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prediction is used to derive a causal interpolation algorithm. A reconstruction algorithm for the situation where averages are 
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theory. Some simulation results to illustrate the behaviour of the algorithms will be presented. A new algorithm for performing 

the zoom transform is also described. 
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1. INTRODUCTION 

 In the following we shall be concerned with the study of the linear systems described by fractional difference 

equations [1,2]. We use the unit delay [3] with discrete-time Fourier Transform (FT) equal to ejωα, enabling to 

generalise, with the help of convolution, the usual translation property of the FT. With the Cauchy integrals we can treat 

the causal systems described by linear fractional difference equations, enabling us to define Transfer Function and 

Impulse Response [1]. Here we go further and enlarge the scale change property of the FT to the fractional case and its 

dual property that we use to perform a spectral zoom. This algorithm is simpler than the available in literature [4]. 

Essentially, it consists on a matrix computation and its multiplication by the vector of the DFT values. 

 The relevance of linear prediction in modern Signal Processing is a well-established fact. The one-step prediction 

has several practical applications, namely in Telecommunications and Speech Processing, for example, sampling rate 

conversion, equalization, and speech coding and recognition [5]. The d-step prediction (d positive integer) is useful in 

Geophysical Signal Processing and Economy. Here we generalise the concept for fractional steps. The basic idea 

underlying the proposed algorithm is to develop a system capable of linear predicting the signal over time instants, 

between the current ones, without converting the signal to the continuous-time domain. The new samples fit in between 

the original samples. This is intended to overcome the fact that the translation and scale change are done by non-causal 

and infinite duration operators. The practical algorithm we propose uses the Maximum Entropy Method to obtain the 

spectrum of the original integer sampled signal [6]. Using this spectrum estimate, it is possible to derive the coefficients 

of the fractional predictor [7]. The simulations present in this work will show that, from the fractional linear prediction 

method, it is possible to perform the interpolation of a given signal and also a scale change. Here, we are going to 

present that algorithm together with some simulation results illustrating its behaviour. This algorithm is suitable for the 

interpolation of stationary stochastic processes. This means that when dealing with pulses the algorithm does not provide 

accurate samples. The disaggregation of signals observed through MA systems is also studied. This corresponds to the 

case where the signal is not observed, but rather we have access to moving averages over the signal. These weighted 

averages may be done by non invertible and/or non causal operators. 

In Section 2, a fractional delay and lead concepts review takes place. These concepts are the base for the theory of 

fractional linear prediction that is described in subsequent Sections. In Section 3 we generalise the scale change 

property and in Section 4 its dual is used to perform the spectral zoom. The fractional linear prediction is presented 

in Section 5. An algorithm for the computation of the optimum predictor coefficients is proposed. This predictor is 

used to produce a signal interpolation. In Section 6 we derive similar algorithm to disaggregate signals observed 
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through MA systems. At last, some examples to illustrate the behaviour of the algorithms are presented and some 

conclusion are outlined.  

2. FRACTIONAL DISCRETE-TIME SYSTEMS 

  In practical applications of discrete systems, most of the times we deal with signals that are sampled versions of 

continuous-time band-limited signals. Normally, these signals are processed synchronously in the sense that the time 

domain is the set of integer numbers for all of them. However, there are applications where this does not happen. We 

can process signals obtained by sampling continuous-time signals with the same sampling interval but in different time 

instants, e.g. the so-called time-delayed processes [8]. On the other hand, in other applications, we may need to know 

the behaviour of a system between the sampling instants [9]. The current application of multi-rate techniques allows the 

conversion of a signal sampled with a given sampling interval to another one with a different sampling interval. These 

considerations motivate the generalisation of the notion to allow for fractional delay and lead. Basically we extend the 

definition of the usual Kronecker delta to give sense to δn-α. We shall be assuming α to be any non-integer real. If α<0 

we have a fractional lead; if α>0 we have a fractional delay. When α is integer we fall into the usual scheme. As shown 

in [1],δn-α is the inverse Fourier Transform of e-jωα and is given by: 

 δn-α = 
sin[π(n-α)]

π(n-α)   = 
sin(πα)

