

Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia

Departamento de Informática

Dissertação de Mestrado em Engenharia Informática

1º Semestre, 2009/2010

Web Services Recovery Mechanisms

Nº 28022 Rui Filipe Vital Guerreiro da Costa

Orientadora

Prof. Carla Ferreira

22 de Fevereiro de 2010

2

Nº do aluno: 28022

Nome: Rui Filipe Vital Guerreiro da Costa

Título da dissertação:

Mecanismos de Recuperação para Serviços Web

(Web Services Recovery Mechanisms)

Palavras-Chave:

Serviços Web

Mecanismos de Recuperação

Transacções de negócio

WS-BPEL

Keywords:

Web Services

Recovery Mechanisms

Business transactions

WS-BPEL

3

Agradecimentos

Agradeço a todos os meus amigos e familiares aos quais não pude dedicar mais tempo durante

a criação desta dissertação. Tenho que agradecer especialmente à minha namorada Sandra, ao

meu irmão Pedro e aos meu sócio Paulo pelo apoio que me deram.

Agradeço também à minha professora Carla Ferreira por me orientar e pela paciência que

mostrou.

Dedico esta tese aos meus pais Jonas e Otília que já não estão entre nós.

4

Resumo

No contexto dos serviços Web não é possível utilizar o conceito usual de transacções que

respeitam as propriedades ACID devido a vários factores. Por exemplo, o facto de as

transacções de negócio terem em geral uma duração elevada que pode variar entre vários dias

a vários meses, ou então, por envolverem a coordenação e interacção de actividades

executadas por diferentes parceiros. Tendo estes factores em consideração, a propriedade de

atomicidade não é preservada e consequentemente os mecanismos usuais de recuperação (tal

como rollback) não podem ser usados.

Para transacções de negócio, o tratamento de falhas pode ser feito através de mecanismos de

compensação. Estes mecanismos definem acções que compensam outras acções que não

podem ser revertidas automaticamente. Esta dissertação tem como objectivo definir um

conjunto de padrões que representam a utilização comum dos mecanismos de recuperação ao

nível das transacções de negócio. Para mostrar como funcionam os mecanismos de

recuperação vai ser definida uma notação gráfica de fácil compreensão de modo a estar

acessível a pessoas com diferentes níveis de formação.

5

Abstract

In web services context it is not possible to use the usual concept of ACID transactions

because of several factors. For instance, business transaction in general have a long duration

that can be extended to several months or can involve the coordination and interaction of

activities executed by different partners. In these cases, atomicity is not preserved, therefore

the usual recovery mechanisms cannot be used, like the rollback.

 In business transaction, failure treatment can be made by compensation mechanisms in which

are defined actions of compensation for the actions that cannot be reverted automatically. The

goal of this dissertation is to define a set of patterns that represent the common use of the

recovery mechanisms at business level. A graphical notation of easy comprehension will be

developed to show how the recovery mechanisms work to all kind of people with different

background formation.

6

Acronym

Acronym Meaning

ACID Atomicity, Consistency, Isolation and Durability

BPC Business Process Choreographer

FSP Finite State Process

LRT Long Running Transactions

LTS Labeled Transition System

OASIS Organization for the Advancement of Structured Information

Standards

oWFN Open Workflow Nets

WF-net Workflow Net

WPN Workflow Petri Net

WoPeD Workflow Petri Net Designer

WS-BPEL Web Services Business Process Execution Language

WSDL Web Service Definition Language

WSFL Web Service Flow Language

7

Index

1. Introduction .. 14

1.1 Motivation ... 14

1.2 Expected Contribution... 15

1.3 Document Organization .. 15

2. Exception Mechanisms .. 16

2.1 Transactions .. 16

2.2 Long Running Transactions (LRT) ... 17

2.3 Failure Handling and Cancelation Mechanisms .. 17

2.3.1 Exception Handling Mechanism ... 17

2.3.2 Concepts from Advanced Transactional Models .. 18

2.4 Summary ... 18

3. WS-BPEL .. 19

3.1 Business Processes .. 19

3.2 Language Constructs ... 20

3.2.1 Basic Activities ... 20

3.2.2 Structured Activities .. 22

3.2.3 Scopes ... 23

3.3 Recovery Mechanisms .. 24

3.4 Analysis of Compensation Mechanisms ... 24

8

3.5 Other Business Specifications ... 25

3.5.1 BizTalk .. 26

3.5.2 WebSphere .. 26

3.6 Summary ... 27

4. WS-BPEL Formalization ... 28

4.1 Formal Languages with Graphical notation .. 28

4.1.1 Petri Nets ... 28

4.1.2 Statecharts ... 29

4.1.3 Finite State Process ... 30

4.2 Related Work .. 31

4.2.1 Petri Nets ... 31

4.2.2 Finite State Process ... 34

4.2.3 Workflow Nets .. 36

4.3 Summary ... 40

5. Mapping WS-BPEL to Workflow Petri Nets ... 41

5.1 WPN Components ... 41

5.2 Basic Activities ... 43

5.3 Structured Activities .. 49

5.4 Scopes ... 56

5.4.1 Simple ... 56

5.4.2 Fault Handlers ... 56

5.4.3 Compensation Handlers .. 59

5.5 Summary ... 60

6. Booking Agency Case Study .. 61

6.1 WS-BPEL .. 63

6.1.1 Availability Activities ... 64

6.1.2 Booking Activities ... 65

9

6.1.3 Transfer Activities ... 67

6.1.4 Cancelation Activities ... 70

6.2 Workflow Petri Nets.. 70

6.2.1 Direct Mapping ... 70

6.2.2 Overview Mapping .. 78

6.3 Other Compensation Features ... 82

6.4 Comparing BPEL2oWFN ... 84

6.5 Summary ... 86

7. Conclusion ... 87

7.1 Contribution and work limitations .. 88

7.2 Future Work .. 88

Bibliography ... 89

10

Figure Index

Figure 3.1 - Graphical representation of nested scopes .. 23

Figure 4.1 - Illustration of a Petri Net firing rule ... 29

Figure 4.2 - Statechart example .. 30

Figure 4.3 – Terminate Activity in Petri Net .. 33

Figure 4.4 – Pattern “receiving a message” .. 34

Figure 4.5 – Sequence example .. 35

Figure 4.6 - Workflow condition blocks .. 36

Figure 4.7 - Workflow triggers notation ... 37

Figure 4.8 - WoPeD screenshot of property editor ... 38

Figure 4.9 - WoPeD screenshot of token game .. 38

Figure 4.10 - WoPeD screenshot of soundness analysis .. 39

Figure 5.1 - WPN pattern for receive activity .. 43

Figure 5.2 - WPN pattern for reply activity.. 44

Figure 5.3 - WPN pattern for invoke activity ... 45

Figure 5.4 - WPN pattern for assign activity .. 45

11

Figure 5.5 - WPN pattern for throw activity .. 46

Figure 5.6 - WPN pattern for wait activity ... 47

Figure 5.7 - WPN pattern for empty activity .. 47

Figure 5.8 - WPN pattern for exit activity .. 48

Figure 5.9 - WPN pattern for Rethrow activity .. 48

Figure 5.10 - WPN pattern for the compensate activity ... 49

Figure 5.11 - WPN pattern for sequence activity ... 49

Figure 5.12- WPN pattern for if activity .. 50

Figure 5.13 - WPN pattern for while activity ... 51

Figure 5.14- WPN pattern for repeat until activity ... 52

Figure 5.15 - WPN pattern for pick activity ... 53

Figure 5.16 - WPN pattern for flow activity .. 54

Figure 5.17 - WPN pattern for foreach activity .. 55

Figure 5.18 - WPN pattern for a scope ... 56

Figure 5.19 - WPN pattern for a scope with fault handlers .. 57

Figure 5.20 - WPN pattern for the activity within the failure handlers 58

Figure 5.21 - WPN pattern for a scope with compensation and fault handlers 59

Figure 6.1 - Activity diagram for the booking process... 61

Figure 6.2 - Activity diagram to cancel a booking ... 62

Figure 6.3 - Graphical overview of the booking agency process ... 63

Figure 6.4 - Graphical representation of the AvailabilityScope ... 64

12

Figure 6.5 - Graphical representation of the ScopeBooking .. 66

Figure 6.6 - Graphical representation of the ScopeBooking compensation 67

Figure 6.7 - Graphical representation of the ScopeTransfer .. 68

Figure 6.8 - Graphical representation of the Failure and Compensation handlers of

ScopeTransfer ... 69

Figure 6.9 - Graphical representation of the ScopeCancelation and failure handlers 70

Figure 6.10 - WPN mapping for the ScopeAvailability ... 71

Figure 6.11 - WPN mapping for the ScopeBooking .. 72

Figure 6.12 - WPN mapping for the compensation handlers of ScopeBooking 73

Figure 6.13 - WPN mapping for the ScopeTransfer ... 75

Figure 6.14 - WPN mapping for the failure handler for the ScopeTransfer 76

Figure 6.15 - WPN mapping for the compensation handler for the ScopeTransfer 76

Figure 6.16 - WPN mapping for the ScopeCancelation ... 77

Figure 6.17 - WPN mapping for the failure handler of the ScopeCancelation 77

Figure 6.18 - Overview of the WPN mapping for the compensation of the booking agency

process .. 78

Figure 6.19 - Detailed WPN mapping for the booking agency process 80

Figure 6.20 - Compensation within Handlers examples... 83

Figure 6.21 - Graphical representation of ScopeCancelation using BPEL2oWFN and

Graphviz ... 84

Figure 6.22 - Graphical representation of ScopeCancelation using this work mapping 85

13

Table Index

Table 1 - Basic Activities of WS-BPEL ... 21

Table 2 - Structured Activities of WS-BPEL ... 22

Table 3 - Some FSP operators .. 31

Table 4 - WPN components ... 42

14

1. Introduction

The internet has revolutionized the way we interact with the world around us. Now we can

stay at home and do things that once needed our presence to be achieved. We can buy

groceries, manage bank accounts or book vacations among lots of others operations. These

operations usually, in order to be accomplished, need to exchange data and messages between

different systems used by the parties involved. To achieve that goal, web services provide the

interoperability between companies and their systems. To do so, some rules must be taken in

consideration by all participants, rules that are defined in the business process. WS-BPEL[1]

has become a standard to define those rules, and is supported by the main corporations that

develop and provide means to create web services.

