waterbody can receive and still safely meet 

water quality standards (EPA, 2008). 

USA 

Fisheries policy 

(management of the 

exploitation of aquatic 

renewable resources) 

- Lobster fishery simulation to explore management options, 

regulations and the impact of environmental changes (Whalen 

et al., 2004) 

- Evolution of the Manila clam population in response to 

different management measures and to exceptional changes in 

environmental conditions (Bald et al., In press). 

Canada 

and 

France 

Harmful algal blooms 

(HAB’s) management 

Combination of remote sensing data and current direction 

simulation to understand the origin of the world’s largest green 

tide, recorded offshore in the Yellow Sea and along the coast of 

Qingdao (Liu et al., 2009). 

China 

Ongoing research (Raick et al., 2006) is investigating trade-offs between (i) increasingly 

complex models that provide detailed simulations but require large datasets for model 

setup/validation (e.g., developed by Marinov et al., 2007) and generate outputs which are 
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difficult to synthesise and interpret; and (ii) simple models that due to generalisation of 

processes or resolution may fail to capture important ecosystem features (e.g., McKindsey et 

al., 2006). A promising intermediate approach, whereby different models running at different 

scales can be integrated in order to optimise the trade-offs between complex and simple 

models, has been developed by Ferreira et al. (2008a, 2008b). Model integration can be 

implemented by (i) coupling offline upscaled outputs of detailed hydrodynamic models with 

ecological box models (Raillard and Ménesguen, 1994; Nobre et al., 2005; Ferreira et al., 

2008a); or (ii) explicitly integrating models with different time steps, which is particularly 

important if there is a need to take into account feedback between the models, as is the case of 

ecological-economic simulations (Nobre et al., 2009). The advantages of such an intermediate 

approach include: (i) running multi-year ecosystem models without the computational 

limitations reported for detailed models (Grant et al., 2008); (ii) fewer data requirements for 

model setup (Ferreira et al., 2008a); and (iii) running coarser models at the end of the 

modelling chain, that present a higher level of information, which are more suitable to inform 

decision-makers (Ferreira et al., 2008a), and may be better suited to provide highly 

aggregated information used to drive management-oriented screening models. The main 

challenges for model integration include: (i) the model coupling can be time-consuming, 

given that it implies either processing the model outputs according to the format of the 

downstream model inputs or understanding the various model architectures for programming 

the code for communication between models; (ii) offline coupling does not allow dynamic 

feedback between models; and (iii) online coupling forces scientists and managers to interact 

towards a common definition of the problem and the identification of the underlying 

variables, which often requires a broader understanding of different disciplines. The 

development of integrative tools that simulate the catchment and the biogeochemistry of 

coastal waters, including cultivated species, is at an early stage, and there are only a few such 

simulations of management scenarios at the catchment-coastal scale (e.g., Marinov et al., 

2007; Ferreira et al., 2008b).  

In order to contribute to this development, a multilayered catchment-coastal modelling 

approach is described below, which optimizes these trade-offs through the use of a 

comprehensive set of models operating at different levels of complexity and geographical 

scales. China provides an opportunity for an emblematic case study, given that its coastal 

areas exhibit rapid economic growth (10% average increase of GDP over 1995-2005), which 

is causing conflict among its multiple uses (Cao and Wong, 2007). Furthermore, Chinese 

shellfish aquaculture production (including clams, oysters, mussels, scallops, cockles and 

arkshells) increased at an average annual rate of about 28% since 1990, and in 2007 
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represented 77% of the world’s shellfish production (FAO, 2009). Therefore, integrated 

management of the Chinese coastal zone is a considerable challenge requiring a 

comprehensive approach (Cao and Wong, 2007). The key features of the framework 

presented in this paper are: 

(i) Integration of a set of tools at the catchment-coastal scale; 

(ii) Engagement of stakeholders, i.e. aquaculture producers, local fishery and environmental 

managers in the modelling process. 

The improvements generated by this approach are to allow the examination of different 

development scenarios by altering variables of both the catchment and coastal systems and to 

provide insights for managers. These are critical developments for ICZM and EAA given that 

such models allow for the assessment of cumulative impacts of coastal activities at the 

ecosystem level. The specific objectives of this work are to (i) develop an integrated coastal 

management tool for decision-makers; and (ii) examine the outcomes of different 

development scenarios. 

METHODOLOGY 

Study site and data 

The Xiangshan Gang (Figure 2.1), a large (volume of 3 803 106 m3 and area of 365 km2) 

Chinese bay, was chosen as a case study. This system (i) encompasses multiple uses of the 

marine ecosystem and catchment area; (ii) is illustrative of Southeast Asian systems and 

potentially of European and North American systems at a larger scale of coastal resource 

uses; (iii) has proactive stakeholders and management; and (iv) has an appropriate and 

available dataset. The Xiangshan Gang is a long bay (ca. 60 km in length) connected to the 

East China Sea, with long residence time in the inner bay and middle section of about 80 and 

60 days, respectively, for 90% water exchange, and shorter at the mouth of about 7 days for 

90% water exchange (Huang et al., 2003). 

This embayment has an intensive aquaculture production of shellfish and finfish and is 

located in an industrialised area South of Shanghai, near the city of Ningbo (with 6 million 

inhabitants) in Northern Zhejiang Province. Aquaculture production in the Xiangshan Gang 

has changed considerably over time (Ning and Hu, 2002). In 1987 there was only kelp 

cultivation, to which molluscan shellfish and shrimp aquaculture were added in the first half 

of the 1990’s. However, due to high shrimp mortalities farmers introduced razor clams in 

ponds, in order to leverage the ability of filter-feeders to remove particulate waste while 
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producing an additional cash crop in an Integrated Multi-Trophic Aquaculture (IMTA) 

system. During the second half of the 1990’s finfish aquaculture increased considerably. In 

1998 the fish cages in the bay were estimated as 18 000, increasing to 67 000 in 2002. 

Emerging water quality problems in the bay have been associated with the rapid increase in 

finfish aquaculture: (i) research programmes executed in 2002 measured anoxic layers with an 

average depth of 20-30 cm and a maximum depth of 80 cm (Ning and Hu, 2002; Huang et al., 

2008b); (ii) 21 occurrences of harmful algal blooms (HAB) were recorded in 2003 in 

Xiangshan Gang and the nearby sea area, including 3 occurrences inside the bay that lasted 

for more than 30 days (SOA, 2006; Zhang et al., 2007). In 2003, local decision-makers 

reduced the number of the fish cages by 30% (NOFB, 2007) in an attempt to address those 

environmental problems. Estimates for aquaculture production in 2005-2006 include: 45 000 t 

shellfish year-1 of which 93% is the Chinese oyster Ostrea plicatula produced either on ropes 

or in intertidal areas; 9 400 t finfish year-1; and 6 700 t year-1 pond production of shrimp, crabs 

and clams.  

 
Figure 2.1. Xiangshan Gang and catchment area characterisation. 

A detailed description of the bay and its catchment is given in Ferreira et al. (2008b). Table 

2.2 shows a synthesis of the data collated and used in this paper. Data sources included 

available historical and web-based data complemented by a limited sampling program 
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collected under the EU “Sustainable options for PEople, catchment and Aquatic Resources” 

(SPEAR) project (Ferreira et al., 2008b) to complement existing data in order to develop the 

various models.  

Table 2.2. Synthesis of dataset used in the integrated modelling approach for the Xiangshan Gang. 
Data source: SPEAR project (Ferreira et al., 2008b) unless indicated. 
Domain Parameters 
Catchment area River water quality data for years 2005/2006 (monthly sampling): ammonia, nitrate, 

phosphate, silicate, total nitrogen, total phosphorus, chl-a, flow rate, temperature, 
salinity, pH, dissolved oxygen.   

 Land cover ground truth data collected in 2005: Urban area, paddy fields, dry 
cropland, burnt land, forest, shrubby area, aquaculture, wetland, shallow water/beach, 
water and cloud. 

 Landsat ETM+ images (2005/06/28), used to create landcover maps following a 
supervised classification approach (Lillesand and Kiefer, 2000). 

 Hydrological data: precipitation, drainage area, river network. 
 Topographic data collected during the Shuttle Radar Topography Mission (SRTM), 

with a resolution of 90x90 m (CGIAR, 2005); 
 Biophysical and agricultural management parameters following the SWAT database 

for the most common crop (rice); 
 Global Zobbler soil maps with a 2x2’ (approx. 3.5x3.5 Km) resolution (GRID-Geneva, 

2004), parameterized following Batjes (2002). 
 Urban wastewater discharge, estimated from the number of inhabitants, using typical 

per capita wastewater and nutrient generation values (e.g. Economopoulos, 1993). 

Meteorological/ 
climate: 

Precipitation data for years 2000/2001 (Liu et al., 2003): total rainfall, ammonia, 
nitrate, nitrite, phosphate and silicate. 
Daily rainfall data for years 2003/2006: remote sensing using the SSM/I F14 product 
(Wentz and Spencer, 1998; RSS, 2008). 
Daily meteorology for years 2003/2006: NCEP/NCAR reanalysis for temperature, 
humidity, wind speed and solar radiation (Kalnay et al., 1996). 
Climatic normals: calculated using the climate data library maintained by LDEO 
(2008). 

Sea boundary Water quality data for year 2002: Salinity, water temperature, ammonium, nitrate, 
nitrite, phosphate, dissolved oxygen, chl-a. 

Bay  
(18 stations) 
  

Water quality data for years 2004 (bi-monthly) and Jun05/Jun06 (monthly): Water 
height, depth, current velocity, water temperature, salinity, ammonia, nitrite, nitrite, 
organic nitrogen, phosphate, dissolved oxygen, chl-a, particulate organic matter and 
suspended particulate matter. 

Aquaculture 
dataa 

Shellfish individual growth experiments: responses in feeding and metabolism to 
different combinations of food composition, temperature and salinity 
Shellfish aquaculture production data: Individual seeding weight, seeding densities, 
population mortality, harvestable size, total harvest.   
Finfish aquaculture for years 2004 and 2005: (i) Total production; and (ii) waste data 
(Cai and Sun, 2007). 
Aquaculture structure mapping: Landsat visible and infra-red data (2005/06/28) and 
local maps for ground truthing and to detail smaller aquaculture structures. 

Remote sensing was used to provide catchment land use and aquaculture structure mapping 

(Table 2.2). Water quality data was assimilated into a relational database, used for retrieval of 

data for ecosystem model setup and evaluation. A geographic information system (GIS - 
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ArcGISTM) was used to store and analyse spatial data, produce thematic maps and generate 

information for model setup. 

Multilayered ecosystem model 

An integrated ecosystem modelling approach was used (Ferreira et al. 2008b) to simulate the 

hydrodynamics, biogeochemistry, aquaculture production and forcing functions, such as 

catchment loading, within Xiangshan Gang. The multilayered approach includes the coupling 

of several sub-models (Ferreira et al., 2008b) selected following the balance required in the 

choice of model complexity and structure (Jørgensen and Bendoricchio, 2001): the key state 

variables and processes to be simulated, such as (i) production of multiple species in 

polyculture, (ii) its effects on the coastal environment and (iii) impacts of other catchment-

coastal system uses on the water quality and aquaculture resources, were included. However, 

the multilayered ecosystem model does not include complexity that the dataset cannot 

validate or that does not significantly contribute to the accurate prediction of drivers for 

aquaculture; for instance no specific sediment diagenesis sub-model is applied, although this 

is often appropriate in other ecosystem models (e.g. Simas and Ferreira, 2007). Figure 2.2 

synthesises the multilayered ecosystem model components, which are detailed below. 

Figure 2.2. Integrated catchment-bay modelling approach for coastal ecosystem management: model 
components and ecosystem-based tools. 
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The EcoWin2000 modelling platform (Ferreira, 1995) was used to combine (explicitly or 

implicitly) all the sub-models in order to run the multilayered model. The spatial domain of 

the Xiangshan Gang model was divided into 12 horizontal boxes and 2 vertical layers (Figure 

2.1). The division into boxes followed the procedure described in Ferreira et al. (2006) and 

included a range of criteria: hydrodynamics, catchment loads, water quality and aquaculture 

structure distribution. EcoWin2000 was set up using a combination of measured data (water 

quality and aquaculture practice among others) and model outputs (for transport of substances 

inside the system, from the catchment and exchanged with the sea), as depicted in Figure 2.2. 

The implementation of each sub-model is detailed below and the main equations for state 

variables are presented in Table 2.3. 

 

Table 2.3. Main equations for catchment, hydrodynamic, aquatic resources and biogeochemical sub-
model state variables. 
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 Surface water balance 

ttttt QgwWsEaQsPPdtdSW −−−−=/                                                        (1) 

dSW / dt, Rate of change in soil water content 
PPt, Rainfall 
Qst, Surface water runoff 
Eat, Evapotranspiration 
Wst, Exchanges with the deep aquifer 
Qgwt, Subsurface water runoff 

(mm3 mm-2) 

Nutrient export (applied to nitrogen and phosphorus) 

tttttttt DnVnLnQnPUnAnRnFndtdN −−−−−++=/                          (2) 

dN / dt, Rate of change in soil nutrient 
Fnt, Fertilization 
Rnt, Residue decomposition 
Ant, Atmospheric fixation (nitrogen only) 
PUnt, Plant uptake (including symbiotic fixation for nitrogen) 
Qnt, Lateral export (dissolved and particulate) 
Lnt, Leaching 
Vnt, Volatilization (nitrogen only) 
Dnt, Denitrification (nitrogen only) 

(kg ha-1) 
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). Navier Stokes equations, considering:  

- hydrostatic, shallow water and Boussinesq assumptions.  

- orthogonal curvilinear coordinates in the horizontal and terrain following sigma 
coordinates in the vertical 

Advection-diffusion equation in three co-ordinate directions for transport simulation 
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Shellfish individual growth (Chinese oyster, razor clam, Manila clam and muddy clam) 
)()().()()( TfLfSPMfPOMfBf ⋅⋅⋅=η                                                               (3) 

η, shellfish scope for growth  
ƒ(B), function of phytoplankton 
ƒ(POM), function of particulate organic detritus 
ƒ(SPM), function of suspended particulate matter 
ƒ(L), function of salinity 
ƒ(T), function of water temperature 

(g ind-1 d-1) 
 

Shellfish population growth (Chinese oyster, razor clam, Manila clam and muddy clam) 

[ ] ),()(/),(),(/),( tsSsdststsSddttsdS ⋅−⋅−= µη                                                    (4)    
S, shellfish number of individuals for each weight class s 
η, shellfish scope for growth 
µ, mortality rate 
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(g ind-1 d-1) 
(d-1) 

B
io

ge
oc

he
m

ic
al

 su
b-

m
od

el
 

(E
qu

at
io

ns
 a

re
 p

re
se

nt
ed

 o
nl

y 
fo

r i
nt

er
na

l p
ro

ce
ss

es
; t

ra
ns

po
rt 

of
 st

at
e 

va
ria

bl
es

 a
nd

 b
ou

nd
ar

y 
lo

ad
s 

ar
e 

de
sc

rib
ed

 in
 th

e 
te

xt
 a

nd
 in

 T
ab

le
 2

.4
) 

Phytoplankton 
))()((/ max sbbb cSmerNLfIfpBdtdB ⋅−−−−⋅⋅⋅=                                              (5) 

B, Phytoplankton biomass expressed as carbon 
pmax, Phytoplankton maximum gross photosynthetic rate 
ƒ(I), Steele’s equation for productivity with photoinibition 
ƒ(NL), Michaelis-Menten function for nutrient limitation 
rb, Phytoplankton respiration rate 
eb, Phytoplankton exudation rate 
mb, Phytoplankton natural mortality rate 
cs, Shellfish grazing rate 

(µg C L-1) 
(d-1) 
 
 
(d-1) 
(d-1) 
(d-1) 
(ind-1 d-1) 

Dissolved inorganic nutrients (applied to nitrogen and phosphorus) 
αεα ⋅⋅⋅⋅−⋅⋅+⋅+⋅+⋅= ))()(()(/ max NLfIfpBmPOMeSmeBdtdN pomsbb  (6) 

N, Dissolved inorganic nutrient (nitrogen / phosphorus) 
α, Conversion from phytoplankton carbon to nitrogen units 
POM, Particulate organic matter 
ε, Conversion from POM dry weight to nitrogen units 
mpom, POM mineralization rate 
es, Shellfish excretion rate 

(µmol L-1)
(-) 

(mg L-1) 

(-) 
(d-1) 
(µmol L-1 ind-1 d-1) 

Particulate organic matter  
)()(/ SpmPOMmBfSdePOMdtdPOM pompombspompom ⋅+⋅−⋅⋅+⋅+−⋅= ω   (7) 

POM, Particulate organic matter 
epom, POM resuspension rate 
dpom, POM deposition rate 
ƒs, Shellfish faeces production 
ω, Conversion from phytoplankton carbon to POM dry weight 
ppom, Shellfish POM filtration rate 

(mg L-1) 
(d-1) 
(d-1) 
(mg L-1 ind-1 d-1) 
 
(ind-1 d-1) 

Suspended particulate matter  
SpSPMfSdeSPMdtdSPM spmsspmspm ⋅⋅−⋅+−⋅= )(/                                           (8) 

SPM, Suspended particulate matter 
espm, SPM resuspension rate 
dspm, SPM deposition rate 
pspm, Shellfish SPM uptake rate 

(mg L-1) 
(d-1) 
(d-1) 
(ind-1 d-1) 
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Table 2.4 and Table 2.5 specify the ecosystem model forcing functions and parameters. The 

model was run, using a time step of one hour, for the calibration year (2004), the validation 

year (standard simulation - June 2005 to June 2006) and a set of different scenarios. Mass 

conservation in the model was confirmed for the hydrodynamic and biogeochemical 

components of the ecosystem model by means of a closure analysis for both conservative and 

non-conservative state variables. 

Table 2.4. Ecosystem model forcing functions for Xiangshan Gang standard simulation. 

Transport of 
substances  

 (among boxes and 
with sea boundary) 

Offline assimilation of water fluxes outputs of the detailed hydrodynamic sub-

model.  

The water fluxes were integrated in space and time using the ecosystem model 

box setup (12 horizontal boxes - Figure 2.1 - each divided vertically into 2 boxes) 

and time step (1 hour).  

Catchment loads Offline assimilation of SWAT model outputs transformed into daily data series 

aggregated per box. 

Fish cage loads Total number of cages 69 237 

Production per cage (kg year-1) 205 

Food waste (% of feeding) 61% 

Nutrient load per cage 

 (kg year-1)

DIN 34 

Phosphate 15 

POM 580 

Shrimp loads Shrimp production (t year-1) 700 

N load (kg t-1 shrimp year-1) 60 

P load (kg t-1 shrimp year-1) 20 

Photoperiod and 
light energy 

Brock model (Brock, 1981) 

Water temperature Sinusoidal function adjusted to fit observed data with minimum and maximum 

temperatures recorded as 5ºC and 30ºC respectively.   
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Table 2.5. Ecosystem model parameters for Xiangshan Gang standard simulation. 

Shellfish 
population  

Number of weight classes 10 
Mortality - µ 
(% per day) 

Oyster 0.40% 
Clam 0.56% 
Razor 0.20% 

Muddy 0.15% 

Shellfish 
cultivation  
practice 

Seed weight  

(g TFW ind-1) 

Oyster 0.2 
Clam 0.5 
Razor 0.5 

Muddy 0.1 

Seeding period Oyster April – August 
Clam May – June 
Razor April – August 

Muddy June – September 

Harvestable 
weight 

(g TFW ind-1) 

Oyster 8 
Clam 14 
Razor 11 

Muddy 5 

Harvesting period Oyster December – March 
Clam January – February 
Razor October – February 

Muddy November - March 

Aquaculture area 

(ha)  

and boxes 
cultivated 

Oyster 2 286 (Boxes 1 to 5, 8, 9, 11, 12) 
Clam    308 (Boxes 1 to 7, 10) 
Razor    313 (Boxes 1 to 6) 

Muddy    187 (Boxes 1 to 3, 5, 6) 

Seeding density  

(t TFW ha-1) 

Oyster 0.90 
Clam 0.45 
Razor 0.72 

Muddy 0.82 

Phytoplankton 
growth 

Pmax (h-1) 0.2 
Iop (w m-2) 300 

Death loss - mb (d-1) 0.01 
Ks DIN (µmol L-1) 1 

Ks Phosphate (µmol L-1) 0.5 

Suspended 
matter 

POM mineralization rate (d-1) 0.02 
POM to nitrogen (DW to N) 0.0519 

POM to phosphorus (DW to P) 0.0074 
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Catchment sub-model 

The loading of substances from the Xiangshan Gang watershed was simulated using estimates 

obtained from the Soil and Water Assessment Tool (SWAT) model (Neitsch et al., 2002).  

The model was applied to catchment area using data shown in Table 2.2. The model was 

calibrated against annual average discharge estimates for the most important rivers in the 

catchment, using a 30-year model run for a synthetic climate based on the 1961-1990 climatic 

normal, built with the model’s stochastic weather generator. Model performance for water 

inputs was satisfactory, as indicated by a significant correlation between simulated and 

observed values (r2 = 0.92), low model bias (-5.3%) and high model efficiency (Nash-

Sutcliffe efficiency index = 0.91). Simulated annual nitrogen inputs from diffuse agricultural 

sources (960 t year-1) compared well with an estimate by Huang et al. (2008b) based on export 

coefficients (900 t year-1).  

Following the evaluation for 1961-1990, the model was run for the study period (2004-2006) 

using climate data described in Table 2.2.  Existing data were not sufficient to evaluate river 

flow results obtained with SWAT for 2004-2006. However, existing monthly measurements 

from mid-2005 to mid-2006 of nitrogen (N) and phosphorus (P) in two major rivers - Fuxi 

and Yangongxi – were compared with model results. As can be seen in Figure 2.3a for 

dissolved inorganic nitrogen (DIN), it is difficult to assess model performance using only 

these data. In Fuxi, SWAT underestimates measured concentrations, but the measurement 

dates are consistent with rainfall-induced peaks predicted by SWAT; it is therefore debatable 

whether measured concentrations represent the average situation or only these short-term 

peaks. In Yangongxi, the SWAT simulations are more consistent with measurements, due in 

part to the smaller variability of both. This was also observed for N species and for P. It is 

also difficult to evaluate the reason behind potential SWAT errors due to the lack of river 

flow measurements, as an error in nutrient concentration could be due to errors in either the 

mass of nutrients entering the river or in the river's dilution capacity. To avoid this problem, 

the simulated export of N was compared with an estimate of exports based on measured 

nutrient concentrations and simulated river flows. The results are shown in Figure 2.3. SWAT 

agrees well with the measurement-based estimates, especially in the months with the largest 

exports; the correlation coefficients (r2) are 0.72 and 0.84, respectively for Fuxi and 

Yangongxi. A similar calculation for P shows slightly worse results, with r2 of 0.51 and 0.83 

for the same rivers. 
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Figure 2.3. Catchment model outputs and comparison with data: a) measured and simulated dissolved 
inorganic nitrogen (DIN) for Fuxi and Yangongxi rivers; b) estimated and simulated nitrogen export; 
c) simulated monthly runoff compared with rainfall; and d) nitrogen loads from diffuse and point 
sources. 

The output from the SWAT model simulation was transformed into daily data series 

aggregated per box for offline coupling with EcoWin2000 (for both calibration and validation 

years). In total, the nutrient load entering the bay from the catchment was estimated to be 

about 11 t d-1 of DIN and 2 t d-1 of phosphate, of which about 40% of the total loading was 

diffuse pollution from agriculture and forest litter decomposition (for both DIN and 

phosphate). The point sources included untreated urban wastewater for ca. 600 000 

inhabitants. 
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Hydrodynamic sub-model 

The transport of substances among boxes and across the ocean boundary was simulated using 

the upscaled outputs of a detailed three-dimensional hydrodynamic and transport model 

(Delft3D-Flow - Delft Hydraulics, 2006) (Ferreira et al., 2008b). Delft3D-Flow is well tested 

software used to generate highly detailed continuous flow fields (Delft Hydraulics, 2006). The 

model calibration was performed in two major phases. In the first phase, only tidal forcing 

was used.  Variations in tidal forcing were compared against measured water levels to achieve 

an optimum in harmonic composition of the tidal elevation, followed by adjustment of bottom 

roughness to reproduce the water velocity characteristics reported by Huang et al. (2003). 

Overall, the model represented the amplitude of the main harmonic constituents well (Table 

2.6). However, the phase of these constituents was difficult to reproduce due to the imprecise 

bathymetry data, which hampered the correct estimation of the bay’s storage. This limitation 

is not critical, given that the aim was to predict the contribution of tides to the exchange rather 

than accurate tidal prediction for navigation purposes.  

Table 2.6. Amplitude and phase of the harmonic constituents: comparison between observed and 
simulated values. 

Constituent Difference between model and observed 
Amplitude (m) Phase (º) 

O1 0.04 32
K1 0.07 -90
N2 0.03 103
M2 0.1 -83
S2 -0.13 45

MO3 -0.01 -54

In the second phase, a baroclinic model was developed by including heat and freshwater 

contributions. In order to define the model boundary conditions, the salinity and temperature 

dataset was complemented with data from Hur et al. (1999) and Isobe et al. (2004). In this 

second phase the response of the system was gauged through existing knowledge of 

circulation as effected by tides and baroclinicity in tidal embayments (Fujiwara et al., 1997; 

Simpson, 1997). Due to the lack of in situ density and velocity measurements, this procedure 

was used to tune the model within the theoretically acceptable boundaries for this type of 

system. The model outputs provided a repeatable series of approximately 1 year of flows with 

which to force transport in the ecosystem model for both the calibration and validation years. 

The data series length was chosen in order to be as close as possible to an annual cycle (365 

days), which is the cycle of simulation of other forcing functions of the ecological model (e.g. 

light and water temperature). Therefore, the series obtained was 3 days and 10 hours longer 

for 2004. The resulting residual surplus (0.1 m3 s-1 averaged over the bay and 0.7 m3 s-1 at a 

single box) was artificially subtracted in order to ensure the conservation of the mass. The 
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detailed flow fields were scaled up and converted into a data series of water fluxes between 

boxes and across the sea boundary with a one hour time step and coupled offline with 

EcoWin2000 (see e.g., Ferreira et al., 2008a). 

Aquatic resource sub-model 

The simulated aquatic resources included Ostrea plicatula (Chinese oyster), Sinonvacula 

constricta (razor clam), Tapes philippinarum (Manila clam) and Tegillarca granosa (muddy 

clam) production. The equations for shellfish aquaculture production were explicitly 

integrated into the ecosystem model using a four step approach (Ferreira et al., 2008a): (i) use 

of a shellfish individual growth model (ShellSIM - http://www.shellsim.com); (ii) coupling of 

the individual growth model with a demographic model to simulate the population (Ferreira et 

al., 1997); (iii) integration of the population growth model with an aquaculture practice model 

which implements the seeding of the population biomass and harvesting of the marketable 

cohorts for a given production cycle (Ferreira et al., 1997); and (iv) use of a multiple-

inheritance object-oriented approach (Nunes et al., 2003) to extend to multiple species in 

polyculture. ShellSIM simulates feeding, metabolism and individual growth in contrasting 

environments for different shellfish species, as exemplified for Chlamys farreri by Hawkins 

et al. (2002). In the ShellSIM model, removal of particulate organic matter (phytoplankton 

and detritus) by shellfish is determined through the individual growth models for the bivalves. 

It is a function of several environmental drivers, including salinity, temperature, suspended 

particulate matter (SPM) and the food sources themselves, and is additionally driven by 

allometry. These drivers are used to determine filtration, pre-ingestive selection, ingestion and 

assimilation. The individual growth model was calibrated for Chinese oyster, razor clam and 

muddy clam under local conditions (Ferreira et al., 2008b). As shown in Table 2.7 there is a 

statistically significant relationship between the individual model results and observations for 

shellfish wet weight and shell length. For the simulation of the Manila clam individual 

growth, the model used in Ferreira et al. (2007a) was applied. The population growth is 

simulated using a demographic model based on ten weight classes. The demographic model is 

a widely used model (Ferreira et al., 1997; Nunes et al., 2003; Nobre et al., 2005; Ferreira et 

al., 2007a) based on a conservation equation (Eq. 4, Table 2.3) discretised in weight classes. 

The food (phytoplankton and detritus) removed by the population is scaled for each weight 

class on the basis of the number of individuals in the class; compliance with the Courant 

condition is ensured, such that, in the case of numerical instability, the food supply (and 

therefore the growth potential) is reduced by adjusting the filtration rate. Changes in the 

population structure derive from the simulation of the individual growth of one animal (Eq. 3, 
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Table 2.3) in each weight class, thus providing the scope for growth which drives the 

transition of individuals across weight classes (Eq. 4, Table 2.3). The aquaculture practice 

model (Ferreira et al., 1997) implements the seeding and harvesting strategies and interacts 

with the population model by respectively adding and subtracting individuals to the 

appropriate classes. This modelling approach of the aquatic resources is described in previous 

applications that simulate polyculture at the ecosystem scale (Nunes et al., 2003; Ferreira et 

al., 2008a). A synthesis of model parameterization is presented in Table 2.5. 

Table 2.7. Correlation between measurements and simulation of shellfish individual weight and 
length, using Pearson product-moment correlation coefficient (r). 

 Degrees of 
freedom 

Wet weight (g) Shell length (mm) 
 r Level of confidence r Level of confidence 

Chinese oyster 2 0.926 90% 0.958 95% 
Razor clam 3 0.999 99% 0.942 98% 
Muddy clam 4 0.951 95% 0.977 95% 

Both shrimp and fish production were included as forcing functions of the ecosystem model, 

contributing to dissolved and particulate waste (Ferreira et al. 2008b). The annual fish cage 

loadings to the Xiangshan Gang (Table 2.4) were calculated based on the number of fish 

cages per box; average fish production per cage; food waste; and nutrient load per fish 

produced, based on dry feed conversion rate (Cai and Sun, 2007). Nutrient loads from the 

shrimp ponds (Table 2.4) were calculated by means of a shrimp growth model (LMPrawn) as 

described in Ferreira et al. (2008b) and Franco et al. (2006). 

Biogeochemical sub-model 

The biogeochemical model was developed using EcoWin2000 to simulate the following 

biogeochemical state variables: salinity, dissolved nutrients, particulate matter and 

phytoplankton (Ferreira, 1995; Nunes et al., 2003; Nobre et al., 2005; Ferreira et al., 2008b). 

Simulated DIN and phosphate concentrations were used for calculation of the nutrient 

limiting phytoplankton growth. The sub-models described previously were used to simulate 

the shellfish aquaculture production, the catchment loads, and the transport of water and 

substances among boxes and across the sea boundary. Ocean boundary conditions and 

atmospheric loadings were derived from historical data and defined as average annual values. 

Due to the lack of synoptic data for the setup of the ocean boundary, seawater quality data for 

2002 was used for both calibration and validation. Seasonal data for nutrients contained in the 

rainwater were used to determine the average annual atmospheric load of N and P to the bay. 

The parameterization of the model for Xiangshan Gang is presented in Table 2.5.  
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The pelagic variables in the model were calibrated against a historical time series for 2004 

(Table 2.2). Due to lack of historical data, the annual average of the validation year was used 

for SPM and particulate organic matter (POM). The model was run for the validation year 

using the same parameters employed for the calibration year but adjusting the data series for 

forcing functions and the initial conditions to simulate the period from June 2005 to June 

2006. Model performance was evaluated by comparing the model outputs of the standard 

simulation with the water quality and aquaculture production data for the validation period. 

Coastal management options simulation 

Definition of scenarios 

The development scenarios were defined as a result of the participatory work among 

stakeholders carried out during the SPEAR project (Ferreira et al., 2008b). Several 

stakeholder meetings were held involving modellers, local fishery and environmental 

managers and aquaculture producers. The capabilities of the modelling tools to support 

catchment and aquaculture management were explained to the local managers and producers. 

In addition, the issues of concern to the local managers and producers were discussed with the 

modelling team. The participatory work among stakeholders culminated with a clear set of 

scenarios defined by the Xiangshan Gang managers and aquaculture producers. The scenarios 

to be simulated by the multilayered ecosystem modelling framework comprise: (i) a reduction 

of fish cages corresponding to a 38% reduction in total fish production (Scenario 1); (ii) an 

extension of wastewater treatment to the entire population (Scenario 2); and (iii) a 

simultaneous reduction of fish cages and extended wastewater treatment (Scenario 3). These 

scenarios are important for the evaluation of nutrient abatement strategies defined by 

managers to improve water quality in Xiangshan Gang. From a management perspective, the 

scientific assessment of such scenarios also provides guidelines/grounding for future 

aquaculture policy and for eutrophication control.   

Using SWAT model outputs with different timesteps an additional scenario was run to test the 

consequences of different temporal resolution of forcing functions on simulated results. 

Monitoring of substance loadings from the adjacent catchment area are often used as forcing 

for coastal ecosystem models. However, this is often restricted to a few locations within the 

watershed and to a few sampling occasions over the year. In this work the use of SWAT 

model enabled the application of detailed forcing in space and time for catchment loads and to 

test the sensitivity analysis of the coastal ecosystem to the temporal resolution of the 

catchment model outputs. The scenario includes running the standard simulation using 
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monthly, rather than of daily, data series of the SWAT model outputs. This scenario 

exemplifies how the multilayered ecosystem model can be used in the future to further 

explore a larger research issue about monitoring data requirements and optimal temporal 

resolutions to use in the models. 

Development scenario implementation and interpretation 

The reduction of fish cages (scenarios 1 and 3) was implemented assuming that the decrease 

in nutrient loading is proportional to the decrease in fish production. The impact of 

wastewater treatment (scenarios 2 and 3) on the exports of N, P and sediment from urban 

areas was calculated following Burks and Minnis (1994). Table 2.8 synthesises the 

corresponding substance loading used to simulate each scenario.  

A comparison of the results obtained for the different scenarios was performed and the 

interpretation of the outcomes was guided by means of:  

(i) Influencing Factors (IF) from the ASSETS eutrophication model (Bricker et al., 2003) to 

interpret the influence of catchment and aquaculture loads on eutrophication; The IF index 

calculates the pressure on the system as a combination of the nutrient loading with the system 

susceptibility to eutrophication (flushing and dilution factors) (Bricker at al., 2008). Bricker et 

al. (2003, 2008) calculates the relative magnitude of the different sources considering inputs 

from watershed (manageable anthropogenic sources) and ocean (background sources) 

boundaries. For the IF application to Xiangshan Gang, aquaculture and watershed are together 

considered manageable anthropogenic sources. Details on the IF calculation are provided by 

Bricker et al. (2003) and a computer application is freely available online 

(http://www.eutro.org/register) to perform the calculations;  

(ii) The threshold of chl-a 90-percentile values as defined in the ASSETS model (Bricker et 

al. 2003) to assess the level of expression of the phytoplankton symptom;  

(iii) Chinese sea water quality standards (National Standard of People’s Republic of China, 

1997) for DIN and phosphate to assess the compliance with desirable water quality objectives 

set by decision-makers for the bay; and  

(iv) Shellfish productivity, given as the ratio of total weight of shellfish harvested to total 

weight of seed, also known as average physical product (APP, Jolly and Clonts, 1993), to 

interpret the changes in the ecosystem use due to scenario implementation.   
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RESULTS 

Ecosystem simulation 

Figure 2.3c and Figure 2.3d show catchment model results for runoff and  N loading into 

Xiangshan Gang, from diffuse (agricultural) and point (urban sewage) sources. N inputs have 

two annual peaks, in early spring and early summer, which can be related to both the 

fertilisation of rice (which is harvested twice per year in this region) and the annual rainfall 

and runoff patterns. This pattern was also found for particulate matter and P loads. The large 

input peak in August 2005 is an exceptional occurrence, mostly caused by typhoon Matsa on 

August 5th. The major sources for N, according to the model results are urban sewage 

discharges (56%); agricultural, namely fertilization in rice crops (27%); and rangelands, 

mostly detritus decomposition from forests (17%). P followed a similar pattern, with 60% 

coming from urban sewage discharge and the remainder from agricultural and natural sources. 

Figure 2.4 shows the results of the coastal ecosystem model for the pelagic variables in an 

inner location (Box 3) and a location in the middle of the bay (Box 10), which represents the 

outermost box with sampling data. The ecosystem model outputs for DIN and phytoplankton 

compare reasonably well with collected data, as exemplified for boxes 3 and 10 in Figure 2.4. 

