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Abstract

This thesis concerns the factorization of elliptic operators, namely the decomposition of a

second order boundary value problem, defined in an open bounded regular domain, in an

uncoupled system of two first order initial value problems. The method presented here is

inspired on the theory of Optimal Control. It is a return, in a new spatial approach, to the

technique of the invariant temporal embedding, defined originally in the context of Dynamic

Programming, used in Control Theory for the computation of the optimal feedback. This

technique consists in embedding the initial problem in a family of similar problems depending

on a parameter, which are solved recursively. In our case, each problem is defined over a

sub-domain limited by a mobile boundary depending on the parameter. We introduce an

operator relating the trace of the function defined for each problem, and the trace of its

normal derivative over the mobile boundary.

Without loss of generality, we particularize the study to a Poisson’s equation with, for

example, a Dirichlet’s boundary condition. We first consider a circular domain and we

present for it two approaches: first, we apply an invariant embedding that starts on the

boundary of the circle and go towards its center, followed by an invariant embedding in the

opposite direction. Next, we generalize the method, applying it to the case of an arbitrary

star shaped domain. In all cases, the family of curves which limits the subdomains defined

by the invariant embedding are homothetic to one another and homothetic to a point. This

fact induces the appearing of a singularity.
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Resumo

O objectivo deste trabalho é a factorização de operadores eĺıpticos, nomeadamente a decom-

posição de um problema de segunda ordem com valores na fronteira, definido num domı́nio

aberto regular e limitado, num sistema desacoplado de dois problemas de valor inicial de

primeira ordem. O método utilizado é inspirado na Teoria do Controlo Óptimo. Trata-se de

um retorno, numa nova abordagem espacial, à técnica da “imersão invariante” na variável

tempo, que se definiu originalmente no contexto da programação dinâmica, e que é usada

na Teoria do Controlo para calcular o “feedback” óptimo. Esta técnica consiste em imergir

o problema inicial numa famı́lia de problemas similares dependentes de um parâmetro, que

são resolvidos recursivamente. No nosso caso, cada problema está definido num subdomı́nio

limitado por uma fronteira móvel dependente desse parâmetro. Introduzimos um operador

que relaciona o traço da função definida para cada problema, com o traço da sua derivada

normal sobre a fronteira móvel.

Sem perda de generalidade, particularizamos este estudo à equação de Poisson com,

por exemplo, uma condição de fronteira do tipo Dirichlet. Consideramos inicialmente um

domı́nio circular e apresentamos para este domı́nio duas abordagens: primeiro, aplicamos

uma imersão invariante que se inicia na fronteira do ćırculo e que converge para o seu

centro e, de seguida, usamos uma imersão invariante em sentido oposto. Posteriormente,

generalizamos o método aplicando-o ao caso de um domı́nio estrelado arbitrário. Em todos

os casos estudados, as curvas que limitam os sucessivos domı́nios definidos pela imersão

invariante são homotéticas entre si e homotéticas a um ponto, o que induz o aparecimento

de uma singularidade.
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Introduction

We are going to use the technique of invariant embedding ([3]), in order to factorize a second

order elliptic boundary value problem in a system of uncoupled first order initial value

problems. This technique ([2]) has been used to derive analytic and numerical results in a

number of different fields as atmospheric physics, transport theory and wave propagation, to

mention a few, and consists in embedding the initial problem in a family of similar problems

depending on a parameter, which are solved recursively. Particularly, it is used ([23, 5]) in

the decoupling of systems arising from Optimal Control problems associated to evolution

equations of parabolic and hyperbolic type. In these cases the parameter used is the time

variable. In our case, we follow the same steps using a spatial embedding, that is, we embed

our initial problem in a family of similar problems each one defined over a sub-domain limited

by a mobile boundary depending on the parameter. From a Control Theory point of view, we

consider the equation of the problem as the optimality system of a control problem, where

we substitute the time variable with one of the space variables and the embedding allow

us to decouple the optimality system in the same way as to obtain the optimal feedback.

Therefore, the factorization method that we use in this thesis has the following key points:

first, we fractionate the initial domain (for clarification of the procedure, we may suppose

that it is a rectangular domain) by the introduction of a mobile boundary over which we

impose a Dirichelet or a Neumann boundary condition (each type of conditions will lead to a

different factorization); next, we define an operator relating the value of the solution, or its

derivative, with the mobile boundary condition and, finally, we displace this boundary from

one extremity to the other of the domain. A similar approach was developed in ([19]) for

the case of an elliptic operator in a cylindrical domain. We point out that, in this particular

study, the geometry of the moving boundary is always the same. It was also shown in ([19])

that the obtained factorization could be viewed as an extension to the infinite dimensional
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problem of the block Gauss LU factorization.

In the course of this work, we want to generalize the method to more general geometries

and, in particular, to the case where the family of surfaces which limits the sub-domains has

no longer invariant geometry but are homothetic to one another. We study the case where

the moving boundary starts on the outside boundary of the domain and shrinks to a point

or vice versa. This means that we must deal with the singularity that will necessarily appear

at that point.

The first chapter of this thesis makes a panoramic view over the method and contains

the concepts and results that we need for the succeeding chapters. In the first section, we

present the state of the art and in section 2 and 3 we describe the factorization method by

invariant embedding. Afterwards, in section 4 we introduce the general problem in study

and an auxiliary problem, needed to deal with the singularities originated by the method.

In the last section, the convergence of the auxiliary problem to the initial one is achieved,

which is a key result throughout this work.

Our main goal in Chapter 2 and 3 is to factorize the Laplace operator in a circular domain

- in chapter 2 the factorization starts in the boundary of the domain and shrinks to the center

of the circle and in chapter 3 it starts in that center and spreads to the circumference. In

both cases we consider the moving boundary to be a family of concentric circles which radii

or decrease to zero or increase from zero. We present results that, in the first case, deal with

the singularities appearing on the origin and, in the second case, handle the definition of

the initial condition for the decomposition. The material of this two chapters can be found

in ([16, 17]). In the last chapter, we are going to generalize the previous results to a star

shaped domain. Again, the subdomains defined by the invariant embedding are homothetic

to one another. The final step of this path will be, naturally, the generalization to the case

of an arbitrary open regular bounded domain. However, it still remains, for the time being,

an open problem.

2



Chapter 1

Preliminaries

The aim of this chapter is to make a global presentation to the method of invariant embedding

as well as to the problem in study. In the first section we present the state of the art, which

also includes the present situation regarding other studies in course. A short description of

the invariant embedding method is given in second section, and the third section is entirely

dedicated to the presentation of the foundations of the technique of factorization by invariant

embedding, for a parabolic operator, following J.L.Lions ([23]). In section 4, we define our

problem which, due to the singularity originated by the method, will imply the definition of

an auxiliary problem. According to a density result we prove, in section 5, the convergence

of the auxiliary problem to the initial one, which ends this chapter and is a fundamental

result throughout this work.

1.1. State of the art

The technique of invariant embedding was first proposed by Bellman ([3]), in the context of

optimal control theory, and was formally used by Angel and Bellman ([2]) in the resolution

of a Laplace’s problem defined over a rectangle. We can succinctly explain this technique on

saying that, considering the equation
∂2u

∂x2
+

∂2u

∂y2
= 0 on the rectangle 0 ≤ x ≤ a, 0 ≤ y ≤ b (u

being specified on all sides of the rectangle), Angel and Bellman seek for solutions of the form

u(x, y) =
∫ b

0
r(x, y, z)

∂u

∂x
(x, z) dz+s(x, y). Then, differentiating this equality two times with

respect to y and using the obtained expression into its derivative with respect to x, they find

3



4 Preliminaries

∫ b

0
δ(y − z)

∂u

∂x
(x, z) dz =

∫ b

0

∂r

∂x
(x, y, z)

∂u

∂x
(x, z) dz −

∫ b

0

∫ b

0
r(x, y, w)

∂2r

∂w2
(x,w, z) dw dz −

∫ b

0
r(x, y, z)

∂2s

∂z2
(x, z) dz +

∂s

∂x
(x, y). From this equality they derive

∂r

∂x
(x, y, z) = δ(y − z)

+
∫ b

0
r(x, y, w)

∂2r

∂w2
(x,w, z) dw and

∂s

∂x
(x, y) =

∫ b

0
r(x, y, z)

∂2s

∂z2
(x, z) dz, equating coeffi-

cients of
∂u

∂x
. Requiring the same form of solutions to hold at the boundaries, they must

also have r(x, y, z) = 0 and s(x, y) = u(x, y) at x = a, y = 0 and y = b, which gives initial

and auxiliary equations to determine r and s. Knowing r(0, y, z) and s(0, y), since u(0, y) is

given, again from the form of the solutions, they can determine the missing initial condition
∂u

∂x
(0, y). Finally, they find an initial value problem for

∂u

∂x
, which uses the stored values

of r and s, and permits, back to the equality u(x, y) =
∫ b

0
r(x, y, z)

∂u

∂x
(x, z) dz + s(x, y), to

determine the desired values of u.

As described, in brief, in the introduction, J.L. Lions ([23]) gave a justification for this

invariant embedding for the computation of the optimal feedback in the framework of Op-

timal Control of evolution equations of parabolic type. The method gives rise to a Riccati

equation, that is, a differential equation with quadratic terms, which is justified through the

Galarkin method. It is also similarly used in Bensoussan ([5]). We notice that, in the kernel

notation of Angel-Bellman, the Riccati equation appears in the term
∂r

∂x
(x, y, z) = δ(y − z)

+
∫ b

0
r(x, y, w)

∂2r

∂w2
(x,w, z) dw.

On the direct study of Riccati equations in infinite dimension, we can also recom-

mend an extensive bibliography. We stand out Temam ([31]), where it can be found the

Hilbert-Schmidt solutions of the equations; Tartar ([30]), that uses the method of fixed

point; Bensoussan-Da Prato-Delfour-Mitter ([6]) and Lasiecka-Triggiani ([22]), on the study

through Semigroup Theory. In all these quotations the operator appearing in the Riccati

equation is continuous from a certain space into itself.

In a chapter of A. M. Ramos PhD Thesis ([26]) it was presented the resolution of a second

order elliptic problems in an open cylindrical domain. Afterwards, the method was devel-

oped by Henry and Ramos ([19]) which presented a complete justification for the invariant

embedding of a Poisson’s problem in a cylindrical domain, adapting the method of Lions.

Here, they have no longer that property on the continuity of the operator. Traditionally, the

chosen parameter of the invariant embedding was the variable time but, in this new line of

work, they use a spatial invariant embedding, that is, they embedded the initial problem in



A brief sketch of the method 5

a family of similar problems, each one defined over a subcylinder bounded by a variable sec-

tion. In this case, the embedding is naturally done in the direction of the axis of the cylinder

and allows the factorization of the second order operator in a product of first order operators

with respect to this coordinate. They obtained a factorization in two uncoupled problems of

parabolic type, in opposite directions, that requires the computation of an operator, which

is solution of a Riccati equation. They showed, as well, that the same method applied to

the discretized problem (e.g. through finite differences) can be interpreted as a Gauss block

factorization of the matrix of the problem. This means that the method can be seen as a

generalization, up to infinite dimension, of the LU block factorization of matrices: solving

the Riccati equation is analogous to computing the L and U factors for a block tridiagonal

matrix and solving the two parabolic problems is related to solving the lower and upper

triangular systems. A different approach to the method was also made by the same authors

in ([20]), where was directly studied the solution of the Riccati equation which appears in

the factorization process, using an Hilbert-Schmidt framework, in the same line of ([31]).

The invariant embedding method was also applied by Henry-Yvon ([18]) to the case of

a control problem in order to determine explicitly the solution, and also by Henry ([15]) on

the resolution of certain inverse problems. More recently, the application to a problem of

wave propagation was made by I. Champagne in her PhD thesis ([8]).

1.2. A brief sketch of the method

As far as we are concerned, the main feature of the invariant embedding method is the

transformation of a second order elliptic boundary value problem in a decoupled system of

first order initial value problems which can be solved recursively. According to this method,

and in the particular case of a rectangular domain as considered in ([2]), we first introduce a

mobile boundary corresponding to a transversal section of the rectangle, in which we choose

an arbitrary condition. A priori, this condition is of the same type of the initial boundary

condition. We solve the problem in the subdomain defined between one of the sides of the

rectangle and the mobile boundary. Next, we extend the process along the propagation axis,

until we find the whole domain. This allows us to define an operator connecting the solution

of the equation with the arbitrary boundary condition. This way, we define a family of

operators on functions of the section satisfying a Riccati equation and relating the boundary
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conditions on the section (Dirichlet-Neumann or Neumann-Dirichlet, for example). In the

resultant decoupled system and besides this operator, the two variables involved are the

solution of the problem and the affine part appearing in the relation between the solution

and the operator. The solution is now achieved by a two steps process: first, we solve the

Riccati equation and the differential equation of the affine part and this computation is done

in the same direction as the displacement of the boundary; then, we look for the solution of

the system following the path in the opposite direction.

For a given problem, the invariant embedding method is not unique. On the one hand,

we can apply the method either to the family of subdomains described above, either to the

family of complementary subdomains and, in this thesis, we will do both approaches, for the

same domain, respectively on chapter 2 and 3. In this last case, the boundary will move in

the opposite direction and the method will give rise to another operator. On the other hand,

it is possible to change the type of condition that we impose over the mobile boundary.

1.3. Global methodology

In this section we present, following Lions ([23]), the general scheme of proof for the fac-

torization by invariant embedding of the optimality system for the control problem of a

parabolic operator. We assume the following framework: V and H are Hilbert spaces

where V ′ is the dual of V , V is dense in H, H ′ is identified with H and such that V ⊂
H ⊂ V ′; the variable t denotes time and we suppose t ∈]0, T [, T < ∞; a(t; y, p), for each

t ∈]0, T [, is a continuous and coercive bilinear form on V , and can be written in the form

a(t; y, p) = (A(t)y, p), A(t)y ∈ V ′; in addition, A(.) ∈ L(L2(0, T ;V );L2(0, T ; V ′)), where

L2(0, T ; V (resp. V ′)) stands for the set of functions t → f(t) of ]0, T [→ V (resp. V ′), measur-

able and such that
(∫ T

0
‖f(t)‖2

V ( resp.V ′) dt

) 1
2

< ∞. Further, we consider U = L2(0, T ;E)

(space of controls) and H = L2(0, T ; F ) (space of observations), where E and F are sepa-

rable Hilbert spaces. We are given an operator B ∈ L(U ;L2(0, T ;V ′)) and f and y0, with

f ∈ L2(0, T ;V ) and y0 ∈ H.

Within the above notations and denoting A∗ the adjoint of A, we consider the system of

equations

∂y

∂t
+ A(t)y + D1(t)p = f, y(0) = y0; −∂p

∂t
+ A∗(t)p−D2(t)y = g, p(T ) = 0 (1.1)
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for all t ∈]0, T [, which is the optimality system for

∂y(v)
∂t

+ A(t)y(v) = f + Bv

y(v)|t=0
= y0

y(v) ∈ L2(0, T ; V ),

where the cost function is given by

J(v) = ‖Cy(v)− zd‖2
H + (Nv, v)U .

N is given such that N ∈ L(U ;U) and (Nu, u)U ≥ µ‖u‖2
U , µ > 0, C ∈ L(L2(0, T ;V );H),

and zd is a given element in H. Also, D1, D2 ∈ L(V ;V ′), with D1 = B(t)N(t)−1ΛE
−1B(t)∗,

D2(t) = C(t)∗ΛF C(t) ( ΛE (resp, ΛF ) being the canonical isomorphism of E (resp, F )) and

g(t) = −C∗(t)ΛF zd(t).

Then, we embed (1.1) in a family of similar problems depending on the present time s,

which defines the “moving boundary”, and the state h at that time. The resulting system

of equations
dϕ

dt
+ A(t)ϕ + D1(t)ψ = f, ϕ(s) = h; −dψ

dt
+ A∗(t)ψ −D2(t)ϕ = g, ψ(T ) = 0 (1.2)

where t ∈]s, T [, 0 < s < T , and h is given in H, has a unique solution. For ϕ and ψ this way

defined, it can be proved that the mapping h → ψ(t) is a continuous affine mapping of H → H

and consequently this mapping can be written in a unique way as ψ(s) = P (s)h+r(s), where

P (s) ∈ L(H;H) and r(s) ∈ H.

Follows the fundamental result. Considering {y, p} to be a solution of (1.1), we have

p(t) = P (t)y(t)+r(t), ∀t ∈]0, T [, where P (t) and r(t) are given, respectively, by P (s)h = γ(s),

where γ is the solution, in ]s, T [, of
dβ

dt
+ A(t)β + D1(t)γ = 0, β(s) = h; −dγ

dt
+ A∗(t)γ −D2(t)β = 0, γ(T ) = 0

and r(s) = ξ(s), where ξ is the solution, in ]s, T [, of
dη

dt
+ A(t)η + D1(t)ξ = f, η(s) = 0; −dξ

dt
+ A∗(t)ξ −D2(t)η = g, ξ(T ) = 0.

Moreover, taking f ∈ L2(0, T ; H), then P and r have the following properties: P (t) ∈
L(H; H); P (t) = P ∗(t); if η ∈ W (0, T ) = {f : f ∈ L2(0, T ; V ), df

dt ∈ L2(0, T ; V ′)} with
dη
dt +A(t)η ∈ L2(0, T ; H), then P (t)η ∈ W (0, T ); P satisfies the Riccati equation −dP

dt +PA+

A∗P +PD1P = D2, in ]0, T [, in the sense that − (
dP
dt

)
η+PAη+A∗Pη+PD1Pη = D2η, for

all η ∈ W (0, T ) with dη
dt + A(t)η ∈ L2(0, T ; H) and Aη ∈ L2(0, T ; H) and we have P (T ) = 0;

r is the solution in W (0, T ) of −dr
dt + A∗r + PD1r = Pf + g, and we have r(T ) = 0. P and

r thus defined are unique.
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This last result is first obtained in a formal way, by using the main identity p = Py+r and

the equations of system (1.1). Next, these formal calculations can be justified, using a finite

dimensional approximation of the original problem. In fact, in finite dimension we can prove

the existence of a global solution (that is, for t ∈]0, T [) to the decoupled system. Afterwards,

we pass to the limit, when the dimension tends to infinity, leading to the conclusions above.

Adapting this general method to the factorization of a second order elliptic boundary

value problem, it can be found in ([26, 19]) a presentation of the case where the domain is

a cylinder whose axis is parallel to the x1 coordinate. Considering that Ω is the cylinder

Ω =]0, a[×O, O is a bounded open set of IRn−1, Σ = ∂O×]0, a[ and denoting ∆ =
n∑

i=1

∂2

∂x2
i

=

∂2

∂x2
1

+ ∆z, where z represents the independent variables x2, . . . , xn, they showed that the

problem 



−∆y = f, in Ω

y = 0, on Σ

y = y0, on Γ0

∂y

∂x1
= ya, on Γa

can be factorized as




∂P

∂x1
+ P∆zP + I = 0, P (0) = 0

∂r

∂x1
+ P∆zr = −Pf, r(0) = y0

P
∂y

∂x1
+ y = r, y(a) = −P (a)ya + r(a).

An alternative factorization or the same problem is




∂Q

∂x1
−Q2 −∆z = 0, Q(a) = 0

∂w

∂x1
−Qw = f, w(a) = ya

∂y

∂x1
+ Qy = −w, y(0) = y0.

We can also find in ([26, 19]) a justification of the derivation of the Riccati equation
∂P

∂x1
+ P∆zP + I = 0, P (0) = 0, using the fact that P was defined as a Neumann-Dirichlet

operator on the boundary of the subdomains defined by the invariant embedding. Similarly

to the method used by Lions, it was used a Galarkin method to study the problem in finite

dimension and, afterwards, passing to the limit to the infinite dimensional problem.
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1.4. Definition of the problem and regularization

Let Ω be an open bounded regular domain of IR2. We consider the Poisson problem with

Dirichlet data 


−∆u = f, in Ω

u|Γ = 0
(1.3)

where Γ is the boundary of Ω and f ∈ L2(Ω). In spite of the particularization to the

Laplacian operator in this definition, we believe that the same procedure could be applied

to any strongly elliptic self-adjoint problem.

Applying the (spatial) invariant embedding method to this problem, we must start defin-

ing a family of subdomais sweeping the initial domain Ω. Unlike the case study we just

described, we find that the correspondent moving boudary do not have, necessarily, the

same geometry.

We start dealing with the case where the family of surfaces which limits the sub-domains,

starts on the boundary of the domain and shrinks homothetically to a point. Since the mobile

boundary reduces to a point, a singularity will necessary appear at that point. We must

make, as a consequence, a regularization around this point and a possible way to do it, is to

define an auxiliary domain, where we introduce a fictitious boundary around that singular

point. In this case, however, we introduce a perturbation of the solution so, naturally, we

must choose the new boundary condition, in a way that we can obtain the convergence of

this auxiliary problem to the initial one. With this purpose, we will consider the following

auxiliary problem:





−∆uε = f, in Ω \ Ωε

uε|Γ = 0∫

Γε

∂uε

∂n
dΓε = 0

uε|Γε
is constant.

(1.4)

Here, Ωε is an open regular domain verifying Ωε ⊂ Ω and Γε is the boundary of Ωε.

We can justify the choice of the boundary conditions on Γε with the fact that the condition∫

Γε

∂uε

∂n
dΓε = 0 corresponds to a null total flux. Notice that Ωε is in the situation previously

described: it shrinks homothetically to a point, when ε → 0.
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There is a natural link between this line of work and the work of, for example, Sokolowski

([27]) for topological derivatives. In that study, is intended to obtain the variation of the

solution of the problem, when a small hole is created on the domain. We will return to this

subject at the end of Chapter 2.

The variational formulation of problem (1.4) is obtained through the following proposi-

tions:

Proposition 1.4.1. Let Uε= {uε ∈H1(Ω \ Ωε) : uε|Γ
= 0 ∧ uε|Γε

is constant}. Uε is an

Hilbert space.

Proof. We start defining Uaux
ε = {uε ∈ H1(Ω\Ωε) : uε|Γ = 0} and a sequence unε ∈ Uaux

ε

such that unε → uε in H1(Ω \Ωε). Is obvious that uε ∈ H1(Ω \Ωε), as a consequence of the

completeness of the space H1(Ω\Ωε). Also, having unε → uε in H1(Ω\Ωε) implies, by trace

theorem, that unε → uε in L2(Γ ∪ Γε). Therefore we obtain, in particular, that uε|Γ = 0.

Then, this is a closed subspace of H1(Ω \ Ωε) and therefore it is itself an Hilbert space for

the same norm. In the same way, we can prove that Uε is a closed subspace of Uaux
ε , which

means that it’s again itself an Hilbert space for the same norm. We can therefore conclude

that Uε is an Hilbert space associated with the norm of H1(Ω \ Ωε).

Remark 1.4.2. Considering in Uε the norm ‖uε‖2
Uε

= ‖uε‖2
H1(Ω\Ωε)

+
∫

Γε

uε
2
|Γε

, which is

equivalent to the usual norm ‖uε‖2
H1(Ω\Ωε)

by means of trace theorem, we can also prove that

Uε is an Hilbert space.

Proposition 1.4.3. The variational formulation of problem (1.4) is




uε ∈ Uε∫

Ω\Ωε

∇uε∇vε =
∫

Ω\Ωε

f vε, ∀vε ∈ Uε.
(1.5)

Proof. After multiplying by vε ∈ Uε and integrating in Ω \ Ωε both sides of −∆uε = f ,

we integrate by parts the left-hand side of the resultant equality and obtain
∫

Ω\Ωε

∇uε∇vε −
∫

Γ

∂uε

∂n
vε −

∫

Γε

∂uε

∂n
vε =

∫

Ω\Ωε

f vε.

Taking in account that vε = 0 in Γ, vε is constant in Γε and
∫

Γε

∂uε

∂n
= 0, we find (1.5).
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Then, problem (1.4) is well posed (that is, it has a unique solution which depends con-

tinuously on the initial conditions) as a consequence of the next proposition:

Proposition 1.4.4. For each ε > 0, problem (1.5) has a unique solution.

Proof. Consider a(uε, vε) =
∫

Ω\Ωε

∇uε∇vε and (f, vε) =
∫

Ω\Ωε

f vε. The existence and

uniqueness of a solution uε ∈ Uε for the equation a(uε, vε) = (f, vε) is obtained by a direct

application of Lax-Milgram’s theorem. The continuity and coercivity of a is a consequence,

respectively, of Holder’s inequality and Poincaré’s inequality, since

|a(uε, vε)| =
∣∣∣∣∣
∫

Ω\Ωε

∇uε∇vε

∣∣∣∣∣ ≤ ‖∇uε‖L2(Ω\Ωε)‖∇vε‖L2(Ω\Ωε) ≤ ‖uε‖H1(Ω\Ωε)‖vε‖H1(Ω\Ωε)

and

‖uε‖2
H1(Ω\Ωε)

= ‖uε‖2
L2(Ω\Ωε)

+ ‖∇uε‖2
L2(Ω\Ωε)

≤ (c + 1)‖∇uε‖2
L2(Ω\Ωε)

= (c + 1) |a(uε, uε)| ,

where c is the Poincaré constant.

Furthermore, continuity of the linear form (f, vε) is also a consequence of Holder’s in-

equality and all the other hypotheses can be easily verified.

1.5. A convergence result

Let us consider for each uε ∈ Uε the function ũε defined, in Ω, by:

ũε =





uε, in Ω \ Ωε

uε = uε|Γε
, in Ωε.

(1.6)

Obviously, ũε ∈ H1
0 (Ω).

We consider the situation where Ωε shrinks to a point p ∈ Ω when ε goes to zero. More

precisely, let {εn} be a strictly decreasing sequence of real numbers such that εn → 0. We

assume that for n ∈ N, n ≥ n0, Ωεn is a regular open set such that Ωεn ⊂ Bεn(p) ⊂ Bεn(p) ⊂ Ω

(where Bεn(p) is the open ball with center p and radius εn).

We define

Ũ = {ũ ∈ H1
0 (Ω) : there exists εn such that ũ|Ωεn

is constant}. (1.7)
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Theorem 1.5.1. Ũ is dense in H1
0 (Ω).

Proof. For simplicity, we supress the index n on εn. Let f ∈ C1
0 (Ω), where C1

0 (Ω) is

the set of all C1(Ω) functions which are zero on Γ and, without loss of generality, suppose

that B2ε(p) ⊂ Ω. For x ∈ B2ε(p) \ Bε(p) we write, in polar coordinates, x = (x1, x2) =

(p1 + r cos θ, p2 + r sin θ), where p = (p1, p2). Then, consider the function uε given by

uε(x)=





f(p), x ∈ Bε(p)

f(x), x 6∈ B2ε(p)

f(p) +
f(p1 + 2 ε cos θ, p2 + 2 ε sin θ)− f(p)

ε
(r − ε), if ε < r < 2ε,

0 ≤ θ ≤ 2π.

It is obvious that uε ∈ Ũ . Since Γε ⊂ Bε(p), uε has zero normal derivative a.e. on

Γε = ∂Ωε and consequently satisfies
∫

Γε

∂uε

∂n
= 0.

On the other hand, we have

‖uε − f‖2
H1(Ω) = ‖uε − f‖2

H1(B2ε(p))

=
∫

B2ε(p)
|uε − f |2 +

∫

B2ε(p)
|∇uε −∇f |2

≤ 2
∫

B2ε(p)
|uε|2 + 2

∫

B2ε(p)
|f |2 + 2

∫

B2ε(p)
|∇uε|2 + 2

∫

B2ε(p)
|∇f |2.

In B2ε(p)\Bε(p), seeing that 0 ≤ r−ε ≤ ε, we obtain |uε| ≤ 2 |f(p)|+maxx∈∂B2ε(p) |f(x)|.
Then, since f ∈ C1

0 (Ω), |f |2, |∇f |2 and |uε|2 are bounded by a constant not depending on

ε, we have
∫

B2ε(p)
|f |2 → 0,

∫

B2ε(p)
|∇f |2 → 0 and

∫

B2ε(p)
|uε|2 → 0, as ε → 0. It remains to

analyze the term
∫

B2ε(p)
|∇uε|2 =

∫

B2ε(p)\Bε(p)
|∇uε|2.

For ε < r < 2ε, we have

∂uε

∂r
(p1 + r cos θ, p2 + r sin θ) =

f(p1 + 2 ε cos θ, p2 + 2 ε sin θ)− f(p)
ε

and, using the notation ξ1 = p1 + 2 ε cos θ, ξ2 = p2 + 2 ε sin θ,

lim
ε→0

∂uε

∂r
(p1 + r cos θ, p2 + r sin θ)

= lim
ε→0

∂f

∂x1
(p1 + 2 ε cos θ, p2 + 2 ε sin θ)

∂ξ1

∂ε
+

∂f

∂x2
(p1 + 2 ε cos θ, p2 + 2 ε sin θ)

∂ξ2

∂ε

= ∇f(p).(2cos θ, 2sin θ),
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so
∣∣∣∣
∂uε

∂r

∣∣∣∣ is bounded by a constant not depending on ε; also,
∣∣∣∣

∂r

∂x1

∣∣∣∣=
|x1 − p1|√

(x1 − p1)2 + (x2 − p2)2

≤ 1 and
∣∣∣∣

∂r

∂x2

∣∣∣∣ ≤ 1. Further,
∂uε

∂θ
(p1 + r cos θ, p2 + r sin θ) = ∇f(p1 + 2 ε cos θ, p2 +

2 ε sin θ).(−2(r − ε) sin θ, 2(r − ε) cos θ), so
∣∣∣∣
∂uε

∂θ

∣∣∣∣ ≤ |∇f | 2ε, in B2ε(p) \ Bε(p). Since

∣∣∣∣
∂θ

∂x1

∣∣∣∣ =
|x2 − p2|

(x1 − p1)2 + (x2 − p2)2
≤ 1√

(x1 − p1)2 + (x2 − p2)2
=

1
r
≤ 1

ε

and
∣∣∣∣

∂θ

∂x2

∣∣∣∣ =
|x1 − p1|

(x1 − p1)2 + (x2 − p2)2
≤ 1

ε
in B2ε(p) \ Bε(p), finally, we can conclude that

both
∣∣∣∣
∂uε

∂x1

∣∣∣∣ and
∣∣∣∣
∂uε

∂x2

∣∣∣∣ are bounded by a constant not depending on ε, that is, |∇uε| is

bounded in B2ε(p) \ Bε(p) by a constant not depending on ε, which implies that, as ε → 0,∫

B2ε(p)\Bε(p)
|∇uε|2 → 0.

We have proved that each f ∈ C1
0 (Ω) is approached by functions of Ũ .

On the other hand the space {f ∈ C1(Ω) : ‖f‖H1(Ω) < +∞} is dense in H1(Ω) (see [1],

Theorem 3.16, page 52). So, C1
0 (Ω) is dense in H1

0 (Ω), which concludes the proof.

As stated before, we intend to prove that when ε → 0, problem (1.4) reduces to

problem (1.3), that is, uε, the solution of problem (1.4), converges to u, the solution of

problem (1.3).

Lemma 1.5.2. ‖ũε‖H1
0 (Ω) is bounded independently of ε.

Proof. Considering vε = uε in (1.5) we obtain
∫

Ω\Ωε

|∇uε|2 =
∫

Ω\Ωε

f uε. (1.8)

Since ũε is constant in Ωε,

‖ũε‖2
H1

0 (Ω) =
∫

Ω
|∇ũε|2 =

∫

Ω\Ωε

f uε ≤ ‖f‖L2(Ω\Ωε)‖uε‖L2(Ω\Ωε) ≤ ‖f‖L2(Ω)‖ũε‖L2(Ω)

≤ ‖f‖L2(Ω)

√
c ‖∇ũε‖L2(Ω) = ‖f‖L2(Ω)

√
c ‖ũε‖H1

0 (Ω)

where c is the Poincaré constant. So, ‖ũε‖H1
0 (Ω) ≤ k where k = ‖f‖L2(Ω)

√
c is independent

of ε.

As a consequence of the previous proposition, we can extract from (ũε) a subsequence,

still denoted by (ũε), such that ũε → ũ, H1
0 (Ω)-weak, when ε → 0.
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Theorem 1.5.3. Suppose that εn → 0 and Ωεq ⊂ Ωεp, if q > p. If, for each εn, uεn is the

solution of (1.4), then ũεn → u, strongly in H1
0 (Ω), where u is the solution of (1.3).

Proof. Let, for some p, ṽεp ∈ Ũ , ṽεp constant on Ωεp ; of course ṽεp is constant on Ωεn , if

n > p. For a moment, we fix p and take n > p. From (1.4),
∫

Ω
∇ũεn∇ṽεp =

∫

Ω\Ωεn

∇uεn∇vεp =
∫

Ω\Ωεn

f vεp =
∫

Ω
fṽεp −

∫

Ωεn

fṽεp .

If u is the weak limit of ũεn , when εn → 0, then
∫

Ω
∇ũεn∇ṽεp →

∫

Ω
∇u∇ṽεp

and, naming k the value of ṽεp in Ωεp ,

∣∣∣∣∣
∫

Ωεn

fṽεp

∣∣∣∣∣ = |k|
∣∣∣∣∣
∫

Ωεn

f

∣∣∣∣∣ ≤ |k| |Ωεn |
1
2 ‖f‖L2(Ω) → 0

so, ∫

Ω
∇u∇ṽεp =

∫

Ω
fṽεp .

By Theorem 1.5.1, for every v ∈ H1
0 (Ω), there is a sequence (ṽεp) ⊂ Ũ such that ṽεp → v

in H1
0 (Ω) so we can take limits in both sides of last equality and obtain

∫

Ω
∇u∇v =

∫

Ω
fv, ∀v ∈ H1

0 (Ω),

which means that u is the solution of (1.3).

Further, we have
∫

Ω
|∇(u− ũεn)|2 =

∫

Ω
∇u∇(u− ũεn)−

∫

Ω
∇u∇ũεn +

∫

Ω\Ωε

∇ũεn∇ũεn

=
∫

Ω
∇u∇(u− ũεn)−

∫

Ω
∇u∇ũεn +

∫

Ω
fũεn −

∫

Ωε

fũεn

and, by Holder’s inequality,
∣∣∣∣
∫

Ωε

fũεn

∣∣∣∣ ≤
(∫

Ωε

f2

)1/2 (∫

Ωε

ũ2
εn

)1/2

≤
(∫

Ωε

f2

)1/2 (∫

Ω
ũ2

εn

)1/2

≤
√

k

(∫

Ω
f2χ

Ωε

)1/2

.

When ε → 0 we have f2χ
Ωε
→ 0 (0 ≤ f2χ

Ωε
≤ f2, in Ω) and consequently, using Lebesgue’s

theorem,
∫

Ωε

fũεn → 0. As ũεn ⇀ u in H1
0 (Ω), we also have,

∫

Ω
∇u∇(u − ũεn) → 0,

∫

Ω
∇u∇ũεn →

∫

Ω
|∇u|2 and

∫

Ω
fũεn →

∫

Ω
fu. Thus, we obtain the strong limit.



Chapter 2

The factorization method in a

circular domain

In this chapter we apply the method presented in Chapter 1 to problem (1.3), in order to

factorize this second order elliptic boundary value problem in the product of two first order

decoupled initial value problems. We present here the simple situation where Ω is a disk of

IR2 with radius a and centered on the origin. In this case, the sub-domains defined by the

invariant embedding are the annuli Ω \ Ωs, s ∈ (0, a).

2.1. Definition of the framework

Let us begin recalling problem (1.3):



−∆u = f, in Ω

u|Γ = 0.

We now assume that Ω is a circle centered at the origin. As in the case of the cylinder re-

ferred in Section 1.1., through the invariant embedding technique, the embedding parameter

appears in a natural way as the direction of the radius of the circle. Therefore, we can define

a family of similar problems, each one defined over the annuli Ω \ Ωs, s ∈ (0, a), choosing,

for instance, a Neumann boundary condition on the moving boundary. However, this ap-

proach implies not having the solution (of each problem) always defined over the same class

of functions. Besides that, we already comment upon the singularity that this method gen-

15
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erates on the origin. To avoid these difficulties, we are going to use polar coordinates: for all

function v ∈ Ω we associate a function v̂ ∈ Ω̂, through the polar coordinates transformation

v(x, y) = v̂(ρ, θ), with x = ρ cosθ, y = ρ sinθ, ρ ∈ (0, a] and θ ∈ [0, 2π]. Then, problem (1.3)

becomes 



−1
ρ

∂

∂ρ

(
ρ
∂û

∂ρ

)
− 1

ρ2

∂2û

∂θ2
= f, in Ω̂ = (0, a)× [0, 2π]

û|Γa
= 0

û|θ=0
= û|θ=2π

∂û

∂θ
|θ=0 =

∂û

∂θ
|θ=2π,

(2.1)

and in place of the auxiliary problem chosen in Section 1.4., we can find now




−1
ρ

∂

∂ρ

(
ρ
∂ûε

∂ρ

)
− 1

ρ2

∂2ûε

∂θ2
= f, in Ω̂ \ Ω̂ε = (ε, a)× [0, 2π]

ûε|Γa
= 0

ûε|Γε
constant,

∫

Γε

∂ûε

∂ρ
dθ = 0

ûε|θ=0
= ûε|θ=2π

∂ûε

∂θ
|θ=0 =

∂ûε

∂θ
|θ=2π,

(2.2)

where Ω \ Ωε represents now the annulus delimited by two concentric circumferences, one

with radius ε and the other with radius a, ε < a.

Due to this transformation of coordinates,
∫

Ω\Ωε

|v(x, y)|2 dx dy=
∫
bΩ\bΩε

|v̂(ρ, θ)|2ρ dρ dθ =
∫ 2π

0

∫ a

ε
|v̂(ρ, θ)|2ρdρ dθ. Then, to the space L2(Ω\Ωε) corresponds the space L2

ρ(ε, a; L2(0, 2π)),

where ‖v̂‖2
L2

ρ(ε,a;L2(0,2π)) =
∫ 2π

0

∫ a

ε
|v̂(ρ, θ)|2ρ dρ dθ and L2

ρ(ε, a) denotes the L2-space of func-

tions of ρ, with the measure ρ dρ. Further, we denote by H1
ρ (ε, a) the space of functions v̂

of ρ, such that v̂ ∈ L2
ρ(ε, a) and

∂v̂

∂ρ
∈ L2

ρ(ε, a) and we denote by H1
ρ,P (0, 2π) the space

of functions v̂ of θ, verifying v̂ ∈ L2(0, 2π),
1
ρ

∂v̂

∂θ
∈ L2(0, 2π) and such that v̂ has peri-

odic boundary conditions v̂(0) = v̂(2π). Therefore, we are going to consider the following

definitions of norm: ‖v̂(θ)‖2
L2

ρ(ε,a) =
∫ a

ε
|v̂|2ρ dρ; ‖v̂(θ)‖2

H1
ρ(ε,a) =

∫ a

ε

(
|v̂|2 +

(
∂v̂

∂ρ

)2
)

ρ dρ;

‖v̂(ρ)‖2
L2(0,2π) =

∫ 2π

0
|v̂|2 dθ; ‖v̂(ρ)‖2

H1
ρ,P (0,2π)

=
∫ 2π

0

(
|v̂|2 +

1
ρ2

(
∂v̂

∂θ

)2
)

dθ.

According to the previous notations, to the Hilbert space H1(Ω \Ωε) corresponds the space

Ĥε = {v̂ : v̂ ∈ L2
ρ

(
ε, a; H1

ρ,P (0, 2π)
)

,
∂v̂

∂ρ
∈ L2

ρ

(
ε, a; L2(0, 2π)

)}. In fact, to the space
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L2
ρ(ε, a; H1

ρ,P (0, 2π)) belong the functions v̂ of ρ defined a.e. on (ε, a), with values in the space

of functions of θ, measurable in ρ for the measure ρ dρ, such that v̂(ρ) ∈ H1
ρ,P (0, 2π) a.e. in

ρ and
∫ a

ε
‖v̂‖2

H1
ρ,P (0,2π)ρ dρ < ∞ - that is,

‖v̂‖2
L2

ρ(ε,a;H1
ρ,P (0,2π)) =

∫ 2π

0

∫ a

ε

(
|v̂(ρ, θ)|2 +

1
ρ2

(
∂v̂

∂θ
(ρ, θ)

)2
)

ρdρ dθ, and

‖v‖2
H1(Ω\Ωε)

= ‖v̂‖2
L2

ρ(ε,a;H1
ρ,P (0,2π)) +

∥∥∥∥
∂v̂

∂ρ

∥∥∥∥
2

L2
ρ(ε,a;L2(0,2π))

= ‖v̂‖2
bHε

.

Based on the fact that L2(ε, a; L2(0, 2π)) is an Hilbert space, it is easy to prove that the

space L2
ρ(ε, a;H1

ρ,P (0, 2π)), is also an Hilbert space, for all ε ≥ 0.

In this framework, the following remark is an immediate consequence of Proposition 1.4.3:

Remark 2.1.1. Let Ûε={ûε∈ Ĥε : ûε|Γa
= 0 ∧ ûε|Γε

is constant}. As previously, Ûε being

a closed subspace of Ĥε, is itself an Hilbert space, for the same norm. Then, the variational

formulation of problem (2.2) is





ûε ∈ Ûε

∫ a

ε

∫ 2π

0

(
∂ûε

∂ρ

∂v̂ε

∂ρ
ρ +

1
ρ

∂ûε

∂θ

∂v̂ε

∂θ

)
dθ dρ =

∫ a

ε

∫ 2π

0
fv̂ερ dθ dρ, ∀v̂ε ∈ Ûε.

(2.3)

Analogously, to the space H1
0 (Ω) corresponds the space Û0 ={v̂ ∈ Ĥ0 : v̂|Γa

= 0, v̂|Γ0
constant}

and the variational formulation of problem (2.1) is





û ∈ Û0

∫ a

0

∫ 2π

0

(
∂û

∂ρ

∂v̂

∂ρ
ρ +

1
ρ

∂û

∂θ

∂v̂

∂θ

)
dθ dρ =

∫ a

0

∫ 2π

0
fv̂ρ dθ dρ, ∀v̂ ∈ Û0.

(2.4)

We end this section with the presentation of an essencial trace theorem, which is a direct

application of Theorem 3.1, page 19 of [24]:
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Proposition 2.1.2. We have v̂ ∈ C
(
ε, a;H1/2

ρ,P (0, 2π)
)
, for all v̂ ∈ Ĥε, where the space

H
1/2
ρ,P (0, 2π) represents the 1/2 interpolate between H1

ρ,P (0, 2π) and L2(0, 2π). Also, for all v̂ ∈
X̂ε =

{
v̂ ∈ Ĥε :

∂2v̂

∂ρ2
∈ L2

ρ

(
ε, a;

(
H1

ρ,P (0, 2π)
)′)}, we also have

∂v̂

∂ρ
∈ C

(
ε, a;

(
H

1/2
ρ,P (0, 2π)

)′)
,

where
(
H

1/2
ρ,P (0, 2π)

)′
represents the 1/2 interpolate between

(
H1

ρ,P (0, 2π)
)′

and L2(0, 2π).

Furthermore, the trace mapping v̂ →
(

v̂|Γε
,
∂v̂

∂ρ
|Γε

)
is continuous from X̂ε onto H

1/2
ρ,P (0, 2π)×

(
H

1/2
ρ,P (0, 2π)

)′
.

2.2. Invariant embedding

Using the technique of invariant embedding, we embed problem (2.2) in a family of similar

problems defined on [s, a]× [0, 2π], for s ∈ [ε, a). For each problem we impose the boundary

condition
∂ûs

∂ρ
|Γs = h, where Γs is the moving boundary:





−1
ρ

∂

∂ρ

(
ρ
∂ûs

∂ρ

)
− 1

ρ2

∂2ûs

∂θ2
= f, in Ω̂ \ Ω̂s

ûs|Γa
= 0

∂ûs

∂ρ
|Γs = h

ûs|θ=0
= ûs|θ=2π

∂ûs

∂θ
|θ=0 =

∂ûs

∂θ
|θ=2π.

(2.5)

In (2.5) we take h ∈
(
H

1/2
ρ,P (0, 2π)

)′
. Since

∂ûε

∂ρ
|Γε is well determined through the condi-

tions “ûε|Γε
constant” and “

∫

Γε

∂ûε

∂ρ
dθ = 0”, it is clear that (2.2) is exactly (2.5), for s = ε

and h =
∂ûε

∂ρ
|Γε .

The variational formulation of the embedded problem can be now directly achieved:

Proposition 2.2.1. Considering the Hilbert space Ûs= {ûs ∈ Ĥs : ûs|Γa
= 0}, the varia-

tional formulation of problem (2.5) is
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ûs ∈ Ûs

∫ a

s

∫ 2π

0

(
∂ûs

∂ρ

∂v̂s

∂ρ
ρ +

1
ρ

∂ûs

∂θ

∂v̂s

∂θ

)
dθ dρ =−

∫ 2π

0
hv̂s(s)sdθ +

∫ a

s

∫ 2π

0
fv̂sρ dθ dρ,

∀v̂s ∈ Ûs.

