
 
Keywords: Fractional derivative, differintegration, B-
splines.. 
 
 

Abstract  
 
The fractional differintegration problem is treated from the Signal 
Processing point of view. A brief review of the Laplace transform 
approach to differintegration is done. The continuous-
time/discrete-time system conversion is discussed and presented a 
Grünwald-Letnikov integration.  

 

1 Introduction 
 The fractional calculus is nearly 300 years old. In 
fact, in a letter to Leibnitz, Bernoulli put him a question 
about the meaning of a non-integer derivative order. It was 
the beginning of a discussion about the theme that involved 
other mathematicians like: L’ Hôpital, Euler and 
Fourier[5,6,12,13]. However, we can reference the 
beginning of the fractional calculus in the works of Liouville 
and Abel. Similarly, Liouville did several attempts. In one of 
them he presented a formula for fractional integration similar 
to (1.1): 

D-pϕ(t) = 
1

(-1)pΓ(p)⌡
⌠
0

∞

 ϕ(t+τ)τp-1dτ  -∞<t<∞, Re(p)>0 (1.1) 

where Γ(p) is the gamma function. To this integral, with the 
term (-1)p omitted, we give the name of Liouville´s fractional 
integral. In other papers, Liouville went ahead with the 
development of ideas concerning this theme, having 
presented a generalization of the notion of incremental ratio 
to define a fractional derivative. This idea was recovered, 
later, by Grünwald (1867) and Letnikov (1868). 
  Riemann reached to an expression similar to (1.1) for 
the fractional integral 

                                                                 
1 Also with INESC, R. Alves Redol, 9, 2º, 1000 – 029 Lisbon 

D-αϕ(t)=
1

Γ(α)
 ⌡
⌠

0

t

 
ϕ(τ)

(t-τ)1-αdτ ,        t>0 (1.2) 

that, together with (1.2), became the more important basis 
for the fractional integration. It suits to refer that both 
Liouville and Riemann dealt with the called 
“complementary” functions that appear when we treat the 
differentiation of order α as an integration of order -α. 
Holmgren (1865/66) and Letnikov (1868/74) discussed that 
problem when looking for the solution of differential 
equations, putting in a correct statement the fractional 
differentiation as inverse operation of the fractional 
integration. Besides, Holmgren gave a rigorous proof of 
Leibnitz´ rule for the fractional derivative of the product of 
two functions. In the advent of XXth century, Hadamard 
proposed a method of fractional differentiation with basis 
on the differentiation of Taylor´s series associated with the 
function. Weyl (1917) defined a fractional integration 
suitable to periodic functions particular cases of Liouville 
and Riemann ones but that are, nowadays, the basis for 
fractional integration  in R. An important contribution to the 
fractional differentiation was given by Marchaud (1927). 
 Nowadays, the unified formulation of differentiation 
and integration - called differintegration - based on Cauchy  
integral [2,5, 9,13] gained great popularity.  
 These developments allowed the study and 
solutions of fractional differential equations [6,9,13] and a 
first approach into the formulation of the fractional linear 
system theory [10]. However, we remained without 
satisfactory answers for some questions, namely tied up 
with the conversion from continuous-time to discrete-time 
linear systems [7,8,16]. In this paper we will make a brief 
description of a Signal Processing route through Fractional 
Calculus and some questions are placed and answers 
proposed. In section 2 we revise the Laplace Transform based 
fractional differintegration and discuss the foundation of the 
Grünwald-Letnikov derivative suitable for numerical 
computations. In Section 3 we address the conversion from 
continuous-time to discrete-time problem from a very 
general perspective. In passing we suggest a definition of a 
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Grünwald-Letnikov integration. The interest of splines in 
Approximation and Signal Processing [14,15] lead us to treat 
this subject, by proposing new fractional splines. At last, 
we present some conclusions.    
 