Web services need to have recovery mechanisms, compensation methods and failure

treatment to provide an efficient and secure usage by all users. Usually web services depend

on database support to store data, therefore some of these concepts where inherited from

database design.

The recovery mechanisms created for web services become more complex when a process is

distributed between different partners. An error on one web service will influence the others,

and if not handled correctly, it may lead to unforeseen events that may damage the

participants relationships.

1.1 Motivation

This work was proposed because of the lack of precise information regarding one of the most

import aspects in the development of web services, the recovery mechanisms. Although WS-

BPEL is a standard, it is still under development. So in order to suppress some needs that

might not be covered by the standard, the existing web services tools need to adapt business

15

process recovery mechanisms. Those changes in business process implementations have not

been studied in detail, therefore it has become part of this work.

1.2 Expected Contribution

This work is expected to provide a mapping in a formal language of the business process

recovery mechanisms. Doing so, it will improve the knowledge of business process in web

services. It should provide a deep insight of the recovery mechanisms associated with web

services, their definitions, flaws and limitations. The mapping should also provide a way to

show even non experts, the steps that the business process goes thru to execute the tasks that

is made for. This includes besides the recovery behavior, also the normal behavior.

1.3 Document Organization

This document is organized in the following manner: the second chapter introduces some

concepts used in exception mechanisms that are the basis of recovery mechanisms in web

services. The third chapter makes an overview of the business process specifications including

the different existing activities and some tools that can model and implement business

process. The fourth chapter contains the related work that shows a few graphical formal

languages that could be used to give a formal notation to the findings of this work. Fifth

chapter provides a mapping for the different activities present in the business process into the

formal language chosen. The sixth chapter introduces a case study do demonstrate the

recovery mechanisms in the business process. The last chapter provides a conclusion for this

thesis.

16

2. Exception Mechanisms

There are many approaches to control exceptions and cancelations. This chapter presents

some of those concepts on which web services depend. Concepts like transactions that are the

basis of the connections between web services and some common failures handling and

cancellations mechanisms.

2.1 Transactions

Transactions are usually used in database systems with concurrent access by different clients.

The goal of using transactions is to group a collection of operations such that once executed,

all operations succeed or none does. To ensure that the data accessed and modified by the

clients is always consistent, the database systems must maintain a few properties regarding

the transactions. These properties are known by ACID [2] which stands for:

 Atomicity: All operations within the transaction must execute successfully as if it

were only one. If not, then the changes made by the transaction must be undone, and

in this case it would appear like the transaction never occurred. The atomicity is usual

guaranteed by a locking system;

 Consistency: The consistency of the database must be preserved by the transaction.

 Isolation: Even if multiple transactions are executed concurrently, each transaction

must be unaware that the others are running. Intermediate affects of a transaction must

be invisible to the others;

 Durability: This property assures that if a transaction is successful, then all the

changes made by that transaction will persist even if occur a system failure.

17

2.2 Long Running Transactions (LRT)

Most transactions are non-interactive and of short duration [3]. Whenever a human interacts

with a transaction, it becomes a long-running transaction because the human response time is

slower than computer speed. In such cases, the transaction may last hours, days or months just

because it needs human intervention. From this type of transactions some problems surface:

the ability to abort subtasks, exposure to uncommitted data, recoverability and performance.

 Subtasks: The user may wish to abort a subtask, but not the entire transaction.

 Exposure of uncommitted data: The data generated and displayed to a user in a

long-duration transaction are uncommitted, so concurrent transactions may be forced

to read uncommitted data.

 Recoverability: This type of transaction cannot abort because of system crash. It must

be recovered to a consistent state that existed prior to the crash, without affecting

human work.

 Performance: The most costly resource is the user. So in order to optimize the user

interaction within the transaction, the tasks that take longer to execute should be

predictable, so that users can manage their time.

Because of these features, the common failures handling and cancellations mechanisms must

be adapted for these transactions.

2.3 Failure Handling and Cancelation Mechanisms

Like other processes, the business process must provide a way to handle exceptions and

cancel the execution of some work.

2.3.1 Exception Handling Mechanism

When a condition occurs that changes the normal execution of code, then an exception has

occurred. If it is not handled, it usually aborts the execution of a program. To prevent this, in

18

most common programming languages [4] exists built-in support for exception and exception

handling. Usually the programmer can define where the exceptions are caught and which

exceptions must be treated. It can be applied to a single operation or to multiple operations. If

an exception is caught, then the program must execute the appropriate code to handle it, or at

least warn the user of the problem.

2.3.2 Concepts from Advanced Transactional Models

The term Saga [5] is applied in context of relational database and it is used to refer a long-

running transaction that can be divided into a collection of sub-transactions. Those sub-

transactions can be interleaved in any way with other transactions. Each sub-transaction in a

saga has the ACID properties and should have a compensation transaction which is called

when a failure occurs. Unlike the rollback in database, this compensation transaction may not

return the system to the initial state. Sagas may be seen as nested transactions [6] but with two

major differences:

a) Only permits two levels of nesting: top level saga and simple transactions;

b) Sagas may view the partial results of other sagas (full atomicity is not provided).

Sagas provide two types of compensation: the backward recovery and the forward recovery.

If one of the nested transactions fails, when using backward recovery, the compensation

transactions of the previous successful nested transaction will be called in the reverse order of

execution. When using forward recovery, beside the compensation transactions, it needs save-

points defined within the saga. It does the same as backward recovery, but it stops the

recovery at the save point, and tries to run the transactions again from that point forward.

2.4 Summary

This chapter showed some concepts used in many existing systems, including business

process and web services. Introduced the notion of short and long running transactions. The

exceptions in programming languages and the definition of Sagas. The next chapter will give

an overview of business process which is the base of this work.

19

3. WS-BPEL

It is a language for specifying business process on web services and it stands for Web Services

Business Process Execution Language. It is based on XLang [7] by Microsoft and Web

Services Flow Language (WSFL) [8] by IBM and uses XML [9] syntax. It has become a

language standard for the Orchestration of logic execution in Web services applications,

supported by Microsoft, IBM, BEA Systems, SAP, among others. Organization for the

Advancement of Structured Information Standards (OASIS) manages the standardization

process, and WS-BPEL is currently in the 2.0 version. Originally it was named BPEL4WS

and because of that, both names are used to refer this business process language.

WS-BPEL can describe an abstract business process which serves as a descriptive role and

therefore is not intended to be executed. It can also describe executable business processes

that model the actual behavior of the participants. That behavior consists of the interactions

between the process and its partners. Every partner uses a Web Service interface to interact

and each interaction must be coordinated to achieve a business goal. This language also

provides ways for dealing with exceptions and failures.

3.1 Business Processes

The business process coordinates the interaction with other web services. This coordination is

contained in a WS-BPEL file that contains the way our web service communicates with other

web services. But before defining the coordination, first it must be declared the message

types, operation names and locations of the different partners involved. This is done using a

WSDL [10] files. WSDL is another XML formatted file that contains the information

provided by a partner in order to communicate with other web services. Having these files, the

definition of the business process can start. The WS-BPEL file is usually composed by the

partner links, variables and the process definition. It can also have fault handlers defined for

20

the process. The partner links contains the parties involved in the business process and their

roles in the relationship. The variables contains the state of the business process. The state can

include, for instance, the messages received and sent to partners. The variables can be of

several types and contain simple or complex data. The variable names must be unique and the

declaration can be global or be part of a scope. Some of the activities of WS-BPEL must have

associated variables in order to function. The process definition contains the description for

the normal behavior of the business process. Fault handlers define the activities that must be

performed when something goes wrong.

3.2 Language Constructs

WS-BPEL language is composed by many different XML tags. This section will focus part of

the language that is relevant to this thesis. Defining Variables, Correlations, Links or

Termination handlers are not covered.

3.2.1 Basic Activities

There are many different activities in WS-BPEL. The basic activities describe the basic steps

of the process behavior and are detailed in Table 1. This includes also associated symbols

existing in Oracle JDeveloper [11] that will appear latter on in the Case Study chapter.

Activity Symbol Goal

Invoke

 This activity invokes an operation offered by a partner. It can be a

one-way or a request-response operation. This activity sends a

message to the partner that must be appropriate to the operation

invoked. If the operation is request-response, the invoke will wait

for the response message.

21

Receive

This is an asynchronous activity that waits for a partner to invoke

an specific operation. This is done by receiving a message sent by

a partner.

Reply

The reply activity is used in conjunction with the receive activity

when a request-response is invoked by a partner. This will send a

message to the partner with the appropriate message.

Assign

This activity passes data from one variable to another.

Throw

This activity is used to signal an explicit fault to the business

process. The fault thrown must be thread by a fault handler.

Wait

This activity delays the execution of the process. This can be done

by waiting for a period of time or until a deadline.

Empty

This activity does nothing.

Exit

This activity is used to end a business process without handling

faults, termination or compensations.

Re-throw This activity is used in fault handlers to re-throw a previous fault.

Extension

Activity

 This activity defines new activities that are not defined by the WS-

BPEL specification. It will not be covered.

Compensate

This activity calls the compensation of a previously executed

scope. This cannot be called within the normal execution.