(2.6)

Proof. Using (2.5), multiplying by v̂s ∈ Ûs, and integrating in Ω̂ \ Ω̂s, we obtain:
∫ 2π

0

∫ a

s

(
−∂2ûs

∂ρ2
v̂sρ− 1

ρ2

∂2ûs

∂θ2
v̂sρ− 1

ρ

∂ûs

∂ρ
v̂sρ

)
dρ dθ =

∫ 2π

0

∫ a

s
fv̂sρ dρ dθ

⇒
∫ 2π

0
−∂ûs

∂ρ
v̂sρ

]a

s

dθ +
∫ 2π

0

∫ a

s

∂ûs

∂ρ

(
∂v̂s

∂ρ
ρ + v̂s

)
dρ dθ −

∫ a

s

1
ρ

∂ûs

∂θ
v̂s

]2π

0

dρ

+
∫ 2π

0

∫ a

s

1
ρ

∂ûs

∂θ

∂v̂s

∂θ
dρ dθ −

∫ 2π

0

∫ a

s

∂ûs

∂ρ
v̂s dρ dθ =

∫ 2π

0

∫ a

s
fv̂sρ dρdθ

⇒
∫ 2π

0
shv̂s(s) dθ +

∫ 2π

0

∫ a

s

∂ûs

∂ρ

∂v̂s

∂ρ
ρ dρ dθ +

∫ 2π

0

∫ a

s

1
ρ

∂ûs

∂θ

∂v̂s

∂θ
dρdθ

=
∫ 2π

0

∫ a

s
fv̂sρdρ dθ.

Naturally, the above variational formulation reduces to (2.3), when s = ε. Using this vari-

ational formulation and Lax-Milgram theorem, it is easy to prove, similarly to Proposition

1.4.4, that the problem (2.5) is well posed.

In order to apply a method similar to the one used by Lions ([23]) for decoupling the

optimality conditions associated to an optimal control problem of a parabolic equation, we

define:

Definition 2.2.1. For every s ∈ [ε, a) and h ∈
(
H

1/2
ρ,P (0, 2π)

)′
we define P (s)h = γs|Γs

,

where γs ∈
{

v̂ ∈ Ĥs : v̂|Γa=0

}
is the solution of





−1
ρ

∂

∂ρ

(
ρ
∂γs

∂ρ

)
− 1

ρ2

∂2γs

∂θ2
= 0, in Ω̂ \ Ω̂s

γs|Γa
= 0,

∂γs

∂ρ
|Γs = h

γs|θ=0
= γs|θ=2π

∂γs

∂θ
|θ=0 =

∂γs

∂θ
|θ=2π.

(2.7)
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(hence, P is a Neumann-to-Dirichlet operator) and r(s) = βs|Γs
, where βs ∈

{
v̂ ∈ Ĥs : v̂|Γa=0

}

is the solution of 



−1
ρ

∂

∂ρ

(
ρ
∂βs

∂ρ

)
− 1

ρ2

∂2βs

∂θ2
= f, in Ω̂ \ Ω̂s

βs|Γa
= 0,

∂βs

∂ρ
|Γs = 0

βs|θ=0
= βs|θ=2π

∂βs

∂θ
|θ=0 =

∂βs

∂θ
|θ=2π.

(2.8)

In the particular case of s = ε, h must verify
∫ 2π

0
h =

∫ 2π

0

∂γε

∂ρ
(ε) = 0 and γε(ε) −

1
2π

∫ 2π

0
γε(ε) dθ = −r(ε) +

1
2π

∫ 2π

0
r(ε) dθ, since uε(ε) = γε(ε) + r(ε) is constant.

As a direct consequence of the computations exhibited in Proposition 2.2.1, taking f = 0

and h = 0, respectively, the variational formulation of problems (2.7) and (2.8) are, respec-

tively,




γs ∈ Ûs

∫ a

s

∫ 2π

0

(
∂γs

∂ρ

∂γs

∂ρ
ρ +

1
ρ

∂γs

∂θ

∂γs

∂θ

)
dθ dρ = −

∫ 2π

0
hγs(s)sdθ, ∀γs ∈ Ûs

(2.9)

and




βs ∈ Ûs

∫ a

s

∫ 2π

0

(
∂βs

∂ρ

∂βs

∂ρ
ρ +

1
ρ

∂βs

∂θ

∂βs

∂θ

)
dθ dρ =

∫ a

s

∫ 2π

0
fβsρ dθ dρ, ∀βs ∈ Ûs.

(2.10)

In addition, from Proposition 2.1.2, for every s ∈ [ε, a], P (s) :
(
H

1/2
ρ,P (0, 2π)

)′
→ H

1/2
ρ,P (0, 2π)

is a linear operator and r(s) ∈ H
1/2
ρ,P (0, 2π). By linearity of (2.5) we have

ûs|Γs
= P (s)

∂ûs

∂ρ
|Γs + r(s), ∀s ∈ [ε, a]. (2.11)

Furthermore, the solution ûε of (2.2) is given by

ûε(ρ, θ) = (P (ρ)
∂ûε

∂ρ
|Γρ)(θ) + (r(ρ))(θ). (2.12)

We can observe as well that we have, in fact, γs, βs ∈ X̂s:

Remark 2.2.2. Since γs ∈ Ĥs, in particular we have γs ∈ L2
ρ(s, a; H1

ρ,P (0, 2π)). Thus,
∂2γs

∂θ2
∈ L2

ρ

(
s, a;

(
H1

ρ,P (0, 2π)
)′). Furthermore,

∂γs

∂ρ
∈ L2

ρ(s, a; L2(0, 2π)) and consequently,



Invariant embedding 21

∂γs

∂ρ
∈ L2

ρ

(
s, a;

(
H1

ρ,P (0, 2π)
)′), making the usual identification of L2(0, 2π) with its dual

space. Therefore,
∂2γs

∂ρ2
= − 1

ρ2

∂2γs

∂θ2
− 1

ρ

∂γs

∂ρ
∈ L2

ρ

(
s, a;

(
H1

ρ,P (0, 2π)
)′)

and γs ∈ X̂s.

Obviously, we can establish the same result for βs, since we also have f ∈ L2
ρ(s, a; L2(0, 2π)).

In the next Proposition we present the first properties of the operator P :

Proposition 2.2.3. The linear operator P (s) :
(
H

1/2
ρ,P (0, 2π)

)′
→ H

1/2
ρ,P (0, 2π) is continu-

ous, self-adjoint and negative definite, for all s ∈ [ε, a).

Proof. The operator P (s) is continuous since it’s the composition of continuous opera-

tors: h → γs → γs|Γs
, defined by (2.7), respectively in the spaces

(
H

1/2
ρ,P (0, 2π)

)′
, Ĥs and

H
1/2
ρ,P (0, 2π). Let’s consider γs and γs two solutions of (2.7), with

∂γs

∂ρ
|Γs = h and

∂γs

∂ρ
|Γs = h,

respectively. Then, (2.9) can be written in the form

−
∫
bΩ\bΩs

∇γs∇γs ρ dρ dθ=s 〈h, γs(s)〉�H1/2
ρ,P (0,2π)

�′
, H

1/2
ρ,P (0,2π)

=s
〈
h, P (s)h

〉�
H

1/2
ρ,P (0,2π)

�′
, H

1/2
ρ,P (0,2π)

.

Therefore

s
〈
h, P (s)h

〉�
H

1/2
ρ,P (0,2π)

�′
, H

1/2
ρ,P (0,2π)

= s
〈
h, P (s)h

〉�
H

1/2
ρ,P (0,2π)

�′
, H

1/2
ρ,P (0,2π)

,

and we conclude that P (s) is a self-adjoint operator.

On the other hand, taking γs = γs we have

s 〈h, P (s)h 〉�
H

1/2
ρ,P (0,2π)

�′
, H

1/2
ρ,P (0,2π)

= −
∫
bΩ\bΩs

|∇γs|2 ρ dρ dθ (2.13)

and consequently P (s) is a negative operator. Using Poincaré’s inequality, we have
∫
bΩ\bΩs

|∇γs|2 ρdρ dθ = ‖∇γs‖2
L2

ρ(s,a;L2(0,2π)) ≥
1
c2
‖γs‖2

L2
ρ(s,a;L2(0,2π)).

Therefore,

‖∇γs‖2
L2

ρ(s,a;L2(0,2π)) +
1
c2
‖∇γs‖2

L2
ρ(s,a;L2(0,2π))

≥ 1
c2
‖γs‖2

L2
ρ(s,a;L2(0,2π)) +

1
c2
‖∇γs‖2

L2
ρ(s,a;L2(0,2π))

⇒
(

1 +
1
c2

)
‖∇γs‖2

L2
ρ(s,a;L2(0,2π)) ≥

1
c2
‖γs‖2

bHs

⇒ ‖∇γs‖2
L2

ρ(s,a;L2(0,2π)) ≥
1

c2 + 1
‖γs‖2

bHs

⇒ −
∫
bΩ\bΩs

|∇γs|2 ρdρ dθ ≤ − 1
c2 + 1

‖γs‖2
bHs

.

(2.14)
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Since s 〈h, P (s)h 〉�
H

1/2
ρ,P (0,2π)

�′
, H

1/2
ρ,P (0,2π)

= −
∫
bΩ\bΩs

|∇γs|2 ρ dρdθ we then have

s 〈h, P (s)h〉�
H

1/2
ρ,P (0,2π)

�′
, H

1/2
ρ,P (0,2π)

≤ −c1‖γs‖2
bHs

.

Now, since ∆γs = 0, by Lemma 1, page 381 of [12], follows that ∃ ks > 0 (the constant

should depend on s, due to the utilization of polar coordinates) such that
∥∥∥∥
∂γs

∂ρ
|Γs

∥∥∥∥�
H

1/2
ρ,P (0,2π)

�′ ≤ ks ‖γs‖H(∆,bΩ\bΩs)
= ks ‖γs‖ bHs

⇒ −‖γs‖2
bHs
≤ − 1

k2
s

∥∥∥∥
∂γs

∂ρ
|Γs

∥∥∥∥
2

�
H

1/2
ρ,P (0,2π)

�′ .

Then,

s 〈h, P (s)h 〉�
H

1/2
ρ,P (0,2π)

�′
, H

1/2
ρ,P (0,2π)

≤ − c1

k2
s

∥∥∥∥
∂γs

∂ρ
|Γs

∥∥∥∥
2

�
H

1/2
ρ,P (0,2π)

�′ = −c2‖h‖2�
H

1/2
ρ,P (0,2π)

�′

which proves that P (s) is a negative definite operator.

Furthermore, from (2.13), Poincaré’s inequality and Holder’s inequality, we have

c1‖γs‖2
bHs
≤ ‖∇γs‖2

L2
ρ(s,a;L2(0,2π)) ≤ s ‖h‖�

H
1/2
ρ,P (0,2π)

�′‖γs(s)‖H
1/2
ρ,P (0,2π)

,

and, on the other hand, due to trace theorem, ∃cs > 0 (again, cs should depend on s) such

that

‖γs(s)‖H
1/2
ρ,P (0,2π)

≤ cs‖γs‖ bHs

and consequently

c1

c2
s

‖γs(s)‖2

H
1/2
ρ,P (0,2π)

≤ c1‖γs‖2
bHs
≤ s ‖h‖�

H
1/2
ρ,P (0,2π)

�′‖γs(s)‖H
1/2
ρ,P (0,2π)

⇒ ‖γs(s)‖H
1/2
ρ,P (0,2π)

≤ s c2
s

c1
‖h‖�

H
1/2
ρ,P (0,2π)

�′ .

From (2.12) taking the derivative, in a formal way, with respect to ρ we obtain

∂ûε

∂ρ
=

∂P

∂ρ

∂ûε

∂ρ
+ P

∂2ûε

∂ρ2
+

∂r

∂ρ

=
∂P

∂ρ

∂ûε

∂ρ
+ P

(
−f − 1

ρ2

∂2ûε

∂θ2
− 1

ρ

∂ûε

∂ρ

)
+

∂r

∂ρ

=
∂P

∂ρ

∂ûε

∂ρ
− Pf − P

1
ρ2

∂2

∂θ2

(
P

∂ûε

∂ρ
+ r

)
− P

1
ρ

∂ûε

∂ρ
+

∂r

∂ρ

=
(

∂P

∂ρ
− P

1
ρ2

∂2

∂θ2
P − P

1
ρ

)
∂ûε

∂ρ
− Pf − P

1
ρ2

∂2r

∂θ2
+

∂r

∂ρ

(2.15)
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and consequently, since
∂ûε

∂ρ
is arbitrary (see Remark 2.4.1, with m = ∞), we have the

system





∂P

∂ρ
− 1

ρ2
P

∂2

∂θ2
P − P

1
ρ
− I = 0

−Pf − P
1
ρ2

∂2r

∂θ2
+

∂r

∂ρ
= 0

P
∂ûε

∂ρ
− ûε = −r.

Again from (2.12) and considering the Γa initial condition in (2.2) we obtain

P (a) = 0 and r(a) = 0.

From the first two equations of the previous system, and respective initial conditions, we

can obtain P and r. Knowing P (ε) and r(ε) we want to determine uniquely ûε(ε) satisfying

“ûε|Γε
constant” and “

∫

Γε

∂ûε

∂ρ
dθ = 0”. For this, we need to prove that the operator P

preserve both constant functions and functions of null mean.

Lemma 2.2.4. Let

M =
{

v ∈
(
H

1/2
ρ,P (0, 2π)

)′
:

∫ 2π

0
v dθ = 0

}
.

Then M is an Hilbert space.

Proof. It’s easy to prove that M is a subspace of
(
H

1/2
ρ,P (0, 2π)

)′
. Moreover, M is closed,

since it is the kernel of a continuous linear form.

Lemma 2.2.5. Let

N =
{

v ∈ H
1/2
ρ,P (0, 2π) : v is constant

}
.

Then N is an Hilbert space. Moreover, any v ∈ H
1/2
ρ,P (0, 2π) may be written in a unique way

in the form v = vM + vN , where vM ∈ M ∩H
1/2
ρ,P (0, 2π) and vN ∈ N .
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Proof. It’s evident that N is a subspace of H
1/2
ρ,P (0, 2π). In order to prove that N is closed,

we consider a sequence (vn)n∈N ∈ N such that vn → v in H
1/2
ρ,P (0, 2π). To conclude that

v ∈ N , we only need to prove that v is constant. Now, since vn → v in H
1/2
ρ,P (0, 2π) (that is,

‖vn−v‖
H

1/2
ρ,P (0,2π)

→ 0) and ‖vn−v‖2
L2(0,2π) ≤ ‖vn−v‖2

H
1/2
ρ,P (0,2π)

, we have ‖vn−v‖2
L2(0,2π) → 0,

which implies that vn − v → 0 a.e. in (0, 2π). Therefore, since vn is constant we also have v

constant and N is a closed subspace of H
1/2
ρ,P (0, 2π).

The second part of the proof is a direct consequence of Theorem 3.4, page 7 of [21],

noticing that H
1/2
ρ,P (0, 2π) ⊂ L2(0, 2π).

Proposition 2.2.6. The operator P is such that P : M → M and P : N → N .

Proof. For each s ∈ [ε, a) and h ∈ N , we define P (s)h = γs|Γs
, where γs ∈ X̂s is the

solution of (2.7) (that is, we consider a solution of (2.7) verifying also
∂γs

∂ρ
|Γs constant in

θ). Considering α(ρ) the solution of the linear two points boundary value problem, α′′(ρ) +
1
ρ
α′(ρ) = 0, α(a) = 0, α′(s) = h (in fact, it’s easy to prove that α(ρ) = −s h log a+s h log ρ),

then γs(ρ, θ) = α(ρ) is the solution of problem (2.7), since

−∂2γs

∂ρ2
(ρ, θ)− 1

ρ2

∂2γs

∂θ2
(ρ, θ)− 1

ρ

∂γs

∂ρ
(ρ, θ)

= −∂2α

∂ρ2
(ρ)− 1

ρ2

∂2α

∂θ2
(ρ)− 1

ρ

∂α

∂ρ
(ρ)

= −∂2α

∂ρ2
(ρ)− 0− 1

ρ

∂α

∂ρ
(ρ)

= 0.

Then, we can conclude that considering
∂γs

∂ρ
|Γs = h constant in θ, we also have γs(ρ, θ)

constant in θ and therefore γs|Γs
has the same property. Consequently, P (s)h = γs|Γs

is

constant in θ and P : N → N .

Now, for each s ∈ [ε, a) and h ∈ M , we define P (s)h = γs|Γs
, where γs ∈ X̂s is the

solution of (2.7) (that is, we consider a solution of (2.7) verifying also
∫ 2π

0

∂γs

∂ρ
|Γs dθ = 0).

We have
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−∂2γs

∂ρ2
(ρ, θ)− 1

ρ2

∂2γs

∂θ2
(ρ, θ)− 1

ρ

∂γs

∂ρ
(ρ, θ) = 0

⇒ −
∫ 2π

0

∂2γs

∂ρ2
(ρ, θ) dθ −

∫ 2π

0

1
ρ2

∂2γs

∂θ2
(ρ, θ) dθ −

∫ 2π

0

1
ρ

∂γs

∂ρ
(ρ, θ) dθ = 0

⇒ − ∂2

∂ρ2

∫ 2π

0
γs(ρ, θ) dθ − 1

ρ2

∂γs

∂θ
(ρ, θ)

]2π

0

− 1
ρ

∂

∂ρ

∫ 2π

0
γs(ρ, θ) dθ = 0

⇒ − ∂2

∂ρ2

∫ 2π

0
γs(ρ, θ) dθ − 1

ρ

∂

∂ρ

∫ 2π

0
γs(ρ, θ) dθ = 0.

Considering α(ρ) =
∫ 2π

0
γs(ρ, θ) dθ, since γs|Γa

= 0 ⇒
∫ 2π

0
γs|Γa

dθ = 0 and
∫ 2π

0

∂γs

∂ρ
|Γs dθ =

∂

∂ρ

∫ 2π

0
γs|Γs

dθ = 0, we obtain the two points boundary value problem,

α′′(ρ) +
1
ρ
α′(ρ) = 0, α(a) = 0, α′(s) = 0, which has the zero solution. Then, we can con-

clude that considering
∫ 2π

0

∂γs

∂ρ
|Γs dθ = 0, we also have

∫ 2π

0
γs(ρ, θ) dθ = 0 for each ρ, and

therefore
∫ 2π

0
γs|Γs

dθ has the same property, that is, P (s)h = γs|Γs
∈ M .

We can now establish the aimed uniqueness result:

Proposition 2.2.7. For any ψ ∈ N , there exists a unique solution φ ∈ M such that

ψ = P (ε)φ + r(ε), for given r(ε) and P (ε).

Proof. Let v̂ ∈ M . Then,

Pφv̂ = ψv̂ − rv̂

⇒
∫ 2π

0
Pφv̂ dθ =

∫ 2π

0
ψv̂ dθ −

∫ 2π

0
rv̂ dθ

⇒
∫ 2π

0
Pφv̂ dθ = ψ

∫ 2π

0
v̂ dθ −

∫ 2π

0
rv̂ dθ (ψ is constant)

⇒
∫ 2π

0
Pφv̂ dθ = −

∫ 2π

0
rv̂ dθ (v̂ ∈ M).

Considering

a (φ, v̂) =
∫ 2π

0
−Pφv̂ dθ and (r, v̂) =

∫ 2π

0
rv̂ dθ
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the former equation can be written in the form

a (φ, v̂) = (r, v̂), with φ, v̂ ∈ M. (2.16)

It is immediate that we have a bilinear form in the left-hand side of the previous equality,

and a linear one in the right-hand side. Furthermore, we have

∣∣∣∣〈Pφ, v̂〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′
∣∣∣∣ ≤ ‖Pφ‖

H
1/2
ρ,P (0,2π)

‖v̂‖�
H

1/2
ρ,P (0,2π)

�′

≤ c ‖φ‖�
H

1/2
ρ,P (0,2π)

�′ ‖v̂‖�
H

1/2
ρ,P (0,2π)

�′

where the first inequality is a consequence of Holder’s inequality and the second one is a

consequence of the continuity of P . Therefore, since the Hilbert space M is closed, ∃ c > 0

such that

|a (φ, v̂)| ≤ c ‖φ‖M ‖v̂‖M

and a is continuous. The form a is also coercive because, attending to the negative definite-

ness of P in ε, ∃ c2 > 0 such that

−
∫ 2π

0
Pφ.φ dθ ≥ c2 ‖φ‖2

M .

Further, the linear form is continuous since

∣∣∣∣
∫ 2π

0
rv̂ dθ

∣∣∣∣ ≤ ‖r‖
H

1/2
ρ,P (0,2π)

‖v̂‖M

≤ c ‖v̂‖M .

Therefore, according to Lax-Milgram’s theorem, there exists a unique solution φ ∈ M for

the equation (2.16).

At this point, we can also conclude that in order to determine the unknown constant

ûε(ε) of Proposition 2.2.7 we only need to compute the projection r(ε)|N of r(ε) over the set

N . In fact, we have ûε(ε)|N =
(

P (ε)
∂ûε

∂ρ
(ε)

)

|N
+r(ε)|N . Then, since P : N → N , we obtain

ûε(ε)|N = P (ε)
∂ûε

∂ρ
(ε)|N + r(ε)|N . Since

∫ 2π

0

∂ûε

∂ρ
(ε) dθ = 0, the projection of

∂ûε

∂ρ
(ε) over

the set N is zero and finally we obtain ûε(ε) = r(ε)|N .
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Therefore, we obtain the following system:





∂P

∂ρ
− 1

ρ2
P

∂2

∂θ2
P − P

1
ρ
− I = 0, P (a) = 0

−Pf − P
1
ρ2

∂2r

∂θ2
+

∂r

∂ρ
= 0, r(a) = 0

P
∂ûε

∂ρ
− ûε = −r, ûε(ε) = r(ε)|N .

(2.17)

2.3. Semi discretization

We consider {w1, w2, . . . , wn, . . .} an Hilbert basis of L2(0, 2π) formed by the eigenfunctions

of the problem −d2wi

dθ2
= λiwi (see Theorem IX.31, pag 192, of [7]), with periodic boundary

conditions (that is, wi(0) = wi(2π) and
∂wi

∂θ
(0) =

∂wi

∂θ
(2π)). This basis satisfies the following

properties:

(a) ∀i, j ∈ IN,

∫ 2π

0

∂wi

∂θ

∂wj

∂θ
dθ = λi δi,j ;

(b) ∀i, j ∈ IN,

∫ 2π

0
wi wj dθ = δi,j ;

(c) The finite linear combinations
∑

ηiwi with ηi ∈ IR are a dense subset of H1
ρ,P (0, 2π).

Therefore, we have an orthonormal basis of L2(0, 2π) and an orthogonal basis of H1
ρ,P (0, 2π).

In our particular case, it is easy to prove that the elements of the Hilbert basis have the form

sin(iθ) or cos(iθ). We are going to assume that the eigenvalues verify 0 = λ1 < λ2 ≤ · · · ≤
λn ≤ · · · .

Remark 2.3.1. The first eigenvector, associated to the zero eigenvalue, is constant. More-

over, since

−d2wi

dθ2
= λiwi

⇒ 0 = − ∂wi

∂θ
(θ)

∣∣∣∣
2π

0

= λi

∫ 2π

0
wi dθ

⇒
∫ 2π

0
wi dθ = 0, i ≥ 2

we can conclude that all eigenvectors have null mean, excepting the first one.
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Using this basis, we can write all ûε ∈ Ûε in the form

ûε(ρ, θ) =
∞∑

1

ui(ρ)wi(θ). (2.18)

Substituting (2.18) in the norms previously defined and using again the properties of the

Hilbert basis, we obtain respectively:

‖ûε(ρ)‖2
L2(0,2π) =

∞∑

i=1

u2
i ,

‖ûε(ρ)‖2
H1

ρ,P (0,2π) =
∞∑

i=1

(
1 +

λi

ρ2

)
u2

i = u2
1 +

∞∑

i=2

(
1 +

λi

ρ2

)
u2

i ,

‖ûε‖2
L2

ρ(ε,a;L2(0,2π)) =
∫ a

ε

∞∑

1

u2
i ρ dρ (2.19)

and

‖ûε‖2
bHε

=
∫ a

ε

∞∑

1

(
ρ +

λi

ρ

)
u2

i dρ +
∫ a

ε

∞∑

1

ρ

(
∂ui

∂ρ

)2

dρ. (2.20)

By interpolation we also have

‖ûε(ρ)‖2

H
1/2
ρ,P (0,2π)

= u2
1 +

∞∑

i=2

√
1 +

λi

ρ2
u2

i (2.21)

and

‖ûε(ρ)‖2

H
3/2
ρ,P (0,2π)

= u2
1 +

∞∑

i=2

√(
1 +

λi

ρ2

)3

u2
i . (2.22)

It follows some basic properties on the defined norms:

Proposition 2.3.2. ‖ûε(ρ)‖2

H
1/2
ρ,P (0,2π)

≤ ‖ûε(ρ)‖H1
ρ,P (0,2π)‖ûε(ρ)‖L2(0,2π).
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Proof.

‖ûε‖2

H
1/2
ρ,P

=
∞∑

1

√
1 +

λi

ρ2
ui · ui

≤
( ∞∑

1

(
1 +

λi

ρ2

)
u2

i

)1/2 ( ∞∑

1

u2
i

)1/2

= ‖ûε‖H1
ρ,P (0,2π)‖ûε‖L2(0,2π).

Proposition 2.3.3. The norm

‖ûε‖2
bHε

=
∫ a

ε

∞∑

1

(
ρ +

λi

ρ

)
u2

i dρ +
∫ a

ε

∞∑

1

ρ

(
∂ui

∂ρ

)2

dρ

is uniformly equivalent, with respect to ε, to the norm

‖ûε‖2
bHε

=
∫ a

ε

∞∑

2

λi

ρ
u2

i dρ +
∫ a

ε

∞∑

1

ρ

(
∂ui

∂ρ

)2

dρ. (2.23)

Proof. Obviously

∫ a

ε

∞∑

1

(
ρ +

λi

ρ

)
u2

i dρ +
∫ a

ε

∞∑

1

ρ

(
∂ui

∂ρ

)2

dρ

>

∫ a

ε

∞∑

2

λi

ρ
u2

i dρ +
∫ a

ε

∞∑

1

ρ

(
∂ui

∂ρ

)2

dρ.

On the other hand, using Poincaré’s inequality in Ω̂ \ Ω̂ε, ∃ c > 0 such that

‖ûε‖2
L2

ρ(ε,a;L2(0,2π)) ≤ c‖∇ûε‖2
L2

ρ(ε,a;L2(0,2π)),

which means,

∫ a

ε

∞∑

1

ρu2
i dρ ≤ c

(∫ a

ε

∞∑

2

λi

ρ
u2

i dρ +
∫ a

ε

∞∑

1

ρ

(
∂ui

∂ρ

)2

dρ

)
.

Finally, using this last inequality we have,
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∫ a

ε

∞∑

1

ρ u2
i dρ +

∫ a

ε

∞∑

2

λi

ρ
u2

i dρ +
∫ a

ε

∞∑

1

ρ

(
∂ui

∂ρ

)2

dρ

≤ c

∫ a

ε

∞∑

2

λi

ρ
u2

i dρ + c

∫ a

ε

∞∑

1

ρ

(
∂ui

∂ρ

)2

dρ +
∫ a

ε

∞∑

2

λi

ρ
u2

i dρ

+
∫ a

ε

∞∑

1

ρ

(
∂ui

∂ρ

)2

dρ

= (c + 1)

(∫ a

ε

∞∑

2

λi

ρ
u2

i dρ +
∫ a

ε

∞∑

1

ρ

(
∂ui

∂ρ

)2

dρ

)
.

The constants k1 = 1 e k2 = c + 1 do not depend on ε .

Proposition 2.3.4. The following pairs of norms are equivalent to each other, uniformly

with respect to ε:

‖ûε(ρ)‖2
H1

ρ,P (0,2π) =
∞∑

1

(
1 +

λi

ρ2

)
u2

i and ‖ûε(ρ)‖2
H1

ρ,P (0,2π) = u2
1 +

∞∑

2

λi

ρ2
u2

i ; (2.24)

‖ûε(ρ)‖2

H
1/2
ρ,P (0,2π)

=
∞∑

1

√
1 +

λi

ρ2
u2

i and ‖ûε(ρ)‖2

H
1/2
ρ,P (0,2π)

= u2
1 +

∞∑

2

√
λi

ρ
u2

i ; (2.25)

‖ûε(ρ)‖2

H
3/2
ρ,P (0,2π)

=
∞∑

1

√(
1 +

λi

ρ2

)3

u2
i and ‖ûε(ρ)‖2

H
3/2
ρ,P (0,2π)

= u2
1+

∞∑

2

λ
3/2
i

ρ3
u2

i . (2.26)

The pair of semi-norms

∥∥∥∥
∂ûε

∂θ
(ρ)

∥∥∥∥
2

H1
ρ,P (0,2π)

=
∞∑

2

(
λi +

(
λi

ρ

)2
)

u2
i and

∥∥∥∥
∂ûε

∂θ
(ρ)

∥∥∥∥
2

H1
ρ,P (0,2π)

=
∞∑

2

(
λi

ρ

)2

u2
i (2.27)

are also uniformly equivalent, with respect to ε.



Semi discretization 31

Proof. Obviously

∞∑

1

(
1 +

λi

ρ2

)
u2

i = u2
1 +

∞∑

2

u2
i +

1
ρ2

∞∑

2

λi u
2
i ≥ u2

1 +
1
ρ2

∞∑

2

λi u
2
i .

On the other hand,

∞∑

2

u2
i =

1
λ2

∞∑

2

λ2u
2
i

≤ 1
λ2

∞∑

2

λiu
2
i (λ2 ≤ λi, ∀i ≥ 3)

≤ a2

λ2

∞∑

2

λi

ρ2
u2

i (since ρ < a).

Finally, using this last inequality, we have

u2
1 +

∞∑

2

u2
i +

1
ρ2

∞∑

2

λi u
2
i ≤ u2

1 +
a2

λ2

∞∑

2

λi

ρ2
u2

i +
∞∑

2

λi

ρ2
u2

i

≤
(

1 +
a2

λ2

) (
u2

1 +
1
ρ2

∞∑

2

λi u
2
i

)
,

which completes the proof of (2.24). The constants k1 = 1 e k2 = 1 +
a2

λ2
do not depend on

ε.

The equivalences (2.25), (2.26) and (2.27) can be obtained similarly. The equivalence

constants, which are respectively k′1 = 1, k′2 = 1+
a√
λ2

, k′′1 = 1, k′′2 =
a3

λ
3/2
2

+
√

3a2

λ2
+
√

3a√
λ2

+1

and k′′′1 = 1, k′′′2 =
a2

λ2
+ 1 do not depend on ε.

Remark 2.3.5. In order to have < . , . >�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

= (. , .)L2(0,2π) (whenever this

last inner product makes sense), we define

‖ûε(ρ)‖2�
H

1/2
ρ,P (0,2π)

�′ = u2
1 +

∞∑

2

ρ√
λi

u2
i .
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2.4. Finite dimension

With the purpose of establishing an approximation of ûε, the solution of (2.3), in the frame-

work of the last section, we define Ûm
ε =

{
v ∈ H1

ρ (ε, a;V m) : v|Γa
= 0, v|Γε

constant
}

, where

V m = 〈w1, . . . , wn〉. Then, the approximation ûm
ε ∈ Ûm

ε of ûε is the solution of





ûm
ε ∈ Ûm

ε

∫ a

ε

∫ 2π

0

(
∂ûm

ε

∂ρ

∂v̂m
ε

∂ρ
ρ +

1
ρ

∂ûm
ε

∂θ

∂v̂m
ε

∂θ

)
dθ dρ =

∫ a

ε

∫ 2π

0
fv̂m

ε ρ dθ dρ, ∀v̂m
ε ∈ Ûm

ε .

Obviously, we can also define the approximation ûm of û (see (2.4)) by the solution of





ûm ∈ Ûm
0 =

{
v ∈ H1

ρ (0, a; V m) : v|Γa
= 0, v|Γ0

constant
}

∫ a

0

∫ 2π

0

(
∂ûm

∂ρ

∂v̂m

∂ρ
ρ +

1
ρ

∂ûm

∂θ

∂v̂m

∂θ

)
dθ dρ =

∫ a

0

∫ 2π

0
fv̂mρ dθ dρ, ∀v̂m ∈ Ûm

0 .

(2.29)

Since we can write all ûm
ε ∈ Ûm

ε in the form

ûm
ε (ρ, θ) =

m∑

1

ui(ρ)wi(θ), (2.30)

and we have ûm
ε (a, θ)=

m∑

i=1

ui(a)wi(θ)=0, we can conclude that ui(a)=0, for i= 1, . . . ,m.

In the same way, from the initial condition ûm
ε (ε, θ) =

m∑

i=1

ui(ε)wi(θ) constant, since w1 is

constant, we also obtain ui(ε) = 0, i ≥ 2. Furthermore, from the initial condition

∫ 2π

0

∂ûm
ε

∂ρ
(ε, θ) dθ =

∫ 2π

0

∂
m∑

i=1

ui(ε)wi(θ)

∂ρ
dθ =

m∑

i=1

∂ui

∂ρ
(ε)

∫ 2π

0
wi(θ) dθ = 0,

and Remark 2.3.1 we can conclude that
∂u1

∂ρ
(ε)

∫ 2π

0
w1(θ) dθ = 0 and consequently,

∂u1

∂ρ
(ε) =

0, since the first eigenvector is constant.

For ûm
ε , v̂m

ε of the form (2.30), using the properties of the Hilbert basis and this initial
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conditions, from (2.28) we obtain successively:

∫ 2π

0

∫ a

ε


 ∂

∂ρ

(
m∑

i=1

ui(ρ)wi(θ)

)
∂

∂ρ




m∑

j=1

vj(ρ)wj(θ)


 ρ

+
1
ρ

∂

∂θ

(
m∑

i=1

ui(ρ)wi(θ)

)
∂

∂θ




m∑

j=1

vj(ρ)wj(θ)





 dρ dθ

=
∫ 2π

0

∫ a

ε
f

m∑

j=1

vj(ρ)wj(θ)ρ dρdθ

⇔
m∑

i,j=1

∫ 2π

0
wi(θ)wj(θ) dθ

∫ a

ε

∂ui

∂ρ
(ρ)

∂vj

∂ρ
(ρ)ρdρ

+
m∑

i,j=1

∫ 2π

0

∂wi

∂θ
(θ)

∂wj

∂θ
(θ) dθ

∫ a

ε

1
ρ

ui(ρ)vj(ρ) dρ

=
m∑

j=1

∫ a

ε

(∫ 2π

0
fwj(θ)ρ dθ

)
vj(ρ) dρ

⇔
m∑

i=1

∫ a

ε

∂ui

∂ρ
(ρ)

∂vi

∂ρ
(ρ)ρ dρ +

m∑

i=1

λi

∫ a

ε

1
ρ

ui(ρ)vi(ρ) dρ

=
m∑

i=1

∫ a

ε

(∫ 2π

0
fwi(θ)ρ dθ

)
vi(ρ) dρ

⇔
m∑

i=1

[
vi(ρ)

∂ui

∂ρ
(ρ)ρ

∣∣∣∣
a

ε

−
∫ a

ε

(
∂2ui

∂ρ2
(ρ)ρ +

∂ui

∂ρ
(ρ)

)
vi(ρ) dρ

]
+

m∑

i=1

∫ a

ε

λi

ρ
ui(ρ)vi(ρ) dρ

=
m∑

i=1

∫ a

ε

(∫ 2π

0
fwi(θ)ρ dθ

)
vi(ρ) dρ

⇔
m∑

i=1

∫ a

ε

(
−∂2ui

∂ρ2
(ρ)ρ− ∂ui

∂ρ
(ρ)

)
vi(ρ) dρ +

m∑

i=1

∫ a

ε

(
λi

ρ
ui(ρ)

)
vi(ρ) dρ

=
m∑

i=1

∫ a

ε

(∫ 2π

0
fwi(θ)ρ dθ

)
vi(ρ) dρ.

Consequently, the coordinates {ui(ρ)}m
i=1 of ûm

ε must verify the following system:





−1
ρ

∂

∂ρ

(
ρ
∂ui(ρ)

∂ρ

)
+

λi

ρ2
ui(ρ)

=
∫ 2π

0
fwi(θ) dθ = f̂i(ρ), ε < ρ < a, i = 1, . . . , m

ui(a) = 0, i = 1, . . . , m

ui(ε) = 0, i = 2, . . . ,m

∂u1

∂ρ
(ε) = 0.

(2.31)



34 The factorization method in a circular domain

Once again we are going to embed the problem (in this case the approximated problem

(2.28)) in a family of problems depending on hm and s. For all s ∈ [ε, a) we consider the finite

dimension approximation defined on Ω̂\Ω̂s = (s, a)×(0, 2π) and, for each problem, we impose

the boundary condition
∂ûm

s

∂ρ
(s) = hm. We define Ûm

s =
{

v ∈ H1
ρ (s, a;V m) : v|Γa

= 0
}

and

denote by βm
s , γm

s ∈ Ûm
s , respectively, the part of ûm

s independent on hm and linearly de-

pendent on hm, that is, we define the finite dimension operator Pm(s) by γm
s (s) = Pm(s)hm

and fix Pm(a) = 0; we also define rm(s) = βm
s (s) and fix rm(a) = 0.

As before, for every s ∈ [ε, a], Pm(s) : V m → V m (on which we consider in the first set

the norm of
(
H

1/2
ρ,P (0, 2π)

)′
and in the second one the norm of H

1/2
ρ,P (0, 2π)) and is a linear

operator and rm(s) ∈ V m. Then we have

ûm
s|Γs

= Pm(s)
∂ûm

s

∂ρ
|Γs + rm(s),∀s ∈ [ε, a]. (2.32)

Furthermore, the solution ûm
ε of (2.28) is given by

ûm
ε (ρ, θ) = (Pm(ρ)

∂ûm
ε

∂ρ
|Γρ)(θ) + (rm(ρ))(θ). (2.33)

From the last equality we can easily derive the following system:





∂Pm

∂ρ
− 1

ρ2
Pm ∂2

∂θ2
Pm − 1

ρ
Pm − I = 0, Pm(a) = 0

−Pmfm − Pm 1
ρ2

∂2rm

∂θ2
+

∂rm

∂ρ
= 0, rm(a) = 0

Pm ∂ûm
ε

∂ρ
− ûm

ε = −rm, ûm
ε (ε) = rm(ε)|N ,

(2.34)

where fm =
m∑

i=1

f̂i(ρ)wi(θ). In fact, from (2.33), taking the formal derivative with respect

to ρ, we obtain

∂um
ε

∂ρ
=

∂Pm

∂ρ

∂um
ε

∂ρ
+ Pm ∂2um

ε

∂ρ2
+

∂rm

∂ρ

⇒
∫ 2π

0

∂um
ε

∂ρ
wj dθ =

∫ 2π

0

∂Pm

∂ρ

∂um
ε

∂ρ
wj dθ +

∫ 2π

0

∂2um
ε

∂ρ2
Pmwj dθ +

∫ 2π

0

∂rm

∂ρ
wj dθ.
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Since

∫ 2π

0

∂2um
ε

∂ρ2
Pmwj dθ

=
∫ 2π

0

m∑

i=1

(
1
ρ2

λiui(ρ)wi(θ)− 1
ρ

∂ui

∂ρ
(ρ)wi(θ)− wi(θ)

∫ 2π

0
fwi(θ) dθ

)
Pmwj dθ

=
∫ 2π

0

m∑

i=1

(
1
ρ2

λiui(ρ)wi(θ)
)

Pmwj dθ −
∫ 2π

0

m∑

i=1

(
1
ρ

∂ui

∂ρ
(ρ)wi(θ)

)
Pmwj dθ

−
∫ 2π

0

m∑

i=1

(
wi(θ)

∫ 2π

0
fwi(θ) dθ

)
Pmwj dθ

= −
∫ 2π

0

m∑

i=1

1
ρ2

ui(ρ)
∂2wi(θ)

∂θ2
Pmwj dθ −

∫ 2π

0

1
ρ

∂um
ε

∂ρ
Pmwj dθ

−
∫ 2π

0
fmPmwj dθ

= −
∫ 2π

0

1
ρ2

∂2um
ε

∂θ2
Pmwj dθ −

∫ 2π

0

1
ρ

∂um
ε

∂ρ
Pmwj dθ −

∫ 2π

0
fmPmwj dθ

= −
∫ 2π

0

1
ρ2

∂2

∂θ2

(
Pm ∂um

ε

∂ρ
+ rm

)
Pmwj dθ −

∫ 2π

0

1
ρ

∂um
ε

∂ρ
Pmwj dθ

−
∫ 2π

0
fmPmwj dθ

= −
∫ 2π

0

1
ρ2

∂2

∂θ2
Pm ∂um

ε

∂ρ
Pmwj dθ −

∫ 2π

0

1
ρ2

∂2

∂θ2
rmPmwj dθ

−
∫ 2π

0

1
ρ

∂um
ε

∂ρ
Pmwj dθ −

∫ 2π

0
fmPmwj dθ,

we obtain

∫ 2π

0

∂um
ε

∂ρ
wj dθ

=
∫ 2π

0

∂Pm

∂ρ

∂um
ε

∂ρ
wj dθ −

∫ 2π

0

1
ρ2

∂2

∂θ2
Pm ∂um

ε

∂ρ
Pmwj dθ −

∫ 2π

0

1
ρ2

∂2

∂θ2
rmPmwj dθ

−
∫ 2π

0

1
ρ

∂um
ε

∂ρ
Pmwj dθ −

∫ 2π

0
fmPmwj dθ +

∫ 2π

0

∂rm

∂ρ
wj dθ.

Now, from the equality

∫ 2π

0

∂um
ε

∂ρ
wj dθ

=
∫ 2π

0

(
∂Pm

∂ρ

∂um
ε

∂ρ
−Pm 1

ρ2

∂2

∂θ2
Pm ∂um

ε

∂ρ
−Pm 1

ρ2

∂2

∂θ2
rm−Pm 1

ρ

∂um
ε

∂ρ
−Pmfm+

∂rm

∂ρ

)
wjdθ

follows the desired result, as in (2.15), since ∂um
ε

∂ρ is arbitrary.

The fact that
∂um

ε

∂ρ
|Γρ is arbitrary can be easily achieved through the following observa-

tion:
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Remark 2.4.1. Using the equation on ui(ρ) (with f = 0) of (2.31), we consider the system




ρ2 u′′i (ρ) + ρ u′i(ρ)− λi ui(ρ) = 0

u′i(s) = hi

ui(a) = 0

which has a solution of the form ui(ρ) = c1ρ
√

λi + c2ρ
−√λi. On determining the constants c1

and c2 we find ui(ρ) = hi
s√
λi




(ρ
a

)√λi −
(

a
ρ

)√λi

(
s
a

)√λi +
(

a
s

)√λi


 and u′i(ρ) = hi

s

ρ




(ρ
a

)√λi +
(

a
ρ

)√λi

(
s
a

)√λi +
(

a
s

)√λi


,

which means that, being hi arbitrary, u′i(ρ) is also arbitrary.

From now on, we will denote by Λ the diagonal matrix formed by the eigenvalues λi, i =

1, . . . , m. To go further we need to discuss the existence and uniqueness of a local solution

for the system (2.34):

Proposition 2.4.2. The system




∂Pm

∂ρ
=

1
ρ2

PmΛPm +
1
ρ
Pm + I, Pm(a) = 0

∂rm

∂ρ
+

(
−Pm 1

ρ2
Λ

)
rm = Pmfm, rm(a) = 0

has a unique local solution in [a− α, a], for a certain α > 0. Moreover, Pm ∈ C1([a− α, a];

L(V m, V m)) and rm ∈ H1((a− α, a);V m).

Proof. The function F (Pm, ρ) =
1
ρ2

PmΛPm +
1
ρ
Pm + I is bounded on the rectangle |ρ−

a| ≤ b1, ‖Pm‖ ≤ b2, with b1 = a−ε and for any fixed constant b2. Let M = max ‖F (Pm, ρ)‖
on this rectangle. Further,

‖F (Pm
1 , ρ)− F (Pm

2 , ρ)‖
=

∥∥∥∥
1
ρ2

Pm
1 ΛPm

1 +
1
ρ
Pm

1 − 1
ρ2

Pm
2 ΛPm

2 − 1
ρ
Pm

2

∥∥∥∥

=
∥∥∥∥

1
ρ2

Pm
1 ΛPm

1 − 1
ρ2

Pm
1 ΛPm

2 +
1
ρ2

Pm
1 ΛPm

2 − 1
ρ2

Pm
2 ΛPm

2 +
1
ρ
Pm

1 − 1
ρ
Pm

2

∥∥∥∥

=
∥∥∥∥

1
ρ2

Pm
1 Λ (Pm

1 − Pm
2 ) + (Pm

1 − Pm
2 )

1
ρ2

ΛPm
2 +

1
ρ

(Pm
1 − Pm

2 )
∥∥∥∥

≤
(

1
ρ2
‖Pm

1 ‖‖Λ‖+
1
ρ2
‖Λ‖‖Pm

2 ‖+
1
ρ

)
‖Pm

1 − Pm
2 ‖

≤
(

2 b2

ε2
‖Λ‖+

1
ε

)
‖Pm

1 − Pm
2 ‖
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and since the constant
2 b2

ε2
‖Λ‖+

1
ε

is independent of ρ, the function F (Pm, ρ) is uniformly

Lipschitzian (with respect to Pm) on the rectangle. Also,
1
ρ2

PmΛPm +
1
ρ
Pm + I, as a

function of Pm and ρ, is continuous.