The DIN peak observed around day 120 in Box 3 is not reproduced, possibly due to an 

underestimation of the loads for that period (from catchment or from aquaculture) or due to a 

local phenomenon that does not represent the average for the box. In contrast, the model 

outputs for phytoplankton exhibit peaks not seen in the data. In particular, the sampling point 

immediately before day 180 shows a very low value for phytoplankton, whereas the model 

simulates high phytoplankton concentrations. A combination of three factors can justify this 

occurrence: (i) high natural variability of phytoplankton (Rantajärvi et al., 1998), not captured 

by the sampling window; (ii) phytoplankton dynamics are ruled by complex set of factors 

difficult to simulate in dynamic ecological models, such as species succession (Arhonditsis et 

al., 2007); and (iii) the model outputs represent an uniform value for a box, and thus cannot 

account for the variability in that area, given that for most boxes data coverage for validation 

includes only one sampling station (Figure 2.1); for box 3 in particular there are 2 stations, the 

remaining stations are for rivers or from the historical dataset used for calibration). With 

regard to phosphate, the data do not indicate a particular pattern, and in general the model 

overestimates observed phosphate concentrations. This might be due to an overestimate of 

phosphate loads from either i) fish cages, given that fish aquaculture is the major source of 

this nutrient (Table 2.8) together with the fact that an average annual load is considered due to 

the lack of temporally detailed data on fish cage loading; or ii) from the catchment, which as 
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described previously had a performance which was less good than that obtained for DIN load 

estimates. Model outputs of SPM and POM in Box 10 did not represent the observed 

variability whereas in the inner box (Box 3) the model outputs reproduced the trends shown 

by the data points (Figure 2.4).  

 

Figure 2.4. Standard simulation outputs for an inner box (Box 3, Huangdun Bay) and a middle box 
(Box 10), plotted with average daily data (June2005/June2006) and corresponding standard deviation: 
phytoplankton biomass, dissolved inorganic nitrogen (DIN), phosphate, suspended particulate matter 
(SPM) matter and particulate organic matter (POM). 
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A possible explanation is that the temporal resolution of SPM and POM values being used to 

force the ocean boundary was not sufficient to represent the variability in the adjacent boxes. 

As such, a time series should be used instead of the annual average ocean concentration. In 

the inner boxes the marine influence was reduced and catchment inputs of POM and SPM 

were more important, thus the daily inputs provided by the catchment model provided the 

appropriate forcing. Nevertheless, this limitation is not likely to significantly affect the 

simulation of aquaculture production, given that 83% of the bivalves are produced in the inner 

boxes (boxes 1 to 5). 

Figure 2.6 provides an overview of the model agreement with measured data for all boxes 

with sampling stations, using phytoplankton as an example, given that this is a critical model 

variable.  Overall, the phytoplankton results compare reasonably well with measured data. 

Figure 2.5. Standard simulation outputs for phytoplankton plotted with average daily data 
(June2005/June2006) and corresponding standard deviation for boxes 1, 3, 4, 6, 7, 9, 10. 
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Figure 2.6 shows the simulation of shellfish production and the respective key environmental 

drivers for shellfish growth. Oysters were used as an example since this species accounts for 

93% of the total shellfish production. Figure 2.6 also shows the mass loss calculated based on 

the net energy lost due to physiological processes. The energy balance accounts for the energy 

ingested, energy lost as faeces, energy excreted, the heat loss and the energy loss due to 

reproduction (Ferreira et al., 2008b). Model results are presented for an inner box (Box 3) 

with a total shellfish production of ca. 2 305 t (oysters account for ca. 1 298 t) and a box near 

the sea boundary (Box 11) with a total shellfish production of ca. 741 t (all oyster). The oyster 

standing stock was generally higher in Box 11 than in Box 3, possibly due to the higher POM 

availability registered in most of the year in Box 11 (Figure 2.6). As a result, POM uptake by 

oysters was six-fold higher in Box 11 (3.36 g m-2 year-1) than in Box 3 (0.54 g m-2 year-1). 

 
Figure 2.6. Standard simulation outputs for Box 3 (in grey) and Box 11 (in black) for: oyster 
production (standing stock, total biomass); mass loss due to reproduction, faeces and excretion; and 
key environmental variables affecting oyster growth, i.e. phytoplankton biomass, particulate organic 
matter (POM) and water temperature. Peaks are indicated with letters P#, POM#, ML# for 
phytoplankton, POM and mass loss, respectively. The stripes superimposed in the shellfish production 
plots indicate the time snapshots that correspond to the peaks, harvesting and seeding. 
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The effects of the peaks of phytoplankton concentration in Box 3 around days 120 and 180 

(peaks P2 and P3, respectively, Figure 2.6) are visible through the increase of shellfish 

biomass and standing stock. This effect was not noticeable for the smaller peak that occurs 

after day 240 (peak P4, Figure 2.6), because it was cancelled out by the mass lost due to 

physiological processes (ML4, Figure 2.6), possibly caused by the high temperatures that 

occur during the ML4 period (Figure 2.6). On average, phytoplankton concentration was 

higher in Box 3: annual average values ca. 5.5 µg Chl-a L-1 and 3.4 µg Chl-a L-1 in boxes 3 

and 11, respectively; the average phytoplankton uptake was also higher in Box 3: ca. 38.6 g C 

m-2 year-1 and 36.0 g C m-2 year-1 in boxes 3 and 11, respectively. Possibly,  these differences 

of phytoplankton consumption among both boxes were much smaller than differences in 

POM uptake given that higher phytoplankton availability in Box 3 was counteracted by a 

higher shellfish production in that box which led to resource partitioning among cultivated 

animals (Figure 2.6). 

Overall, the outputs of harvested shellfish compare well with the landings data (Figure 2.7). 

 

Figure 2.7. Standard simulation outputs for shellfish harvest and comparison with data (in t year-1). 

Comparison of ecosystem model outputs using different temporal resolutions for the 

catchment loads (Figure 2.8) indicated that using monthly instead of daily catchment inputs 

led to significantly different outcomes, especially for the inner boxes (as illustrated for Box 3 

in Figure 2.8). In general, the biogeochemical model could not reproduce observed peaks in 
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DIN, phosphate, phytoplankton and POM when the monthly SWAT inputs were used. As a 

consequence, for example, the calculation of the percentile 90 chl-a value changed from ca. 

13 µg Chl-a L-1  to 6 µg Chl-a L-1  in Box 3 and from ca. 5 µg Chl-a L-1  to 3 µg Chl-a L-1  in 

Box 6. In the outer box, there were no significant changes in the 90-Percentile chl-a value. 

 

Figure 2.8. Sensitivity analysis of the coastal ecosystem to the temporal resolution of the catchment 
model outputs for an inner box (Box 3, Huangdun Bay), a middle box (Box 6), and an outer box (Box 
12): dissolved inorganic nitrogen (DIN), phosphate, phytoplankton biomass and particulate organic 
matter (POM). (Straight lines in the plots indicate average value for DIN and phosphate, and 90-
Percentile for phytoplankton). 



Chapter 2,  MULTILAYERED ECOSYSTEM MODELLING 

 46

Development scenarios 

The scenarios tested simulate different nutrient loads entering into the bay. Table 2.8 presents 

the N, P and POM loading into the bay from catchment and aquaculture sources for each 

scenario. The Influencing Factors from aquaculture and catchment loads on the bay’s nutrient 

concentration ranged from 75% in the standard simulation to 70% for scenario 3, for N (Table 

2.8). For P the contribution was higher, ranging from 94% in the standard simulation to 90% 

in scenario 3 (Table 2.8). These results, according to the categories defined in the ASSETS 

model (Bricker et al. 2003), indicated that for N and P there was a Moderate High and a High 

class, respectively, for the portion of nutrients from anthropogenic sources compared with 

those coming from the sea. Therefore, there is the potential for a significant reduction of 

nutrients through management. The major contribution of nutrients was from catchment 

loading and from fish cages for nitrate and phosphate, respectively, for any of the scenarios 

tested (Table 2.8). 

Table 2.8. Scenario definition (percentage changes compared with standard simulation are shown in 
brackets and italics). 

Setup Standard Scn 1 Scn 2 Scn 3

No. fish cages 69 237 42 927 69 237 42 927 

% of standard simulation 62% 100% 62%

Treated wastewater (million 
inhabitants) 

0 0 0.6 0.6 

Total loads  
(t d-1) 

DIN 18.9 16.2 
(-14%)

17.5  
(-8%)

14.7 
(-22%)

Phosphate  5.0 3.9 
(-22%)

4.2 
(-15%)

3.1 
(-37%)

POM 451.7 410.1 
(-9%)

413.8 
(-8%)

372.1 
(-18%)

Influencing Factors 
(IF) a 

N 75% 72% 73% 70%

P 94% 92% 93% 90%

Boxes with changes 1-5, 7-12 1,3,8,9,
12

1-5, 7-
12

In general, model outcomes indicate that the effects of changes implemented in the scenario 

simulations were mostly visible in the inner boxes. Figure 2.9 shows the model outputs for (i) 

an inner box (Box 3 – Huangdun Bay), where the reduction of fish cages (in scenarios 1 and 

3, Table 2.8) and the reduction of nutrient loads from wastewater discharge (in scenarios 2 

and 3, Table 2.8) were implemented; (ii) a middle box (Box6) where no direct changes were 

implemented; and (iii) an outer box (Box 12), where, as for Box 3, a reduction of fish cages 
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and nutrient loads from wastewater was tested (Table 2.8).  The changes simulated in the 

three scenarios were less evident for the outer box for DIN, phosphate, phytoplankton, 

shellfish harvest and shellfish productivity (Figure 2.9), possibly due to the exchanges with 

the ocean boundary.  

 
Figure 2.9. Scenario simulation outputs for an inner box (Box 3, Huangdun Bay), a middle box (Box 
6), and an outer box (Box 12): dissolved inorganic nitrogen (DIN), phosphate, phytoplankton biomass, 
harvested shellfish and shellfish productivity (calculated as the ratio of total weight of shellfish 
harvested to total weight of seeding). 

The reduction of nutrient loads in any of the scenarios resulted in very small changes in bay 

DIN concentration for any of the boxes (Figure 2.9a). There was a higher impact of nutrient 

load reduction on the simulated phosphate concentration (Figure 2.9b), probably because this 

was the substance with higher decrease (Table 2.8). Changes in phosphate concentration 

ranged from -8% to -21% in Box 3 and from -2% to -6% in Box 12 when comparing the 

scenarios with the standard simulation. The expected causes for the phosphate overestimation 

in the standard simulation, i.e., overvaluation of fish cage and catchment loads, also apply to 

the simulated scenarios; as such it is likely that this source of error does not affect the 
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predicted range of change of phosphate concentration from the standard simulation compared 

to scenarios. Despite the fact that no direct changes were simulated in any of the scenarios for 

Box 6, model outputs (Figure 2.9b) also indicated changes of phosphate concentration 

(between -6% and -12%), possibly as a result of the transport between boxes. Both DIN and 

phosphate were present in high concentrations and, on average phosphate was the limiting 

nutrient for the phytoplankton growth for every scenario and in every box. 

According to the Chinese seawater quality standards for nutrient concentration parameters 

(National Standard of People’s Republic of China, 1997), water quality in Xiangshan Gang is 

classified on average as being above the limit of Class IV, meaning poor quality. Given that 

the model overestimates phosphate concentration, these standards were also calculated for the 

sampled water quality data, which confirms the results of poor water quality. 

 

The most pronounced changes in phytoplankton concentration occurred in the inner boxes; in 

boxes 6 and 12 the effects of nutrient load reduction were possibly dissipated (Figure 2.9c and 

d). Figure 2.9c shows the phytoplankton 90-percentile value for different boxes and scenarios. 

Considering thresholds defined in the ASSETS model, this eutrophication symptom is 

classified as Medium in Box 3 for any scenario. In the middle and outer boxes the 

phytoplankton concentrations were lower and 90-percentile values fell in the limit between 

the Low and Medium classes (e.g. boxes 6 and 12 in Figure 2.9b), possibly due to higher 

seawater renewal. For Box 6, the small decrease of phytoplankton due to nutrient load 

reduction resulted in a shift of the phytoplankton 90-percentile value from Medium in the 

standard scenario to Low in any of the scenarios. In Box 12, the phytoplankton 90-percentile 

value falls within the Low class for all the scenarios.  

Overall, the simulated actions had a limited positive impact on the water quality in the bay. 

There was an improvement in the chl-a classification from Medium to Low with the 

implementation of every scenario in Box 6 and with implementation of scenarios 2 and 3 in 

Box 7. Regarding DIN concentration, there was a reduction in Box 8 following the 

implementation of every scenario, which lowers the ranking to Class IV (poor). There was 

also a reduction of phosphate concentration in Scenario 3 that lowers the classification of this 

variable to Class IV (poor) in boxes 6 and 10, and to Class II/III in Box 12.  

For all scenarios, the model predicted a decrease of shellfish productivity for each cultivated 

species when compared with the standard scenario (Figure 2.9f). Figure 2.9e indicates that the 

shellfish production decrease was more significant in the inner box (Box 3, 12-37% 

corresponding to less 286-864 t year-1), whereas in the outer box (Box 12) no significant 
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changes occurred (0.1-0.2% corresponding to less 8-16 t year-1). A more detailed examination 

of the shellfish productivity in each box and scenario (Figure 2.10) showed that in general 

productivity levels were lower in boxes 1 to 7 (inner) and higher in boxes 8 to 12 (outer). 

Figure 2.10. Shellfish productivity, calculated as the ratio of total weight of shellfish harvested to total 
weight of seeding. 

DISCUSSION 

The modelled nutrient load reduction had no significant effect on the water quality of the 

Xiangshan Gang according to Chinese Sea water quality thresholds for nitrate and phosphate. 

Improvements in phytoplankton concentration were limited to some areas of the bay. 

Therefore, the model suggests that the proposed scenarios will not achieve the management 

goals they were designed for. From an eutrophication perspective, there remains a Moderate 

High to High proportion of nutrient loads from the catchment and fish cages to Xiangshan 
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Gang that need to be managed. Future work using this multilayered ecosystem model includes 

the definition of further scenarios, using the SWAT model to assess how different land use 

management practices may impact the bay. Likewise, future scenarios might include the 

adoption of different aquaculture practices such as described by Ayer and Tyedmers (2009) to 

decrease the wastes from fish cages. The model outputs indicated that the nutrients and POM 

provided by fish cages and wastewater are sustaining shellfish growth in the inner boxes. In 

the scenarios that test a decrease of these substances (Table 2.8), shellfish production 

decreases (Figure 2.9e,f and Figure 2.10). The estimated total loss of harvested shellfish was 

between 4 600 t year-1 and 12 700 t year-1, corresponding to a relative decrease in the range of 

10-28%, and to a loss of annual revenue between 555 and 1 500 thousand Euro. Those effects 

are predicted to be more evident in the inner section of the Xiangshan Gang because of: (i) 

higher water residence times, in the range of 60 to 80 days; and (ii) higher competition for 

food resources given that cultivation areas in boxes 1 to 5 represented 89% of the total 

shellfish cultivation area, whereas these boxes accounted only for 34% of the total bay area. 

As such, and based on the analysis in Figure 2.10, it is advisable to reallocate part of the 

shellfish culture towards the mouth of the embayment, in particular for the Chinese oyster and 

muddy clam. Such measures should be adopted in parallel to the reduction of substance 

loading into the bay in order to minimize the reduction in shellfish production. 

Notwithstanding, it is suggested that a cost-benefit analysis should be carried out to analyse 

the economic and environmental viability of alternative sources of income for the local 

community that might compensate for any decrease in aquaculture activities. A combined 

environmental and economic strategic assessment is even more important given that the 

Xiangshan Gang area is considered as a key area to promote sustainable development of the 

Ningbo municipality. Planning includes a balance between its protection and its use, to take 

advantage of ecological and marine resources (Ningbo Municipal People's Government, 

2006). Expected uses include the entertainment and tourism industries, modern fishing and 

international logistics such as harbour activities.  

The multilayered ecosystem model presented in this paper can be used to simulate further 

nutrient and aquaculture management scenarios in Xiangshan Gang, and in particular to test 

varying nutrient loads from catchment and aquaculture sources in order to determine the 

nutrient load level required to meet water quality targets for the bay. On this basis, an 

indication of the various management options available for such load reduction and 

corresponding costs could be provided.  
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Although harmful algal blooms are a severe problem in the Xiangshan Gang and adjacent 

ocean (ZOFB, 2008), due to the complex and uncertain causes of HAB and the chaotic nature 

of these events (Huppert, et al., 2005; Huang et al., 2008a) HAB simulation is not included in 

the ecosystem model. While some observations indicate that many red tides originate in the 

East China Sea, some have developed inside the bay (Long et al., 2008; ZOFB, 2008). Severe 

economic losses were associated with these incidents, either as a result of shellfish and finfish 

mortalities due to toxic algae or to interdiction of seafood sales from the affected areas 

(ZOFB, 2008). The increase of HAB’s in China since 2000 may be associated with an 

increase of fish cages (Wang, 2002), but given the uncertainty about causes of HAB’s in 

Xiangshan Gang, it is speculative whether a reduction of nutrient discharge might cause a 

reduction of the occurrence of HAB’s inside the bay and a consequent reduction in 

aquaculture closure time due to toxin contamination and/or death of cultivated organisms. A 

clear understanding about the origin and the triggering mechanisms of the HAB’s in the 

Xiangshan Gang is required for determining the management possibilities. Monitoring of 

HAB events is recommended, in particular research about causative and sustaining factors for 

HAB, which can be applied for managing aquaculture sites subject to these events (Babaran et 

al., 1998). 

The comparison of ecosystem model results using different temporal resolutions for the 

catchment loads illustrates the importance of the SWAT catchment model in providing a 

temporally distributed estimate of water and nutrient loadings from catchments into coastal 

systems, for different outlets. These issues should be further explored. A detailed sampling 

program together with the catchment modelling should be used to guide on the amount of 

catchment monitoring data and temporal resolution to use in coastal ecosystem models. 

Likewise, similar research should be carried out for ocean boundary conditions and 

aquaculture loads. 

CONCLUSIONS 

The outcomes obtained for Xiangshan Gang indicate that multilayered ecosystem models can 

play a key role in Integrated Coastal Zone Management and for the adoption of an ecosystem-

based approach to marine resource management. The present case study also indicates that the 

integration of ecosystem-based tools can be used to fill data gaps, improve the 

temporal/spatial detail of the setup datasets, and provide guidance to monitoring programmes.  

The multilayered ecosystem modelling approach is appropriate to support management of 

coastal and estuarine systems worldwide including the assessment of cumulative impacts of 
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activities developed in these zones. Overall, the modelling approach presented in this paper 

can be helpful for the implementation of legislation and other regulatory instruments. For 

instance, it can contribute towards the implementation of the European Marine Strategy 

Framework Directive (Directive 2008/56/EC), for analysing scenarios designed to achieve the 

‘good environmental status’ (GES) in coastal waters. 

To maximize the potential benefits of multilayered ecosystem models, a natural development 

is the application of aggregated results in simple screening models for management, and the 

coupling of this kind of ecological model to socio-economic models, in order to more 

effectively address the interactions between natural and social systems. 



 
 

Chapter 3.  Integrated ecological-economic assessment 

Context 

The preceding chapter describes the development of an integrated ecosystem model and its 

application for simulating scenarios designed together with local managers to test potential 

measures to improve water quality in a Chinese embayment.  

Further efforts are needed to translate the complex model results into knowledge useful for 

managers. Likewise, after implementing a set of measures, either to address a specific 

problem or in the context of a broader ICZM programme, managers need to assess the 

effectiveness of their actions.  

Summary 

This chapter presents a methodology to provide scientific-based information required by 

managers and decision-makers to evaluate previously adopted policies as well as future 

response scenarios. The method described here consists of an adaptation of the Drivers-

Pressure-State-Impact-Response methodology, named differential DPSIR (∆DPSIR). The 

∆DPSIR approach further develops the multilayered ecosystem model by explicitly linking 

ecological and economic information related to the use and management of a coastal 

ecosystem within a specific timeframe. The application of ∆DPSIR is illustrated through an 

analysis of developments in a southwest European coastal lagoon between 1985 and 1995. 

The results are presented herein. Furthermore, the methodology was made available online at 

http://www.salum.net/ddpsir/. 
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An ecological and economic assessment methodology for coastal 
ecosystem management 

INTRODUCTION 

Coastal zones are important areas that provide provisioning, regulating and recreational 

services to coastal populations and have a high economic value (Costanza et al., 1997; 

Ledoux and Turner, 2002). Boissonnas et al. (2002) estimate that the services provided by 

coastal environments and wetlands make up 43% of the world’s ecosystem services. 

However, the benefits that these ecosystems generate are threatened by society’s own activity. 

Population settlement in coastal areas is responsible for increasing pressure on these 

ecosystems (Boissonnas et al., 2002), resulting in severe consequences, such as (1) 

eutrophication related problems (Bricker et al., 2003; Ferreira et al., 2007b), (2) degradation 

of natural habitat areas (Cicin-Sain and Belfiore, 2005; Ortiz-Lozano et al., 2005), and (3) 

water quality degradation and sedimentation due to non-sustainable aquaculture production 

(Gibbs, 2004; Bondad-Reantaso et al., 2005). Negative changes in natural systems directly 

feed back on the socio-economic system that relies on the coastal ecosystem’s goods and 

services (Bowen and Riley, 2003). This can result in (1) economic losses, as exemplified by 

Islam and Tanaka (2004) for the fisheries industry and by Lipton and Hicks (2003) for 

recreational fishing, or (2) an increase in the negative impacts of coastal disasters (Costanza 

and Farley, 2007). 

Managers and policy-makers face the challenge of adopting responses to reverse the general 

trend of coastal ecosystem degradation and biodiversity loss. New legislative and policy 

instruments have been defined worldwide over the past few decades (Table 3.1). In order for 

decision-makers to gain insight into the performance of their responses, the management and 

science scales paradox should be addressed (Nijkamp and van den Bergh, 1997; Elliott, 

2002). This implies the need for the application of scientific methodologies across different 

scales to enable understanding of ecosystem behavior (IMPRESS, 2003; Ferreira et al., 2005). 

Additionally, research results must be aggregated across a broader scale so that they may be 

useful to managers and they must integrate with the social sciences (Turner, 2000; Boissonnas 

et al., 2002; Lal, 2003). Bridging this scale gap requires integrated methodologies, such as the 

Driver-Pressure-State-Impact-Response (DPSIR) framework (Luiten, 1999; Ledoux and 

Turner, 2002; Bowen and Riley, 2003). 
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Table 3.1. Legislative and policy instruments adopted worldwide for coastal ecosystem management. 

Domain Legislative and policy instruments 

United 
States of 
America 

Coastal Zone Management Act of 1972 

National Estuary Program established in 1987 by amendments to the Clean Water 
Act of 1972 

Harmful Algal Bloom and Hypoxia Research and Control Act of 1998 

Oceania New Zealand Coastal Policy Statement of 1994 

Commonwealth Government's Coastal Policy of 1995 

Australia’s Oceans Policy of 1998 

Europe European Water Framework Directive (WFD) of 2000 

Recommendation of the European Parliament and of the Council concerning the 
implementation of Integrated Coastal Zone Management of 2002 

Proposal for a Marine Strategy Directive of 2005 

China Measures of management on utilization of sea areas of 2001 

Law on prevention of marine pollution and damage from marine construction 
projects of 2006 

Global Millennium Ecosystem Assessment of 2005 

The DPSIR framework is a widely used method. For instance, it was adopted in a guidance 

document (IMPRESS, 2003) for the application of the European Water Framework Directive 

(WFD). According to this document: (1) driver is an anthropogenic activity that may have an 

environmental effect, (2) pressure is the direct effect of the driver, (3) state is the condition of 

the water body resulting from both natural and anthropogenic factors, (4) impact is the 

environmental effect of that pressure, and (5) response is the measure taken to improve the 

state of the water body. 

In order to contribute to the development of approaches that explicitly establish the link 

between ecological and economic assessment for coastal zone management, the present article 

proposes a new version of the DPSIR framework, herein named differential DPSIR 

(∆DPSIR). The aim of the ∆DPSIR approach is to screen the ecological and economic 

evolution of an ecosystem during a given time period (∆t) that is relevant from a management 

perspective (response implementation period). This approach includes an analysis of the 

drivers, pressures and state before and after the response. The impact on the ecosystem 

(positive or negative) corresponds to the changes of state during the study period, ∆t. 
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One of the advantages of this methodology is the explicit inclusion of a timeframe for the 

ecological-economic evaluation. This is a relevant consideration in impact assessment since 

an impact, by definition, implies a change in the ecosystem and thereby must include the 

analysis of at least two points in time. Another purpose of this methodology is to assess the 

differential value of indicators of ecosystem health and economic components. The use of 

differential instead of absolute values is particularly important in regard to ecosystem 

benefits. Absolute values for ecosystem benefits are not widely accepted since their valuation 

depends on subjective perceptions of the environment and so will be highly dependent on 

factors such as wealth and education (Oglethorpe and Miliadou, 2001). In addition, absolute 

classification does not account for the natural variability of the environmental component 

(Baan and van Buuren, 2003) that is inherent to different ecological regions. 

The objectives of this article are to formalize the ∆DPSIR approach, provide guidelines for 

application of this new approach and to illustrate its implementation using a case study. 

 

METHODOLOGY 

∆DPSIR framework 

In the ∆DPSIR framework, an 

ecosystem is analyzed in 

accordance with the stresses to 

which it is subjected. The 

∆DPSIR approach proposes a 

structured framework to apply 

already existing methodologies 

and tools for quantification of 

both ecological and economic 

variables. As shown in Figure 

3.1, application of the ∆DPSIR 

framework can be divided into 

three stages. 

 

Figure 3.1. ∆DPSIR conceptual model: characterization (stage 
1), quantification (stage 2), and overview (stage 3) stages. 
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Characterization stage 

The objective of stage 1 is to define the scope and aims of the study. 

As schematized in Figure 

3.2, this includes 

identification of: (1) the 

most relevant management 

issues in a given coastal 

ecosystem, (2) adopted 

management actions if using 

hindcast analysis or the 

defined action scenarios to 

be adopted in case of a 

forecast analysis, and (3) 

definition of the study 

period. 

 

Figure 3.2. Schematic representation of the characterization stage 
of the ∆DPSIR approach. 

Quantification stage 

Stage 2 includes quantification of the ecological and economic variables (Figure 3.3). The 

ecological assessment is carried out on two different information scales: the research and 

management levels. The research level provides more complete information. This information 

is synthesized into useful information for the non-scientific community at the management 

level. The ∆DPSIR economic assessment constitutes a cost-benefit analysis to evaluate a 

given management response from environmental and socio-economic perspectives. 

 

Figure 3.3. Schematic presentation of the quantification stage of the ∆DPSIR approach. a) Assessment 
in a given year and b) assessment of the changes in a given period. 
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The first step of the quantification stage is assessment of the ecosystem during at least two 

specific years or two scenarios (at the beginning, t, and at the end of the study period, t+∆t). 

This includes economic quantification of the drivers, ecological quantification of the 

pressures and ecological and economic quantification of the state of the ecosystem (Figure 

3.3a). The second step is to assess the changes that occur during the response implementation 

period, either (1) due to the adoption of a set of management actions in a hindcast analysis, or 

(2) resulting from scenario simulation in a forecast analysis. This step (Figure 3.3b) includes 

quantification of changes in the drivers, pressures and state, which corresponds to the impact, 

and economic quantification of the response. 

A number of well-tested methodologies and tools are available to carry out quantification of 

both ecological and economic variables. For example, regarding environmental monitoring of 

coastal ecosystems, there are a number of indices and indicators (NZME, 1998; NAP, 2000; 

Crawford, 2003; IMPRESS, 2003; La Rosa et al., 2004; Martinez-Cordero and Leung, 2004; 

Rogers and Greenaway, 2005) as well as screening models to distil fine resolution data into 

management information (McAllister et al., 1996; Bricker et al., 2003; Nobre et al., 2005; 

Ferreira et al., 2006). A number of methodologies and studies for economic valuation also 

exist to estimate the economic value of ecosystem goods and services either in or out of the 

market, as exemplified by Bower and Turner (1998), Anderson et al. (2000), Ledoux and 

Turner (2002), Nunes and van den Bergh (2004), Allen and Loomis (2006), Birol et al. 

(2006), and Eom and Larson (2006). 

Overview stage 

The purpose of stage 3 is to synthesize an application of the ∆DPSIR. It includes (1) 

quantification of the net value of the cost-benefit analysis regarding the management of a 

given coastal ecosystem during a specific time period, and (2) evolution of the ecological 

pressure and state indicators. Figure 3.4 exemplifies the type of integrated ecological- 

economic analysis that can be accomplished after quantifying the various components of the 

∆DPSIR model for several years. The scenarios shown in the graphs represent a meaningful 

subset of hypothetical situations for ecosystem management and ecosystem evolution. 
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These scenarios show whether the 

ecosystem has been used in a sustainable 

way (Figure 3.4a); a given ecosystem is 

being overexploited (Figure 3.4b), which 

represents a typical scenario in which the 

economic system is limited by its 

pressures on the ecosystem state 

(Nijkamp and van den Bergh 1997); the 

restoration/remediation measures are 

effective (Figure 3.4c); or there is no 

evidence of management action (Figure 

3.4d). 

Figure 3.4. Scenarios for the evolution of ecological 
and economic indicators: a) sustainable scenario, b) 
overexploitation scenario, c) restoration/remediation 
scenario, d) no management scenario. 

The next section includes a detailed description of the application of the ∆DPSIR including: 

the characterization stage, the ecological and economic assessment of the quantification and 

overview stages, and an explanation of the spatial and temporal scopes. The ∆DPSIR 

application guidelines are illustrated using a case study. 

 

 

Case Study: site and data description 

The study site for application of the ∆DPSIR approach was Ria Formosa (Figure 3.5), a 

shallow, well flushed coastal lagoon with large intertidal areas located in Southwest Europe. 

This lagoon has an average depth of less than 2 m and a short residence time of about one 

day. There is considerable interaction between the ecological and economic systems of this 

coastal lagoon. This ecosystem is classified as a Natural Park by the Portuguese legislation 

(D.L. 373/87) and is considered an area of high ecological value, given that it has been 

recognized by several international conventions (RAMSAR, Cites, Bonn), EC Council 

Directives (Birds Directive-79/409/EEC; Habitats Directive-92/43/EEC) and it is also 

included in the Natura2000 network. The Ria Formosa and its catchment support several 

economic activities that represent the main source of employment and income in the region. 
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The most important economic activities are extensive bivalve aquaculture, fish aquaculture, 

salt production, tourism, manufacturing, agriculture and livestock. Furthermore, the local 

economy includes traditional activities important to cultural preservation, as in the case of salt 

production. 

 

Figure 3.5. Land use and occupation in Ria Formosa and its catchment area. 

 

 

Data collection and analysis 

For the quantification of ∆DPSIR variables, a wide range of diverse data must be collected 

and analyzed. The main sources of data (Table 3.2) were official documents and statistics 

produced by institutes with roles in the lagoon’s management, such as the Portuguese Institute 

of Statistics, scientific literature about Ria Formosa consolidated in Nobre et al. (2005) and 

unpublished literature from the University of Algarve. All economic values presented herein 

have been converted into constant year 2000 Euros using the general index of consumer 

prices for Portugal. 
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Table 3.2. Data description. 

∆DPSIR component Indicator / variable Data source 
D

riv
er

s 
Aquaculture production Cultivated area (bivalve beds, fish ponds) x production 

rate x market price 
POPNRF, LAA, 
INE, UAlg 

Fisheries Fisheries production statistics DGP 

Salt production Salt production statistics POPNRF 

Tourism Average tourist expenditure x total number of tourists in 
major cities of Ria Formosa area 

INE, DGT 

Agriculture/Livestock Gross added value INE, PBH 

Manufacturing industry Gross added value POPNRF, INE 

Pr
es

su
re

s 

Population loads WWTP estimates; PEQ and daily discharge per PEQ POPNRF, PBH 

Agriculture/livestock 
diffuse loads  

Land cover charts and coefficient of nutrient loss per area 
and per type of land use 

PBH, CORINE 

Industry waste water 
discharge 

Population equivalents and coefficients of organic loads 
per population equivalents 

UAlg, PBH 

Livestock point source Number of animals and PEQ per animal PBH, INE 

St
at

e 

Eutrophication 
symptoms 

Macroalgal simulated growth, dissolved oxygen simulated 
in the intertidal area 

Nobre et al. 2005  

Bivalve growth Bivalve production rates LAA 

Official monitoring data of water quality in the bivalve 
production areas 

IPIMAR 

R
es

po
ns

e Response costs Detailed planned actions for the period 1985-1990; 
expenditure on wastewater treatment for the period 1991-
1994 

POPNRF, PBH 

Im
pa

ct
 (V

Ex
te

rn
al

iti
es

) 

Estimates on reduction 
of organic loads  

Determination of loads not treated: 
-PEQ of population not served by WWTP 
-PEQ of livestock that generate point source pollution 
-PEQ of industry 

POPNRF, PBH 

Price of implementation and maintenance of commercial 
compact WWTP designed for less than 500 PEQ 

PLA 

Reduce shellfish 
parasite infection 

Cost for screening of seed infection 
Cost for buying certified seeds 

IPIMAR 
LAA 

Monitoring of the 
VExternalities actions 

Group of 4 persons for monitoring and implementing the 
several actions 

Salary tables  

PEQ - population equivalent; WWTP - waste water treatment plant. Data source abbreviations: 
CORINE - data from CORINE Land Cover project; DGPA - data from the fisheries and aquaculture 
ministering office; DGT - data from the tourism ministering office; INE - data from Portuguese 
Institute of Statistics; IPIMAR - data from the Institute of Fisheries, Research and Sea; LAA - local 
aquaculture association; UAlg - unpublished undergraduate thesis from University of  Algarve; PBH - 
drainage basin management plan (MAOT, 2000); PLA - private company that commercialises 
compact WWTPs; POPNRF - management plan of Ria Formosa Natural Park (SNPRCN, 1986). 

Characterization stage of the ∆DPSIR 

The first step of the characterization stage is to create an overview of the issues to be 

managed, including identification and description of the main drivers, consequent pressures 

and the most relevant environmental features that might be affected (Figure 3.2). 

Identification of the main driving forces is generally made by use of local knowledge. 



Chapter 3,  INTEGRATED ECOLOGICAL-ECONOMIC ASSESSMENT 

 63

To support this task, the use of lists can be helpful. A guidance document for the 

implementation of the WFD is a good example of such a list (IMPRESS, 2003). In addition, 

the guidance document shows the connection between the expected pressures and impacts 

related to each driver, which is important for the analysis of the components of ∆DPSIR that 

follows. Table 3.3 presents examples of pressure indicators for the most common drivers in a 

catchment-coastal ecosystem and the most common water quality indicators that contribute to 

an understanding of the interaction between ecosystem changes and their main driving forces. 

Table 3.3. Correspondence between most common drivers with respective pressure indicators and with 
ecological state indicators. 

 
Drivers 

 
 
 
Pressure 
indicators Aq

ua
cu

ltu
re 

 

Fis
he

rie
s  
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ric
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ure

  

Ca
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 pr
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tio

n 

Ind
us

try
 (G

en
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l) 

Hy
dro
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r  

Fo
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try
  

Ha
bit

at 
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Na
vig

ati
on

  

Ur
ba

nis
ati

on
  

To
uri

sm
 / r

ec
rea

tio
n 

 
Drivers 

  
 
 
 

State  indicators 

Sediments/ SPM/ POM 
loads 

⊗
 

 ⊗ ⊗ ⊗  ⊗  ⊗  Toxic contaminants in aquatic 
plants and animals 

Antibiotic loads ⊗
 

   Phytoplankton concentration 

Fishing effort  ⊗
 

    Toxic algal blooms 

Loss of habitat area ⊗
 

  ⊗ ⊗ ⊗ 
Nutrient concentrations 

Resource partitioning ⊗
 

  Dissolved oxygen 

Production effort ⊗
 

   Macroalgae (species, 
biomass, density) 

Fish production  ⊗      Shellfish health 
N/P load ⊗  ⊗ ⊗ ⊗     ⊗  Fish stocks 
Pesticides   ⊗     Faecal bacteria 

Loads of toxic substances     ⊗       Plankton concentration 
Faecal bacteria inputs    ⊗ ⊗    ⊗

Contaminant in the sediments 

Water temperature 
increase 

     ⊗  Habitat area and condition 

N/P load reduction    ⊗ ⊗  Turbidity / Secchi depth 

Area of protected area        ⊗    Sediment anoxia 
Intertidal area loss ⊗

 
      ⊗ ⊗

Water temperature 

Intertidal mean height 
⊗        ⊗ ⊗ Coastal erosion 

Ship traffic         ⊗    

⊗ Correspondence between each driver and respective pressure indicators.  Ecological state 
indicator affected by the corresponding driver;  State indicator that affects the 
corresponding driver;  State indicator that is affected and that affects the corresponding 
driver. 
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The next step is identification of response actions that have been adopted in the case of a 

hindcast analysis or definition of management action scenarios in the case of a forecast 

analysis (Figure 3.2). If the ecosystem is subject to management policies, a set of laws (e.g. 