2 The Laplace Transform approach 

2.1 Obtaining the differintegration operator  
 In the previous section, we made a brief introduction 
to the fractional calculus. We were not exhaustive in the 
sense that there are several other definitions of fractional 
differintegration we did not consider here. However, it seems 
to be clear to exist an inherent difficulty in obtaining a 
definition with enough generality and compatibility with the 
usual Signal Processing practice. In fact, in Signal 
Processing, we frequently assume that the signals have R 
as domain and use the Bilateral Laplace (LT) and Fourier (FT) 
Transforms. With these tools, the remarkably important 
Transfer Function and Frequency Response concepts are 
defined, with properties we want to preserve in the 
fractional case. These considerations led us to start from the 
transform point of view in order to generalise to the 
fractional case well-known properties of the Laplace 
Transform. For example, if α is a real number we expect to 
obtain: 

LT



 f

(α)
  (t)   = s

α
 F(s)     (2.1) 

where F(s) is the LT of f(t). This would be the generalisation 
of the usual property of the LT of the derivative or the 
integral. As we wish to work without unnecessary 
limitations and constraints we will be working in the context 
of the Generalised Functions, by considering exp onential 
order and tempered distributions.  
 Instead of starting with the definition of 
differintegration, we invert the problem and take the LT as 
starting point since the expression (2.1) must be valid for 
any real α. Essentially, the objective is to prolong the 
sequence: 

... s
-n

 ..., s
-2

 , s
-1

 , 1, s
1
 , s

2
 , ..., s

n
 ... (2.2) 

in order to include other kind of exponents: rational or, 
generally, real and even complex numbers. We immediately 
observe that there are two ways for this extension to be 
obtained, depending on the LT region convergence: the left 
half-plane or the right half-plane. To solve our problem, we 
are going to perform the LT inversion of the function s -ν. For 
now, we will consider the case 0<ν<1 and assume that its 
region of convergence is defined by Re(s)>0 – causal case. 
This inversion can be obtained through the use of a real 
inversion formula for the Laplace Transform [4]. It gives: 

δ
(-ν)
+

 (t) =  
tν-1

Γ(ν)
u(t)        (2.3) 

which is exactly a generalization of the expression we obtain 
easily for negative integer values. The anti-causal case be 
treated similarly, but we only have to remember that LT[x(-
t)]=X(-s) to conclude easily that: 

δ
(-ν)
-

 (t) =  - 
tν-1u(-t)

Γ(ν)
  (2.4) 

With (2.3) and (2.4), we can define ν order integrated of x(t), 

x
(-ν)
+ (t) and x

(-ν)
- (t), as the convolution of x(t) with δ

(-ν)
+

 (t) 

and δ
(-ν)
-

 (t): 

x
(-ν)
+ (t) = 

1
Γ(ν)⌡

⌠
-∞

t

 x(τ).(t-τ)ν-1 dτ  (2.5) 

and 

x
(-ν)
- (t)  =  -

1
Γ(ν)⌡

⌠
t

∞

 x(τ).(t-τ)ν-1 dτ  (2.6) 

 In the following we will consider the causal case, only. 
With the described procedure, we found out a 
generalisation of the primitive concept for orders ν∈]0,1[.  
To obtain similar results for every α∈R we must proceed in 
order to generalise also the known properties of the 
primitive and derivative, namely that: 
Dα{Dβ} = Dα+β = Dβ{Dα} (2.7) 
should be valid for every α,β∈R. In particular, if n is a 
positive integer and 0<µ<1,  
Dn{Dµ} = Dµ{Dn}= Dn+µ (2.8) 
and 
D-n{D-µ} = D-µ{D-n}= D-n-µ (2.9) 
Putting α = n + ν, n∈N and  0<ν<1, -α = -n-ν  and using (2.5) 
we obtain: 

x
(-α)
+  (t) = 

1
Γ(ν)

D
-n











⌡⌠
-∞

t

 x(τ).(t-τ)ν-1 dτ   (2.10) 

But from the properties of the convolution Dn[f*g] = [Dnf]*g, 
for every n∈Z, we conclude easily that: 

x
(-α)
+  (t) = 

1
Γ(ν)⌡

⌠
-∞

t

 x(-n)(τ).(t-τ)ν-1 dτ  (2.11) 

But as ν = α-n, we obtain: 

x
(-α)
+  (t) = 

1
Γ(α-n)⌡

⌠
-∞

t

 x(-n)(τ).(t-τ)α-n-1 dτ  (2.12) 

where n is the integer part of |α|. Equation (2.12) generalises 
(2.5) for every negative real order. To treat the derivative 
case, or α =n+ν, n∈N and 0<ν<1, we have α=n+1-1+ν=n+1-
(1-ν), we have: 

x
(α)
+  (t) = 

1
Γ(1-ν)