πα .
(-1)n

1-
n
α

              n∈ Z (1) 

and 

 xn-α  = ∑
m=-∞

+∞
   xm.

sin[π(n-α-m)]
π[n-α-m]          α∈ ]0,1]     n∈ Z (2) 

Defining a FT Xα(ejω) by:  

 Xα(ejω) = ∑
-∞

∞
  xn-α e-jnω (3) 

we conclude that 

 Xα(ejω) = e-jωα X(ejω) (4) 

It is a simple matter to show that the above relations remain valid for every α∈ R. With relations (2) to (4) we are in 

conditions to give immediately a meaning to fractional difference equations and to introduce a Frequency Response for 

the systems represented by such equations.  Consider the Linear Time Invariant Systems characterised by a fractional 

difference equation: 
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 ∑
i=0

N0

 ai y(n - νi)  =  ∑
j=0

M0

 bj x(n - νj)        n∈ Z (5) 

where the νn are the delays. The corresponding frequency response function is: 

 H(z)= 
∑
j=0

M0
 bjz

-νj 

 ∑
i=0

No

 aiz
-νi 

            z = ejω (6) 

As referred in [1], the corresponding Transfer Function is defined from Equation (6) through a Cauchy integral and, in 

general, it does not have a closed form. In all what follows, we will assume that the νn are either rational numbers or are 

multiple of a common real, ν. Then, the Equations (5) and (6) adopt the format: 

 ∑
i=0

N0

 ai y(n - iν)  =  ∑
j=0

M0

 bj x(n - jν)        n∈ Z (7) 

and 

 H(z)= 

∑
j=0

M
 bjz

-jν 

 ∑
i=0

N
 aiz

-iν 

           z=ejω (8) 

We will give the name “Fractional Autoregressive Moving Average (FARMA) Systems”.  

3. SCALE CONVERSION 

In Equation (2) we stated a way of relating two sequences defined in two instant sets tn = n and τn= n + α. This 

had as consequence a generalisation of the translation property of the Fourier Transform – Equation (4). Now, we are 

going to generalise another property: the scale conversion. By this we mean a conversion from one time grid tn = nT 

(T is assumed to be 1) to τn= nαT (0<α<1). This is equivalent to ideally make a D/A conversion followed by a 

sampling with αT as sampling interval. However, our procedure is valid for every discrete-time signal, without 

needing to assume it as being obtained by sampling a continuous-time signal. In spectral terms this conversion 

maintains the shape of the spectrum, but narrows it.  

Let us consider a signal xn, with Fourier Transform X(ejω), and a real constant α such that 0<α<1. Define a 

new function Xα(ejω) by: 
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Xα(ejω)=





X(ejω)     if |ω| ≤ π
  

 0      if π<|ω|<
π
α

 (9) 

and repeat it with period 
2π
α  . Letting the coefficients of the corresponding Fourier Series be represented by cn and given 

by: 

cn = 
α
2π ⌡⌠

-π

π
   X(ejω)ejωndω  (10) 

with 

X(ejω) = ∑
m=-∞

+∞
   xn e

-jωn  (11) 

that inserted into Equation (10) and putting xαn= cn/α allows us to obtain:  

xαn = ∑
k=-∞

+∞
  xk

sin[π(nα-k)]
π(nα-k)   (12) 

Equation (9) means that,  

∑
m=-∞

+∞
   xn e

-jωn = α ∑
m=-∞

+∞
   xαn e

-jωαn     | ω | < π (13) 

From this relation, can easily show that:  

FT[xkα]=
1
αX(ejω/α)   (14) 

Consider another real constant β≠α, satisfying also 0<β<1. It is immediate to show that: 

xαn = β ∑
k=-∞

+∞
  xβk

sin[π(nα-βk)]
π(nα-βk)   (15) 

Using (4) with β in the place of α, we obtain: 

sin[π(nα-k)]
π(nα-k)  =β ∑

m=-∞

+∞
 
sin[π(βm-k)]

π(βm-k)  
sin[π(nα-βm)]

π(nα-βm)   (16) 

that is an interesting relation involving sinc functions. As seen, we can use Equation (12) – or Equation (16) – to 

perform a scale conversion. However, its usefulness is very limited since it cannot be used to perform a rate conversion 

as it is usually intended, due to the non-causality of the sinc and the slow converging series. On the other hand, the scale 

converted of a finite duration pulse does not have a finite duration. 

