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Abstract - Scale conversion of discrete-time signals 
are studied taking as base the fractional discrete-time 
system theory. Some simulation results to illustrate 
the behaviour of the algorithms will be presented. A 
new algorithm for performing the zoom transform is 
also described. 

 

1 Introduction 

In [1,2], the fractional discrete-time linear systems were 
introduced together with a fractional linear prediction that 
we used to interpolate discrete-time signals [3]. Here, we 
will address the problem of scale conversion that has 
connection with the rate conversion. We will present 
general scale conversion formulae that may be useful in the 
case of pulses, since the presence of a sync function makes 
the convergence very slow. As alternative, we propose the 
use of the fractional linear prediction.   

The basic idea underlying the algorithm is the 
development of a system able to linear predicting the 
signal over instant times between the current ones, without 
converting the signal to the continuous-time domain. The 
new samples fit in between the original samples. The 
algorithm uses the Maximum Entropy Method to obtain 
the spectrum of the original integer domain signal. Using 
this spectrum estimate, we derived the coefficients of the 
fractional predictor. Here, we are going to present that 
algorithm together with some simulation results illustrating 
its behaviour. This algorithm is suitable for the 
interpolation of stationary stochastic processes. This 
means that when dealing with pulses the algorithm does 
not provide accurate samples.  

The previous results suggested us to look for similar 
results in frequency domain. This is usually called zoom 
transform. There are two algorithms for performing the 
zoom of the DFT, but are somehow involved [4,5]. We are 
going to present a very simple algorithm that has two 
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steps: a) computation of a matrix and b) multiplication of a 
vector by that matrix. 

In section 2, we present general formulae for scale 
conversion and, in section 3, the fractional linear prediction 
is described together with corresponding simulation 
results. In section 4, we present the spectral zoom and 
some illustrating examples. At last some conclusions are 
outlined. 

 

2 Scale conversion 

Let consider a signal xn, with Fourier Transform X(ejω), 
and a real constant α such that 0<α<1. Define a new 
function Xα(ejω) by: 
  

Xα(ejω)=





X(ejω)     if |ω| ≤ π
  

 0      if π<|ω|<
π
α

 (1) 

and repeat it with period 
2π
α  . Letting the coefficients of 

the corresponding Fourier Series be represented by cn and 
putting xαn= cn/α,  we obtain:  

xαn = ∑
k=-∞

+∞
  xk

sin[π(nα-k)]
π(nα-k)

  (2) 

So, we can conclude that:  

FT[xkα]=
1
αX(ejω/α)   (3) 

Consider another real constant β≠α, satisfying also 
0<β<1. It is not hard to show that: 

xαn = β ∑
k=-∞

+∞
  xβk

sin[π(nα-βk)]
π(nα-βk)

  (4) 

If α>1, the same procedure leads to: 

  xαn = ∑
k=-∞

+∞
  xk

sin[π(n-k/α)]
π(n-k/α)

  (5) 

that corresponds to an ideal lowpass filtering followed by 
a downsampling. Using (2) with β in the place of α, we 
obtain: 

sin[π(nα-k)]
π(nα-k)

 =β ∑
m=-∞

+∞
 
sin[π(βm-k)]

π(βm-k)
 
sin[π(nα-βm)]

π(nα-βm)
  (6) 

that is an interesting relation involving sync functions. As 
seen, we can use (2) – or (4) – to perform a scale 
conversion. However, its usefulness is very limited since it 



cannot be used to perform a rate conversion as it is usually 
intended, due to the non-causality of the sync and the 
slow converging series. 

