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Abstract

In this paper a new least-squares (LS) approach is used to model the discrete-time fractional differintegrator. This

approach is based on a mismatch error between the required response and the one obtained by the difference equation

defining the auto-regressive, moving-average (ARMA) model. In minimizing the error power we obtain a set of suitable

normal equations that allow us to obtain the ARMA parameters. This new LS is then applied to the same examples as in

[R.S. Barbosa, J.A. Tenreiro Machado, I.M. Ferreira, Least-squares design of digital fractional-order operators,

FDA’2004 First IFACWorkshop on Fractional Differentiation and Its Applications, Bordeaux, France, July 19–21, 2004,

P. Ostalczyk, Fundamental properties of the fractional-order discrete-time integrator, Signal Processing 83 (2003)

2367–2376] so performance comparisons can be drawn. Simulation results show that both magnitude frequency responses

are essentially identical. Concerning the modeling stability, both algorithms present similar limitations, although for

different ARMA model orders.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Discrete-time fractional differintegrator; Pseudo-fractional ARMA; Grünwald–Letnikov derivative; Tustin bilinear

transformation
1. Introduction

Fractional linear systems are described by frac-
tional differential equations in the continuous-time
case or ARMAmodels in the discrete-time case. The
first case uses the definition of fractional derivative
e front matter r 2006 Elsevier B.V. All rights reserved
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[1]; the second uses the fractional differencing [2].
The long memory exhibited by these systems cannot
be explained by the usual integer order pole/zero
models. The basic building block of this kind of
systems is the non-integer order derivative that has
been approximated by fractional powers of the
backward difference or the bilinear transformations
(the former is exactly the building block of the
fractional differencing). These approximations are
IIR systems with non-rational transfer functions.
However, these more correct models are difficult
to implement and model in practice. For them,
ARMA models are only approximations that we
.

www.elsevier.com/locate/sigpro
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call pseudo-fractional ARMA models [3]. In the last
few years, a lot of attempts to obtain such models
have been done (see [4–9]). However, it remains to
clarify two important questions: (a) how to perform
such modeling and (b) how to choose the most
suitable orders. In impulse response modeling the
well-known Padé algorithm is frequently used [2]. In
[3], we presented a suitable recursive algorithm for
this modeling. Here, we will propose a different
algorithm based on a least-squares (LS) criterion
different from [4]. This algorithm defines a mis-
match error between the required response and the
one obtained by the difference equation defining the
ARMA model. In minimizing the error power we
obtain suitable normal equations that allow us to
obtain the ARMA parameters. The algorithm is
described in Section 2 where we compare it with the
algorithm described in [3] through some current
modeling examples.
2. Least-squares ARMA approximation

2.1. The discrete-time fractional differintegrator

The differintegrator is a continuous-time linear
system with transfer function given, in the causal
case, by

F ðsÞ ¼ sa (1)

for ReðsÞ40 [10]. To obtain discrete-time differinte-
grators, we replace the variable s in (1) by a suitable
rational function of z�1. The most commonly
used are:
(a)
 the backward difference, leading to a solution
that is essentially the discretization of the
Grünwald–Letnikov derivative;
(b)
 the Tustin bilinear transformation.
Let the transfer function of these two fractional
discrete-time systems be given, respectively, by

ðaÞ HbdðzÞ ¼
1� z�1

T

� �a

; jzj41 (2)

and

ðbÞ HbilðzÞ ¼
2

T

1� z�1

1þ z�1

� �a

; jzj41. (3)

Fractional differentiators and integrators are ob-
tained, respectively, with a40 and ao0.
The computation of the inverse Z-transform of
(2) is simple using the binomial series expansion:

hbdðnÞ ¼
1

Ta

a

n

� �
ð�1Þnun ¼

1

Ta
ð�aÞn

n!
un, (4)

where un is the discrete-time Heaviside function and
ðaÞn ¼ aðaþ 1Þ . . . ðaþ n� 1Þ is the Pochhammer
symbol.