Therefore, from the theory of ordinary differential equations (see Theorem 2.3 of [10],

page 10), there exists a unique local solution Pm to




∂Pm

∂ρ
=

1
ρ2

PmΛPm +
1
ρ
Pm + I

Pm(a) = 0
(2.35)

on |ρ − a| ≤ α, α = min
(

a− ε,
b2

M

)
. Moreover, Pm is C1 from [a − α, a], with values in

L(V m, V m).

Thus, since −Pm 1
ρ2

Λ and Pmfm are continuous (again, as functions of Pm), from the

theory of nonhomogeneous linear systems, there exists also a unique local solution rm to




∂rm

∂ρ
+

(
−Pm 1

ρ2
Λ

)
rm = Pmfm

rm(a) = 0

in [a− α, a]. Moreover, rm ∈ H1(a− α, a; V m).

Since in the equation
∂Pm

∂ρ
=

1
ρ2

PmΛPm +
1
ρ
Pm + I (2.36)

the matrices Λ and I are diagonal, is natural that this equation has a diagonal solution. We

are going to suppose that this is the case. Then, denoting by pi the i× i - component of the

Pm matrix, we conclude that the coordinates of Pm must satisfy, for i ≥ 1, the equation

∂pi

∂ρ
(ρ) + p2

i (ρ)
1
ρ2

λi − pi(ρ)
ρ

− 1 = 0, (2.37)

with pi(a) = 0, i ≥ 1. Then, for i ≥ 2, taking
pi

ρ
= qi, we obtain

∂qi

∂ρ
ρ + q2

i λi − 1 = 0, qi(a) = 0

and, making the change of variables ϕ = log ρ, follows

∂qi

∂ϕ
+ (qi)

2 λi − 1 = 0, qi(log(a)) = 0.
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One can show, using the method of separable variables, that this last equation has the

solution

qi(ϕ) = − 1√
λi

a2
√

λie−2
√

λiϕ − 1
a2
√

λie−2
√

λiϕ + 1
. (2.38)

Consequently,

qi(ρ) = − 1√
λi

(
a

ρ

)2
√

λi

− 1

(
a

ρ

)2
√

λi

+ 1

and

pi(ρ) = − ρ√
λi




(
a

ρ

)√λi

−
(ρ

a

)√λi

(
a

ρ

)√λi

+
(ρ

a

)√λi


 . (2.39)

For i = 1, the equation (2.37) simply becomes
∂p1

∂ρ
− p1

ρ
= 1, since λ1 = 0. Taking

q1 =
p1

ρ
we obtain

∂q1

∂ρ
ρ = 1, which can be integrated as an equation of separable variables,

obtaining q1 = log ρ + c, where c is an arbitrary constant. Then, p1 = ρ log ρ + cρ and since

p1(a) = 0 we can determine c (as − log a) and conclude that

p1(ρ) = ρ log
(ρ

a

)
. (2.40)

It is now easy to see that the diagonal matrix formed by this (pi(ρ)), i ≥ 1 is in fact a

solution of the equation (2.36). Since we have seen, in Proposition 2.4.2, that (2.35) has a

unique local solution, we can therefore conclude that we have found that solution, at least

on the interval [a− α, a]. Furthermore, taking ‖P‖ =
m∑

i=1

|pi| we have

‖P‖ <
∣∣∣ρ log

(ρ

a

)∣∣∣ +
m∑

i=2

ρ√
λi

<
a

e
+

(m− 1) a√
λ2

= b′2, ∀ρ ∈ [a− α, a]. (2.41)

Next, we present a very important result on the operator Pm:

Proposition 2.4.3. The system (2.35) has a unique global solution on (ε, a).

Proof. With the previous reasoning we have presented an explicit solution of the equation

(2.35), defined on the interval (ε, a). Nevertheless, we must prove that this solution is unique.
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We already know that we have local uniqueness on |ρ − a| ≤ α, α = min
(

a− ε,
b2

M

)
,

where M = max |F (Pm, ρ)|, on the rectangle |ρ − a| ≤ a − ε, ‖Pm‖ ≤ b2. If α < a − ε, we

know by (2.41) that ‖Pm(α)‖ ≤ b′2. We can repeat the reasoning of the proof of Proposition

2.4.2 for the rectangle |ρ − (a − α)| < a − α − ε, ‖Pm − Pm(α)‖ ≤ b′2 and get M ′ =

max ‖F (Pm, ρ)‖ ≤ 4
ε2

(b′2)
2‖Λ‖+

2
ε

b′2 + 1. Then, α1 = min(a− α− ε,
b′2
M ′ ). By Proposition

2.4.2 we have a unique solution of (2.35) in [a−α−α1, a−α]. We remark that we can repeat

the process, with the same constants, as many times as we need and so, we have a unique

solution of (2.35) in [ε, a].

In the justification presented above, it is also possible to present a Lipschitz constant

which is independent of ε. In fact, with
P

ρ
= Q, we obtain (remark that Pm and Λ are

diagonal)

∂Pm

∂ρ
− 1

ρ2
PmΛPm − 1

ρ
Pm − I =

∂Pm

∂ρ
− 1

ρ2
Λ(Pm)2 − 1

ρ
Pm − I = 0

⇒ ρ
∂Qm

∂ρ
− Λ(Qm)2 − I = 0,

and using the change of variables ϕ = log ρ, we get
∂Qm

∂ϕ
= Λ(Qm)2 + I. Thus, with

G(Qm, ϕ) = Λ(Qm)2 + I, ϕ ∈ (−∞, log a], we obtain

‖G(Qm
1 , ϕ)−G(Qm

2 , ϕ)‖ = ‖Λ(Qm
1 )2 − Λ(Qm

2 )2‖
= ‖Λ‖‖Qm

1 + Qm
2 ‖‖Qm

1 −Qm
2 ‖.

From (2.38) we have |qi(ϕ)| <
1√
λi

, for i ≥ 2. Also, we see easily that q1(ϕ) = ϕ − log a.

Thus, ‖Qm‖ =
m∑

i=1

|qi| < 2 log a +
m∑

i=2

1√
λi

and

‖Λ‖‖Qm
1 + Qm

2 ‖ <

(
m∑

i=1

λi

)(
4 log a + 2

m∑

i=2

1√
λi

)
,

which is constant, since m is finite. Then,

‖F (Pm
1 , ρ)− F (Pm

2 , ρ)‖ = ‖G(Qm
1 , ϕ)−G(Qm

2 , ϕ)‖ < c‖Qm
1 −Qm

2 ‖, ∀ρ ∈ (0, a].

2.5. On the definition of ûm(0)

From the equation ûm
ε (ε) = Pm(ε)

∂ûm
ε

∂ρ
(ε) + rm(ε), using (2.30) and the initial conditions

on (2.31), we obtain
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ûm
ε (ε, θ) =

m∑

i=1

ui(ε)wi(θ) = u1(ε)w1(θ)

=
(

Pm(ε)
∂u1

∂ρ
(ε) + r1(ε)

)
w1(θ)

= r1(ε)w1(θ) =
1√
2π

r1(ε),

(2.42)

since Pm 0 = 0 (Pm is linear).

This way, to determine the constant ûm
ε (ε) we must compute (as seen, for infinite dimen-

sion, in the end of Section 2.2.) the value of r1(ε). From (2.31) and analogously to what has

been done in infinite dimension, knowing that ûm
ε = βm + γm, the coordinates of βm verify,

for ε < ρ < a and i = 1, . . . , m





−1
ρ

∂

∂ρ

(
ρ
∂βi(ρ)

∂ρ

)
+

λi

ρ2
βi(ρ)

=
∫ 2π

0
f̂wi(θ) dθ = f̂i(ρ), ε < ρ < a, i = 1, . . . , m

βi(a) = 0, i = 1, . . . , m

∂βi

∂ρ
(ε) = 0, i = 1, . . . , m.

(2.43)

Consequently, for i = 1, we have successively:

∂

∂ρ

(
ρ
∂β1

∂ρ

)
= −ρf̂1(ρ)

⇒
∫ t

ε

∂

∂ρ

(
ρ
∂β1

∂ρ

)
dρ = −

∫ t

ε
ρf̂1(ρ) dρ

⇒ ρ
∂β1

∂ρ

]t

ε

= −
∫ t

ε
ρf̂1(ρ) dρ

⇒ ∂β1

∂t
(t) = −1

t

∫ t

ε
ρf̂1(ρ) dρ

⇒
∫ a

ε

∂β1

∂t
(t)dt = −

∫ a

ε

1
t

∫ t

ε
ρf̂1(ρ) dρ dt

⇒ β1(t)]
a
ε = −

∫ a

ε

1
t

∫ t

ε
ρf̂1(ρ) dρ dt

⇒ r1(ε) =
∫ a

ε

1
t

∫ t

ε
ρf̂1(ρ) dρ dt (using the notation r(s) = βs|Γs

).

Using this fact, we can obtain the value of the constant ûm
ε (0):
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Proposition 2.5.1. Let f̂1(ρ) be a bounded function on (0, a). Then, we have lim
ε→0

ûm
ε (ε) =

1√
2π

∫ a

0

1
t

∫ t

0
ρf̂1(ρ) dρ dt.

Proof. Considering r1(ε) =
∫ a

ε

1
t

∫ t

ε
ρf̂1(ρ) dρdt, if there exists a positive constant c,

such that |f̂1(ρ)| < c, then
∫ t

ε
ρ|f̂1(ρ)|dρ <

∫ t

ε
ρ c dρ = c

(
t2

2
− ε2

2

)
< c

t2

2
.

Consequently,
1
t

∫ t

ε
ρ|f̂1(ρ)|dρ < c

1
t

t2

2
= c

t

2
< c

a

2
.

Therefore, lim
ε→0

r1(ε) = lim
ε→0

∫ a

ε

1
t

∫ t

ε
ρf̂1(ρ) dρdt and from (2.42) we can conclude that

lim
ε→0

ûm
ε (ε)=

1√
2π

lim
ε→0

r1(ε)
(

=
1√
2π

lim
ε→0

u1(ε)
)

=
1√
2π

∫ a

0

1
t

∫ t

0
ρf̂1(ρ) dρdt. (2.44)

In what follows, we are going to consider a function f ∈ C0,α(Ω) and consequently (see

Proposition 9, page 291 of [11]) the solutions u of the equation −∆u = f , on Ω, are of

classe C2,α(Ω). We recall that a function f ∈ Cm,α(Ω) is a function of class Cm(Ω) whose

derivatives of order m are Holder functions of order α (0 < α < 1) on every compact subset

K of Ω (that is, verifying the following property: there exists a constant cK such that

|f(x)− f(y)| ≤ cK |x− y|α,∀x, y ∈ K).

Lemma 2.5.2. If v ∈ C(Ω) then v̂ ∈ C(Ω̂ ∪ {{0} × [0, 2π]}), with v̂(0, θ) constant, for

0 ≤ θ ≤ 2π .

Proof. Obviously, if v ∈ C(Ω \ {(0, 0)}) then v̂ ∈ C(Ω̂) (see [25]). Therefore, we only

need to prove that, if v is also a continuous function on (0, 0), then v̂ is still a continuous

function when we consider the points {(0, θ), θ ∈ [0, 2π]}.

We know that the function v(x, y) converges to the limit b when (x, y) converges to

(0, 0) if and only if v̂ verifies the following condition: for all δ > 0, there exists ε > 0
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such that the inequality |v̂(ρ, θ) − b| < δ is verified whenever 0 < ρ < ε (independently

of the value of θ). Then, since v ∈ C(Ω), in fact we have b = v(0, 0) and consequently,

for all δ > 0 exists ε > 0 such that 0 < ρ < ε ⇒ |v̂(ρ, θ) − v(0, 0)| < δ, independently

of θ, which means that lim
ρ→0

v̂(ρ, θ) = v(0, 0), independently of θ. Therefore the function

v̂ =





v̂(ρ, θ), ρ 6= 0, θ ∈ [0, 2π]

v(0, 0), ρ = 0, θ ∈ [0, 2π]

(still denoted by v̂) is a continuous function on Ω̂ ∪ {{0} × [0, 2π]} = [0, a]× [0, 2π].

The next Lemma, that we present only in a finite dimension context, is also valid for

infinite dimension.

Lemma 2.5.3. For all v̂(ρ, θ) =
m∑

i=1

vi(ρ)wi(θ) ∈ C([0, a] × [0, 2π]), we have vi(ρ) ∈

C([0, a]).

Proof. For each ρ ∈ [0, a], (v̂(ρ, θ), wi(θ))L2(0,2π) = vi(ρ). Then, for each ρ1, ρ2 ∈ [0, a],

we obtain

|vi(ρ1)− vi(ρ2)| = | (v̂(ρ1, θ)− v̂(ρ2, θ), wi(θ))L2(0,2π) |
≤ ‖v̂(ρ1, θ)− v̂(ρ2, θ)‖L2(0,2π)‖wi(θ)‖L2(0,2π)

=
(∫ 2π

0
|v̂(ρ1, θ)− v̂(ρ2, θ)|2 dθ

)1/2

.

Since v̂(ρ, θ) is continuous in [0, a]× [0, 2π], then v̂(ρ) is continuous in [0, a] (notice that

every continuous function f : IRn → IR is separately continuous with regard to each one of

its variables, since its components are the result of the composition of f with a continuous

application of the type t → (a1, . . . , ai−1, t, ai+1, . . . , am)) and consequently ([0, a] is closed

and bounded) is uniformly continuous in [0, a]. Then, ∀ δ > 0, ∃ ε > 0 : ∀ρ1, ρ2 ∈ [0, a]

|ρ1 − ρ2| < ε ⇒ |v̂(ρ1, θ)− v̂(ρ2, θ)| < δ√
2π

, ∀ θ ∈ [0, 2π]

⇒ |v̂(ρ1, θ)− v̂(ρ2, θ)|2 <
δ2

2π

⇒
(∫ 2π

0
|v̂(ρ1, θ)− v̂(ρ2, θ)|2 dθ

) 1
2

≤
(∫ 2π

0

δ2

2π
dθ

) 1
2

= δ.

Consequently, |ρ1 − ρ2| < ε ⇒ |vi(ρ1) − vi(ρ2)| < δ and vi are continuous functions on

[0, a].
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We are now in the position of affirming that the constant ûm
ε (0) computed in Proposition

2.5.1 is in fact the searched value ûm(0):

Proposition 2.5.4. Let, in (2.29), f ∈ C0,α(Ω). Under this hypothesis, we have

lim
ε→0

ûm
ε (ε) = u1(0) = ûm(0).

Proof. Denoting by u0
i (respectively, v0

i ) the coordinates of ûm (respectively, v̂m), and

substituting the equalities

ûm(ρ, θ) =
m∑

1

u0
i (ρ)wi(θ), v̂m(ρ, θ) =

m∑

1

v0
i (ρ)wi(θ) (2.45)

in (2.29), we obtain, by similar computations to those performed to achieve (2.31) (here we

integrate in [0, a] instead of [ε, a]), that the coordinates {u0
i (ρ)}m

i=1 of ûm must verify

−∂2u0
i

∂ρ2
(ρ)− 1

ρ

∂u0
i

∂ρ
(ρ) +

λi

ρ2
u0

i (ρ) = f̂i(ρ), 0 < ρ < a, i = 1, . . . , m

and also u0
i (a) = 0, i = 1, . . . , m.

Then, for i ≥ 2, we have

−ρ2 ∂2u0
i

∂ρ2
(ρ)− ρ

∂u0
i

∂ρ
(ρ) + λi u

0
i (ρ) = ρ2 f̂i(ρ).

Since we took f ∈ C0,α(Ω), then u ∈ C2,α(Ω) and, in particular, we have f ∈ C(Ω)

and u ∈ C2(Ω). According to Lemma 2.5.2 and Lemma 2.5.3 (in the finite dimensional

particular case) we can therefore conclude that u0
i and f̂i are continuous functions on [0, a].

Since
∂û

∂ρ
=

∂u

∂x
cos(θ) +

∂u

∂y
sin(θ) and

∂u

∂x
,
∂u

∂y
∈ C1(Ω), we have

∂û

∂ρ
∈ C1(Ω̂). Further,

since
∂û

∂ρ
(0, θ) =

∂u

∂x
(0, 0) cos(θ) +

∂u

∂y
(0, 0) sin(θ) and we have assumed enough regularity

around the origin, we also have
∂û

∂ρ
∈ C(Ω̂ ∪ {{0} × [0, 2π]}) = C([0, a]× [0, 2π]) and conse-

quently, by Lemma 2.5.3,
∂u0

i

∂ρ
is a continuous functions on [0, a]. In the same way, we have

∂2û

∂ρ2
= cos2(θ)

∂2u

∂x2
+ 2 cos(θ) sin(θ)

∂2u

∂x∂y
+ sin2(θ)

∂2u

∂y2
(whence in particular

∂2û

∂ρ2
(0, θ) =

cos2(θ)
∂2u

∂x2
(0, 0)+2 cos(θ) sin(θ)

∂2u

∂x∂y
(0, 0)+sin2(θ)

∂2u

∂y2
(0, 0)) and

∂2u

∂x2
,

∂2u

∂x∂y
,
∂2u

∂y2
∈ C(Ω),

from which we conclude that
∂2û

∂ρ2
∈ C(Ω̂ ∪ {{0} × [0, 2π]}) = C([0, a] × [0, 2π]) and conse-

quently, again by Lemma 2.5.3,
∂2u0

i

∂ρ2
is a continuous functions on [0, a].
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Therefore,

lim
ρ→0

−ρ2 ∂2u0
i

∂ρ2
(ρ)− ρ

∂u0
i

∂ρ
(ρ) + λi u

0
i (ρ) = lim

ρ→0
ρ2 f̂i(ρ)

⇒ λi u
0
i (0) = 0 ⇒ u0

i (0) = 0.

For i = 1, we proceed like just after (2.43) and obtain u0
1(0) =

∫ a

0

1
t

∫ t

0
ρ f̂1(ρ) dρ dt.

Then, ûm(0) = u0
1(0) =

∫ a

0

1
t

∫ t

0
ρ f̂1(ρ) dρ dt and from (2.44) we can therefore conclude

that lim
ε→0

ûm
ε (ε) = ûm(0).

2.6. Global nature of Pm and rm: some estimates

In order to establish the global nature of Pm and rm, solutions of the system (2.34), we need

to develop some estimates on Pm(s) and rm(s), independently of s . Naturally, we are going

to use the norms defined previously, in the particular case of finite dimension.

Lemma 2.6.1. For all ξ ∈ H1
ρ (s, a) such that ξ(a) = 0, we have

∫ a

s

s2

ρ
ξ2(ρ) dρ ≤ 4 a2

∫ a

s
ρ

(
∂ξ

∂ρ
(ρ)

)2

dρ.

Proof. Since

ξ2(ρ) = −2
∫ a

ρ
ξ(t)

∂ξ

∂t
(t) dt

we have, for s ≤ ρ ≤ a,

1
ρ
ξ2(ρ) ≤ 2

ρ

∣∣∣∣
∫ a

ρ
ξ(t)

∂ξ

∂t
(t) dt

∣∣∣∣

≤ 2
ρ

(∫ a

ρ

1
t
ξ2(t) dt

)1/2
(∫ a

ρ
t

(
∂ξ

∂t
(t)

)2

dt

)1/2

≤ 2
s

(∫ a

s

1
t
ξ2(t) dt

)1/2
(∫ a

s
t

(
∂ξ

∂t
(t)

)2

dt

)1/2

,
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consequently,

∫ a

s

1
ρ
ξ2(ρ) dρ ≤

∫ a

s


2

s

(∫ a

s

1
t
ξ2(t) dt

)1/2
(∫ a

s
t

(
∂ξ

∂t
(t)

)2

dt

)1/2

 dρ

=
(∫ a

s

1
t
ξ2(t) dt

)1/2
(∫ a

s
t

(
∂ξ

∂t
(t)

)2

dt

)1/2 ∫ a

s

2
s

dρ

=
(∫ a

s

1
t
ξ2(t) dt

)1/2
(∫ a

s
t

(
∂ξ

∂t
(t)

)2

dt

)1/2
2(a− s)

s

≤
(∫ a

s

1
t
ξ2(t) dt

)1/2
(∫ a

s
t

(
∂ξ

∂t
(t)

)2

dt

)1/2
2 a

s
,

so,
(∫ a

s

1
ρ
ξ2(ρ) dρ

)1/2

≤
(∫ a

s
ρ

(
∂ξ

∂ρ
(ρ)

)2

dρ

)1/2
2 a

s

⇒
∫ a

s

1
ρ
ξ2(ρ) dρ ≤ 4 a2

s2

∫ a

s
ρ

(
∂ξ

∂ρ
(ρ)

)2

dρ

⇒
∫ a

s

s2

ρ
ξ2(ρ) dρ ≤ 4 a2

∫ a

s
ρ

(
∂ξ

∂ρ
(ρ)

)2

dρ.

It follows a “trace theorem”, which is valid both for the functions γm
s and βm

s :

Theorem 2.6.2. For all ρ ∈ [s, a) (s ∈ [ε, a]), there exists k > 0 (independent of ρ) such

that

√
ρ‖ξm(ρ)‖

H
1/2
ρ,P (0,2π)

≤ k‖ξm‖ bHs
,

for all ξm ∈ Ĥs verifying ξm(a) = 0.

Proof. Since

ξ2
i (ρ) = −2

∫ a

ρ
ξi(t)

∂ξi

∂t
(t) dt (2.46)

we have
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√
λiξ

2
i (ρ) = 2

√
λi

∣∣∣∣
∫ a

ρ
ξi(t)

∂ξi

∂t
(t) dt

∣∣∣∣

≤ 2
(∫ a

ρ

λi

t
ξ2
i dt

)1/2
(∫ a

ρ
t

(
∂ξi

∂t

)2

dt

)1/2

≤ 2
(∫ a

s

λi

ρ
ξ2
i dρ

)1/2
(∫ a

s
ρ

(
∂ξi

∂ρ

)2

dρ

)1/2

≤
∫ a

s

λi

ρ
ξ2
i dρ +

∫ a

s
ρ

(
∂ξi

∂ρ

)2

dρ.

(2.47)

Adding up from 2 to m, we obtain:

m∑

2

√
λiξ

2
i (ρ) ≤

m∑

2

∫ a

s

λi

ρ
ξ2
i dρ +

m∑

2

∫ a

s
ρ

(
∂ξi

∂ρ

)2

dρ. (2.48)

On the other hand, using Lemma 2.6.1,

ρξ2
1(ρ) ≤ 2ρ

∣∣∣∣
∫ a

ρ
ξ1(t)

∂ξ1

∂t
(t) dt

∣∣∣∣

≤
∫ a

ρ

ρ2

t
ξ2
1 dt +

∫ a

ρ
t

(
∂ξ1

∂t

)2

dt

≤ (4 a2 + 1)
∫ a

ρ
t

(
∂ξ1

∂t

)2

dt

≤ k2

∫ a

s
ρ

(
∂ξ1

∂ρ

)2

dρ.

(2.49)

Therefore, from (2.48) and (2.49) we obtain

ρξ2
1(ρ) +

m∑

2

√
λiξ

2
i (ρ)

≤ k2

∫ a

s
ρ

(
∂ξ1

∂ρ

)2

dρ +
m∑

2

∫ a

s

λi

ρ
ξ2
i dρ +

m∑

2

∫ a

s
ρ

(
∂ξi

∂ρ

)2

dρ

≤ k2

(
m∑

2

∫ a

s

λi

ρ
ξ2
i dρ +

m∑

1

∫ a

s
ρ

(
∂ξi

∂ρ

)2

dρ

)
.

Consequently,

ρ

(
ξ2
1(ρ) +

m∑

2

√
λi

ρ
ξ2
i (ρ)

)
= ρξ2

1(ρ) +
m∑

2

√
λiξ

2
i (ρ)

≤ k2

(
m∑

2

∫ a

s

λi

ρ
ξ2
i (ρ) dρ +

m∑

1

∫ a

s
ρ

(
∂ξi

∂ρ
(ρ)

)2

dρ

)
.
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The constant k =
√

4 a2 + 1 does not depend on ρ.

From (2.31) and similarly as done to achieve (2.43), we conclude that the coordinates of

the state equation verify, for s < ρ < a and i = 1, . . . ,m




−1
ρ

∂

∂ρ

(
ρ
∂γi(ρ)

∂ρ

)
+

λi

ρ2
γi(ρ) = 0

γi(a) = 0

∂γi

∂ρ
(s) = hi.

(2.50)

From (2.31) and (2.43) we know that, in the particular case of s = ε, h must be such

that γi(ε) = −ri(ε), for i ≥ 2 and h1 = 0.

Proposition 2.6.3. For γm
s solution of (2.50), we have

‖γm
s ‖2

bHs
≤ s ‖γm

s (s)‖
H

1/2
s,P (0,2π)

‖hm‖�
H

1/2
s,P (0,2π)

�′ ,

for all s ∈ [ε, a].

Proof. From (2.50)

−
∫ a

s

∂2γi

∂ρ2
γiρ dρ +

∫ a

s

1
ρ2

λiγ
2
i ρ dρ−

∫ a

s

1
ρ

∂γi

∂ρ
γiρ dρ = 0

⇒ ∂γi

∂ρ
(s) γi(s) s +

∫ a

s

(
∂γi

∂ρ

)2

ρ dρ +
∫ a

s

1
ρ
λiγ

2
i dρ = 0

⇒ −
m∑

1

hi γi(s) s =
m∑

1

∫ a

s

(
∂γi

∂ρ

)2

ρ dρ +
m∑

1

∫ a

s

1
ρ
λiγ

2
i dρ = ‖γm

s ‖2
bHs

.

(2.51)

On the other hand,

−
m∑

1

hiγi(s) = −
(

h1γ1(s) +
m∑

2

√
s

4
√

λi
hi

4
√

λi√
s

γi(s)

)

≤
(

h2
1 +

m∑

2

s√
λi

h2
i

)1/2 (
γ2

1(s) +
m∑

2

√
λi

s
γ2

i (s)

)1/2

= ‖hm‖�
H

1/2
s,P (0,2π)

�′ ‖γm
s (s)‖

H
1/2
s,P (0,2π)

,

and we obtain

‖γm
s ‖2

bHs
≤ s ‖hm‖�

H
1/2
s,P (0,2π)

�′ ‖γm
s (s)‖

H
1/2
s,P (0,2π)

.
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The next Theorem, is now a direct consequence of Theorem 2.6.2 and Proposition 2.6.3:

Theorem 2.6.4. There exists k =
√

4a2 + 1 > 0 (independent of s) such that

‖γm
s (s)‖

H
1/2
s,P (0,2π)

≤ k ‖hm‖�
H

1/2
s,P (0,2π)

�′ . (2.52)

The above result tell us that the operator

Pm(s) :
(
H

1/2
s,P (0, 2π)

)′
−→ H

1/2
s,P (0, 2π)

hm −→ Pm(s)hm = γm
s (s)

is continuous and

‖Pm(s)‖ ≤ k, (2.53)

so the operator Pm is bounded by a constant which does not depend on s.

Theorem 2.6.5. There exists k =
√

4a2 + 1 > 0 (independent of s) such that

‖γm
s (s)‖

H
3/2
s,P (0,2π)

≤ k ‖hm‖
H

1/2
s,P (0,2π)

. (2.54)

Proof. This proof follows initially the same steps of Theorem 2.6.2. Multiplying (2.47)

by λi, for the particular case of ρ = s in the left-hand side, we obtain
m∑

2

λ
3/2
i γ2

i (s) ≤
m∑

2

∫ a

s

1
ρ
λ2

i γ
2
i (ρ) dρ +

m∑

2

∫ a

s
ρλi

(
∂γi

∂ρ
(ρ)

)2

dρ. (2.55)

Furthermore, through (2.49), we find

s3γ2
1(s) ≤

∫ a

s
s4 γ2

1(ρ)
ρ

dρ +
∫ a

s
s2ρ

(
∂γ1

∂ρ
(ρ)

)2

dρ.

Using Lemma 2.6.1 we have

s3γ2
1(s) ≤ c1

∫ a

s
s2ρ

(
∂γ1

∂ρ
(ρ)

)2

dρ,

with c1 = 4a2 + 1. Then,

s3‖γm
s (s)‖2

H
3/2
s,P (0,2π)

= s3γ2
1(s) +

m∑

2

λ
3/2
i γ2

i (s)

≤ c1

∫ a

s
s2ρ

(
∂γ1

∂ρ
(ρ)

)2

dρ +
m∑

2

∫ a

s

1
ρ
λ2

i γ
2
i (ρ) dρ +

m∑

2

∫ a

s
ρλi

(
∂γi

∂ρ
(ρ)

)2

dρ

≤ c1

(∫ a

s
s2ρ

(
∂γ1

∂ρ
(ρ)

)2

dρ+
m∑

2

∫ a

s

1
ρ
λ2

i γ
2
i (ρ) dρ+

m∑

2

∫ a

s
ρλi

(
∂γi

∂ρ
(ρ)

)2

dρ

)
.

(2.56)
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On the other hand, from (2.51), we have:

∫ a

s
λi

(
∂γi

∂ρ

)2

ρ dρ+
∫ a

s

1
ρ
λ2

i γ
2
i dρ = −λihi γi(s) s and

∫ a

s
s2

(
∂γ1

∂ρ

)2

ρ dρ = −h1 γ1(s) s3, (2.57)

for i ≥ 2 and i = 1, respectively.

Consequently

∫ a

s
s2

(
∂γ1

∂ρ

)2

ρ dρ +
m∑

2

∫ a

s
λi

(
∂γi

∂ρ

)2

ρ dρ +
m∑

2

∫ a

s

1
ρ
λ2

i γ
2
i dρ

= −h1 γ1(s) s3 −
m∑

2

λi hi γi(s) s

≤
∣∣∣∣∣h1 γ1(s) s3 +

m∑

2

λi hi γi(s) s

∣∣∣∣∣

= s3

∣∣∣∣∣h1 γ1(s) +
m∑

2

λ
3/4
i λ

1/4
i hi γi(s)

1
s3/2

1
s1/2

∣∣∣∣∣

≤ s3

(
h2

1 +
m∑

2

λ
1/2
i

s
h2

i

)1/2 (
γ2
1(s) +

m∑

2

λ
3/2
i

s3
γ2

i (s)

)1/2

= s3‖hm‖
H

1/2
s,P (0,2π)

‖γm
s (s)‖

H
3/2
s,P (0,2π)

.

From (2.56) we can therefore conclude that

s3‖γm
s (s)‖2

H
3/2
s,P (0,2π)

≤ c1s
3‖hm‖

H
1/2
s,P (0,2π)

‖γm
s (s)‖

H
3/2
s,P (0,2π)

⇒ ‖γm
s (s)‖

H
3/2
s,P (0,2π)

≤ c1‖hm‖
H

1/2
s,P (0,2π)

,

as required.

The following Corollary is a direct consequence (by interpolation) of Propositions 2.6.4

and 2.6.5:

Corollary 2.6.6. There exists k > 0 (independent of s) such that

‖γm
s (s)‖H1

s,P (0,2π) ≤ k ‖hm‖L2(0,2π). (2.58)

Proposition 2.6.7. There exists k > 0 (independent of s) such that

‖γm
s (s)‖L2(0,2π) ≤ k ‖hm‖(H1

s,P (0,2π))′ . (2.59)
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Proof. Using the same reasoning as to get (2.55) we can obtain

m∑

2

γ2
i (s) ≤

m∑

2

∫ a

s

√
λi

ρ
γ2

i dρ +
m∑

2

∫ a

s

1√
λi

ρ

(
∂γi

∂ρ

)2

dρ. (2.60)

On the other hand, dividing (2.51) by
√

λi, gives

m∑

2

∫ a

s

1√
λi

(
∂γi

∂ρ

)2

ρdρ +
m∑

2

∫ a

s

1
ρ

√
λiγ

2
i dρ = −

m∑

2

1√
λi

hiγi(s) s. (2.61)

So, from (2.60) and (2.61),

m∑

2

γ2
i (s) ≤ −

m∑

2

1√
λi

hiγi(s) s.

Further, as it was showed on the proof of Proposition 2.2.6 (or by solving (2.37)), for i = 1,

we have γ1(s) = h1s log
(s

a

)
. Then, γ2

1(s) = γ1(s)h1s log
(s

a

)
and since s < a we have

γ2
1(s) = |γ1(s)||h1|

(−s log
(

s
a

)) ≤ |γ1(s)||h1|a
e

< |γ1(s)||h1|a. Consequently,

m∑

1

γ2
i (s) ≤ −

m∑

2

1√
λi

hiγi(s) s + |γ1(s)||h1|a

≤ max{a, 1}
(

h2
1 +

m∑

2

s2

λi
h2

i

)1/2 (
m∑

1

γ2
i

)1/2

and

‖γm
s ‖2

L2(0,2π) ≤ a‖hm‖(H1
s,P (0,2π))′‖γm

s ‖L2(0,2π)

⇒ ‖γm
s ‖L2(0,2π) ≤ a‖hm‖(H1

s,P (0,2π))′ .

In the next Propositions we can find some estimations on the function βm
s .

In a similar way to (2.43), we can deduce that the coordinates of βm
s verify, for s < ρ < a

and i = 1, . . . , m: 



−1
ρ

∂

∂ρ

(
ρ
∂βi(ρ)

∂ρ

)
+

λi

ρ2
βi(ρ)

=
∫ 2π

0
f̂wi(θ) dθ, s < ρ < a, i = 1, . . . , m

βi(a) = 0, i = 1, . . . , m

∂βi

∂ρ
(s) = 0, i = 1, . . . , m.

(2.62)
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Proposition 2.6.8. For all ρ ∈ (s, a), there exists c > 0 (independent of ρ) such that

‖βm
s ‖L2

ρ(s,a;H
1/2
ρ,P (0,2π))

≤ c.

Proof. From (2.62), we have

−
∫ a

s

∂2βi

∂ρ2
βiρ dρ−

∫ a

s

∂βi

∂ρ
βi dρ +

∫ a

s

λi

ρ
β2

i dρ =
∫ a

s

(∫ 2π

0
f̂wi(θ) dθ

)
βiρ dρ

⇒ −∂βi

∂ρ
βiρ

]a

s

+
∫ a

s

∂βi

∂ρ

(
∂βi

∂ρ
ρ + βi

)
dρ−

∫ a

s

∂βi

∂ρ
βi dρ +

∫ a

s

λi

ρ
β2

i dρ

=
∫ a

s

(∫ 2π

0
f̂wi(θ) dθ

)
βiρdρ

⇒
∫ a

s

(
∂βi

∂ρ

)2

ρ dρ +
∫ a

s

λi

ρ
β2

i dρ =
∫ a

s

(∫ 2π

0
f̂wi(θ) dθ

)
βiρdρ

⇒
m∑

1

(∫ a

s

(
∂βi

∂ρ

)2

ρdρ +
∫ a

s

λi

ρ
β2

i dρ

)
=

m∑

1

∫ a

s

(∫ 2π

0
f̂wi(θ) dθ

)
βiρdρ

⇒ ‖βm
s ‖2

bHs
=

∫ a

s

∫ 2π

0
f̂

(
m∑

1

βiwi(θ)

)
ρdρ dθ =

∫ a

s

∫ 2π

0
f̂βm

s ρdρ dθ.

As ∫ a

s

∫ 2π

0
f̂βm

s ρ dρdθ ≤ ‖f̂‖L2
ρ(s,a;L2(0,2π))‖βm

s ‖L2
ρ(s,a;L2(0,2π))

≤ ‖f̂‖L2
ρ(0,a;L2(0,2π))‖βm

s ‖L2
ρ(s,a;H

1/2
ρ,P (0,2π))

,

we find

‖βm
s ‖2

bHs
≤ ‖f̂‖L2

ρ(0,a;L2(0,2π))‖βm
s ‖L2

ρ(s,a;H
1/2
ρ,P (0,2π))

(2.63)

and from Theorem 2.6.2, we obtain
∫ a

s
ρ‖βm

s (ρ)‖2

H
1/2
ρ,P (0,2π)

dρ ≤
∫ a

s
(4a2 + 1)‖f̂‖L2

ρ(0,a;L2(0,2π))‖βm
s ‖L2

ρ(s,a;H
1/2
ρ,P (0,2π))

dρ

⇒ ‖βm
s ‖2

L2
ρ(s,a;H

1/2
ρ,P (0,2π))

≤ (4a2 + 1) (a− s)‖f̂‖L2
ρ(0,a;L2(0,2π))‖βm

s ‖L2
ρ(s,a;H

1/2
ρ,P (0,2π))

⇒ ‖βm
s ‖L2

ρ(s,a;H
1/2
ρ,P (0,2π))

≤ (4a2 + 1) a ‖f̂‖L2
ρ(0,a;L2(0,2π)) = c.

From Theorem 2.6.2 and Proposition 2.6.8, we can also conclude that

ρ‖βm
s (ρ)‖2

H
1/2
ρ,P (0,2π)

≤ a ‖βm
s (ρ)‖2

H
1/2
ρ,P (0,2π)

≤ c1.

In the sequence of Propositions 2.4.2 and 2.4.3, and as a direct consequence of Proposi-

tions 2.6.4, 2.6.5, 2.6.8 and Corollary 2.6.6, we can now establish:
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Proposition 2.6.9. Pm, the global solution of (2.34), verifies Pm ∈ C1([ε, a];L(V m, V m));

consequently, rm is a global solution of (2.34) and rm ∈ H1(ε, a; V m).

2.7. Some more estimates

Lemma 2.7.1. There exists a continuous lifting from H
1/2
s,P (0, 2π) into Ĥs.

Proof. Let zm ∈ H
1/2
s,P (0, 2π), zm =

m∑

i=1

ziwi and let us consider, for i > 1

vi(ρ) = zi sϕ(λ1/2
i (ρ− s))

and

v1(ρ) = z1 sϕ(λ1/2
2 (ρ− s))

(notice that λ2 < λi, ∀i > 2), where ϕ ∈ D[0,b[([0, +∞[) (where DX(Y ) represents the C∞

functions with values in Y which have compact support in X) and b = λ
1/2
2 (a−s). Obviously

ϕ(b) = 0 and we impose ϕ(0) = 1. We then have

v1(s) = z1 sϕ(0) = z1 s;

vi(s) = zi sϕ(0) = zi s, ∀i > 1;

v1(a) = z1 sϕ(λ1/2
2 (a− s)) = z1 sϕ(b) = 0;

v2(a) = z2 sϕ(λ1/2
2 (a− s)) = z2 sϕ(b) = 0;

v3(a) = z3 sϕ(λ1/2
3 (a− s)) = z3 s 0 = 0.

Notice that λ
1/2
3 (a− s) > b, since λ3 > λ2. For the same reason,

vi(a) = 0, ∀i > 3.

For i = 1, we consider x = λ
1/2
2 (ρ − s). Consequently, we have dx = λ

1/2
2 dρ and

∂v1

∂ρ
(ρ) = z1 s

∂ϕ

∂x
λ

1/2
2 . In the same way, for i > 1, we consider x = λ

1/2
i (ρ − s). Then

dx = λ
1/2
i dρ and

∂vi

∂ρ
(ρ) = zi s

∂ϕ

∂x
λ

1/2
i . Then,
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‖vm
s ‖2

bHs
=

∫ a

s

m∑

2

λi

ρ
v2
i dρ +

∫ a

s

m∑

1

ρ

(
∂vi

∂ρ

)2

dρ

≤ 1
s

∫ a

s

m∑

2

λiv
2
i dρ + a

∫ a

s

(
∂v1

∂ρ

)2

dρ +
a2

s

∫ a

s

m∑

2

(
∂vi

∂ρ

)2

dρ.

Making the change of variables, we obtain

1
s

m∑

2

∫ λ
1/2
i (a−s)

0
λiz

2
i s2ϕ2λ

−1/2
i dx + a

∫ λ
1/2
2 (a−s)

0
z2
1s

2

(
∂ϕ

∂x

)2

λ2λ
−1/2
2 dx

+
a2

s

m∑

2

∫ λ
1/2
i (a−s)

0
z2
i s2

(
∂ϕ

∂x

)2

λiλ
−1/2
i dx

= s
m∑

2

√
λiz

2
i

∫ λ
1/2
i (a−s)

0
ϕ2 dx + a

√
λ2s

2z2
1

∫ b

0

(
∂ϕ

∂x

)2

dx

+a2s
m∑

2

√
λiz

2
i

∫ λ
1/2
i (a−s)

0

(
∂ϕ

∂x

)2

dx

≤ s

m∑

2

√
λiz

2
i

∫ +∞

0
ϕ2 dx

︸ ︷︷ ︸
c1

+a
√

λ2s
2z2

1

∫ b

0

(
∂ϕ

∂x

)2

dx

︸ ︷︷ ︸
c2

+a2s

m∑

2

√
λiz

2
i

∫ +∞

0

(
∂ϕ

∂x

)2

dx

︸ ︷︷ ︸
c2

≤ c s2

(
m∑

2

√
λi

s
z2
i + z2

1 + a2
m∑

2

√
λi

s
z2
i

)
(with c = max{c1, a

√
λ2 c2, c2})

≤ c s2 (a2 + 1)

(
m∑

2

√
λi

s
z2
i + z2

1

)
= c s2 (a2 + 1)‖zm‖2

H
1/2
s,P (0,2π)

.

We can therefore conclude that ‖vm
s ‖2

bHs
≤ k s2‖zm‖2

H
1/2
s,P (0,2π)

, with k = c (a2 + 1).

In the following Proposition, let H(∆, Ω̂\ Ω̂s) =
{

ξ ∈ H1(Ω̂ \ Ω̂s) : ∆ξ ∈ L2(Ω̂ \ Ω̂s)
}

be

provided with the norm ‖ξ‖
H(∆,bΩ\bΩs)

=
(
‖ξ‖2

H1(bΩ\bΩs)
+ ‖∆ξ|2

L2(bΩ\bΩs)

)1/2
, as in Lemma 1,

page 381 of [12].

Proposition 2.7.2. For ξm ∈ H(∆, Ω̂ \ Ω̂s) and zm ∈ H
1/2
s,P (0, 2π), there exists a constant

k > 0, independent of s, such that∣∣∣∣∣
m∑

i=1

−∂ξi

∂ρ
(s)zi

∣∣∣∣∣ ≤ ‖ξm‖
H(∆,bΩ\bΩs)

√
k‖zm‖

H
1/2
s,P (0,2π)

.
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Proof. Let ξm ∈ D(Ω̂ \ Ω̂s). For zm ∈ H
1/2
s,P (0, 2π) we put

l(zm) =
m∑

i=1

−∂ξi

∂ρ
(s)zi s.

According to Lemma 2.7.1, there exists vm
s ∈ Ĥs having zm for its trace and such that

‖vm
s ‖ bHs

≤
√

k s‖zm‖
H

1/2
s,P (0,2π)

. Then, using the properties of the Hilbert basis previously

defined and applying Green’s formula, we have

∫ a

s

∫ 2π

0

(
∂2ξm

∂ρ2
+

1
ρ2

∂2ξm

∂θ2
+

1
ρ

∂ξm

∂ρ

)
vm
s ρ dθ dρ

=
m∑

i,j=1

(∫ a

s
ρ
∂2ξi

∂ρ2
vj dρ

∫ 2π

0
wiwj dθ

)
+

m∑

i,j=1

(∫ a

s

1
ρ
ξivj dρ

∫ 2π

0

∂2wi

∂θ2
wj dθ

)

+
m∑

i,j=1

(∫ a

s

∂ξi

∂ρ
vj dρ

∫ 2π

0
wiwj dθ

)

=
m∑

i=1

(∫ a

s
ρ
∂2ξi

∂ρ2
vi dρ

)
+

m∑

i=1

(∫ a

s
−λi

ρ
ξivi dρ

)
+

m∑

i=1

(∫ a

s

∂ξi

∂ρ
vi dρ

)

=
m∑

i=1

(
∂ξi

∂ρ
(a)vi(a) a− ∂ξi

∂ρ
(s)vi(s) s

)
−

m∑

i=1

∫ a

s

∂ξi

∂ρ

∂vi

∂ρ
ρdρ

+
m∑

i=1

(∫ a

s
−λi

ρ
ξivi dρ

)
.

Consequently, since vi(a) = 0 and vi(s) = zi, we have:

m∑

i=1

(∫ a

s
ρ
∂2ξi

∂ρ2
vi dρ

)
+

m∑

i=1

(∫ a

s
−λi

ρ
ξivi dρ

)
+

m∑

i=1

(∫ a

s

∂ξi

∂ρ
vi dρ

)

=
m∑

i=1

(
−∂ξi

∂ρ
(s)zi s

)
−

m∑

i=1

∫ a

s

∂ξi

∂ρ

∂vi

∂ρ
ρdρ +

m∑

i=1

(∫ a

s
−λi

ρ
ξivi dρ

)
.