Table 1 - Basic Activities of WS-BPEL

22

3.2.2 Structured Activities

Structured activities describe a way a collection of activities are executed. This activities can

be a composition of basic and other structured activities. These activities are detailed in Table

2. Like the previous table, it also has symbols used in the case study chapter.

Activity Symbol Goal

Sequence

This activity contains one or more activities that are executed

sequentially. This activity ends when all activities ends.

IF

The if activity consists of a list of conditional branches. If one of the

conditions is true the associated activity is executed.

While

The while activity repeats an activity while a condition is true. This

condition is evaluated at the beginning of each interaction.

Repeat Until This activity performs almost the same operation of the while

activity. The difference is that the conditions is evaluated at the

end of each interaction and is executed at least one time.

Pick

The Pick activity waits for one event from a set of events. If the

event occurs, the associated activity will be executed and all other

events will no longer be accepted.

Flow

The flow activity provides a way to run concurrent activities and

synchronization.

For Each The ForEach activity executes a scope activity N + 1 times.

Table 2 - Structured Activities of WS-BPEL

23

3.2.3 Scopes

A scope is a collection of activities that are logically put together and can have local variables,

fault handling, compensation handling among other constructs. The constructs that can be

used by a scope are nested hierarchically and follow a few rules. A scope requires a primary

activity that defines its normal behavior. This primary activity shares the context of the scope

and usually is a structured activity that can have many levels. Scopes can also be nested with

other scopes. In Figure 3.1 is shown a graphical representation of a possible organization of a

WS-BPEL process. In this example, the process has a Scope 1 that has two nested scopes,

Scope 2 and Scope 3. All scopes have defined the compensation handlers and the Scope 1 has

also failure handlers.

Figure 3.1 - Graphical representation of nested scopes

The process in order to treat failures, normally uses the scopes and the associated handlers.

When a failure occurs within a scope and the scope have defined failure handlers, the failure

will be caught and will be treated accordingly. A group of activities can be defined to treat

specific failures, or it can be defined to treat all failures. Raising failures may lead the process

to compensate previously concluded scopes. The definition of compensation handlers for

24

scopes will usually contain activities to undo what the scope did. The compensations can only

be called or triggered when failure occurs. When compensation needs to be executed, it will

run the compensations for the previous scopes that terminated. Returning to Figure 3.1., if a

failure occurs in Scope 3, then the compensation for Scope 2 must be executed. If Scope 2 and

Scope 3 did not have compensation handlers, the process would use the compensation of

Scope 1.

3.3 Recovery Mechanisms

The recovery mechanisms present in WS-BPEL uses fault, compensation and termination

handlers defined by the creators of the business process. Fault and termination handlers can be

defined for the process itself or can be defined independently in each scope of the process.

Error handling in WS-BPEL uses the concept of compensation defined in sagas. It attempts to

reverse the affects of previous activities, that are part of large unit and needs to terminate for

some reason. Logic work units are divided in scopes and for each scope it can be defined a

work unit that contains the compensation instructions. Once all activities inside a scope are

completed successfully, the scope can be compensated if it is required later. If a fault occurs

or a fault is thrown, the fault handlers will execute the activities associated with the fault and

then call the compensation of the scopes previously run. The compensations are run in the

reverse order they were executed, so the compensation of the first scope executed will be the

last to be invoked.

3.4 Analysis of Compensation Mechanisms

Greenfield et al. in [12] focuses the shortcomings of the compensation methods applied to

business processes. It is estimated that nearly 80% of the time used in the development of

business process is to handle exceptions. This rate is very high because of the variables

involved like: human interaction, network and concurrency. For instance, failures can occur

even while handling other failures, concurrent business processes may be affected by shared

25

resources or failures that are not local to one party, but rather in the way peer processes

interact.

The standard approach to dealing with failures and cancelation requests is based on ACID

transactions, Saga´s compensation transactions and exception handling derived from

programming languages. The problem is the fundamental assumption of the standard

approach, that all completed activity can be semantically undone. It is assumed that is

possible to define the right compensation for all the activities. In WS-BPEL, an empty

compensator is associated to activities that cannot be undone, making the enclosing scopes

unaware of the incompleteness of the activity. Another flaw concerns the assumption that

fault-handling should terminate all activities of the scope where the fault was raised. It makes

sense in object-oriented programming languages, but in business process sometimes it is

necessary to evaluate the current state of the scope and try to achieve a stable state. It is not

possible also to create a customized handler, like for example, run a compensator for just one

sub-activity and not the others of the scope.

Greenfield et al. also proposes the idea of an infrastructure to allow developers to define

business application that maintain state and data consistently. This infrastructure should have:

 A language to express consistency conditions;

 A language to express systems design, treating cancelation and failure as events, just

like a message arrival;

 Tools to check when the system maintains consistency;

3.5 Other Business Specifications

There are many different tools that can use the WS-BPEL specification to provide the control

between different web services.

26

3.5.1 BizTalk

BizTalk Server [13] is property of Microsoft and is currently in the 2009 version. This

program serves mainly as a routing and manage service for messages between several

partners, but has many others features. It is an integration base on which web services can be

build. Since BizTalk is a WS-BPEL compliant system, it can be used to define Orchestrations.

Orchestrations are processes that contain the rules to manage the business process.

Sagas are applied to relational database systems, but BizTalk Server extends similar concepts

to the context of automated business processes. It is used within the orchestrations to provide

a good support for handling external and internal data. The basic compensation model used is

an extended version of saga’s backward recovery. In this model, long-running transaction

(LRT) is broadly equivalent to a saga. It can contain nested atomic transactions and each

transaction is associated with a scope. Each scope can have a compensation block that

contains the orchestration code used by the recovery system. If any nested transaction throws

an exception, the long running transaction can invoke backward recovery. The invocation of

default compensation is not automatic. It is always invoked from within the context of an

exception handler on the LRT. So compensation can only be invoked if the exception is

caught by the outer LRT.

There are also two forward recovery mechanisms. Retrying atomic scopes and resume

suspended orchestrations. The first mechanism can only be used if the commit of a transaction

fails and if the atomic transaction scope throws an instance of RetryTransactionException. It

can perform up to 21 retries, if it still fails, BizTalk will suspend the orchestration instance.

When an orchestration is suspended, it can be resumed manually or using a custom script.

Resuming the orchestration consists on re-starting the process from the most recent

persistence point that is the point when a scope has committed all operations.

3.5.2 WebSphere

WebSphere [14] are a group of products by IBM that are developed over open standards like

Java [4] and XML. Within this group there are a few that work with business processes like

for instance Business Process Choreographer (BPC) [15]. WebSphere, like BizTalk is also

WS-BPEL complaint, so it can also process de WS-BPEL syntax within its tools.

27

BPC has two types of processes: long-running processes and microflows. Long-running

processes consists of several chained transactions. This process is interruptible and can have

duration between hours and even years. A microflow is a short-lived process that runs inside a

unit of work and has a maximum duration. The activities within a microflow are automatic

and cannot wait for inbound events once it is started.

BPC also uses the notion of compensation to treat failures, but the implementation depends on

the type of process. Microflow must be compensated as a whole and long-running may be

compensated partially.

3.6 Summary

This chapter provided an insight on the language used to describe a business process. It can

use simple activities or complex ones, mixing it all. Normally these activities are grouped

inside scopes, usually when they are related with each others. Scopes can have compensation

and failure handlers associated with them. Also was showed the recovery mechanisms present

in the business process and other tools that use the WS-BPEL and add a few more options to

those recovery mechanisms.

The next chapter will provide a formalization for business process.

28

4. WS-BPEL Formalization

The WS-BPEL can be formalized using different approaches. This thesis will focus formal

languages with graphical notation to provide a better understanding of the business process

and what it can do.

4.1 Formal Languages with Graphical notation

The formal languages that are present here, all have graphical notation and a two of them

already were used to map WS-BPEL.

4.1.1 Petri Nets

Petri Nets are a graphical and mathematical modeling tool. It is used for describing and

studying information processing systems that can be concurrent, distributed, and parallel

among others. It is possible to set up state equations, algebraic equations and other

mathematical models that define systems behavior. The concept of Petri Net was developed

by Carl Adam Petri’s dissertation dated 1962 and has been evolving ever since. Petri Nets can

be extended to formalize many types of systems, and have become one of the most favorite

graphical formal languages [16].

Petri Net has two types of nodes: places and transitions. The nodes are connected using

directed arcs. This connection must be between different types of nodes. If a place is the

source of an arc, it is called input place. If it is the destination of an arc, it is an output place.

Each arc can have different weight which can consume or supply tokens depending on its

connections. Tokens are non negative integer that refers to a number of data items or

resources available. The presence of tokens in a place is called marking and a transition is

enabled if each input place has tokens. Only an enabled transition may be fired, and if it is

29

fired, the tokens will pass from the input place to the output place. Graphically, places,

transitions, arcs, and tokens are represented respectively by circles, bars, arrows, and dots.

A Petri Net transition is exemplified by this Figure 4.1. This illustration shows a chemical

reaction. When transition t is fired, the marking will change from a) to b) consuming 2 tokens

from the input place H2 and 1 from input place O2, because that is the weight of the arcs. That

transition will then supply 2 tokens into an output place H2O.

Figure 4.1 - Illustration of a Petri Net firing rule

Among the works done with Petri Nets, there are some concerning the conversion WS-BPEL

syntax to Petri Nets, which includes the compensation mechanisms. Among these are the

work of Stahl [17], Lohmann [18, 19] , König [20] and Ouyang [21].

4.1.2 Statecharts

Statecharts diagrams were developed by David Harel [22] as an extension of state machines

and state diagrams to specify and design complex discrete-events systems. These diagrams

are a graphical notation and extend the normal state diagrams with 3 notions: hierarchy,

concurrency and communication. Those notions will allow the creation of simple diagrams

that can illustrate complex behaviors.