Considering (3), it can be seen that the correspond-
ing impulse response is actually a convolution of two
binomial sequences corresponding to the numerator
and the denominator. It is not difficult to obtain

hbilðnÞ
2

T

� �aXn

k¼0

ð�aÞk
k!

ð�1Þn�k
ðaÞn�k

ðn� kÞ!
.

As

n! ¼ ð�1Þkð�nÞkðn� kÞ! kpn (5)

and

ðaÞn ¼ ð�1Þ
k
ð�a� nþ 1ÞkðaÞn�k (6)

we obtain

hbilðnÞ

¼
2

T

� �a
ð�1ÞnðaÞn

n!

Xn

k¼0

ð�aÞkð�nÞk
ð�a� nþ 1Þk

ð�1Þk

k!

¼
2

T

� �a
ð�1ÞnðaÞn

n!
2F 1ð�a;�n;�a� nþ 1;�1Þ,

ð7Þ

where 2F1(a,b;c,�1) is the Gauss hypergeometric
function that, for these arguments, does not have a
closed form. (Prof. Volker Strehl, in a personal
communication, stated that, almost surely,

2F1(�a,�n;�a�n+1;�1) satisfies a second order
recursion formula.)

2.2. The algorithm

Both discrete-time representations are IIR sys-
tems, but are not described by finite orders ARMA
models. However, we intend to find approximations
using finite orders ARMA models. There have been
a lot of attempts to do it [4–6,8]. Here we propose a
new LS identification algorithm different from that
one proposed in [4].

According to our previous considerations, we
assume without any loss of generality that the
correct model is an ARMA(1;1). This is valid not
only for the above referred differintegrator, but also
for any other transfer function. In the following, we
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will consider only these cases. The approximation
we are looking for may be stated as

HðzÞ ¼

P1
m¼0 f mz�mP1
n¼0 gnz�n

�

PM
m¼0 bmz�mPN
n¼0 anz�n

. (8)

It is not difficult to see that we are dealing with an
indeterminate problem, and we are going to propose
an easy way to overcome it. Let (8) be written as

XN

n¼0

anz�n
X1
m¼0

f mz�m �
XM
m¼0

bmz�m
X1
n¼0

gnz�n (9)

and make an inverse Z-transform to obtain

XN

n¼0

aif n�i �
XM
i¼0

bign�i; n 2 Zþ. (10)

This relation suggests us to define an error sequence
by

en ¼
XN

n¼0

aif n�i �
XM
i¼0

bign�i; n 2 Zþ. (11)

Let us assume that we have L values of the impulse
response we want to model. The error energy is
given by

E ¼
XL�1
n¼0

e2n ¼
XL�1
n¼0

XN

n¼0

aif n�i �
XM
i¼0

bign�i

" #2
. (12)

Let a0 ¼ 1. We are now going to compute the
unknown parameters through the derivatives of E in
order to the ARMA parameters. This procedure is
similar to that used in [11]. Therefore, we obtain the
following sets of normal equations:

XL�1
n¼0

XN

i¼0

aif n�if n�k �
XM
i¼0

bign�if n�k

" #
¼ 0,

k ¼ 1; 2; . . . ;N ð13Þ

and

XL�1
n¼0

�
XN

i¼0

aif n�ign�k þ
XM
i¼0

bign�ign�k

" #
¼ 0,

k ¼ 0; 1; 2; . . . ;M. ð14Þ

Introducing the covariance matrices:

Rff ðk; iÞ ¼
XL�1
n¼0

f n�if n�k, (15)

Rgf ðk; iÞ ¼
XL�1
n¼0

gn�if n�k, (16)
Rggðk; iÞ ¼
XL�1
n¼0

gn�ign�k (17)

we can rewrite (13) and (14) as

XN

i¼0

aiRff ðk; iÞ �
XM
i¼0

biRgf ðk; iÞ ¼ 0; k ¼ 1; 2; . . . ;N

(18)

and

XN

i¼0

aiRfgðk; iÞ �
XM
i¼0

biRggðk; iÞ ¼ 0,

k ¼ 0; 1; 2; . . . ;N. ð19Þ

If we know all the impulse response values or the
theoretical expressions, we can compute the correla-
tions