D
(n+1)











⌡⌠
-∞

t

 x(τ).(t-τ)-ν dτ   (2.13) 

and again: 

x
(α)
+  (t) = 

1
Γ(1-ν)

 











⌡⌠
-∞

t

 x(n+1)(τ).(t-τ)-ν dτ   (2.14) 

As ν = α-n, we obtain: 



x
(α)
+  (t) = 

1
Γ(-α+n+1)

 











⌡⌠
-∞

t

 x(n+1)(τ).(t-τ)-α+n dτ   (2.15) 

that is  known as Caputo derivative [13]. Of course, LT[x
(α)
+  

(t)] = sαX(s), for Re(s) >0. As referred in [12], this definition 
of fractional derivative has advantages over other 
approaches when we are dealing with fractional linear 
systems where we need non-zero initial conditions.  

We may ask for reasons for not having computed 
the derivative in t -ν-1 instead of x(t). The answer is in the fact 
that t-ν-1 is one solution of the equation tν+1.f(t)=1, that has 
infinite solutions with the general format f(t) = t-ν-1 + A.δ(t), 
where A∈R. So, it cannot be considered a distribution in the 
sense used in [3]. Of course, we can consider the so-called 
finite part of that function, t-ν-1. If we do so and perform the 
differintegration operation in this function in (2.10) and 
(2.13) we obtain, after some manipulation: 

x
(α)
+ (t) = 

1
Γ(-α)⌡

⌠
-∞

t

 x(τ).(t-τ)-α-1 dτ  (2.16) 

that generalises (2.5) for any α∈R. A similar procedure 
based on (2.6) would lead to: 

x
(α)
- (t)  =  -

1
Γ(ν)⌡

⌠
t

∞

 x(τ).(t-τ)-α-1 dτ  (2.17) 

Equations (2.16) and (2.17) express respectively the so-
called Riemann-Liouville and Weyl fractional derivatives 
[6,13].  
 

2.2 The first difference and the Grünwald-
Letnikov derivative  

Consider the discrete-time system having Transfer Function 
given by: 

H (z) = 



1 - z-1

h

α
    (2.18) 

The discrete-time equation corresponding to (2.1) can be 
described by a fractional order difference equation:  

yn= ( )1-D
α

xn  (2.19) 
where is the unit delay operator. The corresponding Impulse 
Response is: 

hn= (-1)n 



α

n  un (2.20) 

where 



α

 n  = 
Γ(α+1)

Γ(α-n+1).n!
  are the binomial coefficients. From 

the point of view of the stability of the system (1-z-1)α, we 
can say that if α is a negative integer, it is unstable, in 
general, excepting the case α=-1 (accumulator); in this 
situation, the system is wide sense stable. If α is a positive 
integer, it is a FIR, so it is always stable in every sense. If 
α>0, the system will be stable in any sense; if -1<α<0, the 
system will be wide sense stable, since the impulse 

response goes slowly to zero, h n ≈ c.n -α-1. We conclude that 
if |α| <1, the system is, at least, wide sense stable. Now, we 
define a fractional (discrete-time) stochastic process as the 
output of a fractional system excited by stationary white 
noise: 
x(k) = h(k)*n(k)  (2.21) 

where n(k) is a stationary white noise with variance σ2. We 
define, as usually, the autocorrelation function by: 

Rx(k) = σ2 ∑
i=0

∞
 h

*
i .h

 
i+k       k≥0 (2.22) 

The computation of its autocorrelation function is slightly 
involved [11] and is given by: 

Rx(k) = σ2 (-1)k 
Γ(1+2α)

Γ(α+k+1)Γ(α-k+1)
         (2.23) 

if 1+2α >0, or α > -1/2. If α non integer and α<-1/2, we 
obtain a negative power, meaning that, in such situation, the 
finite difference cannot be used. The Grünwald-Letnikov 
approach to fractional derivative consists in making the 
sampling interval h go to zero in (2.18). Letting z=e sh we 
have: 

