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Abstract 

ABSTRACT 

Cholestasis is the reduction or stoppage of bile flow. When bile flow is interrupted, the bile 

compounds, namely bile acids and bilirubin, accumulate into the hepatocyte causing cellular 

injury and cell death. The hepatocyte function under cholestasis must be studied using liver 

cell lines closely resembling human primary hepatocytes. However, most of the cell lines used 

is derived from hepatic tumors which have altered gene expression. In this project, we used 

the novel non-neoplasic cell line, HHL-5, which retain primary adult hepatocyte phenotype. 

In addition, we used the fetal hepatocyte cell line WRL-68, which was shown to present 

similar morphological properties and antigenic profile of human fetal hepatocytes in situ. 

Using these two cell lines, we evaluated whether fetal and adult hepatocytes respond 

differently to conditions that mimic cholestasis with associated jaundice, never evaluated in 

vitro before. The hepatocytes were exposed to 100 µM glycochenodeoxycholic acid 

(GCDCA), 100 µM conjugated bilirubin (CB), 100 µM unconjugated bilirubin (UCB), 100 

µM GCDCA + 100 µM CB + 100 µM UCB or vehicle alone, in the presence of 100 µM 

human serum albumin (HSA), at various time points. After, we assessed cellular toxicity 

analyzing cytolysis by lactate dehydrogenase (LDH) release and apoptosis by caspase-3 

activity and nuclear fragmentation. There was a significant increase of all these parameters in 

hepatocytes stimulated with the GCDCA+CB+UCB mixture. LDH release significantly 

increased after 48 h incubation for GCDCA+CB+UCB treatment (~40%, P<0.01) in the adult 

cell line. This increase was also statistically significant when compared to GCDCA, CB or 

UCB incubation alone (P<0.05).  Relatively to WRL-68 cells, the release of LDH also 

increased significantly (~22%) after 48 h incubation with GCDCA+CB+UCB when compared 

to control (P<0.05), GCDCA (P<0.05) or UCB (P<0.01) incubations. Regarding caspase-3 

activity, the increase was evident for GCDCA+CB+UCB treatment. In the adult cell line, it 

increased ~1.5-fold after 6 h (P<0.01 vs. control, P<0.01 vs. GCDCA, P<0.05 vs. UCB), 

peaking at 12 h (~3.5-fold, P<0.05 vs. control, P<0.05 vs. GCDCA) and remaining elevated 

after 24 h (P<0.01 vs. control, P<0.01 vs. GCDCA, P<0.05 vs. CB, P<0.01 vs. UCB). In the 

fetal cell line, the peak of caspase-3 activity with the same treatment occurred earlier and in a 

higher magnitude. Indeed, caspase-3 activity increased 4-fold after GCDCA+CB+UCB 

treatment at 6 h incubation (P<0.05) and this activation was sustained until 12 h incubation 

(P<0.01). Concerning nuclear fragmentation, in both cell lines, hepatocytes incubated with 

GCDCA+CB+UCB exhibited profound changes in nuclear morphology, consistent with 
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apoptosis, in a more marked way than when incubated with GCDCA, CB or UCB alone. The 

results showed similar data to those previously obtained for caspase-3 activity. Next, we 

evaluated the ability of hepatocytes to reduce the MTS compound which can either identify 

loss of cell viability or cellular proliferation upon a stimulus. In general, all the treatments 

slightly elevated MTS reduction. Having verified that the exposure to GCDCA in 

combination with CB and UCB promoted cellular death, we decided to evaluate the activation 

of JNK1/2 and p38 MAPKs (by western blot assay) and NF-κB (by immunocytochemistry). 

These molecules are typical main effectors of the inflammatory response and key mediators of 

specific intracellular programs that coordinate the cellular response to a variety of 

extracellular stimuli, also involved in the modulation of cell fate. In both cell lines, JNK1/2 

were activated mainly after CB and UCB treatment, and also after GCDCA+CB+UCB. In 

general, GCDCA alone did not exert any effect in JNK1/2 activation. Activated p38 was, on 

the contrary, consistently reduced by CB and UCB incubations, in the two cell lines. P-p38 

was also reduced in GCDCA+CB+UCB treatment in WRL-68 cell line, but not in HHL-5 cell 

line, where it slightly increased after 24 h. Regarding the NF-κB translocation to the nucleus, 

it was evidenced that CB was the main activator of NF-κB in our study model for both HHL-5 

and WRL-68 cell lines, and that the activation of this transcription factor increased when cells 

were co-treated with GCDCA+CB+UCB. In addition, a major and sustained effect was 

observed in HHL-5 cells when compared to WRL-68 cells. As NF-κB has been considered to 

have anti-apoptotic functions in hepatocytes, by inducing transcription of survival genes, 

these data contribute, at least in part, to explain the higher levels of UCB-induced cell death in 

our model comparing to CB. Higher NF-κB activation in the adult cell line may also indicate 

less predisposal to cell death by apoptosis. Altogether, it is demonstrated that the fetal cells 

generally respond rapidly and in a more marked manner to the various stimuli, suggesting a 

more immature phenotype. Collectively, our results point out that the poor prognosis related 

with the presence of bilirubin in a chronic cholestatic situation is due to the marked toxicity 

that these molecules exert together, literally destroying hepatocytes by processes of cellular 

death. In this regard, the prevention of cellular demise or the induction of survival processes 

by means of pharmacological intervention will be of great interest in the clinical approach of 

jaundice-associated cholestasis.  

 

Keywords: bile acids, conjugated and unconjugated bilirubin, cellular death, cholestasis, fetal 

and adult hepatocytes, cell reactivity.
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Resumo 

RESUMO 

A colestase é definida como uma redução do fluxo biliar devida à diminuição ou interrupção 

do mesmo. Quando o fluxo biliar é reduzido, os componentes da bílis (nomeadamente ácidos 

biliares e bilirrubina) acumulam-se dentro do hepatócito podendo causar dano e morte celular. 

As funções dos hepatócitos numa situação de colestase devem ser estudadas em linhas 

celulares que se assemelhem, tanto quanto possível, a hepatócitos humanos primários. Neste 

trabalho, utilizámos duas linhas humanas de hepatócitos não malignas, uma linha que 

conserva o fenótipo do fígado adulto (HHL-5) e outra linha que apresenta características 

morfológicas e antigénicas típicas de hepatócitos fetais in situ (WRL-68). A investigação com 

estas linhas que não têm origem cancerígena é importante uma vez que a maioria dos estudos 

são realizados em linhas celulares neoplásicas que possuem, consequentemente, a expressão 

génica alterada. Assim, o estudo da toxicidade induzida pela bilirrubina, conjugada (BC) e 

não conjugada (BNC), e pelo ácido glicoquenodesoxicólico (AGQDC), mimetizando uma 

colestase crónica associada a icterícia, nunca antes avaliada in vitro, foi avaliado nestas duas 

linhas. As células foram incubadas com o AGQDC (100 µM), BC (100 µM), BNC (100 µM), 

100 µM AGQDC + 100 µM BC + 100 µM BNC ou apenas com o veículo, na presença de 100 

µM de albumina sérica humana, durante vários períodos de tempo. A morte celular por 

citólise foi avaliada pela libertação de lactato desidrogenase (LDH), enquanto que a indução 

de apoptose o foi por activação da caspase 3, utilizando substracto específico, e por 

condensação de cromatina e fragmentação nuclear, recorrendo à marcação nuclear com 

Hoescht. A exposição das células HHL-5 à mistura AGQDC+BNC+BC provocou um 

aumento significativo de todos os parâmetros estudados relativamente à 

incubação unicamente com o AGQDC. A libertação de LDH aumentou significativamente nas 

células adultas com a incubação com AGQDC+BC+BNC após 48 h (~40%, P<0.01). Este 

aumento foi também estatisticamente significativo quando comparado com as incubações com 

AGQDC, BC ou BNC isoladamente (P<0.05). Relativamente às células WRL-68, a libertação 

de LDH também aumentou significativamente (~22%) após 48 h de incubação com 

AGQDC+BC+BNC quando comparado com o controlo (P<0.05), com o AGQDC (P<0.05) e 

com a BNC (P<0.01). Quanto à actividade da caspase-3, esta aumentou maioritariamente com 

o tratamento com AGQDC+BC+BNC. Na linha celular adulta, houve um incremento de ~1.5 

vezes após 6 h com esta incubação (P<0.01 vs. controlo, P<0.01 vs. AGQDC, P<0.05 vs. 

BNC), atingindo um pico às 12 h (~3.5 vezes, P<0.05 vs. controlo, P<0.05 vs. AGQDC) e 
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permanecendo elevada até às 24 h (P<0.01 vs. controlo, P<0.01 vs. AGQDC, P<0.05 vs. BC, 

P<0.01 vs. BNC). Na linha celular fetal, o pico da actividade da caspase-3 com a mesma 

incubação ocorreu mais cedo e de uma forma mais marcada. De facto, a actividade da 

caspase-3 quadruplicou às 6 h (P<0.05) e esta actividade permaneceu elevada até às 12 h de 

incubação (P<0.01). Em relação à fragmentação nuclear, em ambas as linhas celulares, os 

hepatócitos incubados com AGQDC+BC+BNC apresentaram mudanças profundas na 

morfologia nuclear, características do processo de apoptose, e de uma forma mais notória que 

quando incubados com AGQDC, BC ou BNC, isoladamente. Estes resultados confirmam os 

obtidos em relação à actividade da caspase-3. Posteriormente, avaliámos a capacidade dos 

hepatócitos de reduzir um composto, o MTS. Este teste pode identificar perda de viabilidade 

celular ou aumento da proliferação celular. No geral, todas as incubações aumentaram 

ligeiramente a redução do MTS. Tendo verificado que a exposição dos hepatócitos à mistura 

AGQDC+CB+BNC promovia a morte celular das células, decidimos avaliar a activação das 

MAPKs JNK1/2 e p38 (por Western blot) e do NF-κB (por imunofluorescência). Estas 

moléculas são efectoras da resposta inflamatória, sendo consideradas como apresentando um 

papel chave na regulação de programas intracelulares específicos que coordenam a resposta 

celular relativamente a uma panóplia de estímulos extracelulares, modulando desta forma o 

destino da célula. Nas duas linhas celulares estudadas, houve activação da MAPK JNK1/2 

principalmente após incubação com BC e BNC, mas também após tratamento com a mistura 

AGQDC+BC+BNC, não apresentando o AGQDC qualquer efeito na activação da JNK1/2. A 

activação da p38, pelo contrário, foi reduzida pela incubação com BC e BNC, nas duas linhas 

celulares, ao longo de todos os tempos de incubação estudados. Também a forma 

fosforilada/activada da p38 se apresentou reduzida na incubação com a mistura 

AGQDC+BC+BNC na linha celular fetal, mas não na adulta onde a sua activação aumentou 

ligeiramente após 24 h. Em relação à translocação do NF-κB para o núcleo, a BC aparece 

como a principal activadora do NF-κB no nosso modelo de estudo, tanto para a linha fetal 

como para a linha adulta. Muito provavelmente será a BC a responsável pela activação deste 

factor de transcrição no tratamento com AGQDC+BC+BNC. De referir, ainda, que a 

activação deste factor é mais elevada e mantida ao longo do tempo na linha celular HHL-5 

que na linha celular WRL-68. Como o NF-κB tem sido identificado nos hepatócitos como 

tendo funções anti-apoptóticas através da indução de genes de sobrevivência, estes resultados 

podem apontar para uma razão para a BNC induzir mais morte celular que a BC no nosso 

modelo e para que os hepatócitos sejam mais susceptíveis à lesão causada pelo AGQDC, 



 

xiii 
 

Resumo 

quando associado com a BC+BNC. A maior e mais persistente actividade do NF-κB nos 

hepatóctios adultos pode também sugerir uma menor susceptibilidade destas células à morte 

celular por apoptose. No conjunto, é demonstrado que os hepatócitos fetais apresentam uma 

resposta mais rápida e mais marcada aos vários estímulos, confirmando a sua maior 

susceptibilidade como células mais imaturas. Colectivamente, os resultados alcançados 

evidenciam que o mau prognóstico atribuído à presença da bilirrubina nas colestases hepáticas 

crónicas se deve à marcada toxicidade que estas moléculas exercem em conjunto, levando à 

destruição dos hepatócitos por processos de morte celular por apoptose e citólise. Desta 

forma, a prevenção da morte celular ou a indução de processos de sobrevivência mediante 

indução farmacológica será de grande interesse na abordagem clínica da icterícia colestática.  

 

Palavras-chave: ácidos biliares, bilirrubina conjugada e não conjugada, apoptose, citólise, 
colestase, hepatócitos humanos fetais e adultos, reactividade celular. 
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Introduction 

1. INTRODUCTION 

 

1.1. The liver 

The liver is one of the largest as well as one of the most important organs inside the 

body. Indeed, it is considered a vital organ and there is currently no effective approach to 

compensate for the absence of liver function leading to the need of liver transplantation.  

1.1.1. Liver development 

Organogenesis of the fetal liver begins in the third to fourth week of gestation with the 

development of an outpouching of endodermal epithelium from the ventral surface of the 

posterior foregut (Diehl-Jones and Askin, 2002). At this point, these endodermal cells are 

already capable of secreting proteins such as α-fetoprotein (AFP) and are specified to enter 

the liver lineage (determination). The morphology of the cells then changes to that of the 

hepatoblast (an early progenitor cell) and form the hepatic diverticulum (Zaret, 1996). The 

hepatic diverticulum, or liver bud, consists of rapidly growing hepatoblasts that penetrate 

mesodermal mesenchymal cells arising from the septum transversum of the diaphragm 

(Shafritz and Dabeva, 2002).  The resulting interaction between these two types of cells forms 

cords of hepatocellular tissue, separated by sinusoids, which receive blood from the vitalline 

vessels in the yolk sac. These vessels are eventually incorporated into the growing liver and 

form the portal and hepatic venous systems (Kaufman, 1992). As development continues, the 

connection between the hepatic bud and the duodenum narrows, originating the common bile 

duct (Sadler, 2000). 

By the end of the first month of gestation, hepatoblasts secrete specific proteins such 

as AFP, albumin and cytokeratin-19. As the liver begins the process of hematopoiesis, or 

blood cell production, liver tissues further develop into two types of cells (Fig.1.). Most cells 

mature into hepatocytes (albumin positive) and the remainder develops into intrahepatic bile 

ducts cells or cholangiocytes (cytokeratin-19 positive).  
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POSTERIOR FOREGUT

DETERMINATION COMMITMENT DIFFERENTIATION

 
Fig.1. Schematic diagram of hepatocytes and bile duct cells differentiation. A bud of endodermal epithelium 

cells, already AFP+, is primarily formed from the ventral surface of the posterior foregut. Then, these 

endodermal cells are specified to enter the liver lineage (determination). Their morphology changes to that of the 

hepatoblast which are AFP+, ALB+ and CK-19+, identifying the commitment stage. As the cells begin to 

differentiate they follow one of two patterns, they may differentiate into fully mature hepatocytes (which are 

only ALB+) or differentiate into bile duct cells (which do not produce AFP nor ALB, but only CK-19). AFP, α-

fetoprotein; ALB, albumin; CK-19, cytokeratin-19. Adapted from Shafritz and Dabeva (2002). 