Rff ðk � iÞ ¼
X1
n¼0

f nf nþi�k, (20)

Rgf ðk � iÞ ¼
X1
n¼0

gnf nþi�k, (21)

Rggðk � iÞ ¼
X1
n¼0

gngnþi�k (22)

that allow us to rewrite (18) and (19) as

XN

i¼0

aiRff ðk � iÞ �
XM
i¼0

biRgf ðk � iÞ ¼ 0,

k ¼ 1; 2; . . . ;N ð23Þ

and

XN

i¼0

aiRfgðk � iÞ �
XM
i¼0

biRggðk � iÞ ¼ 0,

k ¼ 0; 1; 2; . . . ;N. ð24Þ

With this formulation all the involved matrices are
Toeplitz matrices. However, we will maintain the
notation introduced in (18) and (19). We can join all
the matrices in only one. Introduce the matrices
U½ðN þ 1Þ � ðN þ 1Þ�;W½ðM þ 1Þ � ðN þ 1Þ� and
H½ðM þ 1Þ � ðM þ 1Þ� that are easily identified and
a ðN þM þ 2Þ length vector w ¼ ½1a1a2 . . .
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aNb0b1b2 . . . bM �
T: We join (18) and (19) into the

following system of equations:

U �W

WT
�H

2
64

3
75

1

a1

..

.

aN

b0

..

.

bM

2
66666666666664

3
77777777777775
¼

Emin

0

:

:

:

0

2
66666666666664

3
77777777777775
. (25)

The solution is readily obtained by inverting the
matrix. We only have to obtain the first column of
the inverse and normalize the first coefficient. The
normalizing constant is equal to Emin. The parti-
tioned inverses formula can be used here [12]. To
our needs it is enough to say that the first column of
the following matrix is the solution (non-normal-
ized) for our problem:

Emin

1

a1

..

.

aN

b0

..

.

bM

2
66666666666664

3
77777777777775
¼

ðU�WH�1WT
Þ
�1

�WH�1WT
ðU�WH�1WT

Þ
�1

2
64

3
75

1

0

:

:

:

0

2
66666666666664

3
77777777777775

(26)

provided that either ðU�WH�1WT
Þ or H are

regular. If this is not the case, we can use

Emin

1

a1

..

.

aN

b0

..

.

bM

2
66666666666666664

3
77777777777777775
¼

ðU�1 þU�1WðH�WTU�1WÞ�1WTU�1

�ðH�WTU�1WÞ�1WTU�1

2
664

3
775

1

0

:

:

:

0

2
666666666666666664

3
777777777777777775

.

ð27Þ

We remark here that a0 ¼ 1 and thus

XN

i¼1

aiRff ðk � iÞ �
XM
i¼0

biRgf ðk � iÞ

" #
¼ �Rff ðkÞ,

k ¼ 1; 2; . . . ;N ð28Þ

and

XN

i¼1

aiRfgðk � iÞ �
XM
i¼0

biRggðk � iÞ

" #
¼ �RfgðkÞ,

k ¼ 0; 1; 2; . . . ;M. ð29Þ

This may be interesting because it allows a
reduction in the dimensions of matrices U and W.
It is not difficult to obtain similar matrices to those
in (25)–(27).
2.3. Applications

2.3.1. Difference

We are going to use the previous algorithm to
compute the approximation to the differintegrator
using the backward difference. Assume that a40. In
this case and referring to the notation used in the
previous section, we have

f n ¼
1

Ta
ð�aÞn

n!
un (30)

and

gn ¼ dn. (31)

Let the corresponding correlations be computed:

Rff ðnÞ ¼
1

T2a

X1
k¼0

a

k

 !
ð�1Þk

a

k þ n

 !
ð�1Þkþn

¼
1

T2a

X1
k¼0

ð�aÞk
k!

ð�aÞkþn

ðk þ nÞ!
.
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As

ðnþ kÞ! ¼ ðnþ 1Þkn! (32)

and

ðaÞnþk ¼ ðaÞnðaþ nÞk, (33)

1

T2a

ð�aÞn
n!