Therefore, using Schwartz’s inequality, we have

|l(zm)|

=

∣∣∣∣∣
m∑

i=1

∫ a

s

(
ρ
∂2ξi

∂ρ2
vi − λi

ρ
ξivi +

∂ξi

∂ρ
vi

)
dρ +

m∑

i=1

∫ a

s

(
∂ξi

∂ρ

∂vi

∂ρ
ρ +

λi

ρ
ξivi

)
dρ

∣∣∣∣∣

≤

∣∣∣∣∣∣∣∣∣

m∑

i=1

∫ a

s

(
∂2ξi

∂ρ2
− λi

ρ2
ξi +

1
ρ

∂ξi

∂ρ

)

︸ ︷︷ ︸
∆ξm

viρ dρ

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

m∑

i=1

∫ a

s

(
∂ξi

∂ρ

∂vi

∂ρ
+

λi

ρ2
ξivi

)

︸ ︷︷ ︸
∇ξm.∇v̂m

s

ρdρ

∣∣∣∣∣∣∣∣∣
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≤ ‖∆ξm‖L2
ρ(s,a;L2(0,2π))‖vm

s ‖L2
ρ(s,a;L2(0,2π))+‖∇ξm‖L2

ρ(s,a;L2(0,2π))‖∇vm
s ‖L2

ρ(s,a;L2(0,2π))

≤
(
‖∆ξm‖L2

ρ(s,a;L2(0,2π)) + ‖ξm‖ bHs

)
‖vm

s ‖ bHs

= ‖ξm‖
H(∆,bΩ\bΩs)

‖vm
s ‖ bHs

≤ ‖ξm‖
H(∆,bΩ\bΩs)

√
k s‖zm‖

H
1/2
s,P (0,2π)

.

Proposition 2.7.3. Considering ξm ∈ H(∆, Ω̂ \ Ω̂s), there exists a constant c > 0 such

that
∥∥∥∥
∂ξm

∂ρ
(s)

∥∥∥∥�
H

1/2
s,P (0,2π)

�′ ≤ c.

Proof. It is a direct consequence of Proposition 2.7.2:
∣∣∣∣∣

m∑

i=1

−∂ξi

∂ρ
(s)zi

∣∣∣∣∣ =

∣∣∣∣∣∣

〈
−∂ξm

∂ρ
(s), zm(s)

〉
�
H

1/2
s,P (0,2π)

�′
,H

1/2
s,P (0,2π)

∣∣∣∣∣∣
≤ ‖ξm‖

H(∆,bΩ\bΩs)

√
k ‖zm‖

H
1/2
s,P (0,2π)

= c ‖zm‖
H

1/2
s,P (0,2π)

.

Since, in particular, f ∈ L2(Ω̂ \ Ω̂s), it is obvious that ûm
s , the finite dimension solution

of (2.5), belongs to H(∆, Ω̂ \ Ω̂s). In this case, the norm ‖ûm
s ‖H(∆,bΩ\bΩs)

, used in Proposition

2.7.2, is independent of s, since

‖ûm
s ‖2

H(∆,bΩ\bΩs)
= ‖∆ûm

s ‖2
L2

ρ(s,a;L2(0,2π)) + ‖ûm
s ‖2

bHs
= ‖fm‖2

L2
ρ(s,a;L2(0,2π)) + ‖ûm

s ‖2
bHs

≤ ‖fm‖2
L2

ρ(0,a;L2(0,2π)) + ‖ûm
s ‖2

bHs
,

and ‖fm‖L2
ρ(0,a;L2(0,2π)), ‖ûm

s ‖ bHs
are independent the s (see Lemma (1.5.2), particularized

for finite dimension).

From Theorem 2.6.4 and Proposition 2.7.3, we remark also that
∥∥∥∥Pm(s)

∂ûm
s

∂ρ
(s)

∥∥∥∥
H

1/2
s,P (0,2π)

≤ k

∥∥∥∥
∂ûm

s

∂ρ
(s)

∥∥∥∥�
H

1/2
s,P (0,2π)

�′ ≤ kc.

2.8. Passing to the limit

We begin this section with a very important result, as we intend to pass to the limit both

when m →∞ and ε → 0.
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Proposition 2.8.1. For ûm
ε solution of (2.28), the norm ‖ûm

ε ‖ bHε
is bounded, independently

of ε and m.

Proof. From (2.28), considering um
ε = vm

ε , and using Holder’s inequality, we obtain

‖∇ûm
ε ‖2

L2
ρ(ε,a;L2(0,2π)) =

∫ a

ε

∫ 2π

0

(
∂ûm

ε

∂ρ

)2

ρ +
1
ρ

(
∂ûm

ε

∂θ

)2

dθ dρ =
∫ a

ε

∫ 2π

0
fûm

ε ρ dθ dρ

≤ ‖f‖L2
ρ(ε,a;L2(0,2π))‖ûm

ε ‖L2
ρ(ε,a;L2(0,2π)).

Therefore, by a reasoning similar to (2.14) we have

‖ûm
ε ‖2

bHε
≤ (c2 + 1)‖f‖L2

ρ(ε,a;L2(0,2π))‖ûm
ε ‖L2

ρ(ε,a;L2(0,2π)),

where c is the Poincaré’s constant, and consequently

‖ûm
ε ‖ bHε

≤ (c2 + 1)‖f‖L2
ρ(ε,a;L2(0,2π)) ≤ (c2 + 1)‖f‖L2

ρ(0,a;L2(0,2π)) ≤ k.

We can now pass to the limit on (2.28), when m →∞:

Proposition 2.8.2. Let ûm
ε and ûε be the solutions of (2.28) and (2.3), respectively. Then

ûm
ε → ûε, strongly in Ûε, when m →∞. Moreover, ûm

ε (ρ) → ûε(ρ), strongly in H
1/2
ρ,P (0, 2π),

when m →∞, for all ρ ∈ [ε, a].

Proof. From Proposition 2.8.1, we can extract from (ûm
ε ) a subsequence, still denoted by

(ûm
ε ), such that ûm

ε → v̂, weakly in Ûε, when m →∞.

From (2.28) we have

∫ a

ε

∫ 2π

0

∂ûm
ε

∂ρ

∂ϕ̂

∂ρ
ρ +

1
ρ

∂ûm
ε

∂θ

∂ϕ̂

∂θ
dθ dρ =

∫ a

ε

∫ 2π

0
fϕ̂ρ dθ dρ,∀ϕ ∈ Ûm

ε .

Then, since v̂ is the weak limit of ûm
ε , we obtain

∫ a

ε

∫ 2π

0

∂v̂

∂ρ

∂ϕ̂

∂ρ
ρ +

1
ρ

∂v̂

∂θ

∂ϕ̂

∂θ
dθ dρ =

∫ a

ε

∫ 2π

0
fϕ̂ρ dθ dρ,∀ϕ ∈ Ûm

ε ,
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and by density

∫ a

ε

∫ 2π

0

∂v̂

∂ρ

∂ϕ̂

∂ρ
ρ +

1
ρ

∂v̂

∂θ

∂ϕ̂

∂θ
dθ dρ =

∫ a

ε

∫ 2π

0
fϕ̂ρ dθ dρ, ∀ϕ ∈ Ûε,

which means, by uniqueness, that v = ûε, solution of (2.3).

Then, using (2.3) and (2.28), we have

∫
bΩ\bΩε

|∇(ûm
ε − ûε)|2ρdρ dθ

=
∫
bΩ\bΩε

∇ûm
ε ∇ûm

ε ρdρ dθ −
∫
bΩ\bΩε

∇ûm
ε ∇ûερ dρdθ −

∫
bΩ\bΩε

∇ûε∇(ûm
ε − ûε)ρ dρ dθ

=
∫
bΩ\bΩε

fûm
ε ρ dρ dθ −

∫
bΩ\bΩε

∇ûm
ε ∇ûερ dρ dθ −

∫
bΩ\bΩε

∇ûε∇(ûm
ε − ûε)ρ dρdθ

→
∫
bΩ\bΩε

fûερ dρdθ −
∫
bΩ\bΩε

∇ûε∇ûερ dρdθ − 0 = 0.

We can therefore conclude that ûm
ε , solution of (2.28), converges to ûε, solution of (2.3),

strongly in Ûε. From ûm
ε → ûε, strongly in Ĥε, by Proposition 2.1.2 we also have ûm

ε (ρ) →
ûε(ρ), strongly in H

1/2
ρ,P (0, 2π), for all ρ ∈ [ε, a].

Corollary 2.8.3. For all s ∈ (ε, a), rm(s) → r(s) strongly in H
1/2
ρ,P (0, 2π), when m → ∞.

Also, for all s ∈ (ε, a) and for a fixed h, Pm(s)h → P (s)h, strongly in H
1/2
ρ,P (0, 2π), weakly

in H
3/2
ρ,P (0, 2π) and strongly in H1

ρ,P (0, 2π), when m →∞.

Proof. Applying Proposition 2.8.2 for all s ∈ (ε, a), we obtain ûm
ε (s) = Pm(s)h+rm(s) →

P (s)h+r(s) = ûε(s), strongly in H
1/2
ρ,P (0, 2π). Taking h = 0, we obtain rm(s) → r(s) and con-

sequently Pm(s)h → P (s)h, strongly in H
1/2
ρ,P (0, 2π). Now, from Proposition 2.6.5, Pm(s)h is

bounded in H
3/2
ρ,P (0, 2π) and consequently we can extract a subsequence converging weakly.

By density (since Pm(s)h → P (s)h, strongly in H
1/2
ρ,P (0, 2π)) that subsequence converges

also to P (s)h. Since H
3/2
ρ,P (0, 2π) ⊂ H1

ρ,P (0, 2π), with H
3/2
ρ,P (0, 2π) dense in H1

ρ,P (0, 2π), then

Pm(s)h → P (s)h strongly in H1
ρ,P (0, 2π), for all s ∈ (ε, a).

Going back to the equation on Pm of (2.34), we obtain the following result:
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Proposition 2.8.4. For every h, h̄ in L2(0, 2π), the operator P ∈ L∞
(
(ε, a);L(

L2(0, 2π),

H1
ρ,P (0, 2π)

))
satisfies P (a) = 0 and the following equation

(
∂P

∂ρ
h, h̄

)

L2(0,2π)

+
(

1
ρ2

∂

∂θ
Ph,

∂

∂θ
P h̄

)

L2(0,2π)

−
(

1
ρ
h, P h̄

)

L2(0,2π)

=
(
h, h̄

)
L2(0,2π)

,

in D′(ε, a).

Proof. For a fixed m0, let h, h̄ ∈ V m0 . Then, from (2.34), we obtain, for m ≥ m0

(
∂Pm

∂ρ
h, h̄

)

L2(0,2π)

−
(

Pm 1
ρ2

∂2

∂θ2
Pmh, h̄

)

L2(0,2π)

−
(

Pm 1
ρ
h, h̄

)

L2(0,2π)

=
(
h, h̄

)
L2(0,2π)

.

Considering φ ∈ C1
0(ε, a] (that is, φ(ε) = 0 and we can have φ(a) 6= 0), we have:

∫ a

ε

(
∂Pm

∂ρ
h, h̄

)

L2(0,2π)

φρ dρ−
∫ a

ε

(
Pm 1

ρ2

∂2

∂θ2
Pmh, h̄

)

L2(0,2π)

φρ dρ

−
∫ a

ε

(
Pm 1

ρ
h, h̄

)

L2(0,2π)

φρ dρ =
∫ a

ε

(
h, h̄

)
L2(0,2π)

φρ dρ.

Integrating by parts the first term, since Pm(a) = 0 (and φ(ε) = 0), we obtain
∫ a

ε
− (

Pmh, h̄
)
L2(0,2π)

φ′ρ dρ−
∫ a

ε

(
1
ρ2

∂2

∂θ2
Pmh, Pmh̄

)

L2(0,2π)

φρdρ

−2
∫ a

ε

(
1
ρ
h, Pmh̄

)

L2(0,2π)

φρ dρ =
∫ a

ε

(
h, h̄

)
L2(0,2π)

φρdρ.

Now, integrating by parts the second term, and taking into account the periodic boundary

conditions, we achieve
∫ a

ε
− (

Pmh, h̄
)
L2(0,2π)

φ′ρdρ +
∫ a

ε

(
1
ρ2

∂

∂θ
Pmh,

∂

∂θ
Pmh̄

)

L2(0,2π)

φρdρ

−2
∫ a

ε

(
1
ρ
h, Pmh̄

)

L2(0,2π)

φρ dρ =
∫ a

ε

(
h, h̄

)
L2(0,2π)

φρdρ.

In the previous equality all the integrands are bounded, as a consequence of Corollary

2.6.6. In fact, for h ∈ L2(0, 2π) we have ‖Pmh‖H1
ρ,P (0,2π) bounded and consequently both

‖Pmh‖L2(0,2π) and
∥∥∥∥

1
ρ

∂

∂θ
(Pmh)

∥∥∥∥
L2(0,2π)

are bounded. Then, we can use Lebesgue’s theorem

and according to Corollary 2.8.3, we can pass to the limit and obtain
∫ a

ε
− (

Ph, h̄
)
L2(0,2π)

φ′ρ dρ +
∫ a

ε

(
1
ρ2

∂

∂θ
Ph,

∂

∂θ
P h̄

)

L2(0,2π)

φρdρ

−2
∫ a

ε

(
1
ρ
h, P h̄

)

L2(0,2π)

φρdρ =
∫ a

ε

(
h, h̄

)
L2(0,2π)

φρ dρ.

(2.64)
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In fact, since Pmh → Ph strongly in H1
ρ,P (0, 2π), then

∂

∂θ
Pmh → ∂

∂θ
Ph strongly in

L2(0, 2π).

Now, since D(ε, a) ⊂ C1
0(ε, a], we can take φ ∈ D(ε, a) in the previous equality and

integrate backwards the first term, obtaining
∫ a

ε

(
∂P

∂ρ
h, h̄

)

L2(0,2π)

φρdρ +
∫ a

ε

(
1
ρ2

∂

∂θ
Ph,

∂

∂θ
P h̄

)

L2(0,2π)

φρdρ

−
∫ a

ε

(
1
ρ
h, P h̄

)

L2(0,2π)

φρdρ =
∫ a

ε

(
h, h̄

)
L2(0,2π)

φρ dρ,

for h, h̄ ∈ V m0 . Then, by density (see (c) in section 2.3.), when m0 →∞, we obtain
∫ a

ε

(
∂P

∂ρ
h, h̄

)

L2(0,2π)

φρdρ +
∫ a

ε

(
1
ρ2

∂

∂θ
Ph,

∂

∂θ
P h̄

)

L2(0,2π)

φρdρ

−
∫ a

ε

(
1
ρ
h, P h̄

)

L2(0,2π)

φρdρ =
∫ a

ε

(
h, h̄

)
L2(0,2π)

φρ dρ,

for h, h̄ ∈ L2(0, 2π). Thus, from the equality in D′(ε, a)
(

∂P

∂ρ
h, h̄

)

L2(0,2π)

= −
(

1
ρ2

∂

∂θ
Ph,

∂

∂θ
P h̄

)

L2(0,2π)

+
(

1
ρ
h, P h̄

)

L2(0,2π)

+
(
h, h̄

)
L2(0,2π)

,

and using again Corollary 2.6.6 (notice that the result is independent of m), we see that(
∂P

∂ρ
h, h̄

)

L2(0,2π)

∈ L∞(ε, a). Then, from
(

∂P

∂ρ
h, h̄

)

L2(0,2π)

∈ L2
ρ(ε, a) and

(
P (ρ)h, h̄

)
L2(0,2π)

∈ L2
ρ(ε, a) (again

(
P (ρ)h, h̄

)
L2(0,2π)

∈ L∞(ε, a)), we deduce that
(
P (ρ)h, h̄

)
L2(0,2π)

is con-

tinuous in ρ. Consequently, for φ ∈ C1
0(ε, a] we can integrate (2.64) backwards to obtain

P (a) = 0.

Similarly, recalling the equation on rm of (2.34), we obtain the following result:

Proposition 2.8.5. The function r belongs to C (
ε, a, L2(0, 2π)

)
, satisfies r(a) = 0, and

for every h in H
1/2
ρ,P (0, 2π) verifies the following equation

〈
1
ρ2

∂r

∂θ
,

∂

∂θ
Ph

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

+
〈

∂r

∂ρ
, h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

= (f, Ph)L2(0,2π) ,

in D′(ε, a).

Proof. For a fixed m0, let h ∈ V m0 . Then, from (2.34), we obtain, for m ≥ m0

〈
−Pm 1

ρ2

∂2rm

∂θ2
, h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

+
〈

∂rm

∂ρ
, h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

= (Pmf, h)L2(0,2π) .
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Considering φ ∈ C1
0(ε, a], we have:

∫ a

ε

〈
−Pm 1

ρ2

∂2rm

∂θ2
, h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρdρ

+
∫ a

ε

〈
∂rm

∂ρ
, h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρ dρ =
∫ a

ε
(Pmf, h)L2(0,2π) φρ dρ.

Integrating by parts the second term, since rm(a) = 0 (and φ(ε) = 0), we obtain
∫ a

ε

〈
− 1

ρ2

∂2rm

∂θ2
, Pmh

〉
�
H

3/2
ρ,P (0,2π)

�′
,H

3/2
ρ,P (0,2π)

φρdρ−
∫ a

ε
(rm, h)L2(0,2π) φ′ρ dρ

−
∫ a

ε

(
rm,

1
ρ
h

)

L2(0,2π)

φρ dρ =
∫ a

ε
(Pmf, h)L2(0,2π) φρ dρ.

Integrating by parts the first term and according to the periodic boundary conditions, we

have ∫ a

ε

〈
1
ρ2

∂rm

∂θ
,

∂

∂θ
Pmh

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρ dρ−
∫ a

ε
(rm, h)L2(0,2π) φ′ρ dρ

−
∫ a

ε

(
rm,

1
ρ
h

)

L2(0,2π)

φρdρ =
∫ a

ε
(f, Pmh)L2(0,2π) φρ dρ.

From Corollary 2.8.3 and Lebesgue’s theorem (again all the integrands are bounded as a

consequence of Proposition 2.6.8), we can pass to the limit in the previous equality. Then,
∫ a

ε

〈
1
ρ2

∂r

∂θ
,

∂

∂θ
Ph

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρdρ−
∫ a

ε
(r, h)L2(0,2π) φ′ρ dρ

−
∫ a

ε

(
r,

1
ρ
h

)

L2(0,2π)

φρ dρ =
∫ a

ε
(f, Ph)L2(0,2π) φρ dρ.

(2.65)

In fact, since rm → r strongly in H
1/2
ρ,P (0, 2π), we have

∂

∂θ
rm→ ∂

∂θ
r strongly in

(
H

1/2
ρ,P (0, 2π)

)′
.

We also have
∂

∂θ
Pmh → ∂

∂θ
Ph weakly in H

1/2
ρ,P (0, 2π). Now, since D(ε, a)⊂C1

0(ε, a], we can

take φ ∈ D(ε, a) in the previous equality and integrate backwards the second term, obtaining
∫ a

ε

〈
1
ρ2

∂r

∂θ
,

∂

∂θ
Ph

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρ dρ

+
∫ a

ε

〈
∂r

∂ρ
, h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρ dρ =
∫ a

ε
(f, Ph)L2(0,2π) φρ dρ,

for h ∈ V m0 .

Then, by density, when m0 →∞, we have
∫ a

ε

〈
1
ρ2

∂r

∂θ
,

∂

∂θ
Ph

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρ dρ

+
∫ a

ε

〈
∂r

∂ρ
, h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρ dρ =
∫ a

ε
(f, Ph)L2(0,2π) φρ dρ,
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for h ∈ H
1/2
ρ,P (0, 2π) (notice that with this choice for h, the first term is well defined).

Again by Proposition 2.6.8 (the result is independent of m), from the equality〈
∂r

∂ρ
, h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

= −
〈

1
ρ2

∂r

∂θ
,

∂

∂θ
Ph

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

+ (f, Ph)L2(0,2π), in

D′(ε, a), we obtain
∂r

∂ρ
∈ L∞

(
ε, a,

(
H

1/2
ρ,P (0, 2π)

)′)
. Then, from

∂r

∂ρ
∈ L2

ρ

(
ε, a,

(
H

1/2
ρ,P (0, 2π)

)′)

and r ∈ L2
ρ

(
ε, a, H

1/2
ρ,P (0, 2π)

)
, we deduce that r ∈ C (

ε, a, L2(0, 2π)
)
. Consequently, for

φ ∈ C1
0(ε, a] we can integrate (2.65) backwards to obtain r(a) = 0.

Finally, with respect to the last equation of (2.34), we obtain:

Proposition 2.8.6. For every h in
(
H

1/2
ρ,P (0, 2π)

)′
, ûε satisfies the following equation

〈ûε, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′=
〈
P

∂ûε

∂ρ
, h

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′+ 〈r, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′

in D′(ε, a).

Proof. For a fixed m0 let h ∈ V m0 . Then, from (2.34), we obtain, for m ≥ m0

〈
Pm ∂ûm

ε

∂ρ
, h

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ − 〈ûm
ε , h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′

= 〈−rm, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ .

Considering φ ∈ D(ε, a), we have:
∫ a

ε

〈
Pm ∂ûm

ε

∂ρ
, h

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ

−
∫ a

ε
〈ûm

ε , h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ =
∫ a

ε
〈−rm, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ

⇒
∫ a

ε

〈
∂ûm

ε

∂ρ
, Pmh

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ

−
∫ a

ε
〈ûm

ε , h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ =
∫ a

ε
〈−rm, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ.

Then, by Proposition 2.8.2, Corollary 2.8.3 and Lebesgue’s theorem, we can pass to the limit

and obtain
∫ a

ε

〈
∂ûε

∂ρ
, Ph

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ−
∫ a

ε
〈ûε, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ

=
∫ a

ε
〈−r, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ,
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for h ∈ V m0 . Then, by density we have
∫ a

ε

〈
∂ûε

∂ρ
, Ph

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ−
∫ a

ε
〈ûε, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ =
∫ a

ε
〈−r, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ,

for h ∈
(
H

1/2
ρ,P (0, 2π)

)′
.

Since Pm and rm do not depend on ε, further we have:

Remark 2.8.7. The convergence established in Corollary 2.8.3 for all (ε, a), is valid for ε

arbitrarily small. Consequently, Pm(ρ)h →P (ρ)h and rm(ρ) → r(ρ), strongly in H
1/2
ρ,P (0, 2π),

for all ρ ∈ (0, a).

In the next two Propositions we are going to establish the comportment of P and r in

a neighborhood of the origin. Using Proposition 2.8.4 and the late remark we can conclude

that the coordinates of P , in the interval (0, a), are exactly the ones previously achieved in

(2.39).

Proposition 2.8.8. For P satisfying
∂

∂ρ
P− 1

ρ2
P

∂2

∂θ2
P− 1

ρ
P−I = 0 and P (a) = 0, we have

lim
ρ→0

‖P (ρ)‖
L
��

H
1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

� = 1 and lim
ρ→0

‖P (ρ)‖L(L2(0,2π),L2(0,2π)) = 0. Moreover,

we have lim
ρ→0

∥∥P (ρ)− ρ
(
P∞ o P|M

)∥∥
L
��

H
1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

� = 0, where P∞ is the operator

satisfying −P∞
∂2

∂θ2
P∞ = I, and P|M is the projection operator on the space M .

Proof. From (2.40), we have

lim
ρ→0

p1(ρ) = lim
ρ→0

ρ log
(ρ

a

)
= 0.

Also, for i ≥ 2, and using (2.39) it comes,

lim
ρ→0

pi(ρ) = lim
ρ→0

− ρ√
λi




(
a

ρ

)√λi

−
(ρ

a

)√λi

(
a

ρ

)√λi

+
(ρ

a

)√λi


 = 0,
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and

lim
ρ→0

pi(ρ)
ρ

= lim
ρ→0

− 1√
λi




(
a

ρ

)√λi

−
(ρ

a

)√λi

(
a

ρ

)√λi

+
(ρ

a

)√λi


 = − 1√

λi
, (2.66)

which means that pi(ρ) ∼ −ρ (i ≥ 2).

Then, we have

‖P (ρ)‖
L
��

H
1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

� = sup
h6=0

h∈
�

H
1/2
ρ,P

(0,2π)

�′

‖P (ρ)h‖
H

1/2
ρ,P (0,2π)

‖h‖�
H

1/2
ρ,P (0,2π)

�′

= sup
h6=0

h∈
�

H
1/2
ρ,P

(0,2π)

�′

(
h2

1 p2
1 +

∞∑

2

√
λi

ρ
h2

i p
2
i

)1/2

(
h2

1 +
∞∑

2

ρ√
λi

h2
i

)1/2
= sup

h6=0

h∈
�

H
1/2
ρ,P

(0,2π)

�′




h2
1 p2

1 +
∞∑

2

ρ√
λi

h2
i

λi

ρ2
p2

i

h2
1 +

∞∑

2

ρ√
λi

h2
i




1/2

=




sup
h6=0

h∈
�

H
1/2
ρ,P

(0,2π)

�′

h2
1 p2

1 +
∞∑

2

ρ√
λi

h2
i

λi

ρ2
p2

i

h2
1 +

∞∑

2

ρ√
λi

h2
i




1/2

.

Since we have (notice that ρ < a)

lim
i→∞

λi

ρ2
p2

i = lim
i→∞




(
a

ρ

)√λi

−
(ρ

a

)√λi

(
a

ρ

)√λi

+
(ρ

a

)√λi




2

= 1,

the quantity
λi

ρ2
p2

i remains bounded, for increasing values of i. For this reason we obtain

sup
h6=0

h∈
�

H
1/2
ρ,P

(0,2π)

�′

h2
1 p2

1 +
∞∑

2

ρ√
λi

h2
i

λi

ρ2
p2

i

h2
1 +

∞∑

2

ρ√
λi

h2
i

= max

{
p2
1,

(
λi

ρ2
p2

i

)

i≥2

}
.

Consequently,

lim
ρ→0

‖P (ρ)‖2

L
��

H
1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

� = lim
ρ→0

max

{
p2
1,

(
λi

ρ2
p2

i

)

i≥2

}

= max

{
lim
ρ→0

p2
1, lim

ρ→0

(
λi

ρ2
p2

i

)

i≥2

}
= max

{
0,

(
λi

λi

)

i≥2

}
= 1.
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Using the same arguments, we have

lim
ρ→0

‖P (ρ)‖2
L(L2(0,2π),L2(0,2π)) = lim

ρ→0


 sup

h6=0
h∈L2(0,2π)

‖P (ρ)h‖L2(0,2π)

‖h‖L2(0,2π)


= lim

ρ→0




sup
h6=0

h∈L2(0,2π)

∞∑

1

h2
i p

2
i

∞∑

1

h2
i




= lim
ρ→0

max
{(

p2
i

)
i≥1

}
= max

{
lim
ρ→0

p2
1, lim

ρ→0

(
p2

i

)
i≥2

}
= max

{
0, (0)i≥2

}
= 0.

Furthermore, considering the operator P∞ defined by −P∞
∂2

∂θ2
P∞ = I (notice that P

satisfies the equation ρ
∂

∂ρ

(
P

ρ

)
− P

ρ

∂2

∂θ2

P

ρ
= I and that lim

ρ→0

pi(ρ)
ρ

= − 1√
λi

, for i ≥ 2), the

coordinates of P∞ satisfy, for i ≥ 2, p2∞iλi = 1, and consequently, satisfies p∞i = − 1√
λi

.

Then, if we consider the operator PM∞ , defined as the result of the composition of P∞ with the

projection operator on the space M , the coordinates of PM∞ satisfy pM∞1 = 0 and pM∞ i = p∞i,

for i ≥ 2. Then,

‖P (ρ)− ρPM∞ ‖L
��

H
1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

�

= sup
h6=0

h∈
�

H
1/2
ρ,P

(0,2π)

�′

(
h2

1 (p1 − ρpM
∞1)

2 +
∞∑

2

√
λi

ρ
h2

i (pi − ρpM
∞ i)

2

)1/2

(
h2

1 +
∞∑

2

ρ√
λi

h2
i

)1/2

=




sup
h6=0

h∈
�

H
1/2
ρ,P

(0,2π)

�′

h2
1 p2

1 +
∞∑

2

ρ√
λi

h2
i

λi

ρ2
(pi − ρp∞i)

2

h2
1 +

∞∑

2

ρ√
λi

h2
i




1/2

=

(
max

{
p2
1,

(
λi

ρ2
(pi − ρp∞i)

2

)

i≥2

})1/2

=

(
max

{
p2
1,

(
λi

ρ2
(pi + ρ

1√
λi

)2
)

i≥2

})1/2

.

Then,

lim
ρ→0

‖P (ρ)− ρPM
∞ ‖2

L
��

H
1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

� = max

{
lim
ρ→0

p2
1, lim

ρ→0

(
λi

ρ2
(pi + ρ

1√
λi

)2
)

i≥2

}

= max{0, 0} = 0.

Remark 2.8.9. From the equality (2.66), since

 
a

ρ

!√λi

−
�ρ

a

�√λi

 
a

ρ

!√λi

+

�ρ

a

�√λi

≤ 1, we also have
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∣∣∣∣
pi(ρ)

ρ

∣∣∣∣ ≤
1√
λi

, ∀ρ ∈ (0, a]. (2.67)

We can remark also that, for i ≥ 2, the function

qi(ρ) =
pi(ρ)

ρ
= − 1√

λi




1−
(ρ

a

)2
√

λi

1 +
(ρ

a

)2
√

λi




is ρ−increasing on the interval [0, a]. In fact, it’s easy to see that

q′i(ρ) =
4
ρ

(ρ

a

)2
√

λi

(
1 +

(ρ

a

)2
√

λi
)2 > 0, ∀ρ ∈ (0, a].

Further, from qi(0) = − 1√
λi

and

 
a

ρ

!√λi

−
�ρ

a

�√λi

 
a

ρ

!√λi

+

�ρ

a

�√λi

≤ 1, we also have qi(0) < qi(ρ), ∀ρ ∈

(0, a] so we can extend the result to the interval [0, a].

Considering now r, the solution of −Pf−P
1
ρ2

∂2r

∂θ2
+

∂r

∂ρ
= 0 and r(a) = 0, its coordinates

satisfy,

−pi f̂i + pi
1
ρ2

λiri +
∂ri

∂ρ
= 0, (2.68)

with ri(a) = 0, for i ≥ 1.

Since, for i ≥ 2,
∂ri

∂ρ
+

(
pi

1
ρ2

λi

)
ri = pi f̂i is a linear differential equation with non

constant coefficients, it has the explicit solution

ri(ρ) = e
−

∫ ρ

a
pi(%)

λi

%2
d%




∫ ρ

a
e

∫ t

a
pi(%)

λi

%2
d%

pi(t)f̂i(t) dt




=
∫ ρ

a
e

∫ t

ρ
pi(%)

λi

%2
d%

pi(t)f̂i(t) dt = −
∫ a

ρ
e

∫ t

ρ

pi(%)λi

%2
d%

pi(t) f̂i(t) dt

= −
∫ a

0
χ[ρ,a]e

∫ t

ρ

pi(%)λi

%2
d%

pi(t) f̂i(t) dt.

(2.69)

For i = 1 we obtain the equation −p1(ρ)f̂1 +
∂r1

∂ρ
= 0, which again can be integrated

as an equation of separable variables. Therefore, we obtain r1(ρ) =
∫ ρ

a
p1(t)f̂1(t) dt and
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consequently

r1(0) = lim
ρ→0

r1(ρ) = −
∫ a

0
p1(t)f̂1(t) dt. (2.70)

One can see that this is the value obtained before in (2.44). In fact, we have

r1(ρ) =
∫ ρ

a
p1(t)f̂1(t) dt =

∫ ρ

a
t log

(
t

a

)
f̂1(t) dt

and, on the other hand, integrating by parts, we get

r1(ρ) =
∫ a

ρ

1
t

∫ t

ρ
%f̂1(%) d%dt =

(
log(t)

∫ t

ρ

(
%f̂1(%)

)
d%

)]a

ρ

−
∫ a

ρ
log(t) t f̂1(t) dt

=
∫ a

ρ
log(a) tf̂1(t) dt−

∫ a

ρ
log(t) t f̂1(t) dt.

Before establishing the behavior of r near the origin, we need two auxiliary results.

Lemma 2.8.10. The series
∞∑

2

r2
i (ρ) is uniformly convergent on [0, a].

Proof. For all ρ ∈ [0, a], from f̂i(ρ) =
∫ 2π

0
f̂(ρ, θ) wi(θ) dθ, for i ≥ 2, and considering,

without loss of generality, wi(θ) = sin(iθ), we obtain

f̂i(ρ) = −cos(iθ)
i

f̂

∣∣∣∣
2π

0

+
∫ 2π

0

∂f̂

∂θ

cos(iθ)
i

dθ

= −cos(i 2π)
i

f̂(ρ, 2π) +
cos(0)

i
f̂(ρ, 0) +

∫ 2π

0

∂f̂

∂θ

cos(iθ)
i

dθ

= −1
i
f̂(ρ, 2π) +

1
i
f̂(ρ, 0) +

∫ 2π

0

∂f̂

∂θ

cos(iθ)
i

dθ

=
∫ 2π

0

∂f̂

∂θ

cos(iθ)
i

dθ,

since f̂(ρ, θ) is θ− periodic. Then

∣∣∣f̂i(ρ)
∣∣∣ ≤

∫ 2π

0

∣∣∣∣∣
∂f̂

∂θ

∣∣∣∣∣
|cos(iθ)|

i
dθ ≤

∫ 2π

0
c1

1
i

dθ = 2c1π
1
i

=
c

i
(2.71)

since
∂f̂

∂θ
is bounded (notice that f ∈ C1(Ω) and consequently

∣∣∣∣∣
∂f̂

∂θ

∣∣∣∣∣ ≤
∣∣∣∣
∂f

∂x

∣∣∣∣ ρ| sin(θ)| +
∣∣∣∣
∂f

∂y

∣∣∣∣ ρ| cos(θ)| < c1). Furthermore, from (2.69), using (2.71) and the fact that pi(ρ) < 0

(i ≥ 1), we obtain, again for i ≥ 2 and for all ρ ∈ [0, a],

|ri(ρ)| =

∣∣∣∣∣∣∣∣

∫ a

ρ
e

∫ t

ρ

pi(%)λi

%2
d%

pi(t) f̂i(t) dt

∣∣∣∣∣∣∣∣
≤

∫ a

ρ
e

∫ t

ρ

pi(%)λi

%2
d%
|pi(t)| |f̂i(t)| dt

≤
∫ a

ρ
|pi(t)| |f̂i(t)| dt ≤

∫ a

ρ

t√
λi

c

i
dt ≤ a√

λi

c

i
(a− ρ) ≤ a2

√
λi

c

i
≤ a2

√
λ2

c

i
=
√

c2

i
.
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Since
∞∑

2

c2
1
i2

is a numerical convergent series, the series
∞∑

2

r2
i (ρ) is uniformly convergent

on [0, a].

Lemma 2.8.11. The series
∞∑

2

λi
r2
i (ρ)
ρ2

is uniformly convergent on [0, a
2 ].

Proof. Since qi(ρ) is an increasing function (see Remark 2.8.9), in particular on the

interval [0, a
2 ], we have

pi(ρ)
ρ

≤ pi(a
2 )

a
2

= − 1√
λi




1−
(

1
2

)2
√

λi

1 +
(

1
2

)2
√

λi


, ∀ρ ∈ [0, a

2 ], ∀i ≥ 2.

We are going to consider i? such that λi ≥ 4,∀i ≥ i?. Then, for i ≥ i?, we have

1−
(

1
2

)2
√

λi

1 +
(

1
2

)2
√

λi
≥ 15

17
≥ 2

3
. Consequently, pi(ρ) ≤ −2

3
ρ√
λi

, for all ρ ∈ [0, a
2 ] and for all i ≥ i?.

Now, for t ≤ a

2
(and ρ < t), we have

∫ t

ρ
λi

pi(%)
%2

d% ≤
∫ t

ρ
−2

3
%√
λi

λi

%2
d% =

∫ t

ρ
−2

3

√
λi

%
d%

= −2
√

λi

3
log(%)]tρ =

2
√

λi

3
log

(ρ

t

)

and

e

∫ t

ρ
λi

pi(%)
%2

d%
≤ e

2
√

λi

3
log

(ρ

t

)
=

(ρ

t

) 2
√

λi
3

.

In the same way, for t ≥ a

2
and since pi(%) < 0, we have

∫ t

ρ
λi

pi(%)
%2

d% =
∫ a

2

ρ
λi

pi(%)
%2

d% +
∫ t

a
2

λi
pi(%)
%2

d%

≤
∫ a

2

ρ
λi

pi(%)
%2

d% ≤ 2
√

λi

3
log

(
ρ
a
2

)

and

e

∫ t

ρ
λi

pi(%)
%2

d%
≤

(
ρ
a
2

) 2
√

λi
3

.

Therefore, using (2.71), (2.69) and (2.67), we obtain, for i ≥ i? and ρ ≤ a
2 ,
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∣∣∣∣
ri(ρ)

ρ

∣∣∣∣

=
1
ρ

∣∣∣∣∣∣∣∣

∫ a

ρ
e

∫ t

ρ

pi(%)λi

%2
d%

pi(t) f̂i(t) dt

∣∣∣∣∣∣∣∣

≤ 1
ρ

∫ a

ρ
e

∫ t

ρ

pi(%)λi

%2
d%
|pi(t)| |f̂i(t)|dt

=
1
ρ




∫ a
2

ρ
e

∫ t

ρ

pi(%)λi

%2
d%
|pi(t)| |f̂i(t)|dt +

∫ a

a
2

e

∫ t

ρ

pi(%)λi

%2
d%
|pi(t)| |f̂i(t)| dt




≤ 1
ρ




∫ a
2

ρ

(ρ

t

) 2
√

λi
3 |pi(t)| |f̂i(t)| dt +

∫ a

a
2

(
ρ
a
2

) 2
√

λi
3

|pi(t)| |f̂i(t)|dt




≤ 1
ρ




∫ a
2

ρ

(ρ

t

) 2
√

λi
3 t√

λi

c

i
dt +

∫ a

a
2

(
ρ
a
2

) 2
√

λi
3 t√

λi

c

i
dt




≤
∫ a

2

ρ
ρ

2
√

λi
3

−1t−
2
√

λi
3

a√
λi

c

i
dt +

∫ a

a
2

(
ρ
a
2

) 2
√

λi
3 a√

λi

c

i
dt

≤ t−
2
√

λi
3

+1

−2
√

λi
3 + 1




a
2

ρ

ρ
2
√

λi
3

−1 a√
λi

c

i
+

(
ρ
a
2

) 2
√

λi
3 a2

2
√

λi

c

i

=




(
a
2

)− 2
√

λi
3

+1

−2
√

λi
3 + 1

− ρ−
2
√

λi
3

+1

−2
√

λi
3 + 1


 ρ

2
√

λi
3

−1 a√
λi

c

i
+

(
ρ
a
2

) 2
√

λi
3

−1 a√
λi

c

i

=




1−
(

ρ
a
2

) 2
√

λi
3

−1

2
√

λi
3 − 1




a√
λi

c

i
+

(
ρ
a
2

) 2
√

λi
3

−1 a√
λi

c

i

≤ 3


1−

(
ρ
a
2

) 2
√

λi
3

−1

 a√

λi

c

i
+

(
ρ
a
2

) 2
√

λi
3

−1 a√
λi

c

i

≤ 3 a√
λi

c

i
≤ 3 a√

λ2

c

i

≤ √
c1

1
i
.

Since
∞∑

i?

c1
1
i2

is a numerical convergent series, then the series
∞∑

i?

λi
r2
i (ρ)
ρ2

is uniformly

convergent on [0, a
2 ] and so it is

∞∑

2

λi
r2
i (ρ)
ρ2

.



Passing to the limit 69

Proposition 2.8.12. For r, solution of −Pf − P
1
ρ2

∂2r

∂θ2
+

∂r

∂ρ
= 0 and r(a) = 0, we have

lim
ρ→0

‖r(ρ)−r(0)‖L2(0,2π)= 0 and lim
ρ→0

‖r(ρ)−r(0)‖H1
ρ,P (0,2π)= 0 (in particular, lim

ρ→0
‖r(ρ)‖L2(0,2π)

= |r1(0)| and lim
ρ→0

‖r(ρ)‖H1
ρ,P (0,2π) = |r1(0)|, respectively).

Proof. From (2.69), and using Lebesgue’s (dominated convergence) theorem, we find, for

i ≥ 2,

lim
ρ→0

ri(ρ) = lim
ρ→0

−
∫ a

0
χ[ρ,a]e

∫ t

ρ

pi(%)λi

%2
d%

pi(t) f̂i(t) dt

= −
∫ a

0
lim
ρ→0


e

∫ t

ρ

pi(%)
%

λi

%
d%

χ[ρ,a]pi(t) f̂i(t)


 dt.

On the other hand, since

lim
ρ→0+

|pi(ρ)|
ρ

λi

ρ
1
ρ

= lim
ρ→0+

|pi(ρ)|
ρ

λi =
1√
λi

λi =
√

λi.

we have that the improper integral
∫ t

0

|pi(%)|
%

λi

%
d% (being of the same nature of

∫ t

0

1
ρ
) is

divergent and consequently

lim
ρ→0

e

∫ t

ρ

pi(%)
%

λi

%
d%

= e
− lim

ρ→0

∫ t

ρ

|pi(%)|
%

λi

%
d%

= 0.

Hence

ri(0) = lim
ρ→0

ri(ρ) = −
∫ a

0
0 = 0,

since pi, χ and f̂i are bounded. Also, we have already seen, in (2.70), that

r1(0) = lim
ρ→0

r1(ρ) = −
∫ a

0
p1(t)f̂1(t) dt.

Furthermore, using (2.68), we obtain for i ≥ 2

lim
ρ→0

ri(ρ)
ρ2

= lim
ρ→0

r′i(ρ)
2ρ

= lim
ρ→0

pi(ρ)f̂i(ρ)
2ρ

− lim
ρ→0

pi(ρ)
ρ

λi

2
ri(ρ)
ρ2

= lim
ρ→0

pi(ρ)f̂i(ρ)
2ρ

+
√

λi

2
lim
ρ→0

ri(ρ)
ρ2

⇒ lim
ρ→0

ri(ρ)
ρ2

=
1

2−√λi
lim
ρ→0

pi(ρ)f̂i(ρ)
ρ

=
f̂i(0)

λi − 2
√

λi
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which means that ri(ρ) ∼ ρ2 (i ≥ 2). We also can conclude that lim
ρ→0

ri(ρ)
ρ

= 0.

Then, since the series
∞∑

2

r2
i is uniformly convergent on [0, a] by Lemma 2.8.10, we have,

lim
ρ→0

‖r(ρ)− r(0)‖2
L2(0,2π) = lim

ρ→0

(∫ ρ

a
p1(t)f̂1(t) dt− r1(0)

)2

+ lim
ρ→0

∞∑

2

r2
i

=
(
−

∫ a

0
p1(t)f̂1(t) dt− r1(0)

)2

+
∞∑

2

0

= (r1(0)− r1(0))2 = 0.

Further, since the series
∞∑

2

λi
r2
i

ρ2
is uniformly convergent on [0, a/2] by Lemma 2.8.11, we

have

lim
ρ→0

‖r(ρ)− r(0)‖2
H1

ρ,P (0,2π) = lim
ρ→0

(∫ ρ

a
p1(t)f̂1(t) dt− r1(0)

)2

+ lim
ρ→0

∞∑

2

λi
r2
i

ρ2

=
(
−

∫ a

0
p1(t)f̂1(t) dt− r1(0)

)2

+
∞∑

2

0

= (r1(0)− r1(0))2 = 0.

Remark 2.8.13. In ([28]), Sokolowski-Zochowski look for a solution of the obstacle problem

u = u(Ω) ∈ K :
∫

Ω
∇u.∇(v − u) ≥ 0, ∀v ∈ K,

where K(Ω) = {v ∈ H1(Ω) : v = g on Γ0, v ≥ 0 in Ω). They considered a domain Ωρ,

with a small hole B(ρ) in the form of a disc B(ρ) = {x : |x − O| < ρ} ⊂ Ω, O being the

center of the hole and assumed to be the origin. In addition they assume that the (unique)

solution of the obstacle problem, denoted by u = u(Ωρ) satisfies the homogeneous Neumann

conditions on the boundary Γρ of the hole B(ρ). They are interested in the asymptotic

behavior of u(Ωρ) ∈ H1(Ωρ), for ρ → 0+. For this problem they find uρ, which is an outer

approximation of the solution u(Ωρ), and they prove that uρ = u(Ω) + ρ2q + o(ρ2), for some

function q. This can be seen as an expansion of the form

uρ = u(Ω) + ρ
∂uρ

∂ρ
(0) +

ρ2

2
∂2uρ

∂ρ2
(0) + o(ρ2), (2.72)

which means that, in the approach of Sokolowski-Zochowski,
∂uρ

∂ρ
(0) = 0.
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On the other hand, in our framework, we can write u(s) = P (s)
∂u

∂s
(s) + r(s), ∀s, and,

using the Neumann boundary condition, we obtain, on Γρ, uρ(ρ) = r(ρ). Differentiating the

previous equality with respect to ρ, we find
∂uρ

∂ρ
(ρ) =

∂r

∂ρ
(ρ).