The two main components of Statecharts are the states and transitions. There are three types

of states: basic states, and-states and or-states. The or-states are sequential sub-states, the and-

states are concurrent sub-states and the basic states have no sub-states. The transitions are

http://portal.acm.org/author_page.cfm?id=81350595811&coll=GUIDE&dl=GUIDE&trk=0&CFID=78067116&CFTOKEN=56377414

30

events between states. The transactions are composed by: source state, target state, event,

action and condition.

The Figure 4.2 is a Statechart example in [22]. In this example, D is a state that can have the

A or C states active, but not both. If an event γ occurs in state A transfers the system to state

C, but only if condition P holds at the instant of occurrence. The event β takes the system to B

from either A or C. Event α and δ transfers the system from B to A or C respectively.

Figure 4.2 - Statechart example

4.1.3 Finite State Process

Finite State Process (FSP) is a textual notation much like a process calculus [23] by Magee,

Kramer, et al [24]. It is designed to be machine readable and is used for specifying concurrent

programs. Once the FSP is created, it can be used within a modeling tool, for instance, the

Labeled Transition System Analyzer (LTSA) [24] that compiles the FSP into a graphical

workflow process.

FSP has several operators defined in its semantics. Some of the operators are presented in

Table 3. A thesis done by Howard Foster [25] models WS-BPEL notation into FSP, but does

not fully cover the compensation mechanisms. This work is showed later in the Section 4.2.2.

31

Name Operator Example Description

Action Prefix -> x->P an action x is engaged and then

the process P is executed;

Choice

| x->P|y->Q action x or action y are engaged

and then the process associated

with each one is executed;

Recursion the behavior of a process may be

in terms of itself;

End State END it appears when a process

terminates successfully and has

no more actions;

Sequential

composition

; P;Q Describes a process P that when it

reaches the end state, starts the

process Q;

Parallel composition || P||Q Describes that both process can

be executed in parallel.

Table 3 - Some FSP operators

4.2 Related Work

This Section covers different approaches used to formalize the WS-BPEL into a graphical

notation. It presents works done in Petri Nets, Finite State Process and Workflow Nets.

4.2.1 Petri Nets

Like FSP, also Petri Nets have been used to model business processes. In [17] Stahl presents

a pattern-based Petri Net semantics for WS-BPEL. It covers the standard behavior of WS-

BPEL and includes also faults, events and compensation. Although WS-BPEL being a textual

language, it does not have formals methods that would help its verification. Therefore a

formal semantic is needed to resolve ambiguities and inconsistencies. Usually the existing

formal languages used for WS-BPEL covers the standard behavior, but does not support fault

handling or compensation.

The goal of Stahl’s work is to translate every WS-BPEL process into a Petri Net. The WS-

BPEL constructors are translated to Petri Net, creating a pattern. Each pattern has an interface

to join other patterns, can have parameters and carry several inner constructs as WS-BPEL,

keeping all its properties. That collection of patterns is the Petri Net semantics of this work.

32

Some design decisions were made when translating special concepts of WS-BPEL. Positive

control is the flow from top to bottom and communications between processes flow

horizontally. In order to stop positive control, every activity pattern was extended by a stop

component that is called when a scope need to be stopped. It was also needed to save all

executed scopes, because when an implicated compensation handler was invoked, all the

compensation handlers of its child scopes needed to be invoked as well.

A tool was developed to automatically transform WS-BPEL processes into Petri Nets.

Currently it cannot be used with High Level Petri Nets, which are nets that extended the

normal behavior using color, time or hierarchy.

One of the examples showed by Stahl is the terminate activity. It is executed to terminate the

whole process instance. In Figure 4.3, the process state changes to terminated and the stop

pattern is use to end the process. Two things can happen: the process state is already

terminated (t1) or the termination of the process is started by changing the state to terminated

(t2). The Stop Patterns are made by transitions t3 and t4.

33

Figure 4.3 – Terminate Activity in Petri Net

Another work by Lohmann [18] also presents a extension of a Petri Net semantics for WS-

BPEL, but also covers the latest version, WS-BPEL 2.0 specification. It uses Open Workflow

Nets (oWFNs) which are special class of Petri Nets. The oWFNs have a simple formal basis

to model services and interactions, preserving the same properties associated with Petri Nets.

These oWFNs were implemented in a compiler (BPEL2oWFN) [3]. Like in [17], each

construct of WS-BPEL can be translated into a Petri Net, creating a pattern. Patterns can be

connected to each other by interfaces forming a WS-BPEL structured activity.

Lohmann created a more compact model by simplifying and reducing some aspects as dead-

path-elimination and the <scope> pattern. This compact model changed some graphical

notations present in [17] , including the use of color. Dashed place is a copy of place with the

same label or read arcs are unfolded to loops. Control flow can be stopped at yellow places,

34

and a fault can be thrown on orange places. Blue transitions access variable places, among

others. Figure 4.4 comes as an example of this notation.

Figure 4.4 – Pattern “receiving a message”

The semantics cover all data and control flow aspects of WS-BPEL, but does not cover the

instantiation of process instances and message correlation. Future work will involve semantics

that cover all the lifecycle of process instances.

4.2.2 Finite State Process

Finite State Process (FSP) has been used to model business process, like for instance in

Foster’s thesis [25]. According to Foster, “The main objective of this work is to provide a

rigorous approach to specifying, modeling, verifying and validating the behavior of web

service compositions with the goal of simplifying the task of designing coordinated

distributed services and their interaction requirements.“. It presents a guide to model

BPEL4WS semantics in FSP models and Labeled Transition Systems (LTS). The diagrams

35

provided by the LTS aids in the comprehension of the most elaborated operations executed by

WS-BPEL, like for instance, concurrent processes. These diagrams are provided by a tool that

converts the FSP in a LTS. In order to process the WS-BPEL into a FSP, a plug-in was

developed for that tool.

The modeling WS-BPEL in FSP made some assumptions and has some limitations. Foster

assumes that a process starts at the first receive activity specified in the process, because

multiple start points would affect the order of the activities. There is no implementation of

synchronization between events, like the interaction of clients in long-running process. The

mapping is limited in the translation of variables and does not include event handling as part

of an activity scope. And it can only model the behavior of a single process.

Figure 4.5 – Sequence example

As an example of the modeling involved in Foster thesis, Figure 4.5 shows the correlation

between a sequence activity in WS-BPEL, FSP and LTS. The sequence scope in WS-BPEL

36

provides the order in which the activities should be executed. In this case, a partner invokes a

service, then receives a message from that partner and replies, ending the sequence. In FSP it

is represented by a sequence composition where the activities are separated by “;” operator. In

LTS the start activity has the red background and the last activity is labeled with “E”. These

activities are connected by arrows indicating the order in which they are going to be executed.

4.2.3 Workflow Nets

Workflow nets (WF-net) where introduced by Wil van der Aalst [26] [27] and are an

extension of the Petri Nets. Workflows, in a business process, are the tasks that are needed to

be executed and their order. The transition proposed by Aalst, is that tasks are modeled by

transitions, conditions are modeled by places and cases are modeled by tokens. Van der Aalst

introduces also conditional blocks (represented on Figure 4.6) and the use of triggers (shown

on Figure 4.7) creating an simple notation to implement a workflow based on the Petri Nets.

Any WF-net must satisfy two requirements: every net must have a source place and a sink

place which represents the start and finish place of the net and every transition and place must

be in a path between these two places.

Figure 4.6 - Workflow condition blocks

37

Figure 4.7 - Workflow triggers notation

4.2.3.1 Workflow Petri Net Designer

Workflow Petri Net Designer [28] (WoPeD) is a tool to model, simulate and analyze

workflow processes using the workflow nets introduced previously. It is an open-source

software developed at the Cooperative State University Karlsruhe and is currently in a version

2.3.1. It allows the use of workflow components to build nets that can generate WS-BPEL

code. Each component can have different configurations to express basic or complex activities

which includes, for instance, the declaration of variables. The tool supports reach ability

testing, deadlocks and soundness analysis. It also includes a token game to see how the net

evolves depending of the conditions imposed. Some images of the application are shown by

Figure 4.8, Figure 4.9 and Figure 4.10.

Figure 4.8 shows the available definitions for a transition. It allows defining the type of

transition and what triggers it. It can also include the time it takes to perform and its role.

Different components have different definitions.

38

Figure 4.8 - WoPeD screenshot of property editor

Figure 4.9 - WoPeD screenshot of token game

39

Figure 4.9 exemplifies a token game. A token game allows the user to see the available paths,

and choices that the implemented Net has. First one must assign tokens to the places that

needs it. At least one must be assign to the starting place in order for it to work. In no path

exists between the starting and finish place, then the token game does not start. Assuming

normal behavior, when a choice is presented to the user, a small play sign appears and the

choice made by the user will lead to the next possible choices. This will be done until

reaching the end of the net.

Figure 4.10 - WoPeD screenshot of soundness analysis

Figure 4.10 shows the properties of the displayed net, including if it has soundness and

liveness.

40

4.3 Summary

This chapter focused different alternatives to provide a formal interpretation to WS-BPEL by

using graphical notation. This included Finite State Process, Statesharts and different types of

Petri Nets which are the most common formal languages used when it concerns WS-BPEL.

There are several works using low level and high level Petri Nets to map WS-BPEL

components but do not focus recovery mechanisms in detail. The next chapter maps the WS-

BPEL language into the chosen formal language, implementing patterns for the activities

presented in section 3.2.