 

In the following weeks (weeks 5–6), hematopoietic stem cells arising from the 

mesoderm of the septum transversum can be found in the liver. This is the beginning of the 

shift in hematopoiesis, from the yolk sac to the liver. The liver continues to be the main site of 

hematopoiesis until approximately six months of gestation, after which the bone marrow 

becomes the primary site of blood cell formation.  

In the second month of gestation, the structure responsible for bile secretion, the 

canaliculus, develops. At week ten of embryonic life, the liver constitutes approximately 10 

percent of the total body weight and by the third month of gestation, cholesterol and glycogen 

synthesis can be detected in the liver tissue (Sadler, 2000). 

During the second trimester, the development of new liver cells by the process of 

mitosis peaks, continuing in the third trimester. However, in this last stage enlargement of 

individual hepatocytes (cell hypertrophy) becomes the more common process in liver growth. 

At the time of birth, the architecture of the liver is well established resembling an adult one.  
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1.1.2. Liver structure 

The adult liver is a voluminous organ (1200–1500 g), highly vascularized (Young et 

al., 2006), and it can be functionally divided into structures termed hepatic lobules. The 

hepatic lobule (Fig. 2A) is a polyhedral prism with its boundaries limited by six portal triads 

(Fig. 2B) prolonged by connective tissue. The portal triads contain the hepatic portal vein and 

the hepatic artery, the main blood vessels running into the liver, as well as a lymphatic vessel. 

The liver is therefore an unusual organ having both arterial and venous blood supplies. 

Besides the hepatic portal vein and the hepatic artery, the portal triad also contains a bile duct 

that transports bile away from the liver to be secreted and stored in the gallbladder. The centre 

of the lobule contains the terminal hepatic venule (centrolobular vein) that drains the blood 

from the liver. The portal triads are connected to the central veins by plates of hepatocytes 

separated by the sinusoids.    

 

  
 

Fig. 2. The hepatic lobule is the smallest functional unit of the liver, a mass of liver parenchyma that is supplied 

by terminal branches of the portal vein and hepatic artery and drained by a terminal branch of the bile duct. (A) 

Schematic diagram showing the definition of a lobule, outlined by a hexagonal array of portal triads (T) arranged 

around a central hepatic venule (V). (B) Micrograph showing the overall structure of the human liver which is a 

solid organ composed of tightly packed plates of epithelial cells termed hepatocytes. In the human liver, a well-

defined structural definition does not exists, although it can be seen the portal triads roughly defining a hexagon 

around the central hepatic vein. H & E staining (× 20). Adapted from Young et al. (2006).    

 

A B 
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Hepatocytes, the chief parenchymal cells of the liver, are responsible for maintaining a 

wide range of specialized functions including storage, synthesis and detoxification/excretion 

of various molecules (Khan et al., 2007). These cells are large, multifaceted and polyhedral 

cells, arranged in plate-like cords separated by adjacent vascular sinusoids (Weibel et al., 

1969). Within the hepatic cords, between adjacent hepatocytes, lies a network of bile 

canaliculi, allowing the passage of bile through intercellular channels, which drain into the 

nearest branch of the bile duct system (Fig. 3).  

 

 
Fig. 3. Bile is secreted into a system of canaliculi which form a network within the hepatocyte plates. Bile then 

drain into the bile ductules of the portal tracts. The canaliculi are merely formed by the plasma membranes of 

adjacent hepatocytes. Enzyme histochemical method for ATPase of the bile canalicular membranes (stained in 

brown). Original magnification × 480. From Young et al. (2006). 
 

This specialized architecture optimizes the liver’s parallel functions as an exocrine 

gland, an endocrine gland as well as a blood filter. Owing to the liver’s unique vascular 

organization, whereby blood percolates through the sinusoids from the place of inflow (the 

portal triad) to outflow (the terminal hepatic vein system), hepatocytes are exposed to a 

gradient of oxygen, nutrients, toxins and other biologically active molecules.  

Between the incoming vessels of the portal tracts and the central veins lie the hepatic 

sinusoids which allow exchange between blood and hepatocytes. Sinusoids, as represented in 

Figure 4, are special capillaries with: (i) a fenestrated endothelial barrier; (ii) resident 

macrophages (Kupffer cells) for destroying bacteria and other particles in the sinusoidal 

blood; (iii) liver-associated lymphocytes, some of which are large, granular lymphocytes; and 

(iv) stellate cells (considered as pericytes) that store fat and vitamin A, and produce collagen 
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(Wake, 1995). Blood in the sinusoids is separated from hepatocytes by endothelial cells in the 

space of Dissé (Greenwel and Rojkind, 2001). 

 
 

Fig.4. Micrograph demonstrating the main ultrastructural features of liver. Erythrocytes (E) can be seen within 

the liver sinusoids. Hepatocytes (H) are in contact to the sinusoids by a discontinuous layer of sinusoid lining 

endothelial cells (S). Space of Dissé (D) is located between the lining cells and the hepatocyte surface. Via the 

gaps in the sinusoid lining, the space of Dissé is continuous with the sinusoid lumen, thus bathing the hepatocyte 

surface with plasma. Numerous irregular microvilli extend from the hepatocyte surface into the space of Dissé, 

greatly increasing the surface area for metabolic exchanges. The hepatocyte cytoplasm is crowded with 

organelles, particularly mitochondrias and lysosomes, thus reflecting their range of biosynthetic and degradative 

activities. Lipid droplets (L) are present in variable numbers depending on nutritional status. Bile canaliculi (BC) 

are formed from the membranes of adjacent hepatocytes. From Young et al. (2006).     

 

1.1.3. Liver functions 

The liver performs multiple diverse functions essential for life including: (1) lipid 

metabolism; (2) carbohydrate metabolism; (3) protein metabolism; (4) storage; (5) 

conjugation and elimination of metabolites and toxins; (6) bile synthesis and secretion; and 

(7) excretion of bilirubin (Stevens and Lowe, 2005; Young et al., 2006).  
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The liver is involved in synthesis of cholesterol, lipoproteins and phospholipids. It also 

oxidizes fatty acids to provide energy. Lipids and aminoacids are converted into glucose in 

the liver by gluconeogenesis. It synthesizes many proteins, including most of the plasma 

proteins such as albumin and blood clotting factors (for instance, fibrinogen and 

prothrombin). The liver is also the main site of detoxification of exogenous compounds such 

as drugs and toxins. The hepatocytes’ smooth endoplasmic reticulum possesses a large 

number of enzymes that breakdown and conjugate metabolites or toxic substances (e.g. 

alcohol, barbiturates, etc). This process, known as biotransformation, is able to convert 

lipophilic substances to more hydrophilic ones for subsequent elimination. Another major 

function of the liver is the production of bile, which is an alkaline secretion containing water, 

ions, phospholipids, bile acids and bile pigments (mainly bilirubin diglucuronide). Most 

attractive is the ability of the liver to regenerate, a unique property among solid organs in 

mammalian species. Following two-thirds partial hepatectomy, there is a compensatory 

growth by the remaining liver, resulting in restoration of the total parenchymal cell number 

and mass within 1-2 weeks (Michalopoulous and DeFrances, 1997). Liver transplantation is 

currently the only successful treatment for acute hepatic failure or end stage liver disease. At 

the present time, however, a serious donor shortage is a major limitation to its use. Hepatocyte 

transplantation may have the potential to solve this problem. Several studies using rat models 

of primary hepatocyte transplantation revealed that transplantation leads to efficacious donor 

chimerism that can rescue animals from lethal hepatic failure (Rajvanshi et al., 1996; 

Gagandeep et al., 2000). Additionally, human cell lines have also been shown to improve the 

survival rate in an acute liver failure model (Kobayashi et al., 2000). Hepatic stem cells from 

fetal livers may also have the ability to repopulate the liver successfully and promote long-

term engraftment, given that they possess active proliferative capacity and the competence for 

differentiate into hepatic and cholangiocytic lineages (Kakinuma et al., 2009a). It has been 

demonstrated that defined populations in mid-gestational fetal liver contain hepatic stem cells 

(Kakinuma et al., 2009b).   

After birth, with cessation of placental function, the neonatal liver must assume many 

different tasks. The physiologic development of normal hepatic function is characterized by 

rapid maturation of some processes at the end of gestation; however, for other processes, 

including bile formation, a ‘‘physiologic immaturity’’ remains for several months after birth 

(Emerick and Whitington, 2002). This ‘‘physiologic immaturity’’ is manifested in early life as 

inefficient lipid digestion, delayed hepatic clearance, slow metabolism of exogenous 
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substances (drugs) and endogenous compounds (bile acids and bilirubin), and a cholestatic 

phase of liver development (physiological cholestasis) (Belknap et al., 1981; Suchy et al., 

1981). In fact, evidence shows different patterns of perinatal hepatic enzymatic activity, 

which can affect the infant’s capacity for normal metabolic processes such as oxidation, 

reduction, hydrolysis, and conjugation, therefore influencing its ability to metabolize, 

detoxify, and excrete xenobiotics (Heubi et al., 1982; Emerick and Whitington, 2002). Some 

of these differences may have relevance to understanding neonatal susceptibility to liver 

disease. 

 

1.2. Pathophysioly of cholestasis 

The term “cholestasis” was generalized by Hans Popper in order to describe the 

retention of biliary constituents (Popper, 1981). Thus, cholestasis can also be defined as a 

decrease or cessation of canalicular bile flow that results in accumulation of bile components 

in hepatocytes and canaliculi (Elferink, 2003). This condition may result either from a 

functional defect in bile formation at the level of the hepatocyte (hepatocellular cholestasis) or 

from an impairment in bile secretion and flow at the level of bile ductules or ducts 

(extrahepatic cholestasis) (Trauner et al., 1999). Hepatocellular cholestasis may be caused by 

acute inflammation (hepatitis), cancer that has spread to the liver, inflammation or blockade 

of the bile ducts, genetic disorders, hormonal effects on bile flow during pregnancy (a 

condition called intrahepatic cholestasis of pregnancy) and/or drugs (Ling, 2007; Lee and 

Brady, 2009). On the other hand, causes of extrahepatic cholestasis are usually diseases of the 

bile ducts due to stones, abnormal narrowing of a bile duct (strictures) or tumors.  Indeed, 

cholestasis is a common feature of many chronic human liver diseases leading to impaired 

bile formation and damage of target liver cells such as hepatocytes. 

Cholestasis is also a frequent symptom of liver disease in newborns. The neonate 

develops cholestasis in response to a wide variety of insults, hepatic and systemic, indicating 

a relative sensitivity of the mechanisms of bile formation and excretion compared with 

children and adults.  

The enterohepatic circulation in newborn animals of various species is characterized 

by a decrease of bile acid secretion, bile flow, bile acid synthesis, bile acid pool size, uptake 

of portal bile acids, and inefficient ileal uptake of bile acids (Balistreri et al., 1983). At birth, 

basal bile acid secretion is decreased significantly compared with the mature animal and 

progressively increases after weaning (Shaffer et al., 1985; Tavoloni et al., 1985). In newborn 
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humans, studies have also demonstrated that duodenal bile acids concentrations do not reach 

the critical micellar concentration and are particularly low in premature infants, reflecting 

immature bile acid secretion (Heubi et al., 1982; Suchy et al., 1987).  

Strong evidence also shows that hepatocyte uptake of bile acids and of other anions 

from the portal blood is decreased in the immature liver (Suchy et al., 1981; Suchy et al., 

1987). Also, bile acid synthesis is decreased in neonates compared with adults (Balistreri et 

al., 1983). Altogether, decreased rate of bile secretion with decreased bile acid synthesis is 

likely due to the immaturity of several steps of the bile acid synthetic pathway and enzymes 

involved in bile acid conjugation (Subbiah and Hassan, 1982). Furthermore, major changes 

occur during development in the volume densities of the cellular organelles that are involved 

in bile acid metabolism. The volume density of the smooth endoplasmic reticulum is 

markedly less in the neonate than in the adult rat liver and proliferates rapidly postnatally 

(Rohr et al., 1971; Daimon et al., 1982). 

The immaturity of the bile acid synthetic pathway of normal infants is also evidenced 

by the presence of ‘‘atypical’’ bile acids in the meconium and stool of infants. These 

‘‘atypical’’ bile acids are characterized by multiple hydroxylations and completely novel 

species. Some of these species may be hepatotoxic (Back and Walter, 1980; Strandvik and 

Wikstrom, 1982).The presence of potentially hepatotoxic bile acids could be a potentiating 

factor that may cause amplification of any cholestatic process in the infant. 

Moreover, the developing liver also has immature mechanisms for hepatoprotection as 

animal studies reveal that detoxification mechanisms, such as sulfation, are not fully 

developed at birth (Balistreri et al., 1984; Suchy et al., 1985), and glucuronidation is also 

reduced in the developing liver (Klinger, 1982). The immaturity of these processes may 

theoretically play a role in the pathophysiology of cholestasis during childhood. 

 

1.2.1. Main clinical biomarkers of chronic cholestasis: from diagnosis to prognosis 

During cholestasis, components normally excreted into bile, including bile acids and 

bilirubin, accumulate in liver cells and biliary passages (Elferink, 2003). In this context, the 

elevation of their concentrations in the serum may be viewed not only as diagnostic 

biomarkers but also as prognosis indicators due to their toxicity at the hepatocytes. 
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1.2.1.1. Bile acids 

Bile acids, the major constituents of bile, are synthesized from cholesterol by a 

complex series of chemical reactions (for review see Björkhem, 1985; Russell and Setchell, 

1992; Setchell and Russell, 1994). As represented in Figure 5, primary bile acids are 

synthesized from cholesterol by the addition of hydroxyl groups and the oxidation of its side 

chain to form a more water soluble end product.  The two primary bile acids synthesized in 

humans and most animal species are cholic acid (CA) and chenodeoxycholic acid (CDCA). 

Prior to secretion and storage in the gallbladder bile, CA and CDCA are conjugated to the 

aminoacids glycine and taurine at a 3:1 ratio (Chiang, 2003), resulting in glycocholic acid 

(GCA) and taurocholic acid (TCA) or glycochenodeoxycholic acid (GCDCA) and 

taurochenodeoxycholic acid (TCDCA), respectively. Conjugation significantly alters the 

physiochemical properties of bile acids, markedly increasing the polarity of the molecule and, 

thereby, facilitating renal excretion (Hofmann and Roda, 1984). Furthermore, the greater 

hydrophilicity of the conjugated species minimizes the membrane-damaging potential of the 

more hydrophobic unconjugated species (Scholmerich et al., 1984). 