From (2.68) we find
∂ri

∂ρ
(ρ) = pi(ρ) f̂i(ρ)− pi(ρ)λi

ri(ρ)
ρ2

, for i ≥ 1. Also for i ≥ 1, from

the proof of Proposition 2.8.8, we know that lim
ρ→0

pi(ρ) = 0. Then, since
ri(ρ)
ρ2

and f̂i(ρ)

are bounded, we have lim
ρ→0

∂ri

∂ρ
(ρ) = 0 and consequently

∂uρ

∂ρ
(0) = 0 which, as we saw, is in

agreement with the first approach.

Now, we aim to pass to the limit when ε → 0, which means that we are going to pass

to the limit in ûε, using the results obtained in Chapter 1. Considering ˜̂uε as in (1.6), as a

consequence of Lemma 1.5.2, we have:

Lemma 2.8.14. ‖˜̂uε‖bU0
is bounded independently of ε.

Therefore, as a consequence of Theorem 1.5.3, we also have:

Proposition 2.8.15. ˜̂uε → û, when ε → 0, strongly in Û0, where ûε and û are the solutions

of (2.2) and (2.1), respectively.

Proposition 2.8.16. For every h in
(
H

1/2
ρ,P (0, 2π)

)′
, û, the solution of (2.1), satisfies the

following equation

〈û, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′=
〈
P

∂û

∂ρ
, h

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ + 〈r, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′

in D′(0, a).

Proof. Let φ ∈ D(0, a). Since φ(0) = 0, in a neighborhood of the origin, and
∂ ˜̂uε

∂ρ
= 0,

for ρ ∈ (0, ε) (˜̂uε is constant in Ωε), considering (2.12) extended to the interval (0, a), we
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have
∫ a

0

〈
∂ ˜̂uε

∂ρ
, Ph

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′
φρdρ

−
∫ a

0

〈
˜̂uε, h

〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ +
∫ ε

0

〈
˜̂uε, h

〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ

=
∫ a

0
〈−r, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ−
∫ ε

0
〈−r, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ.

Now, since
(
˜̂uε, h

)
L2(0,2π)

φρ and (−r, h)L2(0,2π) φρ are bounded in [0, ε) by a constant not de-

pending on ε (the result for ˜̂uε is due to Proposition 2.5.1 and the result for r is a consequence

of Proposition 2.8.12), for ε arbitrarily small, we have
∫ ε

0

〈
˜̂uε, h

〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ

→ 0 and
∫ ε

0
〈r, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ → 0, as ε → 0. This way, passing to the limit

when ε → 0 (using Proposition 2.8.15), we obtain
∫ a

0

〈
∂û

∂ρ
, Ph

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ−
∫ a

0
〈û, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ

=
∫ a

0
〈−r, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ,

from what follows the desired result.

The coordinates of û, solution of û = P
∂û

∂ρ
+ r and û(0) = u0 verify, for i ≥ 1, u0

i (ρ) =

pi(ρ)
∂u0

i

∂ρ
(ρ) + ri(ρ). Further, from Proposition 2.5.4, considering that ûm

ε (ε) and ûm(0) are

both constants, in fact we have

lim
ε→0

ûε(ε) = û(0) = u0. (2.73)

So, we have u0
i (0) = 0, for i ≥ 2, and u0

1(0) = u0.

Considering again
pi(ρ)

ρ
= qi(ρ), we obtain

u0
i (ρ) = ρ qi(ρ)

∂u0
i

∂ρ
(ρ) + ri(ρ),

and through the change of variables ϕ = log ρ, that can be written as

ui(ϕ) = qi(ϕ)
∂ui

∂ϕ
(ϕ) + ri(ϕ). (2.74)

Then, since
∂ui

∂ϕ
− 1

qi
ui = −ri

qi
is a linear differential equation, we obtain for i ≥ 2 (since

ui(−∞) = 0, for i ≥ 2)

ui(ϕ) = e

∫ ϕ

−∞

1
qi(t)

dt



∫ ϕ

−∞
e

∫ %

−∞
− 1
qi(t)

dt (
−ri(%)
qi(%)

)
d%


 . (2.75)
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In this last expression, we have lim
ϕ→−∞

1
qi(ϕ)

= lim
ρ→0

1
qi(ρ)

= −
√

λi and lim
ϕ→−∞

ri(ϕ)
qi(ϕ)

=

lim
ρ→0

ri(ρ)
qi(ρ)

= 0.(−
√

λi) = 0, which means that both the quantities
1

qi(t)
(for t ∈ [−∞, ϕ]) and

e

∫ %

−∞
− 1
qi(t)

dt (
−ri(%)
qi(%)

)
(for % ∈ [−∞, ϕ]) are bounded, for i ≥ 2. Then, lim

ϕ→−∞ ui(ϕ) = 0,

as pretended.

For i = 1, since u1(−∞) = u0, we obtain as the solution of the respective linear differential

equation

u1(ϕ) = e

∫ ϕ

−∞

1
q1(t)

dt



∫ ϕ

−∞
e

∫ %

−∞
− 1
q1(t)

dt (
−r1(%)
q1(%)

)
d%


 + u0 e

∫ ϕ

−∞

1
q1(t)

dt
.

As previously, lim
ϕ→−∞

1
q1(ϕ)

= lim
ρ→0

1
q1(ρ)

= lim
ρ→0

1
log(ρ

a)
= 0 and lim

ϕ→−∞
r1(ϕ)
q1(ϕ)

= lim
ρ→0

r1(ρ)
q1(ρ)

=

lim
ρ→0

r1(ρ)
log(ρ

a)
= 0, which means that, in fact, lim

ϕ→−∞ u1(ϕ) = u0.

Before setting out the behavior of û near the origin, we need an auxiliary result.

Lemma 2.8.17. The series
∞∑

1

(ui(ϕ))2 is uniformly convergent on [−∞, log
(

a
2

)
].

Proof. Once again, we are going to consider i? such that λi ≥ 4, ∀i ≥ i?. Then, using

the computations exhibited in the proof of Lemma 2.8.11, we obtain:
∣∣∣∣

ri(ρ)
ρ qi(ρ)

∣∣∣∣

≤ 1
ρ




∫ a
2

ρ
e

∫ t

ρ

pi(%)λi

%2
d% t|qi(t)|

|qi(ρ)| |f̂i(t)| dt+
∫ a

a
2

e

∫ t

ρ

pi(%)λi

%2
d% t|qi(t)|

|qi(ρ)| |f̂i(t)| dt


 .

Since qi(ρ) is an increasing function on [0, a] (see Remark 2.8.9) and negative on [0, a], then

the function |qi(ρ)| is decreasing on [0, a]. So,
|qi(t)|
|qi(ρ)| ≤ 1, for ρ < t. Consequently, using

again the computations of the proof of Lemma 2.8.11,
∣∣∣∣

ri(ρ)
ρ qi(ρ)

∣∣∣∣

≤ 1
ρ




∫ a
2

ρ
e

∫ t

ρ

pi(%)λi

%2
d%

t|f̂i(t)|dt +
∫ a

a
2

e

∫ t

ρ

pi(%)λi

%2
d%

t|f̂i(t)| dt




≤ √
c1

1
i
, ∀ρ ∈ [0,

a

2
].
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Therefore, for i ≥ i? (notice that obviously i? ≥ 2) and using the fact that pi(%) < 0, we

obtain, for all ρ ∈ [0, a
2 ],

∂ui

∂ρ
(ρ)− 1

pi(ρ)
ui(ρ) = −ri(ρ)

pi(ρ)

⇒ ui(ρ) =
∫ ρ

0
e

∫ ρ

t

1
pi(%)

d% (
−ri(t)

pi(t)

)
dt

⇒ |ui(ρ)| ≤
∫ ρ

0

∣∣∣∣
ri(t)
t qi(t)

∣∣∣∣ dt ≤
∫ ρ

0

√
c1

1
i

dt ≤ √
c1

ρ

i
≤ √

c1
a

i
.

Then, as in Lemma 2.8.11, since the numerical series
∞∑

i?

a2c1

i2
is convergent, the series

∞∑

2

(ui(ρ))2 is uniformly convergent on [0, a
2 ] and consequently the series

∞∑

2

(ui(ϕ))2 is uni-

formly convergent on [−∞, log
(

a
2

)
].

Proposition 2.8.18. For û, solution of û = P
∂û

∂ρ
+ r and û(0) = u0, where û(0) is given

by (2.73), we have lim
ρ→0

‖û(ρ)− û(0)‖2
L2(0,2π) = 0 (in particular, lim

ρ→0
‖û(ρ)‖L2(0,2π) = |u0|).

Proof. Since the series
∞∑

2

(ui(ϕ))2 is uniformly convergent on [−∞, log
(

a
2

)
] by Lemma

2.8.17, we have

lim
ϕ→−∞ ‖u(ϕ)− u(−∞)‖2

L2(0,2π) = lim
ϕ→−∞ (u1(ϕ)− u0)

2 + lim
ϕ→−∞

∞∑

2

(ui(ϕ))2

= (u1(−∞)− u0)
2 +

∞∑

2

0 = (u0 − u0)
2 = 0.

For ui(ϕ) given by (2.74), we have, for i ≥ 2,

lim
ϕ→−∞

ui(ϕ)
e2ϕ

= lim
ϕ→−∞

(ui(ϕ))′

2 e2ϕ
= lim

ϕ→−∞

(
1

qi(ϕ)
ui(ϕ)
2 e2ϕ

− ri(ϕ)
2 qi(ϕ) e2ϕ

)

⇒ lim
ϕ→−∞

ui(ϕ)
e2ϕ

= lim
ϕ→−∞

−ri(ϕ)
(2 qi(ϕ)− 1) e2ϕ

.

On the other hand, lim
ϕ→−∞

−ri(ϕ)
(2 qi(ϕ)− 1) e2ϕ

= lim
ρ→0

−ri(ρ)
(2 qi(ρ)− 1) ρ2

= lim
ρ→0

− ri(ρ)
ρ2

2 qi(ρ)− 1
=

− f̂i(0)

λi−2
√

λi

2 −1√
λi
− 1

=
f̂i(0)
λi − 4

and consequently lim
ϕ→−∞

ui(ϕ)
e2ϕ

=
f̂i(0)
λi − 4

, which means that ui(ϕ) ∼ e2ϕ.
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Proposition 2.8.19. For all ρ ∈ (0, a) there is a unique solution û(ρ) for the boundary

value problem û(ρ) = P (ρ)
∂û

∂ρ
(ρ) + r(ρ), û(0) = u0.

Proof. Supposing that û1(ρ) and û2(ρ) are two solutions of the previous problem, then

w(ρ) = û1(ρ)− û2(ρ) satisfies the boundary value problem P (ρ)
∂w

∂ρ
(ρ)−w(ρ) = 0, w(0) = 0.

Furthermore, since û1(ρ) and û2(ρ) are continuous (see Lemma 2.5.2) then w(ρ) is also contin-

uous. Thus, taking the inner product with
∂w

∂ρ
(ρ), in the duality H

1/2
ρ,P (0, 2π),

(
H

1/2
ρ,P (0, 2π)

)′
,

we obtain: (
P (ρ)

∂w

∂ρ
(ρ),

∂w

∂ρ
(ρ)

)
−

(
w(ρ),

∂w

∂ρ
(ρ)

)
= 0.

Then, we can see on page 103 of [23] that
∫ ρ

0

(
w(%),

∂w

∂%
(%)

)
d% =

1
2
‖w(ρ)‖2

L2(0,2π) (since

w(0) = 0 and w is continuous on [0, ρ]) and consequently
∫ ρ

0

(
−P (%)

∂w

∂%
(%),

∂w

∂%
(%)

)
d% +

1
2
‖w(ρ)‖2

L2(0,2π) = 0.

Since we are summing, in the previous equation, two non negative quantities (notice that

P is a negative operator), we must have ‖w(ρ)‖L2(0,2π) = 0. According to the continuity

previously established, we therefore conclude that û1(ρ) = û2(ρ).

Theorem 2.8.20. Considering φ ∈ D(0, a) we obtain:

1. for every h, h̄ in L2(0, 2π), the operator P satisfies the equation
(

∂P

∂ρ
h, h̄

)

L2(0,2π)

+
(

1
ρ2

∂

∂θ
Ph,

∂

∂θ
P h̄

)

L2(0,2π)

−
(

1
ρ
h, P h̄

)

L2(0,2π)

=
(
h, h̄

)
L2(0,2π)

in D′(0, a), with the initial condition P (a) = 0;

2. for every h in H
1/2
ρ,P (0, 2π), the function r satisfies the equation

〈
1
ρ2

∂r

∂θ
,

∂

∂θ
Ph

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

+
〈

∂r

∂ρ
, h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

= (f, Ph)L2(0,2π)

in D′(0, a), with the initial condition r(a) = 0;

3. for every h in
(
H

1/2
ρ,P (0, 2π)

)′
, û satisfies the equation

(û, h)L2(0,2π) =
(

P
∂û

∂ρ
, h

)

L2(0,2π)

+ (r, h)L2(0,2π)

in D′(0, a), with the initial condition û(0) = lim
ρ→0

r(ρ).
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Proof. Since Pm and rm do not depend on ε, the first two items are a direct consequence

of Propositions 2.8.4 and 2.8.5, taking into account Remark 2.8.7. The third item is a

consequence of Proposition 2.8.6, considering (2.73).



Chapter 3

The factorization method in a

circular domain: dual case

In this chapter, we consider again Ω (respectively, Ωs) to be a disk of IR2 with radius a

(respectively, s) centered on the origin. Another factorization to the problem (1.3) could be

obtained by using an invariant embedding defined by the family of disks Ωs, s ∈ (0, a). Here

the main difficulty is to define the initial conditions for P and r at the origin.

3.1. Invariant embedding

For the reasons pointed out in Sections 1.4. and 2.1. we consider again an auxiliary problem

and its formulation (2.2). As in the previous chapter, we are going to consider f ∈ C0,α(Ω).

Using the technique of invariant embedding, we now embed problem (2.2) in a family of

similar problems defined on Ω̂s \ Ω̂ε = [ε, s] × [0, 2π], for s ∈ (ε, a]. For each problem we

impose a Robin boundary condition
∂ûε

∂ρ
|Γs + α ûε|Γs

= h, where α ∈ IR+ and Γs is the

moving boundary:




−1
ρ

∂

∂ρ

(
ρ
∂ûε

∂ρ

)
− 1

ρ2

∂2ûε

∂θ2
= f, in Ω̂s \ Ω̂ε

∂ûε

∂ρ
|Γs + α ûε|Γs

= h

ûε|Γε
constant,

∫ 2π

0

∂ûε

∂ρ
|Γε dθ = 0

ûε|θ=0
= ûε|θ=2π

,
∂ûε

∂θ
|θ=0 =

∂ûε

∂θ
|θ=2π.

(3.1)

77
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In (3.1) we take h ∈
(
H

1/2
ρ,P (0, 2π)

)′
. Then, it is clear that (3.1) is exactly (2.2), for s = a

and h =
∂ûε

∂ρ
|Γs .

Analogously to the previous chapter, to the Hilbert space H1(Ω̂s \ Ω̂ε) corresponds the

space Ĥs =
{

v̂ : v̂ ∈ L2
ρ(ε, s; H

1
ρ,P (0, 2π)),

∂v̂

∂ρ
∈ L2

ρ(ε, s; L
2(0, 2π))

}
. In this space, we con-

sider the norm

‖|v̂|‖2
bHs

= αs

∫ 2π

0
(v̂(s))2 dθ +

∫ s

ε

∫ 2π

0

(
1
ρ

(
∂v̂

∂θ

)2

+ ρ

(
∂v̂

∂ρ

)2
)

dθ dρ.

Proposition 3.1.1. The norm

‖v̂‖2
bHs

=
∫ s

ε

∫ 2π

0

(
(v̂)2ρ +

1
ρ

(
∂v̂

∂θ

)2

+ ρ

(
∂v̂

∂ρ

)2
)

dθ dρ

(usual norm on Ĥs) is equivalent to the norm

‖|v̂|‖2
bHs

= αs

∫ 2π

0
(v̂(s))2 dθ +

∫ s

ε

∫ 2π

0

(
1
ρ

(
∂v̂

∂θ

)2

+ ρ

(
∂v̂

∂ρ

)2
)

dθ dρ.

Proof. We have ‖v̂(s)‖2
L2(0,2π) ≤ ‖v̂(s)‖2

H
1/2
ρ,P (0,2π)

and, by trace theorem, ‖v̂(s)‖2

H
1/2
ρ,P (0,2π)

≤
cs‖v̂‖2

bHs
, where cs is a constant depending on s. Then,

‖|v̂|‖2
bHs

= αs‖v̂(s)‖2
L2(0,2π) + ‖∇v̂‖2

L2
ρ(ε,s;L2(0,π))

≤ αs cs‖v̂‖2
bHs

+ ‖∇v̂‖2
L2

ρ(ε,s;L2(0,π)) ≤ (αs cs + 1)‖v̂‖2
bHs

.

On the other hand, we have
∫ s

ρ
t v̂(t, θ)

∂v̂

∂t
(t, θ) dt =

1
2

(v̂(t, θ))2 t
]s

ρ
− 1

2

∫ s

ρ
(v̂(t, θ))2 dt

=
1
2

(v̂(s, θ))2 s− 1
2

(v̂(ρ, θ))2 ρ− 1
2

∫ s

ρ
(v̂(t, θ))2 dt.

Then,

(v̂(ρ, θ))2 ρ− (v̂(s, θ))2 s +
∫ s

ρ
(v̂(t, θ))2 dt

= −2
∫ s

ρ
t v̂(t, θ)

∂v̂

∂t
(t, θ) dt ≤ 2

∫ s

ρ

∣∣∣∣t v̂(t, θ)
∂v̂

∂t
(t, θ)

∣∣∣∣ dt

≤ 2
(∫ s

ρ
(v̂(t, θ))2 dt

)1/2
(∫ s

ρ
t2

(
∂v̂

∂t
(t, θ)

)2

dt

)1/2

≤
∫ s

ρ
(v̂(t, θ))2 dt +

∫ s

ρ
t2

(
∂v̂

∂t
(t, θ)

)2

dt.
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Consequently,

(v̂(ρ, θ))2 ρ ≤ s (v̂(s, θ))2 +
∫ s

ρ
t2

(
∂v̂

∂t
(t, θ)

)2

dt

≤ s (v̂(s, θ))2 + s

∫ s

ε
t

(
∂v̂

∂t
(t, θ)

)2

dt.

Thus,

∫ s

ε
(v̂(ρ, θ))2 ρ dρ ≤

∫ s

ε
s (v̂(s, θ))2 dρ +

∫ s

ε

(
s

∫ s

ε
t

(
∂v̂

∂t
(t, θ)

)2

dt

)
dρ

= (s− ε)s (v̂(s, θ))2 + (s− ε)s
∫ s

ε
t

(
∂v̂

∂t
(t, θ)

)2

dt

≤ s2 (v̂(s, θ))2 + s2

∫ s

ε
t

(
∂v̂

∂t
(t, θ)

)2

dt,

which implies

∫ 2π

0

∫ s

ε
(v̂(ρ, θ))2 ρ dρ dθ ≤ s2

∫ 2π

0
(v̂(s, θ))2 dθ + s2

∫ 2π

0

∫ s

ε

(
∂v̂

∂ρ
(ρ, θ)

)2

ρ dρ dθ.

Therefore,

‖v̂‖2
bHs

=
∫ 2π

0

∫ s

ε
(v̂)2ρdρ dθ +

∫ 2π

0

∫ s

ε

1
ρ

(
∂v̂

∂θ

)2

dρ dθ +
∫ 2π

0

∫ s

ε

(
∂v̂

∂ρ

)2

ρdρ dθ

≤ s

α
s α

∫ 2π

0
(v̂(s))2 dθ + (s2 + 1)

∫ 2π

0

∫ s

ε

(
∂v̂

∂ρ

)2

ρdρ dθ +
∫ 2π

0

∫ s

ε

1
ρ

(
∂v̂

∂θ

)2

dρdθ

≤ max
{

s2 + 1,
s

α

}
‖|v̂|‖2

bHs
.

Furthermore, we are going to use the spaces L2
ρ(ε, s), L2(0, 2π), H1

ρ (ε, s) and H1
ρ,P (0, 2π) and

respective norms, as defined in Section 2.1.

Again as a direct application of Theorem 3.1, page 19 of [24], and similarly to Proposition

2.1.2, we have the following trace theorem:

Proposition 3.1.2. If v̂ ∈ X̂s =
{

v̂ ∈ Ĥs :
∂2v̂

∂ρ2
∈ L2

(
[ε, s];

(
H1

ρ,P (0, 2π)
)′)}

, we have

v̂ ∈ C([ε, s];H1/2
ρ,P (0, 2π)),

∂v̂

∂ρ
∈ C

(
[ε, s];

(
H

1/2
ρ,P (0, 2π)

)′)
and the trace mapping v̂ →

(v̂|Γs
,
∂v̂

∂ρ
|Γs) is continuous from X̂s onto H

1/2
ρ,P (0, 2π)×

(
H

1/2
ρ,P (0, 2π)

)′
.

In order to decouple problem (3.1), we define:
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Definition 3.1.1. For every s ∈ (ε, a] and h ∈
(
H

1/2
ρ,P (0, 2π)

)′
we define Pε(s)h = γε|Γs

,

where γε ∈ X̂s is the solution of





−1
ρ

∂

∂ρ

(
ρ
∂γε

∂ρ

)
− 1

ρ2

∂2γε

∂θ2
= 0, in Ω̂s \ Ω̂ε

∂γε

∂ρ
|Γs + α γε|Γs

= h

γε|Γε
constant

∫ 2π

0

∂γε

∂ρ
|Γε dθ = 0

γε|θ=0
= γε|θ=2π

∂γε

∂θ
|θ=0 =

∂γε

∂θ
|θ=2π

(3.2)

and rε(s) = βε|Γs
, where βε ∈ X̂s is the solution of





−1
ρ

∂

∂ρ

(
ρ
∂βε

∂ρ

)
− 1

ρ2

∂2βε

∂θ2
= f, in Ω̂s \ Ω̂ε

∂βε

∂ρ
|Γs + α βε|Γs

= 0

βε|Γε
constant

∫ 2π

0

∂βε

∂ρ
|Γε dθ = 0

βε|θ=0
= βε|θ=2π

∂βε

∂θ
|θ=0 =

∂βε

∂θ
|θ=2π.

(3.3)

For every s ∈ [ε, a], Pε(s) :
(
H

1/2
ρ,P (0, 2π)

)′
→ H

1/2
ρ,P (0, 2π) is a linear operator and rε(s) ∈

H
1/2
ρ,P (0, 2π). By linearity of (3.1) we have

ûε|Γs
= Pε(s)

(
∂ûε

∂ρ
|Γs + α ûε|Γs

)
+ rε(s), ∀s ∈ [ε, a]. (3.4)

Furthermore, the solution ûε of (2.2) is given by

ûε(ρ, θ) =
(

Pε(ρ)
(

∂ûε

∂ρ
|Γρ + α ûε|Γρ

))
(θ) + (rε(ρ))(θ). (3.5)

Proposition 3.1.3. Considering the Hilbert space Ûs = {ûε ∈ Ĥs : ûε|Γε
is constant}, the

variational formulation of problem (3.1) is
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ûε ∈ Ûs

∫ 2π

0
αûε(s)v̂ε(s)sdθ +

∫ s

ε

∫ 2π

0

∂ûε

∂ρ

∂v̂ε

∂ρ
ρ +

1
ρ

∂ûε

∂θ

∂v̂ε

∂θ
dθ dρ

=
∫ 2π

0
hv̂ε(s)sdθ +

∫ s

ε

∫ 2π

0
fv̂ερ dθ dρ, ∀v̂ε ∈ Ûs.

(3.6)

Proof. Using (3.1), multiplying by v̂ε ∈ Ûs, and integrating in Ω̂s \ Ω̂ε, we obtain:

∫ 2π

0

∫ s

ε

(
−∂2ûε

∂ρ2
v̂ερ− 1

ρ2

∂2ûε

∂θ2
v̂ερ− 1

ρ

∂ûε

∂ρ
v̂ερ

)
dρ dθ =

∫ 2π

0

∫ s

ε
fv̂ερ dρ dθ

⇒
∫ 2π

0
−∂ûε

∂ρ
v̂ερ

]s

ε

dθ +
∫ 2π

0

∫ s

ε

∂ûε

∂ρ

(
∂v̂ε

∂ρ
ρ + v̂ε

)
dρ dθ −

∫ s

ε

1
ρ

∂ûε

∂θ
v̂ε

]2π

0

dρ

+
∫ 2π

0

∫ s

ε

1
ρ

∂ûε

∂θ

∂v̂ε

∂θ
dρ dθ −

∫ 2π

0

∫ s

ε

∂ûε

∂ρ
v̂ε dρdθ =

∫ 2π

0

∫ s

ε
fv̂ερ dρdθ

⇒
∫ 2π

0
−∂ûε

∂ρ
(s)v̂ε(s)sdθ +

∫ 2π

0

∂ûε

∂ρ
(ε)v̂ε(ε)εdθ +

∫ 2π

0

∫ s

ε

∂ûε

∂ρ

∂v̂ε

∂ρ
ρdρ dθ

+
∫ 2π

0

∫ s

ε

1
ρ

∂ûε

∂θ

∂v̂ε

∂θ
dρ dθ =

∫ 2π

0

∫ s

ε
fv̂ερ dρ dθ

⇒
∫ 2π

0
(αûε(s)− h)v̂ε(s)sdθ +

∫ 2π

0

∫ s

ε

∂ûε

∂ρ

∂v̂ε

∂ρ
ρ dρdθ

+
∫ 2π

0

∫ s

ε

1
ρ

∂ûε

∂θ

∂v̂ε

∂θ
dρ dθ =

∫ 2π

0

∫ s

ε
fv̂ερ dρ dθ

⇒
∫ 2π

0
αûε(s)v̂ε(s)sdθ +

∫ 2π

0

∫ s

ε

∂ûε

∂ρ

∂v̂ε

∂ρ
ρ dρdθ +

∫ 2π

0

∫ s

ε

1
ρ

∂ûε

∂θ

∂v̂ε

∂θ
dρdθ

=
∫ 2π

0
hv̂ε(s)sdθ +

∫ 2π

0

∫ s

ε
fv̂ερdρ dθ.

Again, the variational formulation (3.6) reduces to the variational formulation (2.3), when

s = a and h =
∂ûε

∂ρ
|Γs . Also, it can be proved, as in Proposition 1.4.4, using the variational

formulation (3.6) and Lax-Milgram theorem, that the problem (3.1) is well posed.

Now, the following corollary is a direct consequence of the computations exhibited in the

previous proposition, taking f = 0 and h = 0, respectively.
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Corollary 3.1.4. The variational formulation of problem (3.2) is




γε ∈ Ûs

∫ 2π

0
αγε(s)γε(s)sdθ +

∫ s

ε

∫ 2π

0

∂γε

∂ρ

∂γε

∂ρ
ρ +

1
ρ

∂γε

∂θ

∂γε

∂θ
dθ dρ =

∫ 2π

0
hγε(s)sdθ,

∀γε ∈ Ûs

and the variational formulation of problem (3.3) is




βε ∈ Ûs

∫ 2π

0
αβε(s)βε(s)sdθ +

∫ s

ε

∫ 2π

0

∂βε

∂ρ

∂βε

∂ρ
ρ +

1
ρ

∂βε

∂θ

∂βε

∂θ
dθ dρ =

∫ s

ε

∫ 2π

0
fβερ dθ dρ,

∀βε ∈ Ûs.

The following remark stands out the relation between the operators defined by (2.7) and

(3.2):

Remark 3.1.5. The operators P1, such that u = P1
∂u

∂ρ
+ r1 (as in Chapter 2), and P2,

such that u = P2

(
∂u

∂ρ
+ αu

)
+ r2, can be easily related. In fact, from the second equality,

we obtain (I − αP2)u = P2
∂u

∂ρ
+ r2. Thus, (I − αP2)P1 = P2.

In the next proposition are collected some basic properties of the operator Pε.

Proposition 3.1.6. The linear operator Pε(s) :
(
H

1/2
ρ,P (0, 2π)

)′
→ H

1/2
ρ,P (0, 2π) is continu-

ous, self adjoint and positive definite, for all s ∈ [ε, a).

Proof. The operator Pε(s) is continuous since it’s the composition of continuous oper-

ators: h → γε → γε|Γs
, defined by (3.2), respectively in the spaces

(
H

1/2
ρ,P (0, 2π)

)′
, X̂s and

H
1/2
ρ,P (0, 2π). Let’s consider γε and γε two solutions of (3.2), with

∂γε

∂ρ
|Γs + αγε|Γs

= h and

∂γε

∂ρ
|Γs +αγε|Γs

= h, respectively. Using the variational formulation established in Corollary

3.1.4, we have:
∫ 2π

0
hγε(s)sdθ =

∫ 2π

0
hγε(s)sdθ

⇒ s
〈
h, Pε(s)h

〉�
H

1/2
ρ,P (0,2π)

�′
, H

1/2
ρ,P (0,2π)

= s
〈
h, Pε(s)h

〉�
H

1/2
ρ,P (0,2π)

�′
, H

1/2
ρ,P (0,2π)
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and we conclude that Pε(s) is a self adjoint operator.

On the other hand, taking γε = γε we have

s 〈h, Pε(s)h 〉�
H

1/2
ρ,P (0,2π)

�′
, H

1/2
ρ,P (0,2π)

=
∫
bΩs\bΩε

|∇γε|2 ρ dρdθ + α s

∫ 2π

0
(γε(s))2 dθ (3.7)

and consequently Pε(s) is a positive operator.

Now, from ‖γε|Γs
‖�

H
1/2
ρ,P (0,2π)

�′ ≤ ks‖γε|Γs
‖

H
1/2
ρ,P (0,2π)

≤ ks,1‖γε‖ bHs
≤ ks,2‖|γε|‖ bHs

and
∥∥∥∥
∂γε

∂ρ
|Γs

∥∥∥∥�
H

1/2
ρ,P (0,2π)

�′ ≤ ks,3 ‖γε‖H(∆,bΩs\bΩε)
= ks,3 ‖γε‖ bHs

≤ ks,4‖|γε|‖ bHs
(see Proposition

2.2.3), with ks,1, ks,2, ks,3 and ks,4 positive constants, we obtain

∥∥∥∥αγε|Γs
+

∂γε

∂ρ
|Γs

∥∥∥∥�
H

1/2
ρ,P (0,2π)

�′ ≤ ‖αγε|Γs
‖�

H
1/2
ρ,P (0,2π)

�′ +
∥∥∥∥
∂γε

∂ρ
|Γs

∥∥∥∥�
H

1/2
ρ,P (0,2π)

�′

≤ ks,5‖|γε|‖ bHs
.

Then,

s 〈h, Pε(s)h 〉�
H

1/2
ρ,P (0,2π)

�′
, H

1/2
ρ,P (0,2π)

= ‖|γε|‖2
bHs
≥ 1

k2
s,5

∥∥∥∥αγε|Γs
+

∂γε

∂ρ
|Γs

∥∥∥∥
2

�
H

1/2
ρ,P (0,2π)

�′

= ks,6‖h‖2�
H

1/2
ρ,P (0,2π)

�′ .

Again from (3.7) and Holder’s inequality, we have

‖|γε|‖2
bHs
≤ s‖h‖�

H
1/2
ρ,P (0,2π)

�′‖γε|Γs
‖

H
1/2
ρ,P (0,2π)

.

Then, as in Proposition 2.2.3 (and using again the inequalities ‖γε|Γs
‖

H
1/2
ρ,P (0,2π)

≤ ks,1‖γε‖ bHs
≤

ks,2‖|γε|‖ bHs
), we can conclude that there exists cs > 0 such that

‖γε|Γs
‖

H
1/2
ρ,P (0,2π)

≤ cs‖h‖�
H

1/2
ρ,P (0,2π)

�′ .

Proposition 3.1.7. Considering M and N as in Lemma 2.2.4 and Lemma 2.2.5, respec-

tively, the operator Pε is such that Pε : M → M and Pε : N → N .
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Proof. For each s ∈ [ε, a) and h ∈ N (constant), we define Pε(s)h = γε|Γs
, where γε ∈ X̂s

is the solution of (3.2) (that is, we consider a solution of (3.2) verifying also
∂γε

∂ρ
|Γs + α γε|Γs

constant in θ). Considering δ(ρ) the solution of the linear two points boundary value problem,

δ′′(ρ) +
1
ρ
δ′(ρ) = 0, 2πδ′(ε) = 0, δ′(s) + αδ(s) = h (in fact, it is easy to prove that δ(ρ) =

h

α
)

then, by uniqueness, γε(ρ, θ) = δ(ρ) is the solution of the previous problem.

Then, we can conclude that considering
∂γε

∂ρ
|Γs + αγε|Γs

= h constant in θ, we also have

γε(ρ, θ) constant in θ (in fact, in this case, it is also constant in ρ) and therefore γε|Γs
has

the same property. Consequently, Pε(s)h = γε|Γs
is constant in θ and Pε : N → N .

Now, for each s ∈ [ε, a) and h ∈ M , we define Pε(s)h = γε|Γs
, where γε ∈ X̂s is

the solution of (3.2) (that is, we consider a solution of (3.2) verifying also
∫ 2π

0

∂γε

∂ρ
|Γs +

α γε|Γs
dθ = 0).

We have

−∂2γε

∂ρ2
(ρ, θ)− 1

ρ2

∂2γε

∂θ2
(ρ, θ)− 1

ρ

∂γε

∂ρ
(ρ, θ) = 0

⇒ −
∫ 2π

0

∂2γε

∂ρ2
(ρ, θ) dθ −

∫ 2π

0

1
ρ2

∂2γε

∂θ2
(ρ, θ) dθ −

∫ 2π

0

1
ρ

∂γε

∂ρ
(ρ, θ) dθ = 0

⇒ − ∂2

∂ρ2

∫ 2π

0
γε(ρ, θ) dθ − 1

ρ2

∂γε

∂θ
(ρ, θ)

]2π

0

− 1
ρ

∂

∂ρ

∫ 2π

0
γε(ρ, θ) dθ = 0

⇒ − ∂2

∂ρ2

∫ 2π

0
γε(ρ, θ) dθ − 1

ρ

∂

∂ρ

∫ 2π

0
γε(ρ, θ) dθ = 0.

Considering δ(ρ) =
∫ 2π

0
γε(ρ, θ) dθ, since

∫ 2π

0

∂γε

∂ρ
|Γε = 0 ⇒ ∂

∂ρ

∫ 2π

0
γε|Γε

dθ = 0 and also
∫ 2π

0

∂γε

∂ρ
|Γs + αγε|Γs

dθ = 0 ⇒ ∂

∂ρ

∫ 2π

0
γε|Γs

dθ + α

∫ 2π

0
γε|Γs

dθ = 0, we obtain the two points

boundary value problem, δ′′(ρ)+
1
ρ
δ′(ρ) = 0, δ′(ε) = 0, δ′(s)+αδ(s) = 0, which has the zero

solution.

Then, we can conclude that considering
∫ 2π

0

∂γε

∂ρ
|Γs + αγε|Γs

dθ = 0, we also have
∫ 2π

0
γε(ρ, θ) dθ = 0 for each ρ, and therefore

∫ 2π

0
γε|Γs

dθ has the same property. Con-

sequently, Pε(s)h = γε|Γs
has null mean and Pε : M → M .

From equation (3.5), taking the derivative in a formal way, with respect to ρ, we obtain
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∂ûε

∂ρ
+ αûε

=
∂Pε

∂ρ

(
∂ûε

∂ρ
+ αûε

)
+ Pε

(
∂2ûε

∂ρ2
+ α

∂ûε

∂ρ

)
+

∂rε

∂ρ
+ αPε

(
∂ûε

∂ρ
+ αûε

)
+ αrε

=
∂Pε

∂ρ

(
∂ûε

∂ρ
+ αûε

)
+ Pε

(
−f − 1

ρ

∂ûε

∂ρ
− 1

ρ2

∂2ûε

∂θ2
+ α

∂ûε

∂ρ

)
+

∂rε

∂ρ

+αPε

(
∂ûε

∂ρ
+ αûε

)
+ αrε

=
∂Pε

∂ρ

(
∂ûε

∂ρ
+ αûε

)
− Pεf − 1

ρ
Pε

∂ûε

∂ρ
− 1

ρ2
Pε

∂2ûε

∂θ2
+ αPε

∂ûε

∂ρ
+

∂rε

∂ρ

+αPε

(
∂ûε

∂ρ
+ αûε

)
+ αrε

=
∂Pε

∂ρ

(
∂ûε

∂ρ
+ αûε

)
− Pεf − 1

ρ
Pε

(
∂ûε

∂ρ
+ αûε − αûε

)

− 1
ρ2

Pε
∂2

∂θ2

(
Pε

(
∂ûε

∂ρ
+ αûε

)
+ rε

)
+ αPε

(
∂ûε

∂ρ
+ αûε − αûε

)
+

∂rε

∂ρ

+αPε

(
∂ûε

∂ρ
+ αûε

)
+ αrε

=
∂Pε

∂ρ

(
∂ûε

∂ρ
+ αûε

)
− Pεf − 1

ρ
Pε

(
∂ûε

∂ρ
+ αûε

)
+

1
ρ
Pεαûε

− 1
ρ2

Pε
∂2

∂θ2
Pε

(
∂ûε

∂ρ
+ αûε

)
− 1

ρ2
Pε

∂2rε

∂θ2
+ αPε

(
∂ûε

∂ρ
+ αûε

)
− αPεαûε +

∂rε

∂ρ

+αPε

(
∂ûε

∂ρ
+ αûε

)
+ αrε

=
∂Pε

∂ρ

(
∂ûε

∂ρ
+ αûε

)
− Pεf − 1

ρ
Pε

(
∂ûε

∂ρ
+ αûε

)
+

1
ρ
Pε

(
αPε

(
∂ûε

∂ρ
+ αûε

)
+ αrε

)

− 1
ρ2

Pε
∂2

∂θ2
Pε

(
∂ûε

∂ρ
+ αûε

)
− 1

ρ2
Pε

∂2rε

∂θ2
+ αPε

(
∂ûε

∂ρ
+ αûε

)

−αPε

(
αPε

(
∂ûε

∂ρ
+ αûε

)
+ αrε

)
+

∂rε

∂ρ
+ αPε

(
∂ûε

∂ρ
+ αûε

)
+ αrε

=
∂Pε

∂ρ

(
∂ûε

∂ρ
+ αûε

)
− Pεf − 1

ρ
Pε

(
∂ûε

∂ρ
+ αûε

)
+

1
ρ
PεαPε

(
∂ûε

∂ρ
+ αûε

)

+
1
ρ
Pεαrε − 1

ρ2
Pε

∂2

∂θ2
Pε

(
∂ûε

∂ρ
+ αûε

)
− 1

ρ2
Pε

∂2rε

∂θ2
+ αPε

(
∂ûε

∂ρ
+ αûε

)

−(αPε)2
(

∂ûε

∂ρ
+ αûε

)
− αPεαrε +

∂rε

∂ρ
+ αPε

(
∂ûε

∂ρ
+ αûε

)
+ αrε.

Then, since
∂ûε

∂ρ
+ αûε is arbitrary (the prove is similar to the one of Remark 2.4.1), we

obtain the following system




∂Pε

∂ρ
− Pε

ρ
+

1
ρ
αP 2

ε −
1
ρ2

Pε
∂2

∂θ2
Pε + 2αPε − (αPε)2 = I

−Pεf +
1
ρ
Pεαrε − 1

ρ2
Pε

∂2rε

∂θ2
− α2Pεrε +

∂rε

∂ρ
+ αrε = 0

ûε = Pε

(
∂ûε

∂ρ
+ αûε

)
+ rε.
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Considering again M and N as in Lemma 2.2.4 and Lemma 2.2.5, respectively, from

(3.4), we obtain

ûε(ε) = Pε(ε)
(

∂ûε

∂ρ
(ε) + αûε(ε)

)
+ rε(ε)

⇒ ûε(ε)|M = Pε(ε)
(

∂ûε

∂ρ
(ε)|M + αûε(ε)|M

)
+ rε(ε)|M

⇒ 0 = Pε(ε)
∂ûε

∂ρ
(ε)|M + rε(ε)|M

⇒ Pε(ε)|M = 0 ∧ rε(ε)|M = 0,

(3.8)

ûε(ε) = Pε(ε)
(

∂ûε

∂ρ
(ε) + αûε(ε)

)
+ rε(ε)

⇒ ûε(ε)|N = Pε(ε)
(

∂ûε

∂ρ
(ε)|N + αûε(ε)|N

)
+ rε(ε)|N

⇒ ûε(ε) = Pε(ε) (0 + αûε(ε)) + rε(ε)|N = αPε(ε)ûε(ε) + rε(ε)|N

⇒ Pε(ε)|N =
I

α
∧ rε(ε)|N = 0.

(3.9)

From (3.8) and (3.9) we obtain rε(ε) = rε(ε)|M + rε(ε)|N = 0. In the same way, since

Pε(ε)h = Pε(ε)
(
h|M + h|N

)

= Pε(ε)h|M + Pε(ε)h|N

=
I

α
h|N

we obtain Pε(ε) =
proj|N

α
, denoting by proj|N the projection operator over the set N .

Therefore, we have found the following system:





∂Pε

∂ρ
− Pε

ρ
+

1
ρ
αP 2

ε −
1
ρ2

Pε
∂2

∂θ2
Pε + 2αPε − (αPε)2 = I, Pε(ε) =

proj|N
α

−Pεf +
1
ρ
Pεαrε − 1

ρ2
Pε

∂2rε

∂θ2
− α2Pεrε +

∂rε

∂ρ
+ αrε = 0, rε(ε) = 0

ûε = Pε

(
∂ûε

∂ρ
+ αûε

)
+ rε, ûε(a) = 0.
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3.2. Semi discretization and restriction to finite dimension

As in Section 2.3., every v̂ ∈ Ĥs can be written in the form

v̂(ρ, θ) =
∞∑

i=1

vi(ρ)wi(θ), (3.10)

where wi(θ) are the elements of an Hilbert basis of L2(0, 2π) formed by the eigenfunctions

of the problem −d2wi

dθ2
= λiwi, with periodic boundary conditions on 0 and 2π.

Using (3.10) and the definition of the norms referred in the previous section, we obtain,

for all s ∈ (ε, a]:

‖v̂(ρ)‖2
L2(0,2π) =

∞∑

i=1

v2
i , ‖v̂(ρ)‖2

H1
ρ,P (0,2π) = v2

1+
∞∑

i=2

λi

ρ2
v2
i , ‖v̂‖2

L2
ρ(ε,s;L2(0,2π)) =

∫ s

ε

∞∑

1

v2
i ρ dρ

‖|v̂|‖2
bHs

= αs
∞∑

1

v2
i (s) +

∫ s

ε

∞∑

2

λi

ρ
v2
i dρ +

∫ s

ε

∞∑

1

ρ

(
∂vi

∂ρ

)2

dρ.

By interpolation, we also have

‖v̂(ρ)‖2

H
1/2
ρ,P (0,2π)

= v2
1 +

∞∑

i=2

√
λi

ρ
v2
i , ‖v̂(ρ)‖2

H
3/2
ρ,P (0,2π)

= v2
1 +

∞∑

i=2

λi
3/2

ρ3
v2
i

and we define

‖v̂(ρ)‖2�
H

1/2
ρ,P (0,2π)

�′ = v2
1 +

∞∑

i=2

ρ√
λi

v2
i .

Obviously, all of these norms can be extended to the interval (0, a].

Once again we embed the approximated problem (2.28) in a family of problems depend-

ing on h and s. For all s ∈ (ε, a] we consider the finite dimension approximation defined

on Ω̂s \ Ω̂ε = (ε, s) × (0, 2π) and, for each problem, we impose the boundary condition
∂ûε

∂ρ
|Γs + α ûε|Γs

= h. Considering V m = 〈w1, . . . , wn〉, we define Ĥm
s = H1

ρ (ε, s; V m) and

Ûm
s =

{
v ∈ H1

ρ (ε, s; V m) : v|Γε
is constant

}
. Then, the approximation ûm

ε ∈ Ûm
s of ûε is the

solution of




ûm
ε ∈ Ûm

s

∫ 2π

0
αûm

ε (s)v̂m
ε (s)sdθ +

∫ s

ε

∫ 2π

0

∂ûm
ε

∂ρ

∂v̂m
ε

∂ρ
ρ +

1
ρ

∂ûm
ε

∂θ

∂v̂m
ε

∂θ
dθ dρ

=
∫ 2π

0
hmv̂m

ε (s)sdθ +
∫ s

ε

∫ 2π

0
fmv̂m

ε ρ dθ dρ, ∀v̂m
ε ∈ Ûm

s .