 (1 - e-sh)α

hα  = 
1

 hα ∑
k=0

∞
  (-1)

k
  

α
k  e-shk  (2.24) 

if h>0 and Re(s)>0. Similarly 

(esh - 1)α 
hα  = 

(-1)
α

hα ∑
k=0

∞
  (-1)

k
  

α
k  eshk  (2.25) 

provided that h>0 and Re(s)<0. The first members in (2.24) 
and (2.25) converge to sα with h→0+. These expressions, 
when inverted back into time lead, respectively, to  

d
(α)
+

(t) = lim
h→0+

1
 hα ∑

k=0

∞
  (-1)

k
  

α
k  δ(t-kh) (2.26) 

if Re(s)>0, and 

d
(α)
-

(t) = lim
h→0+

(-1)
α

hα ∑
k=0

∞
  (-1)

k
  

α
k  δ(t+kh)  (2.27) 

provided that Re(s)<0 (1). The convolution of (2.26) and 
(2.27) with a given signal, f(t), leads to the Grünwald-
Letnikov backward and forward derivatives. 
 
Definition 2.1 
Let f(t) a limited function and α>0. We define derivative of 
order α, backward and forward, respectively, by 

 f
(α)
+  (t) = lim

h→0+
 

∑
k=0

∞
  (-1)

k
  

α
k  f(t-kh)

h
α   (2.28) 

or 

                                                                 
1 We used d instead δ, to avoid confusion, while the 

equivalence is not proved. 



f
(α)
-  (t)= lim

h→0+
 (-1)

α
 

∑
k=0

∞
  (-1)

k
  

α
k  f(t+kh)

h
α                (2.29) 

We can show [14] that 









α

k  ≤ 
c

k1+α with α kept constant 

and k→∞. This condition shows that the series C(α) = 

∑
0

∞
 









α

k  is absolutely convergent and assuring, thus, that 

the series (2.28) and (2.29) converge absolutely and 
uniformly for limited functions provided that α>0 [13]. In 
this case, it is not hard to prove the equivalence of (2.16) 
and (2.28) – or (2.17) and (2.29) [12]. On the other hand (2.23) 
implies that the previous series converge also for α>-1/2 for 
square integrable functions. For other cases, the definitions 
(2.28) and (2.29) may not to remain valid, since, in general, 
they are divergent. Such happens, for example, if f(t) = 1 or 
f(t) is periodic. It is noteworthy that it can exist a left 
derivative without existing the right one and vice-versa. To 
see why, let us apply both definitions to the function f(t) = 
est. If Re(s)>0, the 1st converges to sα.est, while the 2nd 
diverges; if Re(s)<0, we have the reverse situation. On the 
other hand, in the limit computation, a change from h to -h 
interchanges (2.28) and (2.29). It is somehow difficult to 
accept that a local property of a function has such 
behaviour at all the points. To avoid this a generalisation of 
such expressions to use left and right points is proposed in 
[14]. 
  
3 The s2z conversion 

3.1 The continuous -time to discrete-time 
conversion problem 

 The most common and useful linear systems are 
described by linear fractional differential equations. Here, it 
will be assumed that the coefficients of the equation are 
constant, so the corresponding system will be a fractional 
linear time-invariant (FLTI) system described by a 
differential equation with the format: 

∑
i=0

N
 aiD

iν
 y(t)  =  ∑

j=0

M
 bjD

jν
 x(t)  (3.1) 

where D is the derivation operator and the ν  is a positive 

real (1). If we apply the LT to the equation (3.1) we obtain: 

H(s)= 

∑
j=0

M
 bjs

jν
 

 ∑
i=0

N
 ais

iν
 

         (3.2) 

                                                                 
1 We do not need to be so restrictive with the 
differintegration orders {see [13,14]}. 

which is the Transfer Function. We will assume that M<N.  
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c 

d d 
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fig. 1 equivalence between continuous and discrete linear systems 