After secretion in the intestine, where they play crucial biological roles such as 

emulsifiers of lipids, a fraction of bile acids is converted to the secondary bile acids, 

deoxycholic (DCA) and lithocholic (LCA) acids by bacterial biotransformation of CA and 

CDCA respectively (Björkhem, 1985; Setchell and Russel, 1992; Setchell and Russel, 1994). 

While emulsified nutrients are taken up by enterocytes in proximal segments of the gut, bile 

acids continue to move distally until absorbed in the ileum. Subsequently, bile acids re-enter 

the liver via the portal vein, pass through the liver sinusoids and are taken up by hepatocytes 

and then resecreted into bile (van Berge Henegouwen et al., 2000). Approximately 95% of 

secreted bile acids are recovered by the enterohepatic circulation and the lost 5% is 

replenished by de novo synthesis. In addition, CDCA can also undergo oxidation to 7-

oxolithocholic acid, followed by reduction yielding the 7β-isomer, originating the tertiary 

ursodeoxycholic acid (UDCA), present in trace amounts in human bile (Hofmann and Hagey, 

2008).  
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Fig. 5. Schematical representation of the biochemical pathways involved in the conversion of cholesterol to bile 

acids. Cholesterol is transformed into the “primary” bile acids cholic and chenodeoxycholic acids by a complex 

series of chemical reactions. Prior to secretion and storage in gallbladder bile, cholic and chenodeoxycholic acids 

are conjugated at C-24 to the aminoacids glycine and taurine. The bile acids referred to as “secondary”, the 

lithocholic acid and the deoxycholic acid are formed from chenodeoxycholic acid and cholic acid respectively, in 

the intestine. Chenodeoxycholic acid can also undergo 7β-epimerization to originate the tertiary ursodeoxycholic 

acid, used in the treatment of hepatobiliary disorders. Although the described pathways are considered the most 

important for bile acid synthesis in humans, there are several alternative pathways (for review, see Setchell and 

Russell., 1994). 

 

The production of bile acids occurs early in development being detected in human 

fetuses by 14 weeks gestation (Little et al., 1975; Wahlen et al., 1989). However, there is 

evidence that the bile pool in neonates differ from that in adults. Compared to the mature 

organism, in fetal bile, there is an increased ratio of chenodeoxycholic acid to cholic acid, an 

increased number of cholic acid conjugates, and differences in specific oxidation sites 

(Bucuvalas, 1992). These altered bile acids can be detected in meconium and, interestingly, 

are similar to bile acids found in adults presenting cholestasis. Taurine conjugates 

predominate in fetal life. This pattern is maintained to approximately six months of age 

(Balistreri, 1983). Secondary bile acids are also present in fetal bile and although the source is 
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unknown once fetuses do not contain intestinal bacteria, it has been suggested that they are 

derived either from maternal bile via transplacental transport or from primary synthesis 

through an alternative pathway (Balistreri, 1991). 

 

It is worth noting that not all bile acids are toxic and previous studies suggest that this 

may be related to slight changes in their chemical structure (Hofmann and Roda, 1984). 

Hydrophobicity is an important determinant of the toxicity and protection of bile acids, two 

biological properties of these compounds. Bile acids hydrophobicity depends on the number, 

position and orientation of the hydroxyl groups, as well as amidation at the C-24 position. 

Therefore, the magnitude of bile acids hydrophobicity and consequently their toxicity are 

UDCA < CA < CDCA < DCA < LCA as ilustrated in Table 1 (Carulli et al., 2000). Thus, 

UDCA is the more hydrophilic and the most universally used in the treatment of hepatobiliary 

disorders (Beuers and Paumgartner, 2002). Since conjugation with taurine and glycine 

increases their hydrophilicity, the conjugated species also show increased protective 

properties. 

 
Table 1. Hydrophobic index of bile acids and their conjugated species. 

 
Adapted from Heuman (1989). 

 

The retention of hydrophobic bile acids within the hepatocyte during a condition of 

cholestasis causes hepatotoxicity. In this regard, when intracellular concentrations of bile 

acids exceed certain limits, their effects can be damaging to cell structure and function, 

ultimately causing cell death. Indeed, bile acids accumulation may induce hepatocyte swelling 

and disrupt cell membranes resulting in necrotic cell death and release of intracellular 

constituents (Schölmerich et al., 1984). Bile acids have also shown to modulate apoptosis of 
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hepatocytes as several studies in models of cholestasis have demonstrated mitochondrial 

dysfunction and caspase activation (Rodrigues et al., 2003; Maher, 2004).   
 

1.2.1.2. Bilirubin  

Bilirubin synthesis starts with the lysis of senescent or hemolyzed erythrocytes in the 

reticuloendothelial system. When erythrocytes are degraded, heme is released from 

hemoglobin and following its catabolism unconjugated bilirubin (UCB) is produced (Berk, 

1994). This molecule presents a nearly symmetrical tetrapyrrolic structure, consisting of two 

rigid planar dipyrrole units (dipyrrinones) joined by a methylene bridge at carbon 10 and 

stabilized by intracellular hydrogen bonds (Fig. 6).   

 

 
Fig. 6. Structure of unconjugated bilirubin (UCB). The molecule consists of two rigid, planar dipyrrole units 

joined by a methylene (-CH2) bridge at carbon 10, and is stabilized by hydrogen bonds (highlighted in yellow). 

Adapted from Ostrow et al. (1994). 

 

The orange-yellow bilirubin isomer is, due to its structure, poorly soluble in aqueous 

medium (<70 nM) (Berk, 1994; Ostrow et al., 1994). Therefore, it requires a carrier molecule 

to be transported in the blood and further biotransformation to be excreted from the body. 

Upon released from the reticuloendothelial system, UCB binds reversibly with albumin, a 

carrier molecule with a single high affinity binding site for one bilirubin molecule (Berk, 

1994), for its journey to the liver, where it is conjugated. When the UCB/albumin complex 

reaches the plasma membrane of the hepatocyte, UCB detaches from albumin and enters the 

liver cell. Inside the hepatocyte, UCB binds with other carrier proteins, such as  protein Y (or 
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glutathione S-transferase) or protein Z during times of increased bilirubin load to the liver, to 

be carried into the endoplasmic reticulum for conjugation (Brito et al., 2006). Conjugation 

occurs inside the smooth endoplasmic reticulum, where each molecule of bilirubin combines 

with one or two molecules of glucuronic acid by the enzyme uridine diphosphate (UDP)-

glucuronosyl transferase to produce bilirubin monoglucuronide and diglucuronide pigments 

(Fig. 7). This conjugation renders a higher solubility in aqueous medium to the UCB 

molecule.   

 

 
Fig. 7. Structure of bilirubin diglucuronide. The pigment structure remains the same with the addition of two 

molecules of glucuronic acid (highlighted with red circles). Adapted from 

http://en.wikipedia.org/wiki/Bilirubin_diglucuronide. 

 

 

Conjugated bilirubin (CB) is then excreted in bile and passes through the small 

intestine via the common bile duct without significant absorption.  At the intestinal level, β-

glucuronidase turns mono- and diglucuronides to UCB which are either reduced and oxidized 

by intestinal flora or in its absence absorbed by the intestine, entering enterohepatic 

circulation. Catabolization by colonic flora originates urobilinogen, some of which is oxidized 

to stercobilin that is excreted in the stool giving it its brown color (Fig. 8). Remaining 

urobilinogen is reabsorbed and excreted in the urine as urobilin, giving it its yellow color.  
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Liver

Intestine

 
Fig. 8. Bilirubin uptake, transport and secretion by the liver, followed by intestinal excretion. Adapted from 

Watson (2009). 

 
In fetal life, bilirubin production begins as early as 12 weeks’ gestation. In children 

and adults, approximately two thirds of the monoglucuronides are conjugated to 

diglucuronides. However in neonates, monoglucuronide is the predominante conjugate  

specie. Owing to the immaturity of the fetal liver, the fetus has a limited ability to conjugate 

bilirubin and limited excretory function, and therefore physiologically relevant hepatobiliary 

elimination of bilirubin does not occur (Briz et al., 2006). The circulating fetal UCB readily 

crosses the placenta to the maternal circulation, where it is excreted by the maternal liver. 

However, the concentrations of UCB are higher in fetal than in maternal serum (Monte et al., 

1995). Two facts contribute to this difference: a very active heme catabolism together with a 

very low UDP-glucuronosyl transferase activity in the fetal liver (Kawade and Onishi, 1981). 

Thus, during intrauterine life, the placenta is the major route for the excretion of fetal biliary 

pigments (for a review, see Marin et al., 2003). 

  At birth, this placental protection is suddenly lost. At the same time, an increase in 

production of UCB occurs, due to the shorter erythrocyte life span of newborns (70-90 vs. 

120 days in adults), especially if prematures. In addition, the newborn has to use its own 

immature mechanisms for hepatic uptake, conjugation and biliary secretion of bilirubin, 

reason why a significant retention of UCB occurs, even in healthy term neonates (Gourley, 

1997; Reiser, 2004). Such retention is further enhanced by the absence of anaerobic ileo-

colonic flora in the newborn infant, leading to more unmetabolized UCB available for 
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intestinal absorption, thus increasing the enterohepatic circulation of UCB (Vitek et al., 

2000). As a result, virtually all newborn infants will have mild to moderate UCB levels within 

the first days of life, a condition known as “physiologic jaundice”. Therefore, this neonatal 

jaundice reflects the transition from intrauterine to extrauterine bilirubin metabolism and is 

linked to normal development; it is considered benign, and is usually resolved by the end of 

the first week of life with no treatment requirement (Reiser, 2004). However, it is important to 

confirm that plasma bilirubin is reducing after 14 days (Beath, 2003). The duration of 

exposure to overstated hyperbilirubinemia is believed to represent increased risks for 

neurologic sequelae (Dennery et al., 2001; Hansen, 2002) and is one of the most common 

factors related with the readmission of term and near-term infants (Brown et al., 1999). 

 Yellow coloration of skin and eyes, dark urine and light-colored stools are also 

characteristic symptoms of cholestatic or obstructive jaundice. Jaundice results from excess 

bilirubin deposited in the skin and dark urine results from excess bilirubin that accumulates in 

systemic circulation and is excreted by the kidneys. Usually, during cholestasis, jaundice 

occurs as a consequence of insufficient bile flow (Elferink, 2003).  

UCB and CB have also been demonstrated to promote hepatocyte and canalicular 

toxicity. Indeed, both species have been implicated in the inhibition of biliary phospholipid 

secretion (Labori et al., 2002; Labori et al., 2009), while UCB showed to induce canalicular 

membrane damage and consequently to promote intrahepatic cholestasis (Labori et al., 2009), 

which may aggravate the already established cholestatic condition. In accordance, elevation of 

serum bilirubin concentration is now considered a poor prognosis indicator in acute liver 

failure (Hadem et al., 2008) and primary biliary cirrhosis (Krzeski et al., 1999).  

 

1.2.2. Acute vs. chronic cholestasis 

During a cholestatic condition the concentration of each bile acid in the patient serum 

may vary according to the type of cholestasis that is present. In fact, results obtained in our 

laboratory have demonstrated that during acute cholestasis CA is the predominant bile acid 

while in chronic cholestasis CDCA is the most prevalent (Fig. 9). Therefore, it is possible for 

the clinicians to diagnose the type of cholestasis based on the serum bile acid profile, allowing 

a more proper treatment.  
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Fig. 9. Pie charts demonstrating the distribution of each bile acid during acute and chronic cholestasis (Brites, 

personal communication). CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; LCA, 

lithocholic acid. 

 

Hepatocyte damage by toxic bile acids is assumed to represent a key event for 

progression of cholestatic liver diseases (Hofmann, 2002). In this regard, the GCDCA and the 

TCDCA, predominant dihydroxy bile acids present in chronic cholestatic patients due to 

conjugation of CDCA, have been held responsible for cholestasis associated liver injury 

(Schmucker et al., 1990). Exposure of hepatocytes to GCDCA, at concentrations 

representative of those found in cholestatic human liver injury, are thought to induce 

hepatocyte necrotic and apoptotic cell death (Patel et al., 1994; Gonzalez et al., 2000; 

Yerushalmi et al., 2001). Moreover, engulfment of the hepatocyte apoptotic bodies by hepatic 

stellate cell (HSC) and Kupffer cells enhances their expression of pro-fibrogenic genes and 

death ligands. Persistent activation of these cells promotes further hepatocyte death, which 

culminates in hepatic inflammation, with sustained HSC activation. If liver injury continues 

chronically, hepatic fibrosis develops as a result of the activation of HSC, which are the main 

cellular elements involved in extracellular matrix deposition (Friedman, 2000).  

Nowadays, cholestatic liver diseases account for a large proportion of chronic liver 

disorders in adults, children and infants, and are one of the most frequent and destructive 

manifestations of liver diseases (Pauli-Magnus and Meier, 2005). Moreover, long-term 

cholestasis can lead to development of cirrhosis due to stimulation of fibrotic process. 

Unfortunately, all too often, progression to end-stage liver disease is either fatal or requires 

liver transplantation.  

 



 

17 
 

Introduction 

1.3. Mechanisms of hepatocyte injury during cholestasis 

 

 1.3.1. Major modes of cell death in the liver  

The balance between cell division and cell death is a basic feature in the development 

and maintenance of liver homeostasis. Disturbances in this balance can cause liver diseases: 

too much cell death can cause liver injury; too little cell death is a prerequisite for the 

development of hepatocellular carcinoma. Thus, a tight control of the equilibrium between 

life and death in the liver is necessary. 

During cholestatic liver diseases, hepatocytes are exposed to increased levels of 

cytotoxic compounds like bile acids, bilirubin or even cytokines if inflammation is present. 

Although hepatocytes have an enormous capacity to defend themselves against these agents, 

excessive exposure will result in cell death (Schoemaker and Moshage, 2004). Cell death is 

typically discussed dichotomously as either apoptosis or necrosis (Fig. 10), although recently 

there have been described alternate types of cell death (for review see Fink and Cookson, 

2005).  

 
Fig. 10. Common cell death pathways in the liver. Hepatocytes can die from different modes of cell death. 

Apoptosis occurs in physiological as well as pathological conditions and represents a highly organized and 

genetically controlled type of cell death leading to shrinkage of the cell and disintegration into small apoptotic 

bodies. Necrosis (or oncosis/oncotic necrosis) leads to cellular edema and disruption of the cell membrane. FHF, 

fulminant hepatic failure; NASH, non-alcoholic steatohepatitis; ROS, reactive oxygen species; TNF, tumor 

necrosis factor. Adapted from Schulze-Bergkamen (2007).  
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 The word apoptosis was proposed by Kerr et al. (1972) to describe a controlled 

physiologic process of removing individual unnecessary components of an organism without 

destruction or damage to the organism. Apoptosis was initially confirmed as a specific form 

of cell death that served to eliminate excessive or unwanted cells during embryonic 

development and normal tissue growth (Williams, 1991), but had been clarified to be also 

induced in cellular injury with inflammatory disease (Haslett, 1992).  