(3.11)
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We denote by βm
ε , γm

ε ∈ Ûm
s , respectively, the part of ûm

ε independent on hm and linearly

dependent on hm, which means that, as in Section 2.4., we define the finite dimension

operator Pm
ε (s) by γm

ε (s) = Pm
ε (s)hm and βm

ε (s) = rm
ε (s).

As in the previous chapter, for every s ∈ (ε, a], Pm
ε (s) is a linear operator and Pm

ε (s) :

V m → V m (on which we consider in the first set the norm of
(
H

1/2
ρ,P (0, 2π)

)′
, and in the

second one the norm of H
1/2
ρ,P (0, 2π)) and rm

ε (s) ∈ V m. Then we have

ûm
ε|Γs

= Pm
ε (s)

(
∂ûm

ε

∂ρ
|Γs + α ûm

ε|Γs

)
+ rm

ε (s),∀s ∈ [ε, a]. (3.12)

Furthermore, the solution ûm
ε of (2.28) is given by

ûm
ε (ρ, θ) =

(
Pm

ε (ρ)
(

∂ûm
ε

∂ρ
|Γρ + α ûm

ε|Γρ

))
(θ) + (rm

ε (ρ))(θ). (3.13)

From the last equality we can easily derive the following system:





∂Pm
ε

∂ρ
−Pm

ε

ρ
+

1
ρ
α(Pm

ε )2− 1
ρ2

Pm
ε

∂2

∂θ2
Pm

ε + 2αPm
ε − (αPm

ε )2 = I, Pm
ε (ε)=

projm
|N

α

−Pm
ε fm +

1
ρ
Pm

ε αrm
ε − 1

ρ2
Pm

ε

∂2rm
ε

∂θ2
− α2Pm

ε rm
ε +

∂rm
ε

∂ρ
+ αrm

ε = 0, rm
ε (ε) = 0

ûm
ε = Pm

ε

(
∂ûm

ε

∂ρ
+ αûm

ε

)
+ rm

ε , ûm
ε (a) = 0.

(3.14)

The proof of the next proposition is similar to the one of Proposition 2.4.2:

Proposition 3.2.1. There exists a unique local solution to the system (3.14).

By definition, we can write all ûm
ε ∈ Ĥm

s in the form

ûm
ε (ρ, θ) =

m∑

1

ui(ρ)wi(θ). (3.15)

Then, the coordinates {ui(ρ)}m
i=1 of ûm

ε must verify the following system (see Section 2.4.

for the justification of the boundary conditions on ε):
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−1
ρ

∂

∂ρ

(
ρ
∂ui

∂ρ
(ρ)

)
+

λi

ρ2
ui(ρ)

=
∫ 2π

0
f̂wi(θ) dθ = f̂i(ρ), ε < ρ < s, i = 1, . . . , m

ui(ε) = 0, i = 2, . . . ,m

∂u1

∂ρ
(ε) = 0

∂ui

∂ρ
(s) + αui(s) = hi, i = 1, . . . ,m.

(3.16)

As a consequence, the coordinates of γm
ε verify, for ε < ρ < s and i = 1, . . . ,m





−1
ρ

∂

∂ρ

(
ρ
∂γi

∂ρ
(ρ)

)
+

λi

ρ2
γi(ρ) = 0

γi(ε) = 0, i = 2, . . . , m

∂γ1

∂ρ
(ε) = 0

∂γi

∂ρ
(s) + αγi(s) = hi, i = 1, . . . , m

(3.17)

and, for the coordinates of βm
ε , we have





−1
ρ

∂

∂ρ

(
ρ
∂βi

∂ρ
(ρ)

)
+

λi

ρ2
βi(ρ)

= f̂i(ρ), ε < ρ < s, i = 1, . . . ,m

βi(ε) = 0, i = 2, . . . , m

∂β1

∂ρ
(ε) = 0

∂βi

∂ρ
(s) + αβi(s) = 0, i = 1, . . . , m.

(3.18)

For i = 1, we know that the equation (3.17) has a solution of the form γ1(ρ) = c1+c2 log ρ.

So, determining the constants c1 and c2, we find that this solution is

γ1(ρ) =
1
α

h1. (3.19)

Similarly, for i ≥ 2, we know that the equation has a solution of the form γi(ρ) = c1ρ
√

λi +

c2ρ
−√λi and we find that this solution is

γi(ρ) = s

(ρ
ε

)√λi −
(

ε
ρ

)√λi

√
λi

((
s
ε

)√λi +
(

ε
s

)√λi
)

+ α s
((

s
ε

)√λi − (
ε
s

)√λi
)hi, (3.20)
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on determining the constants.

In order to obtain an explicit formula for the coordinates of Pm
ε , we can also use the

property exhibed in Remark 3.1.5. It’s easy to see that without considering a particular

value for the initial constant we obtain, using the same method as in Proposition 2.8.8, the

general solution pi(ρ) =
ρ√
λi

c ρ2
√

λi − 1
c ρ2

√
λi + 1

, i ≥ 2, for the equation (2.37). Therefore, as a

consequence of Remark 3.1.5, denoting by p̄i the coordinates of P2, we have

(1− αp̄i)pi = p̄i ⇒ (1− αp̄i)
ρ√
λi

c ρ2
√

λi − 1
c ρ2

√
λi + 1

= p̄i

⇒ p̄i(ρ) =
ρ(c ρ2

√
λi − 1)√

λi(c ρ2
√

λi + 1) + αρ(c ρ2
√

λi − 1)
.

From the initial condition p̄i(ε) = 0, i ≥ 2, we can determine c as ε−2
√

λi and therefore we

find, for the coordinates the Pm
ε , the explicit expression

p̄i(ρ) =
ρ(

(ρ
ε

)2
√

λi − 1)
√

λi(
(ρ

ε

)2
√

λi + 1) + αρ(
(ρ

ε

)2
√

λi − 1)
, i ≥ 2, (3.21)

which corresponds to (3.20). The first coordinate of Pm
ε can not be achieved throught this

process since the first component of (I −αP2) is not invertible. In fact, from (3.19), we have

p̄1(ρ) = 1
α .

The coordinates of Pm
ε verify p̄i(ρ) ≥ 0, ∀i ≥ 1, and since

(ρ
ε

)2
√

λi + 1 > 0, from (3.21)

we deduce also that p̄i(ρ) <
1
α

, for i ≥ 2. Then,

p̄i(ρ) ≤ 1
α

, i ≥ 1. (3.22)

3.3. Estimates on Pm
ε and rm

ε

We begin this section with the usual “trace theorem”, valid both for functions γm
ε and βm

ε :

Proposition 3.3.1. For all ρ ∈ (ε, s] (s ∈ [ε, a]), there exists k > 0 (independent of ρ)

such that
√

ρ‖ξm(ρ)‖
H

1/2
ρ,P (0,2π)

≤ k‖|ξm|‖ bHs
,

for all ξm ∈ Ĥs, verifying ∂ξ1
∂ρ (ε) = 0 and ξi(ε) = 0, for i ≥ 2.
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Proof. Since, for i ≥ 2,

ξ2
i (ρ) = 2

∫ ρ

ε
ξi(t)

∂ξi

∂t
(t) dt

we have

√
λiξ

2
i (ρ) ≤ 2

√
λi

∣∣∣∣
∫ ρ

ε
ξi(t)

∂ξi

∂t
(t) dt

∣∣∣∣ ≤ 2
(∫ ρ

ε

λi

t
ξ2
i dt

)1/2
(∫ ρ

ε
t

(
∂ξi

∂t

)2

dt

)1/2

≤
∫ ρ

ε

λi

t
ξ2
i dt +

∫ ρ

ε
t

(
∂ξi

∂t

)2

dt.

(3.23)

Summing up from 2 to m, we obtain:

m∑

2

√
λiξ

2
i (ρ) ≤

m∑

2

∫ ρ

ε

λi

t
ξ2
i dt +

m∑

2

∫ ρ

ε
t

(
∂ξi

∂t

)2

dt. (3.24)

On the other hand, as in Proposition 3.1.1, we have
∫ s

ρ
t ξ1(t)

∂ξ1

∂t
(t) dt =

1
2
s ξ2

1(s)−
1
2
ρ ξ2

1(ρ)− 1
2

∫ s

ρ
ξ2
1(t) dt.

Then,

ρ ξ2
1(ρ)− s ξ2

1(s) +
∫ s

ρ
ξ2
1(t) dt = −2

∫ s

ρ
t ξ1(t)

∂ξ1

∂t
(t) dt

≤ 2
∫ s

ρ

∣∣∣∣tξ1(t)
∂ξ1

∂t
(t) dt

∣∣∣∣ ≤ 2
(∫ s

ρ
ξ2
1(t) dt

)1/2
(∫ s

ρ
t2

(
∂ξ1

∂t

)2

dt

)1/2

≤
∫ s

ρ
ξ2
1(t) dt +

∫ s

ρ
t2

(
∂ξ1

∂t

)2

dt.

Consequently,

ρ ξ2
1(ρ)− s ξ2

1(s) ≤
∫ s

ρ
t2

(
∂ξ1

∂t

)2

dt ≤ s

∫ s

ρ
t

(
∂ξ1

∂t

)2

dt ≤ s

∫ s

ε
t

(
∂ξ1

∂t

)2

dt.

So,

ρ ξ2
1(ρ) +

m∑

2

√
λiξ

2
i (ρ) ≤ ρ ξ2

1(ρ) +
m∑

2

∫ ρ

ε

λi

t
ξ2
i dt +

m∑

2

∫ ρ

ε
t

(
∂ξi

∂t

)2

dt

≤ ρ ξ2
1(ρ) +

m∑

2

∫ s

ε

λi

t
ξ2
i dt +

m∑

2

∫ s

ε
t

(
∂ξi

∂t

)2

dt

≤ s ξ2
1(s) + s

∫ s

ε
t

(
∂ξ1

∂t

)2

dt +
m∑

2

∫ s

ε

λi

t
ξ2
i dt +

m∑

2

∫ s

ε
t

(
∂ξi

∂t

)2

dt

≤ 1
α

α sξ2
1(s) +

m∑

2

∫ s

ε

λi

t
ξ2
i dt + (s + 1)

m∑

1

∫ s

ε
t

(
∂ξi

∂t

)2

dt

≤ 1
α

α s
m∑

1

ξ2
i (s) +

m∑

2

∫ s

ε

λi

t
ξ2
i dt + (s + 1)

m∑

1

∫ s

ε
t

(
∂ξi

∂t

)2

dt

≤ max
{

1,
1
α

, s + 1
}
‖|ξm

ε |‖ bHs
≤ max

{
1
α

, a + 1
}
‖|ξm

ε |‖ bHs
.
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Proposition 3.3.2. For γm
ε solution of (3.17), we have

‖|γm
ε |‖2

bHs
≤ s ‖γm

ε (s)‖
H

1/2
s,P (0,2π)

‖hm‖�
H

1/2
s,P (0,2π)

�′ ,

for all s ∈ [ε, a].

Proof. From (3.17) we obtain,

−
∫ s

ε

∂2γi

∂ρ2
γiρ dρ +

∫ s

ε

1
ρ2

λiγ
2
i ρdρ−

∫ s

ε

1
ρ

∂γi

∂ρ
γiρ dρ = 0

⇒ −∂γi

∂ρ
γi ρ

]s

ε

+
∫ s

ε

∂γi

∂ρ

(
∂γi

∂ρ
ρ + γi

)
dρ +

∫ s

ε

1
ρ
λiγ

2
i dρ−

∫ s

ε

∂γi

∂ρ
γi dρ = 0

⇒ −∂γi

∂ρ
(s) γi(s) s +

∫ s

ε

(
∂γi

∂ρ

)2

ρ dρ +
∫ s

ε

1
ρ
λiγ

2
i dρ = 0

⇒ −(hi − αγi(s)) γi(s) s +
∫ s

ε

(
∂γi

∂ρ

)2

ρdρ +
∫ s

ε

1
ρ
λiγ

2
i dρ = 0

⇒
m∑

1

hi γi(s) s = α s
m∑

1

γ2
i (s) +

m∑

1

∫ s

ε

(
∂γi

∂ρ

)2

ρdρ +
m∑

1

∫ s

ε

1
ρ
λiγ

2
i dρ

⇒
m∑

1

hi γi(s) s = ‖|γm
ε |‖2

bHs
.

(3.25)

On the other hand,
m∑

1

hiγi(s) = h1γ1(s) +
m∑

2

√
s

4
√

λi
hi

4
√

λi√
s

γi(s)

≤
(

h2
1 +

m∑

2

s√
λi

h2
i

)1/2 (
γ2
1(s) +

m∑

2

√
λi

s
γ2

i (s)

)1/2

= ‖hm‖�
H

1/2
s,P (0,2π)

�′ ‖γm
ε (s)‖

H
1/2
s,P (0,2π)

.

Consequently,

‖|γm
ε |‖2

bHs
≤ s ‖hm‖�

H
1/2
s,P (0,2π)

�′ ‖γm
ε (s)‖

H
1/2
s,P (0,2π)

.

As a direct consequence of Theorem 3.3.1 and Proposition 3.3.2, we have the following

theorem:
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Theorem 3.3.3. There exists k =
(
max

{
1
α , a + 1

})2
> 0 (independent of s and ε) such

that

‖γm
ε (s)‖

H
1/2
s,P (0,2π)

≤ k ‖hm‖�
H

1/2
s,P (0,2π)

�′ . (3.26)

The above theorem tell us that the operator Pm
ε is continuous and

‖Pm
ε ‖L

��
H

1/2
s,P (0,2π)

�′
,H

1/2
s,P (0,2π)

� ≤ k,

where k is a constant that does not depende both on ε and s.

Theorem 3.3.4. There exists k = max
{

1,
1
α

}
> 0 (independent of s and ε) such that

‖γm
ε (s)‖

H
3/2
s,P (0,2π)

≤ k ‖hm‖
H

1/2
s,P (0,2π)

. (3.27)

Proof. Multiplying (3.23), for the particular case of ρ = s, by λi, we obtain

λ
3/2
i γ2

i (s) ≤
∫ s

ε

1
ρ
λ2

i γ
2
i (ρ) dρ +

∫ s

ε
ρλi

(
∂γi

∂ρ
(ρ)

)2

dρ

and summing up from 2 to m,

m∑

2

λ
3/2
i γ2

i (s)≤
m∑

2

∫ s

ε

1
ρ
λ2

i γ
2
i (ρ) dρ +

m∑

2

∫ s

ε
ρλi

(
∂γi

∂ρ
(ρ)

)2

dρ. (3.28)

On the other hand, on (3.25), considering i = 1 , we have

α sγ2
1(s) = h1γ1(s)s−

∫ s

ε

(
∂γ1

∂ρ

)2

ρ dρ ≤ h1γ1(s)s

⇒ s3γ2
1(s) ≤ s3

α
h1γ1(s)

and, considering i ≥ 2 and multiplying by λi, we get

∫ s

ε
λi

(
∂γi

∂ρ

)2

ρ dρ +
∫ s

ε

1
ρ
λ2

i γ
2
i dρ

= λihi γi(s) s− λiα sγ2
i (s) ≤ λihi γi(s) s

⇒
m∑

2

∫ s

ε
λi

(
∂γi

∂ρ

)2

ρ dρ +
m∑

2

∫ s

ε

1
ρ
λ2

i γ
2
i dρ ≤

m∑

2

λihi γi(s) s.
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Consequently,

s3‖γm
ε (s)‖2

H
3/2
s,P (0,2π)

= s3γ2
1(s) +

m∑

2

λ
3/2
i γ2

i (s)

≤ s3γ2
1(s) +

m∑

2

∫ s

ε

1
ρ
λ2

i γ
2
i (ρ) dρ +

m∑

2

∫ s

ε
ρλi

(
∂γi

∂ρ
(ρ)

)2

dρ

≤ s3

α
h1γ1(s) +

m∑

2

λihi γi(s) s

≤ max
{

1,
1
α

}
s3

(
h1 γ1(s) +

m∑

2

λi hi γi(s)
1
s2

)

≤ max
{

1,
1
α

}
s3

(
h1 γ1(s) +

m∑

2

λ
3/4
i λ

1/4
i hi γi(s)

1
s3/2

1
s1/2

)

≤ max
{

1,
1
α

}
s3

(
h2

1 +
m∑

2

λ
1/2
i

s
h2

i

)1/2 (
γ2
1(s) +

m∑

2

λ
3/2
i

s3
γ2

i (s)

)1/2

= max
{

1,
1
α

}
s3 ‖hm‖

H
1/2
s,P (0,2π)

‖γm
ε (s)‖

H
3/2
s,P (0,2π)

.

Then,

‖γm
ε (s)‖

H
3/2
s,P (0,2π)

≤ max
{

1,
1
α

}
‖hm‖

H
1/2
s,P (0,2π)

.

By interpolation, we achieve the following corollary, which is a direct consequence of

Propositions 3.3.3 and 3.3.4:

Corollary 3.3.5. There exists k > 0 (independent of s and ε) such that

‖γm
ε (s)‖H1

s,P (0,2π) ≤ k ‖hm‖L2(0,2π). (3.29)

With respect to the function βm
ε , solution of (3.18), we have the following estimations:

Proposition 3.3.6. For all ρ ∈ (ε, s], there exists c > 0 (independent of ρ) such that

‖βm
ε ‖L2

ρ(ε,s;H
1/2
ρ,P (0,2π))

≤ c.
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Proof. Since the coordinates of βm
ε , for ε < ρ ≤ s and i = 1, . . . , m, verify (3.18), we

have

−
∫ s

ε

∂2βi

∂ρ2
βiρ dρ−

∫ s

ε

∂βi

∂ρ
βi dρ +

∫ s

ε

λi

ρ
β2

i dρ =
∫ s

ε

(∫ 2π

0
f̂wi(θ) dθ

)
βiρ dρ

⇒ −∂βi

∂ρ
βiρ

]s

ε

+
∫ s

ε

∂βi

∂ρ

(
∂βi

∂ρ
ρ + βi

)
dρ−

∫ s

ε

∂βi

∂ρ
βi dρ +

∫ s

ε

λi

ρ
β2

i dρ

=
∫ s

ε

(∫ 2π

0
f̂wi(θ) dθ

)
βiρ dρ

⇒ β2
i (s)α s +

∫ s

ε

(
∂βi

∂ρ

)2

ρ dρ +
∫ s

ε

λi

ρ
β2

i dρ =
∫ s

ε

(∫ 2π

0
f̂wi(θ) dθ

)
βiρ dρ

⇒
m∑

1

(
β2

i (s)α s +
∫ s

ε

(
∂βi

∂ρ

)2

ρ dρ +
∫ s

ε

λi

ρ
β2

i dρ

)
=

m∑

1

∫ s

ε

(∫ 2π

0
f̂wi(θ) dθ

)
βiρ dρ

⇒ ‖|βm
ε |‖2

bHs
=

∫ s

ε

∫ 2π

0
f̂

(
m∑

1

βiwi(θ)

)
ρ dρdθ =

∫ s

ε

∫ 2π

0
f̂βm

ε ρdρ dθ.

Furthermore,
∫ s

ε

∫ 2π

0
f̂βm

ε ρ dρdθ ≤ ‖f̂‖L2
ρ(ε,s;L2(0,2π))‖βm

ε ‖L2
ρ(ε,s;L2(0,2π))

≤ ‖f̂‖L2
ρ(0,a;L2(0,2π))‖βm

ε ‖L2
ρ(ε,s;H

1/2
ρ,P (0,2π))

.

Therefore,

‖|βm
ε |‖2

bHs
≤ ‖f̂‖L2

ρ(0,a;L2(0,2π))‖βm
ε ‖L2

ρ(ε,s;H
1/2
ρ,P (0,2π))

(3.30)

and from Proposition 3.3.1, we obtain

ρ‖βm
ε (ρ)‖2

H
1/2
ρ,P (0,2π)

≤ k‖f̂‖L2
ρ(0,a;L2(0,2π))‖βm

ε ‖L2
ρ(ε,s;H

1/2
ρ,P (0,2π))

⇒
∫ s

ε
ρ‖βm

ε (ρ)‖2

H
1/2
ρ,P (0,2π)

dρ ≤
∫ s

ε
k‖f̂‖L2

ρ(0,a;L2(0,2π))‖βm
ε ‖L2

ρ(ε,s;H
1/2
ρ,P (0,2π))

dρ

⇒ ‖βm
ε ‖2

L2
ρ(ε,s;H

1/2
ρ,P (0,2π))

≤ k(s− ε)‖f̂‖L2
ρ(0,a;L2(0,2π))‖βm

ε ‖L2
ρ(ε,s;H

1/2
ρ,P (0,2π))

⇒ ‖βm
ε ‖L2

ρ(ε,s;H
1/2
ρ,P (0,2π))

≤ k s‖f̂‖L2
ρ(0,a;L2(0,2π)) ≤ k a‖f̂‖L2

ρ(0,a;L2(0,2π)) = c.

Proposition 3.3.7. For all ρ ∈ (ε, s], there exists k > 0 (independent of ρ) such that

‖βm
ε (ρ)‖

H
1/2
ρ,P (0,2π)

≤ k.
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Proof. Using (3.24), we have
m∑

2

√
λiβ

2
i (ρ) ≤

m∑

2

∫ ρ

ε

λi

t
β2

i dt +
m∑

2

∫ ρ

ε
t

(
∂βi

∂t

)2

dt.

Then,

ρβ2
1(ρ) +

m∑

2

√
λiβ

2
i (ρ) ≤ ρβ2

1(ρ) +
m∑

2

∫ ρ

ε

λi

t
β2

i dt +
m∑

2

∫ ρ

ε
t

(
∂βi

∂t

)2

dt

≤ 1
α

m∑

1

αρβ2
i (ρ) +

m∑

2

∫ ρ

ε

λi

t
β2

i dt +
m∑

1

∫ ρ

ε
t

(
∂βi

∂t

)2

dt

≤ max
{

1,
1
α

}
‖|βm

ε |‖2
bHρ

,

that is,

ρ‖βm
ε ‖2

H
1/2
ρ,P (0,2π)

≤ c1‖|βm
ε |‖2

bHρ
. (3.31)

From (3.30) we have, for all t ∈ (ε, ρ),

‖|βm
ε |‖2

bHρ
≤ ‖f̂‖L2

t (0,a;L2(0,2π))‖βm
ε ‖L2

t (ε,ρ;H
1/2
t,P (0,2π))

≤ c2‖βm
ε ‖L2

t (ε,ρ;H
1/2
t,P (0,2π))

. (3.32)

From Proposition 3.3.1, for all t ∈ (ε, ρ), ∃c3 > 0 (independent of t) such that
√

t‖βm
ε (t)‖

H
1/2
t,P (0,2π)

≤ c3‖|βm
ε |‖ bHρ

. (3.33)

Then, from (3.33) and (3.32), we obtain

t‖βm
ε (t)‖2

H
1/2
t,P (0,2π)

≤ c2c
2
3‖βm

ε ‖L2
τ (ε,ρ;H

1/2
τ,P (0,2π))

⇒
∫ ρ

ε
t‖βm

ε (t)‖2

H
1/2
t,P (0,2π)

dt ≤ c2c
2
3

∫ ρ

ε
‖βm

ε ‖L2
τ (ε,ρ;H

1/2
τ,P (0,2π))

dt

⇒ ‖βm
ε ‖2

L2
t (ε,ρ;H

1/2
t,P (0,2π))

≤ c2c
2
3(ρ− ε)‖βm

ε ‖L2
t (ε,ρ;H

1/2
t,P (0,2π))

⇒ ‖βm
ε ‖L2

t (ε,ρ;H
1/2
t,P (0,2π))

≤ c2c
2
3ρ.

Again from (3.32) we get

‖|βm
ε |‖2

bHρ
≤ c2

2c
2
3ρ

and back to (3.31) we obtain

ρ‖βm
ε ‖2

H
1/2
ρ,P (0,2π)

≤ c1c
2
2c

2
3ρ,

as desired.

In the sequence of Proposition 3.2.1, the following proposition is a direct consequence of

Propositions 3.3.3, 3.3.4, 3.3.6, 3.3.7 and Corollary 3.3.5:

Proposition 3.3.8. Pm
ε is a global solution of (3.14) and is C1 from [ε, a] with values in

L(V m, V m); consequently, rm
ε is a global solution of (3.14) and rm

ε ∈ H1(ε, a; V m).
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3.4. Passing to the limit

First, we are going to pass to the limit when m → ∞. In this passage we use the same

arguments of Chapter 2. In fact, applying again Propositions 2.8.1 and 2.8.2, we can prove

the following result, following the same steps of Corollary 2.8.3:

Corollary 3.4.1. For all s ∈ (ε, a), rm
ε (s) → rε(s) strongly in H

1/2
ρ,P (0, 2π), when m →∞.

Also, for all s ∈ (ε, a) and for a fixed h, Pm
ε (s)h → Pε(s)h, strongly in H

1/2
ρ,P (0, 2π), weakly

in H
3/2
ρ,P (0, 2π) and strongly in H1

ρ,P (0, 2π), when m →∞.

Now, from (3.14), we obtain

Proposition 3.4.2. For every h, h̄ in L2(0, 2π), the operator Pε ∈ L∞
(
(ε, a);L(

L2(0, 2π),

H1
ρ,P (0, 2π)

))
satisfies the following equation

(
∂Pε

∂ρ
h, h̄

)

L2(0,2π)

−
(

1
ρ
h, Pεh̄

)

L2(0,2π)

+
(

1
ρ2

∂

∂θ
Pεh,

∂

∂θ
Pεh̄

)

L2(0,2π)

+
1
ρ
α

(
Pεh, Pεh̄

)
L2(0,2π)

+ 2α
(
Pεh, h̄

)
L2(0,2π)

− α2
(
Pεh, Pεh̄

)
L2(0,2π)

=
(
h, h̄

)
L2(0,2π)

,

in D′(ε, a), and Pε(ε) =
proj|N

α
.

Proof. For a fixed m0, let h, h̄ ∈ V m0 . Then, from (3.14), we obtain, for m ≥ m0

(
∂Pm

ε

∂ρ
h, h̄

)

L2(0,2π)

−
(

Pm
ε

ρ
h, h̄

)

L2(0,2π)

+
(

1
ρ
α(Pm

ε )2h, h̄

)

L2(0,2π)

−
(

1
ρ2

Pm
ε

∂2

∂θ2
Pm

ε h, h̄

)

L2(0,2π)

+
(
2αPm

ε h, h̄
)
L2(0,2π)

−(
(αPm

ε )2h, h̄
)
L2(0,2π)

=
(
h, h̄

)
L2(0,2π)

.

Considering φ ∈ C1
0 [ε, a) (that is, φ(a) = 0 and we can have φ(ε) 6= 0), we have:

∫ a

ε

(
∂Pm

ε

∂ρ
h, h̄

)

L2(0,2π)

φρ dρ−
∫ a

ε

(
Pm

ε

ρ
h, h̄

)

L2(0,2π)

φρdρ

+
∫ a

ε

(
1
ρ
α(Pm

ε )2h, h̄

)

L2(0,2π)

φρdρ−
∫ a

ε

(
1
ρ2

Pm
ε

∂2

∂θ2
Pm

ε h, h̄

)

L2(0,2π)

φρdρ

+
∫ a

ε

(
2αPm

ε h, h̄
)
L2(0,2π)

φρdρ−
∫ a

ε

(
(αPm

ε )2h, h̄
)
L2(0,2π)

φρdρ

=
∫ a

ε

(
h, h̄

)
L2(0,2π)

φρdρ.
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Integrating by parts the first term, since Pm
ε (ε)h =

h|N
α

and φ(a) = 0, we have

−(
h|N
α

, h̄)L2(0,2π)φ(ε)ε−
∫ a

ε

(
Pm

ε h, h̄
)
L2(0,2π)

φ′ρ dρ− 2
∫ a

ε

(
Pm

ε

1
ρ
h, h̄

)

L2(0,2π)

φρdρ

+
∫ a

ε

(
1
ρ
α(Pm

ε )2h, h̄

)

L2(0,2π)

φρdρ−
∫ a

ε

(
1
ρ2

Pm
ε

∂2

∂θ2
Pm

ε h, h̄

)

L2(0,2π)

φρ dρ

+
∫ a

ε

(
2αPm

ε h, h̄
)
L2(0,2π)

φρdρ−
∫ a

ε

(
(αPm

ε )2h, h̄
)
L2(0,2π)

φρdρ

=
∫ a

ε

(
h, h̄

)
L2(0,2π)

φρdρ.

Now, integrating by parts the fifth term, and taking into account the periodic boundary

conditions, we obtain

−(
h|N
α

, h̄)L2(0,2π)φ(ε)ε−
∫ a

ε

(
Pm

ε h, h̄
)
L2(0,2π)

φ′ρdρ− 2
∫ a

ε

(
1
ρ
h, Pm

ε h̄

)

L2(0,2π)

φρdρ

+
∫ a

ε

1
ρ
α

(
Pm

ε h, Pm
ε h̄

)
L2(0,2π)

φρdρ +
∫ a

ε

(
1
ρ2

∂

∂θ
Pm

ε h,
∂

∂θ
Pm

ε h̄

)

L2(0,2π)

φρdρ

+
∫ a

ε
2α

(
Pm

ε h, h̄
)
L2(0,2π)

φρdρ− α2

∫ a

ε

(
Pm

ε h, Pm
ε h̄

)
L2(0,2π)

φρdρ

=
∫ a

ε

(
h, h̄

)
L2(0,2π)

φρ dρ.

In the previous equality all the integrands are bounded, as a consequence of Corollary

3.3.5. In fact, as in Chapter 2, for h ∈ L2(0, 2π) we have ‖Pm
ε h‖H1

ρ,P (0,2π) bounded and

consequently both ‖Pm
ε h‖L2(0,2π) and

∥∥∥∥
1
ρ

∂

∂θ
(Pm

ε h)
∥∥∥∥

L2(0,2π)

are bounded (notice that we have,

for instance, (Pm
ε h, h̄)L2(0,2π) ≤ ‖Pm

ε h‖L2(0,2π)‖h̄‖L2(0,2π)). Then, we can use Lebesgue’s

theorem and according to Corollary 3.4.1, we can pass to the limit and obtain

−(
h|N
α

, h̄)L2(0,2π)φ(ε)ε−
∫ a

ε

(
Pεh, h̄

)
L2(0,2π)

φ′ρdρ

−2
∫ a

ε

(
1
ρ
h, Pεh̄

)

L2(0,2π)

φρdρ +
∫ a

ε

1
ρ
α

(
Pεh, Pεh̄

)
L2(0,2π)

φρ dρ

+
∫ a

ε

(
1
ρ2

∂

∂θ
Pεh,

∂

∂θ
Pεh̄

)

L2(0,2π)

φρdρ +
∫ a

ε
2α

(
Pεh, h̄

)
L2(0,2π)

φρdρ

−α2

∫ a

ε

(
Pεh, Pεh̄

)
L2(0,2π)

φρdρ =
∫ a

ε

(
h, h̄

)
L2(0,2π)

φρ dρ.

(3.34)

In fact, since Pm
ε h → Pεh strongly in H1

ρ,P (0, 2π), then both Pm
ε h → Pεh and

∂

∂θ
Pm

ε h →
∂

∂θ
Pεh strongly in L2(0, 2π).

Now, since D(ε, a) ⊂ C1
0 [ε, a), we can take φ ∈ D(ε, a) in the previous equality and
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integrate backwards the second term, obtaining
∫ a

ε

(
∂Pε

∂ρ
h, h̄

)

L2(0,2π)

φρdρ−
∫ a

ε

(
1
ρ
h, Pεh̄

)

L2(0,2π)

φρdρ

+
∫ a

ε

1
ρ
α

(
Pεh, Pεh̄

)
L2(0,2π)

φρdρ +
∫ a

ε

(
1
ρ2

∂

∂θ
Pεh,

∂

∂θ
Pεh̄

)

L2(0,2π)

φρdρ

+
∫ a

ε
2α

(
Pεh, h̄

)
L2(0,2π)

φρ dρ− α2

∫ a

ε

(
Pεh, Pεh̄

)
L2(0,2π)

φρ dρ

=
∫ a

ε

(
h, h̄

)
L2(0,2π)

φρdρ,

(3.35)

for h, h̄ ∈ V m0 . Therefore, by density, when m0 →∞, we obtain (3.35), for h, h̄ ∈ L2(0, 2π).

Then, from the equality in D′(ε, a)
(

∂Pε

∂ρ
h, h̄

)

L2(0,2π)

=
(

1
ρ
h, Pεh̄

)

L2(0,2π)

− 1
ρ
α

(
Pεh, Pεh̄

)
L2(0,2π)

−
(

1
ρ2

∂

∂θ
Pεh,

∂

∂θ
Pεh̄

)

L2(0,2π)

−2α
(
Pεh, h̄

)
L2(0,2π)

+ α2
(
Pεh, Pεh̄

)
L2(0,2π)

+
(
h, h̄

)
L2(0,2π)

,

and using again Corollary 3.3.5 (notice that the result is independent of m), we see that(
∂Pε

∂ρ
h, h̄

)

L2(0,2π)

∈ L∞(ε, a). Using the same reasoning as in the proof of Proposition

2.8.4, from
(

∂Pε

∂ρ
h, h̄

)

L2(0,2π)

∈ L2
ρ(ε, a) and

(
Pε(ρ)h, h̄

)
L2(0,2π)

∈ L2
ρ(ε, a), we deduce that

(
Pε(ρ)h, h̄

)
L2(0,2π)

is continuous in ρ. Consequently, for φ ∈ C1
0 [ε, a) we can integrate (3.34)

backwards to obtain Pε(ε)h =
h|N
α

.

With respect to the equation on rm
ε , we obtain the following result:

Proposition 3.4.3. The function rε belongs to C (
ε, a, L2(0, 2π)

)
, satisfies rε(ε) = 0, and

for every h in H
1/2
ρ,P (0, 2π) verifies the following equation

(
1
ρ
αrε, Pεh

)

L2(0,2π)

+
〈

1
ρ2

∂rε

∂θ
,

∂

∂θ
Pεh

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

−α2 (rε, Pεh)L2(0,2π) φρdρ +
(

∂rε

∂ρ
, h

)

L2(0,2π)

+ α (rε, h)L2(0,2π) = (f, Pεh)L2(0,2π) ,

in D′(ε, a).

Proof. For a fixed m0, let h ∈ V m0 . Then, from (3.14), we obtain, for m ≥ m0

(−Pm
ε fm, h)L2(0,2π) +

〈
Pm

ε

1
ρ
αrm

ε , h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

−
〈

Pm
ε

1
ρ2

∂2rm
ε

∂θ2
, h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

− α2 〈Pm
ε rm

ε , h〉�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

+
〈

∂rm
ε

∂ρ
, h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

+ α (rm
ε , h)L2(0,2π) = 0.
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Considering φ ∈ C1
0 [ε, a), we have:

∫ a

ε
(−Pm

ε fm, h)L2(0,2π) φρ dρ +
∫ a

ε

〈
Pm

ε

1
ρ
αrm

ε , h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρdρ

−
∫ a

ε

〈
Pm

ε

1
ρ2

∂2rm
ε

∂θ2
, h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρdρ

−α2

∫ a

ε
〈Pm

ε rm
ε , h〉�

H
1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρ dρ

+
∫ a

ε

〈
∂rm

ε

∂ρ
, h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρdρ + α

∫ a

ε
(rm

ε , h)L2(0,2π) φρdρ = 0.

Integrating by parts the fifth term, since rm
ε (ε) = 0 (and φ(a) = 0), we obtain

−
∫ a

ε
(fm, Pm

ε h)L2(0,2π) φρdρ +
∫ a

ε

(
1
ρ
αrm

ε , Pm
ε h

)

L2(0,2π)

φρ dρ

−
∫ a

ε

〈
1
ρ2

∂2rm
ε

∂θ2
, Pm

ε h

〉
�
H

3/2
ρ,P (0,2π)

�′
,H

3/2
ρ,P (0,2π)

φρdρ

−α2

∫ a

ε
(rm

ε , Pm
ε h)L2(0,2π) φρ dρ−

∫ a

ε
(rm

ε , h)L2(0,2π) φ′ρ dρ

−
∫ a

ε

(
1
ρ
rm
ε , h

)

L2(0,2π)

φρdρ + α

∫ a

ε
(rm

ε , h)L2(0,2π) φρdρ = 0.

Integrating by parts the third term and according to the periodic boundary conditions, we

have

−
∫ a

ε
(fm, Pm

ε h)L2(0,2π) φρdρ +
∫ a

ε

(
1
ρ
αrm

ε , Pm
ε h

)

L2(0,2π)

φρ dρ

+
∫ a

ε

〈
1
ρ2

∂rm
ε

∂θ
,

1
∂θ

Pm
ε h

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρ dρ

−α2

∫ a

ε
(rm

ε , Pm
ε h)L2(0,2π) φρ dρ−

∫ a

ε
(rm

ε , h)L2(0,2π) φ′ρ dρ

−
∫ a

ε

(
1
ρ
rm
ε , h

)

L2(0,2π)

φρdρ + α

∫ a

ε
(rm

ε , h)L2(0,2π) φρdρ = 0.

From Corollary 3.4.1 and Lebesgue’s theorem (again all the integrands are bounded as a

consequence of Proposition 3.3.7 and Corollary 3.3.5), we can pass to the limit in the previous

equality. Then,

−
∫ a

ε
(f, Pεh)L2(0,2π) φρdρ +

∫ a

ε

(
1
ρ
αrε, Pεh

)

L2(0,2π)

φρ dρ

+
∫ a

ε

〈
1
ρ2

∂rε

∂θ
,

1
∂θ

Pεh

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρdρ

−α2

∫ a

ε
(rε, Pεh)L2(0,2π) φρdρ−

∫ a

ε
(rε, h)L2(0,2π) φ′ρ dρ

−
∫ a

ε

(
1
ρ
rε, h

)

L2(0,2π)

φρ dρ + α

∫ a

ε
(rε, h)L2(0,2π) φρ dρ = 0.

(3.36)

In fact, in addition to the converge properties on Pm
ε exhibited in the previous proof, we

have
∂

∂θ
rm
ε → ∂

∂θ
rε strongly in

(
H

1/2
ρ,P (0, 2π)

)′
, since rm

ε → rε strongly in H
1/2
ρ,P (0, 2π),
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and
∂

∂θ
Pm

ε h → ∂

∂θ
Pεh weakly in H

1/2
ρ,P (0, 2π). Now, since D(ε, a) ⊂ C1

0 [ε, a), we can take

φ ∈ D(ε, a) in the previous equality and integrate backwards the fifth term, obtaining

−
∫ a

ε
(f, Pεh)L2(0,2π) φρdρ +

∫ a

ε

(
1
ρ
αrε, Pεh

)

L2(0,2π)

φρ dρ

+
∫ a

ε

〈
1
ρ2

∂rε

∂θ
,

1
∂θ

Pεh

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρdρ

−α2

∫ a

ε
(rε, Pεh)L2(0,2π) φρdρ +

∫ a

ε

(
∂rε

∂ρ
, h

)

L2(0,2π)

φρ dρ

+α

∫ a

ε
(rε, h)L2(0,2π) φρdρ = 0

(3.37)

for h ∈ V m0 . Then, by density, when m0 → ∞, we have (3.37) for h ∈ H
1/2
ρ,P (0, 2π) (notice

that with this choice for h, the third term is well defined).

Again by Proposition 3.3.6 and Corollary 3.3.5 (the result is independent of m), from the

equality

(
∂rε

∂ρ
, h

)

L2(0,2π)

= −
(

1
ρ
αrε, Pεh

)

L2(0,2π)

−
〈

1
ρ2

∂rε

∂θ
,

1
∂θ

Pεh

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

+α2 (rε, Pεh)L2(0,2π) − α (rε, h)L2(0,2π) + (f, Pεh)L2(0,2π) ,

in D′(ε, a), it’s easy to see that
∂rε

∂ρ
∈ L∞

(
ε, a,

(
H

1/2
ρ,P (0, 2π)

)′)
. Analogously to the proof

of Proposition 2.8.5, from
∂rε

∂ρ
∈ L2

ρ

(
ε, a,

(
H

1/2
ρ,P (0, 2π)

)′)
and rε ∈ L2

ρ

(
ε, a,H

1/2
ρ,P (0, 2π)

)
,

we deduce that rε ∈ C
(
ε, a, L2(0, 2π)

)
. Consequently, for φ ∈ C1

0 [ε, a) we can integrate (3.36)

backwards to obtain rε(ε) = 0.

Regarding the equation on ûm
ε , we now have:

Proposition 3.4.4. For every h in
(
H

1/2
ρ,P (0, 2π)

)′
, ûε satisfies the following equation

〈ûε, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′

=
〈

Pε

(
∂ûε

∂ρ
+ αûε

)
, h

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ + 〈rε, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′

in D′(ε, a), with ûε(a) = 0.
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Proof. For a fixed m0 let h ∈ V m0 . Then, from (3.14), we obtain, for m ≥ m0

〈
Pm

ε

(
∂ûm

ε

∂ρ
+ αûm

ε

)
, h

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ − 〈ûm
ε , h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′

= 〈−rm
ε , h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ .

Considering φ ∈ D(ε, a), we have:

∫ a

ε

〈
Pm

ε

(
∂ûm

ε

∂ρ
+ αûm

ε

)
, h

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ

−
∫ a

ε
〈ûm

ε , h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ =
∫ a

ε
〈−rm

ε , h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ

⇒
∫ a

ε

〈
∂ûm

ε

∂ρ
, Pm

ε h

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ

+
∫ a

ε
α 〈ûm

ε , Pm
ε h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ

−
∫ a

ε
〈ûm

ε , h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ =
∫ a

ε
〈−rm

ε , h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ.

Then, by Proposition 2.8.2, Corollary 3.4.1 and Lebesgue’s theorem, we can pass to the limit

and obtain
∫ a

ε

〈
∂ûε

∂ρ
, Pεh

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ

+
∫ a

ε
α 〈ûε, Pεh〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ

−
∫ a

ε
〈ûε, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ =
∫ a

ε
〈−rε, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ

(3.38)

for h ∈ V m0 . Then, by density we have (3.38) for h ∈
(
H

1/2
ρ,P (0, 2π)

)′
.

At this point, we want to pass to the limit when ε → 0. For this, we will use the

same arguments as in Chapter 2, that is, Lemma 2.8.14 and Proposition 2.8.15. In fact, the

following Corollary is a direct consequence of Proposition 2.8.15:

Corollary 3.4.5. ûε(ρ) → û(ρ), when ε → 0, strongly in H
1/2
ρ,P (0, 2π), for all ρ ∈ (0, a),

where ûε and û are the solutions of (2.2) and (2.1), respectively.

Therefore, considering û(ρ) = P (ρ)h + r(ρ), we obtain:
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Corollary 3.4.6. For all ρ ∈ (0, a), rε(ρ) → r(ρ) strongly in H
1/2
ρ,P (0, 2π), when ε → 0.

Also, for all ρ ∈ (0, a) and for a fixed h, Pε(ρ)h → P (ρ)h, strongly in H
1/2
ρ,P (0, 2π), weakly in

H
3/2
ρ,P (0, 2π) and strongly in H1

ρ,P (0, 2π), when ε → 0.

Proof. Applying Corollary 3.4.5, for all ρ ∈ (0, a), we obtain Pε(ρ)h + rε(ρ) → P (ρ)h +

r(ρ), strongly in H
1/2
ρ,P (0, 2π). Taking h = 0, we obtain rε(ρ) → r(ρ) and consequently

Pε(ρ)h → P (ρ)h, strongly in H
1/2
ρ,P (0, 2π). Now, from Proposition 3.3.4, Pε(ρ) is bounded

in H
3/2
ρ,P (0, 2π) (the result is independent of ε and m) and consequently we can extract a

subsequence converging weakly. By density (since Pε(ρ)h → P (ρ)h, strongly in H
1/2
ρ,P (0, 2π),

for all ρ ∈ (0, a)) that subsequence converges also to P (ρ)h. Since H
3/2
ρ,P (0, 2π) ⊂ H1

ρ,P (0, 2π),

with H
3/2
ρ,P (0, 2π) dense in H

1/2
ρ,P (0, 2π), then Pε(ρ)h → P (ρ)h strongly in H1

ρ,P (0, 2π), for all

ρ ∈ (0, a).

Now we can pass to the limit, when ε → 0, successively on Pε, rε and ûε:

Proposition 3.4.7. For every h, h̄ in L2(0, 2π), the operator P satisfies the following equa-

tion
(

∂P

∂ρ
h, h̄

)

L2(0,2π)

−
(

1
ρ
h, P h̄

)

L2(0,2π)

+
1
ρ
α

(
Ph, P h̄

)
L2(0,2π)

+
(

1
ρ2

∂

∂θ
Ph,

∂

∂θ
P h̄

)

L2(0,2π)

+2α
(
Ph, h̄

)
L2(0,2π)

− α2
(
Ph, P h̄

)
L2(0,2π)

=
(
h, h̄

)
L2(0,2π)

,

in D′(0, a).