Usually, in Signal Processing applications, most times, we 
are interested in obtaining a discrete-time (DT) equivalent of 
the continuous-time (CT) system to: 

a) simulate CT systems by DT means 
b) process CT signals by DT systems  
c) design DT systems by using the well-known CT 

design methods 
d) modelling CT practical systems by using DT 

signals resulting from experimental 
measurements  

In figure 1, we illustrate the process of constructing a 
discrete-time equivalent to a continuous-time system. This 
discrete-time equivalent will be described by a difference 
(eventually, fractional) equation. This means that we want 
to make a s to z (s2z) conversion. The α=1 case is well 
studied and several techniques to convert a differential 
equation into a difference equation (s2z) and vice-versa 
(z2s) were developed. Following [1] we can group the most 
important methods into: 

a) Matching time responses (response-invariant 
transformation). 

b) Matching terms in factored transfer function 
c) Matching terms in partial fraction decomposition 

of the transfer function 
d) Magnitude-invariant method 
e) Conversion of the differential equation to a 

difference equation using difference operators. 
f) Numerical solution of the differential equation 

by using numerical integration algorithms  
g) Rational approximations to the exponential 

function. 
 
The problem is that these procedures are not suitable for the 
α<1 case.   

3.2 The first difference approach 
The first difference approach consists in making the 
substitution 



sα = 



1 - z-1

T

α
 = 

1
Tα ∑

n=0

∞
  



α

 n  (-1)n z-n  (3.3) 

Inserting (3.3) into (3.2) we obtain the Transfer Function of 
the converted discrete-time system, that we can write as: 

H(z)= 

∑
n=0

∞
  





∑

j=0

M
  

1
Tjν bj 



jν

 n  (-1)n z-n 

∑
n=0

∞
  





∑

j=0

N
  

1
Tjν aj 



jν

 n  (-1)n z-n 

    (3.4) 

This leads us to conclude that the discrete-time equivalent 
is an ARMA system with infinite orders. In practical 
applications we have to truncate the outer summations, but 
we must have in mind that the truncation order must be very 
high, since the coefficients converge very slowly, equation 
(2.27). Besides this drawback, the approximation in (3.3) 
does not preserve the phase. In fact,  





1 - e-jω

T

α
 = 

1
Tα e-jωα/2.(2j)α.sinα(ω/2)  (3.5) 

introducing a phase delay equal to ωα/2. This leads to poor 
results even in the α=1 case. 

3.3 A general theoretical approach 
From figure 1, it is clear that we may obtain different 
solutions for different input functions. The usual approach 
is based on the impulse or step responses. Although these 
functions are very important in applications, neither the 
impulse nor the step is satisfactory test functions, because 
the corresponding responses are very different from the 
inputs. This does not happen with the exponential function 
that is the eigenfunction of every linear system. Thus, 
letting x(t) = est and xn =  zn be the inputs to CT and DT 
systems, the outputs will be y(t) = Hc(s) est and yn = Hd(z).zn. 
Let z=esT. We say that a continuous-time system with 
transfer function Hc(s) is equivalent to a discrete-time 
system with transfer function Hd(e

sT), if  
Hd(e

sT) = Hc(s)  (3.6) 
However, Hd(e

sT) is a periodic function with period equal to 
j.2π/T. So, the equivalence will be restricted to the horizontal 

strip ST={ z: z∈C, |Im(z)| < 
2π
T

  }. Let Hd(e
sT) be equal to Hc(s) 

inside the above strip. Then, we conclude easily that  

Hd(e
sT) = ∑

-∞

+∞
  Hc(s+j

2π
T

n) (3.7) 

To assure that (3.6) is valid, Hc(s), must be a “strip-limited” 
function in the sense that it must be equal to zero outside 
the strip ST. As it is known, there are no realizable linear 
systems having a Transfer Function equal to zero, outside 
any strip. So, if we use Hc in eq. (3.6), this will be verified 
only as an approximation that will become as better as T 
becomes smaller, if Hc(s) goes to zero with increasing values 
if Im(s). As (3.7) represents a periodic function, it has a 
Fourier series: 

 Hd(e
sT) = ∑

-∞

+∞
  hdn e

-snT (3.8) 

with Fourier coefficients given by: 

hdn= 
T
2π ⌡⌠

-πj/T

 πj/T

 Hc(s) esnT ds  (3.9) 