Samali et al. (1999) and others (Blagosklonny, 2000) have proposed that apoptosis 

should be defined as caspase (asparate-specific cysteinyl protease)-mediated cell death with 

the following morphological features: cytoplasmic and nuclear condensation, chromatin 

cleavage, formation of apoptotic bodies, maintenance of an intact plasma membrane, and 

exposure of surface molecules targeting cell corpses for phagocytosis. More specifically, the 

molecular definition of apoptosis can logically be based on the proteolytic activity of some 

caspases (caspase-2, -3, -6, -7, -8, -9, and -10) since they mediate the process of apoptotic cell 

death. Among them, caspase-3 has been identified as being a key mediator of apoptosis of 

mammalian cells (Samali et al., 1999). Caspase-3 is one of the effectors’ caspases from 

apoptosis that are activated by upstream initiator caspases and are responsible for the cleavage 

of the key cellular proteins, such as cytoskeleton proteins, that leads to the typical 

morphological changes observed in cells undergoing apoptosis.  

Although apoptosis of hepatocytes can be triggered by several different stimuli, 

apoptotic signaling is mainly transduced by two major molecular pathways, an extrinsic 

pathway mediated by death receptors (i.e. TNF-α/TNFR1 signaling) on the cell surface and an 

intrinsic pathway, which is triggered at the mitochondrial level. Both pathways culminate in 

the activation of caspases and endonucleases, which ultimately degrade the cellular 

constituents. Deregulation of the apoptotic program is pathophysiologically involved in acute 

as well as in chronic liver diseases, including cholestasis (Miyoshi et al., 1999). 

If liver injury chronically persists along time, necrotic cell death may occur. Contrary 

to the controlled cellular death program in apoptosis, necrosis (or recently renamed oncosis or 

oncotic necrosis) is a more chaotic mechanism of cell death. For designating any cell death 

characterized by cellular swelling, organelle swelling and increased membrane permeability 

the term oncosis has been used (Van and Van Den, 2002). Oncosis occurs when a cell is 

stressed beyond its tolerance. Contrary to apoptosis, this type of cell death does not involve 

the activation of molecular mechanisms specialized in contributing to cell death. Instead, 

under extreme circumstances, normal cellular activities are destabilized with devastating 
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consequences for the cell (Majno and Joris, 1995). It results from metabolic disruption with 

energy depletion and loss of adenosine triphosphate (ATP), ion deregulation and enhanced 

degradative hydrolase activity.   

The term necrosis has been generally used to portray non-apoptotic accidental death 

with features of oncosis. However, the distinction between the structural and biochemical 

processes occurring in a dying cell and the endpoint of death itself is a subject that has been 

disregarded in the literature and must be clearly distinguished. Pathologists use the word 

necrosis to designate the presence of dead tissue or cells, being considered the sum of changes 

that have occurred in cells after they died, regardless of the prelethal process (Levin et al., 

1999). Necrosis, therefore, involves cell destruction with extravasation of intracellular 

components, an event observed after a cell has already died. By definition, this is manifested 

biochemically as the release of cytosolic enzymes including lactate dehydrogenase (McCarthy 

and Evan, 1998). The release of cellular contents triggers an inflammatory response in the 

surrounding tissue (Kerr et al., 1972).  

Multiple types of death can be observed simultaneously in tissues or cell cultures 

exposed to the same stimulus (Fink and Cookson, 2005).  An understanding of the processes 

leading to liver cell death will be important for development of effective interventions to 

prevent hepatocellular death and consequent liver failure (Malhi et al., 2006). 

 

1.3.2. Cell death and the development of inflammation 

In necrosis, in which membrane integrity is lost, the resulting cytolysis and released 

contents elicits an inflammatory response (Rosser and Gores, 1995). In contrast, the uptake of 

apoptotic bodies suppresses secretion of inflammatory mediators from activated macrophages 

(Fadok et al., 1998). Therefore, a critical component of the definitions of apoptosis is its anti-

inflammatory outcome. However, in pathological conditions, hepatocellular apoptosis may 

also cause inflammatory reactions such as infiltration of neutrophils (Guicciardi and Gores, 

2005). Upon persistent inflammation, fibrogenesis (the development or proliferation of 

fibrous tissue) can occur, mainly as a consequence of the activation of HSC following their 

transdifferentiation into myofibroblasts (Canbay et al., 2004). In addition, Kupffer cells, the 

major phagocytes of apoptotic bodies in the liver, can also express and release death ligands 

and proinflammatory cytokines, thereby accelerating hepatocyte apoptosis and inflammatory 

reactions. Importantly, HSC also engulf apoptotic bodies in the liver, a process that is 
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associated with their activation and with production of transforming growth factor (TGF)-β, a 

potent profibrogenic cytokine, ultimately leading to fibrosis (Canbay et al., 2003). 

 

1.3.3. Inflammatory signaling pathways 

The hepatocyte, early injured in the course of cholestasis, is in part responsible for 

many of the subsequent inflammatory and fibrinogenic responses of nonparenchymal cells. 

Damaged hepatocytes may secrete molecules (cytokines, chemokines, growth factors, lipid 

peroxide products, etc.) that amplify the inflammatory response, stimulate fibrogenesis by 

HSC, or directly injure other nearby cells. Thus, understanding the events that initiate liver 

injury during cholestasis should focus to a large extent on the hepatocyte and the effects of 

toxic compounds such as bile acids and bilirubin on hepatocyte response and survival (Sokol 

et al., 2006). 

Cytokines are multifunctional pleiotropic proteins that play crucial roles in cell-to-cell 

communication and cellular activation. Functionally, cytokines have been classified as being 

either proinflammatory or anti-inflammatory depending on the final balance of their effects on 

the immune system (Mosmann et al., 1986). They are mediators that initiate multiple 

signaling pathways that, although independent, may interact with each other and influence the 

magnitude and duration of the inflammatory response. In some cases, different cytokines may 

present synergistic, redundant or even opposite actions. In healthy liver, constitutive 

production of cytokines is absent or very low.  Irrespective of its etiology, inflammation-

induced cholestasis is mediated by cytokines (Trauner et al., 1999), and hepatocytes are 

exposed to increased levels of cytokines such as tumor necrosis factor alpha (TNF-α) and 

various interleukins (IL) (Wullaert et al., 2007). In vivo studies have shown that bile acids are 

capable of inducing Kupffer cells to release proinflammatory cytokines and subsequently 

affect transcriptional alterations in the neighboring parenchymal cells (Miyake et al., 2000).  

 Bile acids have been shown to also activate the mitogen-activated protein kinases 

(MAPKs) signaling cascade (Grambihler et al., 2003), which are usually intracellularly 

activated upon an inflammatory stimulus. MAPKs are important enzymes involved in cellular 

signaling, apoptosis, carcinogenesis and pathogenesis of variety of diseases (Dhillon et al., 

2007). Some of the most prominent members of MAPKs family are c-Jun-N-terminal kinases 

1 and 2 (JNK1/2) (Weston and Davis, 2007) and p38 kinase (Bradham and McClay, 2006). 

MAPKs can be activated by a wide variety of different stimuli, but in general, p38 and 

JNK1/2 are known for being more reactive to environmental stresses and inflammatory 
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cytokines (Kyriakis and Avruch, 2001). MAPKs activation is catalyzed by members of the 

MAPK kinase family such as the MAP kinase kinase kinases (MEKKs) and it consists in the 

phosphorylation of tyrosine and threonine residues (Cobb and Goldsmith, 1995). Once 

activated, MAPKs phosphorylate target substrates including some transcription factors or 

other molecules involved in transcription factors activation such as the IκB/NF-κB signaling 

(Johnson and Lapadat, 2002).  

MAPK cascade selectivity is conferred by specific interaction motifs located on 

physiological substrates, allowing distinct biological functions for each activated MAPK. 

Thus, the p38 activity is considered critical in normal immune and inflammatory responses 

(Ono and Han, 2000), whereas JNK1/2 phosporylation is associated with apoptosis (Davis, 

2000). Of 3 known mammalian JNK genes, 2 are expressed in the liver: JNK1 and JNK2 

(Czaja, 2003). Both can be activated by death receptor and endoplasmic reticulum stress 

pathways of apoptosis and may also be the pathway of caspase-independent reactive oxygen 

species–mediated cell death (Malhi and Gores, 2008).  

The MAPK pathways have been shown to be strongly activated after partial 

hepatectomy and presumably play a key role in regulating hepatocytes proliferation during 

hepatic regeneration (for review see Fausto, 2000). Interestingly, activation of MAPK 

pathways also precedes the process of HSC proliferation and activation that is associated with 

tissue remodeling and leads to hepatic fibrosis (Svegliati-Baroni et al., 2003). 

The general function of MAPK cascades is the regulation of gene expression. In this 

way, MAPKs regulate cell proliferation and cell survival, but also mediate cell death. 

However, the actual roles of each MAPK cascade are cell-type and context-dependent. 

Importantly, studies in non-proliferating cells or primary cultures are scarce and rather reveal 

the physiological role of MAPKs.  

Besides MAPKs, other signaling pathways modulate cell death in hepatocytes, thereby 

influencing the balance between pro- and anti-apoptotic signals. One of them is the NF-κB 

signaling cascade (Schoemaker and Moshage, 2004). 

The transcription factor NF-κB plays a key role during inflammation.  In most cells, 

NF-κB is predominantly composed of a p65:p50 heterodimer. In quiescent cells, NF-κB is 

maintained in the cytoplasm by binding to its inhibitor IκB. It is believed that NF-κB is 

activated in response to cytokines. Activation occurs when inhibitory protein IκB, is 

phosphorylated at specific serine residues. This results in the release of IκB from the p65 

subunit of NF-κB which exposes a nuclear localization sequence on the p65 subunit allowing 
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the translocation of NF-κB to the nucleus. Phosphorylated IκB is consequently ubiquitinated 

and degraded in the proteasomes. In the nucleus, NF-κB binds to κB binding sites in 

promoters of target genes and induces transcription of these genes. Many NF-κB-regulated 

genes are survival or antiapoptotic genes that protect cells against harmful compounds 

released during inflammation (Schoemaker et al., 2003). NF-κB-inducible anti-apoptotic 

genes expressed in hepatocytes are prime candidates for novel therapies in liver diseases 

(Schoemaker et al., 2002). 

A coordinate activation of these pathways, ordered in space and time, orchestrates the 

complex response to injury by inducing genes that regulate cell survival, proliferation, 

differentiation and tissue specific functions. On this basis, pharmacological or molecular 

modulation of intracellular kinases and NF-κB have been under consideration as an approach 

to therapy of neoplastic as well as non-neoplastic conditions (Sebolt-Leopold et al., 1999; 

Zhu et al., 1999; Sebolt-Leopold, 2000).  

  

1.4. Aims of the thesis  

Numerous studies have investigated the mechanisms and pathways of liver damage 

after exposure to bile acids mimicking a situation of cholestasis. However, the stimulation of 

these mechanisms associated with hiperbilirrubinemia has not been considered in most of the 

in vitro studies. In addition, the study of hepatotoxic mechanisms seldom considers the 

fetal/neonatal conditions.  

Thus, the main aims of this project are: (a) to evaluate the role of GCDCA alone in 

human hepatocyte injury; (b) to investigate the effects of the additional presence of UCB and 

CB on human hepatocyte response and cytotoxicity; (c) to assess the involved intracellular 

pathways leading to injury in our experimental models; and (d) to explore the reasons behind 

the different susceptibility of fetal and adult hepatic cells to jaundice, cholestasis or both.  

Collectively, with the results obtained in this project, we aim to improve the diagnosis 

and prognosis of bile acid and bilirubin-associated diseases.  Hopefully, the results obtained 

with this project will be translated back to the community, allowing a more proper therapy 

and contributing to the well being of the population. Cholestatic liver diseases as a whole are 

the most frequent hepatic diseases, caused by a range of disturbances that impair bile flow and 

it is very important to understand the complete picture of the interlaced mechanisms behind 

those conditions in order to design increasingly accurate and targeted therapies. 
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2. MATERIALS AND METHODS 

 

2.1. Chemicals 

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), non-

essential aminoacids (100×) and L-glutamine were purchased from Biochrom AG (Berlin, 

Germany). Glycochenodeoxycholic acid (GCDCA) [N-(3α,7α-dihydroxy-5β-cholan-24-oyl) 

glycine] minimum 96% pure was from Calbiochem (Darmstadt, Germany). Antibiotic 

antimycotic solution (20×),  human serum albumin (HSA) (fraction V, fatty acid free), bovine 

serum albumin (BSA), trypsin, Hoechst dye 33258, mouse antibody anti-β-actin and goat 

antibody anti-rabbit labeled with fluorescein isothiocyanate (FITC) were acquired from Sigma 

Chemical Co (St. Louis, MO, USA). Unconjugated bilirubin (UCB), also from Sigma 

Chemical Co, was purified according to the method of McDonagh and Assisi (1972). 

Bilirubin ditaurate [ditaurine amide of bilirubin (disodium salt)] showed in Figure 11, was 

purchased from Frontier Scientific (Logan, UT, USA) and used as conjugated bilirubin (CB) 

as described previously by Kajihara et al. (2000), Labori et al. (2002) and (2009), since it is 

the only conjugated species of bilirubin that is commercially available.  

 
 

Fig. 11. Bilirubin ditaurate, resulting from the conjugation of one molecule of bilirubin with two molecules of 

taurine amide sodium salt (red circles). Adapted from http://www.frontiersci.com/detail.php?FSIcat=B850.  

. 

The lactate dehydrogenase (LDH) cytotoxicity detection kit was purchased from 

Roche Molecular Biochemicals (Manheim, Germany). The 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) was obtained 

from Promega (Madison, WI, USA) and the phenazine methosulfate (PMS) from Sigma 

Chemical Co. Nitrocellulose membrane and Hyperfilm ECL were from Amersham 
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Biosciences (Piscataway, NJ, USA). LumiGLO® was acquired from Cell Signalling (Beverly, 

MA, USA). Sodium dodecyl sulphate (SDS) was acquired from VWR-Prolabo. Acrylamide, 

bis-acrylamide and Tween-20 were from Merck (Darmstadt, Germany). Primary specific 

monoclonal antibodies were: rabbit anti-phospho-p38 MAPK (P-p38) from Cell Signaling; 

mouse anti-phospho-JNK1/2 (P-JNK1/2) and rabbit anti-p65 NF-κB subunit from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). Depex-Polystyrene dissolved in xylene (DPX) 

mountant for microscopy was obtained from BDH, Laboratory Supplies, Poole, UK. Caspase-

3 substrate was purchased from Calbiochem (San Diego, CA, USA). Horseradish peroxidase-

labelled goat anti-rabbit IgG and anti-mouse IgG were from Santa Cruz Biotechnology (Santa 

Cruz, CA, USA). Protein assay kit (for protein quantification) was from Bio-Rad Laboratories 

(Hercules, CA, USA). 75-cm2 flasks as well as 6-well and 12-well tissue culture plates were 

from Orange Scientific (Braine-l'Alleud, Belgium). 