Urban Waste Water Treatment Directive, UWWTD, 91/271/EEC or Nitrates Directive, ND, 

91/676/EEC), policies (e.g. DOENI, 2006) or economic instruments (e.g. Romstad, 2003; 

Zylicz, 2003; Hatton MacDonald et al., 2004) are planned and enforced by managers or policy 

makers according to the evaluation of the state of the ecosystem. These responses can be 

targeted at the catchment region, the coastal ecosystem or both, and have a precautionary or 

remedial nature. For ecosystems that are not subject to management, a null response must be 

considered. 

Finally, during the characterization stage, the appropriate timeframe for application of the 

∆DPSIR must be defined (Figure 3.2). The evaluation can be either a hindcast analysis (in 

order to assess changes that have already occurred in the ecosystem due to a given 

management response) or a forecast analysis (in order to predict changes that result from the 

simulation of management scenarios). Definition of the appropriate time period for the 

analysis must take into account the possibility that some of the pressures might only be 

evident in impacts with a time lag of several years (IMPRESS, 2003). 

In the Ria Formosa case study, the characterization stage was elaborated based on the 

Management Plan of Ria Formosa Natural Park (SNPRCN, 1986), local community 

knowledge and the scientific literature. The most outstanding issues are symptoms of benthic 

eutrophication and high clam mortality. Further details, including definition of the period of 

analysis, are provided in the results section. 

Ecological assessment of the ∆DPSIR 

The ecological assessment is done by quantifying (1) the loads (pressure), (2) the 

biogeochemical quality of the ecosystem (state), and (3) their changes (∆Pressure and ∆State, 

i.e., impact) due to a given management response to a given problem or research topic (Figure 

3.3). 

Pressure 

Since the same magnitude of pressure is likely to produce different effects in different 

ecosystems (e.g. due to susceptibility), it is important to identify the significant pressures 

(those that are likely to affect the ecosystem state). The quantification of pressures is dealt 

with at the research level, for example, by determining the annual load of nitrogen from the 
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catchment to the coast and its spatial and temporal distribution (Nikolaidis et al., 1998; 

Grizzetti et al., 2003; Plus et al., 2003; Yuan et al., 2007). 

While the above-mentioned indicators are useful at the research level, they can be quite 

uninformative for managers who might not know whether a given load of nitrogen is high or 

low for a particular ecosystem. To be useful for coastal managers, the provided information 

must describe what is manageable from the catchment-coastal perspective, i.e., the relative 

ratio of manageable to unmanageable nutrient loads (pressure management level). For 

complete pressure quantification, the management level can also include pressures outside the 

scope of the catchment-coastal area. For example, atmospheric loads can represent a 

significant percentage of nutrient inputs (Bower and Turner, 1998), and those must be 

balanced with loads from the catchment-coastal drivers. Simple models, such as Overall 

Human Influence (OHI) (described in Bricker et al., 2003), can be adapted for this 

quantification. Other examples of pressure indicators, at both research and management 

levels, are given in Table 3.4. 

Table 3.4. Example of pressure indicators at the research and management levels for the loss of natural 
habitat areas. 

Level Pressure indicator Units Remarks 

Research Habitat loss per activity (m2 .yr-1) In case of habitat re-establishment, habitat 
loss is negative  

Management Magnitude of habitat loss reaetHabitatAT
bitatAreaExistingHa

arg=
(-) Depending on restoration objectives the 

TargetHabitatArea is calculated based on 
the pristine or potential habitat area 

In order to focus on the identified management issues in Ria Formosa, the most relevant 

pressures for analysis are nutrient discharges. These pressures were quantified using the 

information provided in Table 3.2. 

State 

The state assessment is made at two levels, one applies the state indicators to the research 

level and the other aggregates these indicators into information for managers (e.g., Nobre et 

al., 2005) using screening models (e.g., Bricker et al., 2003) or other methods to provide state 

classifications, which are useful to managers. Table 3.5 shows examples of ecosystem state 

classification tools that aggregate indicators in a simple range of classes that are meaningful 

to managers. These tools may include screening models, such as the Assessment of Estuarine 

Trophic Status (ASSETS) model and water quality standards (e.g., European Union Council 

Directives; United States, EPA water quality standards; China, Sea water quality standards). 
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Table 3.5. State classification tools used to inform managers 

“Issue” to 
manage 

Classification tool Indicators used Classes 

Eutrophication ASSETS (Bricker et al., 

2003 ; Ferreira et al., 

2007b) 

Chl a, macroalgae, dissolved oxygen (DO), loss of 

submerged aquatic vegetation nuisance and toxic 

blooms 

5 classes 

Bathing water 

quality 

Council Directive 

76/160/EEC of 8 

December 1975 

concerning the quality of 

bathing water  

Total and faecal coliforms, faecal streptococci, 

salmonellas, enterovirus,  mineral oil, pH, colour, 

mineral oils, surfactant, phenol, transparency, DO, 

residuals and fluctuating substances, ammonium, 

nitrate, phosphate, kjeldahl nitrogen, pesticides, 

heavy metals . 

2 classes: in 

conformity 

or not. 

Aquaculture 

water quality - 

shellfish 

Council Directive 

79/923/EEC of 30 

October 1979 on the 

quality required of 

shellfish waters  

pH, temperature, colour, total suspended solids, 

salinity, DO, petrol hydrocarbon, organohalogenated 

compounds, heavy metals, biotoxins, faecal 

coliforms. 

2 classes: in 

conformity 

or not.  

Aquaculture 

environmental 

quality – fish 

cages 

Fish farming manual – 

regulation and monitoring 

of marine cage fish 

farming in Scotland 

(SEPA, 2005) 

Water quality: DO, DAIN, DAIP, chl a, zinc, 

copper, sulphide, pH, suspended solids, salinity, 

trace metals, oil, fat, grease, litter. Sediments: 

number of taxa, abundance of polychaetes, Shannon-

Weiner Diversity, Infaunal Trophic Index, 

Beggiatoa, feed pellets, teflubenzuron, copper, zinc, 

free sulphide, organic carbon, redox potential, loss 

on ignition. 

2 classes: 

acceptable 

or 

unacceptable 

levels. 

For the application of ∆DPSIR in Ria Formosa, the ecosystem state is analyzed for 

eutrophication symptoms and bivalve production based on the identified major management 

issues. 

Eutrophication Symptoms 

In the Ria Formosa lagoon, it is appropriate to analyze eutrophication benthic symptoms, such 

as macroalgal growth and dissolved oxygen in shallow areas (Nobre et al., 2005). The use of 

ecological modeling was considered because there is no available data to quantify macroalgal 

growth (Ferreira et al., 2003) or dissolved oxygen in intertidal areas (Nobre et al., 2005) for 

either t or t+∆t. The results of an ecosystem model previously applied to Ria Formosa were 

used (Nobre et al., 2005; Figure 3.6). The simulated macroalgal biomass and dissolved 

oxygen results were analyzed at the management level using the ASSETS eutrophication 

assessment model (Bricker et al., 2003; Ferreira et al., 2007b). 
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Figure 3.6. Ria Formosa ecological model results from Nobre et al. (2005). a) model boxes, b) 
macroalgal growth as function of nutrient loads, c) dissolved oxygen concentration 

Bivalve Production 

The evolution of bivalve production over ∆t was analyzed using the production rates and 

water quality in bivalve cultivation areas (Table 3.2). No long-term research on bivalve 

growth or production rates covering the study period was available. Production was estimated 

using knowledge from local aquaculture associations. It is very common to have qualitative 

information that must be sorted through in environmental evaluations (Nijkamp and van den 

Bergh, 1997). 

∆Pressure, ∆State and Impact State 

The quantification of changes over the period of analysis (∆t) is given by the difference 

between the value of the indicator at t and at t+∆t (Figure 3.3b). The pressure management 

level is an exception, since its objective is to provide information about what is manageable at 

t+∆t rather than the difference over ∆t. Changes in ∆t allow one to ascertain: 

(1) The direction of changes in the state of the ecosystem (i.e., the impact) using the changes 

in the state classification results at the management level, if they exist, or using the changes in 

the state indicator results at the research level; 

(2) The evolution of the pressure component during the response implementation period 

through changes in the pressure indicators results (research level); 

(3) The changes in pressures most likely to produce the target changes in state through the 

pressure management level at t+∆t. 
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As good practice and whenever data exist for the ∆t period, an analysis should be performed 

to ensure that the data at t and t+∆t are not outliers in any of the data series. 

In Ria Formosa, the evolution of pressures was analyzed based on changes in the nutrient 

loads. The impact on the ecosystem was characterized based on changes in bivalve production 

rates and on changes in the model simulation results for macroalgal growth and dissolved 

oxygen. 

Economic assessment of the ∆DPSIR 

The ∆DPSIR economic assessment is a cost-benefit analysis that evaluates a given coastal 

zone management response from an environmental catchment-coastal perspective. It includes 

the calculation of the variables shown in Table 3.6. 

Table 3.6. Economic assessment variables of the ∆DPSIR 

Variables Objective Stage 

Value of the drivers (VDrivers) Estimates the economic value of the activities both 
in the catchment (VDriversExternal) and in the coastal 
ecosystem (VDriversEcosyst) 

Quantification 

Value of the ecosystem 
(VEcosystem) 

Aims to estimate the economic value provided by its 
goods and services 

Value of the response 
(VResponse) 

Includes the direct costs of the actions incurred 
during the response period (∆t). 

Value of the impact on the 
ecosystem (VImpact) 

Intends to capture the changes in the economic 
value of the ecosystem during ∆t. 

Economic value of management 
(VManagement) 

Provides the net value of the cost benefit analysis in 
∆t. Overview 

Ecosystem valuation must encompass a wide range of goods and services provided by nature, 

not just the direct market values (Emerton and Bos, 2004). As such, the value of the 

ecosystem should be given in terms of the total economic value (TEV), which includes direct 

use, indirect use and non-use values (Turner et al., 2000). It is important to note that 

ecosystem valuation is an exercise with many limitations, including the complexity and 

nonlinearity of ecosystems, which makes it difficult to compute an objective and holistic TEV 

(Nijkamp and van den Bergh, 1997; Emerton and Bos, 2004). To accommodate the 

limitations of TEV calculation, ∆DPSIR considers two possible approaches to economic 

assessment: a complex and a simple approach, as shown in Figure 3.7. 
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If the goods and services provided by an 

ecosystem are well known and a complete 

dataset exists or can be gathered for the 

valuation, the complex approach should be 

adopted. According to that approach the 

VEcosystem is given by the TEV (Figure 

3.7). If it is not possible to calculate the full 

extent of the TEV, the economic 

assessment is simplified and the 

VEcosystem is computed using the partial 

ecosystem value (PEV) (Figure 3.7) The 

PEV is a simplification of the VEcosystem 

and is given by VDriversEcosyst.  

 

Figure 3.7. ∆DPSIR economic assessment. 

In the simple approach, the value of the environmental externalities are internalised in the 

differential component of the economic assessment (in VImpact). As shown in Figure 3.7, 

VImpact is given by the changes in the economic value of the activities that rely on the 

ecosystem and by the value of the environmental externalities. This approach ensures that the 

environmental degradation that is not captured in PEV is included in the differential 

component. The choice of whether to use the complex or simple approach depends on the 

specific case study objectives, available data and available resources for further data 

collection. 

To compare t and t+∆t, all economic values calculated in the ∆DPSIR approach must be 

converted into constant prices. If the assessment to be made is a hindcast analysis, an inflation 

rate (such as the general consumer index) can be used to convert past values (t) into present 

values (t+∆t). If the assessment is a forecast analysis, an appropriate discount rate can be 

applied to convert future values t+∆t) into present values (t), as discussed by Chee (2004), 

Field (1997), Ledoux and Turner (2002), and Tol et al. (1996). When comparing ∆DPSIR 

results across countries, it is necessary to normalize economic values by use of the purchasing 

power parity.  
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Details related to the calculation of VDrivers, VEcosystem, VResponse, VImpact and 

VManagement are provided in Table 3.7 and Table 3.8 for the complex and simple 

approaches, respectively. 

Table 3.7. ∆DPSIR complex economic approach. 

Value of the Drivers (VDrivers) 

VDrivers = VDriversExternal + VDriversEcosyst Eq. 3.1 

VDrivers Production value of the drivers in t € 
VDriversExternal Value of the drivers in the catchment in t € 
VDriversEcosyst Value of the drivers in the coastal ecosystem in t € 

Value of the ecosystem (VEcosystem), given by the total economic value (TEV) 

VEcosystem = TEV = VDirectUse + VIndirectUse + VNonUse Eq. 3.2 

VEcosystem Benefits generated from the ecosystem in t € 
TEV Total economic value of the ecosystem in t € 
VDirectUse Direct use value of the ecosystem in t € 
VIndirectUse Indirect use value of the ecosystem in t € 
VNonUse Non-use value of the ecosystem in t € 

Value of the impact on the ecosystem (VImpact) 

VImpact = ∆VEcosystem Eq. 3.3 

VImpact Economic value of the impact on the ecosystem in ∆t € 
∆VEcosystem Changes of the value of the ecosystem in ∆t  € 

Economic value of management (VManagement) 

VManagement = VResponse + VImpact + ∆VDriversExternal Eq. 3.4 

VManagement Economic value of management in ∆t € 
VResponse Value of the response in ∆t € 
∆VDriversExternal Changes of the value of the drivers in the catchment in ∆t € 

 
Table 3.8. ∆DPSIR simple economic approach. 

Value of the Drivers (VDrivers) 
Same as for complex approach – Eq. 3.1, Table 3.7. 

Value of the ecosystem (VEcosystem), given by the partial ecosystem value (PEV) 
VEcosystem = PEV = VDriversEcosyst Eq. 3.5 
PEV Partial ecosystem value, corresponds to the VDriversEcosyst  in t, instead of TEV  € 

Value of the impact on the ecosystem (VImpact) 

VImpact = ∆PEV + VExternalities Eq. 3.6 

VImpact Economic value of the impact on the ecosystem in ∆t € 
∆PEV Changes of the partial ecosystem value in ∆t  € 
VExternalities Value of the environmental externalities in ∆t € 

Economic value of management (VManagement) 
In the simple approach, Eq. 3.4 (Table 3.7) can be rewritten as: 
VManagement = VResponse + ∆VDrivers + VExternalities  Eq. 3.7 
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Value of the drivers 

The value of the drivers (VDrivers, Eq. 3.1 in Table 3.7) includes: (1) the value of economic 

activities that impact a coastal ecosystem but are not sustained by it (VDriversExternal); and (2) 

the value of activities that depend on the coastal ecosystem (VDriversEcosyst). VDrivers 

corresponds to the sum of the production values for these activities. If such information is not 

available, the value of the economic activities may be estimated based on proxies, such as the 

number of workers or the level of output/production. In the case of agriculture, this can be 

estimated based upon the cultivated area and the average production value per area. The 

specific method will depend on the available information, but the same method must be 

applied for both t and t+∆t. Also, when comparing results between ecosystems, it is important 

to verify which of the approaches was used. ∆VDrivers is given by the difference between 

VDriverst and VDriverst+∆t. In a hindcast application of the ∆DPSIR, this value is calculated 

based on data; in a forecast analysis, VDriverst+∆t is calculated based on scenario predictions, 

such as those provided by Ferreira et al. (2007a) for aquaculture productivity and by Lipton 

and Hicks (2003) for recreational fishing. In some cases, especially in forecast analyzes, 

∆VDrivers can represent a measure of opportunity costs, as in the following conceptual 

example: If the ∆DPSIR is employed to analyze a set of response actions designed to improve 

water quality in a coastal ecosystem, which includes the reduction of economic activities in 

the catchment; then ∆VDriversExternal (which measures the reduction of the economic value of 

these activities) corresponds to the opportunity cost of the management strategy. 

In Ria Formosa, the drivers listed in Table 3.9 were considered. Whenever possible, official 

statistics for production values were used to determine the activity economic value; however, 

proxies were used for cases of aquaculture production and tourism (as described in Table 3.2). 

Value of the ecosystem 

There are a number of well-known techniques that may be used to calculate components of 

TEV: market prices, production function approaches, surrogate market approaches, cost-based 

approaches and stated preference approaches (Emerton and Bos, 2004). Söderqvist et al. 

(2004) provided several case studies that exemplify how several economic components of the 

∆DPSIR approach may be calculated. In cases where it is possible to calculate the TEV, the 

complex approach for ∆DPSIR economic assessment is used (Eq. 3.2 in Table 3.7). 

Subjectivity of the existing valuation methods for calculating components of the TEV is 

known (Chee, 2004; Driml, 1997; Nunes and van den Bergh, 2001); however, their systematic 
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application to the same ecosystem over time can lead to an objective differential value of the 

ecosystem (∆VEcosystem). Nevertheless, it is often not possible to calculate the full TEV.  

For cases in which the full TEV cannot be calculated, application of the simple ∆DPSIR 

approach is recommended (Figure 3.7). Following this approach, VEcosystem is given by 

VDriversEcosyst, and is therefore named the PEV (Eq. 3.5 in Table 3.8). Non-market natural 

capital is accounted for in the differential component and is assimilated in VImpact, through 

determination of the value of the environmental externalities during the study period. 

Due to data limitations, the simple ∆DPSIR approach was applied to Ria Formosa (Eq. 3.5 in 

Table 3.8). VDriversEcosyst was calculated considering the activities listed in Table 3.9 that 

depend on the coastal ecosystem. 

Value of the response 

The costs of implementing a response must be carefully defined so as not to duplicate costs 

already included in ∆VDrivers. For example, if construction of waste water treatment plants 

(WWTP) is among the response actions for improving water quality and these costs are 

already included in the drivers, they should not be included in VResponse. The Tillamook Bay 

National Estuary Project Action Plans (TBNEP, 1999) provides a good example of the items 

that should be included in VResponse, especially in the case of restoration scenarios. If the 

∆DPSIR approach is applied to a forecast analysis, i.e., to test different management 

scenarios, VResponse can be calculated based on models (Brady, 2003; Gren and Folmer, 

2003). 

For the Ria Formosa case study, the response costs (VResponse) were calculated based on 

data described in Table 3.2. 

Value of the impact on the ecosystem 

In the ∆DPSIR framework, the aim of VImpact is to give a quantified measure of the changes 

in the economic value of an ecosystem, including the market and non-market value of natural 

capital. Theoretically, the most straightforward way to calculate VImpact would be to estimate 

the TEV at t and t+∆t and calculate the difference between the two values (∆DPSIR complex 

approach). However, as explained previously, in some cases it is only possible to estimate the 

economic value of activities that depend on the coastal ecosystems. Despite this, managers 

require information regarding changes in the ecosystem that are not captured in the market. 

An alternative approach is proposed (∆DPSIR simple approach) where the value of the 

environmental externalities (VExternalities) is calculated. For instance, if there was a decrease 
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in the state of the ecosystem during ∆t and the pressures are known, the cost of the necessary 

actions to avoid the environmental degradation or the costs to replace the loss of ecosystem 

functions should be calculated (VExternalities). Examples of estuarine, coastal and marine 

ecosystem restoration actions are given by Elliott et al. (2007). For cases in which man-made 

capital is not able to compensate for functions provided by the ecosystem or critical natural 

thresholds are irreversibly reached (Ledoux and Turner, 2002), VExternalities must be flagged 

and marked as not determinable (n.d.). The VExternalities calculation varies from case to 

case. For example, if the observed changes in state correspond to an increase of 

eutrophication symptoms due to urban wastewater discharges, the costs of building or 

improving an already existing WWTP would be a proxy for VExternalities. In addition, if the 

symptoms were also due to agricultural runoff, the costs could be estimated by modeling 

approaches, such as the simulated scenarios for nutrient load reduction presented by Elofsson 

(2003). 

The two options for VImpact calculation are as follows: the complex approach (Eq. 3.3 in 

Table 3.7), where it is calculated based on the change in TEV, which accounts for changes in 

the direct, indirect and non-use values; the simple approach (Eq. 3.6 in Table 3.8), where it is 

calculated based on the change in PEV, plus the value of the environmental externalities 

(VExternalities). A positive VImpact value reflects a positive economic impact of the response 

on the ecosystem, and vice versa. 

The economic component of the impact (VImpact) in Ria Formosa was calculated based on 

changes in PEV and the value of the environmental externalities (VExternalities). For the 

calculation of VExternalities in Ria Formosa, a list of the actions required to avoid the most 

relevant negative ecological changes was developed. The costs for implementing these actions 

were calculated and used to compute the VExternalities, based on data described in Table 3.2. 

Economic value of management 

The economic value of management (VManagement, Eq. 3.4 in Table 3.7) provides an overall 

balance between (1) the direct costs of the response actions (VResponse), (2) the changes in 

the value of the ecosystem (VImpact), and (3) the impacts to the local economic activities in 

the catchment (∆VDriversExternal). This economic variable is quantified in the overview stage 

(stage 3) of the ∆DPSIR and aims to provide a synopsis of the ∆DPSIR economic assessment. 
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Spatial and Temporal Scope 

The analysis of ecological processes in the coastal zone generally implies temporal 

resolutions of seconds to days in scientific studies and much longer (years) for management 

purposes. In the ∆DPSIR framework, the ecosystem is analyzed for a given year and the 

changes are evaluated after the response implementation period, which normally spans several 

years. The economic and ecological analyzes for a given year are made using data or 

simulation results with yearly, monthly, daily or even smaller time steps, depending on the 

available data. The difference in timescales can be addressed by upscaling the detailed results 

into the relevant scales of the upstream processes, as exemplified by Nobre et al. (2005): (1) 

for simulating the transport of substances in large-scale ecosystem models, and (2) to distil 

the model results into information for managers using screening models (e.g. McAllister et 

al., 1996; Bricker et al., 2003).  

The spatial extent includes processes that occur in the catchment and their effects on coastal 

ecosystems. The results for managers should be presented at a coarse scale for the entire 

ecosystem or divided into large bodies of water, as required by several management 

instruments (Ferreira et al., 2006). This requires a scientific background that ranges from very 

detailed hydrodynamics (resolved with a temporal resolution of seconds and with a spatial 

resolution of a grid of millions of cells) to less detailed ecological resolution. 

 

RESULTS AND DISCUSSION 

Characterization stage 

The period between 1985 and 1995 corresponds to the implementation period of a set of 

actions defined in the Management Plan of Ria Formosa Natural Park (SNPRCN, 1986). 

During these years, a significant number of WWTPs were built or improved (15 out of a total 

of 27). The most important management issues identified in the Ria Formosa regarding that 

period are seasonal variation of the local human population and a decrease in clam stocks. 

Tourism during the high season increased by 100% and 150% the resident population in 1985 

and 1995, respectively, which made management and operation of WWTP difficult (MAOT, 

2000). The decrease in clam stocks in the mid 1980s resulted from the appearance of the 

parasite Perkinsus atlanticus (Azevedo, 1989). The decreased production affected the socio-

economy of the local population, since the local clam species (Ruditapes decussatus) is a 

highly valued commodity (Matias et al., 2008), of which Ria Formosa contributes ca. 90% of 
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Portuguese production. In addition, bivalve aquaculture in Ria Formosa is responsible for the 

direct employment of up to 10 000 people according to unofficial estimates (Campos and 

Cachola, 2006). In regard to water quality, the major concerns are (1) the upper reaches of the 

lagoon channels, where water turnover is substantially lower than in the main channels 

(Nobre et al., 2005), and (2) benthic eutrophication symptoms, such as excessive macroalgal 

growth, which occurred as a result of nutrient peaks, large intertidal areas and short water 

residence times (Nobre et al., 2005). 

The period and snapshots considered for the ∆DPSIR analysis in Ria Formosa were: 

(1) For t: the annual average for the period 1980–1985; 

(2) For ∆t: the period between 1985 and 1995; 

(3) For t+∆t: the annual average for the period 1995–1999. 

For t and t+∆t the average of a period is used instead of a given year due to data limitations. 

A list of drivers, pressures and state indicators studied in Ria Formosa is shown in Table 3.9. 

Although the main component of fish landings in Ria Formosa is obtained outside the lagoon 

from the open coastal water, this activity is also included in the drivers because it is carried 

out by local fishermen and the lagoon provides the channels and port for commercialization. 

Table 3.9. Characterization of the drivers, state indicators and pressure indicators in Ria Formosa 
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For fish aquaculture, no causal effects between pressures and state were considered given that 

most of the farmers practise extensive small-scale aquaculture in old saltpans. 

Quantification stage 

Drivers 

According to the characterization of 

drivers in Ria Formosa and its 

catchment (Figure 3.8), the most 

relevant economic activity is bivalve 

production, which represented 74% of 

total production in 1980–1985 and 55% 

in 1995–1999.  

In general, there was a decrease in 

drivers’ production, labor force and area 

in Ria Formosa and its drainage basin, 

as shown in Figure 3.8 and Table 3.10. 

The significant reduction in drivers’ 

production between 1985 and 1995 (-

299 million Euros) was mostly due to 

the decrease in bivalve productivity 

during this period (approximately -

66%). 

 

Figure 3.8. Driver production, labor force and occupied 
area in Ria Formosa and its catchment. 

Table 3.10. Quantification of drivers in Ria Formosa and its catchment (changes between 1985 and 
1995). 

 ∆t, 1980/1985 – 1995/1999 
 People Area Production 
  (%) (ha) (%) (x103 €) (%) 

Ecosystem - 350 - 3% 1 750 26% - 287 500  - 60%
Bivalve aquaculture - 200 - 4% 0 0% - 271 000 - 66%
Fish aquaculture n.av. n.av. 200 80% 8 200 1 640%
Fisheries -500 - 10% n.ap. n.ap. - 15 100 - 34%
Salt production n.av. n.av. - 400 - 38% - 3 300 - 85%
Tourism 350 29% 1 950 44% - 6 300 - 29%
Catchment area - 3 250 - 28% - 6 500 - 21% - 11 500 - 15%
Agriculture/Livestock - 2 350 - 34% - 6 350 - 21% - 6 300 - 21%
Manufacturing 
industry  - 900 - 19% - 150 - 33% - 5 200 - 11%
Total drivers - 3 600 - 16% - 4 750 - 13% - 299 000 - 54%

n.av. – not available; n.ap. – not applicable. 
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Pressure 

The nutrients generated in the catchment area are shown in Figure 3.9a. The diffuse loads 

generated by agriculture and extensive livestock are much higher than the wastewater loads 

that enter the lagoon directly. However, the potential pressure that the diffuse loads could 

exert in the lagoon is limited by the seasonal nature of freshwater discharges (Nobre et al., 

2005). The significant reduction of nutrients between 1980–1985 and 1995–1999 (Figure 

3.9a) was due to the reduction in agriculture and extensive livestock production areas. 

Figure 3.9b shows the 

organic loads (expressed by 

the biochemical oxygen 

demand (BOD5) parameter) 

and the corresponding 

population equivalents 

(PEQ). The BOD5 parameter 

is shown to provide a 

comparison measure 

between population 

wastewater discharge and the 

loads generated in the 

catchment area due to 

intensive livestock and 

industry. 

Figure 3.9. Pressure quantification: a) nitrogen (N) and phosphorus 
(P) loads generated by the drivers, and b) biochemical oxygen 
demand (BOD5) and population equivalents (PEQ) of the drivers’ 
wastewater. 

The estimated loads (shown in Figure 3.9) indicate that these pressures are managed because, 

although there was an increase from 1980–1985 to 1995–1999 in the population equivalent 

(196 400 PEQ to 264 600 PEQ), there was a significant decrease in the generated organic load 

(4 750 ton BOD5 year-1 to 1 240 ton BOD5 year-1). It is important to note that a number of 

WWTPs were built during this period. This generally causes a reduction of loads for the entire 

catchment; however, there may be localized increases in nutrient loads in areas surrounding 

the WWTP outlets. With respect to nitrogen inputs into the coastal ecosystem, the direct loads 

from point sources did not change significantly during ∆t (inputs are estimated as 315 ton N 

year-1). 
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State 

The state of the ecosystem was assessed for the presence of eutrophication symptoms using 

results from an ecological model of the Ria Formosa (Nobre et al., 2005). The focus was on a 

problematic area of the lagoon (Box 1 in Figure 3.6a) where the loads increased due to the 

construction of a WWTP with an outlet in this area. The nutrient load in 1995–1999 

corresponds to the standard simulation of Nobre et al. (2005) with an average load of 40 kg N 

ha-1 year-1. In 1980–1985, the direct inputs to this area were 88% less than the levels in 1995–

1999. The ecological model indicates that the nutrient load increase causes the macroalgal 

growth of the larger mass class from less than 50% to about 150% (Figure 3.6b). The model 

results for dissolved oxygen indicate that the intertidal pools in Ria Formosa are potentially 

problematic, with dissolved oxygen tenth-percentile values below the threshold defined by 

Bricker et al. (2003) for biological stress, independent of the nutrient loads (Figure 3.6c). 

However, a reduction in nutrient loads causes a decrease in the frequency of low dissolved 

oxygen events, which decreases the biological stress for bivalves in the intertidal areas 

(Figure 3.6c). 

The provided bivalve production rates 

(ratio between the harvested biomass 

and seeding biomass) were used to 

build Figure 3.10a. The collected 

information indicates a decrease in the 

production rates from 1980–1985 to 

1995–1999 due to the appearance of 

Perkinsus atlanticus. The standard 

harvest in 1980–1985 was four times 

the seeding biomass, while in 1995–

1999, harvest was as low as one-half 

of the seeding biomass and the 

standard harvest was only three times 

the seeding biomass. The water 

quality monitoring data (compiled in 

Figure 3.10b) indicate that the bivalve 

production areas are overall in good 

microbiological condition. 

Figure 3.10. Data used for state quantification of bivalve 
production: a) estimated production rates given by a local 
aquaculture association and b) classification of bivalve 
production areas based on annual average values of faecal 
coliforms. 
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Following Eq. 3.5 (Table 8), the value of ecosystem benefits for the drivers was used as an 

economic measure for the state component. Between 1980–1985 and 1995– 1999, a 60% 

decrease in the PEV (corresponding to -287.5 million Euros) was observed (Table 3.10). This 

significant decrease is mainly explained by the reduction in bivalve production, which 

represents 75% and 55% of the value of the drivers at t and t+∆t, respectively. 

 

Response 

Several actions were planned in SNPRCN (1986) for the response implementation period: 

load reduction, industrial process improvement, aquatic resources quality improvement, 

sustainable tourism, environmental education, technical and scientific research, and 

agriculture-related actions. The cost of the actions adopted during the response 

implementation period was estimated from the data sources shown in Table 3.2 and 

corresponds to a VResponse of -175.9 million Euros. 

 

Impact 

The state of the ecosystem worsened from 1980–1985 to 1995–1999, specifically evidenced 

by: (1) ecological model results indicating an approximate 100% increase in macroalgal 

growth in certain regions, and (2) abnormal clam mortality caused by infection with P. 

atlanticus. 

These negative ecological changes were considered in the calculation of VExternalities. The 

reduction of organic loads was the action identified to prevent excessive macroalgal growth. 

This was estimated based on the data described in Table 3.2. The estimated cost for the period 

of analysis ∆t (10 years) was 26.5 million Euros. The main factor indicated to be responsible 

for abnormal clam mortality was infection with P. atlanticus. Outbreaks of this parasite are 

triggered by temperature and salinity. Furthermore, stressful conditions (like low dissolved 

oxygen) cause an increase in bivalve mortality due to P. atlanticus (Lenihan et al., 1999). This 

parasite affects shellfish worldwide (Goggin and Barker, 1993) and there are no known 

eradication methods. However, several management actions can be taken to reduce infection 

intensity and prevalence. These actions are listed in Table 3.11 along with the respective 

implementation costs for the 1985 to 1995 period. Given the uncertain nature of these 

estimates, three scenarios were considered for calculation of the extra cost of certified seeds. 
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Table 3.11. Possible management action costs necessary to avoid abnormal clam mortality. 

Abnormal clam mortality due P. atlanticus 

Actions to reduce infection intensity and prevalence Costs in 2000 constant prices             (x 103 €) 

Good screening of seed infection Examination and sampling costs:                   41 

Extra cost for buying certified seeds Scenario         Cost  
∆t1 All seeds from outside RF        250 000 
∆t2 Seed scarcity in RF        100 000 
∆t3 No extra costs                   0 

Lower population densities No implementation costs:                                  0 

Improve D.O. in clam beds (same action as for 
macroalgal growth) 

Reduction of nutrient loads:                     26 500 

Optimise conditions in depuration plants No implementation costs:                                  0 

The salary of the workforce (estimated as 0.48 million Euros for ∆t) required to monitor the 

implementation of management actions was also included for calculation of VExternalities. 

Estimates of VExternalities are presented in Figure 3.11 for the three action scenarios 

considered in Table 3.11. 

The economic value of the impact was estimated using Eq. 3.6 (Table 3.8) and is presented in 

Figure 3.11 for the three scenarios of VExternalities. VImpact assumed a negative value due 

to the reduction in VDriversEcosyst and the negative value of VExternalities. The analysis of 

economic impact indicates that expenditure of the value estimated in VExternalities may have 

reduced the economic loss of bivalve production, which, according to Table 3.10, represents 

94% of the estimated losses of VDriversEcosyst. 

VExternalities represents 

between 49% (in scenario ∆t1) to 

9% (in scenario ∆t3) of VImpact 

(Figure 3.11). These estimates 

indicate that if 49% (in scenario 

∆t1) to 9% (in scenario ∆t3) of 

the value of the economic impact 

had been spent, the loss of 

ecological value during ∆t may 

have been reduced to a range 

between 51% (in scenario ∆t1) 

and 91% (in scenario ∆t3). 

Figure 3.11 ∆DPSIR results in ∆t: VImpact for the three 
scenarios considered for the calculation of VExternalities as 
defined in Table 3.11. 



Chapter 3,  INTEGRATED ECOLOGICAL-ECONOMIC ASSESSMENT 

 81

Overview stage 

Figure 3.12 shows the components of 

VManagement according to Eq. 3.7 in 

Table 3.8. These values show the 

economic balance, which includes 

direct costs related to ecosystem 

management and changes in the 

economic value of the drivers, both in 

the catchment and in the ecosystem, 

and the costs that should have been 

expended to potentially avoid the 

ecological changes.  

Figure 3.12. ∆DPSIR results in ∆t: VManagement for the 
three scenarios considered for the calculation of 
VExternalities as defined in Table 11. 

VManagement is presented in Figure 3.12 for the three scenarios of VExternalities for the 

extra cost of buying certified seeds, as shown in Table 3.11. The estimated values indicate 

that there was a negative trend for all components of the economic value of management 

(Figure 3.12). VManagement ranged between -752 million Euros and -502 million Euros, 

depending on the scenario of VExternalities. 

The integrated application of 

∆DPSIR to Ria Formosa is shown 

in Figure 3.12 and Figure 3.13. 

There was a significant 

management response between 

1985 and 1995, with the purpose of 

reducing nutrient pressures from the 

catchment on the coastal 

ecosystem.  Figure 3.13. ∆DPSIR synthesis: ecological and economic 
changes in drivers, pressure and state. 

The corresponding costs (VResponse) represent about six times to half of the value of the 

environmental externalities (depending on the scenario considered for calculating 

VExternalities). Nevertheless, the response actions did not prevent the negative ecological and 

economic impacts to the ecosystem: a decrease in the bivalve production rate and an increase 

in macroalgal growth in the problematic areas. These negative ecological impacts correspond 

to a significant decrease of VDriversEcosyst estimated at -287.5 million Euros. The negative 
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economic impacts represent 80–220% of the response cost, depending on the scenario 

considered for the value of the environmental externalities. 

In the Ria Formosa case the main reason for loss of ecosystem economic value is a parasite 

that significantly decreased the bivalve production rate and for which there are no eradication 

methods. Research still needs to be conducted in order to determine if the introduction of the 

Japanese clam (Ruditapes philippinarum) is responsible for the appearance of this parasite 

(Campos and Cachola, 2006). Either way, it is important to note that although there are no 

eradication methods several measures could have been adopted to mitigate these negative 

impacts. These cost estimates represent 49–9% of the value of the impact (Figure 3.11). This 

result indicates that the costs of those measures could have potentially avoided (1) in the 

worst case, a loss of 51% of the economic impact, and (2) in the best case, a loss of 91% of 

the economic impact. 