If α>1, the same procedure leads to: 
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  xαn = ∑
k=-∞

+∞
  xk

sin[π(n-k/α)]
π(n-k/α)   (17) 

that corresponds to an ideal lowpass filtering followed by a downsampling. In this case, the spectrum of the new signal 

has a different shape. 

4. ZOOM TRANSFORM 

The dual of the results obtained in the previous section have an interesting practical application: the zoom 

transform. Let us consider an L point sequence, xn n=0, …, L-1. Every N≥L point DFT sequence represent samples 

of the Discrete-Time Fourier Transform (DTFT). This sampling may hide some characteristics of the spectrum in a 

given particular band of interest. To avoid this problem two different methods of interpolation have been proposed 

[4,5] and usually referred as the zoom transform. Here, we propose an alternative approach.  Let the DTFT of xn be 

X(ejω). The DFT corresponds to sample X(ejω): 

DFT[xn]= X(ej
2π
N k)     k=0, …, N-1, N≥L (18) 

Denote this DFT by XN(k). Its inverse, (DFT-1) is a N-period signal. If we take one period of this signal, add zeros 

and repeat the obtained sequence with a period M=αN (α>1), we are sampling X(ejω) at M uniformly spaced points, 

obtaining XM(k), k=0, …,M-1. Then, we have: 

XM(k) = ∑
k=0

L-1
  xn e

-j
2π
Mkn       k=0, ..., M-1 (19) 

and 

xn = 
1
N. ∑

k=0

N-1
  XN(k).ej

2π
N kn       n=0, ..., N-1 (20) 

Inserting (20) into (19) we obtain: 

XM(k) =
1
N. ∑

k=0

N-1
  XN(l).G(k,l)   k=0, ..., M-1 (21) 

where  

G(k,l) = 
1 - e

j
2π
N (l-k/α)L

 1 -  e
j
2π
N (l-k/α)

   (22) 

for 0≤l<N and 0≤k<M. It is not hard to show that: 
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G(k,l) = L. 
sinc[ ](l-k/α)L

N

 sinc[ ]l-k/α
N

 e
j
π
N(l-k/α)(L-1)

   (23) 

Of course, we are not interested in zooming the whole spectrum, but a given band, corresponding to values of 

k=m1, …,m2 with m1 and m2 as described below. Assume that we want to zoom the band [f1;f2], with 0≤f1<f2≤1/2. 

Let K be the number of points we want to compute. Then  

α=
1

(f2-f1)
 .

K
N   (24) 

and 

mi = αN
2π.fi    i=1,2  (25) 

where x means the integer part of x. In the following Figure, we illustrate the results obtained by the application of the 

algorithm for zooming 2 regions of the spectrum shown in the upper strip of the Figure 1.  

 

Figure 1 

5. FRACTIONAL LINEAR PREDICTION 

In Section 3 we showed how to change the scale of a signal, from a theoretical point of view. Here we will present an 

algorithm that can be used to do it. Essentially, we perform an interpolation taking as base the Fractional Linear 

Prediction [1,7].  This is a generalisation of the notion of linear prediction for any fractional d-step prediction (d∈ R) and 

was proposed without details in [1]. We will now go into the details of this topic. We shall be working in the context of 

a stationary real stochastic process. Let x(n), n∈Ζ,  be such a process and let Rx(k) be its autocorrelation function. 

Definition 5.1 

Let x(n) be a real stationary stochastic process, observed from -∞ to n-1. We define the Nth order d-step prediction at n-

1+d  by: 

x̂(n-1+d) = - ∑
i=1

N
  ai x(n-i)  (26) 

where ai (i=1, ..., N) are the coefficients of the d-step predictor (d=1, corresponds to the usual one-step prediction).  