Proof. We consider equation (3.35), for φ ∈ C1
0 (0, a) and h, h̄ ∈ L2(0, 2π). Integrating

by parts its first term, we obtain

−(
h|N
α

, h̄)L2(0,2π)φ(ε)ε−
∫ a

ε

(
Pεh, h̄

)
L2(0,2π)

φ′ρ dρ−2
∫ a

ε

(
1
ρ
h, Pεh̄

)

L2(0,2π)

φρdρ

+
∫ a

ε

1
ρ
α

(
Pεh, Pεh̄

)
L2(0,2π)

φρdρ +
∫ a

ε

(
1
ρ2

∂

∂θ
Pεh,

∂

∂θ
Pεh̄

)

L2(0,2π)

φρdρ

+
∫ a

ε
2α

(
Pεh, h̄

)
L2(0,2π)

φρ dρ− α2

∫ a

ε

(
Pεh, Pεh̄

)
L2(0,2π)

φρ dρ

=
∫ a

ε

(
h, h̄

)
L2(0,2π)

φρdρ.
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Then, considering Pεh = 0, for all ρ ∈ [0, ε), gives

−(
h|N
α

, h̄)L2(0,2π)φ(ε)ε−
∫ a

0

(
Pεh, h̄

)
L2(0,2π)

φ′ρ dρ−2
∫ a

0

(
1
ρ
h, Pεh̄

)

L2(0,2π)

φρdρ

+
∫ a

0

1
ρ
α

(
Pεh, Pεh̄

)
L2(0,2π)

φρdρ +
∫ a

0

(
1
ρ2

∂

∂θ
Pεh,

∂

∂θ
Pεh̄

)

L2(0,2π)

φρ dρ

+
∫ a

0
2α

(
Pεh, h̄

)
L2(0,2π)

φρ dρ− α2

∫ a

0

(
Pεh, Pεh̄

)
L2(0,2π)

φρdρ

=
∫ a

0

(
h, h̄

)
L2(0,2π)

φρ dρ−
∫ ε

0

(
h, h̄

)
L2(0,2π)

φρ dρ.

(3.39)

When ε → 0, we have

−
∫ a

0

(
Ph, h̄

)
L2(0,2π)

φ′ρ dρ− 2
∫ a

0

(
1
ρ
h, P h̄

)

L2(0,2π)

φρ dρ

+
∫ a

0

1
ρ
α

(
Ph, P h̄

)
L2(0,2π)

φρdρ +
∫ a

0

(
1
ρ2

∂

∂θ
Ph,

∂

∂θ
P h̄

)

L2(0,2π)

φρ dρ

+
∫ a

0
2α

(
Ph, h̄

)
L2(0,2π)

φρ dρ− α2

∫ a

0

(
Ph, P h̄

)
L2(0,2π)

φρdρ

=
∫ a

0

(
h, h̄

)
L2(0,2π)

φρ dρ.

(3.40)

In fact, the terms (
h|N
α

, h̄)L2(0,2π)φ(ε) and
(
h, h̄

)
L2(0,2π)

φρ are obviously bounded, since h, h̄ ∈

L2(0, 2π), φ ∈ C1
0 (0, a) and ρ < a. Then, when ε → 0, we have (

h|N
α

, h̄)L2(0,2π)φ(ε)ε → 0 and∫ ε

0

(
h, h̄

)
L2(0,2π)

φρdρ → 0. Further, due to Corollary 3.4.6, we have Pεh → Ph strongly in

H1
ρ,P (0, 2π), which implies that both Pεh → Ph and

∂

∂θ
Pεh → ∂

∂θ
Ph strongly in L2(0, 2π),

for all ρ ∈ [0, a]. In order to use Lebesgue’s theorem, we need also to have all the integrands in

(3.39) bounded, for all ρ ∈ [0, a]. But, from
(
Pεh, h̄

)
L2(0,2π)

φ′ρ ≤‖Pεh‖L2(0,2π) ‖h̄‖L2(0,2π)φ
′ρ,

this term is bounded for all ρ ∈ [ε, a], since ‖Pεh‖H1
ρ,P (0,2π) is bounded for ρ ∈ [ε, a] (notice

that the result of Corollary 3.3.5 is independent of m and ε), h̄ ∈ L2(0, 2π), φ′ ∈ C0(0, a)

and ρ < a. Then, since we have considered Pεh = 0, for all ρ ∈ [0, ε), we also have

‖Pεh‖H1
ρ,P (0,2π) bounded for all ρ ∈ [0, a], and consequently,

(
Pεh, h̄

)
L2(0,2π)

φ′ρ is bounded,

for all ρ ∈ [0, a]. All the other terms, that is, 2α
(
Pεh, h̄

)
L2(0,2π)

φρ, α2
(
Pεh, Pεh̄

)
L2(0,2π)

φρ,

α
(
Pεh, Pεh̄

)
L2(0,2π)

φ and 2
(

1
ρ
h, Pεh̄

)

L2(0,2π)

φρ
(
= 2

(
h, Pεh̄

)
L2(0,2π)

φ
)

are bounded for the

same reasons, on [0, a], and
(

1
ρ

∂

∂θ
Pεh,

1
ρ

∂

∂θ
Pεh̄

)

L2(0,2π)

φρ is also bounded as a consequence

of the boundeness of ‖Pεh‖H1
ρ,P (0,2π) on [0, a].

Now, since D(0, a) ⊂ C1
0(0, a), we can take φ ∈ D(0, a) in the previous equality and
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integrating backwards the first term, we get
∫ a

0

(
∂P

∂ρ
h, h̄

)

L2(0,2π)

φρdρ−
∫ a

0

(
1
ρ
h, P h̄

)

L2(0,2π)

φρdρ

+
∫ a

0

1
ρ
α

(
Ph, P h̄

)
L2(0,2π)

φρ dρ +
∫ a

0

(
1
ρ2

∂

∂θ
Ph,

∂

∂θ
P h̄

)

L2(0,2π)

φρdρ

+
∫ a

0
2α

(
Ph, h̄

)
L2(0,2π)

φρdρ− α2

∫ a

0

(
Ph, P h̄

)
L2(0,2π)

φρ dρ

=
∫ a

0

(
h, h̄

)
L2(0,2π)

φρdρ,

and consequently, we find the equality in D′(0, a):
(

∂P

∂ρ
h, h̄

)

L2(0,2π)

=
(

1
ρ
h, P h̄

)

L2(0,2π)

− 1
ρ
α

(
Ph, P h̄

)
L2(0,2π)

+
(
h, h̄

)
L2(0,2π)

−
(

1
ρ2

∂

∂θ
Ph,

∂

∂θ
P h̄

)

L2(0,2π)

− 2α
(
Ph, h̄

)
L2(0,2π)

φρdρ + α2
(
Ph, P h̄

)
L2(0,2π)

.

Proposition 3.4.8. For every h in H
1/2
ρ,P (0, 2π) the function r verifies the following equa-

tion

(
1
ρ
αr, Ph

)

L2(0,2π)

+
〈

1
ρ2

∂r

∂θ
,

1
∂θ

Ph

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

− α2 (r, Ph)L2(0,2π)

+
(

∂r

∂ρ
, h

)

L2(0,2π)

+ α (r, h)L2(0,2π) = (f, Ph)L2(0,2π) ,

in D′(0, a).

Proof. We consider (3.37), for φ ∈ C1
0(0, a) and h ∈ H

1/2
ρ,P (0, 2π). Integrating by parts its

fifth term, we obtain

−
∫ a

ε
(f, Pεh)L2(0,2π) φρ dρ +

∫ a

ε

(
1
ρ
αrε, Pεh

)

L2(0,2π)

φρ dρ

+
∫ a

ε

〈
1
ρ2

∂rε

∂θ
,

1
∂θ

Pεh

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρdρ

−α2

∫ a

ε
(rε, Pεh)L2(0,2π) φρdρ− (rε(ε), h)L2(0,2π)φ(ε)ε−

∫ a

ε
(rε, h)L2(0,2π) φ′ρ dρ

−
∫ a

ε
(
1
ρ
rε, h)L2(0,2π)φρdρ + α

∫ a

ε
(rε, h)L2(0,2π) φρ dρ = 0.

Then, considering rε = 0 and Pεh = 0, for all ρ ∈ [0, ε), gives
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−
∫ a

0
(f, Pεh)L2(0,2π) φρdρ +

∫ a

0

(
1
ρ
αrε, Pεh

)

L2(0,2π)

φρdρ

+
∫ a

0

〈
1
ρ2

∂rε

∂θ
,

1
∂θ

Pεh

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρ dρ

−α2

∫ a

0
(rε, Pεh)L2(0,2π) φρ dρ− (rε(ε), h)L2(0,2π)φ(ε)ε−

∫ a

0
(rε, h)L2(0,2π) φ′ρ dρ

−
∫ a

0
(
1
ρ
rε, h)L2(0,2π)φρ dρ + α

∫ a

0
(rε, h)L2(0,2π) φρdρ = 0.

(3.41)

When ε → 0, we have

−
∫ a

0
(f, Ph)L2(0,2π) φρdρ +

∫ a

0

(
1
ρ
αr, Ph

)

L2(0,2π)

φρdρ

+
∫ a

0

〈
1
ρ2

∂r

∂θ
,

1
∂θ

Ph

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρdρ

−α2

∫ a

0
(r, Ph)L2(0,2π) φρ dρ−

∫ a

0
(r, h)L2(0,2π) φ′ρ dρ

−
∫ a

0
(
1
ρ
r, h)L2(0,2π)φρ dρ + α

∫ a

0
(r, h)L2(0,2π) φρ dρ = 0.

(3.42)

In fact, due to Corollary 3.4.6, we have Pεh → Ph and rε → r strongly in H
1/2
ρ,P (0, 2π),

for all ρ ∈ [0, a]. Then,
∂rε

∂θ
→ ∂r

∂θ
strongly in

(
H

1/2
ρ,P (0, 2π)

)′
and, in addition, we have

∂

∂θ
Pεh → ∂

∂θ
Ph weakly in H

1/2
ρ,P (0, 2π). In order to use Lebesgue’s theorem, we need also to

have all the integrands in (3.41) bounded, for all ρ ∈ [0, a]. But, we have seen in the proof of

Proposition 3.4.7 that ‖Pεh‖H1
ρ,P (0,2π) is bounded for all ρ ∈ [0, a]. In the same way, since we

have considered rε = 0, for all ρ ∈ [0, ε), we also have, as a consequence of Proposition 3.3.7,

that ‖rε‖H
1/2
ρ,P (0,2π)

is bounded for all ρ ∈ [0, a] (notice that the result of Proposition 3.3.7 is

independent of ε and m). Then, from (f, Pεh)L2(0,2π) φρ ≤ ‖f‖L2(0,2π)‖Pεh‖L2(0,2π)φρ this

term is bounded on [0, a] since ‖Pεh‖H1
ρ,P (0,2π) is bounded on [0, a], f ∈ L2

ρ(0, a; L2(0, 2π)) (for

all ρ ≥ 0), φ ∈ C1
0(0, a) and ρ < a. The term

(
1
ρ
αrε, Pεh

)

L2(0,2π)

φρ
(
=(αrε, Pεh)L2(0,2π)φ

)
is

also bounded on [0, a], since ‖rε‖H
1/2
ρ,P (0,2π)

and ‖Pεh‖H1
ρ,P (0,2π) are bounded on [0, a] and we

have (αrε, Pεh)L2(0,2π) ≤ α‖rε‖L2(0,2π)‖Pεh‖L2(0,2π) ≤ α‖rε‖H
1/2
ρ,P (0,2π)

‖Pεh‖L2(0,2π). All the

other terms - (rε, Pεh)L2(0,2π) φρ, (
1
ρ
rε, h)L2(0,2π)φρ

(
= (rε, h)L2(0,2π)φ

)
and (rε, h)L2(0,2π) φ′ρ

(φ′ ∈ C0(0, a)) - are bounded on [0, a] for the same reasons. Also, is bounded on [0, a] the

term
〈

∂rε

∂θ
,
1
ρ

∂

∂θ
Pεh

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φ, again since ‖rε‖H
1/2
ρ,P (0,2π)

and ‖Pεh‖H
3/2
ρ,P (0,2π)

are bounded on [0, a]. Furthermore, since |(rε(ε), h)L2(0,2π)| ≤ ‖rε(ε)‖L2(0,2π)‖h‖L2(0,2π) ≤
‖rε(ε)‖H1/2(0,2π)‖h‖H1/2(0,2π), φ ∈ C1

0(0, a) and h ∈ L2(0, 2π), the term (rε(ε), h)L2(0,2π)φ(ε)

is bounded and therefore (rε(ε), h)L2(0,2π)φ(ε)ε → 0, when ε → 0.

Now, since D(0, a) ⊂ C1
0(0, a), we can take φ ∈ D(0, a) in the previous equality and
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integrating backwards the fifth term, we get

−
∫ a

0
(f, Ph)L2(0,2π) φρ dρ +

∫ a

0

(
1
ρ
αr, Ph

)

L2(0,2π)

φρ dρ

+
∫ a

0

〈
1
ρ2

∂r

∂θ
,

1
∂θ

Ph

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

φρdρ

−α2

∫ a

0
(r, Ph)L2(0,2π) φρ dρ +

∫ a

0

(
∂r

∂ρ
, h

)

L2(0,2π)

φρdρ

+α

∫ a

0
(r, h)L2(0,2π) φρ dρ = 0,

and consequently, in D′(0, a), we have
(

∂r

∂ρ
, h

)

L2(0,2π)

= (f, Ph)L2(0,2π) −
(

1
ρ
αr, Ph

)

L2(0,2π)

−
〈

1
ρ2

∂r

∂θ
,

1
∂θ

Ph

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

+ α2 (r, Ph)L2(0,2π) − α (r, h)L2(0,2π) .

Proposition 3.4.9. For every h in
(
H

1/2
ρ,P (0, 2π)

)′
, û satisfies the following equation

〈û, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′

=
〈

P

(
∂û

∂ρ
+ αû

)
, h

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ + 〈r, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′

in D′(0, a).

Proof. Let φ ∈ C1
0(0, a). Since φ(0) = 0, in a neighborhood of the origin, and

∂ ˜̂uε

∂ρ
= 0,

for ρ ∈ (0, ε), from (3.38) we obtain

∫ a

0

〈
∂ ˜̂uε

∂ρ
, Pεh

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′
φρ dρ

+
∫ a

0

〈
α˜̂uε, Pεh

〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ−
∫ ε

0

〈
α˜̂uε, Pεh

〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ

−
∫ a

0

〈
˜̂uε, h

〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ +
∫ ε

0

〈
˜̂uε, h

〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ

=
∫ a

0
〈−rε, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ−
∫ ε

0
〈−rε, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ.

Since the terms
(
˜̂uε, h

)
L2(0,2π)

φρ, (−rε, h)L2(0,2π) φρ and
〈
α˜̂uε, Pεh

〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ

are bounded in [0, ε) by a constant not depending on ε, for ε arbitrarily small (we remind
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that the result for ˜̂uε is due to Lemma 2.5.2 and the results for Pε and rε are a consequence of

considering rε = 0, Pεh = 0, ∀ρ ∈ [0, ε) ), we have
∫ ε

0

〈
˜̂uε, h

〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ → 0,
∫ ε

0
〈rε, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ → 0 and
∫ ε

0

〈
α˜̂uε, Pεh

〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ → 0,

as ε → 0. This way, using the results of Corollary 3.4.5 and Corollary 3.4.6 and passing to

the limit when ε → 0 through Lebesgue’s theorem, we obtain

∫ a

0

〈
∂û

∂ρ
, Ph

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ +
∫ a

0
〈αû, Ph〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ

−
∫ a

0
〈û, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρ dρ =
∫ a

0
〈−r, h〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ φρdρ,

and consequently since D(0, a) ⊂ C1
0(0, a), we have

〈
∂û

∂ρ
, Ph

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ + 〈αPû, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′

−〈û, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ = 〈−r, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′

in D′(0, a).

As seen in section 2.5., using the appropriate conditions of regularity around the origin

(that is, f ∈ C0,α(Ω)), we can define the value of û(0) (as a constant), and consequently we

have û(0) ∈ N , with N defined in Lemma 2.2.5. Also, since
∂û

∂ρ
=

∂u

∂x
cos(θ)+

∂u

∂y
sin(θ) (see

proof of Proposition 2.5.4) and we have assumed enough regularity around the origin, we have∫ 2π

0

∂û

∂ρ
(0) dθ =

∫ 2π

0
c1 cos(θ) + c2 sin(θ) dθ = 0, from which we conclude that

∂û

∂ρ
(0) ∈ M ,

with M defined in Lemma 2.2.4.

Therefore, from û|Γs
= P (s)

(
∂û

∂ρ
|Γs + α û|Γs

)
+ r(s), ∀s ∈ [0, a] we obtain

û(0) = P (0)
(

∂û

∂ρ
(0) + αû(0)

)
+ r(0)

⇒ û(0)|M = P (0)
(

∂û

∂ρ
(0)|M + αû(0)|M

)
+ r(0)|M

⇒ 0 = P (0)
(

∂û

∂ρ
(0)|M + 0

)
+ r(0)|M

⇒ 0 = P (0)
∂û

∂ρ
(0)|M + r(0)|M

⇒ P (0)|M = 0, r(0)|M = 0,

(3.43)
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û(0) = P (0)
(

∂û

∂ρ
(0) + αû(0)

)
+ r(0)

⇒ û(0)|N = P (0)
(

∂û

∂ρ
(0)|N + αû(0)|N

)
+ r(0)|N

⇒ û(0) = P (0) (0 + αû(0)) + r(0)|N

⇒ û(0) = αP (0)û(0) + r(0)|N

⇒ P (0)|N =
I

α
, r(0)|N = 0.

(3.44)

From (3.43) and (3.44) we obtain r(0) = r(0)|M + r(0)|N = 0. In the same way, since

P (0)h = P (0)
(
h|M + h|N

)

= P (0)h|M + P (0)h|N

=
I

α
h|N

we obtain P (0) =
proj|N

α
.

Proposition 3.4.10. For all ρ ∈ (0, a) there is a unique solution û(ρ) for the boundary

value problem û(ρ) = P (ρ)
(

∂û

∂ρ
(ρ) + α û(ρ)

)
+ r(ρ), û(a) = 0.

Proof. Using the notations of Remark 3.1.5, we have seen that (I − αP2)P1 = P2, for

the non constant part of the operators, that is, we consider the projection of the previous

equality on the set M . Then, supposing that the problem û(ρ) = P2(ρ)
(

∂û

∂ρ
(ρ) + α û(ρ)

)
+

r(ρ), û(a) = 0, has two solutions û1(ρ) and û2(ρ), we know that w(ρ) = û1(ρ) − û2(ρ)

satisfies the boundary value problem w(ρ) = P2(ρ)
(

∂w

∂ρ
(ρ) + α w(ρ)

)
, w(a) = 0. So, we

have (α P1 + I) w(ρ) = (α P1 + I) P2(ρ)
(

∂w

∂ρ
(ρ) + α w(ρ)

)
= P1

(
∂w

∂ρ
(ρ) + α w(ρ)

)
and,

consequently, P1
∂w

∂ρ
(ρ) − w(ρ) = 0. Also, since û1(ρ) and û2(ρ) are continuous (again by

Lemma 2.5.2), w(ρ) is continuous. Thus, taking the inner product with
∂w

∂ρ
(ρ), in the duality

H
1/2
ρ,P (0, 2π),

(
H

1/2
ρ,P (0, 2π)

)′
, we obtain:

(
P1(ρ)

∂w

∂ρ
(ρ),

∂w

∂ρ
(ρ)

)
−

(
w(ρ),

∂w

∂ρ
(ρ)

)
= 0.

Then, we find, as in Proposition 2.8.19,
∫ a

ρ

(
P1(%)

∂w

∂%
(%),

∂w

∂%
(%)

)
d% +

1
2
‖w(ρ)‖2

L2(0,2π) = 0,
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since w(a) = 0 and w is continuous on [ρ, a]. Since we are summing, in the previous equation,

two positive quantities (notice that P1 is a positive operator because both P2 and I − αP2

are positive), we must have ‖w(ρ)‖L2(0,2π) = 0. According to the continuity previously

established, we conclude that û1(ρ) = û2(ρ).

With respect to the constant part of the operator P2, that is, its projection on the set

N , we consider now that the equation û(ρ) =
1
α

(
∂û

∂ρ
(ρ) + α û(ρ)

)
+ r(ρ), û(a) = 0, has

two solutions û1(ρ) and û2(ρ). Then, w(ρ) = û1(ρ) − û2(ρ) is the solution of
∂w

∂ρ
(ρ) = 0,

w(a) = 0. Obviously, w(ρ) = 0 a.e. on (0, a).

As a consequence of Propositions 3.4.7, 3.4.8 and 3.4.9 and using the initial conditions

computed above, we finally achieve the following result:

Theorem 3.4.11. Considering φ ∈ D(0, a) we obtain:

1. for every h, h̄ in L2(0, 2π), the operator P satisfies the equation
(

∂P

∂ρ
h, h̄

)

L2(0,2π)

−
(

1
ρ
h, P h̄

)

L2(0,2π)

+
1
ρ
α

(
Ph, P h̄

)
L2(0,2π)

+ 2α
(
Ph, h̄

)
L2(0,2π)

+
(

1
ρ2

∂

∂θ
Ph,

∂

∂θ
P h̄

)

L2(0,2π)

− α2
(
Ph, P h̄

)
L2(0,2π)

=
(
h, h̄

)
L2(0,2π)

in D′(0, a), with the initial condition P (0) =
proj|N

α
;

2. for every h in H
1/2
ρ,P (0, 2π), the function r satisfies the equation

(
1
ρ
αr, Ph

)

L2(0,2π)

+
〈

1
ρ2

∂r

∂θ
,

1
∂θ

Ph

〉
�
H

1/2
ρ,P (0,2π)

�′
,H

1/2
ρ,P (0,2π)

− α2 (r, Ph)L2(0,2π)

+
(

∂r

∂ρ
, h

)

L2(0,2π)

+ α (r, h)L2(0,2π) = (f, Ph)L2(0,2π)

in D′(0, a), with the initial condition r(0) = 0;

3. for every h in
(
H

1/2
ρ,P (0, 2π)

)′
, û satisfies the equation

〈û, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′

=
〈

P

(
∂û

∂ρ
+ αû

)
, h

〉

H
1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′ + 〈r, h〉
H

1/2
ρ,P (0,2π),

�
H

1/2
ρ,P (0,2π)

�′

in D′(0, a), with the initial condition û(a) = 0.



Chapter 4

The factorization method in a

general star shaped domain

In order to generalize the invariant embedding method to more general geometries, in this

chapter we apply it to the case of a star shaped domain. Here, the family of curves which

limits the sub-domains has no invariant geometry but, as in the precedent cases, are ho-

mothetic to one another and homothetic to a point. We study the case where the moving

boundary starts on the outside boundary of the domain and shrinks to that point.

4.1. Statement of the problem

Let Ω be an open set containing the origin O, star-shaped with respect to O, with boundary

Γ = ∂Ω. As in the two previous chapters, we consider the problem (1.3), with f ∈ L2(Ω).

We also consider that the domain Ω̂ is now defined in polar coordinates by x = ρ cos(θ), y =

ρ sin(θ), 0 < ρ ≤ ϕ(θ), where ϕ(θ) ∈ C1([0, 2π]) is such that ϕ(2π) = ϕ(0), ϕ′(2π) = ϕ′(0)

and ϕ(θ) < k, for a strictly positive constant k. Using the transformation τ = ρ/ϕ(θ) we

obtain x = τϕ(θ) cos(θ), y = τϕ(θ) sin(θ), τ ≤ 1. In the new system of coordinates (τ, θ), the

Laplace equation becomes

(
1

ϕ2(θ)
+

(ϕ′(θ))2

ϕ4(θ)

)
∂2u

∂τ2
+

(
−2

ϕ′(θ)
ϕ3(θ)

)
1
τ

∂2u

∂τ∂θ

+
(
−ϕ′′(θ)

ϕ3(θ)
+ 2

(ϕ′(θ))2

ϕ4(θ)
+

1
ϕ2(θ)

)
1
τ

∂u

∂τ
+

1
ϕ2(θ)

1
τ2

∂2u

∂θ2
= −f.

(4.1)
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The Laplace equation can also be written in the form

√
(ϕ′(θ))2 + ϕ2(θ)

τϕ2(θ)
Dv

(
τϕ2(θ)√

(ϕ′(θ))2 + ϕ2(θ)
AGd(u)

)
= −f,

where

Gd(u) =

(
1

ϕ(θ)
∂u

∂τ
,

1
τ
√

(ϕ′(θ))2 + ϕ2(θ)
∂u

∂θ

)
,

Dv(u1, u2) =

(
1

ϕ(θ)
∂u1

∂τ
+

1
τ
√

(ϕ′(θ))2 + ϕ2(θ)
∂u2

∂θ

)

and A is the symmetrical matrix

A =




1 +
(ϕ′(θ))2

ϕ2(θ)
− ϕ′(θ)

ϕ2(θ)

√
(ϕ′(θ))2 + ϕ2(θ)

− ϕ′(θ)
ϕ2(θ)

√
(ϕ′(θ))2 + ϕ2(θ) 1 +

(ϕ′(θ))2

ϕ2(θ)


 .

Considering Ω̂ \ Ω̂ε the domain defined between ρ = εϕ(θ) and ρ = ϕ(θ), for ε < 1, the

transformation τ = ρ
ϕ(θ) leads to the domain Ω̌\Ω̌ε, which is now the rectangle (ε, 1)×(0, 2π).

Consequently, the equivalent of problem (2.2), in this new system of coordinates, is




−
√

(ϕ′(θ))2 + ϕ2(θ)
τϕ2(θ)

Dv

(
τϕ2(θ)√

(ϕ′(θ))2 + ϕ2(θ)
AGd(ǔε)

)
=f, in Ω̌ \ Ω̌ε

ǔε|Γ1
= 0

ǔε|Γε
constant

∫

Γε

∂ǔε

∂nA
dΓ = 0

ǔε|θ=0
= ǔε|θ=2π(

∂ǔε

∂θ

)

|θ=0

=
(

∂ǔε

∂θ

)

|θ=2π

,

(4.2)

where
∂ǔε

∂nA
= ~n.AGd(ǔε). Since

∫

Γε

∂ǔε

∂nA
dΓ =

∫ 2π

0

((
1

ϕ(θ)
+

(ϕ′(θ))2

ϕ3(θ)

)
∂ǔε

∂τ
− ϕ′(θ)

ϕ2(θ)
1
ε

∂ǔε

∂θ

)
εϕ(θ) dθ

=
∫ 2π

0

(
ε

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)
∂ǔε

∂τ
− ϕ′(θ)

ϕ(θ)
∂ǔε

∂θ

)
dθ,

defining

δǔε = τ

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)
∂ǔε

∂τ
− ϕ′(θ)

ϕ(θ)
∂ǔε

∂θ
, (4.3)
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we have ∫

Γε

∂ǔε

∂nA
dΓ =

∫ 2π

0
δǔε|Γε

dθ.

Since
∫

Ω\Ωε

|v(x, y)|2 dxdy =
∫
bΩ\bΩε

|v̂(ρ, θ)|2ρdρ dθ =
∫ 2π

0

∫ 1

ε
|v̌(τ, θ)|2τϕ2(θ) dτ dθ, to

the space L2(Ω \ Ωε) corresponds the space L2
τ ((ε,1)×(0,2π)) (considering ‖v̌‖2

L2
τ ((ε,1)×(0,2π))

=
∫ 2π

0

∫ 1

ε
|v̌(τ, θ)|2τϕ2(θ) dτ dθ).

Furthermore, we denote by L2
τ (ε, 1) the L2-space of functions with the measure τϕ2(θ) dτ ,

by H1
τ (ε, 1) the space of functions v̌ such that v̌ ∈ L2

τ (ε, 1) and
1
ϕ

∂v̌

∂τ
∈ L2

τ (ε, 1) and by

H1
τ,p(0, 2π) the space of functions v̌ verifying v̌ ∈ L2(0, 2π),

1
τϕ(θ)

∂v

∂θ
∈ L2(0, 2π) and such

that v̌ has periodic boundary conditions v̌(0) = v̌(2π). Then, we consider

‖v̌(θ)‖2
L2

τ (ε,1) =
∫ 1

ε
|v̌|2τϕ2(θ) dτ ; ‖v̌(θ)‖2

H1
τ (ε,1) =

∫ 1

ε
|v̌|2τϕ2(θ) +

(
∂v̌

∂τ

)2

τ dτ ;

‖v̌(τ)‖2
L2(0,2π) =

∫ 2π

0
|v̌|2 dθ; ‖v̌(τ)‖2

H1
τ,p(0,2π) =

∫ 2π

0
|v̌|2 +

1
τ2ϕ2(θ)

(
∂v̌

∂θ

)2

dθ

and

‖v̌‖2
Ȟε

=
∫ 2π

0

∫ 1

ε

(
|v̌|2 +

1
τ2ϕ2(θ)

(
−ϕ′(θ)

ϕ(θ)
τ

∂v̌

∂τ
+

∂v̌

∂θ

)2
)

τϕ2(θ) dτ dθ

+
∫ 2π

0

∫ 1

ε

(
∂v̌

∂τ

)2

τ dτ dθ

=
∫ 2π

0

∫ 1

ε
|v̌|2τϕ2(θ) +

(
1√
τ

∂v̌

∂θ
−√τ

ϕ′(θ)
ϕ(θ)

∂v̌

∂τ

)2

+ τ

(
∂v̌

∂τ

)2

dτ dθ,

where Ȟε is the equivalent, in this system of coordinates, to the Hilbert space H1(Ω \ Ωε).

Proposition 4.1.1. The Ȟε operator

τϕ2(θ)∆̌ =
(

1 +
(ϕ′(θ))2

ϕ2(θ)

)
τ

∂2

∂τ2
+

(
−2

ϕ′(θ)
ϕ(θ)

)
∂2

∂τ∂θ

+
(
−ϕ′′(θ)

ϕ(θ)
+ 2

(ϕ′(θ))2

ϕ2(θ)
+ 1

)
∂

∂τ
+

1
τ

∂2

∂θ2

is self-adjoint.
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Proof. Considering u, v ∈ Ȟε, we obtain

(
τϕ2(θ)∆̌u, v

)
=

((
1 +

(ϕ′(θ))2

ϕ2(θ)

)
τ
∂2u

∂τ2
, v

)
+

((
−2

ϕ′(θ)
ϕ(θ)

)
∂2u

∂τ∂θ
, v

)

+
((

−ϕ′′(θ)
ϕ(θ)

+ 2
(ϕ′(θ))2

ϕ2(θ)
+ 1

)
∂u

∂τ
, v

)
+

(
1
τ

∂2u

∂θ2
, v

)

=
(

∂2u

∂τ2
,

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)
τv

)
+

(
∂2u

∂τ∂θ
,−2

ϕ′(θ)
ϕ(θ)

v

)

+
(

∂u

∂τ
,

(
−ϕ′′(θ)

ϕ(θ)
+ 2

(ϕ′(θ))2

ϕ2(θ)
+ 1

)
v

)
+

(
∂2u

∂θ2
,
1
τ
v

)

=
(

u, 2
(

1 +
(ϕ′(θ))2

ϕ2(θ)

)
∂v

∂τ
+

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)
τ

∂2v

∂τ2

)

+
(

u,−2
ϕ′′(θ)ϕ(θ)− (ϕ′(θ))2

ϕ2(θ)
∂v

∂τ
− 2

ϕ′(θ)
ϕ(θ)

∂2v

∂τ∂θ

)

−
(

u,

(
−ϕ′′(θ)

ϕ(θ)
+ 2

(ϕ′(θ))2

ϕ2(θ)
+ 1

)
∂v

∂τ

)
+

(
u,

1
τ

∂2v

∂θ2

)

=
(

u,

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)
τ

∂2v

∂τ2

)
+

(
u,

(
−2

ϕ′(θ)
ϕ(θ)

)
∂2v

∂τ∂θ

)

+
(

u,

(
−ϕ′′(θ)

ϕ(θ)
+ 2

(ϕ′(θ))2

ϕ2(θ)
+ 1

)
∂v

∂τ

)
+

(
u,

1
τ

∂2v

∂θ2

)
=

(
u, τϕ2(θ)∆̌v

)
.

Proposition 4.1.2. Let Ǔε= {ǔε ∈ Ȟε : ǔε|Γ1
= 0 ∧ ǔε|Γε

is constant}. Ǔε is an Hilbert

space and the variational formulation of problem (4.2) is





ǔε ∈ Ǔε∫ 2π

0

∫ 1

ε
AGd(ǔε)Gd(v̌ε)τϕ2(θ) dτ dθ =

∫ 2π

0

∫ 1

ε
fv̌ετϕ2(θ) dτ dθ

∀v̌ε ∈ Ǔε.

(4.4)

Proof. Multiplying (4.1) by v̌ε ∈ Ǔε, we get

∫ 2π

0

∫ 1

ε

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)
τ
∂2ǔε

∂τ2
v̌ε dτ dθ +

∫ 2π

0

∫ 1

ε

(
−2

ϕ′(θ)
ϕ(θ)

)
∂2ǔε

∂τ∂θ
v̌ε dτ dθ

+
∫ 2π

0

∫ 1

ε

(
−ϕ′′(θ)

ϕ(θ)
+ 2

(ϕ′(θ))2

ϕ2(θ)
+ 1

)
∂ǔε

∂τ
v̌ε dτ dθ

+
∫ 2π

0

∫ 1

ε

1
τ

∂2ǔε

∂θ2
v̌ε dτ dθ = −

∫ 2π

0

∫ 1

ε
fv̌ετϕ2(θ) dτ dθ
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⇒
∫ 2π

0

[
τ
∂ǔε

∂τ
v̌ε

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)]1

ε

dθ

−
∫ 2π

0

∫ 1

ε

∂ǔε

∂τ

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)(
v̌ε + τ

∂v̌ε

∂τ

)
dτ dθ

−
∫ 2π

0

[
ϕ′(θ)
ϕ(θ)

∂ǔε

∂θ
v̌ε

]1

ε

dθ +
∫ 2π

0

∫ 1

ε

ϕ′(θ)
ϕ(θ)

∂ǔε

∂θ

∂v̌ε

∂τ
dτ dθ

−
∫ 1

ε

[
∂ǔε

∂τ

ϕ′(θ)
ϕ(θ)

v̌ε

]2π

0

dτ

+
∫ 2π

0

∫ 1

ε

∂ǔε

∂τ

((
ϕ′′(θ)ϕ(θ)− (ϕ′(θ))2

ϕ2(θ)

)
v̌ε +

ϕ′(θ)
ϕ(θ)

∂v̌ε

∂θ

)
dτ dθ

+
∫ 2π

0

∫ 1

ε

(
−ϕ′′(θ)

ϕ(θ)
+ 2

(ϕ′(θ))2

ϕ2(θ)
+ 1

)
∂ǔε

∂τ
v̌ε dτ dθ +

∫ 1

ε

[
∂ǔε

∂θ

1
τ
v̌ε

]2π

0

dτ

−
∫ 2π

0

∫ 1

ε

∂ǔε

∂θ

1
τ

∂v̌ε

∂θ
dτ dθ = −

∫ 2π

0

∫ 1

ε
fv̌ετϕ2(θ) dτ dθ

⇒ −v̌ε

∫ 2π

0

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)
ε
∂ǔε

∂τ
(ε)− ϕ′(θ)

ϕ(θ)
∂ǔε

∂θ
dθ

+
∫ 1

ε

1
τ
v̌ε(2π)

(
∂ǔε

∂θ
(2π)− τ

ϕ′(2π)
ϕ(2π)

∂ǔε

∂τ
(2π)

)
dτ

−
∫ 1

ε

1
τ
v̌ε(0)

(
∂ǔε

∂θ
(0)− τ

ϕ′(0)
ϕ(0)

∂ǔε

∂τ
(0)

)
dτ

−
∫ 2π

0

∫ 1

ε

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)
τ
∂ǔε

∂τ

∂v̌ε

∂τ
dτ dθ

+
∫ 2π

0

∫ 1

ε

ϕ′(θ)
ϕ(θ)

(
∂ǔε

∂θ

∂v̌ε

∂τ
+

∂ǔε

∂τ

∂v̌ε

∂θ

)
dτ dθ

−
∫ 2π

0

∫ 1

ε

1
τ

∂ǔε

∂θ

∂v̌ε

∂θ
dτ dθ = −

∫ 2π

0

∫ 1

ε
fv̌ετϕ2(θ) dτ dθ

⇒
∫ 2π

0

∫ 1

ε

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)
τ
∂ǔε

∂τ

∂v̌ε

∂τ
dτ dθ

−
∫ 2π

0

∫ 1

ε

ϕ′(θ)
ϕ(θ)

(
∂ǔε

∂θ

∂v̌ε

∂τ
+

∂ǔε

∂τ

∂v̌ε

∂θ

)
dτ dθ

+
∫ 2π

0

∫ 1

ε

1
τ

∂ǔε

∂θ

∂v̌ε

∂θ
dτ dθ =

∫ 2π

0

∫ 1

ε
fv̌ετϕ2(θ) dτ dθ.

We can now establish the uniqueness of solution for the problem (4.2):

Proposition 4.1.3. For each ε > 0, problem (4.4) has a unique solution.
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Proof. We consider a(ǔε, v̌ε) =
∫ 2π

0

∫ 1

ε
AGd(ǔε)Gd(v̌ε)τϕ2(θ) dτ dθ and (f, v̌ε) =

∫ 2π

0

∫ 1

ε
fv̌ετϕ2(θ) dτ dθ, for ǔε, v̌ε ∈ Ȟε and f ∈ L2

τ ((ε,1)×(0,2π)). Then,

a(ǔε, v̌ε)

≤
(∫ 2π

0

∫ 1

ε
AGd(ǔε).Gd(ǔε)τϕ2(θ) dτ dθ

)1/2 (∫ 2π

0

∫ 1

ε
AGd(v̌ε).Gd(v̌ε)τϕ2(θ) dτ dθ

)1/2

=

(∫ 2π

0

∫ 1

ε

(
1√
τ

∂ǔε

∂θ
−√τ

ϕ′(θ)
ϕ(θ)

∂ǔε

∂τ

)2

+ τ

(
∂ǔε

∂τ

)2

dτ dθ

)1/2

(∫ 2π

0

∫ 1

ε

(
1√
τ

∂v̌ε

∂θ
−√τ

ϕ′(θ)
ϕ(θ)

∂v̌ε

∂τ

)2

+ τ

(
∂v̌ε

∂τ

)2

dτ dθ

)1/2

≤ ‖ǔε‖Ȟε
‖v̌ε‖Ȟε

and consequently a is continuous.

Also, taking B =


 b1,1 b1,2

b2,1 b2,2


, with b1,2 = b2,1 =

r
ϕ2(θ)+(ϕ′(θ))2−ϕ(θ)

√
ϕ2(θ)+(ϕ′(θ))2

ϕ2(θ)√
2

and

b1,1 = b2,2 = −
�
ϕ(θ)+

√
ϕ2(θ)+(ϕ′(θ))2

�r
ϕ2(θ)+(ϕ′(θ))2−ϕ(θ)

√
ϕ2(θ)+(ϕ′(θ))2

ϕ2(θ)√
2ϕ′(θ)

, we have

a(ǔε, ǔε) =
∫ 2π

0

∫ 1

ε
AGd(ǔε).Gd(ǔε)τϕ2(θ) dτ dθ = ‖B Gd(ǔε)‖2

L2
τ ((ε,1)×(0,2π)).

Since, through Poincaré’s theorem, there exists c > 0 such that

‖ǔε‖2
L2

τ ((ε,1)×(0,2π)) ≤ c ‖B Gd(ǔε)‖2
L2

τ ((ε,1)×(0,2π)), (4.5)

we have

‖ǔε‖2
L2

τ ((ε,1)×(0,2π))+‖B Gd(ǔε)‖2
L2

τ ((ε,1)×(0,2π))≤(c + 1)‖B Gd(ǔε)‖2
L2

τ ((ε,1)×(0,2π))

⇒ ‖ǔε‖2
Ȟε
≤ (c + 1)‖B Gd(ǔε)‖2

L2
τ ((ε,1)×(0,2π)).

Then,

a(ǔε, ǔε) = ‖B Gd(ǔε)‖2
L2

τ ((ε,1)×(0,2π)) ≥
1

c + 1
‖ǔε‖2

Ȟε
(4.6)

and a is coercive.

Also, since f ∈ L2
τ ((ε,1)×(0,2π)),

(f, v̌ε) =
∫ 2π

0

∫ 1

ε
fv̌ετϕ2(θ) dτ dθ ≤ ‖f‖2

L2
τ ((ε,1)×(0,2π))‖v̌ε‖2

L2
τ ((ε,1)×(0,2π))

≤ c ‖v̌ε‖2
Ȟε

and the linear form is also continuous. Then, the result is a direct application of the Lax-

Milgram’s theorem, since all the other hypotheses are easily verified.
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4.2. Invariant embedding

Similarly to the two previous chapters, we consider H
1/2
τ,p (0, 2π) to be the 1/2 interpo-

late between H1
τ,p(0, 2π) and L2(0, 2π), and

(
H

1/2
τ,p (0, 2π)

)′
as the 1/2 interpolate between

(
H1

τ,p(0, 2π)
)′ and L2(0, 2π). Using the technique of invariant embedding, we embed problem

(4.2) in a family of similar problems defined on [s, 1]× [0, 2π], for s ∈ [ε, 1). For each prob-

lem we impose the boundary condition δǔs|Γs
= h, where δǔs|Γs

=
(

1 +
(ϕ′(θ))2

ϕ2(θ)

)
s
∂ǔs

∂τ
|Γs−

ϕ′(θ)
ϕ(θ)

∂ǔs

∂θ
|Γs . Thus,





−
√

(ϕ′(θ))2 + ϕ2(θ)
τϕ2(θ)

Dv

(
τϕ2(θ)√

(ϕ′(θ))2 + ϕ2(θ)
AGd(ǔs)

)
=f, in Ω̌ \ Ω̌s

ǔs|Γ1
= 0

δǔs|Γs
= h

ǔs|θ=0
= ǔs|θ=2π(

∂ǔs

∂θ

)

|θ=0

=
(

∂ǔs

∂θ

)

|θ=2π

.

(4.7)

In (4.7) we take h ∈
(
H

1/2
τ,p (0, 2π)

)′
.

In order to decouple this problem, we define:

Definition 4.2.1. For every s ∈ [ε, 1) and h ∈
(
H

1/2
τ,p (0, 2π)

)′
we define P(s)h = γs|Γs

,

where γs ∈ {v̌ ∈ Ȟs : v̌|Γ1
= 0} is the solution of





−
√

(ϕ′(θ))2 + ϕ2(θ)
τϕ2(θ)

Dv

(
τϕ2(θ)√

(ϕ′(θ))2 + ϕ2(θ)
AGd(γs)

)
=0, in Ω̌ \ Ω̌s

γs|Γ1
= 0

δγs|Γs
= h

γs|θ=0
= γs|θ=2π(

∂γs

∂θ

)

|θ=0

=
(

∂γs

∂θ

)

|θ=2π

(4.8)
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and r(s) = βs|Γs
where βs ∈ {v̌ ∈ Ȟs : v̌|Γ1

= 0} is the solution of




−
√

(ϕ′(θ))2 + ϕ2(θ)
τϕ2(θ)

Dv

(
τϕ2(θ)√

(ϕ′(θ))2 + ϕ2(θ)
AGd(βs)

)
=f, in Ω̌ \ Ω̌s

βs|Γ1
= 0

δβs|Γs
= 0

βs|θ=0
= βs|θ=2π(

∂βs

∂θ

)

|θ=0

=
(

∂βs

∂θ

)

|θ=2π

.

(4.9)

By linearity of (4.7) we have

ǔs|Γs
= P(s)δus|Γs

+ r(s), ∀s ∈ [ε, 1]. (4.10)

Furthermore, the solution ǔε of (4.2) is given by

ǔε(τ, θ) = (P(τ)δǔε|Γτ
)(θ) + (r(τ))(θ). (4.11)

Proposition 4.2.1. Considering the Hilbert space Ǔs= {ǔs ∈ Ȟs : ǔs|Γ1
= 0}, the varia-

tional formulation of problem (4.7) is




ǔs ∈ Ǔs

∫ 2π

0

∫ 1

s
AGd(ǔs)Gd(v̌s)τϕ2(θ) dτ dθ = −

∫ 2π

0
v̌s|Γs

hdθ+
∫ 2π

0

∫ 1

s
fv̌sτϕ2(θ) dτ dθ

∀v̌s ∈ Ǔs.