The conclusions of the ∆DPSIR application to developments in Ria Formosa between 1985 

and 1995 are particularly important for future management actions. For instance, given the 

significant decrease of provisioning services due to the decrease in clam production, the 

consequent socio-economic impact for local communities estimated herein, and the fact that 

the local clam species is being displaced by nonindigenous species with impacts to 

biodiversity (Campos and Cachola, 2006), it is advisable to invest in the appropriate 

management of bivalve aquaculture, such as hatcheries programs to reduce the limitations on 

local clam seeds (Matias et al., 2008). These insights suggest revision of the proposal for the 

new Management Plan of Ria Formosa Natural Park (ICN, 2005), which only allocates 1.9% 

of planned total budget for bivalve related actions. Future applications of the ∆DPSIR can 

provide guidance on the definition of management strategies for the Ria Formosa. As a 

starting point, management options for current environmental and socio-economic concerns of 

local stakeholders, such as dredging operations, changes in bivalve cultivation practice, 

changes in salt marsh areas and change of number and efficiency of WWTPs could be 

evaluated (Duarte et al., 2007b). In further applications of ∆DPSIR in Ria Formosa it is 

advisable to include pressure indicators related to the bivalve cultivation practice, in particular 

with the seeding procurement. 
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CONCLUSIONS 

The ∆DPSIR framework is a powerful tool for integrated coastal management that can 

support realistic decision-making that accounts for the value of the environmental 

externalities. It can be particularly useful for the evaluation of management and policy 

scenarios according to cost and effectiveness criteria. The ∆DPSIR approach includes key 

concepts for an integrated ecosystem analysis, namely: (1) explicit simulation of the link 

between ecological and economic systems, and (2) inclusion of a temporal component for 

comparison of the ecosystem in t and t+∆t, which is crucial for the assessment of the benefits 

and impacts of the ecosystem. This approach allows for an analysis of the economic 

consequences of changes in environmental quality. In addition, the ∆DPSIR approach may 

stimulate discussion of possible links between management and science, which is required for 

sound decision-making and contributes to a better understanding of the management/science 

scale paradox. 

Application of the ∆DPSIR was illustrated through an analysis of developments in the Ria 

Formosa coastal lagoon between 1985 and 1995. The value of economic activities dependent 

on the lagoon suffered a significant reduction (ca. –60%) over that period, mainly due to a 

decrease in bivalve production. During that decade the pressures from the catchment area 

were managed (ca. 176 million Euros), mainly through the building of WWTP’s. 

Nevertheless, the ecosystem state worsened with respect to abnormal clam mortalities due to a 

parasite infection and to benthic eutrophication symptoms in specific problematic areas. The 

negative economic impacts during the decade were estimated between -565 and -315 million 

Euros of which 9–49% represent the cost of the environmental externalities. The evaluation of 

past developments suggests that future management actions should focus on reducing the 

limitation on local clam (Ruditapes decussatus) seeds, with positive impacts expected for both 

the socio-economy of the local population as well on biodiversity. 

The ∆DPSIR should be applied to a range of ecosystems with different problems and different 

levels of monitoring in order to ascertain its usefulness and to compare the results. Further 

validation of this approach is necessary to verify its ability to consistently translate ecological 

and economic outputs into information that is useful to managers.  Furthermore, future work 

should include the development of a social component for the ∆DPSIR in order to monitor 

changes in social indicators, such as employment and per capita income, which result from 

implementation of the policies or changes in economic activity. 
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Chapter 4.  Ecosystem approach to aquaculture 

Context 

The aquaculture industry is an important socio-economic activity: (i) it is one of the fastest 

growing animal food-producing industries (6.1 % increase from 2004 to 2006 – FAO, 2009), 

(ii) it contributes for food security, particularly in developing countries (Ahmed and Lorica, 

2002; Kaliba et al., 2007), and (iii) it can generate employment and other economic benefits 

for local communities (Ahmed and Lorica, 2002; Kaliba et al., 2007). Aquaculture is expected 

to increase to meet increasing demand for fish, given the strong likelihood that wild fisheries 

will remain stagnant (FAO, 2009). However, aquaculture production is slowing (FAO, 2009). 

The development of sustainable aquaculture calls for an integrated ecosystem approach (FAO, 

2007; Soto et al., 2008), known as the ecosystem approach to aquaculture (EAA, as explained 

in Chapter 1). EAA considers three scales of analysis: (i) the waterbody/watershed level, (ii) 

the individual farm level, and (iii) the global market-trade level. 

Summary 

This chapter uses the methodologies developed in chapters 2 and 3 to illustrate their 

application to EAA at two of the relevant levels of analysis. The first part of this chapter uses 

the ∆DPSIR approach to carry out an ecological-economic assessment, at the 

waterbody/watershed level, of the scenarios simulated with the multilayered ecosystem 

model. The second part provides a detailed ecological-economic analysis of aquaculture 

options at the farm level, by means of the ∆DPSIR. 

 



 

4.1 Waterbody/watershed level assessment: evaluation of model scenarios 

Context 

The analysis of aquaculture at the ecosystem level is essential, primarly, because of the 

feedbacks between this industry and coastal ecosystem. For instance, production depends on 

the good condition of the ecosystem, which aquaculture itself may compromise (GESAMP, 

2001; Islam, 2005). Second, an ecosystem-level analysis is required because coastal 

ecosystems are characterised by complex ecological interactions and are subject to a 

multiplicity of driving forces generated in the catchment, inside the waterbody and also from 

the sea boundary (Ferreira et al., 2008a). 

Summary 

Chapter 2 presents the multilayered ecosystem model for simulating the cumulative impacts 

of multiple uses of coastal zones. Chapter 3 describes the ∆DPSIR methodology developed 

for the ecological-economic assessment of the effectiveness of coastal management actions. 

In this chapter, the multilayered ecosystem model and the ∆DPSIR are applied together, with 

the objective of synthesising the scenario simulation outputs into useful information for 

sustainable aquaculture development at the ecosystem level. Furthermore, this chapter extends 

the ∆DPSIR testing carried out in Chapter 3 by using it to evaluate management scenarios, as 

opposed to evaluation of past management responses by means of data analysis.  
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Integrated environmental modelling and assessment of coastal 
ecosystems, application for aquaculture management 

INTRODUCTION 

Sustainable use and development of coastal areas represent a challenge to coastal managers as 

detailed in the Chapter 1. As discussed previously, in chapters 1 and 2, ecological modelling 

is a powerful tool to assist coastal management. In many integrated environmental 

assessments (IEA’s), not specifically related with coastal management, a large effort focused 

on development of simulation models (Peirce, 1998). IEA consists on the interdisciplinary 

synthesis of scientific knowledge to provide insight regarding complex phenomena, namely to 

guide on decision-making and policy development to address environmental problems and for 

ecological resources management (Peirce, 1998; Toth and Hizsnyik, 1998). There are many 

possible roles for models in IEA, as for instance: (i) understanding behaviour of complex 

system; (ii) scenarios analysis; and (iii) quantifying uncertainty of integrated assessment 

(Peirce, 1998). A wide range of models exist whereby the spatial and temporal resolutions, the 

features of the system included in the model and the level of detail at which they are 

simulated, the computational and numeric complexity are adapted to the specific needs of 

each case (as further discussed in Chapter 2). Integrated assessment and modelling is required 

in order to adopt a comprehensive analysis of the system including its feedbacks (Harris, 

2002). To be useful for managers, independently of the complexity degree of model, the 

generated outputs need to be translated into meaningful information to managers and other 

stakeholders (Harris, 2002; Nobre et al., 2005). For instance while there are many coastal 

ecosystem models, few efforts exist for communicating its output for managers with concrete 

solutions for coastal problems. For that purpose a multidisciplinary approach that synthesises 

scientific-based information to managers is required.  

 

IEA frameworks are normally applied for organizing and structuring information to facilitate 

analysis and assessment of environmental data (Stanners et al., 2008). IEA can also be used to 

analyse and synthesise ecological models into meaningful information for coastal managers. 

For instance, Liu et al. (2008) proposes a framework to make integrated modelling efforts 

useful for managers; whereby one of the steps includes assessing and comparing impacts of 

defined scenarios. The Drivers-Pressure-State-Impact-Response (DPSIR) is a conceptual IEA 

approach widely used for management of coastal systems. The DPSIR was previously used to 
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guide on reporting of catchment-coastal ecosystem models to compare nutrient loading 

scenarios (Artioli et al., 2005; Hofmann et al., 2005; Salomons and Turner, 2005). This 

conceptual approach establishes a causal link between (Elliott, 2002, Borja et al., 2006, 

Stanners et al., 2008; Nobre, 2009): human activities (Drivers), the direct effects that these 

generate (Pressures), the resulting condition of the ecosystems at a given moment in time 

(State), the variation of the State of the ecosystem as a result of the Pressures during a given 

time period (Impact), the management actions and policies that cause a change of the Drivers 

(Response). In particular, the differential DPSIR (∆DPSIR – developed in Chapter 3) 

provides an explicit link between the ecological and economic quantification of the D-P-S-I-R 

components. Other set of IEA approaches is targeted to assess specific environmental issues. 

For instance, the increase of visible effects of coastal eutrophication worldwide enhanced the 

need for assessment tools for management of eutrophication process (Vidal et al., 1999). The 

ASSETS approach (Bricker et al., 2003; 2008) exemplifies an eutrophication assessment 

model applied worldwide (Whitall et al., 2007; Borja et al., 2008). This is one of US 

governmental tool to guide on eutrophication management in about 140 coastal systems over 

the entire US coast (Bricker et al., 2008). 

The sustainability of aquaculture industry is a current challenge for managers of coastal 

ecosystems and of aquatic resources. While better management practices must be 

implemented at the farm level the analysis of the aquaculture impacts must be carried out at 

the ecosystem level; mainly because the individual farm effects are cumulative in relation to 

other farms in the same ecosystem and to other coastal activities (GESAMP, 2001; Soto et al., 

2008). The use of simulation models coupled with IEA approaches can be particularly 

important for mariculture managers to adopt the emerging concept of an ecosystem approach 

to aquaculture (EAA – FAO, 2007; Soto et al., 2008). Firstly, simulation models provide 

understanding about coastal ecosystems and interactions with aquaculture activities. For 

instance McKindsey et al. (2006) and Ferreira et al. (2008a) illustrate the importance of using 

ecosystem models for determining aquaculture carrying capacity. Particularly important are 

integrated modelling approaches, such as the multilayered ecosystem model developed in 

Chapter 2 that allows for the assessment of cumulative impacts of coastal activities at the 

ecosystem level. Secondly, the IEA approaches are useful to distil the generated outputs to 

managers and to compare the impacts estimated due to simulated management scenarios. For 

instance, the simulated effects of changes of nutrient loading into a shallow lagoon are 

synthesised concerning eutrophication status using the ASSETS screening model (Nobre et 

al., 2005). The nutrient loading into coastal systems from fish wastes represents an important 
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aquaculture related problem to be tackled, since not only is it an eutrophication source 

compromising water quality but also limits the expansion of aquaculture itself (Islam, 2005).  

Therefore, the application of a similar approach to investigate impacts of scenarios designed 

to manage fish aquaculture wastes is highly relevant for EAA. Furthermore, the use of an IEA 

approach such as the ∆DPSIR can extend the scenario analysis by assessing both the 

ecological and economic impacts of the management options.  

The overall aim of this chapter is to present an approach that couples coastal ecosystem 

modelling with integrated environmental assessment methodologies. The focus of this work is 

to support the development of an ecosystem approach to aquaculture management including 

interactions with substance loading from the watershed. The integrated environmental 

modelling and assessment approach is illustrated using the Xiangshan Gang, China. The 

simulated scenarios defined by the bay stakeholders as described in Chapter 2 are herein 

analysed and compared using the ∆DPSIR developed in Chapter 3. The objectives of this 

work are to: (i) assess the eutrophication condition of a coastal bay and analyse the impacts of 

simulated scenarios on bay eutrophic state; (ii) assess the ecological and economic impacts of 

the management scenarios; and (iii) provide information about the adoption of an EAA and 

about options for sustainable coastal management of the bay. 

 

METHODOLOGY 

General approach 

The integrated environmental modelling and assessment approach consists in using IEA 

methodologies to evaluate ecosystem model outputs for different scenarios (Figure 4.1). For 

this work the outputs of the multilayered ecosystem model developed in Chapter 2 are used. 

The model runs include simulation of scenarios that comprise changes of aquaculture and 

catchment pressure. 
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These scenarios represent the actions that 

managers of the Chinese bay want to test as 

future responses. The integrated assessment 

of the model outputs is made by means of (i) 

an eutrophication assessment model 

(ASSETS model - Bricker et al., 2003), to 

classify the overall eutrophic condition of 

each development scenario; and (ii) a 

differential version of the Drivers-Pressure-

State-Impact-Response (∆DPSIR – Nobre, 

2009) to compare the ecological and 

economic performance of each scenario with 

the standard simulation. 

 

 

Figure 4.1. Diagram of the integrated 
environmental modelling and assessment 
approach for coastal ecosystems. 

 

Case study site and data 

The approach presented in this chapter is applied to a Chinese embayment, the Xiangshan 

Gang (Figure 4.2). This ecosystem has an intensive use of coastal resources with a large 

aquaculture production and multiple uses of its catchment area. Local farmers indicate a 

decrease in fish price due to the deterioration of the fish taste following the fish cultivation 

boom, just as occurred in other Chinese provinces (Zhang et al., 2002). The bay shows several 

eutrophication symptoms, the most important being: (i) HAB events which originate at the sea 

boundary and are also driven by pressures exerted in the bay (SOA, 2006; Zhang et al., 2007; 

ZOFB, 2008); and (ii) sediment anoxic layer under fish cages (Ning and Hu, 2002; Huang et 

al., 2008b). Chapter 2 describes other features of the Xiangshan Gang and its catchment. 
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Year Aquaculture production 
1987   Just kelp (Laminaria).  
1990-1995   Introduction of shellfish and shrimp 

aquaculture. 
1994-1999   Shrimp high mortalities. 

  Introduction of razor clams in shrimp ponds 
and change of shrimp cultivated species. 

  Fish aquaculture boom. 

2000 
2001 

2002   Decision to reduce 30 % of fish cages 
 

Figure 4.2. Xiangshan Gang characterization: Bathymetry; sampling stations; aquaculture structures 
and production; watershed sub-basin limits and land use; and model boxes. 

The Ningbo municipality, of which the Xiangshan Gang is part, has a strategic plan for the 

sustainable development of this area, namely to address its environmental problems. Several 

actions are foreseen to balance its protection and its use in order to take advantage of the 

ecological and marine resources (Ningbo Municipal People's Government, 2006). 

Furthermore the motivation at the provincial level is that water quality in Xiangshan Gang 

should be classified as level I of the Chinese seawater quality standards (Cai and Sun 2007), 

which corresponds to the best class. 

Data description and analysis 

The work described herein involved assembling a wide range of data (Ferreira et al. 2008b) 

and the model outputs described in Chapter 2. Table 4.1 synthesises the mixed dataset used 
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for the development of the case study, including both environmental and socio-economic data 

(Ferreira et al. 2008b).  

Table 4.1. Synthesis of dataset used in the integrated modelling and assessment approach. Data 
compiled from Chapter 2 work, otherwise reference is provided. 

 Parameters Dataset 

ASSETS   

Zoning Annual median 
salinity  

Water quality database of Xiangshan Gang 9 stations; 
Monthly sampling June 2005 - June 2006. 

IF System volume GIS calculation 
 Catchment loads and 

freshwater flow 
SWAT model outputs 

 Aquaculture 
substance loads 

Number of fish cages per box; Average fish production per 
cage; Food waste; Nutrient load per fish produced, based on 
dry feed conversion rate (Cai and Sun, 2007) 

 Sea water salinity and 
nutrient concentration 

East China Sea database; 1 station near Xiangshan Gang; 
Seasonal sampling 2002. 

EC Chl-a concentration 
and DO 

Water quality database of Xiangshan Gang 9 stations; 
Monthly sampling from June 2005 to June 2006. Ecosystem 
model outputs for Chl-a concentration. 

 Macroalgae Local expert knowledge 
 HAB Qualitative and quantitative data from research surveys 

(ZOFB, 2008) 
 SAV Local expert knowledge 
FO Expected pressure 

change  
Local expert knowledge 

∆DPSIR   

Drivers Value of the drivers Aquaculture production survey; Changes of fish production 
target for scenarios; Model outputs for shellfish production; 
Unit net profit per kg of aquatic resource produced. 

Pressures Catchment and 
aquaculture loads 

Described for ASSETS - IF 

State Ecological state Nutrient concentration in the bay from water quality database 
and ecosystem model outputs; Outputs of the ASSETS EC 
index; shellfish productivity from production survey and 
ecosystem model outputs. 

 Partial ecosystem 
value 

Same as value of the drivers. 

Impact Value of 
environmental 
externalities 

Average investment and operational costs per cubic meter of 
wastewater to treat annually, from projects in China (U.S. 
Department of Commerce, 2005). 

Response Response cost Finfish reduction calculated based on changes of net profit 
(detailed in the Drivers); WWTP investment costs (detailed in 
the Impact). 

IF, Influencing factors; EC, Eutrophic conditions; Chl-a, chlorophyll-a; DO, dissolved oxygen; HAB, 
harmful algal bloom; SAV, submerged aquatic vegetation; WWTP, wastewater treatment plant. 
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Scenarios 

At present, the high nutrient concentration causes this ecosystem to be poorly classified 

relatively to the Chinese seawater quality standards (National Standard of People’s Republic 

of China, 1997). Furthermore, there are several eutrophication symptoms, some of which 

threat aquaculture activities inside the bay (Chen et al., 1992; ZOFB, 2008). The scenarios 

analysed comprise the settings that Xiangshan Gang stakeholders considered important to be 

tested in order to improve water quality (Ferreira et al., 2008b): (i) a reduction of fish cages 

corresponding to 38% less  of total fish production (scenario 1), (ii) extend wastewater 

treatment to the entire population (scenario 2), (iii) simultaneous reduction of fish cages and 

wastewater treatment plant (WWTP) implementation (scenario 3). Chapter 2 presents more 

detail about the scenarios. Table 4.2 synthesises the substance loading used to simulate each 

scenario. 

Table 4.2. Scenario definition. 
 Total loads (t d-1) 
 DIN Phosphate POM 

Standard 18.9 5.0 451.7 
Scenario 1 16.2 3.9 410.1 
Scenario 2 17.5 4.2 413.8 
Scenario 3 14.7 3.1 372.1 

ASSETS model application 

The application of the ASSETS model to the Xiangshan Gang followed the procedure 

described in Bricker et al. (2003) and applied worldwide (http://www.eutro.org/). 

Furthermore, this case study includes the updates made to the methodology (Bricker et al., 

2008). The ASSETS model and its application are well described in Bricker et al. (1999, 

2003, 2007 and 2008), Scavia and Bricker (2006) and Ferreira et al. (2007b). Herein, the 

application to the study site is briefly explained. Firstly, the ecosystem is divided into salinity 

zones (tidal freshwater, mixing water, seawater) according to ASSETS thresholds (Bricker et 

al., 2003). The Xiangshan Gang zoning is carried out by calculating the annual median 

salinity for each box of the ecosystem model (Figure 4.2), considering data in Table 4.1. For 

boxes with no sampling stations, the average annual salinity of the connecting boxes is 

calculated. Secondly, the ASSETS indices - influencing factors (IF), eutrophic condition (EC) 

and future outlook (FO) - are calculated based on field data for 2005-2006 and local expert 

knowledge as detailed below. Thirdly, these indices are combined into a single overall score, 

which is assigned into one of five categories (Bricker at al., 2003): high, good, moderate, poor 
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or bad. Finally, the ASSETS indices are recalculated for the model simulations following 

procedure detailed below. 

Influencing factors - IF 

The IF index calculates the pressure on the system as a combination of the nutrient loading 

with the system susceptibility to eutrophication (flushing and dilution factors) (Bricker at al., 

2008). The simple nutrient mass balance model used in ASSETS (Bricker et al. 2003) is 

applied to combine human pressure and Xiangshan Gang susceptibility, using the data 

synthesised in Table 4.1. The outputs are used to classify the influence factors (IF) index 

according to thresholds defined in Bricker et al. (2003). Nutrient loads include both catchment 

and aquaculture sources. The IF outputs indicate the relative importance of these sources 

compared with the inputs from the sea boundary. 

Eutrophic condition - EC  

The EC index (Bricker at al., 2003; 2008) is calculated by determining for each salinity zone 

the level of expression of the (i) primary symptoms, chlorophyll-a (chl-a) and macroalgae; 

and (ii) secondary symptoms, low dissolved oxygen (DO), harmful algae blooms (HAB) and 

loss of submerged aquatic vegetation (SAV). Data from a water quality database is used to 

calculate the chl-a and DO symptoms, using the 90th percentile and 10th percentile values, 

respectively (Table 4.1), as described in Bricker et al. (2003). The remaining symptoms are 

calculated based on mixed type of information including local knowledge and outputs from 

local research surveys (Table 4.1). 

Future outlook - FO 

The FO index is calculated based on envisaged actions by local managers. Given the proactive 

managers of this ecosystem (Ferreira et al., 2008b and their willingness to improve the rating 

of the estuary according to the Chinese water quality standards (Cai and Sun, 2007), more 

improvements are foreseen. The FO outputs indicate whether the eutrophic condition will 

worsen, improve or remain the same, based on the system susceptibility and the predicted 

future nutrient loads (Bricker at al., 2003; 2008).  

ASSETS application to ecosystem model outputs 

The ASSETS application to the model outputs followed the procedure carried out by Nobre et 

al. (2005). The model simulations are used to computed the IF and EC indices. FO is 

considered to remain the same for any scenario given the willingness to further improve this 

ecosystem. For each scenario IF is recalculated according to projected nutrient loads (Table 
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4.2). For each scenario EC is recalculated based on the simulated chl-a concentration provided 

by the ecosystem model. A monthly random sample of the model results is used in order to 

reproduce the field data sampling frequency (Nobre et al., 2005). All the remaining symptoms 

for calculation of EC are assumed to remain constant. Rationale and limitations of this 

assumption are further explored in the results and discussion section. The ASSETS outputs 

for the standard simulation are compared with the data-based application, to verify validity of 

ASSETS application to the model outputs.   

Differential Drivers-Pressure-State-Impact-Response application 

A differential version of the Drivers-Pressure-State-Impact-Response (Differential DPSIR or 

∆DPSIR) approach (Nobre, 2009) is adopted to evaluate the effectiveness of the proposed 

management scenarios (i.e. the Response) compared with the standard simulation. For that 

purpose the changes in the indicators of Drivers, Pressure and State due to the scenario 

implementation are investigated as well the resulting economic and ecological Impacts 

(Figure 4.3). The overall objective is to synthesise the model outputs into meaningful 

information for managers (Figure 4.1). Economic values are presented in Chinese currency (1 

USD = 8.06 Yuan; at the time of the study). 

 

Figure 4.3. Differential DPSIR application to evaluate simulated scenarios. 

Drivers 

The Drivers are quantified based on the value of the economic activities established in the 

coastal zone (including the catchment) (Nobre, 2009). For this analysis, aquaculture 

production represents the Drivers and is assumed that there are no changes in the remaining 

economic activities. Therefore, the changes in the value of the Drivers (∆VDrivers) between 
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the standard simulation and each scenario are quantified based on the change of the net profit 

of the activities that depend on the ecosystem (∆VDriversEcosyst) while change of the value 

of the activities on the catchment (∆VDriversExternal) equals to zero. The aquaculture net 

profit for each scenario and standard simulation is estimated based on: (i) the fish weight 

production and the simulated weight production of shellfish; and (ii) the net profit per unit 

produced, which is obtained based on an aquaculture economic survey for finfish, oyster, and 

clams (de Wit et al., 2008). The shellfish species simulated in the multilayered ecosystem 

model are Ostrea plicatula (Chinese oyster), Sinonvacula constricta (razor clam), Tapes 

philippinarum (Manila clam) and Tegillarca granosa (muddy clam), as detailed in Chapter 2. 

The finfish production is a forcing function of the model that contributes with dissolved and 

particulate wastes (as explained in Chapter 2). Scenarios 1 and 3 implement the change of 

fish cages that managers want to test.  

Pressures 

The significant Pressures to monitor are the discharge of nutrients from the catchment and 

aquaculture. These are estimated based on the multilayered ecosystem model developed in 

Chapter 2. In order to inform managers about the significance of the loads (from an 

eutrophication perspective) the outputs of the IF index of the ASSETS model are used. A high 

score of IF index indicates that control measures can be adopted at the catchment-estuary 

level, while a low score indicates nutrient reduction actions should be taken at a wider level or 

are not manageable.  

State 

The ecological State corresponds to the condition of the aquatic ecosystem resulting from 

both natural and anthropogenic factors. The State of the ecosystem is analysed considering 

relevant environmental and ecological criteria:  

(i) The nutrient (DIN and phosphate) criteria following Chinese seawater quality standards 

(National Standard of People’s Republic of China, 1997). The simulated annual averages of 

DIN and phosphate concentration are classified according to the thresholds defined in the 

standards for these parameters. A monthly random sample of the model results for the day 

time is used in order to reproduce the field data sampling frequency.  

(ii) The eutrophication condition (EC) index of the ASSETS model is used for the 

classification of the Xiangshan Gang eutrophic state, as detailed previously. 
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(iii) The shellfish productivity, given as the average physical product (APP) as defined by 

Jolly and Clonts (1993), is used as a proxy for the ecosystem use. APP calculation consists of 

dividing the total weight of shellfish harvested by the total weight of seeding.  

The calculation of the ecosystem total economic value (TEV) is beyond the scope of this 

study. Herein, the partial ecosystem value (PEV) is calculated following the simple approach 

of the ∆DPSIR (Nobre, 2009). The PEV corresponds to the value of the Drivers that depend 

on the ecosystem (VDriversEcosyst) as calculated in the Drivers section.  

Impact  

The ecological Impact corresponds to the effect of the anthropogenic pressures in the State of 

the ecosystem and corresponds to the changes in the State at a given time period or between 

simulation scenarios (Nobre, 2009). The ecological Impact is calculated based on the 

variation in the (i) nutrients classification according to the Chinese seawater quality standards, 

(ii) eutrophic condition as determined with the EC index of the ASSETS model, and (iii) 

shellfish productivity.  

The corresponding economic Impact (Nobre, 2009) is calculated based on i) changes of the 

partial ecosystem value given as the value of the Drivers that depend of the ecosystem 

(VDriversEcosyst, as calculated in the Drivers section), and on ii) the value of environmental 

externalities (VExternalities). The economic Impact component of the Differential DPSIR 

aims to provide a measure of the direct changes on the economic activities that depend of the 

ecosystem as well the indirect effects that are not captured in the those activities 

(environmental externalities). In this analysis, the environmental externalities concerning the 

shift from the standard simulation to each scenario correspond to the total nutrient load 

reduction, due to both the fish cage reduction and the WWTP implementation. The avoided 

costs for treating downstream an equivalent amount of nutrients (Farber et al., 2006) 

correspond to the VExternalities. Data about several WWTP projects in China and respective 

investments (Table 4.1) provided the investment and operational costs of effluent treatment. 

Although the WWTP implementation represents a cost for the municipality, thus is accounted 

as a Response cost, it must also be accounted here as a positive environmental externality. 

The average investment and operational costs are given expressed per cubic meter (U.S. 

Department of Commerce, 2005): 4 163 Yuan per cubic meter of total capacity to treat 

annually and 0.7 Yuan per cubic meter of wastewater to treat, respectively. As such the fish 

nutrient load reduction is converted into equivalent wastewater flow to treat annually 

considering the nitrogen (N) and phosphorus (P) removal estimated for the WWTP (Ferreira 

et al., 2008b): 12.3 mg N L-1 and 2.8 mg P L-1. The fish cage nutrient reduction (Table 4.2) 
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converts into about an equivalent wastewater avoided to treat annually of 81 million m3, 

considering the N load, and 66 million m3, considering the P load. A precautionary approach 

is adopted, therefore the larger volume of wastewater avoided to treat is chosen. Calculation 

of the investment cost per annum considered 30-year depreciation for the WWTP facility. 

Response 

The Response is characterised by the measures that the local stakeholders defined in each 

scenario. The corresponding costs are the production losses due to reduction of the finfish 

cages in scenarios 1 and 3, and the WWTP investment and operational costs in scenarios 2 

and 3. It is assumed that the cost for the reduction of the fish cages is equivalent to the net 

profit that would be obtained by the fish farmers if production is maintained at the standard 

level. Calculation of the fish aquaculture net profit is detailed previously in the Drivers 

section. The WWTP related costs are calculated based on several WWTP projects in China 

and respective investments (U.S. Department of Commerce, 2005) as detailed previously in 

the economic Impact section for calculation of the VExternalities.  

Overview 

The overall economic gain or loss in adopting each scenario (VManagement) is calculated by 

means of a balance between: (i) the direct costs related to ecosystem management 

(VResponse), (ii) the resulting changes in the economic value of the drivers (including only 

shellfish production given that the finfish cage reduction is an adopted measure and thus is 

already accounted in the VResponse), and (iii) the value of the environmental externalities 

(VExternalities). This synthesis value reflects not only the Impacts caused by the simulated 

Response actions on the Drivers economic value but also on the indirect value of 

environmental effects, while accounts for the costs required to implement the Response.   

 

Like any modelling exercise, the application of IEA approaches (the ASSETS and the 

∆DPSIR) to interpret modelling outputs presents limitations. The most outstanding on this 

particular case study regards HAB events. The ecosystem model excludes HAB simulation 

due to the lack of underlying deterministic knowledge about the complexity of its causes and 

its chaotic behaviour (Huppert, et al., 2005; Huang et al., 2008a). Consequently, the changes 

that occur in any of the simulated scenarios regarding HAB events are not predicted. 

Therefore, and based on the fact that HAB’s are occurring at least since 1992 in Xiangshan 

Gang (Chen et al., 1992) it is assumed that the HAB symptom for ASSETS calculation 
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remained constant. Likewise, the economic Impacts due to changes in aquaculture closure 

owing to HAB’s are assumed to suffer no changes. 

RESULTS AND DISCUSSION 

Eutrophication assessment of Xiangshan Gang 

Data-based application 

The majority of the Xiangshan Gang classifies as seawater zone (276 km2) corresponding to 

boxes 4 to 12. The remaining area (84 km2) of this coastal embayment classifies as mixing 

water and corresponds to boxes 1 to 3.  

Influencing Factors (IF): The influence from aquaculture and catchment loads on the bay’s 

nutrient concentration is moderate high for N and high for P. These IF ratings indicate large 

nutrient loads compared to the system dilution and flushing potential, which on the other hand 

points towards a large potential for nutrient reduction from a catchment-bay management 

perspective.  

Eutrophic Condition (EC): Table 4.3 synthesises the EC calculation. For primary symptoms 

problems are observed concerning the level of expression of chl-a in the mixing and seawater 

zones. In the mixing zone a high level of expression is obtained given that the chl-a 90th 

percentile values fall within the range for medium eutrophic conditions and that occur with a 

high spatial coverage. In the seawater zone a moderate level of expression is obtained given 

that two out of six stations register medium eutrophic conditions and all the remaining fall 

below the 5 µg L-1 threshold. The frequency of the chl-a problems in both zones is considered 

periodic, given the seasonal phytoplankton peaks observed in the bay on previous years. For 

macroalgae no problems are reported since only cultivated biomass is registered in both 

zones. Concerning secondary symptoms, there are no problems with low DO concentrations 

given that calculated 10th percentile value for both zones are higher than the threshold 

adopted as indicative of biological stress (Bricker et al., 2003). SAV symptom is ambiguous 

to classify because Xiangshan Gang is a highly modified ecosystem, where most of its 

intertidal and near shore area is converted into aquaculture areas, so no inferences can be done 

regarding the loss of those habitats as a result of euthrophication process. On the other hand 

measurements of the sediment below fish cage, carried out on research programmes in 2002, 

estimate anoxic layers with an average depth of 20-30 cm and a maximum depth of 80 cm 

(Ning and Hu, 2002; Huang et al., 2008b).  
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Table 4.3. Xiangshan Gang eutrophic condition (EC) classification, based on data. 

Primary symptoms: Moderate (0.31) 
Chl-a Percentile 90 

value 
Spatial 
coverage 

Frequency Level of expression 
(score) 

Mixing 15.5 High Periodic High  (1) 
Seawater 7.5 Moderate Periodic Moderate (0.5) 
Xiangshan Gang   High (0.62) 

Macroalgae Problem 
status 

Spatial 
coverage 

Frequency Level of expression 
(score) 

Mixing No problem N.A. N.A. Low (0) 
Seawater No problem N.A. N.A. Low (0) 
Xiangshan Gang   Low (0) 

Secondary symptoms: High (1) 
DO Percentile 10 

value 
Spatial 
coverage 

Frequency Score (classification) 

Mixing 5.7 N.A. N.A. Low (0) 
Seawater 6.6 N.A. N.A. Low (0) 
Xiangshan Gang   Low (0) 

HAB Problem 
status 

Duration Frequency Score (classification) 

Mixing Observed Weeks/months Periodic High (1) 
Seawater Observed Weeks/months Periodic High (1) 
Xiangshan Gang   High (1) 

SAV Change Magnitude of 
change 

 Score (classification) 

Mixing Loss Very low  Low (0.25) 
Seawater Loss Very low  Low (0.25) 
Xiangshan Gang   Low (0.25) 

Xiangshan Gang Eutrophic Condition (EC): High 
Chl-a, chlorophyll a; DO, dissolved oxygen; HAB, harmful algal bloom; SAV, submerged aquatic 
vegetation; N.A., not applicable. 

As such and adopting the precautionary principle it is considered, for each salinity zone, SAV 

loss problems with a coverage equivalent to the fish cage area. Therefore, a SAV loss with a 

very low magnitude of change is obtained for both the mixing and seawater zones. There is a 

long record of HAB events in Xiangshan Gang either originated in the bay or coming from 

the East China Sea (Chen et al., 1992; ZOFB, 2008). Given the examples provided in Table 

4.4 this parameter of the EC classifies as high for Xiangshan Gang. 

Future Outlook (FO): The local government plans aim to improve water quality (Cai and Sun, 

2007). Managers willingness to improve is manifested in the stakeholders meeting described 

by Ferreira et al. (2008b). The magnitude of change of nutrient pressures tested in the three 

scenarios corresponds to improve low of conditions in Xiangshan Gang, according to the FO 

index. 
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Table 4.4. Example of HAB events in Xiangshan Gang (ZOFB, 2008). 
Year Occurrences  Location / Coverage  Red tide dominant species and effects 

2000 Incident 24 
May – 15June 

200 km2 Peridium sp., Prorocentrum sp.; 
Severe finfish mortalities with economic 
impact estimated as 10 million Yuan 

2003 Mid May and 
mid June 

Inside Xiangshan 
Gang 

Skeletonema sp., Chaetoceros sp.; 
Occurred near finfish cultivation area with no 
severe economic loss reposrted. 

Overall 21 occurrences 18 outside, 3 inside 
extended for more 
than 30 days 

 

2004 May 27 to 
June 3 

Inside Xiangshan 
Gang 

Gymnodinium sp. and Chaetoceros sp. 

2005 June Entrance of 
Xiangshan Gang / 
1600 km2 

Karenia mikimotoi;  
Hemolitic toxicities with razor clam 
mortalities 

 May/June Outer and inner area 
of Xiangshan Gang 

Prorocentrum sp.; 
Prohibited sale of seafood from affected areas. 

 

Overall ASSETS score: The combination of moderate high influencing factors, high eutrophic 

conditions and improve low future outlook results into a bad eutrophication assessment score 

for the Xiangshan Gang condition in 2005-2006. 

Assessment of simulated scenarios 

The nutrient load decrease estimated in the three scenarios did not suffice to change the IF 

classification, which remained moderate high and high, for N and P, respectively. These 

outputs indicate that in all the scenarios there are still management options for reducing a 

substantial part of the nutrient loading into the bay.  

Table 4.5 synthesises the EC calculation for the data and model simulations, with highlight 

for the chl-a symptom. The chl-a maximums observed and simulated for the mixing and 

seawater zones led to the same classification for the data-based and standard model 

applications of ASSETS model: high and moderate level of expression of chl-a symptom for 

the mixing and seawater zones, respectively. Thus, when comparing the ASSETS application 

to the data and the standard simulation the same results are obtained for the primary 

symptoms, the EC and overall ASSETS score (Table 4.5). For the application of the ASSETS 

to the multilayered ecosystem model outputs is assumed that all the symptoms besides chl-a 

remain constant, for the following reasons: given that no problems are observed for the 

macroalgae and DO symptoms for the data-based application, it is unlikely that in scenario 

simulation where nutrient pressure is reduced these symptoms would increase. For the SAV 
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symptom the same assumptions are applied as for the data-based ASSETS application. 

Therefore, the magnitude of SAV change classifies as very low. 