The predictor coefficients will be chosen in order to minimise the prediction error power: 

Pd = E[ ( )x(n-1+d) - x̂(n-1+d) 2]  (27) 

where x(n-1+d) can be defined by Equation (26). 
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Theorem 5.1 - According to the previous definition and assuming that the correlation matrix of x(n) has, at least rank 

N, the optimum d-step predictor is given by the solution of the following set of Normal Equations[1,7]: 

∑
i=1

N
  ai.Rx(k-i) = -Rx(-k-d-1)    k=1,2,…, N (28) 

In a matrix format, Equation (28) can be written: 

Rx.a=-rd  (29) 

where it is evident the meaning of the vectors and matrix. The corresponding minimum error power is easily obtained 

by inserting Equation (28) in Equation (27) and it is given by: 

Pdmin = R(0) + ∑
i=1

N
 ai.R(-i-d+1)  (30) 

Now, let p
n
i  (i=0,1, ..., n), with p

n
0 = 1 , be the nth order one-step linear predictor coefficients and Pn(z) the 

corresponding Z Transform. As known, the predictors allow us to obtain the Cholesky factorisation for the inverse of 

the Toeplitz matrix, RN, in (29) [5,6]: 

R-1
N  = P.D.PH   (1) (31) 

where P is a lower triangular matrix having the one-step predictors as columns, D is a diagonal matrix with the inverses 

of the one-step prediction error powers. 

The substitution of Equation (31) into Equation (29) allows us to express the a’s in terms of the one-step predictor 

coefficients. It is not hard to show that: 

a = P.v  (32) 

with v given by: 

 v = D.PH.rd  (33) 

where rd is the vector in the right hand side in Equation (29). To compute this vector we can use Equation (2): 

R(-k-d+1) = R(k-1+d) = 
sin(πd)

πd .∑
-∞

∞
  R(n) 

(-1)k-1-n

α+k-1-n  (34) 

But, as the autocorrelation function is an even function, we can transform the previous equation into: 

R(-k-d+1) = R(k-1+d) = 
(-1)k-1sin(πd)

π( α+k-1) .









R(0)+ 2 ∑

n=1

∞
   

(-1)n R(n)

1-



n

α+k-1
2   (35) 

Since the coefficients go to zero, at least quadratically, the series converges quickly, allowing its truncation. 

                                                           

1 H means conjugate transpose. 
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So, with Equations (29) and (35) we can compute the coefficients of the fractional predictor, provided that we use a 

suitable autocorrelation function estimate.  

The use of the Z Transform in Equation (32) lead to an interesting result: 

A(z) = ∑
i=1

N
 vi.z-i PN-i(z) (36) 

where Pk(z) is the kth order prediction error filter transfer function and the vi are the components of the vector v defined 

in Equation (33). The result stated in Equation (36) is important, since it shows that the predicted value is a linear 

combination of all the forward prediction error signals { Figure 1}  (1).  

 

            

 Figure 2  

 

Assume now that x(n) is an AR(N-1) stationary stochastic process. Then the longest (with greater order) optimum 

fractional d-step predictor has order N [5,6]. 

This allows us to devise a better way to compute R(k+d). As the process is AR(N-1), the (N-1)th one-step predictor 

defines, together with the prediction error, PN-1, the spectrum of the process [5,6]: 

Sx(ω) = 21

0

1

1

∑
−

=

−−

−

⋅
N

n

jwnN
i

N

eP

P
 (37) 

that can be used to obtain R(k+d): 

R(k+d) = FT-1[ ]ejωdSx(ω)   (38) 

With these results we can take advantage of the well-known linear prediction methods (e. g. modified covariance or 

Burg algorithms) [6]. The proposed algorithm has the following steps: 

1 - Compute the N-1 linear predictors using a suitable algorithm. 

2 - Use the (N-1)th linear predictor to estimate the spectrum, Sx(ω), and the corresponding autocorrelation, of 

the signal. 

3 - Multiply Sx(ω) by ejdω and compute the inverse Fourier Transform to obtain the vector rd.  

                                                           

1 Instead of the Cholesky factorization we could use the Gohberg-Semencul formula [6]. In this case, A(z) would be expressed in 
terms of the (N-1)th order forward and backward predictors, only, but the “coefficients” of the linear combination would be 
polynomials in z. A direct application of the Levinson algorithm would allow to obtain A(z) recursively (this will be done in a future 
work). The approach used here has some advantages that will be clear in the following.   
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4 - Use Equation (29) to obtain the coefficients of the fractional predictor. 