If Hc(s) is nonzero only in the strip |Im(s)| < π/T , it is simple 
to conclude that  
hdn =  T.hc(nT)  (3.10) 
Then, the impulse invariant conversion technique is an 
approximation to the eigenequivalence method. On the other 
hand, a z= esT variable change in (3.9), we obtain: 

hdn= 
1

2πj
 ⌡⌠

c

  

 Hd(z) zn-1 dz  (3.11) 

that is the usual inversion formula for the Z Transform.  
 In the M<N case, the transfer function (3.2) can be 
considered as a sum of partial fractions of the form  

Hc(s)= 
1

(sν-p)k
    k=1, 2, ... (3.12) 

We can then apply (3.7) to each fraction. Let ν = k =1. In this 
case [4],   

Hd(e
sT) = ∑

-∞

+∞
  

1

s - p + j
2π
T

n
  = 

T
2

 
1 + e-(s-p)T

1 - e-(s-p)T   (3.13) 

and  

Hd(z)= 
T
2

 
1 + epT z-1

1 - epT z-1   (3.14) 

when p=0, we obtain the bilinear transformation that 
appears as the DT analogue of the integrator, allowing us to 
use the transformation (Tustin): 
1
s
 = 

T
2

 
1 + z-1

1 - z-1   (3.15) 

By integer differentiation of both sides in  

∑
-∞

+∞
  

1

s - p + j
2π
T

n
  = 

T
2

 
1 + e-(s-p)T

1 - e-(s-p)T  ,  

we obtain the conversions for the ν=1, k=2, 3, …, cases. For 
example, for k=2, we obtain: 

T2epT.e-sT

(1 - epT e-sT)2  = ∑
-∞

+∞
  

1

(s-p + j
2π
T

n)2
  (3.16) 

giving  

Hd(z) = 
T2epT.z-1

(1 - epT z-1)2           (3.17) 

This procedure cannot be used for H(s) = s, for example, 
since this function is not strip-limited and the 
corresponding system is not stable. If T is small, the 
application of this kind of procedure did not show better 
performances than those we obtain by using the bilinear 
transformation (3.15). So, this has been widely used. 
However, we must firmly remark that (3.15) states an 
approximation to the integral and this is not equivalent that 



s = 
2
T

 
1 - z-1

1 + z-1 is an approximation to the derivative. Similarly in 

the non-fractional case, we would like to obtain the DT 

equivalent to 
1
sα , by computing 

D
α-1 





∑

-∞

+∞
  

1

s + j
2π
T

n
  = (-1)α-1 Γ(α).∑

-∞

+∞
  

1

 



s + j

2π
T

n  
α 

  

, but it 

seems that D
α-1 





 

T
2

 
1 + e-sT

1 - e-sT  does not have a closed form.  

 

3.4 The Grünwald-Letnikov integral 
According to what we just said, when converting a 

continuous-time system to discrete-time, it is more common 
to use the bilinear transformation: 

s= 
2
T

 . 
1 - z-1

1 + z-1  (3.18) 

We must remark again that this equation must be more 
suitable for integral than derivative computation, since 
2
h

.
1 + e-sh

 1 - e-sh  is a better approximation to 
1
s
 than 

h
1 - e-sh ; else, it 

has an important advantage over (3.3): the phase is  -90º. 
However, while being very useful in discrete-time modelling 
of the integrator it is not interesting for modelling the 
differentiator. Similarly, in fractional integration we can use  

 sα = 



2

T
 . 

1 - z-1

1 + z-1

α
 = 

2α

Tα ∑
n=0

∞
  C

α
n  z-n  (3.19) 

where  

 C
α
n  = ∑

k=0

n
  (-1)k.



α

 k  



-α

 n-k   (3.20) 

are the convolution of the coefficients of two binomial 
series. With some manipulation we obtain  

C
α
n  = α.(-1)n 

1
n!