X1
k¼0

ð�aÞk
k!

ð�aþ nÞk
ðnþ 1Þ!

1

T2a

ð�aÞn
n!

2F1ð�a;�aþ n; nþ 1; 1Þ. ð34Þ

Using the Gauss formula

2F 1ða; b; c; 1Þ ¼
GðcÞGðc� a� bÞ

Gðc� aÞGðc� bÞ
c� a� b40

(35)

we obtain

Rff ðkÞ ¼
1

T2a ð�1Þ
k Gð1þ 2aÞ
Gðaþ k þ 1ÞGða� k þ 1Þ

(36)

meaning that the F matrix is a symmetric Toeplitz
matrix. Obviously

Rgf ðnÞ ¼
1

Ta

a

n

� �
ð�1Þnun. (37)

Then, C is a non-symmetric Toeplitz matrix. If
ao0, it is enough to interchange f n with gn.

2.3.2. Bilinear

Assume again that a40. For the f n sequence, we
use the above expression (30). For gn we have

gn ¼
a

n

� �
un. (38)

The corresponding autocorrelation is

RggðkÞ ¼
Gð1þ 2aÞ

Gðaþ k þ 1ÞGða� k þ 1Þ
(39)

leading again to a symmetric Toeplitz matrix. The
cross-correlation is given for n40 and ao1

RfgðnÞ ¼
1

Ta

X1
k¼0

a

k

 !
ð�1Þk

a

k þ n

 !

¼
1

Ta

X1
k¼0

ð�aÞk
k!

ð�aÞkþn

ðk þ nÞ!

¼
1

Ta
ð�aÞn

n!

X1
k¼0

ð�aÞkð�aþ nÞk
ð1þ nÞk

¼
1

Ta
ð�aÞn

n!
2F1ð�aþ n;�a; nþ 1;�1Þ.
From Kummer’s formula [13]

2F 1ða; b; a� bþ 1;�1Þ ¼
Gð1þ a� bÞGð1þ a=2Þ

Gð1þ a=2� bÞGðaþ 1Þ
,

bo1 and a� b non�negative integer

ð40Þ

we obtain

RfgðnÞ ¼
1

Ta
ð�aÞn

n!

Gð1� aþ nÞGð1� a=2þ n=2Þ

Gð1þ a=2þ n=2ÞGð�aþ nþ 1Þ

¼
1

Ta
ð�1Þn

Gð�aÞð�aþ nÞ

Gð1� a=2þ n=2Þ

Gð1þ a=2þ n=2Þ
.

ð41Þ

If no0

RfgðnÞ ¼ ð�1Þ
nRfgð�nÞ (42)

leading to a non-symmetric Toeplitz matrix. In this
case and if N ¼M, we have

bi ¼ ð�1Þ
iai

suggesting the usage of an ARMA(N,N).

3. Comparisons

In this section we are going to use the above
algorithm to compute approximations for the
differintegrator. However, only the results for the
differentiator (a40) are presented since, for prac-
tical purposes, the integrator does not constitute a
different case study. This leads us to consider
fractional orders a 2 ½�0:5; 0:5�. For comparisons,
we will use the results presented in [3,4] whenever
feasible.1

In order to get some insight into the order of the
ARMA models, experiments with ARMA(n,m), n ¼

1; . . . ;N and m ¼ 0; . . . ; n were performed. Figs. 1
and 2 depict the behavior of Emin, for the backwards
difference and bilinear, respectively, as by Eq. (26)
as a function of (n,m). It is interesting to note that in
both cases, the local minima of Emin occur when
n ¼ m, that is, the number of poles equals the
number of zeros. Also note that maxima correspond
to AR(N) models.

Further simulations were carried out for both the
backward differences and bilinear MA(M) models.
Fig. 3 (backward differences) and Fig. 4 (bilinear)
depict Emin as a function of model order (left graph)
and the final zero map (right graph).
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Based on the Emin behavior as a function of the
order of the models, all the remaining experiments
comprise only ARMA(N,N) models.

