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Abstract

A new de(nition of a symmetric fractional B-spline is presented. This generalises the usual integer order B-spline, that
becomes a special case of the new one.
? 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The signal processing with splines have been acquiring increasing interest due to its 2exibility in interpola-
tion, sampling and wavelet transform [3]. Recently, causal and symmetric fractional B-splines were proposed
[4]. We have nothing to say relatively to the proposed causal splines. In fact they generalise the integer order
B-splines in such a way that these are special cases of the fractional. However, this does not happen with the
fractional ones. A closed look into the proposed B-spline de(nitions reveals that they are strange since the
even integer order B-splines are not special cases of the fractional B-spline. Here, we will face the problem
and propose new de(nitions that have the current integer order B-splines as particular cases.

2. Causal B-splines

Causal B-splines result from n-fold convolution of the rectangle function

�0
+(t) =




1 0¡t¡ 1
1
2 t = 0; 1

0 t ¡ 0 or t ¿ 1:

(1)
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Its Laplace transform (LT) is an analytical function given by

Bn+(s) =
[
1 − e−s

s

]n+1

(2)

that can be expressed as

Bn+(s) =
1
sn+1

n+1∑
k=0

(
n+ 1

k

)
(−1)ke−sk for Re(s)¿ 0: (3)

As

LT−1[s−n−1] =
tn

n!
u(t) =

tn+
n!

(4)

we obtain, from (3):

�n+(t) =
1
n!

n+1∑
k=0

(
n+ 1

k

)
(−1)k(t − k)n+: (5)

The situation is slightly di0erent when we try to de(ne a fractional spline. In this (causal) case, there is no
problem. We only have to substitute � for n in (3) and (5) and summing up to ∞:

��+(t) =
1

(�+ 1)

+∞∑
k=0

(
�+ 1

k

)
(−1)k(t − k)�+ (6)

It is important to remark that, while (3) represents a symmetric (relatively to n=2), for every positive integer,
this does not happen with (6). This has implications in de(ning a symmetric fractional B-spline. The previous
results are equal to those obtained in [4].

3. Symmetric B-splines

A nth degree B-spline, �n0(t), is a symmetric function resulting from n-fold convolution of the rectangle
function

�0
0(t) =




1 |t|¡ 1
2

1
2 |t| = 1

2

0 |t|¿ 1
2 :

(7)

Its bilateral Laplace transform (BLT) is an analytic function given by

Bn0(s) =
[
es=2 − e−s=2

s

]n+1

=
es(n+1)=2

sn+1

n+1∑
k=0

(
n+ 1

k

)
(−1)ke−sk : (8)

So, the corresponding FT exists and is given by

Bn0(!) =
[
sin(!=2)
!=2

]n+1

=
e j!(n+1)=2

(j!)n+1

n+1∑
k=0

(
n+ 1

k

)
(−1)ke−j!k : (9)
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From (8), we obtain:

�n0(t) =
1
n!

n+1∑
k=0

(
n+ 1

k

)
(−1)k

(
t − k +

n+ 1
2

)n
+
: (10)

On the other hand, introducing tn0 = tnsgn(t)

FT−1[(j!)−n−1] =
1
2
tnsgn(t)
n!

=
tn0
2n!

(11)

we obtain, from (9):

�n0(t) =
1

2:n!

n+1∑
k=0

(
n+ 1

k

)
(−1)k

(
t − k +

n+ 1
2

)n
0

(12)

that seem to be di0erent from (10), but due to the symmetry of the coeIcients it represents the same function.
In [4], a symmetric fractional B-spline is de(ned as inverse FT of the function:

B�0(!) =
∣∣∣∣ sin(!=2)
!=2

∣∣∣∣
�+1

: (13)

However, this de(nition has the disadvantage of giving a strange spline, when � is an even positive integer. To
avoid this, we are going to present a centred fractional spline that does not have this drawback. Let �=n+ �,
where n is a positive integer and 0¡�¡ 1. We de(ne a fractional �-order B-spline as the function that has

B�0(!) =
[
sin(!=2)
!=2

]n+1 ∣∣∣∣ sin(!=2)
!=2

∣∣∣∣
�

(14)

as FT. When � is an integer, �= 0 and we obtain the normal n-order B-spline, while when � �= 0, we obtain
a fractional centred and symmetric B-spline that is the convolution of two even functions. The reason of
proposing such de(nition in the fact that the inverse FT of [sin(!=2)=!=2]� is a complex function.