 

2.2 Equipment 

Axioskop® microscope was obtained from Zeiss, Germany. The phase contrast 

microscope, model CK2-TR, was from Olympus Optical Co. Ltd. Western blot apparatus and 

spectrophotometer PR 2100 were purchased from Bio-Rad Laboratories (Hercules, CA, 

USA).  

 

2.3. Fetal and adult hepatocyte cell culture 

WRL-68, a human epithelial fetal liver cell line, was first deposited in the American 

Type Culture Collection, Rockville, MD (ATCC accession number CL48) by Apostolov, who 

also registered its patent (USA patent no. 3 935 066) in 1976. The patent states that WRL-68 

cells: (i) form individually separated islands on discrete clumps when cultured in a growth 

medium; (ii) have a morphology closely resembling that of hepatocytes of the human liver; 

(iv) show increased production of glycogen in the presence of 1% glucose in the medium; (v) 

are capable of supporting viruses for the preparation of viral vaccines; and that (vi) their 

generation time is not more than 24 h. 

Morphologically, WRL-68 cells present characteristics of epithelial cell shape 

compatible with those of liver parenchymal cells, resembling either primary culture of hepatic 

cells (Miyazaki, 1978; Lescoat et al., 1989) or hepatic cell lines (Darlington et al., 1980; 

Chessebeuf and Padieu, 1984; Furukawa et al., 1987).  
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Fig. 12. Typical polygonal arrangement of the epithelial cells WRL-68 observed under a phase contrast 

microscope. When WRL-68 cells are seeded at low density, polygonal-to-spindle shape and some rounded cells 

are detected. At higher magnification these cells exhibit prominent, round, or oval-shaped nuclei containing one 

or more nucleoli. The cytoplasm appears to be granular and dense. They do not grow as a monolayer and began 

to detach before they cover the entire available surface for the culture plate. Their morphologic characteristics 

and epithelial cell shape are compatible with those of liver parenchymal cells. Scale bar = 50 µm. 

 

The synthesis of liver-specific serum proteins, particularly albumin and AFP, has been 

the benchmark for considering whether differentiated functions in hepatocytes cultures had 

been preserved. Thus, WRL-68 ability to produce albumin and AFP indicates that they retain 

functions of normal liver parenchymal cells. In addition, the expression of AFP has been 

described to be also a characteristic of fetal or cancerous liver cells. In this context, WRL-68 

cells have been described as a fetal cell line (Gutiérrez-Ruiz et al., 1994). In resume, since 

WRL-68 cells maintain their fetal hepatic properties, they are considered an useful system for 

the study of hepatic functions and development in vitro (Gutiérrez-Ruiz et al., 1991; 

Gutiérrez-Ruiz et al., 1992). The WRL-68 cell line used in the present study was purchased 

from the European Collection of Cell Cultures (ECACC), catalogue no.89121403, lot 

no.04A010. 

The novel non-neoplasic human adult HHL-5 cell line was produced at Dr. Arvind 

Patel laboratory following immortalization of primary human hepatocytes, isolated from a 

healthy liver, using a retrovirus vector LXSN16E6E7 based closely on Moloney’s mouse 

leukaemia virus, expressing the human papillomavirus type 16 (HPV16) E6 and E7 
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oncoproteins, that are known to immortalize human epithelial cells (Clayton et al., 2005). 

These cells retain primary hepatocyte healthy phenotype, suggesting the maintenance of a 

large degree of hepatic function without the presence of tumorigenic characteristics (Clayton 

et al., 2005). In agreement, AFP, a marker associated with a fetal or tumorigenic phenotype, 

was either absent or expressed at low levels in the HHLs confirming its origin from a non-

neoplastic tissue. HHLs also present effective contact inhibition (Clayton et al., 2005), a trait 

lost in tumour cells. Moreover, the observation that these cells can be maintained in a 

monolayer status for a considerable period of time (in this case, 7 days) could indicate that 

they would be of value in repopulating a damaged or depleted liver, without the generation of 

metastatic tumours (Clayton et al., 2005). We must take into account that immortalized cell 

lines de-differentiated somewhat in culture after many passages, resulting in expression of 

AFP and other tumour-related proteins (Woodworth et al., 1988). However, HHLs have not 

shown the presence of AFP even after 80 passages (Clayton et al., 2005). The HHL-5 cell line 

used in the present study was kindly provided by Dr. Arvind Patel from Institute of Virology, 

University of Glasgow, UK.   

 

 
Fig. 13. The arrangement of the HHL-5 cell line was observed using a phase contrast microscope. HHL-5 

morphology is compatible with those of liver cells, presenting a typical polygonal arrangement of epithelial cells 

but, contrary to WRL-68, this cell line grows as a monolayer. Scale bar = 50 µm. 

 

Both cell lines were routinely subcultured in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine, 1% or 5% (for 
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WRL-68 and HHL-5, respectively) of non-essential aminoacids (NEA) and 1% 

antibiotic/antimycotic  solution. The cells were trypsinized when cultures were sub-confluent 

(70-80%) using 0.5% trypsin and seeded at a density of 2.0 × 105 cells/mL on 75-cm2 flasks. 

For the experimental  studies, cells were seeded at a density of 1.0 × 105 cells/mL either on 6-

well tissue culture plates or on glass coverslips placed in 12-well tissue culture plates and 

maintained at 37ºC in a humidified atmosphere of 5% CO2 for 24 h prior to treatment. All the 

cells used in this work were between passages 5 and 15. 

 

2.4. Hepatocyte treatment with bilirubin and bile acid species 

Hepatocytes were stimulated with 100 µM GCDCA, 100 µM CB, 100 µM UCB, 100 

µM GCDCA + 100 µM CB + 100 µM UCB or vehicle alone, in the presence of 100 µM HSA 

from 1 to 48 h, at 37ºC as described in Figure 14. A concentrated solution of 5 mM GCDCA 

was prepared in sterile phosphate-buffered saline (PBS) and appropriate dilution in the 

incubation medium was made. Concentrated solutions of 10 mM CB and 10 mM UCB were 

prepared in 0.1 M NaOH immediately before use and appropriate dilutions were made in the 

incubation medium restoring the pH to 7.4 by addition of equal amounts of 0.1 M HCl. All 

the experiments with CB and UCB were performed with light protection (vials wrapped in tin 

foil and dim light) to avoid photodegradation. 

After treatment, cells were either: a) lysed for immunoblotting studies and caspase-3 

activity assay; b) fixed for 30 min with freshly prepared 4% (w/v) paraformaldehyde in PBS 

for immunocytochemical studies and evaluation of apoptosis; or c) used for assessment of cell 

viability using the MTS test. The cell-free medium was also collected for LDH measurements.  
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Fig. 14. Schematic representation of the experimental design. Cultured hepatocytes were incubated with 100 µM 

GCDCA, 100 µM CB, 100 µM UCB, 100 µM GCDCA + 100 µM CB + 100 µM UCB (all in the presence of 

100 µM HSA) or vehicle alone (100 µM HSA) from 1 to 48 h, at 37ºC. After 1, 4, 8 and 24 h of treatment, 

MAPKs activation was evaluated by western blot assay. At 6, 12, 24 and 48 h after treatment we assessed 

caspase-3 activity using a specific substrate. At 12, 24 and 48 h after incubation we appraised cellular parameters 

as LDH release and MTS reduction. The estimation of apoptotic nuclei by Hoescht staining and evaluation of 

NF-κB translocation to the nucleus by immunocytochemistry was also made after 12, 24 and 48 h incubation.  

 
 
 2.5. Cytotoxicity evaluation  

Standard evaluation of cytotoxicity was performed by measuring: (i) the lactate 

dehydrogenase (LDH) released by nonviable cells; (ii) the apoptotic cell death either by 

determining the activity of caspase-3, a known effector caspase (Samali et al., 1999) or the 

number of apoptotic nuclei; and (iii) the ability of viable cells to reduce the MTS compound. 

 

2.5.1. LDH release 

The presence of LDH was determined in the incubation medium using the 

Cytotoxicity Detection kit as usual in our laboratory (Silva et al., 2006). In brief, 100 µL of 
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incubation medium was transferred into corresponding wells of a 96-well microplate. Then 

100 µL of the reaction mixture [catalyst solution (Diaphorase/NAD+ mixture) plus dye 

solution (iodotetrazolium chloride and sodium lactate), in a proportion of 1:45] was added to 

each well and the plate was incubated for 10 min at 15-25°C. At the end of the incubation the 

reaction was stopped by adding 50 µL per well of 1 N HCl and the absorbance measured at 

490 nm with a reference wavelength of 620 nm. All readings were corrected for the possible 

interference of UCB and CB absorption and the results expressed as percent of LDH release, 

obtained by treating nonincubated cells with 2% Triton X-100 in DMEM for 30 min.  

 

2.5.2. Apoptosis assessment 

 The caspase-3 activity was assayed using the caspase-3 substrate, according to the 

manufacturer´s instructions. In brief, following incubation, the medium was discarded and 

adherent cells were harvested in chilled cell lysis buffer [50 mM HEPES (pH 7.4); 100 mM 

NaCl; 0.1% (w/v) CHAPS; 1 mM DTT; 0.1 mM EDTA] following a 30 min incubation on 

ice. Cell lysate was centrifuged at 10,000×g for 10 min and supernatant transferred to a new 

eppendorf. Then, 20 µL of sample supernatant was transferred into corresponding wells of a 

96 well assay plate and 80 µL of the reaction mixture containing 0.2 mM of Ac-DEVD-pNA, 

a specific substrate of caspase-3, in protease buffer assay [50 mM HEPES (pH 7.4); 100 mM 

NaCl; 0.1% (w/v) CHAPS; 10 mM DTT; 0.1 mM EDTA; 10% (v/v) glycerol] was added, and 

incubated at 37°C. The amount of pNA released by enzyme reaction was measured at 405 nm 

every 30 min until 2 h. The absorbance results obtained for each sample were normalized to 

protein concentration measured in cell lysate supernatant using the protein assay kit according 

to the manufacturers’ instructions, and presented as fold change versus control.   

Evaluation of hepatocytes’ nuclear morphology following Hoechst staining was 

performed as described previously (Silva et al., 2001). In brief, fixed cells were incubated 

with Hoechst dye 33258 (5 µg/ml in PBS) for 2 min at room temperature, washed with PBS, 

and mounted using DPX mountant. Fluorescence was visualized using an Axioskop® 

microscope. Images were acquired using a digital camera, attached to the tri-ocular tube of the 

microscope. A minimum of 10 random microscopic fields (400×) per sample were counted 

(>500 cells per sample) and mean values expressed as percentage of apoptotic nuclei. 

Hepatocytes under apoptosis were identified by: a) marked condensation of chromatin and 

cytoplasm (apoptotic cells); (b) cytoplasmic fragments with or without condensed chromatin 

(apoptotic bodies); and (c) intra- and extracellular chromatin fragments, as previously 
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described by Kerr and collaborators (Kerr et al., 1972). Results are expressed as the 

percentage of apoptotic cells. 

 

2.5.3. MTS reduction 

The ability of viable cells to reduce the MTS compound was evaluated as previously 

described (Riss and Moravec, 1992). In brief, after the treatment, incubation media were 

removed and cells were incubated for 1 h, at 37°C, with 500 µL of the reaction mixture 

containing 0.2 mg/mL MTS plus 45 µg/mL PMS in DMEM. At the end of incubation, 100 µL 

of media was transferred into corresponding wells of a 96 well assay plate and absorbance 

measured at 490 nm. Results were expressed as percentage of control. 

 
2.6. Western blot assay  

Phosphorylation of p38 and JNK1⁄2 was analyzed following 1, 4, 8 and 24 h treatment. 

Total cell extracts were obtained by lysing cells in ice-cold cell lysis buffer [20 mM Tris-HCl 

(pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium 

pyrophosphate, 1 mM b-glycerophosphate, 1 mM Na3VO4, 1 µg/mL Leupeptin, 1 mM 

PMSF] for 5 min on ice followed by sonication. The lysate was centrifuged at 14 000 g for 10 

min at 4ºC, and the supernatants were collected and stored at -80ºC. Protein concentrations 

were determined using a protein assay kit, according to the manufacturer’s specifications. 

Equal amounts of protein (50 µg) were subjected to SDS–polyacrylamide gel electrophoresis 

and transferred to a nitrocellulose membrane. Membranes were washed with Tris-buffered 

saline containing Tween 20 (T-TBS; 10 mM Tris-HCl, 150 mM NaCl, 0.1% Tween 20) and 

blocked for 1 h at room temperature (22–25ºC) in blocking buffer [T-TBS plus 5% (w/v) non-

fat dried milk]. Membranes were incubated with primary antibody overnight at 4ºC [rabbit 

anti-P-p38 MAPK (1:1000), mouse anti-P-JNK1/2 (1:500), or mouse anti-β-actin (1:10 000) 

in 5% (w/v) bovine serum albumin]. After repeated washes in T-TBS, the membranes were 

incubated with horseradish peroxidase-labelled secondary antibody [anti-rabbit (1:5000) and 

anti-mouse (1:5000) in 5% (w/v) non-fat milk], for 1 h at room temperature. Protein bands 

were detected by LumiGLO® and visualized by autoradiography with Hyperfilm ECL. The 

relative intensities of protein bands were analyzed using the Quantity One® 1-D densitometric 

analysis software (Bio-Rad) and results expressed as fold-change versus respective control. 
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2.7. Immunocytochemistry  

Nuclear translocation of NF-κB was assessed following 12, 24 and 48 h treatment by 

NF-κB immunostaining performed as usual in our laboratory (Fernandes et al., 2006). In 

brief, fixed cells on coverslips were permeabilized using blocking buffer [1% (w/v) BSA and 

0.4% (v/v) Triton x-100 in PBS] for 1 h at room temperature and primary antibody 

(polyclonal rabbit anti-p65 NF-κB subunit (1:200) in blocking buffer] incubated overnight at 

4°C. Cells were then incubated with FITC-labeled goat anti-rabbit antibody (1:160) as the 

secondary antibody for 1 h at room temperature, washed with PBS, and mounted as 

previously described (2.4.3). To identify the total number of cells, hepatocyte nuclei were 

stained with Hoechst dye 33258 as above mentioned. Fluorescence was visualized using a 

Leica DC 100 camera adapted to an Axioskop® microscope. Pairs of U.V. and green-

fluorescence images of 10 random microscopic fields (original magnification: 400×) were 

acquired per sample. NF-κB-positive nuclei, was identified by localization of the NF-κB p65 

subunit staining exclusively at the nucleus, and total cells were counted (~400 cells per 

sample) to determine the percentage of NF-κB-positive nuclei.  