41

5. Mapping WS-BPEL to Workflow Petri Nets

In this chapter the WS-BPEL activities are mapped into Workflow Petri Nets (WPN). WPN

graphical notation available in the WoPeD tool is simple to follow and allows the creation of

sub-processes. The WoPeD can already be used to generate WS-BPEL code, but visually this

is not perceptive. So in order to become more clearer, the WoPed components will be used to

form patterns that represent the activities available in WS-BPEL. These patterns can be united

replacing the finish place of one pattern by the start place of the next pattern.

5.1 WPN Components

Here is presented the components that are going to be used to map WS-BPEL into WPN,

shown in Table 4. The nets created follow the same principles of the Petri Nets. A place

cannot be connected to another place, nor the transitions to other transitions. A net must start

and end in a place.

WPN Component Description

Represents a certain state of the workflow

Represents the event that allows the states to change

42

A sub Petri Net, in order to manage complexity

Closing point of an parallel branching

Closing point of an alternative branching

Starting point of an parallel branching

Starting point of an alternative branching

Closing and starting points of parallel branching

Closing and starting points of alternative branching

Closing point of parallel branching and starting point of
alternative branching

Closing point of alternative branching and starting point
of parallel branching

Table 4 - WPN components

43

5.2 Basic Activities

The basic activities presented in section 5.1 will be mapped in this section, except the

extension activity.

Receive

Receive activity waits for a message from a designed partner. The mapping is shown in

Figure 5.1.

 <receive name="ReceiveBookingStatus2"
 createInstance="no" partnerLink="Hotel2"
 portType="ns12:HotelPortRequester"
 operation="receiveBookingResult"
variable="ReceiveBookingStatus_receiveBookingResult_InputVariable2"/>

Figure 5.1 - WPN pattern for receive activity

The transition Receive waits for the port associated to be triggered with some message. Once

a message arrives, the WPN can finish.

44

Reply

Reply activity responds to an invocation by a partner. The mapping is shown in Figure 5.2.

 <reply name="InvokeHotelBooking2"
 partnerLink="Hotel2"
 portType="ns12:HotelPort"
 operation="askBooking"
inputVariable="InvokeHotelBooking_askBooking_InputVariable2"/>

Figure 5.2 - WPN pattern for reply activity

The transition Reply sends a message to a specific port and finishes. This mapping assumes

that it sends a message and finishes at the same time. This is inaccurate, but in order to keep

the resulting diagram simple and not introduce more transitions it is assumed that they are

simultaneous.

45

Invoke

Invoke activity send a message to a partner to invoke an operation, shown in Figure 5.3.

<invoke name="InvokeHotelBooking2"
 partnerLink="Hotel2"
 portType="ns12:HotelPort"
 operation="askBooking"
inputVariable="InvokeHotelBooking_askBooking_InputVariable2"/>

Figure 5.3 - WPN pattern for invoke activity

Similar to Reply, the Invoke transition sends a message to a partner and continues with the

remaining activities.

Assign

This activity exchanges data between variables. Shown in Figure 5.4.

<assign name="assignDatas">
 <copy>
 <from variable="var1"/>
 <to variable="var2"/>
 </copy>
</assign>

Figure 5.4 - WPN pattern for assign activity

46

A transaction copies a variable, or element of an variable Var1 to other transaction that puts

the value into Var2 and then finishes.

Throw

This activity throws an exception to be catch by the failure handlers. The pattern is presented

in

Figure 5.5.

 <throw name="ThrowTransfer" faultName="bpelx:rollback"/>

Figure 5.5 - WPN pattern for throw activity

The Throw representation is similar to the invoke representation. The difference is that the

thrown fault will affect the rest of the activities, since it will be have to be threaten within the

fault handlers.

47

Wait

The Wait activity waits for a period of time or until a certain deadline.

<wait standard-attributes>
 standard-elements
 (
 <for expressionLanguage="anyURI"?>duration-expr</for>
 |
 <until expressionLanguage="anyURI"?>deadline-expr</until>
)
</wait>

Figure 5.6 - WPN pattern for wait activity

Since the WPN does not take in consideration time, the WPN representation of Wait activity

in Figure 5.6 is just the transition between Start and Finish.

Empty

The Empty activity does not do anything.

<empty name="Empty"/>

Figure 5.7 - WPN pattern for empty activity

Empty transition just passes from the Start place to the Finish place shown in Figure 5.7.

48

Exit

This activity ends the process without executing other activities.

<exit standard-attributes>
 standard-elements
</exit>

Figure 5.8 - WPN pattern for exit activity

In the exit mapping in Figure 5.8, the Finish place cannot be connected with other

components.

Rethrow

This activity does the same as the Throw activity but can only be used inside fault handlers.

<rethrow standard-attributes>
 standard-elements
</rethrow>

Figure 5.9 - WPN pattern for Rethrow activity

The Rethrow transition send a fault signal and finishes. This is mapped in Figure 5.9.

49

Compensate

This activity can only be used within the failure, compensation and termination handlers. In

Figure 5.10 the Compensate transition calls a specific compensation of a scope.

 <compensate name="Compensate" scope="ScopeToCompensate"/>

Figure 5.10 - WPN pattern for the compensate activity

5.3 Structured Activities

The Structured activities presented in section 3.2 will be mapped in this section. These

patterns contain sub-nets that can be used to put other patterns, simple or complex.

Sequence

Can contain multiple activities that are executed in sequence, illustrated in Figure 5.11.

<sequence standard-attributes>
 <Scope name="Activity1"/>
 <Scope name="Activity2"/>
 .
 .
 <Scope name="ActivityN"/>
</sequence>

Figure 5.11 - WPN pattern for sequence activity

50

Sequence is a group of activities than are executed in a specific order. In this mapping the

transitions are replaced by the sub process. The sub process can be changed to an explicit

pattern, but doing so the Start and Finish places of the patterns must replace the Next places.

If

Depending on the condition, it will execute de associated activity or activities.

<if>
 <condition expressionLanguage="anyURI"?>bool-expr</condition>
 Activity 1
 <elseif>
 <condition expressionLanguage="anyURI"?>bool-expr</condition>
 Activity 2
 </elseif>
 .
 .
 <else>
 Activity N
 </else>
</if>

Figure 5.12- WPN pattern for if activity

51

Figure 5.12 shows the If activity mapping. The Check Condition transition check to which

place it should go and executes the associated Activity and finishes.

While

While a condition is true an activity is executed. The mapping is shown in Figure 5.13.

<while standard-attributes>
 standard-elements
 <condition expressionLanguage="anyURI"?>bool-expr</condition>
 Activity
</while>

Figure 5.13 - WPN pattern for while activity

The while representation is composed by a transaction that verifies if a condition is verified. If

it is true, a sub process Activity runs and in the end the condition is verified again. This will

occur until the condition is false.

52

Repeat Until

This activity is similar to the while activity but the condition is verified at the end.

<repeatUntil standard-attributes>
 standard-elements
 Activity
 <condition expressionLanguage="anyURI"?>bool-expr</condition>
</repeatUntil>

Figure 5.14- WPN pattern for repeat until activity

Repeat Until is shown in Figure 5.14. The verification of the condition is checked after the

sub-process Activity. So the activity will be executed at least one time.

53

Pick

Waits for a specific message to arrive and the mapping for this activity is shown in Figure

5.15.

<pick createInstance="yes|no"? standard-attributes>
 standard-elements
 <onMessage partnerLink="Message1">
 Activity 1
 </onMessage>
 <onMessage partnerLink="Message2">
 Activity 2
 </onMessage>
 .
 .
 <onMessage partnerLink="MessageN">
 Activity N
 </onMessage>
</pick>

Figure 5.15 - WPN pattern for pick activity

This pattern is composed by a N number of transitions that are related to a specific message.

54

Once a place with a message is activated, the associated activity starts and finishes. The others

do not run.

Flow

Allows concurrent Activities.

<flow standard-attributes>
 standard-elements
 <links>
 <link name="LinkFlow1" />
 <link name="LinkFlow2" />
 .
 .
 <link name="LinkFlowN" />
 </links>
 Activity 1
 Activity 2
 .
 .
 Activity N
</flow>

Figure 5.16 - WPN pattern for flow activity

55

This Pattern allow N Flows to run concurrently executing the Activities. The flows can start

by any order. Once all activities are finished, the pattern ends. Figure 5.16 presents this

mapping.

For Each

This activity executes an group of activity several times and it is shown in Figure 5.16 - WPN

pattern for flow activity.

<forEach counterName="BPELVariableName" parallel="yes|no" standard-attributes>
 standard-elements
 <startCounterValue expressionLanguage="anyURI"?>
 unsigned-integer-expression
 </startCounterValue>
 <finalCounterValue expressionLanguage="anyURI"?>
 unsigned-integer-expression
 </finalCounterValue>
 <scope>
 Activity
 </scope>
</forEach>

Figure 5.17 - WPN pattern for foreach activity

In the Check Counter transition the startCounterValue and finalCounterValue are evaluated.

The startCounter is grater then the finalCounter the patterns finishes.

56

5.4 Scopes

Scopes are a fundamental part in the compensation process. Since scopes can have fault and

compensation handlers, the mappings presented here are more complex then the presented in

section 5.2 and section 5.3. Although scopes have many different configurations, this section

will only show a simple scope, a scope with fault handlers and a scope with fault and

compensation handlers.

5.4.1 Simple

Represents a scope with the normal behavior.

<scope name="ScopeActividade">
 <sequence name="SequenceActividade">
 </sequence>
</scope>

Figure 5.18 - WPN pattern for a scope

A Scope contains a sequence of activities which in WPN is abstracted, putting the activities

within the sub process Activity, in order to tone down the complexity of the WPN. In this case

the transitions Initial Check and Last Check are present here to change the status of the scope,

used by the process to control failures. Using this definition for the scope, it is assumed that

the process will handle all failures. This mapping is shown in Figure 5.18.