For computing ��+n0 (t), we can proceed recursively by successive convolutions with �0
0(t).

��+n0 (t) = ��+n−1
0 (t) ∗ �0

0(t) (15)

From (15) and noting that �0
0(t) = u(t + 1

2) − u(t − 1
2 ) we obtain:

��0(t) =
∫ t+ 1

2

t− 1
2

��−1
0 (�) d� (16)

and

d��0(t)
dt

= ��−1
0 (t + 1

2) − ��−1
0 (t − 1

2 ): (17)

On the other hand, if �1 = n+ � and �2 = m+ �, with �+ �¡ 1,

��1
0 (t) ∗ ��2

0 (t) = ��1+�2+1
0 (t): (18)

If �+ �¿ 1, we can obtain a similar relation if we de(ne a modi(ed B-spline by allowing � to be negative
in equation (14). We put, for example, �2 = m+ 1 − �. Now, we are going to compute ��+n0 (t) directly.
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As shown in Appendix A, we have:

|2 sin(!=2)|�[2 sin(!=2)]n+1 =
e j!(n+1)=2

(j)n+1

+∞∑
k=−∞

a(n; k) e−j!k (19)

with

a(n; k) =
(�+ n+ 2)

(�=2 + 1)(�=2 + n+ 2)




1 k = 0[−�=2 − n− 1
�=2 + 1

]
k

k ¿ 0

[ −�=2
�=2 + n+ 2

]
|k|

k ¡ 0

: (20)

We are in conditions to express (14) in the Fourier series format:

B�0(!) =
1

|!|�(j!)n+1

+∞∑
k=−∞

a(n; k) e−j!(k−(n+1)=2): (21)

The inverse Fourier transform of 1=|!|�(j!)n+1 is computed in Appendix B and is given by

FT−1
[

1
|!|�(j!)n+1

]
=

1
2(�+ n+ 1)cos(��=2)

|t|�+nsgnn+1(t): (22)

Inserting (22) into (21) and using (20) we obtain:

��+n0 (t) =
(�+ n+ 1)

2 cos(��=2)(�=2 + 1)(�=2 + n+ 2)

+∞∑
k=−∞

b(n; k)
∣∣∣∣t − k +

n+ 1
2

∣∣∣∣
�+n

×sgnn+1
(
t − k +

n+ 1
2

)
(23)

that is the expression of the �= �+ n order B-spline. The coeIcients b(n; k) are given by

b(n; k) =




1 k = 0[−�=2 − n− 1
�=2 + 1

]
k

k ¿ 0

[ −�=2
�=2 + n+ 2

]
|k|

k ¡ 0

(24)

that have a form suitable for recursive computation.
In Figs. 1–4 we present some splines for values of n = 0; 1; 2; and 3 and � = 0:2; 0:4; 0:6; 0:8, and 0.9.

To make a fair comparison, in Fig. 5, we present in the same time scale all the � order splines with
�= 0:2k; k = 0; 1; : : : ; 19. As it can be seen, the fractional B-splines interpolate the integer ones and become
smooth as the order increases.
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Fig. 1. Splines of orders 0, 0.2, 0.4, 0.6, and 0.8. Fig. 2. Splines of orders 1, 1.2, 1.4, 1.6, and 1.8.
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Fig. 3. Splines of orders 2, 2.2, 2.4, 2.6, and 2.8. Fig. 4. Splines of orders 3, 3.2, 3.4, 3.6, and 3.8.

4. Conclusions

In this paper we proposed a new fractional order B-spline generalising the usual integer order B-spline that
is a special case of the new one. Examples illustrate this fact and show that the fractional order interpolate
the integer ones. The main drawback is in the discontinuity relatively to the order when we approach each
integer from the left.

Appendix A. The Fourier series of |2 sin(!=2)|� [2 sin(!=2)]n+1

We begin by noting that

|2 sin(!=2)|� = lim
s→j!

[1 − e−s]�=2[1 − es]�=2: (A.1)
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Fig. 5. Splines of orders n + � with n = 0; 1; 2; 3 and � = 0; 0:2; 0:4; 0:6 and 0.8.

Expanding each term on the right using the binomial series and computing the autocorrelation of the coeIcients
we obtain the Fourier series associated to the function on the left. To do it we remark that for every �∈R,
but non-even integer [1].