. ∑
k=0

n
 .



n

k  ( )α-k+1 n-1  (3.21) 
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Figure 2 – Magnitudes and phases of the Frequency Responses 

corresponding to α=-1/2 

The above considerations are illustrated in figures 2 and 3 
obtained with α=±1/2. We computed 200 points of the 
impulse responses and computed their Fourier Transforms, 
represented in strips 2 and 3 in the pictures. In the first strip 
we present the continuous-time Fourier Transform (jω)α. 
According to the results, (3.19) must be used only in 
integration. On the other hand, we verified that the 
coefficients in (3.19) converge as similarly to the binomial 
coefficients when α is negative.  
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Figure 3 – Magnitudes and phases of the Frequency Responses 
corresponding to α=1/2 

So, we must transform (3.2) in order to make negative 
powers appear, by dividing numerator and denominator by 
sKν, with K=max(M,N). We will obtain: 

H(z)= 

∑
n=0

∞
  





∑

j=0

M
  

2(j -K)ν

T(j -K)ν bj C
(j-K)ν
 n  z-n

∑
n=0

∞
  





∑

j=0

N
  

2(j -K)ν

T(j -K)ν aj C
(j-K)ν
 n   z-n 

    (3.22) 

that is the transfer function of the equivalent discrete-time 
system. Some of the research in this area has been directed 
towards obtaining rational approximations to (3.19)  [16]. 
With (3.19) we can obtain similar results to the ones 
obtained with (3.3). In particular we can obtain a Grünwald-
Letnikov like fractional integral:  

x(α)(t) = lim
h→0+

2α

hα ∑
n=0

∞
  C

α
n  x(t-nh)      α<0 (3.23) 

4 On the fractional B-splines 
 
The signal processing with splines have been acquiring 
increasing interest due to its flexibility in interpolation, 
sampling and wavelet transform [15]. Recently, causal and 
symmetric fractional B-splines were proposed [16]. A closed 
look into the proposed B-spline definitions reveals that they 
seem strange. Here, we will face the problem and propose a 
new definition for the symmetric B-splines.  



A nth degree B-spline, β
n
0 (t), is a symmetric function 

resulting from n-fold convolution of the rectangle function  

β
0
0 (t) = 



 1   |t|<1/2

1/2 |t|=1/2
0  |t|>1/2

  (4.1) 

Its LT is an analytic function given by  

Β
n
0 (s) = 



es/2 - e-s/2

s
 
n+1

 = 
es(n+1)/2

sn+1   ∑
k=0

n+1
  (

n+1
  k

) (-1)k e-sk      (4.2) 

So, the corresponding FT exists and is given by: 

Β
n
0 (ω) = 



sin(ω/2)

ω/2
 
n+1

 = 
ejω(n+1)/2

(jω)n+1   ∑
k=0

n+1
  (

n+1
  k

) (-1)k e-jωk  (4.3) 

From (4.2), we obtain: 

β
n
0 (t) = 

1
 n!∑

k=0

n+1
  (

n+1
  k

) (-1)k (t - k + 
n+1

2
)
n
+  (4.4) 

On the other hand, as  

FT-1[(jω)-n-1] = 
1
2
 
tnsgn(t)

n!
  = 

t
n
0

n!
 (4.5) 

we obtain, from (4.3) and (4.5): 

β
n
0 (t) = 

1
 n!∑

k=0

n+1
  (

n+1
  k

) (-1)k (t - k + 
n+1

2
)
n
0  (4.6) 

that seem to be different from (4.4), but due to the symmetry 
of the coefficients represents the same function. 
Now, we are going to face the problem of defining a 
fractional symmetric B-spline. Let 0<ν<1 and consider the 
function: 

Βν
0 (ω) = 



sin(ω/2)

ω/2
 
ν

  (4.7) 

As 0<ν<1, (-1)ν/2 is a complex number and then the inverse 
transform of will be a complex function. To avoid this, we 
consider the function: 

Βν
  (ω) = 



sin(ω/2)

ω/2
 
ν

  (4.8) 

As,  





sin(ω/2)

ω/2
 
ν

 = lim
s→jω

 
[ ]1 - e-s  

ν
2  [ ]1 - es  

ν
2

   s
ν/2

.(-s)
ν/2

 (4.9) 

It is clear, now, that the inverse transform of the previous 
function is given by the autocorrelation of the function: 

 β
ν/2
+  (t) = 

1
 Γ(ν/2)∑

k=0

+∞
  (

ν/2
  k

) (-1)k (t - k)
ν/2-1
+   (4.10) 

To compute such autocorrelation, we have to compute the 

autocorrelation of the function δ(-ν/2)(t)=
(t)