This algorithm is simple and computationally efficient. Although obtained under the hypothesis that the signal is AR(N-

1), it will be useful in other situations, namely in the ARMA case.  

6. RECONSTRUCTION FROM MA MEASUREMENTS 

 We are going to generalise the previous results and propose a solution for an interesting problem that appears, for 

example, in Economy. Let us assume that instead of observing the stochastic process x(n) for n∈ Z, we observe an 

aggregate time series obtained as an MA process (1): 

y(n) = ∑
i=0

M
  bi x(n-iα)  (39)  

The problem we want to solve is: Can we “recover” the unobserved values x(n-iα) for i=0, …,M? 

The answer is positive. Let us see how we obtain the referred values. The procedure is similar to the one followed in 

Section 5. 

Definition 6.1 

Let y(n) be a real stationary stochastic process, observed from -∞ to n-1 and satisfying (1). We define the Nth order d-

step prediction of x(n) from y(n) at n+lα (0<α<1 and l=0, …,M) by: 

x̂(n+lα) = - ∑
i=1

N
  ai y(n-i)  (40) 

where ai (i=1, ..., N) are the coefficients of the lα-step predictor.  

As seen, this is a generalisation of the problem solved in Section 5. If we put M=0, y(n)=x(n) and we return back to the 

normal d-step prediction. Again, the predictor coefficients will be chosen in order to minimise the prediction error 

power: 

Pd = E[ ( )x(n-1+d) - x̂(n-1+d) 2]  (41) 

Theorem 6.1 - According to the previous definition the optimum lα-step predictor is given by the solution of the 

following set of Normal Equations: 

∑
i=1

N
  ai.Ry(k-i) = -Rxy(-k-lα)     k=1,2,…,N (42) 

The minimisation of the prediction error power - Equation (41) - is easily performed by differentiation of its right hand 

side in order to all the ai (i=1, ..., N) and leads to the normal Equations (42). As y(n) is obtained through an MA 
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operation, the correlation matrix of y(n) has surely great than N rank. To compute the cross-correlation in Equation (42), 

we define Sy(ejω) as the spectrum of y(n), Sxy(ejω) as the cross spectrum and B(ejω) the frequency response of the MA 

filter in Equation (39): 

B(ejωα) = ∑
i=0

M
  bk e-jkωα  (43) 

We have too: 

Sy(ejω) = B(ejωα). Sxy(ejω) (44) 

Thus 

Rxy(-k-lα) = FT-1[ ]e-jωlαSyx(ejω)   (45) 

where Syx(ejω) = S
*
yx(ejω) . We must be careful when implementing Equation (45), since the factors on the right have 

different periods. If we use a FFT with length L in the computation of Sy, we must use L/α when computing B(ejωα), 

though only L points are used.  

7. SIMULATION RESULTS 

Let us start by exemplifying the simplest case corresponding to a fractional prediction with step d=0.5 of 

sinusoidal data. Considering the signal x(n)=sin(2πn/8)+cos(2πn/12)  in noise (20dB) we computed an 8th order 

fractional predictor as pointed before. The results are displayed together with the original values in Figure 3.  The 

presence of noise makes the signal behave like an ARMA signal. This means that we must increment the predictor 

order to obtain a better prediction. 

 

 Figure 3 

 

prediction. This can be seen in Figure 4 where we present the result obtained with a 16th order predictor. As seen, the 

result is clearly better, since the estimate of the spectrum is more reliable. 

In the same line of thoughts we substituted the sinusoidal data by a sum of sinc functions, a band limited signal 

but not AR, not even ARMA. The results are shown in Figure 5. We see that even with a low predictor order the result 

is still good.  

                                                                                                                                                                                                 

1 It is not necessary to be causal. Here, we use a causal MA, by simplicity. Else, it is not necessary to assume invertibility. 
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Figure 4 

Figure 5 

 

If we had added noise, we would need to increment the predictor order to obtain a similar result. Obviously, we 

are not restricted to d=0.5. Consider that d assumes 3 values, d=0.25, d=0.5, d=0.75, and keep the predictor of order 4. 