Table 4.5. Synthesis of ASSETS application to model outputs and comparison with data-based 
application. 

   Data Standard Scenario1 Scenario2 Scenario3 

C
hl

-a
 

P90 
Mixing 15.5 11.1 9.6 8.8 7.4 
Seawater 7.5 7.2 6.3 5.9 5.1 

Spatial 
coverage 

Mixing High High High High High 
Seawater Moderate Moderate Low Low Low 

Level of 
expression 

Mixing High (1) High (1) High (1) High (1) High (1) 
Seawater Moderate 

(0.5) 
Moderate 

(0.5) 
Low (0.25) Low (0.25) Low (0.25)

Bay High (0.62) High (0.62) Moderate 
(0.42) 

Moderate 
(0.42) 

Moderate 
(0.42) 

Primary symptoms Moderate 
(0.31) 

Moderate 
(0.31) 

Low (0.21) Low (0.21) Low (0.21)

Eutrophic condition (EC) High High Moderate 
high 

Moderate 
high 

Moderate 
high 

Overall ASSETS score 
Bad 

     
 

Bad 
     

 

Poor 
     

 

Poor 
     

 

Poor 
     

 

P90, 90th percentile; N.A., not applicable. 

The nutrient load reduction decreases the probability of HAB events with origin from inside 

the bay. However, given that this effect cannot be deterministically predicted and that HAB 

events occur in Xiangshan Gang since at least 1992 (Chen et al., 1992) the precautionary 

approach is adopted and is assumed that no changes occur in HAB events. A high 

classification for this symptom based on the past events in Table 4.4 is therefore considered.  

The main conclusions of the ASSETS outputs for each scenario are described next. A 

reduction of seawater zone boxes with chl-a maximum above the 5.0 µg L-1 threshold 

occurred in all scenarios: from 4 boxes (out of a total of 9 boxes) reduced to 2 boxes in 

scenarios 1 and 2, and to 1 box in scenario 3. Therefore, the spatial coverage of the chl-a 

symptom reduced to low, which resulted into a low chl-a level of expression according to the 

ASSETS decision rules (Bricker et al., 2003). In all the boxes of the mixing zone the chl-a 

maximum falls within the range for medium eutrophic conditions for all scenarios, thus for 

this zone a high level of expression of chl-a is estimated (Table 4.5). Nevertheless, in scenario 

3 the chl-a 90th percentile in 2 boxes, out of the 3 boxes of the mixing zone, is close to the 5.0 

µg L-1 threshold, which is a sign of improvement. The combination of the scores obtained for 

the mixing and seawater zones results into the reduction from high to moderate chl-a level of 
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expression for the Xiangshan Gang for all the scenarios. Therefore, the primary symptoms, 

which are calculated by combining the chl-a and macroalgae symptoms reduced from 

moderate to low (Table 4.5). Cascading effects on the EC and overall ASSETS score are 

obtained (Table 4.5). It is foreseen improvements of the overall euthrophic state due to 

implementation of any of the scenarios. Nevertheless, that is still a poor score as shown in 

Table 4.5. 

Integrated ecological-economic assessment 

Drivers 

Table 4.6 synthesises the Drivers quantification. The reduction of fish production in scenarios 

1 and 3 corresponds to the measures being simulated, i.e. 38% reduction of total production. 

The simulated shellfish production decreases in all scenarios as a result of the substance 

loading reduction with the overall aim to improve water quality, as explained in Chapter 2; 

therefore, the net profit for aquaculture production decreases in all scenarios. Exception is for 

the razor clam, because according to the data survey its production represents losses for the 

farmers. As such, a reduction in its production results in economic gains.    

Table 4.6. Drivers quantification: fish and shellfish aquaculture production (tonnage and net profit). 

Aquaculture 
production 

Finfish Shellfish 
Oyster Razor Manila Muddy 

Net profit (Yuan kg-1) 5.9 1.3 -3.1 2.8 4.2 
Standard Ton 9 370 41 834 1 709 622 784 

106 Yuan 55.3 54.4 -5.3 1.7 3.3 
Shift to 
scenario1 

Ton -3 561 -4 205 -168 -56 -161 
106 Yuan -21 -5.5 0.5 -0.2 -0.7 

Shift to 
scenario2 

Ton 0 -7 977 -348 -100 -285 
106 Yuan 0 -10.4 1.1 -0.3 -1.2 

Shift to 
scenario3 

Ton -3 561 -11 618 -523 -157 -402 
106 Yuan -21.0 -15.1 1.6 -0.4 -1.7 

 

Pressures 

The load reduction from standard simulation to each scenario is synthesised in Figure 4.4a. At 

the management level the catchment-aquaculture sources contribution is classified as 

moderate high and high for N and P, respectively, according to the IF index of the ASSETS 

model (Figure 4.4b). This means that despite the nutrient load reduction simulated in the three 

scenarios there are still other control measures that can be adopted from the catchment-bay 

perspective in order to reduce the nutrient concentration in the bay. 
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Figure 4.4. Pressure change: a) nutrient load (research level); b) catchment-aquaculture sources 
contribution using IF index of the ASSETS model (management level). 

State and Impact 

The standard model results for average nutrient concentration range from 34.4 µmol L-1 for 

DIN and 1.0 µmol L-1 for phosphate in the box that connects with the sea boundary, to 48.4 

µmol L-1 for DIN and 2.2 µmol L-1 for phosphate in one of the inner boxes. The water quality 

in Xiangshan Gang on average is classified above the limit of Class IV (meaning a poor 

quality) according to the Chinese seawater quality standards for nutrient concentration 

parameter. Calculations based on the sampled water quality data also confirm this result. The 

90th percentile value of phytoplankton biomass (which is used as a proxy of the maximum 

values) calculated from model results ranges from 4.4 µg chl-a L-1 in Box 11 to 11.1 µg chl-a 

L-1 in Box 3. Considering the results of the ASSETS model application the chlorophyll-a 

symptom expressed as high in the inner boxes and as moderate in the middle and outer boxes 

with higher seawater renewal. The shellfish productivity, given as the weight of harvest 

obtained per weight of seeding varies significantly among species as shown in Figure 4.5. The 

Chinese oyster is the cultivated species that produces by far the largest harvest per seeding 

effort, on average per kg of seed produces 20 kg of oyster. The lowest productivity is for 

cultivation of Manila clam, which generates per kg of seed less than 5 kg harvest output. In 

general, all species exhibit a marked variability of productivity among the inner and outer 
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boxes (Figure 4.5). The Chinese oyster productivity, for instance, varies from 14, in Box 1, to 

40, in Box 12. An exception is for instance the Manila clam. The highest productivity occurs 

in Box 3 (ca. 6), which is even slightly higher than in Box 10. 

Figure 4.5. Shellfish productivity per box expressed as the average physical product (APP: ratio of 
total weight of shellfish harvested to total weight of seeding), for Chinese oyster, razor clam, Manila 
clam and muddy clam. 

The change of the ecosystem State predicted in each scenario when compared with the 

standard simulation corresponds to the ecological Impact and is detailed herein. The State 

classification per box is shown in Figure 4.6 for the standard simulation and each scenario, 

thus providing an image of the State evolution regarding the nutrients and chl-a criteria. The 

simulated actions had a limited Impact on the State classification regarding nutrient 

concentration in the bay. No changes are estimated for DIN. For phosphate there are 

improvements with implementation of scenario 3 in boxes 6 and 12, which shifted into Class 

IV and into Class II/III, respectively, when compared with standard simulation (Figure 4.6). 

Nevertheless, and more important than to estimate the Impact of nutrient load reduction in the 

bay nutrient concentration is to examine the eutrophication symptoms (Bricker et al., 2003). 
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As regards chl-a concentration, the model estimates improvements for boxes 6 and 7 in all 

scenarios, corresponding to the shift from medium to low phytoplankton levels (Figure 4.6). 

 DIN Phosphate Chl-a 

Legend: Classification according to Chinese seawater quality 
standards: 

ASSETS classification 
for chl-a concentration: 

  
 

Class IV  
 

Class II/III  
 

Low Eutrophic 
condition  

 

Above Class IV  
 

Class IV  
 

Medium 

   
 

Above Class IV  

Standard 

Scenario 1 No change No change 

Scenario 2 No change No change Same as scenario 1 

Scenario 3 No change 

Figure 4.6. Ecosystem State classification of nutrients and chl-a per box for standard simulation and 
indication of changes as simulated in each scenario. 

In Box 4 the same improvement is estimated but only with implementation of scenario 3 

(Figure 4.6). It is important to note that in scenario 3, in three out of the four boxes which still 

exhibit medium chl-a level, the estimated maximum chl-a concentration are very close to the 

threshold that divide the low from the medium class (5.0 µg L-1): 5.3 µg L-1 in Box 1 and 5.1 

µg L-1 in boxes 2 and 5. The changes estimated for the chl-a concentration lead to changes of 

the EC index of the ASSETS model, as detailed in the results section for the ASSETS 
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application to the model outputs. For any of the scenarios the eutrophication condition for 

Xiangshan Gang is estimated to shift from high to moderate high (Table 4.5). Although this 

still corresponds to a poor ASSETS score (Table 4.5) it shows improvements. The model 

estimates a decrease of shellfish productivity with implementation of any of the scenarios 

(Figure 4.5). This is mainly a consequence of the reduction of substance loading into the bay 

in order to improve its water quality, which corresponds to the drivers for the shellfish growth 

(as indicated in Chapter 2). As show in Figure 4.5, this effect is in general more significant in 

the inner boxes (boxes 1 to 3), which are the ones with higher cultivated area, and particularly 

for oysters and razor clams. 

The associated economic Impacts are assessed based on the changes in the aquaculture net 

profit and the value of environmental externalities related with nutrient loads. The Drivers 

section details the changes in the aquaculture net profit (Table 4.6). The VExternalities (Table 

4.7) is calculated as the: (i) avoided cost to treat the nutrient load reduction due to fish cage 

reduction in scenario 1 (ca. 11 347 million Yuan per year); (ii) avoided wastewater treatment 

costs due to reduction of wastewater in scenario 2 (ca. 5 945 million Yuan per year); and (iii) 

the avoided cost due to an equivalent wastewater reduction of 124 million m3 per year in 

scenario 3 (ca. 17 322 million Yuan per year).  

Table 4.7. Value of environmental externalities: avoided costs due to fish cage reduction (in scenarios 
1 and 3) and WWTP costs (in scenarios 2 and 3). 
 Scenario 1 Scenario 2 Scenario 3 
 Fish cage reduction Wastewater treatment Scn1 + Scn2 

Equivalent wastewater 
reduced million m3 

year-1 
81 43 124 

Operational cost 
million Yuan year-1 57 30 87 

Investment cost     

million Yuan 338 696 178 359 517 055 

million Yuan year-1 * 11 290 5 945 17 235 

Total avoided cost  
million Yuan year-1 11 347 5 975 17 322 

* Considering 30-year depreciation for the WWTP (wastewater treatment plant). 

Table 4.8 synthesizes the estimates of the economic Impacts of the implementation of each 

scenario. The changes of the value of the drivers that depend on the ecosystem are negative 

for all scenarios due to the aquaculture production decrease. Given that higher positive 
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environmental externalities are estimated, then a positive economic Impact is calculated for 

all the scenarios. 

Table 4.8. Economic impacts of the shift from the standard simulation to each scenario. 
  Standard simulation to 
  Scn 1 Scn 2 Scn 3 

Changes of aquaculture net profit 
(million Yuan year-1) 

Shellfish -6 -11 -16 

Finfish -21 0 -21 

∆VDriversEcosystem (million Yuan year-1) -27 -11 -37 

Avoided costs for nutrient treatment 
VExternalities (million Yuan year-1) 11 347 5 975 17 322 

VImpact (million Yuan year-1) 11 320 5 965 17 285 

The current analysis presents only the predictable Impacts of substance load reduction. Other 

effects are left out such as HAB events due to general knowledge limitations as explained 

previously. Nuisance and toxic algal blooms can have a significant impact on the local 

economy. For instance as early as in 1992 Chen et al., (1992) indicates that a red tide in 

Xiangshan Bay posed great harm on cultured macroalgae and shellfish. Later in June 2005 a 

large scale red tide in Zhejiang coastal area resulted in economic losses of about 20 million 

Yuan that also affected Xiangshan Gang (SOA, 2006). On the other hand, the effective 

monitoring of red tides and emergency response plan reduced the economic loss of millions of 

Yuans (Ye and Huang, 2003), estimated as about 150 million Yuan near the maritime space of 

Zhejiang province in (Cai, 2001).  

Response 

The response cost corresponds in scenario 1 to the decrease of fish production, estimated in 

the Drivers section as 21 million Yuan per year.  In scenario 2 the response cost is given as 

the implementation and operation cost of the wastewater treatment plant built for Xiangshan 

Gang population, which is estimated as about 5 975 million Yuan per year (as detailed for 

calculation of the VExternalities). The response cost for scenario 3 corresponds to the sum of 

actions adopted in scenarios 1 and 2 and is estimated as about 5 996 million Yuan per year.   

Overview of the integrated environmental-economic assessment 

The ecological and economic ∆DPSIR analysis about simulated scenarios related with 

aquaculture and nutrient management in Xiangshan Gang is synthesised in Table 4.9. A 

decrease of aquaculture net profit is estimated in all scenarios (Table 4.6 and Table 4.9). 
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Firstly, due to the fish cage reduction simulated in scenarios 1 and 3. Secondly, because the 

imposed reduction of substance loads causes a decrease of shellfish productivity (Figure 4.6). 

The fish cage reduction and WWTP implementation scenarios decreased the Pressures of 

nutrients in Xiangshan Gang (Figure 4.4 and Table 4.9). The corresponding ecological 

Impacts are analysed regarding different criteria. The nutrient concentration inside the bay 

improved slightly according to Chinese seawater quality standards only for P; for N no 

changes are estimated. The ASSETS application to the ecosystem model outputs indicates an 

improvement of the chl-a level of expression that results for any scenario on the improvement 

of the eutrophic condition from high to moderate high. The corresponding value of the 

environmental benefits is estimated based on the avoided costs due to the reduction of 

nutrients from fish cages and of population wastewater into bay (Table 4.7). 

Table 4.9. Synthesis of the ecological and economic variables of the differential DPSIR analysis for 
the shift from standard simulation to each scenario. 

   Standard simulation to 
   Scn1 Scn2 Scn3 

∆Drivers Aquaculture net profit 
(VDriversEcosyst)

106 Yuan year-1 -27 -11 -37 

∆Pressures Nutrient load Ton N year-1 -999 -1 316 -2 314 
Ton P year-1 -402 -439 -842 

∆State 

=  

Impact 

Nutrient classification No. of boxes that 
changed N class 

No changes*1 

No. of boxes that 
changed P class 

No changes*2 Improved*3 

ASSETS classification Chl-a level of 
expression 

High to moderate 

Overall Eutrophic 
Condition (EC) 

High to moderate high 

Shellfish productivity % change -12 % -23 % -34 % 

Economic impact 
(VImpact)

106 Yuan year-1 11 320 5 965 17 285 

Response Response cost 106 Yuan year-1 21 5 975 5 996 
      

Overall VManagement 106 Yuan year-1 11 299 -11 11 289 
 Shellfish aquaculture net 

profit 
106 Yuan year-1 -6 -11 -16 

 Fish cage net profit 106 Yuan year-1 -21 0 -21 
 WWTP cost 106 Yuan year-1 0 -5 975 -5 975 
 VExternalities 106 Yuan year-1 11 347 5 975 17 322 

*1 10 out of 12 boxes above class IV and 2 in class IV; *2 8 out of 12 boxes above class IV and 4 in 
class 4; *3 shift of 2 boxes into class IV and 1 box into class II/III. 
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The value of environmental externalities surpasses the negative change of the drivers that 

depend on the ecosystem (Table 4.8); therefore a positive economic Impact is estimated 

(Table 4.9). The Response cost for the planned action in scenario 1 is 2 orders of magnitude 

lower than for scenarios 2 and 3. These two scenarios account for the implementation and 

operation of a WWTP (estimated as about 5 975 million Yuan per year), while in scenario 1 

the response cost corresponds to the closure of 38% of finfish aquaculture net profit 

(estimated as about 21 million Yuan per year). The overall economic balance (VManagement) 

estimates a similar gain for scenarios 1 and 3 and a loss for scenario 2 (Table 4.9). The 

VManagement represents the outcome of the balance between (i) the aquaculture net profit 

decrease (due to the fish aquaculture reduction and decrease of shellfish productivity), (ii) the 

response costs (including only the WWTP costs to avoid the double-accounting of the fish 

aquaculture net profit decrease), and (iii) the quantifiable environmental externalities. In 

scenario 2 the VExternalities cancel out the Response cost leading to a negative overall 

balance. Therefore, the negative balance corresponds to the reduction of shellfish 

productivity. In scenarios 1 and 3, the positive balance is mainly due to the avoided costs for 

treatment of fish effluents.  

Herein, and based on the integrated modelling and assessment approach recommendations 

about improving water quality and minimize aquaculture production decrease are presented. 

To start with, in a follow up work and based on the current set of models the modelling teams 

could provide estimates about the reduction targets required to reach the aimed water quality 

condition. Future actions to improve water quality in Xiangshan Gang should include 

extended stakeholder meetings to define further nutrient reduction measures; namely, related 

with agriculture practice, which are not explored in the current modelling exercise. The 

catchment model of the multilayered modelling system (detailed in Chapter 2) could assist 

the determination of the most effective measures. Alternatively to current options about 

decreasing fish cages it might be interesting to make a cost-benefit analysis to evaluate other 

fish cultivation practices; namely, in integrated multi-trophic aquaculture  (IMTA) systems in 

land-based ponds (as discussed in the second part of this chapter for an abalone-seaweed 

IMTA) or fish cages with a floating bag system (Ayer and Tyedmers, 2009). A benefit of the 

land ponds is that it allows disconnection from the bay during HAB events. An intermediate 

measure might be to re-establish massive kelp or other seaweeds cultivation, especially near 

fish cage areas, in order to reduce loading of dissolved nutrients into the bay. Until late 1980’s 

kelp was the major aquatic resource produced in the bay. The seaweed replacement by other 

aquatic resources and in particular the fish cultivation boom in the second half of the 1990’s is 

believed to be related with several of the HAB events (Feng et al, 2004). Feng et al. (2004) 
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illustrates the ecological and economic advantages of restoring the vast kelp cultivation. To 

minimize the expected effects of decrease of substance loads into the decline of shellfish 

production, the outputs of the approach suggest the displacement of part of the shellfish 

production in order to distribute cultivation areas more evenly over the bay. For instance 89% 

of the total shellfish cultivation area is located in boxes 1 to 5, which correspond to only about 

34% of the total Xiangshan area. In general, the shift of part of the shellfish culture from the 

up- to downstream area of the bay is advisable. For instance, Chinese oyster productivity is 

almost 3 times higher in Box 12 than in Box 1. As such, a fraction of Box 1 oyster production 

(which concentrates 22 % of total oyster production) should be distributed over other boxes. 

This action might require wider zoning efforts for the bay in order to optimize and harmonize 

space allocation between several coastal uses.  

If further management actions for water quality improvement are to be adopted, the wider side 

effects related with the water quality improvement must be accounted in the economic 

analysis; such as the development of other coastal uses such as tourism and recreational 

fisheries, which can diversify the source of income in the region. 

The monitoring of HAB events, in particular for determining the origin (if from inside the bay 

or from outside) and the triggering mechanisms is recommended for the management of the 

Xiangshan Gang eutrophic condition. Babaran et al. (1998) exemplify how research about 

initiating and triggering mechanisms that cause HAB’s can be applied for managing 

aquaculture sites subject to these events. Roelke and Buyukates (2001) provide example about 

establishing preventive management schemes based on an early-warning indicator 

monitoring. Additionally, for future cost-benefit analysis the appraisal of detailed economic 

impacts of HAB events on aquaculture production is recommended. 

 

CONCLUSIONS 

The synthesis of model outputs using IEA methodologies provides useful insights for 

managers about what is expectable to change in water quality and ecosystem state as a result 

of simulation scenarios. In particular the use of the ∆DPSIR enabled an estimate of the 

ecological-economic impacts of the tested management solutions. The comparison among 

scenario outputs provided insights for the adoption of future policy and research. The use of 

∆DPSIR is enhanced by using together other IEA approaches, more targeted that can provide 

classification of ecosystem status regarding specific problems. In this case study, the ASSETS 

screening model played a crucial role to understand the effects of changes of nutrient loading 



Chapter 4.1,   ECOSYSTEM APPROACH TO AQUACULTURE: WATERBODY/WATERSHED LEVEL 

 112

(from both catchment and aquaculture activities) in the eutrophic condition of bay. There are 

nevertheless limitations inherent to any modelling exercise given the incomplete 

representation of reality. For instance, relevant variables for the environmental assessment 

might be left out given the complexity and current knowledge of processes to be simulated, 

such as HAB events. In such cases, if possible is recommended to fill modelling gaps based 

on expert knowledge, rather than overlook the effect (Peirce, 1998). Notwithstanding, the 

scenario prediction besides providing insights to managers concerning the variables simulated 

in the ecosystem model, can also assist the planning of the impact assessment evaluations of 

future coastal management actions. Namely, to identify the relevant variables/indicators for 

the characterisation and analysis of the: (i) catchment and coastal activities, (ii) relevant 

pressures, and (iii) ecological features to monitor.  

The design of the integrated modelling and assessment approach for a specific case study 

must be tailored to address the needs of managers and other stakeholders of the ecosystem. 

This is an essential step to ensure that the relevant local issues are included in the modelling 

and thus that the overall approach is useful. Actions adopted by managers after the application 

of an integrated modelling and assessment approach, should be followed by monitoring to: (i) 

assess the consequent impacts; (ii) verify the modelling predictions; and (iii) contribute to 

knowledge specially to fulfil modelling gaps. 

The case study developed in this chapter lays the groundwork for more complex applications 

of the integrated environmental modelling and assessment approach elsewhere. The subject 

analysed herein is highly relevant for the integrated management of coastal zones given the 

existing challenges to promote sustainable aquaculture development and the management of 

nutrient loading from coastal activities. In particular, the case study illustrated the usefulness 

of the integrated environmental modelling and assessment approach to assist the development 

of an ecosystem approach to aquaculture.   



 

 

 

4.2 Farm level assessment: IMTA evaluation using real farm data 
 

Context 

The previous part of this chapter analysed the multilayered ecosystem model scenarios to 

support the development of EAA at the waterbody/catchment level. The analysis of 

aquaculture at the individual farm level is also important for the development of EAA. 

Aquaculture has been mostly associated with negative impacts, mostly due to unsustainable 

cultivation practices (Paez-Osuna et al., 1999; Feng et al., 2004; Xu et al., 2007). However, 

depending on the aquaculture practice and cultivated species, aquaculture can also generate 

environmental benefits (Neori et al., 2004; Newell, 2004; Žydelis et al., 2008; Gren et al., 

2009). The adoption of best management practices (BMPs) for new and existing farms is 

important to minimize the potential negative impacts on water quality and ecosystem 

deterioration, while potentially leading to increasing profit margins, as exemplified by 

Valderrama and Engle (2002) for shrimp aquaculture. 

Summary 

This chapter illustrates the application of the ∆DPSIR for the ecological-economic assessment 

of aquaculture options at the farm level. An abalone farm located in South Africa is used to 

exploit the detailed dataset about its environmental and economic performance. The case 

study consists of assessing the ecological-economic effects of the abalone-seaweed IMTA on 

the farm’s performance and the corresponding environmental externalities.   
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This section corresponds to the manuscript submitted to Aquaculture: 

Ecological-economic assessment of aquaculture options: comparison 

between monoculture and integrated multi-trophic aquaculture, by 

Nobre, A.M., Robertson-Andersson, D., Neori, A., Sankar, K. 
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Ecological-economic assessment of aquaculture options: comparison 
between monoculture and integrated multi-trophic aquaculture 

INTRODUCTION 

Aquaculture has grown at an average annual rate of 8.8% since 1970, with an increase in the 

production of seafood (excluding plants) of about 8 fold up to 2004 (FAO, 2006).  

Sustainability issues related to socially and environmentally irresponsible aquaculture 

practices reported for certain cultivation systems have generated concerns about the industry, 

particularly highly industrialized and intensified monoculture farms (Paez-Osuna et al., 1999; 

GESAMP, 2001; Islam, 2005; Xu et al., 2007; Allsopp et al., 2008). Because of their impact 

on the environment and of their negative feedbacks on the aquaculture operations, the 

expansion of aquaculture has been limited (GESAMP, 2001; Islam, 2005; Gibbs, 2009). The 

broader public is generally unaware of the benefits that aquaculture can generate to the 

environment (Newell, 2004; Lindahl et al., 2005; Ferreira et al., 2007a; Rice, 2008; Žydelis et 

al., 2008) and to society (promotion of poverty reduction through employment, higher income 

and food security – FAO, 2005; Msuya, 2006; Troell et al., 2006; Kaliba et al., 2007; 

Robertson-Andersson et al., 2008). Given the importance of food security on the one hand 

(Ahmed and Lorica, 2002), and given the negative ecological-economic impacts of poorly 

conceived aquaculture practices on the other hand (Islam, 2005), an integrated planning and 

management of aquaculture is required (GESAMP, 2001). Furthermore, external benefits of 

socially and environmentally responsible (sustainable) aquaculture can have direct economic 

value, since consumers have been showing increased awareness of, and preference for, 

sustainable seafood harvesting (FAO, 2006).  The main technological approaches that have 

been developed to meet environmental concerns (Refstie et al., 2001; Neori et al., 2004; 

Gutierrez-Wing and Malone, 2006) include: (i) improved feed and water management, (ii) 

water recirculating systems, (iii) bacterial biofilters and (iv) extractive species (filter feeders, 

detritivores and macroalgae).  

More recently, the integration of fed species and extractive species in the modern form of 

polyculture called integrated multi-trophic aquaculture (IMTA, also known as 'partitioned 

aquaculture' and 'aquaponics'), has been developed to ease environmental concerns because it 

addresses issues of both productivity and nutrient loading into the environment  (Neori et al., 

2004; FAO, 2006; WGEIM, 2006; Abreu et al., 2009; Buschmann  et al., 2009; Troell et al., 

2009). IMTA has been gaining recognition as a sustainable approach to aquaculture because 
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of its combination of environmental, economic and social advantages (Whitmarsh et al., 2006; 

Ridler et al., 2007; Allsopp et al., 2008). A key component of IMTA is the use of macroalgae: 

while taking up dissolved inorganic nutrients (nitrogen and phosphorus), the produced algal 

biomass is a renewable protein-enriched feed to other cultivated species, and a product on its 

own (Chopin et al., 2001). Abalone farming is an aquaculture industry that can particularly 

benefit from the implementation of IMTA with marine macroalgae (seaweeds), which are the 

natural abalone food. South Africa, the third largest abalone producer in the world (Gordon 

and Cook, 2004), has begun implementing IMTA with the seaweed Ulva lactuca L. and the 

abalone Haliotis midae L. (Robertson-Andersson et al., 2008). This move has largely emerged 

for the following reasons: 

(i) Demand for natural stocks of South African kelp as feed for abalone is approaching the 

maximum sustainable yield of the concession areas (Troell et al., 2006) and insufficient 

access by some farms to wild kelp beds (Bolton, 2006; Smit et al., 2007; Hwang et al., 2009).  

(ii) Diets of mixed algal species accelerate abalone growth rates relative to single-species 

diets (Naidoo et al., 2006; Dlaza et al., 2008). 

(iii) Cultivation of seaweeds in the farm's abalone effluent allows water recirculation and 

reduces nutrient discharge into the environment (Robertson-Andersson, 2007). 

(iv) A land based seaweed facility allows the abalone farm to disconnect itself from the sea 

for extended periods by water recirculation through seaweed ponds during red tides and oil 

spills (Robertson-Andersson, 2007). 

Aquaculture, like other uses of marine resources where the environmental and the socio-

economic systems are intertwined, require for its sustainable development information about 

the ecological and economic impacts of different practices. This implies communication 

between the scientific, management and policy-making communities, and the integration 

among disciplines using mutually understandable concepts (GESAMP, 2001). The Drivers-

Pressure-State-Impact-Response (DPSIR) approach is a potential analytical framework for 

determining the impacts of aquaculture options. This approach has been applied to assist in 

the evaluation of environmental impacts and of ecosystem management approaches (Stanners 

et al., 2008). In particular, the DPSIR has been widely used to report about quantification of 

the impacts of human activities on coastal activities (Borja et al., 2006; Elliott, 2002; 

IMPRESS 2003; Nobre, 2009). The DPSIR is a conceptual framework for integrated 

environmental assessment that provides (i) a systematic view of the socio-economic and 

environmental interactions and (ii) a reporting framework to policy-makers and public 

(Bowen and Riley, 2003; Ledoux and Turner, 2002; Nobre, 2009). The application of the 
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DPSIR is based on the use of indicators (Stanners et al., 2008). It facilitates the structuring of 

data following the causal chain D-P-S-I-R: Drivers are the anthropogenic activities generating 

Pressures that perturb the State of the ecosystem, thus causing an Impact on the ecosystem, 

which calls for management and policy-making Responses to improve the State of the 

ecosystem (Borja et al., 2006; IMPRESS 2003). A recent version of the DPSIR, the 

Differential DPSIR (∆DPSIR), establishes an explicit link between the ecological and the 

economic systems and screens the evolution of ecological and economic variables over time 

or between simulated scenarios (Nobre, 2009). The ∆DPSIR approach provides a tool for the 

assessment of changes in environmental quality and consequent effects on the economic 

system, including on the value of anthropogenic activities and of the ecosystem (Nobre, 

2009). 

The aim of the work presented herein is to couple ecological and economic information to 

support resource managers in the assessment of the ecological and economic impacts of 

aquaculture operations. This paper uses the integration of seaweed production in the abalone 

industry in the form of IMTA as a case study, and the ∆DPSIR framework (Nobre, 2009) as 

an approach to evaluate the ecological and economic impacts. The objectives are to: 

(i) Assess the environmental and economic impacts to the main stakeholders of the shift from 

abalone monoculture to IMTA with seaweeds using data from a farm located in South Africa 

(Roberston-Andersson, 2007; Roberston-Andersson et al., 2008; Sankar, 2009).  

(ii) Carry out a mass balance analysis to manage nutrient limitation due to seaweed expansion 

in the South African farm. Includes data analyzes from an Israeli IMTA farm with abalone, 

fish and seaweeds (Neori and Shpigel, 2006) to provide guidance on possible solutions for the 

sustainable management of the nutrient limitation that occurs when expanding the seaweed 

production. 

METHODOLOGY 

General approach 

The ∆DPSIR methodology (Nobre, 2009) is applied to evaluate aquaculture options. The 

∆DPSIR includes quantification of ecological and economic variables. The ecological 

assessment includes quantification of indicators of Pressure, State, and Impact. The economic 

assessment consists in a cost-benefit analysis to evaluate a given Response from an 

environmental and economic perspective; includes quantification of the value of the divers, of 

the ecosystem, of the impact, of the response and the economic value of management (Nobre, 
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2009). The ecological and economic variables are used to quantify the Drivers, Pressures and 

ecosystem State in two or more time snapshots (or scenarios); these values are then used to 

calculate (or predict) the relevant overall Impacts that result of the management Response 

over the time interval (or between two scenarios).  

The ∆DPSIR components are defined as follows (Nobre, 2009):  

 (i) Drivers - the anthropogenic activities that may have an environmental effect at a given 

moment in time; it is a socio-economic component of the ∆DPSIR. 

(ii) Pressures – direct positive and negative (e.g., biofiltration or sewage effluents, 

respectively) influence of the Drivers on the environment. 

(iii) State - the condition of the ecosystem at a given moment in time. It has both ecological 

and economic dimensions and is influenced by both anthropogenic Pressures and natural 

factors. The ecological dimension of State can include water quality and habitat biodiversity 

quantified using existing classification tools such as ASSETS eutrophication model (Bricker 

et al., 2003) and benthic diversity index (Pinto et al., 2009). The economic dimension can be 

provided by the values of environmental goods and services, quantified by the total economic 

value (TEV) of an ecosystem (Turner et al., 2003). Calculation of an objective and complete 

TEV, however, is a complex exercise with limitations (Chee, 2004; Emerton and Bos, 2004; 

Kumar and Kumar, 2008).  

(iv) Impact - the environmental effect of the Pressures, i.e. changes in the State of the 

ecosystem between two points in time or between two scenarios. An environmental Impact 

can be either positive (e.g. restoration of a habitat) or negative (e.g., eutrophication). The 

associated economic Impact includes direct gains/losses (e.g., related to tourism, 

transportation and fisheries) as well as indirect gains/losses of non-use value of ecosystems 

(e.g., related to value of mangroves in reproduction of marine animals). In the ∆DPSIR 

framework the value of the economic Impacts is determined by one of two possible 

approaches (Nobre, 2009): i) if the TEV was calculated in the State component of the 

analysis, the economic Impact is given as the difference in TEV between two points in time or 

between two scenarios; otherwise (ii) where TEV is not computed, the economic Impact can 

be calculated based on changes in the profit of the Drivers that depend on changes in the State 

of the ecosystem and on the value of environmental externalities, which can be calculated 

based on replacement, restoration and avoided costs (Emerton and Bos 2004; Ledoux and 

Turner, 2002) associated with the quantified environmental Impacts. 
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(v) Response - management actions and policies such as i) measures taken to improve the 

State of the water body (a new wastewater treatment plant), ii) a waste discharge permit that 

increases pollution of a receiving water body or, iii) change of aquaculture practices that can 

improve the State of the receiving coastal waters. The economic dimension of Response is 

quantified by calculating the cost of the measures and actions identified. 

Figure 4.7 schematizes the DPSIR application to evaluate aquaculture options.  

 
Figure 4.7. Application of the differential DPSIR to evaluate the seaweed role in IMTA. 

Case study site and data 

This study was conducted with data from an abalone farm located in the Western Cape, South 

Africa, the Irvine and Johnston (I & J), Cape Cultured Abalone Pty, Ltd. The farm started 

operating in 1994 a flow-through abalone monoculture using seawater pumped from the sea. 

In 2007 this farm installed pilot scale seaweed culture ponds, through which effluent from the 

abalone culture facility was recirculated. Seaweed from these ponds supplied 10% of the 

abalone seaweed requirements. An expansion of the seaweed ponds planned for 2009 will 

supply 30% of the abalone seaweed requirements. Data on the performance of this farm were 

taken from Roberston-Andersson (2007), Roberston-Andersson et al. (2008) and Sankar 

(2009). The I & J farm was analyzed according to the three operation settings: the flow-

through abalone monoculture (setting 1); and the two scales of an integrated abalone/seaweed 

recirculating system (settings 2 and 3) (Table 4.10). In both settings 2 and 3, half of the 

abalone production was still cultivated using a monoculture flow-through system (Table 

4.10).  
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Table 4.10. Settings adopted for the application of the differential DPSIR to the I & J farm. 
Production Setting 1 Setting 2  Setting 3  

(ton year-1) Monoculture Monoculture + IMTA Monoculture + IMTA 

Abalone 240 120 120 120 120 

Seaweed  120 360 

∆DPSIR analysis Shift from: setting1 to setting2; Setting1 to setting3 

Seawater was pumped from the sea into top header tanks at a rate of 1 200 m3 hr-1.  From 

there it was gravity fed un-filtered to the abalone tanks.  In setting 1, effluent water was 

discharged to the sea.  In setting 2 the effluent water from half the farm was channeled via a 

conveyor filter, which removed about 85% of the water-borne faeces, to four seaweed paddle 

ponds (with area of 140 m2 and volume of 108 m3 per pond). Water from the seaweed ponds 

was collected in a sump tank, from where half was pumped back into the header tank and half 

discharged. 

As guidance for the sustainable management of the nutrient limitation that occurs in I & J 

when expanding the seaweed production another IMTA was analyzed - the IMTA farm Seaor 

Marine Ltd., located on the Israeli Mediterranean coast, 35 km north of Tel-Aviv (Neori et al., 

2004). The Seaor Marine farm balances fish and abalone nutrient excretion with seaweed 

nutrient uptake and abalone seaweed consumption (Neori and Shpigel, 2006; Neori et al., 

1998; Shpigel and Neori, 1996; Shpigel et al., 1996). The data for the nutrient budget of this 

farm consists on (i) N removal rate by seaweeds (4 g N m-2 d-1), N uptake efficiency (85%) 

and total production area (3.5 ha); (ii) fish N excretion rate (182.5 g N per kg of fish 

produced); (ii) abalone N excretion rate (126.3 g N per kg of abalone produced) (Neori et al., 

1998, 2004). 