5.4.2 Fault Handlers

The Figure 5.19 presents a scope with fault handlers. The fault handlers can be defined for

specific faults or describe a generic way to handle all failures. This is done using the catch tag

or the catch all tag.

57

<scope name="ScopeActividade">
 <faultHandlers>
 <catch faultName="failure1"/>
 <catch faultName="failure2"/>

 <catch all/>
 </faultHandlers>
 <sequence name="SequenceActividade">
 </sequence>
</scope>

Figure 5.19 - WPN pattern for a scope with fault handlers

When a Scope has fault handlers defined, like in Figure 5.19, the activities within sub-

process Activity can throw an exception which is treated in another sub process Handler

Failure Activity before the end of the scope. This will affect the end result of the scope, and

may start the compensation process. The transition Initialize Scope allows the execution of the

activities of the scope, and enables the possibility to handle the failures that may occur. If a

58

failure occurs in the Activity sub process, the Activity Result transaction will direct the graph

to handle exceptions, if not it will direct to the end of the pattern. In the first case, the Handle

Exceptions transaction will start the failure handle activity and then go to the end of the

pattern.

Figure 5.20 - WPN pattern for the activity within the failure handlers

The Figure 5.20 shows the definition of the Handle Failure Activity that is showed in Figure

5.19. It acts like the Pick pattern but the messages are substituted by the failures. If a specific

failure is thrown and it has a branch associated with it, the activities in that branch will be

executed. There is no limit for the number of failures to be caught. It can always be defined a

branch to catch all other failures.

59

5.4.3 Compensation Handlers

The mapping for a scope with fault and compensation handlers is illustrated in Figure 5.21.

<scope name="ScopeActividade">
 <faultHandlers>
 <catch/>
 </faultHandlers>
 <compensationHandler/>
 <sequence name="SequenceActividade">
 </sequence>
</scope>

Figure 5.21 - WPN pattern for a scope with compensation and fault handlers

A scope can have both Failure Handlers and Compensation Handlers. The sub-process

Handler Compensation Activity can only be used if this scope has already terminated before.

If not, then the compensation cannot be used. The Initial Check transition will check if the

60

scope is to be initiated or to be compensated. If it is a normal execution of the scope, it must

enable the possibility to handle failures. Done that, the sub-process Activity will execute all

the underlying activities and when it ends the scope must verify if a failure has occurred. If so,

it will handle the failures in the Handle Failure Activity and then go to the end. If the activity

ended, before ending the pattern, it will enable a future compensation of the scope. The

compensation is done it the Handler Compensation Activity and it will change the status of the

scope before it ends.

5.5 Summary

This chapter mapped the activities of the WS-BPEL into the Workflow Petri Nets. This

included simple activities and complex ones. Beside this activities, the scopes are also

mapped taking in consideration the compensation and failure handlers. The mappings created

form patterns than can be connected with each other. There are a few works with patterns, but

are too complex do illustrate the main focus of this work or detail to much WS-BPEL

activities that are not relevant. The simple approach used here will allow a better

comprehension of the recovery mechanisms in WS-BPEL and provide a way to detect more

easily where failures can occur.

This mappings are going to be used in the next chapter where a booking agency case study is

presented.

61

6. Booking Agency Case Study

A booking agency is used as a case study for this work. The goal the booking agency is to

provide a way to book a reservation in a chain of hotels. To do so, an user may access an web

service running online that connects do hotels and their banks in order to make all the

necessary steps to book a room at a Hotel.

Figure 6.1 - Activity diagram for the booking process

62

The Figure 6.1 show the steps necessary to book an hotel, including the interactions between

the partners involved in the process. First the client must specify when and what location it

wants to book a room. Then the booking agency must query the hotels that match the

specifications to see if they have rooms, the types of rooms and prices. A list of choices are

presented to the client which will have to choose if and where he wants to book the room. If it

chooses to book a room, the arrangements are made with the hotel. If the hotel is correctly

booked, then the client must pay. This payment is made to the bank associated to the chain of

hotels. Done all this, the process returns the booking Status.

Along with the booking process, the booking agency needs to provide a way for a costumer to

cancel a booking during the duration of the whole process. Figure 6.2 shows the cancelation

process where all the steps that where done in the booking process must be undone. It must

cancel the reservation with the hotel and return the paid fees back to the client.

Figure 6.2 - Activity diagram to cancel a booking

63

6.1 WS-BPEL

The booking agency process was modeled using Oracle JDeveloper Studio 11.1 [11] in order

to show graphically the WS-BPEL activities necessary to implement the case study. The

process have four distinct fundamental steps that were divided in the implemented Scopes.

These Scopes are ScopeAvailability. ScopeBooking, ScopeTransfer and ScopeCancelation.

The ScopeAvaliability has all the activities necessary to present to the client the several

booking options available. The ScopeBooking contains the activities to book a room at the

chosen hotel. The ScopeTransfer contains the activities involved between the client and the

bank in order to pay the booking. The ScopeCancelation process the cancelation of a previous

booking. The Figure 6.3 shows the connections between the scopes and the partners involved.

The process executes de scopes in sequence and has as partners: The Client, Hotel, Hotel2 and

a Bank.

Figure 6.3 - Graphical overview of the booking agency process

64

6.1.1 Availability Activities

Before any booking, the client must first check for an available room from one of the hotels

that have a partnership with the booking agency. The WS-BPEL activities involved are

illustrated in Figure 6.4. The receiveInput receives from the client the dates and location

where it wants to book a room and then the assignDatas copies the values to other variable

that are going to be sent to the hotel partners. Since it would graphically confusing to use

many hotels, our process only has two hotels, so a Flow activity will invoke on all partners

there available rooms. InvokeRoomsAvailability invokes an operation on Hotel to send the

rooms available on the dates chosen by the Client. The InvokeRoomsAvailability2 does the

same, but with Hotel2 partner.

Figure 6.4 - Graphical representation of the AvailabilityScope

65

When the partners process the operations, they will send a response. The ReceiveAvailability

and ReceiveAvailability2 activities will wait for those responses, and once all arrived the Flow

activity ends. The messages sent by the Hotels will be compiled into one variable in the

assignNumRooms and then sent to de client in the callbackClient Activity. Once the message

is sent to the client, the ScopeAvailabiltity ends, and the booking may start.

6.1.2 Booking Activities

The booking will start when the client has chosen the hotel, the room and the dates of the

reservation. Figure 6.5 shows the WS-BPEL activities of a normal execution. The process

receives a message with the decision of the client it the ReceiveBooking activity. After that, it

processes the message and acts accordantly. The client chooses to book at one of the Hotels or

it chooses to terminate the process. If it terminates, the process ends and nothing else is

executed. If a client wants to refine his search of the hotels, it will start a new process from

the beginning. Assuming that the client wants to book one of the hotels, the appropriate

sequence of activities are executed. For each hotel they are similar because only the partner

changes. Assuming the client wants to book in our partner named Hotel, the

assignHotelBooking is executed. It copies from the client's message to another variable, the

room and dates for the booking which are sent to the partner in the InvokeHotelBooking. Then

the process will wait for a response by the Hotel if the booking was successfully in the

ReceiveBookingStatus. Then it stores the status of the booking in another variable used later

on.

66

Figure 6.5 - Graphical representation of the ScopeBooking

The activities of the ScopeBooking can be compensated if it is necessary. The activities that

compensate this scope are displayed in Figure 6.6. First the process checks which Hotel was

booked. Assuming that the booked hotel was the partner Hotel, the process will execute the

InvokeCancelationHotel1 which invokes the cancelation operation in the hotel. After

invoking, the process waits for a reply from the partner in the ReceiveCancelationHotel. Then

67

it send a message to the Client with the cancelation status retrieved from the Hotel. Doing so,

it ends the process, nothing more can be done.

Figure 6.6 - Graphical representation of the ScopeBooking compensation

6.1.3 Transfer Activities

Once the booking has ended, the client must pay for the booked room. The activities that

involve the Client and the Bank are contained in the ScopeTransfer. This scope is described in

Figure 6.7.

68

Figure 6.7 - Graphical representation of the ScopeTransfer

69

First thing this scope must check, is if the booking was successful. If not the process

terminates and nothing else is done. If the room was booked correctly, then the process waits

for the Client to provide their personal data in order to pay the fees of the booking. This is

done in the ReceivePayData. The data submitted by the client is copied to another variable in

AssignTransferData and then is sent to the Bank by the InvokeTransferFunds. The process

then will wait for the status of the transfer to be sent by the Bank partner, this is done in the

ReceiveTransferStatus. The status is then stored in a variable in the AssignTransferStatus

activity. This variable will be validated by the process, and if the transfer was correctly done,

the process continues and replies the status do the Client in the ReplyTransferStatus activity.

If the transfer did not succeed the process throws a failure.

The failure and compensate handlers are displayed in Figure 6.17. The failure handler

associated to the ScopeTransfer is design to catch the failure thrown by the scope when the

transfer is not successful. If it is thrown, it will call the compensation of the previous scope

and tries to rollback the booking process. The compensation handler has the activities needed

to undo the transfer made to the Bank, if it is required later. The first activity it must do, is to

invoke the cancelation operation with the Bank partner using the InvokeTransferBank activity.

Then the process waits for the reply by the Bank in the ReceiveTransferResult and the

compensation for this scope ends.

Figure 6.8 - Graphical representation of the Failure and Compensation handlers of ScopeTransfer

70

6.1.4 Cancelation Activities

The ScopeCancelation handles the cancelation part of the business process. In order to cancel

the booking, the transfer funds must be return to the Client, and the Hotel must be notified of

the cancelation. All major activities are done by the compensation handlers of the previous

scopes. So this scope just waits in ReceiveCancelationByClient for the Client to cancel. If the

client wants to cancel, the process throws an exception. This exception will be caught by the

failure handlers, and it will start the hole compensation process.