We insert 3 values between each set of two original values. The results obtained are displayed in Figure 6. As it is easy 

to conclude, we were making a rate increase by integer values. Of course, we can obtain a fractional rate increase (or 

decrease) by decimation.  

 

Figure 6 

In the presented algorithm we computed the spectrum of the signal. In a real time computation it may happen 

that we cannot compute a spectrum estimate. We propose to avoid this by assuming the knowledge of the bandwidth 

and substituting the signal spectrum by the absolute square of the Frequency Response of the filter designed to pass the 

signal. In Figure 7, we present preliminary results showing promising performances. 

                   Figure 7 

 

To illustrate the performances of the method, we present some numerical results. We proceed in the following way: 

a) Generate a signal with L points and a given signal to noise ratio;  

b) Down-sample it by 1/2 factor; 

c) Use the previous algorithm to estimate the removed values.  

 

For each simulation we computed the error between each original and estimated value and the corresponding error 

power. In Figure 8 we present the result of a simulation using as original signal a  sum of sinc functions. 

 

 

Figure 8 
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To study the influence of the predictor length we made several simulations in the referred conditions and computed 

the average error power over 10 realizations of each of the referred signals. The results are presented in the 

following pictures.  

 

Figure 9 

Figure 10 

Figure 11 

 

We can conclude that even with low predictor orders (lower than 10) we can interpolate quite well non-AR signals. As 

seen, we really made a rate conversion by a factor equal to 2. The generalization for other factors is not difficult to 

implement and will be subject of a future publication. 

 In the following Figures, we illustrate the application of the disaggregation algorithm. The signal used for the 

prediction was obtained from the original signal by substituting each pair of consecutive points by their average. We 

present the results for sinusoidal data (Figure 12) and sinc data (Figure 13). 

           Figure 12 

           Figure 13 

In the next two figures, we repeat the previous simulations but in a situation where we substituted every 3 points by its 

average. 

            Figure 14 

            Figure 15 

These results show that these algorithms can be useful. However, some work need to be done about the preditor length 

that is an important parameter. 

 

8. CONCLUSIONS 

In this paper we proposed a generalisation of the usual linear prediction to fractional step linear prediction. This allows 

us to predict the value of a signal defined at a uniform time grid to any point between any two-grid points. We presented 

some illustrating examples showing the use of the algorithm to perform a signal interpolation. In a future publication we 

will present quantitative results illustrating the performance of the algorithm. From the examples, we can confirm the 
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algorithm ability to perform a rate conversion. Besides its performance the algorithm can be implement in a recursive 

way. On the other hand, giving a lattice form to the predictor turns out to be a simple task.   

We presented new algorithms for interpolation and scale conversion of discrete-time signals based on the theory of 

fractional discrete-time systems. We presented some simulation results to illustrate the behaviour of the algorithms 

when applied in a rate increase by a factor 2 for different sets of signals. We concluded that even with low order 

predictors we can perform a rate increase. Based in the results of Section 1 we also derived a very simple but 

efficient algorithm for the zoom transform. 
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Figure 1 – Zoom Transform. 
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Figure 3 - prediction of noisy (20dB) sinusoidal data with a 
predictor of order 8. 
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Figure 4 - prediction of noisy (20dB) sinusoidal data 
with a predictor of order 16. 
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Figure 5 – prediction of a sum of sinc (100dB) functions with 
predictor order 4. 
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Figure 6 – interpolation using fractional prediction with 
steps 0.25, 0.5 , and 0.75. 
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Figure 7- prediction without knowing the signal spectrum. 
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Figure 8 – Fractional prediction of a sum of sinc functions. 
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Figure 9 – mean error power for 10 realizations of one sinusoid as function of predictor length.  
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Figure 10 – mean error power for 10 realizations of 2 sinusoids as function of predictor length. 
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Figure 11 – mean error power for 10 realizations of several sincs as function of predictor length. 
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Figure 12 – Fractional reconstruction of a sum of two sinusoids. 
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Figure 13 – Fractional reconstruction of a sum of four sinc signals. 
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Figure 14 – Fractional reconstruction of a sum of two sinusoids. 
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Figure 15 – Fractional reconstruction of a sum of four sinc signals. 


