Fractional Signal Processing: Scale Conversion
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Abgtract - Scale conversion of discrete-time signals
are studied taking as base the fractional discrete-time
system theory. Some simulation results to illustrate
the behaviour of the algorithms will be presented. A
new algorithm for performing the zoom transform is
also described.

1 Introduction

In[1,2], the fractional discretetime linear systems were
introduced together with a fractiona linear prediction thet
we used to interpolate discretetime Sgnds [3]. Here, we
will address the problem of scale conversion that has
connection with the rate converson. We will present
genera scae converson formulae that may be useful in the
cae of pulses, since the presence of async function makes
the convergence very dow. As dternative, we propose the
use of thefractiona linear prediction.

The basc idea undelying the dgorithm is the
development of a system able to linear predicting the
sgnd over ingtant times between the current ones, without
converting the signd to the continuous-time domain. The
new samples fit in between the origind samples. The
agorithm uses the Maximum Entropy Method to obtain
the spectrum of the origind integer domain Sgnd. Using
this spectrum estimate, we derived the coefficients of the
fractiond predictor. Here, we are going to present that
agorithm together with some simulation resultsillustrating
its behaviour. This dgorithm is suitable for the
interpolation of dationary stochastic processes. This
means that when deding with pulses the agorithm does
not provide accurate samples.

The previous results suggested us to look for similar
results in frequency domain. This is usualy called zoom
transform. There are two dgorithms for performing the
zoom of the DFT, but are somehow involved [4,5]. We are
going to present a very simple agorithm thet has two
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seps. @ computation of ameatrix and b) multiplication of a
vector by that matrix.

In section 2, we present generd formulae for scae
converson and, in section 3, the fractiond linear prediction
is described together with corresponding simulation
results. In section 4, we present the spectral zoom and
some illudrating examples. At last some conclusons are
outlined.

2 Scale conversion

Let consider asignd %, with Fourier Transform X(€"),
and a red congtant a such that O<a<1. Define a new
function X,(€") by:
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and repest it with period—ag. L etting the coefficients of

the corresponding Fourier Series be represented by ¢, and
putting X,n= G/a we obtain:
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So, we can conclude that:
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Condder another red condant b!a, satisfying aso
O<b<1. It isnot hard to show that:
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If a>1, the same procedure leadsto:
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that corresponds to an ideal lowpeass filtering followed by
a downsampling. Using (2) with b in the place of a, we
obtain:
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that is an interesting relation involving sync functions. As
sen, we can ue (2) — or (4 - to peaform a scde
conversion. However, its ussfulnessis very limited sinceiit



cannot be used to perform arate conversion asit isusualy
intended, due to the non-causdlity of the sync and the
dow converging series.

3 Scale conversion by fractional prediction

In the following we will present an dgorithm for scde
converson based on the fractiond prediction. This is
based on the theory of the fractiona linear systems [1].
The gtarting point is the definition of fractiona delay and
lead:
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where al Rand nl Z. Therdation (2.1) isaconvolution
of X andadh+4 given by:
sn[p(@a+n)] _ sin(pa) (-1)"
T i) T pa 0 ©
a

which can be considered as the impulse response of a
reconstruction filter, d,.,, such that

Xora = X* Chea 9
or applying the Fourier Transform (FT):
Xa(e") = "% x(é") (10)

with X,(€") = FT[%.a],thus generdising a well-known
result.

The previous relations are the bases for the dstep
prediction we will present. We shdl be working in the
context of a stationary real stochastic process.

Let x(n) be ared stationary stochastic process, observed
from -¥ to nl and let R(k) be its autocorreation
function.

We define the Nth order d-step prediction at the instant

n-1+d (O<d£l) by:
N

&1+d)=- A axn) (11)
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where a (i=1, ..., N) are the coefficients of the dstep
predictor (d=1, corresponds to the usud one-step
prediction).

The predictor coefficients are chosen in order to
minimise the prediction error power:
Py = E[ (X(n-1+0) - &(n-1+))] (12)

Asuming that the correlation matrix of x(n) has, at least
rank N, the optimum dstep predictor is given by the

solution of the following set of normal equations[1,3]:
N

a aR(ki)=-R(kd1) k=1,2.., N (13)
i=1

that can be written in ameatrix formeat as:
R.a=ry4 (14)

To compute this vector ry we can use [3]:
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So, with equations (8) and (9) we can compute the
coefficients of the fractiona predictor, provided that we
use a suitable autocorrdation function estimate. If x(n) is
an AR(N-1) stationary stochastic process, the longest
(with greater order) optimum fractiona dstep predictor
has order N [3]. In the non-AR case, we are expecting that
the predictor dthough theoreticaly not finite may be
truncated. This alows us to devise a better way to
compute R(k+d). Assuming a AR(N-1) process, the (N-
Dth onestep predictor defines, together with the
prediction error, Py_1 , the spectrum of the signal [3,5]:

P
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that can be used to obtain:
R(K) = FT ' [sw)] a7
and
Rcrd) = FT [ d™s ) (18)

With these results we @n teke advantage of the well-
known linear prediction methods (e. g. modified covariance
or Burg agorithms) [3,5]. The proposed dgorithm has the
following steps:

1 - Compute the N-1 linear predictor usng a suitable
dgorithm.