(4.12)

Proof. Using the computations of Proposition 4.1.2, we find
∫ 2π

0

∂ǔs

∂τ
|Γ1 v̌s|Γ1

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)
dθ −

∫ 2π

0
s
∂ǔs

∂τ
|Γs v̌s|Γs

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)
dθ

−
∫ 2π

0

∫ 1

s

∂ǔs

∂τ

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)(
v̌s + τ

∂v̌s

∂τ

)
dτ dθ

−
∫ 2π

0

ϕ′(θ)
ϕ(θ)

∂ǔs

∂θ
|Γ1 v̌s|Γ1

dθ+
∫ 2π

0

ϕ′(θ)
ϕ(θ)

∂ǔs

∂θ
|Γs v̌s|Γs

dθ+
∫ 2π

0

∫ 1

s

ϕ′(θ)
ϕ(θ)

∂ǔs

∂θ

∂v̌s

∂τ
dτ dθ

−
∫ 1

s

(
∂ǔs

∂τ

ϕ′(θ)
ϕ(θ)

v̌s

)

|θ=2π

dτ +
∫ 1

s

(
∂ǔs

∂τ

ϕ′(θ)
ϕ(θ)

v̌s

)

|θ=0

dτ

+
∫ 2π

0

∫ 1

s

∂ǔs

∂τ

((
ϕ′′(θ)ϕ(θ)− (ϕ′(θ))2

ϕ2(θ)

)
v̌s +

ϕ′(θ)
ϕ(θ)

∂v̌s

∂θ

)
dτ dθ
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+
∫ 2π

0

∫ 1

s

(
−ϕ′′(θ)

ϕ(θ)
+ 2

(ϕ′(θ))2

ϕ2(θ)
+ 1

)
∂ǔs

∂τ
v̌s dτ dθ

+
∫ 1

s

(
∂ǔs

∂θ

1
τ
v̌s

)

|θ=2π

dτ −
∫ 1

s

(
∂ǔs

∂θ

1
τ
v̌s

)

|θ=0

dτ

−
∫ 2π

0

∫ 1

s

∂ǔs

∂θ

1
τ

∂v̌s

∂θ
dτ dθ = −

∫ 2π

0

∫ 1

s
fv̌sτϕ2(θ) dτ dθ

⇒ −
∫ 2π

0

∫ 1

s

∂ǔs

∂τ

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)(
v̌s + τ

∂v̌s

∂τ

)
dτ dθ

+
∫ 2π

0

∫ 1

s

ϕ′(θ)
ϕ(θ)

∂ǔs

∂θ

∂v̌s

∂τ
dτ dθ

+
∫ 2π

0

∫ 1

s

∂ǔs

∂τ

((
ϕ′′(θ)ϕ(θ)− (ϕ′(θ))2

ϕ2(θ)

)
v̌s +

ϕ′(θ)
ϕ(θ)

∂v̌s

∂θ

)
dτ dθ

+
∫ 2π

0

∫ 1

s

(
−ϕ′′(θ)

ϕ(θ)
+ 2

(ϕ′(θ))2

ϕ2(θ)
+ 1

)
∂ǔs

∂τ
v̌s dτ dθ

−
∫ 2π

0

∫ 1

s

∂ǔs

∂θ

1
τ

∂v̌s

∂θ
dτ dθ =

∫ 2π

0
δǔs|Γs

v̌s|Γs
dθ −

∫ 2π

0

∫ 1

s
fv̌sτϕ2(θ) dτ dθ

⇒
∫ 2π

0

∫ 1

s

(
1 +

(ϕ′(θ))2

ϕ2(θ)

)
τ
∂ǔs

∂τ

∂v̌s

∂τ
dτ dθ

−
∫ 2π

0

∫ 1

s

ϕ′(θ)
ϕ(θ)

(
∂ǔs

∂θ

∂v̌s

∂τ
+

∂ǔs

∂τ

∂v̌s

∂θ

)
dτ dθ

+
∫ 2π

0

∫ 1

s

1
τ

∂ǔs

∂θ

∂v̌s

∂θ
dτ dθ = −

∫ 2π

0
v̌s|Γs

δǔs|Γs
dθ +

∫ 2π

0

∫ 1

s
fv̌sτϕ2(θ) dτ dθ.

Using the variational formulation (4.12) and Lax-Milgram theorem it can be easily proved

that problem (4.7) is well posed.

As a direct consequence of the computations exhibited in Proposition 4.2.1 (taking f = 0

and h = 0, respectively), we can prove the following corollary:

Corollary 4.2.2. The variational formulation of problem (4.8) is





γs ∈ Ǔs

∫ 2π

0

∫ 1

s
AGd(γs)Gd(γs)τϕ2(θ) dτ dθ = −

∫ 2π

0
γs|Γs

hdθ

∀γs ∈ Ǔs
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and the variational formulation of problem (4.9) is




βs ∈ Ǔs

∫ 2π

0

∫ 1

s
AGd(βs)Gd(βs)τϕ2(θ) dτ dθ =

∫ 2π

0

∫ 1

s
fβsτϕ2(θ) dτ dθ

∀βs ∈ Ǔs.

In the next proposition, we collect some properties of the operator P, which are similar

to the ones found on Chapter 2.

Proposition 4.2.3. The linear operator P(s) :
(
H

1/2
τ,p (0, 2π)

)′
→ H

1/2
τ,p (0, 2π) is continu-

ous, self-adjoint and negative definite, for all s ∈ [ε, 1).

Proof. As in Proposition 2.2.3, the operator P(s) is continuous since it is the com-

position of continuous operators: h → γs → γs|Γs
, defined, respectively, in the spaces(

H
1/2
τ,p (0, 2π)

)′
, Ȟs and H

1/2
τ,p (0, 2π). Considering γs and γs two solutions of (4.8), with

δγs|Γs
= h and δγs|Γs

= h, respectively, using (4.8) and Corollary 4.2.2, we have:

∫ 2π

0

∫ 1

s
AGd(γs)Gd(γs)τϕ2(θ) dτ dθ = −

∫ 2π

0
δγs|Γs

γs|Γs
dθ

⇒ −
∫ 2π

0

∫ 1

s
AGd(γs)Gd(γs)τϕ2(θ) dτ dθ =

〈
h,P(s)h

〉�
H

1/2
τ,p (0,2π)

�′
, H

1/2
τ,p (0,2π)

.

Since
〈
h,P(s)h

〉�
H

1/2
τ,p (0,2π)

�′
, H

1/2
τ,p (0,2π)

=
〈
h,P(s)h

〉�
H

1/2
τ,p (0,2π)

�′
, H

1/2
τ,p (0,2π)

we conclude that P(s) is a self-adjoint operator.

Taking γs = γs we have

〈h,P(s)h 〉�
H

1/2
τ,p (0,2π)

�′
, H

1/2
τ,p (0,2π)

= −‖B Gd(γs)‖2
L2

τ ((s,1)×(0,2π)) (4.13)

and consequently P(s) is a negative operator. Then, using (4.6), we have

〈h,P(s)h 〉�
H

1/2
τ,p (0,2π)

�′
, H

1/2
τ,p (0,2π)

≤ −c1‖γs‖2
Ȟs

,

with c1 = 1
c+1 .



Invariant embedding 121

Again as in Proposition 2.2.3, since ∆γs = 0, there exists ks > 0 (the constant should

depend on s, due to the utilization of polar coordinates) such that

〈h,P(s)h 〉�
H

1/2
τ,p (0,2π)

�′
, H

1/2
τ,p (0,2π)

≤−c1‖γs‖2
Ȟs

= −c1‖γs‖2
H(∆,Ω̌\Ω̌s)

≤−c2

∥∥∥δγs|Γs

∥∥∥
2
�
H

1/2
τ,p (0,2π)

�′ ,

with c2 = c1
k2

s
. which proves that P(s) is a negative definite operator.

Furthermore, from (4.13), Poincaré’s inequality and Holder’s inequality, we have

c1‖γs‖2
Ȟs
≤ ‖BGd(γs)‖2

L2
τ ((s,1)×(0,2π)) ≤ ‖h‖�

H
1/2
τ,p (0,2π)

�′‖γs(s)‖H
1/2
τ,p (0,2π)

,

and, on the other hand, due to trace theorem, there exists cs > 0 (again, cs should depend

on s) such that

‖γs(s)‖H
1/2
τ,p (0,2π)

≤ cs‖γs‖Ȟs
.

Then,

c1

c2
s

‖γs(s)‖2

H
1/2
τ,p (0,2π)

≤ c1‖γs‖2
Ȟs
≤ ‖h‖�

H
1/2
τ,p (0,2π)

�′‖γs(s)‖H
1/2
τ,p (0,2π)

⇒ ‖γs(s)‖H
1/2
τ,p (0,2π)

≤ c2
s

c1
‖h‖�

H
1/2
τ,p (0,2π)

�′ .

Considering Ň =
{

u ∈ H
1/2
τ,p (0, 2π) : u is constant

}
and M̌ =

{
v ∈

(
H

1/2
τ,p (0, 2π)

)′
:

∫ 2π

0
v dθ = 0

}
, the proof of the next proposition is similar to the one of Proposition 2.2.7:

Proposition 4.2.4. For any ǔ ∈ N there exists a unique solution v̌ ∈ M for the equation

ǔ = P(ε) v̌ + r(ε), for given r(ε) and P(ε).

Since ǔ ∈ Ň , when we multiply the equality ǔ = P(ε) v̌ + r(ε) by w̌ ∈ M̌ and integrate

on [0, 2π], we find
∫ 2π

0
P(ε)v̌ w̌ dθ = −

∫ 2π

0
r(ε) w̌ dθ, that is, (P(ε)v̌ + r(ε))|M = 0. The

constant ǔ is given by
∫ 2π

0

P(ε)v̌ + r(ε)
2π

dθ.

Remark 4.2.5. Particularizing v̌ = δǔε(ε), defined by (4.3), on the equality of Proposition

4.2.4, we conclude that ǔε(ε), the initial condition of problem 4.2, is uniquely determined

through the relation ǔε(ε) = P(ε)δǔε(ε) + r(ε) and is, as we have seen, a constant. In the

sequel we are going to denote this constant by ǔε(ε) = Υ(r(ε),P(ε)).



122 The factorization method in a general star shaped domain

4.3. Formal calculations

Let b = ϕ′(θ)
ϕ(θ) . With this notation the Laplace equation can be written in the form

(1 + b2)τ
∂2ǔ

∂τ2
− b

∂2ǔ

∂τ∂θ
= b

∂2ǔ

∂θ∂τ
+

(
∂b

∂θ
− (1 + b2)

)
∂ǔ

∂τ
− 1

τ

∂2ǔ

∂θ2
− τϕ2(θ)f (4.14)

and further,

δǔ = (1 + b2)τ
∂ǔ

∂τ
− b

∂ǔ

∂θ
. (4.15)

From (4.11), taking the derivative in a formal way, with to respect to τ and using (4.15), we

obtain
∂ǔ

∂τ
=

∂P
∂τ

δǔ + P
∂

∂τ
δǔ +

∂r

∂τ

=
∂P
∂τ

δǔ + P
∂

∂τ

(
(1 + b2)τ

∂ǔ

∂τ
− b

∂ǔ

∂θ

)
+

∂r

∂τ

=
∂P
∂τ

δǔ + P
(

(1 + b2)τ
∂2ǔ

∂τ2
− b

∂2ǔ

∂τ∂θ

)
+ P(1 + b2)

∂ǔ

∂τ
+

∂r

∂τ
.

Using (4.14), we find

∂ǔ

∂τ
=

∂P
∂τ

δǔ + Pb
∂

∂θ

(
∂ǔ

∂τ

)
+ P

∂b

∂θ

∂ǔ

∂τ
−P

1
τ

∂2ǔ

∂θ2
−Pτϕ2(θ)f +

∂r

∂τ
.

Then, from (4.15), we compute

δǔ = (1 + b2)τ
∂P
∂τ

δǔ + (1 + b2)τPb
∂

∂θ

(
∂ǔ

∂τ

)
+ (1 + b2)τP

∂b

∂θ

∂ǔ

∂τ
− (1 + b2)P

∂2ǔ

∂θ2

−(1 + b2)Pτ2ϕ2(θ)f + (1 + b2)τ
∂r

∂τ
− b

∂ǔ

∂θ

= (1 + b2)τ
∂P
∂τ

δǔ + (1 + b2)τPb
∂

∂θ

(
1

(1 + b2)τ
δǔ +

b

(1 + b2)τ
∂ǔ

∂θ

)
+ (1 + b2)τP

∂b

∂θ(
1

(1 + b2)τ
δǔ +

b

(1 + b2)τ
∂ǔ

∂θ

)
− (1 + b2)P

∂2ǔ

∂θ2
− (1 + b2)Pτ2ϕ2(θ)f

+(1 + b2)τ
∂r

∂τ
− b

∂ǔ

∂θ

= (1 + b2)τ
∂P
∂τ

δǔ + (1 + b2)Pb
∂

(
1

1+b2

)

∂θ
δǔ + (1 + b2)P

b

1 + b2

∂

∂θ
δǔ + (1 + b2)Pb

∂
(

b
1+b2

)

∂θ

∂ǔ

∂θ
+ (1 + b2)P

b2

1 + b2

∂2ǔ

∂θ2
+ (1 + b2)P

∂b

∂θ

1
1 + b2

δǔ + (1 + b2)P
∂b

∂θ

b

1 + b2

∂ǔ

∂θ
− (1 + b2)P

∂2ǔ

∂θ2
− (1 + b2)Pτ2ϕ2(θ)f + (1 + b2)τ

∂r

∂τ
− b

∂ǔ

∂θ
.
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Using again (4.11),

δǔ = (1 + b2)τ
∂P
∂τ

δǔ + (1 + b2)Pb
∂

(
1

1+b2

)

∂θ
δǔ + (1 + b2)P

b

1 + b2

∂

∂θ
δǔ + (1 + b2)Pb

∂
(

b
1+b2

)

∂θ

∂

∂θ
(Pδǔ + r) + (1 + b2)P

b2

1 + b2

∂2

∂θ2
(Pδǔ + r) + (1 + b2)P

∂b

∂θ

1
1 + b2

δǔ

+(1 + b2)P
∂b

∂θ

b

1 + b2

∂

∂θ
(Pδǔ + r)− (1 + b2)P

∂2

∂θ2
(Pδǔ + r)− (1 + b2)Pτ2ϕ2(θ)f

+(1 + b2)τ
∂r

∂τ
− b

∂

∂θ
(Pδǔ + r)

= (1 + b2)τ
∂P
∂τ

δǔ + (1 + b2)Pb
∂

(
1

1+b2

)

∂θ
δǔ + (1 + b2)P

b

1 + b2

∂

∂θ
δǔ + (1 + b2)Pb

∂
(

b
1+b2

)

∂θ

(
∂

∂θ
P

)
δǔ + (1 + b2)Pb

∂
(

b
1+b2

)

∂θ

∂r

∂θ
+ (1 + b2)P

b2

1 + b2

(
∂2

∂θ2
P

)
δǔ

+(1 + b2)P
b2

1 + b2

∂2r

∂θ2
+ (1 + b2)P

∂b

∂θ

1
1 + b2

δǔ + (1 + b2)P
∂b

∂θ

b

1 + b2

(
∂

∂θ
P

)
δǔ

+(1 + b2)P
∂b

∂θ

b

1 + b2

∂r

∂θ
− (1 + b2)P

(
∂2

∂θ2
P

)
δǔ− (1 + b2)P

∂2r

∂θ2

−(1 + b2)Pτ2ϕ2(θ)f + (1 + b2)τ
∂r

∂τ
− b

(
∂

∂θ
P

)
δǔ− b

∂r

∂θ
.

Considering δǔ arbitrary we find

τ
∂P
∂τ

+ Pb
∂

(
1

1+b2

)

∂θ
+ P

b

1 + b2

∂

∂θ
+ Pb

∂
(

b
1+b2

)

∂θ

∂

∂θ
P + P

b2

1 + b2

∂2

∂θ2
P + P

∂b

∂θ

1
1 + b2

+P
∂b

∂θ

b

1 + b2

∂

∂θ
P−P

∂2

∂θ2
P− b

1 + b2

∂

∂θ
P− I

1 + b2
= 0

and

Pb
∂

(
b

1+b2

)

∂θ

∂r

∂θ
+P

b2

1 + b2

∂2r

∂θ2
+P

∂b

∂θ

b

1 + b2

∂r

∂θ
−P

∂2r

∂θ2
−Pτ2ϕ2(θ)f + τ

∂r

∂τ
− b

1 + b2

∂r

∂θ
= 0,

that is,

τ
∂P
∂τ

+ P
∂

∂θ

(
b

1 + b2

)
−P

∂

∂θ

(
1

1 + b2

∂

∂θ

)
P− b

1 + b2

∂

∂θ
P− I

1 + b2
= 0 (4.16)

and

−P
∂

∂θ

(
1

1 + b2

∂r

∂θ

)
−Pτ2ϕ2(θ)f + τ

∂r

∂τ
− b

1 + b2

∂r

∂θ
= 0. (4.17)

Again from (4.11) and considering the initial conditions on Γ1 on (4.2) we obtain

P(1) = 0 and r(1) = 0.
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Further, we can determine the unknown constant of Proposition 4.2.4, and we find




τ
∂P
∂τ

+ P
∂

∂θ

(
b

1 + b2

)
−P

∂

∂θ

(
1

1 + b2

∂

∂θ

)
P− b

1 + b2

∂

∂θ
P− I

1 + b2
= 0,

P(1) = 0

−P
∂

∂θ

(
1

1 + b2

∂r

∂θ

)
−Pτ2ϕ2(θ)f + τ

∂r

∂τ
− b

1 + b2

∂r

∂θ
= 0, r(1) = 0

ǔε = Pδǔε + r, ǔε(ε) = Υ(r(ε),P(ε)) (see Remark 4.2.5).

(4.18)

It is now easy to see that, for the particular case of ϕ(θ) = a (a constant), in which case

we are back to the circular domain of radius a, this system reduces to the system (2.17). In

fact, (4.18) takes the form




τ
∂P
∂τ

−P
∂2

∂θ2
P− I = 0, P(a) = 0

−P
∂2r

∂θ2
−Pτ2a2f + τ

∂r

∂τ
= 0, r(a) = 0

ǔε = P
(

τ
∂ǔ

∂τ

)
+ r

and substituting Pτa = P , we obtain




τ

∂

(
P

τa

)

∂τ
− P

τa

∂2

∂θ2

P

τa
− I =

1
a

∂P

∂τ
− 1

a

P

τ
− P

τ2a2

∂2

∂θ2
P − I = 0, P (a) = 0

− P

aτ2

∂2r

∂θ2
− Paf +

∂r

∂τ
= 0, r(a) = 0

ǔε = P
1
a

∂ǔ

∂τ
+ r,

which corresponds to (2.17), on substituting reversely τ = ρ
a .

4.4. Another formulation

In this section we are going to obtain a second formulation for the decoupled system, which

is intrinsic with the problem. Let α be the angle ( ~OM,~n) where M is a point on Γ and

~n is the outward normal to Γ at M . We assume that −π/2 < α0 ≤ α ≤ α1 < π/2

and that the equation of Γ in polar coordinates is given by ρ = ϕ(θ). We consider the

homothety of center O and ratio 0 < τ < 1, which transforms Ω to Ωτ with boundary Γτ ,

and the following system of curvilinear coordinates: for M ∈ Ω, (τ, t) are such that M ′, the

image of M by a 1/τ homothety, belongs to Γ and t, 0 ≤ t < t0, is the curvilinear abscissa



Another formulation 125

of M ′ on Γ (t0 is the length of Γ); ŭ(τ, t) = u(x1, x2). This new system of coordinates

and the one defined on Section 4.1. are related by the equalities cos(α) dt = τϕ dθ and

tan(α) = ϕ′
ϕ . In this coordinates, the exterior normal to Γτ can be written in the form

∂

∂n
=

1
ϕ cos(α)

∂

∂τ
− tan(α)

∂

∂t
.

Considering now that v̌ε is solution of the homogeneous equation ∆v̌ε = 0 and using the

computations exhibit on Proposition 4.2.1, we obtain

∫ 1

ε

∫ 2π

0

(
1 +

(ϕ′)2

ϕ2

)
τ
∂v̌ε

∂τ

∂ǔε

∂τ
− ϕ′

ϕ

(
∂v̌ε

∂θ

∂ǔε

∂τ
+

∂v̌ε

∂τ

∂ǔε

∂θ

)
+

1
τ

∂v̌ε

∂θ

∂ǔε

∂θ
dθ dτ

= −
∫ 2π

0
δv̌ε ǔε dθ = −

∫ 2π

0

((
1 +

(ϕ′)2

ϕ2

)
ε
∂v̌ε

∂τ
− ϕ′

ϕ

∂v̌ε

∂θ

)
ǔε dθ,

and making the referred change of coordinates, we get the following equality

∫ 1

ε

∫ τt0

0

1
ϕ cos(α)

∂v̆ε

∂τ

∂ŭε

∂τ
− tan(α)

(
∂v̆ε

∂t

∂ŭε

∂τ
+

∂v̆ε

∂τ

∂ŭε

∂t

)
+

ϕ

cos(α)
∂v̆ε

∂t

∂ŭε

∂t
dtdτ

= −
∫ εt0

0

(
1

ϕ cos(α)
∂v̆ε

∂τ
− tan(α)

∂v̆ε

∂t

)
ŭε dt.

Now we derive, for Ω̆ \ Ω̆τ = {(s, t) ∈ ]0, 1[×]0, t0[: τ < s < 1 ∧ 0 < t < st0},
∫ 1

τ

∫ st0

0

1
ϕ cos(α)

∂v̆τ

∂τ

∂ŭτ

∂τ
− tan(α)

(
∂v̆τ

∂t

∂ŭτ

∂τ
+

∂v̆τ

∂τ

∂ŭτ

∂t

)
+

ϕ

cos(α)
∂v̆τ

∂t

∂ŭτ

∂t
dt ds

= −
∫ τt0

0

(
1

ϕ cos(α)
∂v̆τ

∂τ
− tan(α)

∂v̆τ

∂t

)
ŭτ dt.

(4.19)

Then, applying the change of coordinates t′ =
t

τ
to the right hand side of (4.19), deriving

the resulting equality with respect to the variable τ , and then applying the same change of

coordinates to the left hand side, we obtain, successively,

∂

∂τ

(∫ 1

τ

∫ st0

0

1
ϕ cos(α)

∂v̆τ

∂τ

∂ŭτ

∂τ
− tan(α)

(
∂v̆τ

∂t

∂ŭτ

∂τ
+

∂v̆τ

∂τ

∂ŭτ

∂t

)
+

ϕ

cos(α)
∂v̆τ

∂t

∂ŭτ

∂t
dt ds

)

= − ∂

∂τ

(∫ t0

0

(
τ

ϕ cos(α)
∂v̆τ

∂τ
− tan(α)

∂v̆τ

∂t′

)
ŭτ dt′

)

⇒ −
∫ τt0

0

1
ϕ cos(α)

∂v̆τ

∂τ

∂ŭτ

∂τ
− tan(α)

(
∂v̆τ

∂t

∂ŭτ

∂τ
+

∂v̆τ

∂τ

∂ŭτ

∂t

)
+

ϕ

cos(α)
∂v̆τ

∂t

∂ŭτ

∂t
dt

= −
∫ t0

0

∂

∂τ

((
τ

ϕ cos(α)
∂v̆τ

∂τ
− tan(α)

∂v̆τ

∂t′

)
ŭτ

)
dt′

⇒
∫ t0

0

τ

ϕ cos(α)
∂v̆τ

∂τ

∂ŭτ

∂τ
− tan(α)

(
∂v̆τ

∂t′
∂ŭτ

∂τ
+

∂v̆τ

∂τ

∂ŭτ

∂t′

)
+

ϕ

τ cos(α)
∂v̆τ

∂t′
∂ŭτ

∂t′
dt′

=
∫ t0

0

∂

∂τ

((
τ

ϕ cos(α)
∂v̆τ

∂τ
− tan(α)

∂v̆τ

∂t′

)
ŭτ

)
dt′.
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As before, we consider the family of problems Pτ,h, each one defined on Ω̆ \ Ω̆τ , adding a

Neumann boundary condition
∂ŭτ

∂n
|Γ̆τ

= h. By linearity, there exist P (τ) and r(τ) such

that ŭτ (τ) = P (τ)h + r(τ). In the new variables (τ, t′), the normal derivative
∂

∂n
becomes

∂

∂nτ
=

1
ϕ cos(α)

∂

∂τ
− tan(α)

τ

∂

∂t′
. So, we can write the last equality in the form

∫ t0

0

τ

ϕ cos(α)
∂v̆τ

∂τ

∂ŭτ

∂τ
− tan(α)

(
∂v̆τ

∂t

∂ŭτ

∂τ
+

∂v̆τ

∂τ

∂ŭτ

∂t

)
+

ϕ

τ cos(α)
∂v̆τ

∂t

∂ŭτ

∂t
dt

=
∫ t0

0

∂

∂τ

(
τ

∂v̆τ

∂nτ
ŭτ

)
dt,

dropping the prime on t′, in order to simplify the notation. Then, using the Laplace equa-

tion in the form − ∂

∂τ

(
τ

ϕ cos(α)
∂ŭτ

∂τ
− tan(α)

∂ŭτ

∂t

)
− ∂

∂t

(
− tan(α)

∂ŭτ

∂τ
+

ϕ

τ cos(α)
∂ŭτ

∂t

)
=

fτϕ cos(α) (in the variables (τ, t′)), we have successively,

∫ t0

0

τ

ϕ cos(α)
∂v̆τ

∂τ

∂ŭτ

∂τ
− tan(α)

(
∂v̆τ

∂t

∂ŭτ

∂τ
+

∂v̆τ

∂τ

∂ŭτ

∂t

)
+

ϕ

τ cos(α)
∂v̆τ

∂t

∂ŭτ

∂t
dt

=
∫ t0

0

∂

∂τ

(
τ

∂v̆τ

∂nτ

(
P

∂ŭτ

∂nτ
+ r

))
dt =

∫ t0

0

∂

∂τ

(
τ

∂v̆τ

∂nτ
P

∂ŭτ

∂nτ
+ τ

∂v̆τ

∂nτ
r

)
dt

=
∫ t0

0

∂

∂τ

(
τ

∂v̆τ

∂nτ

)
P

∂ŭτ

∂nτ
+ τ

∂v̆τ

∂nτ

∂P

∂τ

∂ŭτ

∂nτ
+ τ

∂v̆τ

∂nτ
P

∂

∂τ

(
∂ŭτ

∂nτ

)
+

∂

∂τ

(
τ

∂v̆τ

∂nτ

)
r

+τ
∂v̆τ

∂nτ

∂r

∂τ
dt

=
∫ t0

0

∂

∂t

(
tan(α)

∂v̆τ

∂τ
− ϕ

τ cos(α)
∂v̆τ

∂t

)
P

∂ŭτ

∂nτ
+ τ

∂v̆τ

∂nτ

∂P

∂τ

∂ŭτ

∂nτ
− ∂v̆τ

∂nτ
P

∂ŭτ

∂nτ

+
∂v̆τ

∂nτ
P

[
∂

∂t

(
tan(α)

∂ŭτ

∂τ
− ϕ

τ cos(α)
∂ŭτ

∂t

)
− fτϕ cos(α)

]

+
∂

∂t

(
tan(α)

∂v̆τ

∂τ
− ϕ

τ cos(α)
∂v̆τ

∂t

)
r + τ

∂v̆τ

∂nτ

∂r

∂τ
dt

=
∫ t0

0

∂

∂t

(
tan(α)

∂v̆τ

∂τ
− ϕ

τ cos(α)
∂v̆τ

∂t

)
ŭτ + τ

∂v̆τ

∂nτ

∂P

∂τ

∂ŭτ

∂nτ
− ∂v̆τ

∂nτ
P

∂ŭτ

∂nτ

+
∂v̆τ

∂nτ
P

∂

∂t

(
tan(α)

∂ŭτ

∂τ
− ϕ

τ cos(α)
∂ŭτ

∂t

)
− ∂v̆τ

∂nτ
Pfτϕ cos(α) + τ

∂v̆τ

∂nτ

∂r

∂τ
dt

⇒
∫ t0

0

τ

ϕ cos(α)
∂v̆τ

∂τ

∂ŭτ

∂τ
− tan(α)

∂v̆τ

∂t

∂ŭτ

∂τ
− tan(α)

∂v̆τ

∂τ

∂ŭτ

∂t
+

ϕ

τ cos(α)
∂v̆τ

∂t

∂ŭτ

∂t
dt

=
∫ t0

0
− tan(α)

∂v̆τ

∂τ

∂ŭτ

∂t
+

ϕ

τ cos(α)
∂v̆τ

∂t

∂ŭτ

∂t
+ τ

∂v̆τ

∂nτ

∂P

∂τ

∂ŭτ

∂nτ
− ∂v̆τ

∂nτ
P

∂ŭτ

∂nτ

+P
∂v̆τ

∂nτ

∂

∂t

(
tan(α)

∂ŭτ

∂τ
− ϕ

τ cos(α)
∂ŭτ

∂t

)
− ∂v̆τ

∂nτ
Pfτϕ cos(α) + τ

∂v̆τ

∂nτ

∂r

∂τ
dt
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=
∫ t0

0
− tan(α)

∂v̆τ

∂τ

∂ŭτ

∂t
+

ϕ

τ cos(α)
∂v̆τ

∂t

∂ŭτ

∂t
+ τ

∂v̆τ

∂nτ

∂P

∂τ

∂ŭτ

∂nτ
− ∂v̆τ

∂nτ
P

∂ŭτ

∂nτ

−∂v̆τ

∂t
tan(α)

∂ŭτ

∂τ
+

∂v̆τ

∂t

ϕ

τ cos(α)
∂ŭτ

∂t
− ∂v̆τ

∂nτ
Pfτϕ cos(α) + τ

∂v̆τ

∂nτ

∂r

∂τ
dt

⇒
∫ t0

0

τ

ϕ cos(α)
∂v̆τ

∂τ

∂ŭτ

∂τ
dt =

∫ t0

0
τ

∂v̆τ

∂nτ

∂P

∂τ

∂ŭτ

∂nτ
− ∂v̆τ

∂nτ
P

∂ŭτ

∂nτ
+

∂v̆τ

∂t

ϕ

τ cos(α)
∂ŭτ

∂t

− ∂v̆τ

∂nτ
Pfτϕ cos(α) + τ

∂v̆τ

∂nτ

∂r

∂τ
dt

⇒
∫ t0

0

(
τ

∂v̆τ

∂nτ
+ tan(α)

∂v̆τ

∂t

)(
ϕ cos(α)

∂ŭτ

∂nτ
+

ϕ sin(α)
τ

∂ŭτ

∂t

)
dt =

∫ t0

0
τ

∂v̆τ

∂nτ

∂P

∂τ

∂ŭτ

∂nτ

− ∂v̆τ

∂nτ
P

∂ŭτ

∂nτ
+

∂v̆τ

∂t

ϕ

τ cos(α)
∂ŭτ

∂t
− ∂v̆τ

∂nτ
Pfτϕ cos(α) + τ

∂v̆τ

∂nτ

∂r

∂τ
dt

⇒
∫ t0

0
τϕ cos(α)

∂v̆τ

∂nτ

∂ŭτ

∂nτ
+ ϕ sin(α)

∂v̆τ

∂nτ

∂P

∂t

∂ŭτ

∂nτ
+ ϕ sin(α)

∂v̆τ

∂nτ

∂r

∂t

+ϕ sin(α)
∂P

∂t

∂v̆τ

∂nτ

∂ŭτ

∂nτ
dt =

∫ t0

0
τ

∂v̆τ

∂nτ

∂P

∂τ

∂ŭτ

∂nτ
− ∂v̆τ

∂nτ
P

∂ŭτ

∂nτ
+ τ

∂v̆τ

∂nτ

∂r

∂τ

+
ϕ cos(α)

τ

∂P

∂t

∂v̆τ

∂nτ

∂P

∂t

∂ŭτ

∂nτ
+

ϕ cos(α)
τ

∂P

∂t

∂v̆τ

∂nτ

∂r

∂t
− ∂v̆τ

∂nτ
Pfτϕ cos(α) dt.

Formally, we obtain

(
τϕ cos(α)

∂v̆τ

∂nτ
,
∂ŭτ

∂nτ

)
+

(
ϕ sin(α)

∂P

∂t

∂v̆τ

∂nτ
,
∂ŭτ

∂nτ

)
+

(
ϕ sin(α)

∂v̆τ

∂nτ
,
∂P

∂t

∂ŭτ

∂nτ

)

=
(

τ
∂v̆τ

∂nτ
,
∂P

∂τ

∂ŭτ

∂nτ

)
−

(
∂v̆τ

∂nτ
, P

∂ŭτ

∂nτ

)
+

(
ϕ cos(α)

τ

∂P

∂t

∂v̆τ

∂nτ
,
∂P

∂t

∂ŭτ

∂nτ

) (4.20)

and

(
ϕ sin(α)

∂v̆τ

∂nτ
,
∂r

∂t

)
= −

(
P

∂v̆τ

∂nτ
, fτϕ cos(α)

)
+

(
τ

∂v̆τ

∂nτ
,
∂r

∂τ

)

+
(

ϕ cos(α)
τ

∂P

∂t

∂v̆τ

∂nτ
,
∂r

∂t

)
.

(4.21)

We emphasize that this operator P , and the operator P of the precedent sections, are not

the same. Nevertheless,
∂

∂n
and δ verify the direct relation

∂

∂n
=

(
cos(α)

τϕ

)
δ. This means

that we can prove the equivalence between the formulations (4.16) and (4.20) (and, similarly,

between (4.17) and (4.21)). In fact, through the change of coordinates cos(α) dt = ϕ dθ, we

find
∂

∂nτ
=

(
cos(α)

τϕ

)
δ and, consequently, from (4.16), we obtain successively
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τ
∂P
∂τ

+ P
∂

∂θ

(
b

1 + b2

)
−P

∂

∂θ

(
1

1 + b2

∂

∂θ

)
P− b

1 + b2

∂

∂θ
P− I

1 + b2
= 0

⇒ τ
∂P
∂τ

+ P
ϕ

cos(α)
∂

∂t

(
b

1 + b2

)
−P

ϕ

cos(α)
∂

∂t

(
1

1 + b2

ϕ

cos(α)
∂

∂t

)
P− b

1 + b2

ϕ

cos(α)
∂

∂t
P

− I

1 + b2
= 0

⇒ τ
∂P
∂τ

+ P
ϕ

cos(α)
∂

∂t

(
sin(α) cos(α)

)−P
ϕ

cos(α)
∂

∂t

(
cos2(α)

ϕ

cos(α)
∂

∂t

)
P− sin(α) cos(α)

ϕ

cos(α)
∂

∂t
P− I cos2(α) = 0

⇒ τ
∂P
∂τ

+ P
ϕ

cos(α)
∂

∂t

(
sin(α) cos(α)

)−P
ϕ

cos(α)
∂

∂t

(
ϕ cos(α)

∂

∂t

)
P− ϕ sin(α)

∂

∂t
P

−I cos2(α) = 0

⇒ τ
∂

∂τ

(
P

cos(α)
τϕ

)
+ P

cos(α)
τϕ

ϕ

cos(α)
∂

∂t

(
sin(α) cos(α)

)− P
cos(α)

τϕ

ϕ

cos(α)
∂

∂t

(
ϕ cos(α)

∂

∂t

)

P
cos(α)

τϕ
− ϕ sin(α)

∂

∂t
P

cos(α)
τϕ

− I cos2(α) = 0

⇒
(

∂P
∂τ τ − P

τ2

)
τ cos(α)

ϕ
+

P

τ

∂

∂t

(
sin(α) cos(α)

)− P

τ

∂

∂t

(
ϕ cos(α)

∂

∂t

)
P

cos(α)
τϕ

− ϕ sin(α)

∂

∂t
P

cos(α)
τϕ

− I cos2(α) = 0

⇒ ∂P

∂τ

cos(α)
ϕ

− P
cos(α)

τϕ
− 1

τ

∂

∂t
P sin(α) cos(α)− P

τ

∂

∂t

(
ϕ cos(α)

∂

∂t

)
P

cos(α)
τϕ

− ϕ sin(α)

∂

∂t
P

cos(α)
τϕ

− I cos2(α) = 0

⇒ τ
∂P

∂τ
− P − ∂

∂t
Pϕ sin(α)− P

τ

∂

∂t

(
ϕ cos(α)

∂

∂t

)
P − ϕ sin(α)

∂

∂t
P − τϕ cos(α)I = 0

⇒ τ
∂P

∂τ
− P + P

∂

∂t

(
ϕ sin(α)

)− P

τ

∂

∂t

(
ϕ cos(α)

∂

∂t
P

)
− ϕ sin(α)

∂

∂t
P − τϕ cos(α)I = 0

which corresponds formally to (4.20).

4.5. Defining u(0)

Proposition 4.5.1. Considering uε the solution of problem (1.4), uε|Γε
is bounded by a

constant not depending on ε.



Defining u(0) 129

Proof. The first part of the proof consists on showing that we have

infΓεwε ≤ uε|Γε
≤ supΓε

wε, (4.22)

where wε ∈ H1
0 (Ω) is the solution of the problem −∆wε = f̃ε =





f, Ω \ Ωε

0, Ωε.

From −∆wε = f̃ε, in H1
0 (Ω), we find

∫

Ω
−∆wε =

∫

Ω
f̃ε =

∫

Ω\Ωε

f = −
∫

Γ

∂wε

∂n
. On the

other hand, from the formulation of problem (1.4) and choosing a test function equal to one,

we find
∫

Ω\Ωε

−∆uε =
∫

Ω\Ωε

f = −
∫

Γε

∂uε

∂n
−

∫

Γ

∂uε

∂n
= −

∫

Γ

∂uε

∂n
. Therefore, we have the

equality
∫

Γ

∂uε

∂n
=

∫

Γ

∂wε

∂n
.

Let us now suppose that uε|Γε
= cε < infΓεwε. Then, uε − wε satisfies:





−∆(uε − wε) = 0, in Ω \ Ωε

(uε − wε)|Γ = 0

(uε − wε)|Γε
< 0.

(4.23)

From (4.23) and using the maximum principle we can also conclude that uε − wε ≤ 0,

in Ω \ Ωε and, in fact, uε − wε < 0, in Ω \ Ωε. As a consequence, using the definition of

directional derivative, we find that
∂uε

∂n
|Γ ≥ ∂wε

∂n
|Γ.

From
∂(uε − wε)

∂n
|Γ ≥ 0 and

∫

Γ

∂(uε − wε)
∂n

= 0 we conclude that
∂(uε − wε)

∂n
|Γ = 0.

Therefore, we have uε − wε < 0, in Ω \ Ωε, and (uε − wε) = 0, in Γ. Using Lemma 3.4

of [14], for each point of Γ, we find
∂(uε − wε)

∂n
> 0 a.e. on Γ and we reach a contradiction.

So, we must have infΓεwε ≤ cε.

Analogously, one can show that cε ≤ supΓε
wε.

For the second part of the proof, using [14] (Theorem 8.15, page 189, with q = 4), we

can show that ‖wε‖L∞(Ω) is bounded by a constant not depending on ε (only depends on

constants concerning ‖f‖L2(Ω) and the size of Ω) and the result follows.

Now we are able to establish the value of u on the origin. Obviously, this general method

could also be applied on Chapter 2, instead of the direct computations presented there.
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Proposition 4.5.2. Let f ∈ C0,α(Ω) Then, when ε converges to 0, uε|Γε
converges to u(0).

Proof. Considering u the solution of problem (1.3), since f ∈ C0,α(Ω), we have u ∈
C2,α(Ω). Let, as previously, −∆wε = f̃ε, wε ∈ H1

0 (Ω). Therefore, vε = wε − u satisfies

−∆(vε) = g̃ε, where g̃ε =




−f, Ωε

0, Ω \ Ωε.
Using again [14] we can show that ‖vε‖L∞(Ω) ≤

k(‖vε‖L2(Ω) + ‖g̃ε‖L2(Ω)), where k is a constant not depending on ε. When ε → 0 we

have ‖vε‖L2(Ω) → 0 and ‖g̃ε‖L2(Ω) → 0, then ‖vε‖L∞(Ω) → 0. So, for δ > 0 there exists

ε > 0 such that |vε(x)| ≤ δ
2 and |u(x) − u(0)| ≤ δ

2 , ∀x ∈ Ωε ∪ Γε. Then, for x ∈ Γε,

|wε(x) − u(0)| = |vε(x) + u(x) − u(0)| ≤ δ and consequently, −δ ≤ infΓε(wε(x)) − u(0) =

infΓε(wε(x)− u(0)) ≤ supΓε
(wε(x)− u(0)) = supΓε

(wε(x))− u(0) ≤ δ. Using (4.22), we find

−δ ≤ infΓεwε − u(0) ≤ uε|Γε
− u(0) ≤ supΓε

wε − u(0) ≤ δ, which implies that uε|Γε
→ u(0),

when ε → 0.

4.6. Conclusion

Using the Galerkin method and the adequate properties on the operator P and function r,

we hope to justify the preceding formal calculations, following the same steps of Chapter

2. We expect to obtain, after passing to the limit when the dimension tends to infinity, the

following result:

Claim 4.6.1. Denoting by I the interval (0, t0), by (., .) the scalar product in L2(I), and

considering φ ∈ D(0, 1), then P , r and ŭτ satisfy:

1. the negative self-adjoint operator P ∈ L (
L2(I),H1

τ,p(I)
) ∩ L

((
H

1/2
τ,p (I)

)′
, H

1/2
τ,p (I)

)

∩L
((

H1
τ,p(I)

)′
, L2(I)

)
, bounded as a function of τ , satisfies, for every h, h̄ in L2(I),

the Riccati equation
(

dP

dτ
h, h̄

)
−

(
ϕ sinα

τ
h,

∂

∂t
◦ Ph̄

)
−

(
∂

∂t
◦ Ph,

ϕ sinα

τ
h̄

)

+
(

ϕ cosα

τ2

∂

∂t
◦ Ph,

∂

∂t
◦ Ph̄

)
−

(
1
τ
h, P h̄

)
=

(
ϕ cosα h, h̄

)
(4.24)

in D′(0, 1), with the initial condition P (1) = 0;
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2. for every h in H
1/2
τ,p (I), r satisfies the equation

(
∂r

∂τ
, h

)
−

(
ϕ sinα

τ

∂r

∂t
, h

)
+

(
ϕ cosα

τ2

∂r

∂t
,

∂

∂t
◦ Ph

)
=

(
ϕ cosαf̂, Ph

)
(4.25)

in D′(0, 1), with the initial condition r(1) = 0;

3. for every h in
(
H

1/2
τ,p (I)

)′
, ŭτ satisfies the equation

−
(

1
ϕ cosα

∂ŭτ

∂τ
, Ph

)
+

(
tanα

τ

∂ŭτ

∂t
, Ph

)
+ 〈ŭτ , h〉

H
1/2
τ,p (I),

�
H

1/2
τ,p (I)

�′

= 〈r, h〉
H

1/2
τ,p (I),

�
H

1/2
τ,p (I)

�′
(4.26)

in D′(0, 1), with the initial condition ŭτ (0) = u(0) given by Proposition 4.5.2.
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sion infinie, Journal of Functional Analysis, 7 (1971), 85-115.

135





Table of Notation

A, 112

H(∆, Ω̂ \ Ω̂s), 53

H1
ρ (ε, a), 16

H1
τ (ε, 1), 113

H1
ρ,P (0, 2π), 16

H1
τ,p(0, 2π), 113

H
1/2
ρ,P (0, 2π), 17

H
1/2
τ,p (0, 2π), 117(
H

1/2
ρ,P (0, 2π)

)′
, 17

(
H

1/2
τ,p (0, 2π)

)′
, 117

L2
ρ(ε, a; H1

ρ,P (0, 2π)), 17

L2
ρ(ε, a; L2(0, 2π)), 16

L2
ρ(ε, a), 16

L2
τ ((ε,1)×(0,2π)), 113

L2
τ (ε, 1), 113

O, 111

P , 19, 126

P, 117

Pm, 34

Pε, 80

Pm
ε , 87

V m, 32

Γ, 9

Γ1, 112

Γε, 9, 16

Γa, 16

Γs, 18, 77

Λ, 36

Ω, 9, 15, 111

Ω \ Ωε, 9, 16

Ω \ Ωs, 15

Ωτ , 124

Ωε, 9

Ω̂, 16, 111

Ω̂ \ Ω̂ε, 16, 112

Ω̂ \ Ω̂s, 18

Ω̂s \ Ω̂ε, 77

Ω̆ \ Ω̆τ , 125

Ω̌ \ Ω̌ε, 112

‖.‖H1
τ (ε,1), 113

‖.‖H1
ρ,P (0,2π), 16, 28, 87

‖.‖H1
τ,p(0,2π), 113

‖.‖
H

1/2
ρ,P (0,2π)

, 28, 87

‖.‖
H

3/2
ρ,P (0,2π)

, 28, 87

‖.‖L2(0,2π), 16, 28, 87, 113

‖.‖L2
ρ(ε,s;L2(0,2π)), 87

‖.‖L2
τ ((ε,1)×(0,2π)), 113

‖.‖L2
τ (ε,1), 113

‖.‖Ȟε
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ŭτ , 125
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