 

2.8. Statistical Analysis 

Results were expressed as mean ± SEM of at least three experiments. Statistical 

analysis was performed by Student’s t-test for unpaired data and the differences were 

considered statistically significant when P < 0.05.  
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3. RESULTS 

3.1. Decreased viability of hepatocytes is induced by bilirubin and bile acid species, 

mainly at 48 h of incubation 

As previously reported, GCDCA induce cytolysis of rat hepatocytes, releasing the 

lactate dehydrogenase enzyme from the cytoplasm to the surrounding media (Spivey et al., 

1993; Benz et al., 1998; Yerushalmi et al., 2001). To investigate the ability of GCDCA, CB, 

UCB and GCDCA+CB+UCB to induce membrane disruption in our culture of fetal (WRL-

68) and adult (HHL-5) hepatocyte cell lines , cells were treated for periods of 12, 24 and 48 h, 

and the levels of LDH activity in the incubation media were determined. As demonstrated in 

Figure 15, the release of LDH by HHL-5 cells remained unchanged after 12 h and 24 h 

incubations, while it significantly increased after 48 h incubation but only for 

GCDCA+CB+UCB treatment (P<0.01). Interestingly, this value was markedly different when 

compared to GCDCA, CB or UCB incubation alone (P<0.05).  Relatively to WRL-68 cells 

(Fig. 16), the release of LDH also increased significantly after 48 h incubation with 

GCDCA+CB+UCB when compared to control (P<0.05). Once again, these values were 

significant when compared to GCDCA (P<0.05) and UCB (P<0.01) incubations.  

 
Fig. 15. Incubation of HHL-5 cells with glycochenodeoxycholic acid (GCDCA) + conjugated bilirubin (CB) + 

unconjugated bilirubin (UCB) induces cytolysis at 48 h. Hepatocytes were treated with 100 µM GCDCA, 100 

µM CB, 100 µM UCB, 100 µM GCDCA+CB+UCB, in the presence of 100 µM human serum albumin, or 

vehicle alone (Control) for the indicated time periods. The incubation medium was collected for determination of 

released lactate dehydrogenase (LDH). Data are means ± SEM from four independent experiments. **P<0.01 vs. 

control, §P<0.05 vs. GCDCA, †P<0.05 vs. CB, ‡P<0.05 vs. UCB.    
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Fig. 16. Incubation of WRL-68 cells with glycochenodeoxycholic acid (GCDCA) + conjugated bilirubin (CB) + 

unconjugated bilirubin (UCB) induces cytolysis at 48 h. Hepatocytes were treated with 100 µM GCDCA, 100 

µM CB, 100 µM UCB, 100 µM GCDCA+CB+UCB, in the presence of 100 µM human serum albumin, or 

vehicle alone (Control) for the indicated time periods. The incubation medium was collected for determination of 

released lactate dehydrogenase (LDH). Data are means ± SEM from four independent experiments. **P<0.01 vs. 

control, *P<0.05 vs. control, §P<0.05 vs. GCDCA, ††P<0.01 vs. CB.    

 

Comparing the two cell lines at 48 h (controls, Fig 15 and 16), HHL-5 showed an 

increased susceptibility to cytolysis.  In addition, all treatments induced a significantly higher 

LDH leakage to the media in HHL-5 cell line. By evaluating the relative answer of the two 

cell lines (normalizing to the controls) at 48 h upon bilirubin and bile acid species treatment 

(Table 2), WRL-68  showed less respond to GCDCA and CB, while slightly more vulnerable 

than HHL-5 to UCB and GCDCA+CB+UCB. These findings indicate that HHL-5 may be 

more prone to cytolysis in an obstructive jaundice and that WRL-68 may be, to some extent,  

more sensitive to a condition of unconjugated hyperbilirubinemia.  

 
Table 2 – Relative answer of the two cell lines (WRL-68/HHL-5) in terms of released lactate dehydrogenase 

(LDH) upon 48 h treatment with bilirubin and bile acid species, alone or in association.  

 WRL-68/HHL-5 

GCDCA 0.78 

CB 0.59 

UCB 1.2 

GCDCA+CB+UCB 1.1 
GCDCA, glycochenodeoxycholic acid; CB, conjugated bilirubin; UCB, unconjugated bilirubin. 
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3.2. Apoptosis is enhanced in hepatocytes treated with bilirubin and bile acid species 

 

3.2.1. Increase of caspase-3 activity 

Based on previous studies indicating that GCDCA induces mixed features of cell death 

in primary cultures of rat hepatocytes (Benz et al., 1998; Yerushalmi et al., 2001), we next 

examined the occurrence of apoptosis by assessing caspase-3 activity. We investigated if 

GCDCA, CB, UCB or GCDCA+CB+UCB induced caspase-3 activity in our study model at 

periods of 6, 12, 24 and 48 h. Regarding HHL-5 cells (Fig. 17), although no increase was 

evident for individual treatments with GCDCA, CB or UCB, caspase-3 activity increased 

~1.5-fold after GCDCA+CB+UCB exposure at 6 h (P<0.01 vs. control, P<0.01 vs. GCDCA, 

P<0.05 vs. UCB). Interestingly, this increment was magnified to ~3.5-fold at 12 h, and 

remained significantly elevated until 48 h. For this later time-point, it was already observed 

some caspase-3 activation following GCDCA, CB or UCB incubation, although without 

statistical significance.   

 

 
Fig. 17. Incubation of HHL-5 cells with glycochenodeoxycholic acid (GCDCA) + conjugated bilirubin (CB) + 

unconjugated bilirubin (UCB) increases caspase-3 activity. Hepatocytes were treated with 100 µM GCDCA, 100 

µM CB, 100 µM UCB, 100 µM GCDCA+CB+UCB, plus 100 µM human serum albumin or vehicle alone 

(Control) for the indicated time periods. Total cell lysates were used to detect caspase-3 activity. Data are means 

± SEM from five independent experiments. **P<0.01 vs. control, *P<0.05 vs. control, §§P<0.01 vs. GCDCA, 
§P<0.05 vs. GCDCA, †P<0.05 vs. CB, ‡‡P<0.01 vs. UCB, ‡P<0.05 vs. UCB.    
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Concerning WRL-68 cells (Fig. 18), caspase-3 activity increased 4-fold after 

GCDCA+CB+UCB at 6 h incubation (P<0.05) and this activation was sustained until 12 h 

incubation (P<0.01). In these cells, GCDCA also enhanced caspase-3 activity after 6 and 12 h 

after treatment, though not in a statistical significant manner.  With CB and UCB incubations, 

caspase-3 activity also increased significantly after 12 h (P<0.05 and P<0.01, respectively). 

At 24 h, caspase-3 activity remained significantly high only with GCDCA-CB+UCB 

treatment. After 48 h of incubation, caspase-3 activity decreased in each condition.   

 

 
Fig. 18. Incubation of WRL-68 cells with glycochenodeoxycholic acid (GCDCA) + conjugated bilirubin (CB) + 

unconjugated bilirubin (UCB) increases caspase-3 activity. GCDCA+CB+UCB increases caspase-3 activity in 

the WRL-68 cell line, from 6 to 24 h. Hepatocytes were treated with 100 µM GCDCA, 100 µM CB, 100 µM 

UCB, 100 µM GCDCA+CB+UCB, plus 100 µM human serum albumin or vehicle alone (Control) for the 

indicated time periods. Total cell lysates were used to detect caspase-3 activity. Data are means ± SEM from five 

independent experiments. **P<0.01 vs. control, *P<0.05 vs. control.    

 

Altogether, in both cell lines, co-incubation of GCDCA with CB and UCB after 6, 12 

and 24 h showed a significant increase in caspase-3 activity. However, WRL-68 cell line 

showed globally higher answer to treatments in terms of caspase-3 activity. As shown in 

Table 3, WRL-68 cells demonstrated an earlier increase in caspase-3 activity namely by both 

bilirubin species followed by that of GCDCA+CB+UCB treatment with a peak at 6 h, and 

lasting at least 12 h.  
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Table 3 –Relative answer of the two cell lines (WRL-68/HHL-5) in terms of caspase-3 activity upon treatment 

with bilirubin and bile acid species alone or in association.  

 WRL-68/HHL-5 
 6 h 12 h 24 h 48 h 

GCDCA 1.5 2.8 1.4 0.8 

CB 3.5 2.1 1.4 0.8 

UCB 4.8 1.1 1.9 1.2 

GCDCA+CB+UCB 1.9 1.3 0.5 0.7 

GCDCA, glycochenodeoxycholic acid; CB, conjugated bilirubin; UCB, unconjugated bilirubin. 
 

3.2.2. Increase of apoptotic features 

Having verified that caspase-3 was activated, we decided to evaluate if the cells 

exhibited the morphologic characteristics of apoptosis. In previous studies, rat hepatocytes 

exposed to GCDCA underwent characteristic nuclear fragmentation and demonstrated 

condensed chromatin (Benz et al., 1998), typical features of apoptosis. Therefore, we next 

examined whether CB, UCB or GCDCA+CB+UCB also exert this effect in our culture 

model. Fixed cells were assayed for the characteristic nuclear morphology of apoptosis using 

Hoechst staining. As shown in Figure 19 and 20, in both cell lines, hepatocytes incubated with 

GCDCA+CB+UCB exhibited profound changes in nuclear morphology, consistent with 

apoptosis, in a more marked way than when incubated with GCDCA, CB or UCB alone.  

Quantification of apoptotic nuclei showed that, in HHL-5 cell line (Fig.19), treatment 

with CB and UCB increased the number of apoptotic nuclei along time (P <0.05) with a most 

evident effect at 12 h. Although incubation with GCDCA alone only slightly increased the 

percentage of apoptotic nuclei, co-treatment with CB+UCB led to ~40 %  apoptotic cell death 

at 12 h (P<0.01). This value slightly decreased with time but remained statistically significant 

at 24 and 48 h (P<0.01). Interestingly, these results were also significantly higher when 

compared to the values of GCDCA alone (P<0.05 for 12 h and P<0.01 for 24 and 48 h), 

indicating an increased toxicity due to the presence of CB and UCB.  
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  Fig. 19.  Incubation of HHL-5  cells with 

glycochenodeoxycholic acid (GCDCA), 

conjugated bilirubin (CB) and unconjugated 

bilirubin (UCB) enhances apoptosis which is 

increased by their association. Hepatocytes 

were treated with 100 µM GCDCA, 100 µM 

CB, 100 µM UCB, 100 µM 

GCDCA+CB+UCB, plus 100 µM human 

serum albumin or vehicle alone (Control) for 

the indicated time periods. (A) Representative 

results of one experiment at 12 h. Hepatocyte 

nuclei are shown in blue following Hoechst 

staining and apoptotic nuclei presenting 

chromatin condensation and blebs are 

indicated (arrows). Scale bar = 50 µm. (B) 

The number of apoptotic nuclei was counted 

and expressed as percentage of the total 

number of nuclei. Data are means ± SEM 

from three independent experiments. 

**P<0.01 vs. control, *P<0.05 vs. control; 
§§P<0.01 vs. GCDCA, §P<0.05 vs. GCDCA. 

Control GCDCA 

CB UCB 

GCDCA+CB+UCB 

B 

A 
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Fig. 20.  Incubation of WRL-68 cells with 

glycochenodeoxycholic acid (GCDCA), 

conjugated bilirubin (CB) and unconjugated 

bilirubin (UCB) enhances apoptosis which is 

increased by their association. Hepatocytes 

were treated with 100 µM GCDCA, 100 µM 

CB, 100 µM UCB, 100 µM 

GCDCA+CB+UCB, plus 100 µM human 

serum albumin or vehicle alone (Control) for 

the indicated time periods. (A) 

Representative results of one experiment at 

12 h. Hepatocyte nuclei are shown in blue 

following Hoechst staining and apoptotic 

nuclei presenting chromatin condensation 

and blebs are indicated (arrows). Scale bar = 

50 µm. (B) The number of apoptotic nuclei 

was counted and expressed as percentage of 

the total number of nuclei. Data are means ± 

SEM from three independent experiments. 

**P<0.01 vs. control, *P<0.05 vs. control; 
§§P<0.01 vs. GCDCA, §P<0.05 vs. GCDCA.  

Control GCDCA 

CB UCB 

GCDCA+CB+UCB 

A 

B 
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In WRL-68 cell line (Fig. 20), incubation with CB induced ~ 22% of apoptotic nuclei 

along the time (P <0.05), while UCB incubation led to ~22% (P <0.05) of apoptosis after 12 

and 24 h but increased to ~27 % (P<0.05) after 48 h. Regarding GCDCA incubation, the 

percentage of apoptotic nuclei only increased significantly at 48 h to ~23% (P<0.01). In 

addition, co-treatment with GCDCA+CB+UCB induced a significant increase in the extent of 

apoptosis when compared to control (P <0.01) or GCDCA-treated cells (P <0.05 for 12 h and 

P <0.01 for 24 h), indicating once again that CB and UCB may increase the apoptosis elicited 

by GCDCA alone.  

 

Comparing the two cell lines and normalizing to the controls, we observed that values 

for apoptotic nuclei were similar, with the exception of those for 48 h which showed to be 

more elevated in WRL-68 cells (Table 4). 

 
Table 4 – Relative answer of the two cell lines (WRL-68/HHL-5) in terms of apoptotic nuclei upon 48 h 

treatment with bilirubin and bile acid species, alone or in association.  

 

 WRL-68/ HHL-5 

GCDCA 1.6 

CB 1.1 

UCB 1.5 

GCDCA+CB+UCB 1.4 

 

GCDCA, glycochenodeoxycholic acid; CB, conjugated bilirubin; UCB, unconjugated bilirubin. 
 

 

Altogether, these results of cytotoxicity point out that GCDCA+CB+UCB 

significantly increases different types of cell death, including cytolysis and apoptosis, the last 

by an early caspase-3 activation followed by the presence of characteristic apoptotic nuclei. In 

addition, exposure to each one of these toxicants alone appears to preferentially induce 

apoptosis. 
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3.3. MTS reduction is enhanced in hepatocytes treated with bilirubin and bile acid 

species 

 We next assessed the effect of GCDCA, CB, UCB or GCDCA+CB+UCB in the 

hepatocyte function by using the MTS test. This test may either be used to assess cellular 

toxicity or cellular proliferation upon a stimulus. 

In HHL-5 cell line (Fig. 21), after 12 h, either GCDCA, CB or UCB treatment 

increased MTS reduction (P<0.05), which was more markedly elevated following 

GCDCA+CB+UCB exposure (P<0.01). This effect was continuously maintained for 24 and 

48 h, though less pronounced.  