As Figs. 5 and 6 depict, there is no substantial or
significant difference between the algorithm pro-
posed in this work, LS, and that presented in [3].

In the LS case, higher ARMA orders can be
thought but, for comparison purposes with the
previous algorithm, we limited them to (9,9). In fact,
using the LS approach, and for a ¼ 0:5, we were
able to estimate an ARMA(12,12), depicted in
Fig. 7. It should be pointed out that, for this same
value of a ¼ 0:5, in [3] instability problems occurred
for ðN;NÞ49.
Changing the value of a to 0.1 leads us to Fig. 8
(backward differences) and Fig. 9 (bilinear). These
approximations are summarized in Table 1.

Values of jaj40:5 are not interesting to present
since they can be trivially reduced to a ‘‘new’’
fractional order a� ¼ ð1� aÞ such that a� 2 ½0; 0:5�
by including either an integrator or a differenciator
that results in an extra ð1� z�1Þ�1 or ð1� z�1Þ

factor, respectively. This extra factor can have
adverse effects in control applications, specially if
it results as an integrator. In this case, a should be
restricted to [0, 1], instead.

Unfortunately, no definitive assertions can be
made on the order of the ARMA models since no
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backward differences.
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further evidence was drawn from the simulations we
performed. However, the bilinear seems to be more
stable than the backward differences, and this behavior
appears to be valid for values of a 2 f0:1; 0:5; 0:8g. As
a final note, and for the presented examples (regardless
the value of a and the chosen approximation), all the
poles and zeros were real-valued as long as models
remain ARMA(N,N).
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Fig. 9. ARMA(12,12) amplitude (top, in dB) and phase (bottom, in radians) frequency response plots for the bilinear, with a ¼ 0:1. LS
approach is the dotted line and the exact model spectrum is the dash-dotted line.
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4. Conclusions

We proposed here a new LS algorithm for
pole–zero modeling of fractional linear systems.
This is based on an error power minimization
relatively to the ARMA models that leads to a set of
normal equations. We applied to two well-known
situations consisting of the difference and bilinear
transformations that are suitable for exact auto-
correlation computation. Some illustrating exam-
ples were presented showing that ARMA(N,N) are
suitable models.
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Table 1

Selected transfer functions for the LS approach

a ARMA Model AR coefficients MA coefficients

0.1 (6,6) Backward 1.0000; �3.4875; 4.7052; �3.0595;

0.9645; �0.1269; 0.0041

1.0000; �3.5875; 5.0090; �3.4016;

1.1375; �0.1638; 0.0064

0.1 (12,12) Bilinear 1.0000; 0.0997; �3.3770; �0.3037;

4.3668; 0.3438; �2.6756 �0.1753;

0.7699; 0.0381; �0.0857; �0.0025;

0.0017

1.0000; 0.1003; �3.3770; 0.3057 4.3666;

�0.3460; �2.6755; 0.1765; 0.7699;

�0.0383; �0.0857; 0.0025; 0.0017

0.5 (6,6) Backward 1.0000; �3.2112; 3.9246; �2.2548;

0.6019; �0.0612; 0.0011

1.0000; �3.7112; 5.4052; �3.8782;

1.4004; �0.2274; 0.0113

0.5 (9,9) Bilinear 1.0000; 0.5000; �2.3019 �1.0260;

1.7917; 0.6706; �0.5282; �0.1450;

0.0437; 0.0052

1.0000; �0.5000; �2.3019; 1.0260;

1.7917; �0.6706; �0.5282; 0.1450;

0.0437 �0.0052

0.5 (12,12) Bilinear 1.0000; 0.5001; �3.1883; �1.4696;

3.8645; 1.5967; �2.1989; �0.7768;

0.5801; 0.1596; �0.0581; �0.0097;

0.0010

1.0000; �0.4999; �3.1884; 1.4688;

3.8648; �1.5959; �2.1992; 0.7764;

0.5802; �0.1595; �0.0581; 0.0097;

0.0010
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