3 Scale conversion by fractional prediction 

In the following we will present an algorithm for scale 
conversion based on the fractional prediction. This is 
based on the theory of the fractional linear systems [1]. 
The starting point is the definition of fractional delay and 
lead:  

xn+α=
[ ]
[ ]∑

∞+

−∞= −+
−+

m
m

mn

mn
x

απ
απ )(sin

 (7) 

where α∈R and n∈Z. The relation (2.1) is a convolution 

of x
n
 and a δn+α given by: 

δn+a=
sin[π(α+n)]
 [π(α+n)]

 = 
sin(πα)

πα
 (-1)n

1+
n
α

    (8) 

which can be considered as the impulse response of a 
reconstruction filter, δn+a, such that  

xn+α = xn*δn+a   (9) 
or applying the Fourier Transform (FT): 

Xα(ejω) =  e
jωα

 X(ejω) (10) 
with Xα(ejω) = FT[xn+α],thus generalising a well-known 

result. 
The previous relations are the bases for the d-step 

prediction we will present. We shall be working in the 
context of a stationary real stochastic process.  

Let x(n) be a real stationary stochastic process, observed 
from -∞ to n-1 and let Rx(k) be its autocorrelation 
function. 

We define the Nth order d-step prediction at the instant 
n-1+d (0<d≤1) by: 

x̂(n-1+d) = - ∑
i=1

N
  ai x(n-i)  (11) 

where ai (i=1, ..., N) are the coefficients of the d-step 
predictor (d=1, corresponds to the usual one-step 
prediction).  

The predictor coefficients are chosen in order to 
minimise the prediction error power: 
Pd = E[ ( )x(n-1+d) - x̂(n-1+d) 2]  (12) 

Assuming that the correlation matrix of x(n) has, at least 
rank N, the optimum d-step predictor is given by the 
solution of the following set of normal equations [1,3]: 

∑
i=1

N
  ai.Rx(k-i) = -Rx(-k-d-1)    k=1,2,…, N (13) 

that can be written in a matrix format as: 
Rx.a=-rd (14) 

To compute this vector rd we can use [3]: 
 
 

R(k-1+d)= 

(-1)k-1sin(πd)
π(d+k-1)

. 









R(0)+2∑
n=1

+∞

 (-1)nR(n)

1-



n

d+k-1

2   (15) 

So, with equations (8) and (9) we can compute the 
coefficients of the fractional predictor, provided that we 
use a suitable autocorrelation function estimate. If x(n) is 
an AR(N-1) stationary stochastic process, the longest 
(with greater order) optimum fractional d-step predictor 
has order N [3]. In the non-AR case, we are expecting that 
the predictor although theoretically not finite may be 
truncated. This allows us to devise a better way to 
compute R(k+d). Assuming a AR(N-1) process, the (N-
1)th one-step predictor defines, together with the 
prediction error, PN-1 , the spectrum of the signal [3,5]: 

Sx(ω) = 
21

0

1

1

∑
−

=

−−

−

⋅
N

n

jwnN
i

N

ep

P
 (16) 

that can be used to obtain: 

R(k) = FT
-1[ ]Sx(ω)   (17) 

and 

R(k+d) = FT
-1[ ]e

jωd
Sx(ω)   (18) 

With these results we can take advantage of the well-
known linear prediction methods (e. g. modified covariance 
or Burg algorithms) [3,5]. The proposed algorithm has the 
following steps: 

 
1 - Compute the N-1 linear predictor using a suitable 

algorithm. 
2 - Use the (N-1)th linear predictor to estimate the 

spectrum, Sx(ω), and the corresponding autocorrelation, of 
the signal. 

3 - Multiply Sx(ω) by ejdω and compute the inverse 
Fourier Transform to obtain the vector rd.  

4 - Use (17), (18) and (14) to obtain the coefficients of 
the fractional predictor. 

 
This algorithm is simple and computationally efficient. 

Although obtained under the hypothesis that the signal is 
AR(N-1), it will be useful in other situations, namely in 
the ARMA case.  

To illustrate the application of the method, we present 
some simulation results. We proceed in the following way: 

[1] Generate a signal with L points and a given signal 
to noise ratio;  

[2] down-sample it by 1/2 factor; 
[3] Use the previous algorithm to estimate the removed 

values.  
 