 

 
Fig. 21. Bile compounds enhance proliferation in HHL-5 cell line. Hepatocytes were treated with 100 µM 

glycochenodeoxycholic acid (GCDCA), 100 µM conjugated bilirubin (CB), 100 µM unconjugated bilirubin 

(UCB), 100 µM GCDCA+CB+UCB, plus 100 µM human serum albumin (HSA) or vehicle alone (Control) for 

the indicated time periods. Attached cells were used to evaluate MTS metabolism, as described in Materials and 

Methods. The results were expressed as percentage from control. **P<0.01 vs. control, *P<0.05 vs. control; 
§§P<0.01 vs. GCDCA, †P<0.05 vs. CB, ‡P<0.05 vs. UCB.    
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Fig. 22. Bile compounds enhance proliferation in WRL-68 cell line. Hepatocytes were treated with 100 µM 

glycochenodeoxycholic acid (GCDCA), 100 µM conjugated bilirubin (CB), 100 µM unconjugated bilirubin 

(UCB), 100 µM GCDCA+CB+UCB, plus 100 µM human serum albumin (HSA) or vehicle alone (Control) for 

the indicated time periods. Attached cells were used to evaluate MTS metabolism, as described in Materials and 

Methods. The results were expressed as percentage from control. **P<0.01 vs. control, §§P<0.01 vs. GCDCA, 
§P<0.05 vs. GCDCA, ††P<0.01 vs. CB, †P<0.05 vs. CB.    

 

 

In WRL-68 cell line (Fig. 22), the effects on MTS reduction were less evident, 

showing only a slight increase for CB, UCB and GCDCA+CB+UCB at 12 h; and for CB at 48 

h.  

Collectively, it seems that HHL-5 are more susceptible than WRL-68 to GCDCA, CB 

or UCB-induced proliferation. It deserves to be noted that WRL-68 cells already have an 

increased rate of cellular proliferation in culture what may account for the results obtained. 

Further studies using a specific marker of cellular proliferation such as BrdU (5-bromo-2-

deoxyuridine) should be used to confirm the present data.  

 

 

3.4. JNK1/2 signaling pathway is activated in hepatocytes treated with bilirubin and bile 

acid species while p38 signaling pathway is decreased 

Several studies have shown that MAPK signaling pathways play a key role in 

mediating the hepatocyte response during cholestasis-induced inflammation (Simpson et al., 

1997; Paumgartner and Beuers, 2002). Therefore, activation of MAPK cascades was assessed 
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in total hepatocyte lysates by western blotting using antibodies specific for the phosphorylated 

(activated) forms of the kinases, i.e. P-p38 and P-JNK1/2.  

Surprisingly, we did not observe activation of p38 MAP kinase in HHL-5 cells, but 

rather a high basal activity which is rapidly inactivated after CB or UCB treatment. As shown 

in Fig. 23, HHL-5 hepatocytes treated with GCDCA exhibited a slight activation of p38, from 

1 to 24 h. However, p38 activation was sustainably decreased with CB and UCB treatments, 

in every time points. With GCDCA+CB+UCB incubation, p38 activation was enhanced only 

after 24 h (~1.30 fold). On the other hand, GCDCA treatment did not influence JNK1/2 

activation, while GCDCA+CB+UCB incubation stimulated a significant activation of JNK1/2 

from 1 to 8 h, with a peak at 4 h (~1.4 fold, P<0.05), CB and UCB-induced activation of 

JNK1/2 was less pronounced. It should be noted that untreated hepatocytes already exhibited 

a robust activation of p38 at 4 and 8 h, whereas basal activation of JNK1/2 was barely 

detectable (Fig. 23.A, lane 2 and 3). 

 

Regarding WRL-68 cell line (Fig. 24), p38 was activated, although not in a significant 

manner, by GCDCA after 4 h. Both CB and UCB incubation diminished the p38 activation, 

being this reduction statistically significant at 4 h (P<0.05) and 1 h (P<0.01) respectively. For 

GCDCA+CB+UCB treatment it was also observed a reduction of p38 activation, especially at 

4 h (P<0.05). Regarding JNK1/2, while GCDCA seemed to have no major effect, CB induced 

JNK1/2 activation through all the time points, being this activation statiscally significant after 

1h (P<0.01). Fetal cells also showed a sustained activation of JNK1/2 after UCB treatment, 

especially at 1 h (P<0.01). In addition, GCDCA+CB+UCB only exerted an effect in JNK1/2 

activation after 24 h (P<0.01). 

 

Summarizing, it seems that UCB treatment is the one element tested which make the 

most use of MAPKs pathways, in both cell lines and in the time points studied. In fact, 

maximal JNK1/2 activation occurs in the same conditions as p38 repression occurs. When 

UCB is highly decreasing P-p38, activation of JNK1/2 pathway is at it upmost.  
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Fig. 23. MAPKs activation in HHL-5 cells after incubations. Hepatocytes were treated with 100 µM 

glycochenodeoxycholic acid (GCDCA), 100 µM conjugated bilirubin (CB), 100 µM unconjugated bilirubin 

(UCB), 100 µM GCDCA+CB+UCB, plus 100 µM human serum albumin (HSA) or vehicle alone (Control) for 

the indicated time periods. Total cell lysates were analysed by western blotting with antibodies specific for the 

phosphorylated forms of the two MAPKs, P-p38 and P-JNK1/2. (A) Representative results of one experiment are 

shown. Similar results were obtained in two independent experiments. (B) The intensity of the bands was 

quantified by scanning densitometry, standardized with respect to β-actin protein and expressed as mean ± SEM 

fold change compared with untreated cells. *P<0.05 vs.control, §P<0.05 vs. GCDCA.   

A 

B 



 

45 
 

Results 

 
 

0.00

0.50

1.00

1.50

1 h 4 h 8 h 24 h

P‐
p3

8 
(f
ol
d 
ch
an
ge
)

Control

GCDCA

CB

UCB

GCDCA+CB+UCB

**

*

**
**

*
§ §

0.00

0.50

1.00

1.50

2.00

2.50

1 h 4 h 8 h 24 h

P‐
JN
K 
1/
2 
(f
ol
d 
ch
an
ge
)

Control

GCDCA

CB

UCB

GCDCA+CB+UCB

**
**

**

†
‡

 
Fig. 24. MAPKs activation in WRL-68 cells after incubations. Hepatocytes were treated with 100 µM 

glycochenodeoxycholic acid (GCDCA), 100 µM conjugated bilirubin (CB), 100 µM unconjugated bilirubin 

(UCB), 100 µM GCDCA+CB+UCB, plus 100 µM human serum albumin (HSA) or vehicle alone (Control) for 

the indicated time periods. Total cell lysates were analysed by western blotting with antibodies specific for the 

phosphorylated forms of the two MAPKs, P-p38 and P-JNK1/2. (A) Representative results of one experiment are 

shown. Similar results were obtained in two independent experiments. (B) The intensity of the bands was 

quantified by scanning densitometry, standardized with respect to β-actin protein and expressed as mean ± SEM 

fold change compared with untreated cells.  **P<0.01 vs.control, *P<0.05 vs.control, §P<0.05 vs. GCDCA, 
†P<0.05 vs. CB, ‡P<0.05 vs. UCB.   

A 
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3.5. NF-κB signaling pathway is activated in hepatocytes treated with bilirubin and bile 

acid species 

There have been studies in primary rat hepatocytes demonstrating that some bile acids 

like GCDCA and TCDCA do not activate NF-κB (Schoemaker et al., 2003), although it has 

been reported that NF-κB pathway is induced in cholestatic livers (Miyoshi et al., 2001). 

Therefore, we investigated whether NF-κB is activated after GCDCA, CB, UCB or 

GCDCA+CB+UCB treatment in our culture model. To determine if the NF-κB signaling 

pathway was activated, we investigated NF-κB nuclear translocation by 

immunocytochemistry (Figs. 25A and 26A). In both cell lines, nuclear localization of the p65 

NF-κB subunit was barely detectable in vehicle-treated cells, being located mainly in the 

cytoplasm.  

In HHL-5 cell line (Fig. 25), the maximum nuclear detection of p65 NF-κB subunit 

occurred for CB incubation at 12 h (~3.5 %, P<0.05) decreasing thereafter (~2%, P<0.01 for 

24 h and ~1.5%, not significant for 48 h). This profile was also observed for 

GCDCA+CB+UCB treatment, although with less magnitude (~3 %, P<0.01 for 12 h, ~1.5%, 

P<0.05 for 24 h and ~1.3%, P<0.05 for 48 h). In addition, also GCDCA and UCB showed to 

promote NF-κB activation, but presenting maximum levels at 24 h (~2%, P<0.05 for GCDCA 

and P<0.01 for UCB).  

In WRL-68 cell line (Fig. 26), the maximum nuclear detection of p65 NF-κB subunit 

occurred for CB and GCDCA+CB+UCB incubations, mainly at 12 h (~2%, P<0.05) and 24 h 

(~1.7%, P<0.05). UCB also increased NF-κB translocation to the nucleus (~1.5 %) at 12 h 

decreasing thereafter. On the contrary, GCDCA decreased NF-κB positive nuclei at 12 h, 

although not significantly. 
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Fig. 25. Conjugated bilirubin (CB) and 

glycochenodeoxycholic acid (GCDCA) mixed 

with CB plus unconjugated bilitubin (UCB) 

stimulated a higher NF-κB translocation to the 

nucleus in HHL-5 cell line, mainly at 12 h. 

Hepatocytes were treated with 100 µM 

GCDCA, 100 µM CB, 100 µM UCB, 100 µM 

GCDCA+CB+UCB, plus 100 µM human serum 

albumin (HSA) or vehicle alone (Control) for 

12, 24 and 48 h. Cells were fixed and 

immunostained with an antibody directed 

against the p65 NF-κB subunit. (A) 

Representative results of one experiment at 12 h 

are shown. (B) The number of NF-κB-positive 

nuclei was counted and expressed as a 

percentage of total nuclei. Data are means (± 

SEM) of two independent experiments 

performed in triplicate. **P<0.01 vs. control, 

*P<0.05 vs. control; §§P<0.01 vs. GCDCA, §P< 

0.05 vs. GCDCA, ‡P<0.05 vs. UCB. 
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Fig. 26. Conjugated bilirubin (CB) and 

glycochenodeoxycholic acid (GCDCA) mixed 

with CB plus unconjugated bilitubin (UCB) 

stimulated a higher NF-κB translocation to the 

nucleus in WRL-68 cell line, mainly at 12 h. 

Hepatocytes were treated with 100 µM 

GCDCA, 100 µM CB, 100 µM UCB, 100 µM 

GCDCA+CB+UCB, plus 100 µM human 

serum albumin (HSA) or vehicle alone 

(Control) for 12, 24 and 48 h. Cells were fixed 

and immunostained with an antibody directed 

against the p65 NF-κB subunit. (A) 

Representative results of one experiment are 

shown. Scale bar = 50 µm. (B) The number of 

NF-κB-positive nuclei was counted and 

expressed as a percentage of total nuclei. Data 

are means (± SEM) of two independent 

experiments performed in triplicate. *P<0.05 

vs. control; §§P<0.01 vs. GCDCA, §P<0.05 vs. 

GCDCA. 
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Table 5 –Relative answer of the two cell lines (WRL-68/HHL-5) in terms of NF-κB activation upon treatment 

with bilirubin and bile acid species alone or in association.  

 

 WRL-68/HHL-5 
 12 h 24 h 48 h 

GCDCA 0.5 0.4 0.6 

CB 0.8 0.8 0.9 

UCB 0.8 0.5 0.5 

GCDCA+CB+UCB 0.9 1.1 0.8 

 
GCDCA, glycochenodeoxycholic acid; CB, conjugated bilirubin; UCB, unconjugated bilirubin. 

 

 

 In general, it seems that CB is the main activator of NF-κB in our study model for 

both HHL-5 and WRL-68 cell lines, increasing the activation of this transcription factor when 

cells are co-treated with GCDCA+CB+UCB. In addition, this effect appears to be more 

pronounced in HHL-5 cells as well as more sustained in time when compared to WRL-68 

cells (Table 5). 
. 
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4. DISCUSSION 

 

During cholestasis, the secretion of bile is reduced and the accumulation of toxic bile 

compounds may initiate or aggravate liver damage (Greim et al., 1972). In this thesis we 

investigated the reactivity of hepatocytes to a condition of cholestasis associated with 

hyperbilirubinemia. 

It is well known that the accumulation of hydrophobic bile acids, namely the GCDCA, 

plays a role in the induction of necrosis and apoptosis of hepatocytes in cholestatic conditions 

(Spivey et al., 1993; Benz et al., 1998; Yerushalmi et al., 2001). However, nothing was 

known about the role of bilirubin as initiator or intensifier of liver injury during human 

chronic cholestatic liver diseases. Moreover, it was never explored whether fetal hepatocytes 

respond differently from adult ones to bilirubin and GCDCA-induced toxicity. 

The present study is the first to demonstrate that bilirubin ditaurate (used as CB as 

previous described in Kajihara et al., 2000; Labori et al., 2002 and 2009), plus UCB mixed 

together with GCDCA have a key role in liver damage during human chronic cholestatic 

conditions associated with jaundice. We showed that this insult aggravates membrane 

disruption after 48 h in a marked manner and promotes hepatocyte apoptosis in every time 

point. We also verified an increased activation of JNK1/2 pathway and a decreased activation 

of p38 pathway, important regulatory pathways linking extracellular signals to the 

intracellular machinery responsible for a plethora of cellular processes. Moreover, NF-κB, a 

typical effector of inflammatory signaling cascades, was also triggered. Interestingly, we 

verified that the fetal cell line (WRL-68) had different responses to stimulation of 

GCDCA+CB+UCB when compared to the adult cell line (HHL-5). Indeed, WRL-68 showed 

less percentage of cytolysis but a higher level of caspase-3 activity when exposed to the same 

toxic stimuli. This cell line also demonstrated a more marked decrease in p38 pathway 

activity and a higher activation of JNK1/2 pathway compared to HHL-5. Interestingly, the 

fetal cells showed lower and less sustained NF-κB translocation to the nucleus. In general, all 

the stimuli resulted in an earlier reactivity of the human fetal cell line compared with the 

human adult one.  

In severe cholestasis, serum bile acid concentrations may reach values up to 500 µM 

being the hepatocellular injury attributed to the direct membrane-damaging action of these 

compounds (Greim et al., 1972). However, in most patients with cholestatic liver disease, 

such high bile acid concentrations are not observed and, therefore, hepatocellular damage at 
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lower bile acid concentrations is considered of special interest (Benz et al., 1998). For that 

reason, we used concentrations of 100 µM GCDCA, 100 µM CB, 100 µM UCB or 100 µM 

GCDCA+100 µM CB+100 µM UCB, in the presence of 100 µM HSA, to mimic 

pathophysiological conditions in order to assess the effects of these compounds in our two 

models of hepatocytes.  