Figure 6.9 - Graphical representation of the ScopeCancelation and failure handlers

6.2 Workflow Petri Nets

This section shows the mapping of the WS-BPEL implementation of the case study. First is

presented the mapping of the scopes, failure and compensation handlers. Then a more general

representation of the compensation involved in the process is explored.

6.2.1 Direct Mapping

The mappings that are presented here, have some particularities that have to be explained. The

Workflow Petri Nets have one starting place and one finish place, but some of the mapping

here will not follow that rule here, because it would lose some readability. For instance, some

71

mappings have a receive activity as the first operation to execute. Since it needs to be

triggered by a message sent from a partner, the start place would be the port place, and the

transition and-join of the receive would be a simple transition. Other option would be to add

extra components which would change the receive mapping. All the places with Port or

Failure that appear to be finish places are just a way to show the triggered events. The last

place of the net is always the Finish place.

The next figures from Figure 6.10 to Figure 6.17 contain the mappings for all the scopes and

the available handlers.

Figure 6.10 - WPN mapping for the ScopeAvailability

72

The ScopeAvailability in Figure 6.10 follows the graphical representation in Figure 6.4. The

ReceiveInput is mapped first to a transition with the same name, associated with the port that

triggers, the client. Next comes the AssignDatas activity and it is mapped between the place

Start AssignDatas and the Is copied transition. Two concurrent flows with the same

operations, but with different partners initiations. Each flow will get the available rooms from

the hotels, and once all hotels have responded, the flow ends and the process continues. This

flow is mapped between the place Start Flow CheckHotelsAvailability and the transition Flow

CheckHotelsAvailabilty Ended. Next a variable is compiled with the data returned by the

partners and it is sent to the Client, then the mapping finishes.

Figure 6.11 - WPN mapping for the ScopeBooking

73

The normal activities run within the ScopeBooking described in Figure 6.5 are mapped in

Figure 6.11. Is starts with the ReceiveBooking activity which is trigger by the Client, then the

process will verify what the client has chosen and act accordantly. If the Client chooses to

book a room, the path followed is the one that starts with the place If Hotel1 or Hotel2 and

ends with the transition ReplyBookingStatus. In between those components, variables are

assigned and messages are exchanged between the process and one of the Hotel partners. If

the Client does not want to book a room, the process terminates, and the flow finishes.

Figure 6.12 - WPN mapping for the compensation handlers of ScopeBooking

The mapping for the ScopeBooking compensation in Figure 6.12 is very similar with the

actual mapping of the scope. First the process must check in which Hotel was the room

booked. Once it is established the partner that is going to exchange messages with the process,

in the transition Check Condition , the process continues by asking the cancelation of the

74

booking process. This is done in the InvokeBookingCancelation transition, then the process

waits in the next transition for the feedback from the hotel. The response of the Hotel will

then be transmitted to Client in the ReplyCancelationStatus transition. The exit activity is

triggered and the process terminates in transition TerminateBook.

The Figure 6.11 and Figure 6.12 does not contain all the mapping for the ScopeBooking and

its compensation. Since the booking of an Hotel involves the same operations and only

changes the partner, those operations does not appear duplicated. Instead they are showed

merged after the transition CheckCondition where the chosen hotel is tested, before the place

if Hotel1 or Hotel2 on both Figures.

The Figure 6.13 below contains the mapping for the ScopeTransfer normal execution. The

graphical notation for this scope is illustrated in Figure 6.7. This mapping starts with a

conditional check. The Check Condition transition verifies if a room was booked, if it wasn't

the process terminates, if it was the process must communicate with the Bank in order to pay

the reservation. In order for the transfer of funds occur, first the Client must provide the

financial data necessary, this is done in the transition ReceivePayData. The path continues

with the AssignTransferData, InvokeTransferFunds, ReceiveTransferStatus and

AssignTransferStatus mappings and then another condition has to be evaluated. The status of

the transfer must be checked to see if was done successfully in the transition

CheckTransferStatus. If it was successful it proceeds and sends the status to the client and the

path ends. If not, a failure is thrown and the path ends. This failure is called rollback and it

will be tested in failure handlers defined for the scope. This is shown in Figure 6.14.

75

Figure 6.13 - WPN mapping for the ScopeTransfer

76

Figure 6.14 - WPN mapping for the failure handler for the ScopeTransfer

Since it was only defined one failure to be caught, the mapping of the failure handlers in

Figure 6.14 is like the mapping for a sequence. If the rollback failure was thrown, then the

process must call the previous compensation defined in Figure 6.12.

Figure 6.15 shows the mapping for the compensation associated with the ScopeTransfer. The

compensation invokes an operation to transfer back the funds back to the client and the result

of that invocation is return to the process.

Figure 6.15 - WPN mapping for the compensation handler for the ScopeTransfer

77

The Figure 6.16 represent the mapping for the ScopeCancelation and Figure 6.17 for the

failure handler associated. These are similar with the previous mappings presented. When a

client cancels a previously booked and paid room, a failure is thrown. Again the failure is

called rollback and it will be caught by the failure handler. Once again it is only checked for

the rollback failure in the failure handler, so the mapping is like a sequence and it calls the

compensation for the ScopeTransfer.

Figure 6.16 - WPN mapping for the ScopeCancelation

Figure 6.17 - WPN mapping for the failure handler of the ScopeCancelation

78

6.2.2 Overview Mapping

In this section the basic activities presented in the previous section are replaced here by the

associated sub processes. Figure 6.18 presents a global view for the execution of the booking

agency process and Figure 6.19 the details that execution with the internal work done by the

Scopes.

Figure 6.18 - Overview of the WPN mapping for the compensation of the booking agency process

79

The global view is based on the Figure 6.3 that contains a sequence of the scopes of the

process. The scopes are replaced by sub processes with the same name, and the compensation

is added. In the mapping chapter, the scopes are mapped as simple, with fault handlers and/or

compensation handlers. They have a transition in common that is called the Last Check. This

transition can be seen as an operation to provide the system running the process, the status of

the scope and a snapshot of the variables at that time. This will be used by the process to

decide what to do at the end of each Scope. This decision is made in the transitions named

Validate before and after each scope. If a scope executed well without failure, the next scope

starts its execution, if not, the compensation for the previous scope is called. If the

compensation of a scope is executed, then in the end, it must execute the compensation of the

previous scope like it would if the scope failed. This is done until the scopes of the process are

all compensated. In this case, since there is no compensation defined for the

ScopeAvailability, it should end all compensations after compensating ScopeBooking.

Because of the lack of compensation on the first scope, if the seconds scope fails, the process

will end the execution. If the first scope fails, the process also ends the execution. The Figure

6.18 shows the compensation in this case study, but in reality, if necessary the last

compensation to be called would be the one in the ScopeAvailability. Since it is not defined, it

would act as an Empty activity. Therefore only in case of failure of the ScopeAvailability the

process would terminate, instead of a failure in ScopeBooking.

 The overview of the process is detailed in Figure 6.19 following the mapping for the scopes,

but introducing the notion of decision where the next step to make after the execution of each

scope is decided.

80

Figure 6.19 - Detailed WPN mapping for the booking agency process

81

Some problems arise from the mapping done here and need to be explained. The major issue

is that the client most of the times would not want to cancel a reservation and in the mapping

used, the process always flows through all scopes. Like it was said previously, the mapping

have no notion of time, therefore the operation to cancel that can be triggered by the Client

may never occur, so the process must die after a designated time frame, probably the last day

of the booked room in order to provide a way for a refund. Other option could be to split the

process in two, separating the cancelation part, but that would involve code all the

compensation steps in the normal execution of the new process and instead of using the

variables defined, go to a databank to get the values needed. Other problem that might occur

is failure to communicate with a partner. Invoking an operation on a partner should be

attempted several times if it fails. In this case study if a failure occurs, for instance while

booking the hotel, the process ends without the Client knowing. A failure inside the

compensation is not threaten. During the compensation, if a failure occurs nothing is done to

prevent and may end the process without doing what it was supposed to do. In order to

minimize the last problems, it should be added to the specification of the process, other scopes

inside the compensation and failures handlers. Adding scopes allows the implementation of

more compensations that will have more chances to treat problems, but adding also more

complexity to the process. Complexity is something than can easily appear while

implementing recovery mechanisms and that will take a lot of time. Nesting more scopes with

failure and compensation handlers, or defining activities for every failure that can occur in

some cases should be avoided because of the maintenance problems that it may provide. Since

the compensation works with the snapshots of the state the scope was when it finished, the

compensation rollback process may mislead the process into doing something that is

undesired. If the compensation of the ScopeTransfer is activated, then the Bank should return

the paid fees to the Client. This may not return an failure, but it may not be able to return for

some unforeseen event, then the compensation will continue to cancel the reservation at the

hotel. So this may leave the process to cancel the hotel room, but no refund to the client. On

other hand, the refund can be done correctly, but the Hotel continued with the reservation

active. If this is done over the weekend, the transfer may be pending, and the cancelation may

already been done. To solve this problems, the partners should provide compensations for the

cancelations process between them, which cannot be maintained by the booking agency.

82

6.3 Other Compensation Features

There are many ways to treat failures within WS-BPEL that were not used in the case study,

this section will show them.

Invoke

A compensation handler can be defined within the Invoke activity. If the compensation is

defined then it can be called instead of using the compensation by default.

Compensation Handler Instance Group

If there are several instances of the scope, usually within a construct that repeats itself, and the

compensation is invoked, the compensation handlers for all child scopes instances will be

called Compensation Handler Instance Group. If the default compensation is called, the

Compensation Handler Instance Group will contain the compensation handler for all enclosed

scopes that completed successfully, but in case of a specific compensation, it contains the

installed compensation handler instances of the scope. If the compensation activities ends or a

fault occurs while executing those activities is uncaught, all running instances of the scope

must be terminated, and no further compensation can be made for the scope. If a scope

compensated by name is within a non parallel loop activity, the invocation of the

compensation is done in the reverse order of the execution. In parallel loops and event

handlers, no order is specified for the scope compensation.