For each simulation we computed the error between each 
original and estimated value and the corresponding error 



power. In Figure 1 we present the result of a simulation 
using as original signal a sum of sync functions. 
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Figure 1 – Fractional prediction of a sum of sync functions 
 Obviously, we are not restricted to d=0.5. 
Consider that d assumes 3 values, d=0.25, d=0.5, d=0.75, 
and keep the predictor of order 4. We insert 3 values 
between each set of two original values. The results 
obtained are displayed in figure 2. As it is easy to 
conclude, we were making a rate increase by integer 
values. Of course, we can obtain a fractional rate increase 
(or decrease) by decimation. 
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Figure 2 – interpolation using fractional prediction with 

steps 0.25, 0.5 , and 0.75.  
 

To study the influence of the predictor length we made 
several simulations in the referred conditions and 
computed the average error power over 10 realizations of 
each of the referred signals. The results are presented in 
the following pictures.  
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Figure 3 – mean error power for 10 realizations of one 

sinusoid as function of predictor length.  
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Figure 4 – mean error power for 10 realizations of 2 

sinusoids as function of predictor length 
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Figure 5 – mean error power for 10 realizations of several 

syncs as function of predictor length. 
 

We can conclude that even with low predictor orders 
(lower than 10) we can interpolate quite well non-AR 
signals.  

 

4 Zoom Transform 

The results obtained in section 1 can be extrapolated to 
an interesting practical application: the zoom transform. 
Let us consider a L point sequence, xn n=0, …, L-1. Every 
N≥L point DFT sequence represent samples of the 
Discrete-Time Fourier Transform (DTFT). This sampling 
may become unapparent some characteristics of the 
spectrum in a given particular band of interest. To avoid 
this problem two different methods of interpolation have 



been proposed [4,6] and usually referred as the zoom 
transform. Here, we propose an alternative approach.  The 
DTFT of xn is given X(ejω). The DFT corresponds to 
sample X(ejω): 

DFT[xn]= X(e
j
2π
N

k
)     k=0, …, N-1, N≥L (19) 

Denote this DFT by XN(k). Its inverse, (DFT-1) is a N-
period signal. If we take one period of this signal, add 
zeros and repeat the obtained sequence with a period 
M=αN (α>1), we are sampling X(ejω) in M uniformly 
spaced points, obtaining XM(k), k=0, …,M-1. Then, we 
have: 

XM(k) = ∑
k=0

L-1

  xn e
-j

2π
M

kn
       k=0, ..., M-1 (20) 

and 

xn = 
1
N

. ∑
k=0

N-1
  XN(k).e

j
2π
N

kn
       n=0, ..., N-1 (21) 

Inserting (21) into (20) we obtain: 
 

XM(k) =
1
N

. ∑
k=0

N-1
  XN(l).G(k,l)   k=0, ..., M-1 (22) 

where  

G(k,l) = 
1 - e

j
2π
N

(l-k/α)L

 1 -  e
j
2π
N

(l-k/α)
   (23) 

for 0≤l<N and 0≤k<M. It is not hard to show that: 

G(k,l) = L. 
sync 

(l-k/α)L
N

 sync 
l-k/α

N

 e
j
π
N

(l-k/α)(L-1)
   (24) 

Of course, we are not interested in zooming the whole 
spectrum, but a given band, corresponding to values of 
k=m1, …,m2 with m1 and m2 as described below. Assume 
that we want to zoom the band [f1;f2], with 0≤f1<f2≤π. Let 
K be the number of points we want to compute. Then  

α=
1

(f2-f1)
 .
K
N

  (25) 

and 

mi = αN
2π .fi    i=1,2  (26) 

where x means the integer part of x. In the following 
figure, we illustrate the application of the algorithm for 
zooming 2 regions of the spectrum shown in the upper 
strip of the figure 6. 

5 Conclusions 

In this paper we presented new algorithms for 
interpolation and scale conversion of discrete-time signals 
based on the theory of fractional discrete-time systems. 
We presented some simulation results to illustrate the 

behaviour of the algorithms when applied in a rate increase 
by a factor 2 for different sets of signals. We concluded 
that even with low order predictors we can perform a rate 
increase. We presented also an illustration of the linear 
prediction with several fractional steps. Based in the 
results of section 1 we also derived a very simple but 
efficient algorithm for the zoom transform. 
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Figure 6 – zoom transform 
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