2 - Use the (N-1)th linear predictor to estimate the
spectrum, S(w), and the corresponding autocorrelation, of
thesgnd.

3 - Multiply $S(W) by & and compute the inverse
Fourier Transform to obtain the vector rq,

4 - Use (17), (18) and (14) to obtain the coefficients of
the fractional predictor.

This dgorithm is smple and computationaly efficient.
Although obtained under the hypothesis that the signd is
AR(N-1), it will be useful in other Stuations, namely in
the ARMA case.

To illustrate the application of the method, we present
some simulation results. We proceed in the following way:

[1] Generate a sgnd with L points and a given sgnd

to noiseratio;

[2] down-sampleit by 1/2 factor;

[3] Usethe previous agorithm to estimate the removed

vaues

For each smulation we computed the error between each
origind and estimated vaue and the corresponding error



power. In Figure 1 we present the result of asimulation
using asorigind sgna asum of sync functions.
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Fgure 1— Fractiona prediction of asum of sync functions

Obvioudy, we are not redricted to d=0.5.
Consider that d assumes 3 vaues, d=0.25, d=0.5, d=0.75,
and keep the predictor of order 4. We insart 3 values
between each st of two origind vaues. The reaults
obtained are displayed in figure 2. As it is essy b
condude, we were making a rate increase by integer
values. Of course, we can obtain a fractiond rate increase
(or decrease) by decimetion.
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Fgure 2 — interpolation using fractiond prediction with
steps0.25, 0.5, and 0.75.

To study the influence of the predictor length we made
sverd dmulations in the referred conditions and
computed the average error power over 10 redizaions of
each of the referred signds. The results are presented in
the following pictures.
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Figure 3— mean error power for 10 redlizetions of one
snusoid as function of predictor length.
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Fgure 4 — mean error power for 10 redizations of 2
sinusoids as function of predictor length
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Figure 5— mean error power for 10 redizations of severd
syncs as function of predictor length.

We can conclude that even with low predictor orders
(lower than 10) we can interpolate quite well non-AR
sgnds.

4 Zoom Transform

The results obtained in section 1 can be extrapolated to
an interesting praectica gpplication: the zoom transform
Let us consder aL point sequence, %, N=0, ..., L-1. Every
N3L point DFT sequence represent samples of the
Discrete Time Fourier Transform (DTFT). This sampling
may become ungpparent some characteridics of the
gpectrum in a given particular band of interest. To avoid
this problem two different methods of interpolation have



been proposed [4,6] and usudly referred as the zoom
transform. Here, we propose an dternative gpproach. The
DTFT of x is given X(é"). The DFT corresponds to
sample X(@"):

20,
DFT[x]=X(EN") k=0, ..., N-1, N3L (19)

Denote this DFT by Xy(K). Itsinverse, (DFT ) isaN-
period signd. If we take one period of this Sgnd, add
zeros and repeat the obtained sequence with a period
M=aN (@>1), we are sampling X(¢") in M uniformly
spaced points, obtaining Xu(k), k=0, ...,M-1. Then, we
have
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Inserting (21) into (20) we obtain:
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for OEI<N and OEk<M. It isnot hard to show that:
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Of course, we are not interested in zooming the whole

spectrum, but a given band, corresponding to values of

k=my, ...,m, with m and m}, as described bdow. Assume

that we want to zoom the band [f,;f,], with OEf,<f,£p. Let

K be the number of points we want to compute. Then
1 K

A=) N @)
and
m= é;—g.fiﬂ i=12 (26)

where &( means the integer part of x. In the following
figure, we illugtrate the gpplication of the agorithm for
zooming 2 regions of the spectrum shown in the upper
strip of thefigure 6.

5 Conclusions

In this paper we presented new agorithms for
interpolation and scale conversion of discretetime signds
based on the theory of fractional discretetime systems.
We presented some smulation results to illusirate the

behaviour of the agorithms when applied in arae increase
by a factor 2 for different sets of sgnas. We concluded
that even with low order predictors we can perform arate
increese. We presented dso an illugtration of the linear
prediction with severa fractiond steps. Based in the
results of section 1 we dso derived a very smple but
efficient dgorithm for the zoom transform.
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Fgure 6 — zoom transform
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