ν/2-1
+

 Γ(ν/2)
 . This is 

easily computed giving: 

Rδ(t) = 
|t|

ν-1
 .B(ν/2,1-ν)

 Γ
2
(ν)

    ν∈]0,1[ (4.11) 

where B(p,q) is the Euler beta function. As B(p,q) = 
Γ(p).Γ(q)
Γ(p+q)

  and Γ(ν/2).Γ(1-ν/2) = 
π

sin(νπ/2)
 we obtain: 

Rδ(t) = 
Γ(1-ν)sin(νπ/2)

 π  |t|
ν-1
     ν∈]0,1[ (4.12) 

On the other hand [11], for every θ∈R, but non-even integer  

∑
k=0

∞
  (

θ
k

) (
  θ
k+n

) = 
Γ(1+θ)

Γ(θ/2+n+1)Γ(θ/2-n+1)
         (4.13) 

So, the continuous-time function corresponding to (4.8) is 
given by: 

b
ν
 (t)= ∑

k=-∞

+∞
  
Γ(1-ν).Γ(1+ν).sin(νπ/2) (-1)k

πΓ(ν/2+k+1)Γ(ν/2-k+1)
.|t-k|

ν-1
   

  (4.14) 
In [15], a symmetric B-spline is defined as inverse FT of the 
function: 

Βα
0  (ω)= 



sin(ω/2)

ω/2
 
α+1

  (4.15) 

However, this definition has the disadvantage of giving a 
strange spline, when α is an even positive integer.  To avoid 
this, we are going to present a centred fractional spline that 
does not have this drawback. Let α = n +ν. We define a 
fractional α-order B-spline as the function that has  

Βα
0  (ω) = 



sin(ω/2)

ω/2
 
n+1

.



sin(ω/2)

ω/2
 
ν

  (4.16) 

as FT. When α is an integer, ν=0 and we obtain the normal 
n-order B-spline, while when ν≠0, we obtain a fractional 
centred and symmetric B-spline that is the convolution of 

two even functions. To obtain βα
0  (t), we only have to 

convolve (4.4) with (4.14). Instead of performing this 
convolution, it is preferable to proceed recursively by 

successive convolutions with β
0
0 (t).  

β
ν+n
0  (t) = βν+n-1

0  (t) * b
0
0(t)  (4.17) 

In performing such recursions we have to compute the 
following kind of primitives in τ: 

Iτ | t-τ |θ = - 
| t-τ |θ+1sgn(t-τ)

(θ+1)
  (4.18) 

and  

Iτ | t-τ |θ sgn(t - τ) = - 
| t-τ |θ+1

(θ+1)
  (4.19) 

With these primitives we can compute recursively the 
successive convolutions referred above. It is a somehow 
fastidious but not difficult computation. We are led to: 

β
ν+n
0  (t) =  

∑
k=-∞

+∞
  bk ∑

m=0

n+1
  (

n+1
  m )(-1)m  t-m-k +

n+1
2

ν+n
sgn

n+1
(t-m-k+

n+1
2 )   

  (4.20) 
where we wrote as γ the constant factor in (4.14) and  

bk = 
γ.(-1)k

 (ν)n+1Γ(ν/2+k+1)Γ(ν/2-k+1)
  (4.21) 



In the following figures we present some splines for values 
of n=0, 1, and 2 and ν=0.1, 0.3, 0.5, 0.5, and 0.9. 
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Figure 5 – Some fractional B-splines for 0≤α<1. 

As it can be seen, the fractional B-splines interpolate the 
integer ones and become sooth as the order increases. 
 
5 Conclusions  
 In this paper, we presented an approach into 
Fractional Calculus having in mind generalisations of well-
known concepts currently used in Signal Processing. We 
presented the differintegration based on Laplace Transform. 
With this definition we introduced the Transfer Function 
that we used to convert a continuous-time fractional linear 
system to a discrete-time form. We proposed two ways of 
performing this transform, one based on the backward 
difference transformation and the other based on the 
bilinear transformation. With this we could propose a new 
Grünwald-Letnikov integral. At last, we presented a 
fractional symmetric B-spline generalising a well-known 
concept. 
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Figure 6 – Some fractional B-splines for 1≤α<2. 
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