∞∑
k=0

(
�

k

)(
�

k + n

)
=

(1 + 2�)
(�+ n+ 1)(�− n+ 1)

(A.2)

leading to

|2 sin(!=2)|� = (�+ 1)
+∞∑
k=−∞

(−1)k

(�=2 + k + 1)(�=2 − k + 1)
e−j!k : (A.3)

On the other hand,

[2 sin(!=2)]n+1 =
ej!(n+1)=2

(j)n+1

n+1∑
k=0

(
n+ 1

k

)
(−1)ke−j!k : (A.4)

The product of (A.3) and (A.4) has the Fourier series:

|2 sin(!=2)|�[2 sin(!=2)]n+1 =
ej!(n+1)=2

(j)n+1

+∞∑
k=−∞

a(n; k) e−j!k (A.5)

with

a(n; k) = (�+ 1)(−1)k
n+1∑
m=0

(
n+ 1

m

)

(�=2 + k − m+ 1)(�=2 − k + m+ 1)
: (A.6)

It is not hard to show that (A.6) can be written in terms of the Gauss hypergeometric function:

a(n; k) =(�+ 1)
(−1)k

(�=2 + k + 1)(�=2 − k + 1)

n+1∑
m=0

(−n− 1)m(−�=2 − k)m
(�=2 − k + 1)mm!
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=(�+ 1)
(−1)k

(�=2 + k + 1)(�=2 − k + 1)2F1(−n− 1;−�=2 − k; �=2 − k + 1; 1): (A.7)

Using the properties of the hypergeometric function, we obtain:

a(n; k) = (−1)k
(�+ n+ 2)

(�=2 + k + 1)(�=2 − k + n+ 2)
= (−1)k

(
�+ n+ 1

�=2 + k

)
: (A.8)

Letting q(n+ 1; k) be given by

q(n; k) =
(−1)k

(�=2 + k + 1)(�=2 − k + n+ 2)
(A.9)

we can express it as

q(n; k) =
1

(�=2 + 1)(�=2 + n+ 2)




1 k = 0[−�=2 − n− 1
�=2 + 1

]
k

k ¿ 0

[ −�=2
�=2 + n+ 2

]
|k|

k ¡ 0

(A.10)

where we represented (a)k =(b)k by [a=b]k for simpli(cation. Thus, a(n; k) is given by

a(n; k) =
(�+ n+ 2)

(�=2 + 1)(�=2 + n+ 2)




1 k = 0[−�=2 − n− 1
�=2 + 1

]
k

k ¿ 0

[ −�=2
�=2 + n+ 2

]
|k|

k ¡ 0

: (A.11)

It is interesting to remark that, if �=0; a(n; k)=0 for k ¡ 0 and a(n; k)= (−1)k
(
n+1
m

)
for k=0; 1; : : : ; n+1,

leading to (12).

Appendix B. Inverse transform of |!|−� ( j!)−n−1

To compute the inverse Fourier transform of G(!) = |!|−�(j!)−n−1 we write it as

G(!) = |!|−�(j!)−n−1 =
(−j)n+1

|!|�+n+1

{
1 !¿ 0

(−1)n+1 !¡ 0
: (B.1)

If n is odd, we obtain:

G(!) =
(−1)n+1=2

|!|�+n+1 : (B.2)

while, if n is even,

G(!) =
(−j)(−1)n=2

|!|�+n+1 sgn(!): (B.3)
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If � is a noninteger real, the inverse Fourier transform of |!|−� is given by [2]:

FT−1[|!|−�] =
(1 − �)sin(��=2)

�
|t|�−1 (B.4)

or

FT−1[|!|−�] =
1

2(�)cos(��=2)
|t|�−1: (B.5)

We obtain immediately to (B.2):

FT−1[G(!)] =
1

2(�+ n+ 1)cos(��=2)
|t|�+n: (B.6)

To treat the n even case, we only have to remark that

1
|!|�+n+1 sgn(!) = − d

d!

[
1

(�+ n)|!|�+n
]

and use the property: FT[t f(t)] = jF ′(!). We obtain, then:

FT−1[G(!)] =
1

2(�+ n+ 1)cos(��=2)
t |t|�+n−1 =

1
2(�+ n+ 1)cos(��=2)

|t|�+nsgn(t): (B.7)

We can join (B.5) and (B.6) in the form:

FT−1
[

1
|!|�( j!)n+1

]
=

1
2(�+ n+ 1)cos(��=2)

|t|�+nsgnn+1(t) (B.8)

or

FT−1
[

1
|!|�(j!)n+1

]
=

1
2(�+ n+ 1)cos(��=2)

|t|�tnsgn(t) (B.9)

that gives (11) when �= 0.
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