 

Differential Drivers-Pressure-State-Impact-Response application to the 

case study 

We have assessed the economic and environmental cost/benefits to the main stakeholders of 

the shift from the monoculture setting 1 to the IMTA settings 2 and 3 (Table 4.10). ∆DPSIR 

analysis examined the ecological and economic effects of the integration of seaweed 

production in the I & J abalone farm (Response) by a quantification of the Drivers and 
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Pressures at the different operation settings, and the resulting Impacts. The application of the 

∆DPSIR is generally schematized in Figure 4.7 and detailed below.  

All monetary values in this paper were expressed in U.S. dollar (USD). Currency conversion 

used the average exchange rate for 2007 from IMF (International Monetary Fund) data (1 

USD = 7.24 Rand and 1 Euro = 1.312 USD). Furthermore adjustments were made to equalize 

purchasing power between USA and South Africa using the purchasing power parity (PPP) 

for 2007 (1 USD = 4.273 Rand) obtained from IMF database. 

Drivers 

The Drivers of this case study are aquaculture production of abalone and seaweed (Table 

4.10). These Drivers were quantified by profits of the I & J farm, with cost and revenue data 

extracted from Robertson-Andersson (2007), Robertson-Andersson et al. (2008) and Sankar 

(2009). Abalone sales were 240 ton year-1 with revenue of 378 Rand kg-1 (converts to 88.46 

USD kg-1, using PPP) live abalone in all operation settings. The costs for setting 1 were 

calculated based on an analysis of the farm running costs (Table 4.11). For settings 2 and 3 

the costs were calculated based on setting 1 running costs and on the additional costs or 

savings associated with the shift to the abalone/seaweed recirculation system. 

Table 4.11. Running costs of I & J farm when producing abalone in monoculture using a flow-through 
system (setting 1) (compiled from Robertson-Andersson (2007)). 

Setting 1 - Total running costs 

6 740 thousand USD per annum 

Running cost breakdown % 

Labor  31.3 

Sales related costs 21.5 

Kelp feed 10.6 

Repairs and maintenance   7.2 

Electricity   6.8 

Artificial feed   5.6 

Research and development   3.2 

Security   2.5 

Technology    2.1 

Insurance   4.2 

Miscellaneous (e.g. generator, tractor )   5.0 
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Pressures  

The Pressure exerted on coastal ecosystem by aquaculture of abalone, fish and seaweed can 

be assessed by a range of indicators as synthesized in Table 4.12. 

Table 4.12. General indicators of Pressure exerted on the coastal ecosystem by aquaculture of abalone, 
seaweed and fish. 

Abalone Fish Seaweed 

N and P nutrient discharge in the effluents 

Oxygen concentrations in the effluents 

pH in the effluents 

Turbidity in the effluents 

BOD in the effluents 

Temperature in the effluents 

GHG* emission due to electricity consumption in farm operations (aeration, pumping, agitation, 

wastewater treatment) 

GHG emission due to electricity consumption in preparation of artificial feed and additives 

- Net CO2 uptake 

Harvest of natural kelp beds as 

abalone feed 

Harvest of fish to prepare 

fish feed 

- 

*Greenhouse gas. 

For the case study the Pressure indicators considered important were: (i) nutrient discharge; 

(ii) harvesting of natural kelp for feed and (iii) emission of greenhouse gases (GHG). 

Approximate values for Pressures on the coastal ecosystem were estimated using the 

procedure detailed below. More detailed studies could include life-cycle assessment (LCA) 

(Ayer and Tyedmers, 2009).  

Pressure I: Nutrient discharge in the effluent was calculated as the product of wastewater flow 

and the yearly average nutrient content at the systems' outlets, from the abalone tanks in 

setting 1, and from the seaweed ponds in setting 2 (Table 4.13). A simple nutrient mass 

balance model (described below) predicted effluent discharge in setting 3.    
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Table 4.13. Water quality and water flow in the monoculture (setting 1) and IMTA system (setting 2) 
for the I & J farm (compiled and combined from Robertson-Andersson (2007), Robertson-Andersson 
et al. (2008), Sankar (2009)). 

Parameter Units Setting 1 Setting 2 

Water pumped into the system/ wastewater flow m3 h-1 2 772 1 386

Recirculation % 0 50

Y
ea

rly
 a

ve
ra

ge
 n

ut
rie

nt
 

co
nc

en
tra

tio
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Incoming seawater µmol N L-1 7.66 7.66

µmol P L-1 0.64 0.64

Abalone tank outflow µmol N L-1 16.61 8.15

µmol P L-1 3.20 3.57

Seaweed pond outflow µmol N L-1  3.82

µmol P L-1  3.41

Pressure II: The use of the cultivated seaweed as feed for the abalone in the IMTA settings 

reduces harvesting of the natural kelp beds and as such contributes to protecting the 

ecological functions provided by these ecosystems (Troell et al., 2006). The reduced 

harvesting due to the shift from monoculture to IMTA, represents a decrease in harvest 

Pressure. This calculation considered: (i) the seaweed production on the farm (120 and 360 

ton year-1 in settings 2 and 3, respectively); and (ii) the average kelp bed density in the 

concession areas of the South African coast (5.43 kg m-2, Robertson-Andersson (2007)). 

Pressure III: The change in GHG emissions was determined by a simple mass balance of 

sources and sinks in the different operation settings. These included seaweed CO2 uptake and 

the difference in GHG emissions between monoculture and IMTA operations. Further 

research should include LCA of carbon inventories in both monoculture and IMTA activities. 

CO2 uptake by the cultivated seaweed was based on the seaweed yield, converted to net 

primary production (NPP) using the following conversion ratios: (i) 0.133 dry to fresh mass 

(Robertson-Andersson, 2007); (ii) 0.25 carbon in dry mass (Alongi, 1998); (iii) 0.8 NPP to 

gross primary production (GPP) (Sundbäck et al., 2004) and (iv) 3.66 CO2 to C. The GHG 

emission was estimated from the electricity consumption data provided by the farm and the 

relative CO2 emission (0.95 kg kWh-1) reported from the utility that provides 95% of the 

South Africa's electricity (ESKOM). 
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State 

Absolute quantification of the State of the costal ecosystem that receives the effluent had to be 

neglected, due to lack of synoptic data. 

Impact 

This case study considers the ecological Impacts that the seaweeds caused on the farm 

environmental performance instead of considering the Impacts on the State of the ecosystem 

resulting from the adoption of the IMTA. The changes in farm nutrient discharges, GHG 

emissions and area of the kelp natural beds not harvested were used to quantify the 

environmental externalities that result from the shift from abalone monoculture to the 

abalone-seaweed IMTA.  

The corresponding economic Impact of IMTA was based on difference in the aquaculture 

profit between the monoculture and the IMTA setting as calculated in the Drivers section (it is 

assumed that there are no changes in the remaining activities that depend on the ecosystem) 

plus the value of the environmental externalities. The value of the environmental externalities 

was calculated based on avoided or additional costs due to: (i) nutrient treatment, (ii) kelp bed 

restoration and (iii) GHG offset. The calculation of these costs/benefits is as follows: 

Externality I:  IMTA with seaweeds reduces nutrient discharge. Avoided treatment costs were 

used to quantify the economic benefits. The total avoided treatment costs for the I & J farm 

when implementing the IMTA with seaweeds were calculated based on the estimated net 

nutrient removal compared with the monoculture setting and on the unit value of nutrient 

removal costs. However, effluent treatment costs vary widely with the characteristics of the 

effluent, regulations and technology. For instance in Crab et al. (2007) cost of treatment by 

frequently used biofilters in aquaculture ranged from 0.26 to 1.50 USD per kg of fish 

produced. Instead, the nutrient trading system established in the Chesapeake Bay watershed in 

Virginia (SWCB, 2006) was used to determine the value of the external benefits per unit of 

nutrient removal: 24.38 USD and 11.11 USD per kg of N and P removed, respectively. 

 Externality II: The value of the benefits generated as a result of the avoided kelp harvest was 

calculated based on estimates of avoided harvested area due to seaweed production in the I & 

J IMTA farm and on the unit avoided costs for kelp bed restoration. Calculation of the unit 

avoided cost was based on the restoration costs in San Clemente Kelp Mitigation Project 

(Seaman, 2007; R. Grove (Southern California Edison) personal communication, 2008). For a 

total restoration area of 60.75 ha, a cost of 20.7 million USD (at 2007 prices) was estimated, 

which converts to an average of 34.09 USD m-2.  
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Externality III: The cost/benefit associated with the change in the GHG emission was 

estimated using the voluntary carbon market system and the estimated GHG emissions of the 

I & J farm. The average applicable offset rate (14.27 Euro per ton CO2, which converts to 

about 18.72 USD per ton CO2) was calculated based on data of 90 providers (Carbon Catalog, 

2008). 

Response 

The Response is a socio-economic component of the ∆DPSIR analysis (Nobre, 2009) and in 

this case study equals the cost of the measures adopted by the farm managers to set up 

settings 2 and 3. Estimates were based on Robertson-Andersson (2007) data about seaweed 

pond investment costs (Table 4.14). Calculation of the Response cost per annum considered 

10-year depreciation for the concrete structure and 5-year for other components. 

Table 4.14. I & J seaweed pond investment costs (compiled from Robertson-Andersson (2007)). 
Paddle pond costs USD 

Concrete  9 361

Other components (e.g. electric motor) 4 645

Paddle wheels (shared by two ponds) 8 031

Total investment  USD 

4 ponds 78 858

12 ponds 236 574

A Nutrient mass balance model for the recirculating system 

A simple two compartment abalone-seaweed mass balance model was developed to predict 

the nutrient discharge for the projected expansion of the seaweed ponds in setting 3 (Figure 

4.8). The nutrient sources include the nutrients from seawater (Fsea), the net nutrient 

production in the abalone tanks (Fabalone) and the seaweed fertilization (Ffertilizer). The nutrient 

sinks include seaweed nutrient uptake (Falgae) and nutrient discharge to the sea (Feffluent). 



Chapter 4.2,   ECOSYSTEM APPROACH TO AQUACULTURE: FARM LEVEL 

 126

Figure 4.8. Nutrient mass balance model for setting 3 (recirculating IMTA system with 12 seaweed 
ponds to be implemented in the I & J farm).  

The nutrient balance of the farm is assumed to be at steady state, where sources equal sinks 

for the entire farm (Eq. 4.2.1), the abalone tanks (Eq. 4.2.2) and the seaweed ponds (Eq. 

4.2.3): 

Fsea + Fabalone+ Ffertilizer = Falgae + Feffluent Eq. 4.2.1 

Fsea + Frecirculation+ Fabalone = Fabalone2algae   Eq. 4.2.2 

Ffertilizer + Fabalone2algae = Frecirculation + Falgae + Feffluent Eq. 4.2.3 

Where, Fsea (kg year-1) is the nutrient mass flow from seawater (kg year-1) and is calculated by 

the seawater nutrient concentration data and seawater pumped per annum (Table 4.13); 

Fabalone (kg year-1) is the overall nutrient mass produced in the abalone tanks and is calculated 

from the balance of nutrient flow into and out of the tanks (Table 4.13); Ffertilizer (kg year-1) is 

the nutrient mass  required to subsidize the seaweed growth, in addition to the nutrient supply 

by the seawater and the abalone; Falgae (kg year-1) corresponds to the algal nutrient uptake and 

is a product of the total seaweed pond cultivation area (4 and 12 ponds, of 140 m2 each, in 

settings 2 and 3, respectively) by the nutrient uptake rate (ruptake estimated for setting 2 as 7.3 

g m-2 d-1 for N and as 0.7 g N m-2 d-1 for P); Feffluent (kg year-1) is the nutrient mass discharge 

to the sea; Frecirculation (kg year-1) is the nutrient mass in seaweed effluents that re-enters into 

the system and in this case study (50% recirculation) it is equal to the Feffluent; Fabalone2algae (kg 

year-1) is the nutrient mass outflow from the abalone tanks to the seaweed ponds.  
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Furthermore, Ffertilizer can be defined as the nutrients required for the seaweed maximal yield 

minus the other nutrient sources for the seaweed ponds: 

Ffertilizer = Falgae/euptake – Fabalone2algae Eq. 4.2.4 

Where, euptake is the seaweed nutrient removal efficiency (%) that corresponds to the 

proportion of nutrients removed relative to the available nutrients. euptake was estimated for 

setting 2 as 53% for N and 5% for P. 

For setting 3 it is assumed that values for Fsea,  Fabalone,  ruptake and euptake are the same as in 

setting 2. 

Considering the above assumptions and Eq. 4.2.2, Eq. 4.2.3 and Eq. 4.2.4 the model may be 

defined as a system of four equations with the following four unknowns (Figure 4.8): 

Ffertilizer = Falgae/euptake - (Fsea + Frecirculation+ Fabalone) Eq. 4.2.5 

Fabalone2algae = Fsea + Frecirculation+ Fabalone   Eq. 4.2.6 

Frecirculation = (Ffertilizer + Fabalone2algae - Falgae)/2 Eq. 4.2.7 

Feffluent = Frecirculation Eq. 4.2.8 

The solution to the system can be defined as: 

Ffertilizer = Falgae*[(1+ euptake)/2*euptake] - Fsea - Fabalone Eq. 4.2.9 

Fabalone2algae = Fsea + (Falgae/2) * (1/euptake -1) + Fabalone Eq. 4.2.10 

Frecirculation = Falgae/2 * (1/ euptake -1) Eq. 4.2.11 

Feffluent = Falgae/2 * (1/ euptake -1) Eq. 4.2.12 

Here, Eq. 4.2.9 calculates the quantity of fertilizer required for the planned seaweed 

production and Eq. 4.2.12, the farm's nutrient discharge. 
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RESULTS AND DISCUSSION 

The main issues considered for the analysis of the seaweed role in the abalone IMTA system 

as well the indicators used to quantify each of the DPSIR components are listed in Table 4.15 

and quantified in Table 4.16. 

Table 4.15. Synthesis of the differential DPSIR application to the I & J farm. 

 Setting 1 to setting 2 Setting 1 to setting 3 

Issues 

Assess the role of seaweed in IMTA: Shift of abalone monoculture in flow-

through system to polyculture combining abalone and seaweed in 50% 

recirculating system. 

4 seaweed ponds (feed 10% of the 

farm) 

12 seaweed ponds (feed 30% of the 

farm) 

Drivers Abalone aquaculture production (quantified using the profit). 

Pressures 

Nutrients in aquaculture effluent. 

Harvesting of natural kelp as feed for abalone. 

Greenhouse gas (GHG) balance 

State The State of the adjacent coastal ecosystem was not analyzed. 

Impact 

Ecol. 

Change in nutrient discharge. 

Change in harvesting from natural kelp bed. 

Change in GHG emissions 

Econ. 

Cost/benefits associated with nutrient treatment. 

Cost/benefits associated with kelp bed restoration. 

Cost/benefit associated with GHG offset. 

Response 
Implementation of the ponds (cost of building and operation of the seaweed 

ponds). 

Time period  Shift between the monoculture and IMTA settings. 
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Table 4.16. Quantification of the ecological and economic variables of the differential DPSIR for the I 
& j farm. 

  Setting1 Setting2 Setting3 Setting 1 

to 2 

Setting 1 

to 3

Drivers Profit (103 USD year-1) 14 491 14 695 15 212 204 721 

Pressure N discharge (ton year-1) 11.3 6.3 7.6 -5.0 -3.7 

 P discharge (ton year-1) 4.8 3.7 6.3 -1.1 1.4 

  Kelp harvest (ha year-1) 14.4 12.2 7.8 -2.2  -6.6 

 GHG (103ton CO2 year-1) 11.6 11.2 11.3  -0.35  -0.29

Impact Environ. externalities (103 USD year-1):  894 2 339 
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N  discharge  (121.9) (90.3)

P  discharge (12.5) (-16.0)

Kelp harvest (753.4) (2 260.1)

GHG    (6.5) (5.0)

 Total impact *1 (103 USD year-1)  1 098 3 060 

Response Implementation cost (103 USD year-1)  12 36 

Net value of cost/benefits*2 (103 USD year-1)  1 086 3 024 

GHG – Greenhouse gas, CO2. *1 Total impact is given by the sum of change in profit with the value of 
externalities. *2 Net value of cost/benefits is given by total impact minus the response implementation 
cost. 

 

 

Drivers 

The estimated profit was higher in the IMTA farms than in the monoculture farm (Table 

4.16).  IMTA reduced farm running costs relative to the abalone monoculture (Table 4.17). 

The items that contributed most to this result were: (i) faster abalone growth to market size 

when fed a mixed diet of kelp and cultivated seaweed (4, 3.8 and 3.3 years in settings 1, 2 and 

3, respectively)  (Naidoo et al., 2006); (ii) reduced kelp feed by 120 ton in setting 2 and 360 

ton in setting 3; (iii) energy savings due to a lower pump head in recirculation (5 m), relative 

to a head of 15 m in pumping water from the sea to the monoculture (Robertson-Andersson, 

2007). The shift from a monoculture to IMTA increases employment for the seaweed 

operation by 1 manager with 2 workers and 1 manager with 4 workers in settings 2 and 3 

respectively; this adds to labor costs (Table 4.17), but constitutes a social benefit. 
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Table 4.17.  Additional costs associated with the seaweed ponds and savings that result from the 
shifting of monoculture (setting 1) to the IMTA (settings 2 and 3) in the I & J farm.    
 Setting 1 to setting 2 Setting 1 to setting 3

Costs (x103 USD per annum):   

Labor for seaweed ponds 33 43

Savings (x103 USD per annum): 

Abalone faster growth caused by mixed diet 168 590

Energy reduction 13 9

Kelp feed costs 55 165

 

Pressures 

Nutrient discharge 

Significant decreases in N (-44%) and P (-23%) discharges are estimated upon shifting the 

farm from setting 1 to setting 2 (Table 4.16). The reduction in N discharge is the result of 

seaweed uptake and decreased N accumulation in the abalone tanks (Table 4.18). The 

reduction of P discharge is mainly explained by a 50% reduction in water discharge to the sea 

that counteracts a small increase in the P concentration at the outlet of the recirculating system 

(Table 4.18). 

Table 4.18. Nutrient sources and sinks for the I & J farm in (i) a flow-through 120 ton abalone 
monoculture system and (ii) a 120 ton abalone and seaweed (four ponds) IMTA system.  

Source of nutrient flow N (kg year-1) P (kg year-1) 

(i) 

Flow-through 

(ii) 

Recirculating 

(i) 

Flow-through 

(ii) 

Recirculating 

From sea 2 606 1 303 481 241

Abalone tank 3 045 820 1 925 1 162

Fertilizer - 10 - 14

Seaweed uptake - 1 483 - 134

Recirculated - 650 - 1 282

Out to sea 5 651 650 2 407 1 282

The nutrient mass balance model predicts a decrease in N discharges (-33%) but an increase 

in P discharges (+30%) upon shifting from setting 1 to setting 3 (Table 4.16). The increase of 

the P discharge is due to the estimated high fertilizer that is required for the production of 360 

ton of seaweeds (Table 4.19). 
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Table 4.19. Nutrient source and sink predictions for I & J farm: (i) for the projected 120 ton abalone farm 
combined with twelve seaweed ponds (360 ton) in a recirculating system; and (ii) for a sensitivity analysis 
for the nutrient removal efficiency, where is tested euptake values from the literature (75% for N and 12.5% 
for P) instead of using values from setting 2 (53% for N and 5% for P). 

Source of nutrient flow 

(kg year-1) 

Setting 3 recirculating system  Sensitivity analysis 

N P N P 

From sea *1 1 303 241 1 303 241

Produced in abalone tank*1 820 1 162 820 1 162

Expected seaweed uptake*2 4 448 401 4 448 401

Required fertilization*3 4 274 2 846 3 066 406

Recirculated *3 1 949 3 847 741 1 407

Out to sea *3 1 949 3 847 741 1 407

*1 Assumed the same as in setting 2. *2 Based on nutrient uptake rate as estimated in setting 2 and area 
of production. *3 Model outputs. 

Harvesting of natural kelp beds 

The on-farm grown seaweed production of 120 ton for setting 2 corresponded to an estimated 

decrease in the harvesting of natural kelp beds of approximately 2.2 ha year-1 compared with 

the abalone monoculture setting 1. This reduction represents a cut of 3% in the total kelp 

harvest from South African natural kelp beds, which was about 4 050 ton year-1 in 2003 

(Troell et al., 2006). The expansion of the seaweed production to 360 ton (setting 3) 

represents a tripling in the estimated benefits to kelp beds relative to setting 2.  

CO2 balance 

The CO2 emission balance (ton CO2 year-1) indicates a net reduction relative to setting 1 of 

345 ton in setting 2 and of 268 ton in setting 3, mainly thanks to the reduction in pump head 

height. Electricity saving of 350 MWh was estimated in setting 2 and of 245 MWh in setting 

3. The CO2 uptake through seaweed net primary production was about 12 ton CO2 in setting 2 

and 35 ton CO2 in setting 3. 

State and Impact 

The State of the ecosystem for each operation setting was not quantified, due to a lack of 

synoptic data. However, given the general decrease in the Pressures (nutrient discharge and 

kelp harvest), positive Impacts and improvements in that State can be expected. Still, 

preliminary investigations on the ecological effects of abalone farm discharge did not find 

significant impacts, arguably due to dispersion of the effluents by high wave energy along the 

studied area (Samsukal, 2004). We have therefore applied the precautionary principle (Rio 

Declaration Principle 15 established at the 1992 United Nations Conference on Environment 
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and Development) and considered changes in nutrient discharge as an environmental 

externality with associated costs/benefits. 

The increased P discharge in setting 3 Pressure compared with setting 1 (+30%) represented 

the only negative environmental impact (Table 4.16), largely due to the addition of fertilizer 

to sustain the necessary seaweed production. Remaining Pressure indicators showed that 

shifting from monoculture to an IMTA system translated into the following beneficial  

impacts: (i) reduced in N discharge (-44% in setting 2 and -33% in setting 3); (ii) reduced P 

discharge in setting 2 (-23%); (iii) reduced use of natural kelp beds (-3% and -8.9% of total 

kelp harvesting in South Africa in setting 2 and 3 respectively); and (iv) reduced GHG 

emissions (-3% in setting 2 and -2.3% in setting 3).  

The quantified environmental externalities corresponded to an overall economic benefit to the 

environment of about 0.9 million and 2.3 million USD year-1 upon shifting the farm practice 

from abalone monoculture (setting 1) to the IMTA settings 2 and 3, respectively (Table 4.16). 

The economic value of the environmental externalities included the following items (Table 

4.16):  

(i) Avoided costs for N treatment - reduction in N discharge of 5 001 and 3 702 kg year-1 in 

settings 2 and 3 respectively, multiplied by 24.38 USD per kg of N removal, which 

corresponded to benefits of 121.9 thousand  and 90.3 thousand USD year-1, respectively. 

(ii) Avoided and added costs for P treatment - P discharge reduction of 1 124 kg year-1 and an 

increase of 1 440 kg year-1 in settings 2 and 3 respectively, multiplied by 11.11 USD per kg of 

P removal, which corresponded to a benefit of 12.5 thousand USD year-1 and a cost of 16.0 

thousand USD year-1, respectively. 

(iii) Avoided costs concerning kelp bed restoration in settings 2 and 3 - decreased kelp 

harvesting in concession areas of 22 099 m2 year-1 in setting 2 and of 66 298 m2 year-1 in 

setting 3, multiplied by the average kelp restoration cost of 34.09 USD m-2, which 

corresponded to 753.4 thousand and 2 260.1 thousand USD year-1 respectively. 

(iv) Avoided costs concerning changes in GHG emissions - emission reductions of 345 ton 

CO2 year-1 and 268 ton CO2 year-1 in setting 2 and setting 3 respectively, multiplied by the 

average CO2 offset rate of 18.72 USD per ton CO2, which corresponded to benefits of 6.5 

thousand and 5.0 thousand USD year-1, respectively. 

The overall economic Impact associated with the shift from monoculture to IMTA is 1.1 

million and 3.1 million USD year-1 in settings 2 and 3 respectively (Table 4.16). These 

positive values are a result of the benefits generated by the seaweeds directly to the farms 
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(increased profits, Table 4.16) and indirectly to the environment and the public (value of the 

externalities, Table 4.16). 

Response 

Shifting the farm from monoculture to IMTA involves financial costs (i.e. seaweed pond 

construction) of about 12 and 36 thousand USD year-1 in settings 2 and 3, respectively (Table 

4.16). It is interesting to note that this investment is recovered in less than one year, given that 

the increase of profits obtained when shifting from monoculture to IMTA settings (0.20 and 

0.72 million USD year-1 to settings 2 and 3, respectively, Table 4.16), is significantly higher 

than the total investment cost, estimated as only 79 thousand USD and as 237 thousand USD 

in settings 2 and 3 respectively (Table 4.14). 

Managing nutrient limitation due to seaweed expansion  

Nutrient mass balance in I & J, Cape Cultured Abalone Pty, Ltd. farm 

The seaweed nutrient requirements are met in full by inputs from the sea and from abalone 

production in setting 2 (99.7% of N and 99.5% of P), but only partially in setting 3 (48.8% of 

N and 64.9% of P), as shown in Figure 4.9. Expansion of the seaweed production to 360 ton 

(setting 3) is thus nutrient limited and requires an external source of fertilizer.  

 
Figure 4.9. Nutrient mass balance model estimates of % of fertilizer required for seaweed production 
in the I & J farm as a function of target yield. 

Nutrient mass balance in Seaor Marine Ltd. farm 

The same methodology for nutrient analysis was applied to an Israel IMTA abalone farm, 

which includes fish and seaweeds with the following results: 
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A three-species IMTA farm, such as the Seaor Marine Ltd. farm, with fish, abalone and 

seaweeds is an efficient and economically profitable solution to the seaweed fertilizing issue. 

The effluents from fed-fish culture supply the nutrients necessary for high yields of protein-

rich seaweeds (Neori et al., 2004).  The entire seaweed N requirements of 60 ton N in the 

budget for Seaor Marine Ltd. farm (Table 4.20) are met by the abalone and fish excretions (72 

ton N). The seaweeds remove 71% of the total N input. From an economic perspective, either 

the integration of fish production in the IMTA, or merely obtaining fish effluent from a 

separate fish monoculture farm, would generate economic benefits to both the abalone-

seaweed, and the fish operations in the form of seaweed fertilizer and avoided fish effluent 

treatment. Such practice is even more advantageous where polluter pays taxes are applicable. 

Table 4.20. Nutrient budget in Seaor Marine Ltd IMTA farm combining fish, seaweed and abalone 
(compiled from Neori et al. (1998, 2004)). 
 Seabream Abalone Seaweed

Cultivation area (ha) 1.00 1.85 3.50

Production (ton year-1) 265.0 185.0 2 215.0

N release (ton year-1) 48.4.0 23.4 -

N uptake (ton year-1) - - * 51.1

* Considering the 85% N uptake efficiency the 51.1 ton N removal by seaweed corresponds to a 
requirement of 60.1 ton year-1. 

Insights from the nutrient mass balance model  

A sensitivity analysis of the nutrient mass balance model indicates that the nutrient discharge 

depends considerably on the efficiency of nutrient uptake by the seaweed. The simulations for 

setting 3 used values calculated from setting 2, with nutrient removal efficiencies (euptake) of 

53% for N and 5% for P. Replacing these efficiencies with conservative literature estimates 

that apply to this farm, 75% for N and of 12.5% for P (Neori et al., 2000; Schuenhoff et al., 

2003), significantly reduces the calculated discharge to the sea (Table 4.19). N uptake 

efficiency by seaweeds in a given location depends on the daily N load per unit area by a 

saturation curve (Cohen and Neori, 1991; Neori et al., 2003). Practically, the N load depends 

on the ratio of N excretion by the animals (abalone and fish) and seaweed pond area; a lower 

ratio leads to a higher N uptake efficiency, but with a lower uptake rate per unit area. 

DISCUSSION 

The ecological and socio-economic ∆DPSIR analysis of the abalone and seaweed IMTA used 

variations in key Pressure indicators upon shifting a farm from abalone monoculture to IMTA 
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with seaweeds. In general, the incorporation of seaweeds decreased the Pressures caused by 

the abalone production. The environmental benefits included reduction in nitrogen discharge 

into the sea, reduction in harvest of natural kelp harvesting and reduction in CO2 emissions. 

Depending on the upscaling setting, phosphorus discharge could increase due to fertilization 

of the seaweeds; this could, however, be neutralized by integrating the production of other 

organism such as fish in the IMTA. The overall economic gain, thanks to adopting the IMTA 

design compared with an abalone monoculture, is valued at 1.1 million or 3.0 million USD 

year-1, depending on the scale of the seaweed facility. These values represent the outcome of 

the balance between the farm direct benefits expressed as increased profit, the implementation 

costs of the seaweed ponds and the quantifiable environmental externalities that arise due to 

the shift from abalone monoculture to IMTA with seaweeds. The external environmental 

benefits contribute about 80% of the economic gains upon shifting to the IMTA, which means 

that the increase in profitability to the farms brings even larger benefits to the environment 

and the public. From both ecological and economic perspectives, the benefits associated with 

the shift from monoculture to the IMTA increases with an increase in seaweed production. 

However, the expansion of the on-farm grown seaweeds should be carefully designed in order 

to efficiently address the resulting nutrient limitations. The balanced three-species IMTA farm 

in Israel provides an example on how to manage nutrient limitation. In that case the on-farm 

grown seaweeds receive all the additional nutrients from the fish effluents. 

Social relevance  

Aquaculture can accrue social benefits in employment, income and food security, particularly 

important to poor, rural coastal communities worldwide (Ahmed and Lorica, 2002; Katranidis 

et al., 2003; Kaliba et al., 2007). The South African abalone farm case study exemplifies the 

positive impact an aquaculture industry can have on local communities. The I & J farm 

employs 5.5% of the men and 1.5% of the women from the local communities of Blompark, 

Groeneweldskerma and Masakhane (CSS, 2005, Robertson-Andersson, 2007). These 

communities are characterized by high unemployment (85.7%), with more than 50% of the 

labor force being unskilled and semi skilled, using criteria as defined by Lewis (2001) 

(Robertson-Andersson, 2007). This is particularly relevant where unemployment is not only 

an economic issue but also a critical socio-political issue (Kingdon and Knight, 2003; Evett, 

2006):  four in every ten adults of working age in South Africa are unemployed or have no 

access to or means of earning an income (Evett, 2006).  According to Lewis (2001), the 

overall unemployment in South Africa in 2000 was above 36% and 50% in unskilled and 

semi-skilled workers respectively.  The direct permanent employment in the South African 
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abalone industry has a large local impact in previously disadvantaged coastal communities, 

where any increase in employment is valuable. A more detailed analysis is still required to 

determine the full cascade of social impacts that the IMTA approach can have. In particular, 

and in order to complement the present ecological-economic assessment, future analysis 

should focus on the social cost/benefits of the IMTA settings compared with the monoculture 

production. 

CONCLUSION 

The application of the ∆DPSIR to the present case study indicates that the shift from abalone 

monoculture to IMTA with seaweeds increases the farm profitability and brings even larger 

benefits to the environment and the public, through reduced Pressures on the adjacent coastal 

ecosystem and increased employment. As the cost of energy increases and where pollution 

taxes are adopted, the economic incentives for the implementation of IMTA farms, compared 

with monoculture abalone farms, are likely to mount. From a social and environmental 

perspective, the three-species IMTA with fish, abalone and seaweeds produces more value 

and resources for human consumption while still managing the waste produced. This outcome 

should be considered by industry and regulators involved with the current expansion in 

abalone culture worldwide. The present ∆DPSIR analysis can help owners and regulatory 

officials in balancing the design of the farm with respect to nutrient mass balance towards 

reduced negative environmental externalities. As kelp is reaching limits of sustainable 

harvesting, particularly in kelp concession areas with high abalone farm concentrations, and 

with the forceful socio-economic incentives quantified in the present paper, it can be expected 

that two- and three-species IMTA farms will become the industry norm, rather than the 

exception.  

The estimates of the economic value of the environmental externalities obtained by the 

∆DPSIR analysis provide the aquaculture industry, the coastal zone and resource managers an 

indication of the benefits to farms and society by implementation of ecologically balanced 

IMTA farms, relative to monoculture systems. More such analyses should be undertaken on 

other aquaculture practices and for other species of fish, shrimp, shellfish and macroalgae. 

Likewise, the ∆DPSIR could be applied to compare the ecological and economic impacts of 

fisheries vs. aquaculture. Those studies should include a detailed quantification of aquaculture 

industry impacts on the entire cascade of employment and income of local communities. 



 

Chapter 5.  Ecological-economic dynamic modelling 

Context 

One of the missing links in ecosystem modelling is economics. Integration with economics 

for scenario testing is important to help define the focus of management measures. Dynamic 

ecological-economic modelling is required to simulate the feedbacks between the ecological 

and economic systems. Insights provided by the outcomes of such modelling tools are 

important for coastal management. For instance, with limited resources, is important to 

prioritize actions that bring larger benefits to the public and at the same time allow the 

development of private activities. 

Summary 

This chapter presents the MARKET model, which dynamically couples the ecological and 

economic components of aquaculture production. The model is herein applied to simulate 

shellfish production in a Chinese bay under different assumptions for price and income 

growth rates and the maximum area available for shellfish cultivation.  
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A dynamic ecological-economic modeling approach for aquaculture 
management 

INTRODUCTION 

Global consumption of finfish and shellfish as food has doubled since 1973. Evidence 

suggests that the large increase in the aquatic resources production in recent decades has 

resulted from the enormous growth in seafood demand in the developing countries (Delgado 

et al., 2003). China is the largest aquaculture producer in the world, with an average annual 

growth rate from 1980 to 2004 of 15 % (Gíslason et al., 2006), and the only nation where 

farmed production exceeds wild catch (Sanchez et al., 2007). In 2006, 68 % of total aquatic 

production in China was from aquaculture (FAO, 2009). The development of aquaculture in 

China has had a positive impact in terms of its contribution to nutrition, employment, and 

improvement in socio-economic status of both rural and urban communities (FAO, 2004). 

About 4.3 million rural workers are directly employed in aquaculture with an annual per 

capita net income of 8 667 Yuan (which converts to 1 075 USD considering the exchange rate 

at the time of study, 1 USD = 8.06 Yuan) (FAO, 2005).  Given the significance of aquaculture 

in China, changes in mariculture production due to changes in economic inputs or biophysical 

variability have a wider socio-economic impact on communities.  

Just like any other food-producing sector in the world, aquaculture relies on renewable and 

non-renewable resources. Sustainable development and management of aquaculture thus 

requires an appropriate understanding of the conflicts and interactions between the resource 

use and its users. Such understanding contributes to improve governance in resource use, 

which is an important prerequisite of the sector’s sustainability and one of the objectives of 

building an ecosystem approach to aquaculture (EAA) (Soto et al., 2008). Aquaculture is 

considered as the “solution” for bridging the supply and demand gap of aquatic food globally. 

There is however concern about the negative environmental impacts that some aquaculture 

practices can exert on coastal resources and ecosystems (Tovar et al., 2000; Xu et al., 2007). 

The carrying capacity of the coastal ecosystem can represent a limit to the increase in 

aquaculture production. Depending on culture practices, this might be related to space 

limitations, availability of food resources or on the environmental capacity to assimilate 

aquaculture generated wastes (Sequeira et al., 2008). Apart from ecological limitations there 

are also economic cost limitations to production, illustrated through an analysis of the 

marginal cost in relation to marginal revenue (Gravelle and Rees, 1993). An economic 
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analysis of aquaculture production must be based on realistic production cost and income 

projections that account for these economic limitations.  

The focus of aquaculture management is often on maximizing the output and not the profit, 

which is not only economically inefficient, but carries unnecessary ecological risks. If the 

goals of sustainable aquaculture development are to be achieved, then there is need to 

understand both ecological and economic limitations. Aquaculture operations depend directly 

on the availability and quality of the marine resources and environment. If the marine 

ecosystem is overexploited the negative impacts will be felt in aquaculture farming operations 

and by all other downstream activities dependent on aquatic resources farming. This is 

particularly important for a country such as China that accounts for 68 % of the world aquatic 

production, and where some of the marine ecosystems have a high percentage of reclaimed 

areas for aquaculture, e.g., 77 % of the coastal usable area of Xiamen is occupied by 

aquaculture activities (Xue, 2005). 

To ensure sustainable aquaculture production, it is crucial to understand the ecological and 

economic limits beyond which mariculture becomes less efficient. Dynamic modeling can 

provide a tool that facilitates the understanding of the complex feedbacks between ecological 

and economic aspects of aquaculture production. Resource managers and policymakers have 

come to understand that the sustainability of ecological and economic systems is tightly 

coupled (GESAMP, 2001). However, the complexity of the interactions may make informed 

resource decision-making extremely difficult, particularly given the dynamic nature of 

ecosystems and the difference in the scale of analysis of ecological and economic systems.  