At 48 h, the co-incubation with GCDCA+CB+UCB in equimolar concentrations 

significantly increased LDH release, indicating a higher percentage of cytolysis and 

demonstrating that the GCDCA hepatotoxic effect is highly enhanced in presence of  both 

bilirubin species. This finding suggests that CB+UCB may contribute to hepatodegeneration 

caused by hydrophobic bile acids such as GCDCA, thus playing an important role in 

mediating liver injury during cholestatic-associated hyperbilirubinemia. The hepatocellular 

injury caused by GCDCA has been attributed to the direct membrane-damaging action of bile 

acids by acting as detergents on cell membranes (Greim et al., 1972). In addition, it is 

possible that basic cellular mechanisms of hepatocyte injury may be primarily involved, 

ultimately causing cell death and if that is the case, it is likely that CB+UCB are exacerbating 

this effect. Curiously, LDH release was higher in the adult cell line suggesting that the fetal 

cell line may be less prone to cytolysis, namely by GCDCA and CB. In accordance,  

experiments with WRL-68 cell line showed that these cells have higher cellular viability in 

the presence of some toxic stimuli (Solanum nigrum L.) than other cell lines such as the 

HepG2 liver cancer cell line (Lin et al., 2007). 

In the present study, caspase-3, a final effector in apoptotic cell death (Samali et al., 

1999), showed to be increasingly activated following treatments at times far below from those 

at which necrosis is observed. It has been postulated that apoptosis may be an important 

mechanism for liver injury during cholestasis (Miyoshi et al., 1999). Indeed, other studies in 

primary cultured rat hepatocytes confirm that short exposure to low concentrations of 

GCDCA is enough to induce apoptosis (Patel et al., 1994; Benz et al., 1998). Besides cultured 

rat hepatocytes, apoptosis has also been shown in freshly isolated rat hepatocytes (Gumpricht 

et al., 2000) and hepatoma cell lines (Jones et al., 1997) exposed to low concentrations of 

hydrophobic bile acids such as DCA (e.g., 50 µM). CB+UCB showed to enhance caspase-3 

activity when co-incubated with GCDCA demonstrating, once again, their additive effect in 

hepatotoxicity. In addition, the fetal cell line WRL-68 demonstrated a higher caspase-3 

activity for shorter time points suggesting an increased vulnerability for the presence of 

GCDCA+CB+UCB. In fact, apoptosis is a more common process in fetal liver cells rather 
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than in the adult ones. As the liver differentiates from embryonic liver progenitor cells into a 

mature organ containing hepatocytes, cholangiocytes and immune cells, apoptosis is one 

important mechanism to take place and even to play a pro-survival role (Shafritz and Dabeva, 

2002; Beath, 2003). In this context, apoptosis is considered an important regulatory 

component of development, limiting organ growth, helping in morphogenesis and directing 

organ shape and lobe formation (Monga et al., 2003). However, excessive apoptosis can lead 

to hepatocellular degeneration (Daniel, 2000) and it is implicated in the pathogenesis of a 

number of hepatic disorders, including cholestasis (Patel and Gores, 1995). Moreover, 

caspase-3 activation in hepatocytes treated with GCDCA, CB or UCB, as well as 

GCDCA+CB+UCB decreased with prolonged incubation. These findings are similar to those 

of Utanohara et al. (2005) with GCDCA stimulation in isolated rat hepatocytes, showing that 

apoptosis plays a major role in the early effects of cholestasis rather than the extended ones.   

Caspase-3 activity was accompanied by nuclei ultrastructural alterations, such as the 

formation of voluminous buds and the fragmentation of the nucleus. These modifications are 

viewed as the characteristic end stage of apoptotic cell death (Kwo et al., 1995). 

GCDCA+CB+UCB induced a higher percentage of apoptotic nuclei than GCDCA, CB or 

UCB alone, at all times, in both cell lines. These results corroborate the data obtained from 

caspase-3 activity evaluation. In fact, Benz et al. (1998) also observed nuclear fragmentation 

with 100 µM GCDCA in primary rat hepatocytes. Apoptotic DNA fragmentation and 

morphologic signs of apoptosis were not completely absent in control cells. This might be due 

to a weak presence of spontaneous apoptosis, also observed in rat primary cell cultures (Benz 

et al., 1998).  

These achieved results question those obtained by Granato et al. (2003) reporting that, 

after 4 h incubation, the mixture CB+UCB seemed to protect the GCDCA-induced apoptosis. 

One reason for this incongruity might be the short exposure time. Indeed, even the beneficial 

role of UDCA on GCDCA-induced apoptosis appear to depend on the exposure time, 

showing to be advantageous on short exposure periods but damaging for prolonged exposure 

times (Utanohara et al., 2005). In addition, these studies used rat primary hepatocytes which 

can react differently from human hepatocytes to bilirubin, since differences in susceptibility 

have been referred in several studies (Leung et al., 2005; Jo et al., 2001). 

The data indicate that the hydrophobic bile acid GCDCA plus both species of bilirubin 

induce cytolysis as well as apoptosis. After exposure of HHL-5 and WRL-68 hepatocytes to 

toxic stimuli, the resulting type of cell damage occurs in a time-dependent manner. Long 
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exposure to the toxic stimuli induced significant cytolysis, whereas short exposure to the same 

stimuli was followed by apoptotic cell damage. It seems likely that in extended cholestasis, 

injury of hepatocytes is due mainly to cytolysis, whereas in acute condition apoptosis 

represents the predominant mechanism of cytoxicity by GCDCA+CB+UCB. This time-course 

of damage may represent a first attempt of the liver to repair the injury with the removal of 

demised cells by apoptosis without pronounced inflammation, followed by a period of 

persistent injury with energy depletion and consequent cytolysis (Fig. 27).  

 

Fig. 27. Schematic representation of the cell death balance obtained in our investigation. Apoptosis prevails in an 

early time as the most important type of cell death in conditions of jaundice and cholestasis. When injury 

persists, apoptosis is followed by hepatic necrosis, which appears as the main cellular death mechanism at 48 h.  

 

We observed that GCDCA, CB, UCB and GCDCA+CB+UCB stimulated hepatocyte 

proliferation, especially at 12 h. In fact, although bile acids appear to increase cell 

proliferation in the intestinal tract and liver (Bayerdorffer et al., 1993), other studies have 

described a mechanism involving damage-induced regenerative response (Hofmann, 2002). 

Additionally, it has been shown that cytokines, namely TNF-α and IL-6 (Cressman et al., 

1996; Yamada et al., 1997), significantly increase cell proliferation in HepG2 cell line as well 

as in primary hepatocytes (Brand et al., 2007). Knowing that cytokines are elevated in 

cholestasis (Bird et al., 1990; Khoruts et al., 1991; Simpson et al., 1997), and that preliminary 

data indicate an increased production of IL-6 in our study model (data not shown), we may 

suggest that this biomolecule may be involved in the increased proliferation observed. In 

addition, it is also plausible to speculate that GCDCA may be inducing an increase of the 

enzymatic activity of the enzymes responsible for the reduction of the MTS, and therefore an 

increment of MTS reduction is observed.  

Regarding the MAPKs pathways, our results showed a sustained activation of JNK1/2. 

Indeed, previous studies have argued that toxic stress use the JNK1/2 pathway in the 

hepatocyte cell death process (Qiao et al., 2003). The fetal cell line seemed to have a higher 

activation of this MAPK. This fact may be due to JNK1/2 pathway important role in 
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proliferation (Hui et al., 2007). However, other studies have linked JNK1/2 pathway signaling 

to increase apoptosis, which in our model is also greater in the fetal cell line, although more 

recent studies have suggested that JNK1/2 signaling may have both pro- and anti-apoptotic 

signaling effects (Brenner, 1998; Roulston et al., 1998; Liedtke et al., 2002). In fact, studies 

with DCA stimulation in primary rodent hepatocytes demonstrated that loss of JNK2 function 

enhanced DCA-induced apoptosis while loss of JNK1 function suppressed DCA-induced 

apoptosis (Qiao et al., 2003). Therefore, the pathway of JNK1/2 may have dissimilar roles in 

hepatocytes. 

Interestingly, p38 presented diminished activation after bilirubin and bile acid species 

treatment in our study model. Actually, in other investigations, p38 activity was reported to be 

constitutively active in the liver and down-regulated following oxidative stress (Mendelson et 

al., 1996). It has been demonstrated that oxidative stress plays an important role in cholestasis 

(Poli, 2000; Jaeschke et al., 2002; Sokol et al., 2006; Perez et al., 2008; Perez and Briz, 

2009). Reinehr et al. (2004) have demonstrated that bile acids induce an almost instantaneous 

oxidative stress response, which triggers JNK1/2 activation and may in turn activate 

apoptosis. Additionally, as UCB also induces oxidative stress in other cellular models (Brito 

et al., 2004), it is reasonable to hypothesize that UCB may also be inducing oxidative stress in 

this situation. P-p38 repression appeared more marked in the fetal cell line. In fact, studies 

performed in human placenta from pregnancies complicated by HELLP (a gestational illness 

that stands for hemolysis, elevated liver enzymes and low platelets count and is frequently 

mistaken by hepatitis) showed that the expression of MAPK p38  (an isomer of p38) was 

significantly decreased compared to the group with normal pregnancies (Corradetti et al., 

2009). Enhanced or persistent p38 activity may result in the high levels of liver cell apoptosis 

observed in double mutant embryos (Hui et al., 2007). If this is the case, since we observed a 

decreased phosphorylated p38, we may speculate that a cell decision survival was undertaken. 

Crosstalk between different signaling pathways may also influence the kinetics of 

MAPKs cascade and, consequently, its effect on cell fate (Whitmarsh et al., 1995; Raingeaud 

et al., 1996). Investigations from other groups proposed that the p38 pathway may work as a 

negative regulator of the JNK pathway activity (Hui et al., 2007). Hence, it is tempting to 

speculate that since in the present study P-p38 is reduced, its inhibitory effect over JNK1/2 

activation is overwhelmed and an increment of P-JNK1/2 may occur as it was found.  

It has been described that exposure of HepG2 hepatoma cell line to bile acids enhances 

both p38 and JNK1/2 (Nonaka et al., 2008). However, the role of MAPKs in proliferating and 
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transformed cancer cell lines is certainly different from that in healthy, non-neoplasic cell 

lines, as it is different in non-transformed primary human hepatocytes (Dhillon et al., 2007). 

Hence, our findings have totally different implications than the results in HepG2 cell line such 

as the pathophysiologic role of MAPKs in non-neoplasic human cell lines. 

Interestingly, it has been shown that phosphorylated kinases mostly localize in 

proliferating cells involved in tissue repair (hepatocytes and HSC), and have been associated 

with tissue remodeling (Svegliati-Baroni et al., 2003).  Most attractive is the fact that 

activation of these pathways in HSC precedes their transformation in myofibroblast-like cells 

and collagen deposition, with consequent hepatic fibrosis. Therefore, we may hypothesize that 

the early activation of JNK1/2 by bilirubin and bile acid species may represent in an acute 

condition a reaction of the hepatocyte following cell death to initiate tissue reparation. 

Moreover, the selective targeting of kinase inhibitors may be considered a good approach for 

the prevention of the excessive deposition of extracellular matrix components and liver 

fibrosis. 

MAPK pathways mediate inflammatory responses possibly through the downstream 

activation of transcription factors such as NF-κB (Kyriakis and Avruch, 2001) that translocate 

to the nucleus and positively regulate the induction of inflammatory genes (Tak and Firestein, 

2001). We observed that CB is the main inducer of NF-κB translocation to the nucleus. It has 

been demonstrated that NF-κB activation in cholestasis may operate not only to reduce 

hepatocyte apoptosis, but also to reduce overall liver injury (Miyoshi et al., 2001). 

Contradictory results were obtained by others for NF-κB translocation to the nucleus in two 

different studies, one pointing out no significant activation in rat primary hepatocytes 

(Schoemaker et al., 2003), and the other revealing an activation of NF-κB in mice with 

induced cholestatic liver disease (Miyoshi et al., 2001). Therefore, we can presume that, in 

our two human cell line models, CB does not activate apoptosis in the same extent as UCB 

possibly due to the activation of NF-κB that potentially induces transcription of survival 

genes and protect hepatocytes. Moreover, higher NF-κB activation in the adult cell line may 

also indicate less susceptibility to cell death by apoptosis. 

 Labori et al. (2009) demonstrated that, in pig liver, bilirubin ditaurate does not induce 

canalicular membrane damage but UCB does, showing that UCB may be more toxic than CB. 

In our study, caspase-3 activation was higher with UCB incubation than with CB alone, 

mainly in the fetal cell line. In general, apoptotic features were also increased with UCB 

treatment compared to the CB incubation. Additionally, NF-κB was more present in the 
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nucleus with the CB incubation rather than the UCB treatment, which can be exerting some 

pro-survival effect.  

 Nishimura et al. (1985) refers to bilirubins as the major factor of harm on the hepatic 

function during biliary obstruction. In fact, our results indicate that hepatocytes are more 

susceptible to injury when GCDCA is associated with bilirubin species, revealing higher cell 

death and MAPKs activation.  

Most attractive is the future use of human cell lines as a gold standard to evaluate toxic 

compounds and drug therapeutical efficacy, as well as for the temporary metabolic support of 

patients awaiting liver transplantation or spontaneous reversion of their liver disease. In fact, 

hepatocyte transplantation has already been used to correct metabolic defects and to provide 

metabolic support in experimental animal models of hepatic failure (Demetriou et al., 1986a; 

Demetriou et al., 1986b; Arkadopoulos et al., 1998a; Arkadopoulos et al., 1998b). In 

addition, hyperbilirubinemia of rats genetically deficient in UDP-glucuronosyl transferase, the 

enzyme responsible for UCB conjugation, was corrected by hepatocyte transplantation 

(Demetriou et al., 1986b). Therefore, all the data obtained in cell lines, namely the fetal cell 

lines with stem cell potential (Kakinuma et al., 2009a), may give us important knowledge for 

the use of this simple technique in the treatment of liver failure in humans. 

Collectively, the present data evidence that jaundice in conditions that mimic chronic 

cholestasis increases hepatocyte reactivity, apoptosis and necrosis. In addition, it also 

demonstrates that the fetal cell line response is similar to the adult one, although it presents a 

faster and more obvious cellular response, reflecting an increased reactivity. This study 

provides an insight into possible routes of hepatoxicity activated upon exposure to jaundice 

associated with cholestasis, and may ultimately prove useful in the development of new 

therapeutic strategies to prevent the adverse outcomes observed following this condition, 

which have decisive impact on the quality of life of the patients and their families.  
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