Compensation within Handlers

Compensation can be made within the Fault, Compensation and Termination Handlers (FCT-

Handlers). If a scope is defined inside one of the Handlers, then its compensation handler is

only available during the execution of the enclosing handler. The main scope enclosed in a

handler cannot have a compensation handler, but others nested inside can. This rule must be

statically enforced because it is not reachable from anywhere within the process. This is

exampled in Figure 6.20. In this examples, the Scope 2 within the failure handler or the

compensation handler cannot have a compensation handler because it is unreachable. But the

failure handler of Scope 2 can compensate the Scope 3

83

Figure 6.20 - Compensation within Handlers examples

Cyclic dependency

Scopes within this case study are threaded as isolated. When one finishes, the next one starts.

So in this case it is easy to know the order of the compensations when they are needed. But

when there are control links defined between activities of different scopes, these cannot form

a cycle in a manner that the process can do the respected compensation because there is no

way to decide which would be compensated first. The definition of the process does not allow

cyclic dependency.

84

6.4 Comparing BPEL2oWFN

Since the mappings presented on this work have the purpose of showing with simplicity the

recovery mechanisms presented on the business process, they will be compared with the

mapping created by the BPEL2oWFN compiler presented in section 4.2.1. To do so, a portion

of the case study will be mapped in both approaches, more specifically the ScopeCancelation.

Using BPEL2oWFN compiler for the WS-BPEL file containing only the ScopeCancelation,

created a dot file which was used to create a graphical representation (Figure 6.21) in

Graphviz [29]. The compiler also showed that the WS-BPEL code was transformed into a

Petri Net with 66 places and 80 transitions.

Figure 6.21 - Graphical representation of ScopeCancelation using BPEL2oWFN and Graphviz

85

The detail showed in Figure 6.21 is very difficult to comprehend. Even if the image used was

in full-size, places and transitions had clear associated names, the number of arcs between the

components does not allow a clear perception of the work done by the WS-BPEL.

The WPN created using the mapping of this work only has 17 places and 10 transitions. Using

less detail it is more clear, to who is interpreting the Nets, the goals, activities and handlers

available in the ScopeCancelation. The graphical representation is shown in Figure 6.22.

Figure 6.22 - Graphical representation of ScopeCancelation using this work mapping

Since this work focus the recovery mechanisms, and comparing both Figure 6.21 and Figure

6.22, it is easier to comprehend the concepts presented using the mapping provided instead of,

for instance, the one created by BPEL2oWFN.

86

6.5 Summary

The case study presented showed how the WS-BPEL reacts to failures and how it can recover.

It was created a WS-BPEL process to handle a booking agency that has the main goal to

provide a way to book rooms using web services. This WS-BPEL process was illustrated

graphically in order to make a visual correlation between WS-BPEL and the WPN mapping.

Using the mapping it was able to show the steps of the WS-BPEL process, when it executes

normally and when it fails. It was also demonstrated some shortcomings of the WS-BPEL

implementation and other ways to compensate not included in the case study. The WPN

mapping was compared to the one created by Lohmann in order to show how they represent

the same WS-BPEL code.

87

7. Conclusion

In order to show the recovery mechanisms implemented by the WS-BPEL process, it was

necessary to find the fundamentals on which it is based. Sagas, transactions in database and

exception handlers in programming languages all provided basis for the recovery a treatment

of failures in WS-BPEL.

 There are several different formal languages with graphical notation that could be used to aid

the implementation of this thesis, some of them already implemented for WS-BPEL, but

focusing other aspects of the process. Workflow Petri Nets was chosen to provide a mapping

for the WS-BPEL activities. This mapping helps the demonstration of the steps that are

executed during the process life, including failures and compensation. The WoPeD tool used

to create the mappings, provides a token ring game which allows a user to see all the paths

that the process can have, and act accordantly.

 The case study implemented showed that there are many ways to implement a process, and

the choices made in the implementation will influence directly the mechanisms that can be

used, and how they are used. Failures can be caught or thrown during the normal execution of

the activities of a process. In order to treat failures, a compensation for the activities already

completed must be done. This compensation is composed by the same kind of activities that

were used in the normal process execution. Since logic units of work can be separated by

Scopes, the compensations are associated to the Scopes to provide a rollback mechanism

specific for that scope. Only when all activities of the scope have finished, it is possible to

compensate. So in order to compensate a process, all the compensations of the scopes that

finished earlier must be run in the inverse order of their execution. The first scope

compensation will be the last to be executed.

88

7.1 Contribution and work limitations

There are a few works done around WS-BPEL involving many aspects of the business

process. The major contribution of this thesis is to provide a simple way to explain the

concepts behind the recovery mechanisms in WS-BPEL and how they can be implemented.

Show the strong points it has and the shortcomings encountered. The mapping provided

between the WS-BPEL and WPN also can be used during the implementation of a business

process to path the possible scenarios that may have to be overcome once it is executed. The

simplicity introduced by the mapping, will also provide a way to show everyone, not just

experts in the field, how the business process works. Other works using Petri Nets are too

complex and detail to much the WS-BPEL activities forming enormous patterns that make it

more difficult to express the available recovery mechanisms which are the basis of this work.

Not all aspects of the WS-BPEL were mapped. Links, Correlations, Variables among others

particularities of the activities cannot be described in the mappings provided. The tool used to

create the mappings works, but it needs further development in order to become more stable

and user friendly.

7.2 Future Work

A new tool should be developed to convert a WS-BPEL file into a Workflow Petri Net, and

instead of providing places and transitions, provide patterns. Connecting the patterns with

each other would in the end provide a WS-BPEL file. It must have a token game and provide

the list of possible failures to test. It would be interesting if this tool could automatically add

some compensation by analyzing the patterns involved.

89

Bibliography

1. OASIS. Web Services Business Process Execution Language Version 2.0 -

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html. 2007; Available

from: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html.

2. H. F. Korth, A.S., S. Sudarshan, Database system concepts. 5 ed. 2006: McGraw-Hill,

Inc. 546.

3. Bpel2oWFN. http://www.gnu.org/software/bpel2owfn/.

4. Sun. http://java.com/en/about/.

5. Hector, G.-M. and S. Kenneth, Sagas. SIGMOD Rec., 1987. 16(3): p. 249-259.

6. Moss, J.E.B., Nested transactions and reliable distributed computing. 1982: IEEE CS

Press.

7. OASIS. XLANG - http://xml.coverpages.org/xlang.html. Cover Pages; Available from:

http://xml.coverpages.org/xlang.html.

8. OASIS. Web Services Flow Language (WSFL) - http://xml.coverpages.org/wsfl.html.

9. W3C. Extensible Markup Language (XML) - http://www.w3.org/XML/.

10. WSDL. http://www.w3.org/TR/wsdl.

11. JDeveloper, O. http://www.oracle.com/technology/products/jdev/index.html.

12. Paul, G., et al., Compensation is Not Enough, in Proceedings of the 7th International

Conference on Enterprise Distributed Object Computing. 2003, IEEE Computer

Society.

13. Microsoft. Biztalk Server - http://www.microsoft.com/biztalk/en/us/default.aspx.

14. IBM. Websphere - http://www-01.ibm.com/software/websphere/.

15. IBM. WebSphere Process Server V6.0 Business Process Choreographer

Programming Model. Available from: http://www-

01.ibm.com/support/docview.wss?rs=2307&uid=swg27007157.

16. Murata, T. Petri nets: Properties, analysis and applications. in Proc. IEEE. 1989.

17. Stahl, C., A Petri Net Semantics for BPEL. 2005, Humboldt-Universitat zu Berlin:

Berlin.

18. Lohmann, N., A Feature-Complete Petri Net Semantics for WS-BPEL 2.0 and its

Compiler BPEL2oWFN. 2007, Humboldt-Universitat zu Berlin: Berlin. p. 41.

19. Lohmann, N., et al., Analyzing interacting WS-BPEL processes using flexible model

generation. Data Knowl. Eng., 2008. 64(1): p. 38-54.

20. König, D., et al., Extending the compatibility notion for abstract WS-BPEL processes,

in Proceeding of the 17th international conference on World Wide Web. 2008, ACM:

Beijing, China. p. 785-794.

21. Ouyang, C., et al., Formal semantics and analysis of control flow in WS-BPEL. Sci.

Comput. Program., 2007. 67(2-3): p. 162-198.

22. David, H., Statecharts: A visual formalism for complex systems. Sci. Comput.

Program., 1987. 8(3): p. 231-274.

23. Baeten, J.C.M., A brief history of process algebra. Theor. Comput. Sci., 2005. 335(2-

3): p. 131-146.

24. Jeff Magee, J.K., et al, Behavior analysis of Software Architectures, in 1st Working

IFIP Conference On Software Architecture. 1999: San Antonio, USA.

90

25. Foster, H., A Rigorous Approach To Engineering Web Service Compositions. 2006,

University of London: London. p. 207.

26. Aalst, W.v.d. and K.M.v. Hee, The Application of Petri Nets to Workflow

Management. The Journal of Circuits, Systems and Computers, Vol. 8, No. 1. 1998:

MIT Press. xvi, 368 p.

27. Aalst, W.M.P.v.d. and K.B. Lassen, Translating unstructured workflow processes to

readable BPEL: Theory and implementation. Inf. Softw. Technol., 2008. 50(3): p.

131-159.

28. Woped. www.woped.org.

29. Graphviz. http://www.graphviz.org/.