The integration between ecological and economic models is currently a developing discipline 

(Drechsler et al., 2007). Several conflicts were identified (Bockstael et al., 1995; Drechsler 

and Watzold, 2007) that explain the decoupling of these two disciplines, namely: (i) the scales 

of analysis; (ii) the communication/understanding between ecology and economics; and (iii) 

the implicit assumptions of each one. 

In recent years there was an increase in the development of integrated ecological-economic 

models (Drechsler et al., 2007). According to Bulte and van Kooten (1999), Armstrong 

(2007) and Drechsler et al. (2007) these models tend to be less complex than the 

biological/ecological models alone. Jin et al. (2003) categorize ecological-economic models 

into 3 groups: (i) bioeconomic model approach; (ii) integration of complex environmental and 

economic models; and (iii) linear models, for instance the coupling of linear economic input-

output model with a food web model.  
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This paper aims to develop a dynamic environmental and economic model as a tool for 

mariculture management and for EAA, and to illustrate a coupling approach. The main 

objectives are to: 

1. Develop a conceptual model of the ecological-economic interactions in mariculture; 

2. Implement a dynamic ecological-economic model in order to simulate (i) the socio-

economic component of shellfish aquaculture production, (ii) its effects on the estuarine and 

coastal ecosystems, and (iii) feedbacks of the environmental system on the socio-economic 

system; 

3. Simulate a set of scenarios to compare the model outputs with expected trends and to test 

its capability to simulate management scenarios. 

METHODOLOGY 

Conceptual approach 

The Modeling Approach to Resource economics decision-maKing in EcoaquaculTure 

(MARKET) (Figure 5.1), illustrates the major interactions which should be considered in 

mariculture between ecological and economic systems. 

Figure 5.1. MARKET conceptual model: ecological-economic interactions in mariculture.  

The MARKET model includes three components (Figure 5.1): (i) the ecological component, 

which includes the relevant ecosystem biogeochemistry and the growth of aquatic resources; 
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(ii) the economic component, which invests capital and labor for the production of the aquatic 

resources; and (iii) the decision component, which determines the desired production for the 

next production cycle. The three components interact as follows (Figure 5.1):  

At the beginning of a production cycle, the ecological component is used to determine the 

seeding biomass corresponding to the desired production for that cycle and to allocate the 

required cultivation space. The ecosystem water quality and environmental conditions are 

used to calculate the scope for growth of the cultivated species. In parallel, the aquatic 

resource production affects the biogeochemistry of the ecosystem, either through waste 

generation and/or uptake of particulate and dissolved substances, depending on species and 

culture practice. The adult individuals are subsequently harvested and transferred to the 

economic component at the end of the production cycle, and the harvested biomass is used by 

this module to calculate the revenue generated.  Concurrently, in the economic component the 

production inputs, such as labor and capital required to produce the desirable yield (as 

calculated in the decision component), are determined and used to calculate the production 

cost. In addition, the economic component determines the marginal cost and marginal revenue 

in order to inform the decision component about profitability. The decision component then 

determines the changes in the desired production for the next cycle based on the following 

criteria: (i) profit maximization, based on the comparison of marginal cost and marginal 

revenue; (ii) the gap between demand and supply, based on the comparison of the local 

demand against shellfish production, in order to monitor if the market can absorb an increase 

in production or if there is already a surplus; and (iii) physical limit, in order to ensure that the 

cultivation area does not exceed the maximum available area for aquaculture, as defined by 

ecosystem managers. 

Ecological and economic limits 

The ecosystem carrying capacity and economic production capacity can be limited by the 

following factors: 

1. Space limitation, which is defined by stakeholders with respect to allocation of ecosystem 

area to cultivation and other uses. 

2. Food limitation (in the case of extensive aquaculture), which is a function of available 

ecosystem resources, cultivation densities and practices. It affects the growth rate of aquatic 

resources. 
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3. Aquaculture waste limitation, which causes an effect on environmental conditions such as 

dissolved oxygen, thereby causing a feedback on the growth rate of aquatic resources. These 

effects depend on the cultivation practice and on the assimilation capacity of the ecosystem. 

4. Cost limitations related to the amount of inputs that can be used.  

5. Diminishing returns to scale, such that each additional unit of variable input yields less and 

less additional output (production). 

6. Profit maximization, whereby the profit maximizing firms will increase production as long 

as their profits will continue to rise. Profits will start to decrease beyond the output level 

where marginal cost equals marginal revenue. 

 

Case study: site and data description 

The MARKET model was applied to simulate shellfish production in Xiangshan Gang, a 

coastal embayment located in Zhejiang Province, in the East China Sea (Figure 5.2) in the 

vicinity of the largely industrialized centre of Ningbo City.  

Zhejiang Province is known for its valuable marine resources, although it is less dependent on 

the primary sector than China in general (Table 5.1). Considering the total value of all marine 

and inland fish farming and the direct employment it generates (Table 5.1) this industry 

creates almost 20 direct fish farming jobs per 1 million Yuan (124 000 USD) of value in fish 

farming. 

 

In Zhejiang, total aquatic outputs 

declined by 2 % from 2004 to 2005, 

while secondary and tertiary sectors 

continued to grow rapidly (Information 

Center of General Office of Zhejiang 

Provincial Government, 2006). A 

synthesis of the case study socio-

economic indicators is provided in 

Table 5.1. Figure 5.2. Xiangshan Gang map and physical data. 
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Table 5.1. Case study socio-economic indicators. Compiled from FAO (2005) and NBSC (2007). 

 China Zhejiang 
Province 

Ningbo 
City 

Population, million inhabitants 1 300 47 6 

Urban per capita annual disposable income, Yuan 
(USD) 

10 397  
(1 290)

10 156  
(1 260) 

26 598 
(3 300) 

Primary sector share of economy, % 15 % 7 % 7 % 

Fish production, million ton 47 4.9 0.9 

Total fisheries value, Yuan billion (USD billion) 332 
(41.2) 

14.0  
(1.7) 

n/a 

Related industry value, Yuan billion (USD billion) 126 
(15.6) 

3.0  
(0.4) 

n/a 

Related services value, Yuan thousand (USD thousand) 119 400 
(14 814) 

300  
(37) 

n/a 

Marine farming value, Yuan billion (USD billion) 73 (9.1) n/a n/a 

Inland farming value, Yuan billion (USD billion) 143 
(17.7) 

n/a n/a 

Total fisheries employment, million jobs 7.0 n/a n/a 

Fish farming employment, million jobs 4.3 n/a n/a 

Note: Conversion to USD is shown between ‘brackets’ after values in Yuan considering the exchange 
rate at the time of study: 1 USD = 8.06 Yuan. 

 

The Xiangshan Gang covers an area of 365 km2 and an annual shellfish production of about 

38 000 ton (Sequeira et al., 2008). Figure 5.2 provides further details about the characteristics 

of the bay. An ecosystem model developed for the Xiangshan Gang was used in order to 

simulate the shellfish production and the biogeochemistry of the system (Ferreira et al., 

2008b; Sequeira et al., 2008). Data on the ecosystem and shellfish cultivation were obtained 

from Ferreira et al. (2008b) and Sequeira et al. (2008). 

Economic data used in this study are from various sources and include: (i) data on the 

reference production, cost and net profit obtained in a local survey on the economics of 

aquaculture (de Wit et al., 2008); (ii) the sensitivity (elasticity) of demand to price and income 

obtained from demand functions analysis, while the capital and labor elasticities are obtained 

from a production function analysis (Musango et al., 2007); (iii) other data such as production 

and price growth rates are from various issues of the China Statistical Yearbooks (NBSC, 

2007) while the interest rate was taken from International Monetary Fund (IMF) statistics. 
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Model implementation 

The MARKET model was implemented for shellfish production in Xiangshan Gang using a 

visual modeling platform (PowerSim™). Table 5.2 and Table 5.3 specify the model 

parameters and the initial conditions of the state variables. 

Table 5.2. MARKET model parameters. 

Parameter Symbol Value Unit Comment 

Simulation setup     
Simulation timestep ts 0.01 year  
Ecological timestep tsecol 0.01 year  
Economic timestep tsecon 1 year  
Simulation period SimP 50 year  

Ecological system     
Cultivation cycle tp 1 year  
Seeding period sp 0.25 year 0.00-0.25 year every year 
Seeding density nseed 45 ind m-2 Sequeira et al. (2008) 
Weight class: s:    
   Weight class 1 s1 5 g ind-1 0 to 10 g ind-1 
   Weight class 2 s2 15 g ind-1 10 to 20 g ind-1 
   Weight class 1 s3 20 g ind-1 20 to 30 g g ind-1 
Mortality rate µ 0.46 year-1 Sequeira et al. (2008) 
Maximum cultivation area MaxA 302 950 000 m2 83 % of estuary area 
Ecosystem model seed weight w 1.5 g ind-1 Sequeira et al. (2008) 

Economic system     
Price elasticity of demand  ed -0.07 (-) Ferreira et al. (2008b) 
Income elasticity of demand ey 0.87 (-) Ferreira et al. (2008b) 
Per capita income growth  rate ry 0.1 year-1 NBSC (2007) 
Price growth rate rp 0.02 year-1 NBSC (2007) 
Demand growth rate rd 0.0856         year-1 rd=ey*ry+ed*rp 
Elasticity of labor αL 0.44 (-) Musango et al. (2007) 
Elasticity of capital αK 0.53 (-) Musango et al. (2007) 
Depreciation fraction  df 0.1            (-) df=tsecon/dp 
Depreciation period dp 10 year Assumption 
Interest rate r 0.06 year-1 IMF 
Maintenance Fraction mf 0.16 year-1 Assumption 

A key feature for implementation of the integrated ecological-economic model was to 

accommodate the different resolutions at which the ecological and the economic systems are 

studied, which are hours to days, and annual quarters to years, respectively. The scaling issue 

was addressed by using two different timesteps for each model, 0.01 year (3.65 days) for the 

ecological model and 1 year for the economic model (Table 5.2). The ecological model runs 

every timestep while the economic and decision models run only with a periodicity 

corresponding to its timestep, i.e. every 100 timesteps of the simulation. The simulation 
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period considered is 50 years and the shellfish production cycle (tp in year) is one year (Table 

5.2). The seeding occurs during the first 91 days of the year (Table 5.2) and the harvest 

accumulates until the last timestep of each year (0.99 year), at which the harvestable biomass 

is communicated to the economic model. The decision and economic models operate at the 

last timestep of each year (0.99 year). 

Table 5.3. Initial value of MARKET model variables. 

State variable Symbol Initial value Unit Comment 

Cultivation area A 23 083 092 m2 Sequeira et al. (2008) 

Local demand LD 37 222 000 kg Assumed equal to initial 
HSY 

Price P 12.5 Yuan kg-1 de Wit et al. (2008) 

Shellfish production Q 37 222 000 kg de Wit et al. (2008) 

Labor L 128211 Man-Day (MD) de Wit et al. (2008) 

Capital K 37 030 726 Yuan de Wit et al. (2008) 

Unit labor cost UVCL 7.38 Yuan MD-1 de Wit et al. (2008) 

Unit cost of other 
variable inputs 

UVCo 0.19 Yuan kg-1 de Wit et al. (2008) 

The implementation of each simulation block of the MARKET model (Figure 5.1) is 

explained below. 

Ecological component  

The implementation of the ecological component of the MARKET model followed a three 

stage approach: 

Stage 1 – Decoupled ecosystem modeling. This stage comprehends simulation of Xiangshan 

Gang biogeochemistry and shellfish growth using an ecosystem model, which was decoupled 

from the MARKET model. 

Stage 2 – Simplification of main interactions between ecosystem model and shellfish 

production. In this stage the ecosystem model was used to determine the shellfish growth rate 

as function of cultivated area and thus of seeding biomass (given that seeding density is a 

constant). 

Stage 3 – Integration in the MARKET model of the main interactions with the ecosystem 

model. In this stage a population model was used to simulate the harvestable available 

biomass (to be used as an input in the economic model at the end of the production cycle) 
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based on the seeding input (obtained from the decision model output at the beginning of each 

production cycle) and on the shellfish growth rate (obtained from stage 2).  

Stage 1 - Decoupled ecosystem model 

An ecosystem model, developed with the widely used EcoWin2000 modeling platform 

(Ferreira, 1995; Nunes et al., 2003; Nobre et al., 2005; Sequeira et al., 2008), was applied to 

simulate the key biogeochemical features of Xiangshan Gang as well as shellfish aquaculture 

(Ferreira et al., 2008b; Sequeira et al., 2008). The spatial domain of the model was divided 

into 24 compartments (12 horizontal x 2 vertical layers). The catchment loads (dissolved 

nutrients and particulate matter) and fish cage wastes were simulated as a forcing function 

(Ferreira et al., 2008b). The transport of substances was simulated using an offline data series 

of water fluxes between boxes and across the sea boundaries, provided by a detailed 

hydrodynamic model (Ferreira et al., 2008b). In each box the main state variables simulated 

were dissolved inorganic nutrients (nitrogen and phosphorus), suspended particulate matter, 

phytoplankton biomass, shellfish individual scope for growth and population dynamics, 

following the approach described for instance in Ferreira et al. (2008a).  

For the simulation of feedbacks between the economic and environmental components, both 

the economic and the decision models should be coupled with the ecosystem model, although 

in the current implementation of the MARKET model simulations were made in decoupled 

mode.  

Stage 2 - Simplification of main interactions between ecosystem model and shellfish 

production 

In order to implement the ecological component of the MARKET model the main interactions 

between the ecosystem model and the aquatic resources production were simplified. It was 

considered that these are represented by (i) the seeding biomass (i.e. the cultivation area 

assuming that the seeding density is a constant) and (ii) the resulting growth of the bivalves.  

The decoupled ecosystem model of the bay (Sequeira et al., 2008) was run in order to 

determine the shellfish growth rate as a function of the cultivated area. Several cultivation 

areas were used to run the ecosystem model using the same setup for the remaining initial 

state variables, parameters and boundary conditions. Therefore, the simulation accommodates 

the potential food availability constraints due to an increase in the number of filter feeders. It 

was found that the growth rate is inversely proportional to the cultivated area (Eq. 5.1). 
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71.20103.2 8 +⋅×−= − AG  Eq. 5.1 

Where, G is the annual growth rate (year-1) and A is the cultivation area (m2). 

The disruption of shellfish production due to food availability, which potentially could occur 

as a result of an increase of cultivated area, is never reached, even when the maximum 

cultivated area (considered to be 83 % percent of the bay area) is attained. 

Stage 3 - Integration in the MARKET model of the main interactions with the ecosystem 

model: 

In the current implementation of the MARKET model, shellfish growth provides a proxy for 

the ecosystem feedbacks. The ecological component was implemented by means of a 

population model (Ferreira et al., 2007a), which was used to simulate the growth of the 

cultivated seed up to a harvestable size (Eq. 5.2). 

[ ] ),(/)(*),(/),( tsNdstgtsNddttsdN ∗−−= µ  Eq. 5.2 

Where, s is weight class (in g ind-1, defined in Table 5.2), t is time (in year), N is number of 

individuals (in ind) of weight class s, g is scope for growth (in g ind-1 year-1), and µ is 

mortality rate (in year-1, defined in Table 5.2).    

Every year at the end of the production cycle the new cultivation area for the next year (Eq. 

5.3) is calculated as a function of previous cultivated area and rate of change in production 

(rcq, in year-1, obtained from the decision component): 

cqrAdtdA */ =  
Eq. 5.3 

At the start of each seeding period (sp, in year, defined in Table 5.2) the total seeding of 

individuals in Class 1 (N1, Eq. 5.4) is determined based on cultivation area (A from Eq. 5.3) 

and seeding density (nseed, ind m-2, defined in Table 5.2):      

seednAN *1 =  Eq. 5.4 

Scope for growth (g, Eq. 5.5) is calculated as a proxy of the population growth (G from Eq. 

5.1), and thus is a function of cultivated area. 
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wGg *=  Eq. 5.5 

Where, w (in g ind-1, defined in Table 5.2) is the average individual seed weight used in the 

ecosystem model. 

At the end of the year the individuals accumulated in the harvestable classes (N2+N3, as 

calculated from Eq. 5.2) are converted into the harvestable biomass (HB, in kg, Eq. 5.6): 

β*)**( 3322 sNsNHB +=  Eq. 5.6 

Where, β is the conversion from g to kg.  

Current implementation of the ecological model assumes that decisions to change production 

are implemented through changes in the cultivation biomass. On the other hand, the changes 

in the cultivation biomass affect the growth of shellfish (due to food availability) and 

consequently the harvestable biomass. At this stage of development, the ecosystem feedbacks 

are implicitly included in the MARKET model through the shellfish growth. Future 

developments of the model will include explicit integration of the economic and decision 

systems into the ecosystem model in order to monitor shellfish biodeposition as well as the 

role of filter-feeders on phytoplankton uptake. Phytoplankton removal equates to the 

reduction of coastal eutrophication symptoms, providing an additional ecosystem service. 

Economic component 

In each simulation year, the decision model calculates the desired production rate, 

communicates it to the economic model and thus drives the change in the production inputs 

(Figure 5.1). The economic component of the MARKET model is divided into sub-models 

that simulate: (i) the harvest of the available biomass determined by the ecological model, (ii) 

the production inputs (labor and capital), (iii) the corresponding production cost, (iv) the 

generated revenue and net profit of the bivalve production for a given year, and (vi) the 

marginal cost and marginal revenue in order to provide information required by the decision 

model. The implementation of the economic model also includes simulation of the exogenous 

functions that drive the aquatic resource production, namely: (i) price, (ii) household income, 

and (iii) local demand. Both the economic drivers and sub-models are further detailed below. 

Economic drivers: 

The economic drivers are implemented following standard economic theory. A rise in income 

is expected to positively influence the demand for fish and aquatic products and an increase in 

price is expected to negatively influence the demand for aquatic species and aquatic products 
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(Jolly and Clonts, 1993). In the model the changes in demand (rd, in year-1) are determined by 

changes in the income and prices, as defined in Table 5.2. Both the price elasticity of demand 

(ed, Table 5.2) and income elasticity of demand (ey, Table 5.2) were obtained from a national 

level demand function analysis (Ferreira et al., 2008b). This model assumes that the changes 

of the local demand follow the changes of the national demand, as information to derive local 

level demand functions was not available. The local demand (LD, in kg) forcing function (Eq. 

5.7) is initialized considering the local consumption data as the initial local demand (Table 

5.3). 

LDrdtdLD d ∗=/  Eq. 5.7 

The local farmers are assumed to be price takers, whereby the aquatic product prices are 

determined by the global market. The changes in the domestic price reflect the Chinese 

inflation rate for the period 1995-2006. The yearly average including outliers is 2.8 %, while 

when excluded, the average is 1.5 % (NBSC, 2007). A constant price growth rate (rp, in year-

1) of 2 % per year was therefore assumed based on the averaged inflation data.  The price (P, 

in Yuan kg-1) forcing function is given by Eq. 5.8: 

PrdtdP p ∗=/  Eq. 5.8 

In addition to price and demand the economic model is also forced by the annual growth of 

the per capita income (ry, in year-1).  The per capita income growth rate is used to calculate the 

changes in the demand (rd), as defined in Table 5.2, and is also used to force the changes of 

the unit labor cost as defined in Eq. 5.23. A constant per capita income growth rate of 10 % 

per year was assumed based on the real per capita income growth data (NBSC, 2007). 

Production sub-model: 

The shellfish production (Q, in kg) for a given year (Eq. 5.9), is based on the desired 

production determined for that year and is limited by the harvestable biomass simulated in the 

ecological system (HB, in kg, Eq. 5.6). Thus, herein we assume that the harvest shellfish yield 

equals to the shellfish production. 

),( HBDQMinQ =  Eq. 5.9 

Where, DQ (in kg), is the desired production determined for that year, which was calculated 

in the previous year as the desired production for the next cycle, following Eq. 5.32, in the 

decision system. 
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Production inputs sub-model: 

This sub-model examines the capital and labor input levels resulting from the changes in the 

desired production: 

LRdtdL =/  Eq. 5.10 

KRdtdK =/  Eq. 5.11 

Where, L (in Man-Day) is the labor used for the production and is calculated based on the 

required changes in labor inputs (RL, in Man-Days year-1); K (in Yuan) represents the assets 

used in production and is calculated based on the required changes in the value of capital (RK, 

in Yuan year-1).  

The changes in both labor (RL, Eq. 5.12) and capital (RK, Eq. 5.13) are determined as a 

function of the desired change in production (RCQ, in kg year-1, calculated in the decision 

model, Eq. 5.31) and respectively on the marginal productivity of labor (MPL, in kg Man-

Days-1) and on the marginal productivity of capital (MPK, in kg Yuan-1): 

LCQL MPRR /=  Eq. 5.12 

KCQK MPRR /=  Eq. 5.13 

Where, MPL and MPK are determined following Eq. 5.14 and Eq. 5.15, respectively, as 

defined in Yunhua et al. (1998). 

LQMP LL /∗=α  Eq. 5.14 

KQMP KK /∗=α  Eq. 5.15 

Where, αL and αK (dimensionless, Table 5.2) are the elasticity of labor and capital, 

respectively, and were determined based on the production function (Musango et al., 2007) 

defined in Eq. 5.16: 

16.1ln53.0ln44.0ln +∗+∗= KLQ  Eq. 5.16 

 

 

 



Chapter 5,   ECOLOGICAL-ECONOMIC DYNAMIC MODELLING 

 152

Production cost sub-model: 

The production cost sub-model determines the total cost of shellfish production (TCQ, in 

Yuan, Eq. 5.17) as the sum of the fixed cost (FC, in Yuan) and the variable cost (VC, in 

Yuan): 

VCFCTCQ +=  Eq. 5.17 

Where, FC and VC are calculated following Eq. 5.18 and Eq. 5.21, respectively. 

IKLDKFC +=  Eq. 5.18 

Where, FC is given by the depreciation of capital (DK, in Yuan) and by the interest on capital 

loan (IKL, in Yuan). DK and IKL are given by Eq. 5.19 and Eq. 5.20, respectively. 

KdDK f ∗=  Eq. 5.19 

Where, df (dimensionless) represents the depreciation fraction (Table 5.2).   

KrIKL ∗=  Eq. 5.20 

Where, r (year-1) is the interest rate (Table 5.2). 

The variable cost includes the labor cost (VCL), the maintenance cost (VCM) and other variable 

costs (VCO), all are expressed in Yuan: 

OML VCVCVCVC ++=  Eq. 5.21 

The labor cost is calculated based on the labor and on the unit labor cost (UVCL, in Yuan 

Man-Day-1): 

LL UVCLVC ∗=  Eq. 5.22 

The unit labor cost changes as a function of the per capita income growth rate (ry, in year-1, 

defined in Table 5.2): 

LyL UVCrdtdUVC */ =  Eq. 5.23 

The maintenance cost is determined as a fraction (mf, defined in Table 5.2) of the capital (K) 

as defined in a local economic survey (de Wit et al., 2008) and following Eq. 5.24: 
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KmVC fM *=  Eq. 5.24 

The other variable costs include costs of feeding, seeding and interest on loan among others. 

This variable is calculated based on the shellfish production (Q, in kg, Eq. 5.9) and on the unit 

cost of other variables (UVCO, in Yuan kg-1): 

OO UVCQVC *=  Eq. 5.25 

The unit cost of other variables changes as a function of the price growth rate (rp, in year-1, 

defined in Table 5.2): 

OpO UVCrdtdUVC */ =  Eq. 5.26 

Net profit sub-model: 

The dynamics of net profit (NP, in Yuan, Eq. 5.27) are determined by the revenue (derived 

from the dynamics of production output and price) and the total cost incurred (which includes 

fixed and variable costs): 

)()*( VCFCPQNP +−=  Eq. 5.27 

Marginal cost and revenue sub-model: 

For each economic timestep the marginal cost (MC, in Yuan kg-1) is determined as the 

increase in total cost that results of producing an additional unit of shellfish: 

QTCMC ∆∆= /  Eq. 5.28 

For calculation of MC we consider an output increment of one kg of shellfish (∆Q = 1 kg). 

Thus, for every one unit of additional Q, Eq. 5.28 reduces to: 

QQ TCTCMC −= +1  Eq. 5.29 

Where, TCQ+1 (in Yuan) is the total cost to produce Q+1, and TCQ (Eq. 5.17) the total cost as 

calculated previously for Q. TCQ+1 is calculated using the production cost sub-model (Eq. 

5.17 to Eq. 5.26) to compute the cost of the inputs (labor and capital) needed to produce Q+1. 

On the other hand, the required labor and capital to produce the additional output are 

determined by multiplying one kg of shellfish by the inverse of marginal productivity of labor 
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(
LMP

1  which expresses as Man-Days kg-1) and the inverse of marginal productivity of capital 

(
KMP

1  which expresses as Yuan kg-1), respectively. 

Assuming that the shellfish farmers are price takers, the marginal revenue (MR, in Yuan kg-1) 

was equated to the price of shellfish (P, in Yuan kg-1, Eq. 5.8). 

PMR=  Eq. 5.30 

Both marginal cost (MC) and marginal revenue (MR) are used by the decision model for 

calculation of the profit maximization criteria. 

Decision component 

The decision component is the engine of the MARKET model. This simulation block 

determines the production in the following year, therefore driving both the ecological and 

economic components. In the MARKET model it is assumed that the farmers’ decision is 

based on (i) the profit maximization, (ii) the gap between demand and supply, and (iii) the 

available area for aquaculture activities, i.e. the physical limits. Each of the three criteria is 

further detailed below: 

i) Profit maximization: the local farmers are assumed to be perfectly rational and that their 

interest in aquaculture production is to maximize individual profit. Therefore, they will aim to 

increase production only up to an output level whereby marginal cost equals marginal 

revenue. In this analysis, the farm managers are assumed to have knowledge on the cost and 

demand functions facing the shellfish production and about other actors in the system. 

Although none of these conditions are likely to be met in reality, these provide a baseline 

economic decision-making rule to maximize profit in order to test the application of the 

MARKET model. Both marginal cost and marginal revenue values are provided by the 

economic model (Eq. 5.29 and Eq. 5.30). If the marginal revenue is greater than the marginal 

cost (MR > MC) the decision model defines an increase in desired production for the next 

period and the inverse occurs when the marginal revenue is less than the marginal cost (MR < 

MC). If the marginal revenue equals marginal cost (MR = MC) then the model decides to 

maintain the desired production for the next period at current production level.  

ii) Demand / supply gap: is calculated as the difference between the local demand and the 

shellfish production, both given by the economic model (Eq. 5.7 and Eq. 5.9). It indicates 

whether the demand is met by production (if Q ≥ LD), or if the market can absorb an increase 

in production (if Q < LD). 
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iii) Physical limit: the farmers can expand up to a maximum available area for aquaculture (A 

= MaxA). In the model the maximum cultivation area is a parameter of the ecological 

component (Table 5.2). This area should be defined by ecosystem managers based on a 

zoning policy decision or simply based on the physical limits of the ecosystem.  

The decision on whether to increase, decrease or maintain production is simulated based on 

the decision rules shown in Figure 5.3. If all the three criteria are favorable to increase 

production (MR > MC AND LD > Q AND A < MaxA), the desired production increases at a 

percentage of current year production. If the current profitability is negative (MR < MC) then 

the decision model defines a decrease in the desired production which is proportional to the 

current year production. If none of the previous conditions are met and if the maximum 

profitability is achieved (MR = MC), or demand is met (Q ≥ LD) or the maximum cultivation 

area is attained (A ≥ MaxA) then the decision model maintains the current year production. 

 

Figure 5.3. Decision model implementation: logical test for decision about increase, decrease or 
maintaining current production. 
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The change in the quantity that aquaculture managers want to produce in the next cycle, i.e. 

the desired change in production (RCQ, in kg year-1), is calculated as a fraction of current year 

production by means of Eq. 5.31: 

cqCQ rQR ∗=  Eq. 5.31 

Where, Q (in kg) represents the current year production and is calculated in the economic 

model (Eq. 5.9); rcq (in year-1), is the annual change rate in production and is conditioned by 

the decision whether to increase, decrease or maintain production (according to Figure 5.3 and 

as explained above). Depending on the decision taken rcq is given as: 

 (i) If decision is to increase production, then the rate of change in production is 10 % per year 

of current production (rcq = 0.1 year-1);  

(ii) If decision is to decrease production, then the rate of change in production is -30 % per 

year of current production (rcq = -0.3 year-1);  

 (iii) If decision is to maintain production, then the rate of change in production is 0 % per 

year of current production (rcq = 0.0 year-1). 

Further research is needed to understand how this decision is normally taken in the real world 

in order to improve the definition of the rate of change in production. 

The desired production for the next cycle (DQ, in kg) is then given by current production (Q) 

and by the desired change in production for the next cycle (RCQ*tp): 

tpRQDQ CQ ∗+=  Eq. 5.32 

Where, tp (in year) is the shellfish production cycle period (defined in Table 5.2). 

Model assessment and scenario definition 

At this stage of development and given the deterministic nature of the MARKET model, it 

cannot incorporate the randomness involved in decisions by individual farmers. In addition, it 

does not integrate the complex dynamics that govern for instance a policy change that decides 

a shift from shellfish to finfish or macroalgal production. In order to validate the MARKET 

model at that level, a very specific dataset would be required: a data series of both economic 

production and environmental factors for a given ecosystem where the main changes in 

aquaculture production are only constrained by the ecological and economic factors in a 

perfectly rational way. 
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The applicability of the model was thus assessed by comparing the general trends of 

simulation results with the expected outcomes according to standard economic theory for 

consumption and production and according to ecological economics theory:  It is expected 

that shellfish is a normal good, meaning that rising income will lead to rising demand and 

vice-versa. It is also expected that a rising demand will lead to an expansion in farming 

activities up to a level that is both economically profitable and sustained by the ecosystem. In 

order to support the comparison with expected results a set of scenarios was defined (Table 

5.4) aimed to test the model response to changes in price and income growth rates, and 

maximum cultivation area.  Another reason to run these scenarios was to demonstrate the 

capabilities of the MARKET model to simulate relevant management scenarios. For instance 

scenario 3 exemplifies a management decision to set a lower maximum cultivation area as 

compared to the standard scenario. Scenario 4 develops this by introducing a compensation 

measure to farmers whereby the reduction of the maximum cultivation area is followed by a 

price increase. 

Table 5.4. Scenarios analyzed in the MARKET model. 

Scenario Price growth rate 
(% per year): rp 

Income growth rate 
(% per year): ry 

Maximum cultivation area 
(% of bay area): MaxA 

Standard 2 % 10 % 83 % of bay 

Scenario 1 1 % Standard Standard 

Scenario 2 Standard 5 % Standard 

Scenario 3 Standard Standard 42 % of bay 

Scenario 4 3 % Standard 42 % of bay 

RESULTS 

The standard simulation results indicate that the production is limited by the maximum 

cultivation area in the 27th year (Figure 5.4b).  Afterwards, the economic limitation to 

production (marginal cost equals marginal revenue) is experienced after 10 years in the 37th 

year (Figure 5.4c). These two limitations in production are visible in the net profit curve 

shown in Figure 5.4d. 
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Figure 5.4. Simulation results for standard scenario, scenario 1 and scenario 2 for: a) local demand 
(LD), b) shellfish production (Q), c) marginal cost and revenue (MC and MR) and d) net profit (NP). 

In scenario 1 the reduction of half the price growth rate (rp = 1 % per year, Table 5.4) is 

tested. The economic limit to production (marginal cost equals marginal revenue) in this 

scenario is reached sooner than in the standard and other simulations (Figure 5.4c). The net 

profit also decreases (Figure 5.4d). This is because the price is a major determinant in the 

profitability of the aquatic operations. Therefore, with other variables growing at the rate of 

the standard simulation, the profitability decreases.  

In scenario 2, a decrease of the per capita income growth rate to half the standard simulation 

(ry = 5 % per year, Table 5.4) is tested, while the values of price growth rate and cultivation 

area are the same as in the standard simulation (Table 5.4). The income growth rate does 

influence the demand: with a lower income growth rate, the demand in scenario 2 is lower 

than in the standard scenario (Figure 5.4a) and the exploitation rate is therefore lower (Figure 

5.4b). As a result of the reduced harvest, there is less pressure on the aquatic resources. 

Although the demand is lower than in the standard simulation, in the long run the shellfish 

production in scenario 2 presents higher profits than in the standard simulation: the marginal 

cost is less than marginal revenue in the entire simulation and from 40th year, the net profit in 

scenario 2 diverges beyond the standard simulation (Figure 5.4d). This outcome is further 

explored in the discussion section. 

In scenario 3, a decrease in the maximum cultivation area (MaxA = 42 % of total bay area, 

Table 5.4) was tested. This can simulate for instance a management decision of allocating 
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more area of the bay for other purposes such as tourism or navigation.  Up to the point where 

the physical limit to production is achieved, which occurs at the 18th year, all the variables 

(including net profit) for standard scenario and scenario 3 coincide (Figure 5.5), given that the 

only difference between these two scenarios is the maximum cultivation area. From the 18th 

year, the limitation in the production area reduces the amount of harvestable biomass in 

scenario 3 compared with standard scenario (Figure 5.5b). This further leads to reduced 

profits in scenario 3 compared with standard (Figure 5.5d). However, it is interesting to note 

that due to the lower production over time (from 18th year) the marginal cost increases at a 

lower rate causing a decrease in profitability (MC = MR) only at the 47th year, whereas in the 

standard scenario marginal cost equals marginal revenue in the 37th year.  

 

Figure 5.5. Simulation results for standard scenarios, scenario 3 and scenario 4 for: a) local demand 
(LD), b) shellfish production (Q), c) marginal cost and revenue (MC and MR) and d) net profit (NP). 

Scenario 4 combines the reduction of maximum cultivation area (also simulated in scenario 3) 

with an increase in the price growth rate (rp = 3 % per year, Table 5.4). This scenario can 

exemplify a policy measure to compensate for the limitation on the aquaculture expansion 

potential. The outputs for this scenario show that from the 18th year the shellfish production is 

less than the amount simulated in the standard scenario (Figure 5.5b), however, given the 
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increase in price growth rate, the profits are sustainable in the long run: the marginal cost is 

less than the marginal revenue in the entire simulation (Figure 5.5c) and the net profit is in the 

same range as the net profit for the standard simulation (Figure 5.5d). The shellfish 

production for scenario 4 and scenario 3 are also similar except with a slight difference for 

scenario 3 in the 47th year. This is because at that point, the marginal cost for scenario 3 

equals marginal revenue, which implies a decision to decrease production. This occurrence is 

mainly explained by the lower price growth rate for scenario 3 than for scenario 4. 

 

 

DISCUSSION 

A comparison of the model results for all the simulations, as discussed below, indicates that 

the MARKET model followed the expected trends regarding the standard economic theory for 

consumption and production. Likewise the interrelationship between net profit, physical space 

and food limitation was modeled successfully, according to ecological economics theory. 

Since the income growth rate in scenario 2 (ry = 5 % per year) is half than for other scenarios 

(ry = 10 % per year), the local demand in scenario 2 is significantly lower (Figure 5.4a and 

Figure 5.5a). On the other hand, given that the model assumes price as inelastic, the 

proportional change in local demand due to changes in price growth rate is lower: scenario 1, 

where the price growth rate is lowest (rp = 1 % per year, Table 5.4), when compared to 

scenarios that consider an equal income growth rate of 10 % per year (standard scenario, 

scenario 3 and scenario 4, Table 5.4) shows a slightly higher local demand (Figure 5.4a and 

Figure 5.5a).  

In the scenario with a lower demand (scenario 2) the harvested shellfish was reduced (Figure 

5.4b). In the long run, production was limited by the maximum cultivation area in all the 

scenarios (Figure 5.4b and Figure 5.5b). This outcome indicates that the current annual rates 

for shellfish demand are not sustainable over extended periods of time in this ecosystem. 

From the ecosystem perspective this restriction was only caused by the physical limitation 

given that the ecosystem model results indicate that the food available suffices to yield the 

production up to the maximum cultivation area of 83 % of the Xiangshan total area. 

Nevertheless, this occurs with a slower scope for growth as described in Eq. 5.1.  

Following the physical limitation, the standard scenario, scenario 1 and scenario 3 

experienced an economic limitation to production (reached when marginal cost equals 

marginal revenue, shown in Figure 5.4c and Figure 5.5c), while scenario 2 and scenario 4 did 
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not. The explaining variables were a combination of price, production level and factors 

affecting the production cost: The comparison of scenario 1 (rp = 1 % per year) with the 

standard scenario (rp = 2 % per year), and of scenario 3 (rp = 2 % per year) with scenario 4 (rp 

= 3 % per year) highlighted the impact that a lower price growth rate has on economic 

limitation to production: in scenario 1 it is reached sooner than in the standard scenario and in 

scenario 3 it is reached at 47th year while in scenario 4 it is never reached (Figure 5.4c and 

Figure 5.5c, respectively). The comparison of scenario 3 with the standard scenario indicated 

that the lower production level in scenario 3 caused the marginal cost to equalize with the 

marginal revenue later than in the standard simulation (Figure 5.5c). In scenario 2, where the 

only difference from the standard scenario is a lower income growth rate and consequent 

lower demand, the economic limitation to production (MC = MR) was not reached, while it 

did occur in the standard scenario (Figure 5.4c). The main explanation is the lower production 

level (caused by the lower demand) together with the effect of the lower income in the cost of 

labor for the shellfish production (as unit labor cost changes as a function of the per capita 

income growth rate in the model). 

An interesting outcome of scenario 2 was that although the lower income resulted in a lower 

demand, it also caused a decrease in production cost which resulted in a net profit dynamics 

that in the long run exceeded the net profit of the standard scenario (Figure 5.4d). This 

scenario raises the issue that a lower demand does not always imply a corresponding decrease 

in net profit. This is a topic for further research in the context of economic policy mitigation 

plans: MARKET or other similar models can support a more in-depth analysis, e.g., to 

determine where to target public intervention. In this case, if any public intervention took 

place, it should focus on the promotion of social security (due to the lower income), while 

private fish farmers were protected from the lower demand. In the remaining scenarios, the 

net profit dynamics followed the expected results: the decrease in price caused a decrease in 

profits and vice-versa, as shown by comparison of scenarios that differ only in price (the 

standard scenario with scenario 1 in Figure 5.4d, and scenario 3 with scenario 4 in Figure 

5.5d); the reduction of the production level due to the reduction of the cultivation area also 

lead to a decrease in profits (as tested in scenario 3 compared with standard scenario, Figure 

5.5d). For all the simulations performed within our case study, the profits of shellfish 

production were assured. 
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CONCLUSIONS 

The MARKET model allows for an integrated dynamic analysis of (i) the demand for 

mariculture products, (ii) economic production and cost limiting factors, (iii) the biological 

growth of aquatic resources, (iv) interactions with the environmental conditions and (iv) the 

spatial limitations of culture in coastal ecosystems. Our approach can contribute to 

mariculture management and for implementation of an ecosystem approach to aquaculture 

(EAA). 

Simulation of shellfish production in a Chinese embayment was chosen as a case study 

illustrating the implementation of the MARKET model. A key feature of the model 

implementation was to incorporate the different time scales at which the ecological and 

economic systems function. In this study, we have used several management scenarios to 

show that the model reproduces the expected trends and provides further insights. In all the 

scenarios, production in the long run does not meet increasing demand. In this case study the 

physical limitation of the bay was the first limiting factor for all the scenarios, that is, space is 

expected to impose limitations on production before it becomes less profitable to expand 

production. Overall, the MARKET model can help to understand the succession of the 

limiting factors in mariculture industry and whether the production can meet the demand for 

aquatic resources. 

The MARKET model can be widely applied, provided that case-specific information exists on 

shellfish demand, price, income, production functions, physical area available for cultivation, 

and environmental conditions that have an effect on the growth of aquatic resources and are 

affected by its production. It is recommended that future MARKET model developments 

include: (i) an improvement of the decision model, in particular for decisions by farmers 

about changes of production level, (ii) explicit dynamic coupling with an ecosystem model, 

and (iii) implementation for other aquaculture species and culture practices, especially those 

that normally raise more concerns related with environmental management, such as finfish 

monoculture. 



 

 

Chapter 6.  Integration of ecosystem-based tools 

Context 

The preceding Chapters 2 to 5 present different methodologies for (i) integrated simulation of 

coastal ecosystems, (ii) ecological-economic assessment of the effectiveness of response 

actions, and (iii) dynamic ecological-economic modelling of aquaculture production in coastal 

ecosystems.  

Summary 

This chapter presents the integrated application of these and a wider spectrum of ecosystem-

based tools for coastal ecosystem research and management, such as geographic information 

systems, remote sensing and economic valuation methods. This chapter illustrates the 

application of such a set of tools to support coastal management, using a coastal lagoon 

located in southwest Europe as a case study.  

 

 

 

 



Chapter 6,   INTEGRATION OF ECOSYSTEM-BASED TOOLS 

 164

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter corresponds to the published manuscript: 

Nobre, A.M and Ferreira, J.G., 2009. Integration of ecosystem-based 
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Integration of ecosystem-based tools to support coastal zone 
management  

INTRODUCTION 

Coastal zones exhibit complex interactions at different levels: (i) they are under influence of a 

great variety of pressures at the interface between land and sea, (ii) they are subject to 

feedback effects between natural and human systems (Turner et al. 2003), (iii) they exhibit 

complex relationships between the physical and biological processes – in particular estuaries 

are characterized by complex ecological feedbacks (Bergamasco et al., 2003). Coastal zones 

are highly productive and provide significant direct and indirect socio-economic benefits, e.g. 

food, biodiversity, nutrient cycling, climate regulation, recreation, culture and amenity (MA, 

2005). As a result coastal zones concentrate 40% of the world population and 61% of world’s 

total GNP (MA, 2005). However, their misuse is causing degradation and consequently 

decreases of the services that these coastal ecosystems deliver (MA, 2005). The Millennium 

Assessment (MA, 2005) also indicates impact on human health: of the annual cost due to 

coastal water pollution (16 billion USD) a large proportion is related to human health. 

To address coastal zone problems, ecosystem-based management (EBM) and integrated 

coastal management (ICM) are required (Browman and Stergiou, 2005; Murawski et al., 

2008). ICM is a well established approach (GESAMP, 1996; Cicin-Sain and Knecht, 1998) 

defined as a dynamic process for the management of the use, development and protection of 

the coastal zone (Murawski et al., 2008). It consists of an integrated approach from different 

perspectives (GESAMP, 1996). EBM is an emerging scientific consensus (Murawski et al., 

2008), defined as the use of the best available knowledge about the ecosystem to manage 

marine resources (Fluharty, 2005). The integration of (i) science with management and (ii) 

natural with social sciences, is critical for effective governance of coastal zones (Cheong, 

2008). 

The role of science is to provide the insights and information required to support managers 

and decision makers (GESAMP, 1996; Browman and Stergiou, 2005). This implies the use of 

scientific applications that enable (i) the understanding of biogeochemical processes, (ii) 

interaction of ecological and socio-economic components, and (iii) synthesis and 

communication of complex outputs to managers. The integration of tools, such as geographic 

information systems (GIS), ecological modeling of catchment and coastal systems, economic 



Chapter 6,   INTEGRATION OF ECOSYSTEM-BASED TOOLS 

 166

valuation methods and integrated environmental assessment (IEA), can empower coastal 

managers with a scientific framework for sound decision-making.  

The objective of this paper is to review the most used tools for coastal ecosystem research and 

how they can empower coastal managers for (i) performance evaluation of previously adopted 

responses and (ii) definition of policies. We provide examples, where possible, of the 

application of these tools for management of Ria Formosa, a coastal lagoon in the South of 

Portugal.  

 

 

GENERAL APPROACH 

Integration of ecosystem-based tools 

Integrated approaches for environmental management including of coastal ecosystems, have 

in common (i) the integration of the environmental and socio-economic systems, and (ii) the 

communication between the scientific, management and local communities (Harris, 2002; 

Greiner, 2004; Chang et al., 2008; Tompkins et al., 2008).  

Figure 6.1 synthesizes most common 

tools used for integrated coastal 

research and management and the links 

that are normally established among 

them. These tools can be used isolated 

or combined. The inclusion of “System 

monitoring” in the diagram, highlights 

the fact that all the tools require data to 

be applied. The components of the 

integrated approach (depicted in Figure 

6.1) are detailed herein in separate 

sections. For each tool the relevance for 

coastal ecosystem management was 

described and illustrated using the same 

ecosystem. Whenever possible the 

integration among tools is exemplified. 
Figure 6.1. Integration of tools for coastal 
ecosystem management. 
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Case study 

Ria Formosa was chosen as a case study due to the considerable interaction between the 

ecological and the socio-economic systems of this coastal zone: (i) on the one hand this 

ecosystem has an environmental importance recognized by several international conventions 

and directives (e.g. RAMSAR, Birds and Habitats EU Directives) and is classified as a 

Natural Park by the Portuguese legislation, on the other hand (ii) Ria Formosa and its 

catchment support several economic activities that represent the main source of employment 

and income in the region. The main economic activities include extensive bivalve 

aquaculture, tourism, agriculture and livestock, manufacturing industry, fish aquaculture and 

salt production.  

REMOTE SENSING  

Understanding the upstream processes that exert a pressure on coastal zones is a very 

important component. Remote sensing (RS) can provide valuable information, namely for: 

land use mapping, altimetry, drainage network and other watershed data required for 

hydrological modeling (Pandey et al., 2005). RS can also be particularly useful for mapping 

habitats within coastal systems, e.g. wetlands and mangroves (Green et al., 1999) as well as to 

monitor key surface water quality variables (Chen et al., 2004). Green et al. (1999) and Chen 

et al. (2004) provide detailed guidance about the use of RS for ICM. The major strength of RS 

is that it allows (i) spatially extensive surveys, (ii) monitoring of past situations and (iii) 

multitemporal sensing of e.g., habitat coverage and condition (Lillesand and Kiefer, 2000). 

Such information forms the basis for evaluation of ecosystem services, resource conservation 

status or pressure evolution over time. 

In the Ria Formosa, RS was used to classify the catchment land cover (Figure 6.2). The 

enhanced nearest neighbor algorithm was used for supervised classification of a Landsat-7 

TM scene (30m resolution). Statistical validation of the supervised classification was carried 

out by computing a confusion matrix (Lillesand and Kiefer, 2000) using surveyed test zones. 

The Khat statistic, which provides an indication of classification performance (Lillesand and 

Kiefer, 2000), indicates that classification obtained is 84% better than one resulting from 

chance.  
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Figure 6.2. Ria Formosa land cover classification results. 

 

GEOGRAPHIC INFORMATION SYSTEMS 

GIS can be used for spatial data integration (e.g. bathymetry, sampling stations, habitat area, 

catchment land use), data analysis (e.g. calculation of waterbody volume and area, thematic 

mapping such as interpolation of sampling station data, zoning) and data visualization (e.g., of 

the generated thematic maps). These capabilities make it a useful tool for ICM (Douven et al., 

2003; Tolvanen and Kalliola, 2008) either as a data generator (if used to extract data for other 

tools, e.g. setup ecological models) or as an ‘end in itself’ (if used for communicating 

information to managers). GIS can integrate with other applications as e.g., ecological 

models, by offline coupling, whereby the model receives some of its input data from the GIS, 

or using a tighter integration whereby both the model and GIS share a common interface and 

communicate directly (Fedra, 1996). Sardá et al. (2005), illustrates the integration of data into 

GIS, and its use for data processing and visualization targeted to managers. The use of 

embedded GIS basic functions into Decision Support Systems (DSS) can empower managers 

by enabling to manipulate, display and analyze spatial data and models (Fedra, 1996). 

Another example of GIS use for ICM is to support marine spatial planning for the 

implementation of relevant legislation (Gilliland and Laffoley, 2008; Maes, 2008). Examples 

are provided by (i) Cheong (2008) for the delineation of Exclusive Economic Zones required 

by the Law of the Sea Convention of 1982, (ii) Ferreira et al. (2006) for the division of 
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transitional and coastal waters into waterbodies as determined by the Water Framework 

Directive (WFD, 2000/60/CE) and (iii) Boyes et al. (2007) for zoning based on legislation 

applicable within the Irish Sea. 

For Ria Formosa there are several examples of the use of GIS for ICM, namely (i) zoning of 

Ria Formosa for the application of WFD as described by Ferreira et al. (2006) and (ii) 

identification of conflicting uses by the Natural Park authority (ICN, 2005). Existing spatially 

distributed data (either produced by research institutes, universities or local managers) could 

be compiled for the development of a DSS to support local managers to implement existing 

and develop future plans. 

CATCHMENT MODELING 

Integrated land use catchment modeling emerged as a requirement from policy makers and 

managers to understand the feedback between changing land use and changing environmental 

conditions (Veldkamp and Verburg, 2004). Several studies were developed to understand the 

effects of land use policy on the environmental and socio-economic systems (Veldkamp and 

Verburg, 2004; Macleod et al., 2007). Furthermore, information about catchment pressures is 

of paramount importance to simulate the downstream coastal ecosystems (Neal et al., 2003). 

In particular, estimates of substance loads entering from the catchment are required to 

simulate the biogeochemical conditions of the coastal water bodies. Depending on objectives 

and available data simpler or more complex approaches can be used: direct estimation 

techniques, simple export coefficient methods or more complex catchment models 

(McGuckin et al., 1999; Letcher et al., 2002; Endreny and Wood, 2003; Pandey et al., 2005; 

Wade et al., 2005). The advantage of catchment models is that they allow for scenario 

simulation of catchment land use. This can be integrated with coastal ecosystem models to 

determine the impact of the catchment loads.  

In the case of Ria Formosa, the runoff is concentrated in the winter months (ca. 71%). Loads 

entering into this coastal system have been calculated based on river water quality and flow 

data together with waste water discharge data (MAOT, 2000; Ferreira et al., 2003). However, 

it is desirable to apply catchment models to determine daily nutrient and sediment loads as 

well to test relevant management scenarios and respective impacts. 

COASTAL ECOSYSTEM MODELING 

For the simulation of estuarine and coastal ecosystems there are a large number of models of 

varying complexity, regarding spatial and temporal scales, components of the ecosystem and 
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processes included (Fulton et al., 2003). Model development normally depends on the 

research objectives. Recently the use of ecosystem modeling to assist ICM became an 

emerging requirement (Fulton et al., 2003; Nobre et al., 2005). In particular modeling can be 

useful to overcome data limitations and to simulate scenarios. For instance ecological 

modeling can play an important role for the implementation of the WFD (de Jonge, 2007). 

The development of ecological models usually implies integration with some of the other 

tools in review, at least for the model setup and forcing with boundary conditions (Fedra, 

1996; Neal et al., 2003). 

In the Ria Formosa several models have been applied at different levels, namely a detailed 

hydrodynamic model and an ecosystem box model that simulate transport, nutrient cycling, 

primary production and secondary production (bivalves) (Nobre et al. 2005). The ecosystem 

model was run to simulate different scenarios relevant for eutrophication management. 

ECONOMIC VALUATION 

Ecosystem valuation aims to estimate the total and marginal value of the ecosystem services 

(both the market and the non-market components). There are several difficulties in placing an 

economic value on natural assets and specially of calculating an absolute economic value of 

ecosystems (Costanza et al., 1997; Ledoux and Turner, 2002). Nevertheless, it is of crucial 

importance that an effort is made to calculate the changes caused on human welfare due to the 

changes that affect ecosystem functioning (Costanza et al., 1997). Valuation can be regarded 

as a policy tool in the sense that it enables an accounting of ecosystem goods and services, 

together with the market services, in decision-making and management of coastal systems 

(Barbier et al., 1996; Costanza et al., 1997; Ledoux and Turner, 2002). There is a variety of 

economic valuation methods broadly categorized either as revealed preference methods (such 

as hedonic pricing, travel cost or replacement cost) or as stated preference methods (such as 

contingent valuation and choice experiment), each with advantages and limitations depending 

on the application. Ledoux and Turner (2002) and Birol et al. (2006) provide a review of the 

application of such methods for water resources management. 

Given the ecological importance of the Ria Formosa and the benefits it generates, it would be 

appropriate to conduct such a valuation exercise. Considering the economic activities that 

depend on this ecosystem (aquaculture, fisheries, tourism and salt production) an average 

benefit of 338 million Euros year-1 (2000 prices) is estimated. This value corresponds to the 

average net profit generated by these activities for the period between 1980 and 1999 (Nobre, 

2009). Updated and more detailed studies are required to capture other direct and indirect use 
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values. Particularly important is to estimate the values associated with the wetland area (ca. 

17 % of Ria Formosa Natural Park area) given the range of benefits this type of ecosystem 

provides, i.e. food resources, flood water retention, groundwater recharge/discharge and 

nutrient abatement (Acharya, 2000). Detailed guidelines to carry out such studies are provided 

by Barbier et al. (1996). In order to estimate an approximate range, the wetlands potential 

value was evaluated using values provided by Ghermandi et al. (2008), ca. 100 to 10 000 

USD (2003) ha-1 yr-1, based on an extensive review of economic value estimates of wetlands 

worldwide. The estimated value of wetlands in Ria Formosa ranges between 0.30 and 29.54 

million Euro yr-1 (2000 prices) (USD conversion to Euros was based on the Consumer Price 

Index rate from the Bureau of Labor Statistics and currency conversion from the IMF). 

ASSESSMENT METHODOLOGIES 

Integrated Environmental Assessment (IEA) methodologies can be broadly defined as 

interdisciplinary approaches targeted to guide decision-makers and managers about 

environmental problems, and in more general terms for natural resources management (Toth 

and Hizsnyik, 1998). IEA methodologies are by themselves integrative tools (Cheong, 2008) 

that promote the interaction of ecological and socio-economic disciplines or simply the 

synthesis of complex information to managers. The Drivers-Pressure-State-Impact-Response 

(DPSIR) is one such tool that has been widely applied to synthesize natural and socio-

economic sciences for marine policy formulation (Cheong, 2008) and for ICM (Ledoux and 

Turner, 2002). For the application of assessment approaches the selection of key indicators is 

critical (Håkanson and Blenckner, 2008). Borja et al. (2008) reviews existing methodologies 

to assess ecosystem ecological status in order to address legislation adopted worldwide for 

management of ecological quality or integrity. 

Ferreira et al. (2003) exemplifies the use of an IEA methodology to inform managers about 

eutrophication status in Ria Formosa. The work carried out concluded that there is a moderate 

low eutrophic condition, for which the main symptom identified is periodic blooms of 

macroalgae in some locations of Ria Formosa (Ferreira et al., 2003). Further research 

investigated the effects of nutrient loading scenarios on the eutrophic state of Ria Formosa by 

coupling the eutrophication assessment methodology with the ecosystem ecological model 

(Nobre et al. 2005). The eutrophication assessment methodology used was the USA National 

Estuarine Eutrophication Assessment (NEEA) method and its successor the ASSETS 

screening model (Bricker et al., 2003). 
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The case study presented by Nobre (2009) exemplifies how an IEA approach could support 

the strategic management of Ria Formosa natural resources from both ecological and socio-

economic perspectives: The comparison of drivers, pressures and ecosystem state in two 

different periods (1980/85 and 1995/99) indicates that although there was a significant 

management response (namely the construction of waste water treatment plants), the negative 

economic impacts represented 80% to 220% of the response cost (Nobre, 2009). The decrease 

of the economic benefits was mainly due to the decrease of bivalve production, which is 

believed to be related to the appearance of a parasite (Campos and Cachola, 2006). 

Aquaculture production in Ria Formosa presently accounts for 47% of the Portuguese 

mariculture products and it is estimated that bivalve aquaculture alone is responsible for the 

direct employment of 4 500 people (ICN, 2005) or up to 10 000 according to unofficial 

estimates (Campos and Cachola, 2006). Ruditapes decussatus is the local clam species and its 

production in Ria Formosa is highly significant (ca. 90% of Portuguese production, in 2001). 

This species is highly priced (Matias et al., 2008), however, it is being displaced by the 

Manila clam Ruditapes philippinarum (Campos and Cachola, 2006). Notwithstanding the 

incentives for conservation of local clam, the stipulated activities in Ria Formosa Natural Park 

Management Plan preview for bivalve related management an amount that represents 1.9% of 

planned total budget (ICN, 2005). Results and information synthesized herein, suggest that is 

advisable to invest in the proper management of bivalve aquaculture and natural beds with a 

special emphasis on the seeding procurement or development of local hatcheries, which might 

have a positive effect on (i) mitigating disease introduction (Nobre, 2009), (ii) limiting the 

introduction of alien species (Campos and Cachola, 2006) and (iii) on Ruditapes decussatus 

seed availability (Matias et al., 2008).  

It is advisable that the relevant authorities should define a set of indicators to monitor 

effectiveness of the goals established in the several management plans that exist for this 

ecosystem, the most important being: (i) Management Plan of Coastal Zone between 

Vilamoura e Vila Real de Santo António approved through Resolution No. 103/2005 of 27 

June 2005, focus on the strip of land 500m wide from the seawater baseline and on the marine 

area limited by the 30m bathymetric line, (ii) Ria Formosa Natural Park Management Plan 

approved through Regulatory Decree No. 2/91 of 24 January 1991 and currently is under 

revision, focus on Ria Formosa lagoon ecosystem, and (iii) Hidrographic basin plans of the 

Algarve streams approved through Regulatory Decree No. 12/2002 of 9 March 2002, focus on 

the drainage basin of several streams encompassing Ria Formosa catchment area.  
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CONCLUDING REMARKS 

This paper describes a range of tools that can be used to provide coastal managers with 

scientifically based information for performance evaluation of previously adopted responses 

as well as future management policies. In order to capitalize on the use of these tools and their 

integration a tighter iterative collaboration at the ecosystem level between managers and 

scientists is required, whereby the former should provide the latter with specific management 

objectives or goals for conservation of a given ecosystem and the services it delivers 

(Rosenberg and McLeod, 2005). This approach asks scientists for: (i) suggestions about how 

to achieve those objectives within budget and timeframe constraints, and (ii) monitoring tools 

to assess the performance of policies adopted. Scientists engaged in this process should focus 

on addressing the management needs and communicating the information in an 

understandable and accessible away (Tribbia and Moser, 2008). Nevertheless, there are 

always uncertainties associated with scientific knowledge and predictions. These should be 

acknowledged, particularly with respect to accuracy, but without holding the ecosystem-based 

management process. 
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Chapter 7.  General discussion 

This chapter presents a general discussion on the work developed in this thesis. This 

discussion consolidates the outcomes of the work presented in chapters 2 to 6. The first part 

discusses the methodological developments, both individually and in terms of how they 

complement each other. The second part discusses the use of several study sites and the main 

conclusions for each. The third part presents final conclusions. 
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7.1 Integrated ecological-economic modelling and assessment approach 

The integrated ecological-economic modelling and assessment approach consists of 

complementary approaches developed to assess the coastal ecosystem at different scales and 

translate scientific-based information into meaningful knowledge for managers. Some of the 

developments contribute novel methodologies for integrated coastal zone management 

(ICZM) and, in particular, support an ecosystem approach to aquaculture. The main 

methodologies include: 

 A multilayered ecosystem model: simulates the cumulative impacts of multiple uses of 

coastal zones. This approach combines the simulation of the biogeochemistry of a 

coastal ecosystem with the simulation of its main forcing functions, such as catchment 

loading and aquaculture activities; 

 A coupled ecological-economic assessment methodology – the ∆DPSIR approach 

(http://www.salum.net/ddpsir/): informs managers and decision-makers about the 

ecological and economic impacts of previously adopted ICZM programmes as well as 

about future response scenarios. The key feature of the ∆DPSIR is to provide an 

explicit link between ecological and economic information related to the use and 

management of a coastal ecosystem within a specific timeframe; 

 A Modelling Approach to Resource economics decision-maKing in EcoaquaculTure – 

the MARKET model: provides understanding of the ecological and economic limits 

beyond which mariculture becomes less efficient. The key feature of the MARKET 

model is that it dynamically simulates the ecological and economic interactions. 

Overall, the multilayered ecosystem model can provide valuable insights to ICZM, for 

instance, as regards management scenarios that account for the cumulative impacts of 

multiple uses of coastal zones. This approach can be particularly useful if managers are 

engaged in the process, in which case it requires the explanation of the model capabilities and 

limitations to managers and of the management requirements to the modelling team. Scenario 

testing can help managers design the most effective measures for attaining their goals. After 

implementing a set of measures, for instance, in the context of an ICZM programme, 
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managers need to be able to assess the outcomes of the initiative in order to follow an 

adaptative management approach. The ∆DPSIR provides a framework to accomplish this 

evaluation. One of the case studies of this thesis illustrates the application of the ∆DPSIR 

approach and exemplifies how this methodology can support the strategic management of 

natural resources in a coastal lagoon from both ecological and economic perspectives. The 

approach is further extended in another case study in which the ∆DPSIR methodology is 

applied to evaluate scenarios simulated with the multilayered ecosystem model. The 

application of this combined modelling and assessment approach explicitly links the 

ecological and economic information about the aquatic resource use and management options 

simulated for the coastal ecosystem. Overall, the ∆DPSIR application is tested using different 

datasets and scales of analysis: (i) to analyse past management of a coastal lagoon, based on 

data; (ii) to evaluate impacts of management scenarios on a coastal bay, based on model 

outputs; (iii) and to assess the performance of an individual aquaculture farm. Finally, the 

MARKET model explicitly couples ecological and economic interactions for aquaculture 

production. A key feature of the coupled ecological-economic model implementation is the 

incorporation of the different time scales at which the ecological and economic systems 

function.  The MARKET model further develops the multilayered ecosystem model and the 

∆DPSIR approach, both of which cannot dynamically simulate the feedbacks between the 

ecological and economic systems.  

In this work, the described methodologies are applied to address a current management 

challenge. The focus of the work is on dealing with the challenges of sustainable mariculture 

development; mainly due to its socio-economic importance and complex interactions with the 

environmental system. The multilayered ecosystem model is applied to test scenarios 

designed to improve water quality and manage aquaculture. The model outputs are analysed 

using the ∆DPSIR approach to assess the ecological-economic impacts of the scenarios on 

aquaculture production at the waterbody/watershed level. Additionally, the ∆DPSIR approach 

is used to evaluate the ecological-economic effects of different aquaculture practice options at 

the individual farm level, which is other important scale of analysis for the development of an 

ecosystem approach to aquaculture. Finally, the MARKET model is applied to dynamically 

simulate the interactions between the ecological and economic systems to understand the 

ecological and economic limits beyond which mariculture becomes less efficient. 
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The integrated ecological-economic modelling and assessment approach for management of 

coastal ecosystems presents several limitations, which include: 

 Limitations inherent to ecological/ecosystem modelling: 

• Ecological modelling, and thus scenario simulation, is limited to the variables for 

which there exists comprehensive knowledge; 

• For known processes, there are complex interactions that cannot be accounted for in an 

ecosystem model; 

• The degree of model complexity, regarding spatial/temporal resolution, is limited to a 

level that allows a manageable treatment of results, which implies that only averaged 

values are obtained. 

 Limitations inherent to integrated assessment: 

• Integrated assessments, for instance the DPSIR, do not generate neutral knowledge 

(Svarstad et al., 2008); rather, the results depend on the analyst’s point of view. For 

that reason, when performing such assessments, it is important to engage all 

stakeholders.  

 Limitations inherent to integrating the natural and socio-economic system: 

• Ecosystem valuation has a number of limitations, not only methodological but also 

moral (Hampicke, 1999; Emerton and Bos, 2004). For a number of reasons, is difficult 

to compute an objective and holistic total economic value of a given ecosystem 

(Nijkamp and van den Bergh 1997);  

• The stochastic nature of decisions by individual farmers and the complex dynamics that 

govern, for instance, a policy change, are difficult to incorporate in a dynamic model. 

As such, the MARKET model allows for scenario testing under restricted assumptions. 

When working with modelling and assessment methodologies to support coastal management, 

it is important to identify the above-mentioned limitations in order to avoid the misconception 

that science can address all coastal problems and questions made by managers. However, all 

these methodologies have useful applications, as presented throughout this thesis. The 

ecosystem-based management approach takes into account the balance between scientific 

limitations and capabilities to address management needs. It endorses the use of the best 

available knowledge about the ecosystem to manage coastal resources and maintain its 

services; thus promoting an adaptative understanding about ecosystem processes to respond to 

uncertainties (Murawski, 2007).  
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7.2 Concluding remarks about the study sites 

This section presents the consolidated conclusions about each study site: 

Xiangshan Gang exemplifies a South East Asian coastal ecosystem characterised by (i) 

multiple human pressures, in particular large aquaculture production areas, and (ii) ongoing 

management efforts to improve water quality in order to diversify the uses, such as promoting 

tourism. Major outcomes of the research include: 

 The assessment of the trophic condition of the bay results in a poor estimated score for 

the implementation of any scenario. The improvement of water quality will require 

broader actions than those tested in the modelling exercise. There is still a high to 

moderate high proportion of anthropogenic nutrient sources that can be reduced; 

 Harmful algal bloom events are the most relevant eutrophication symptom in 

Xiangshan Gang. Management of this complex phenomenon requires further research 

and monitoring, including a systematic analysis about the origin of the occurrences, 

triggering mechanisms and detailed economic impacts; 

 Further actions to decrease pressure on the coastal ecosystem should also include land 

use change of the catchment area. The multilayered ecosystem model can assist 

managers in testing the effects of different land cover and agriculture practice on the 

bay water quality and aquaculture production;  

 A solution with potential ecological and economic gains is to re-establish kelp or other 

seaweed cultivation in order to reduce dissolved nutrient concentration in the bay; 

 In the simulated scenarios, the reduction of emissions from wastewater and fish cages 

causes a reduction in shellfish production of about 8% to 47%, depending on the 

scenario; 
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 The MARKET model indicates that production in the long run does not meet 

increasing demand. If aquaculture reduction is not an option, because substance 

loading, which provides food for shellfish, will decrease as a result of further water 

quality improvement plans, an ecosystem approach is required to optimise growth 

conditions: 

o Displace the shellfish culture to areas of the bay with best growth conditions. 

For instance, model outputs estimate that Chinese oyster productivity is almost 

3 times higher in the downstream area of the bay than in the inner part; 

o Integrate shellfish production near fish cage areas, in order to sustain shellfish 

food resources even if, at the ecosystem level, the substances might be 

reduced; 

o Where integrated aquaculture in the embayment is not desirable or possible, in-

land integrated multi-trophic aquaculture (IMTA) systems might be an option. 

 Integration of the insights provided by the model outputs with spatial zoning tools 

might assist in optimizing the location of competing and synergistic activities; 

 Model improvements should include better simulation of the bay hydrodynamics, 

detailed data series for the sea boundary inputs, extended spatial coverage of the water 

sampling network inside the bay, detailed data series of fish cage inputs and full 

mapping of aquaculture structures and practices;  

 In the long run and from a broad society perspective, the costs incurred to take some of 

these actions might be paid back by the avoided costs of restoring ecosystems and 

improved food security. 
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Ria Formosa exemplifies western shallow coastal systems, with a conservation value 

protected by several international conventions/directives and a coastal community 

characterised by low population density with a high degree of socio-economic interaction 

with the lagoon. The most important management issues identified in the Ria Formosa for the 

period analysed (1985 to 1995), were seasonal variations of the local human population and a 

decrease in clam stocks. The major outcomes of the research include: 

 A comparison of drivers, pressures and ecosystem state in two different periods 

(1980/85 and 1995/99) indicates that although there was a significant management 

response (such as the construction of waste water treatment plants), the ecosystem state 

worsened in terms of abnormal clam mortalities due to a parasite and benthic 

eutrophication symptoms in specific problematic areas. The corresponding negative 

economic impacts represent 80% to 220% of the response cost;  

 The value of economic activities dependent on the lagoon suffered a significant 

reduction (ca. -60%). The decrease of the economic benefits was mainly due the 

decrease of bivalve production, a consequence of the abnormal clam mortalities. The 

social consequences are also relevant given that bivalve aquaculture production is 

responsible for the direct employment of about 4 500 to 10 000 people;  

 The local clam species (Ruditapes decussatus) is highly priced, and its production in 

Ria Formosa is significant compared with total national production. However, it is 

being displaced by the Manila clam (Ruditapes philippinarum);  

 Evaluation of these events indicates that future management policies should focus on 

conservation of the local clam, a step that should result in positive impacts to both the 

local socio-economy and biodiversity;  

 Notwithstanding, the activities stipulated in the Ria Formosa Natural Park Management 

Plan include an amount for bivalve related management that represents 1.9% of 

planned total budget; 

 Future actions should invest in the proper management of bivalve aquaculture and 

natural beds with a special emphasis on the seeding procurement or development of 

local hatcheries, which might have a positive effect on (i) mitigating disease 

introduction, (ii) limiting the introduction of alien species, and (iii) on local clam seed 

availability (Matias et al., 2008);  
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 The relevant authorities should also define a set of indicators to monitor the 

effectiveness of the goals established in the various management plans that exist for 

this ecosystem.  

The Irvine and Johnston (I & J), Cape Cultured Abalone Pty, Ltd farm illustrates the shift of 

an abalone monoculture in a flow-through system into an abalone-seaweed IMTA with 

recirculation. This case study is relevant not only for other Southern African abalone farms, 

which together are the largest abalone producers outside Asia (783 ton per year), but also for 

land-based farms located elsewhere and for other species, such as fish or shrimp. The major 

outcomes of the ∆DPSIR application include: 

 The comparison of monoculture with both IMTA settings indicates an overall 

economic gain of between 1.1 and 3.0 million U.S. dollar per annum. This range of 

values reflects the effects of adopting IMTA on (i) economic value of drivers, i.e. 

farm's profit, (ii) value of environmental externalities, and (iii) implementation costs;  

 The environmental benefits include reduction in nitrogen discharge into the sea, 

reduction in the harvest of natural kelp and reduction in CO2 emissions. Alone, these 

represent about 80 % of the estimated overall gains;  

 The ∆DPSIR analysis suggests that the value of the benefits to the public by adopting 

the IMTA designs were larger than the gains in the farm's profitability; 

 The benefits associated with shifting from a monoculture to the IMTA increase with an 

increase in seaweed production. However, the resulting nutrient limitation should be 

addressed; 

 One solution is the three-species IMTA with fish, abalone and seaweeds. This system 

produces more value and resources for human consumption while still managing the 

waste produced; 

 The abalone-seaweed case provided a convenient IMTA system, given that while 

seaweeds act as nutrient biofilters, they are also the natural abalone feed. For other 

species, the generated algal biomass can be converted into other products, such as 

energy, fertilizers or pharmaceuticals; a similar study might also be conducted using 

other extractive species, such as filter-feeders. 
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7.3 Conclusions 

Research about the ecological and economic assessment of coastal ecosystems is important 

because (i) of the importance of and high demand for coastal zones, (ii) the symptoms of 

overuse and misuse of these ecosystems, and (iii) the need for methodologies to evaluate the 

outcomes of coastal management initiatives and to support coastal planning. 

The specific problem addressed in this work is the assessment of changes of the ecosystem 

state and their interactions with the anthropogenic system. This thesis provides a methodology 

to assess the impacts of management responses and multiple coastal zone uses on the 

ecosystem state and generated benefits. The study focuses on the challenges of sustainable 

aquaculture research and management. Despite the limitations described above, the integrated 

ecological-economic approach for management of coastal ecosystems contributes new 

knowledge for addressing the following research needs: 

 Simulation of the cumulative impacts of multiple uses of coastal zones; 

 Management-oriented assessment of ecological and economic impacts on coastal 

ecosystems; 

 Dynamic simulation of ecological-economic interactions of mariculture production. 

 

The results obtained for the different case studies illustrate this method’s application for 

assessing the ecological and economic impacts of management responses and scenarios 

simulated to test management actions. The outcomes of the approach were synthesised into 

information for managers. The integrated approach was applied to analyse aquaculture 

production at both the ecosystem and farm levels. The outcomes illustrated the usefulness of 

this approach for assisting the development of an ecosystem approach to aquaculture, as 

advocated by FAO (FAO, 2007; Soto et al., 2008). Furthermore, the simulation of the 

feedbacks between the ecological and economic systems supported the dynamic analysis of (i) 

the demand for aquaculture products, (ii) economic production and cost-limiting factors, (iii) 

the growth of aquatic resources, (iv) interactions with environmental conditions, and (iv) the 

spatial limitations of culture in coastal ecosystems. 
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Future applications must include the interaction and communication with stakeholders of the 

ecosystem, preferably at earlier stages. Such procedures will contribute to the definition of 

evaluation criteria in the development of management programmes. Additionally, they will 

ensure that the relevant variables for managers and resource users are included in the 

modelling frameworks. Early interaction should be followed up with iterative communication 

between researchers, stakeholders with a management role and users of the goods and 

services of an ecosystem. 

 

The methodology developed in this thesis can be further applied to address new coastal 

management issues, such as coastal vulnerability to natural catastrophes. It can also support 

implementation of current legislation and policies, such as the EU ICZM recommendation or 

the development of River Basin Management Plans following the requirements of the EU 

Water Framework Directive. On the other hand, it can be used to address recurring issues, 

such as the assessment of the outcomes of past or on-going coastal management plans.  
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