

Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia

Departamento de Informática

Tese de Mestrado em Engenharia Informática
1º Semestre, 2008/2009

A Qualitative Assessment of Modularity in CaesarJ components based on
Implementations of Design Patterns

Sérgio Alexandre Esteves Miranda Braz, aluno nº. 26316

Orientador
Prof. Doutor Miguel Pessoa Monteiro

20 de Fevereiro de 2009

ii

iii

Nº de aluno: 26316
Nome: Sérgio Alexandre Esteves Miranda Braz

Título da dissertação:
A Qualitative Assessment of Modularity in CaesarJ components based on Implementations of
Design Patterns

Palavras-Chave:

• CaesarJ
• Padrões de Concepção
• Programação Orientada por Aspectos
• Polimorfismo de Família
• Modularidade

Keywords:

• CaesarJ
• Design Patterns
• Aspect-Oriented Programming
• Family Polymorphism
• Modularity

iv

v

Acknowledgements

First of all, to my supervisor, Prof. Dr. Miguel Pessoa Monteiro, for an unbelievable presence,

support and motivation. I have been truly fortunate to work with such an interested and

participating supervisor who has driven me to expand my knowledge and encouraging me to

learn about an array of concepts I was not familiar with and have greatly enjoyed discovering.

To my Guinness drinking “lads”, André Sabino, Ricardo Cebola and Rui Nóbrega.

Nothing better than a pint of Guinness to put things in perspective. Specially to André Sabino

and Rui Nóbrega for always pushing me to do better and helping with my thesis. Were due for

some pints.

To my “spam list” friends, Abel Campião, Arthur Teixeira, Bruno Miranda, Bruno

Monteiro, Hugo “Janado” Almeida, Hugo “Guimbas” Teixeira, José Grilo, Miguel Campião,

Pedro Barradas, Ricardo Nascimento and Rui Barros. For not letting me take myself to seriously,

for making fun at me and themselves and for filling my mail box with the most incredible,

nonsensical, borderline juvenile humor. Basically, for making me eagerly anticipate the next joke

and allowing me to participate.

To my friends João Santos and Sérgio Matos. It feels funny to thank you, especially

because you would make fun of me. Anyway… Thanks!

To my long lasting friend Pedro Palrão, a thank you as well as an apology. An apology

for practically disappearing from the map. A thank you for not giving up on me.

To my parents, Carlos and Mila, and my little sister Sara. For understanding the fact that

I couldn’t be with them as much and reminding me that I always have a place at home, even at

times when we shared the same roof but did not see each other due to my hectic schedules. For

being family, at all times.

To Bruna, for always being present, for the encouragement, for telling me what I needed

to hear instead of what I wanted to. For getting me through to the end. For being more than just

my girlfriend, for being my best friend.

vi

vii

Resumo

O aparecimento do paradigma da Programação Orientada por Aspectos (AOP) trouxe novas

funcionalidades e mecanismos para dar suporte à separação de conceitos transversais, de modo a

desenvolver programas mais modulares e consequentemente, mais reutilizáveis. Com o

amadurecimento deste paradigma, surgiram várias linguagens de programação para dar corpo aos

conceitos por ele avançados. Entre essas linguagens encontra-se a linguagem CaesarJ.

Enquanto a grande maioria dos estudos práticos sobre AOP se têm focado na linguagem

AspectJ, as características de outras linguagens como o CaesarJ continuam por explorar. A falta

de investigação sobre a utilização do CaesarJ em casos concretos leva a que haja poucos casos de

estudos a partir dos quais retirar elações sobre os seus pontos fortes e fraquezas.

No passado, implementações de padrões de concepção têm sido utilizadas para a

demonstração das características de linguagens de programação. Esta dissertação adopta uma

abordagem semelhante com o intuito de aferir a o suporte do CaesarJ a modularidade e

reutilização por meio da implementação de padrões de concepção e subsequente análise

quantitativa.

Esta dissertação apresenta implementações em CaesarJ de onze padrões do Gang-of-

Four, que serviram de base a uma análise qualitativa sobre o grau de modularidade que o CaesarJ

consegue atingir nestes padrões. É feita uma distinção entre quatro níveis de reutilização de

módulos que as implementações suportam, de modo a diferenciar entre os diversos níveis de

reutilização atingidos. É feita uma comparação com as implementações análogas de padrões em

AspectJ. Finalmente, são descritas algumas direcções sobre a concepção de componentes em

CaesarJ.

viii

ix

Abstract

The advent of the Aspect-Oriented Programming (AOP) paradigm brought new features and

mechanisms to support the separation of crosscutting concerns, in order to develop programs

with higher modularity and consequently, higher reuse. As the paradigm matures, various aspect-

oriented programming languages appeared that propose varying ways to realize the paradigm’s

concepts. CaesarJ is one of those aspect-oriented languages.

While the majority of practical studies on AOP languages focused on the AspectJ

language, the characteristics of other languages such as CaesarJ remain to be explored. The lack

of research on the utilization of CaesarJ in concrete cases leads to the existence of few case

studies from which to draw considerations about their strengths and shortcomings.

 In the past, implementations of design patterns have been used for the demonstration of

the characteristics of the programming languages used to implement them. This dissertation

follows a similar approach to assess CaesarJ’s support for modularity and reuse by producing

CaesarJ design patterns implementations and subjecting those implementations to a qualitative

analysis.

 This dissertation presents CaesarJ implementations of eleven Gang-of-Four pattern that

serve as the basis for a qualitative analysis of the modularity degree CaesarJ enables for each

pattern. A distinction is made between four levels of module reuse that the implementations

support, in order to differentiate between the several levels of reuse achieved. A comparison is

drawn to analogue design pattern implementations in AspectJ. Finally, general guidelines for the

implementation of CaesarJ components are described.

x

xi

Index

1. Introduction ... 1

1.1 Motivation .. 1

1.2 Problem description .. 3

1.3 Presented solution ... 4

1.4 Contributions ... 6

1.5 Document outline .. 7

2. Design Patterns .. 9

2.1 Format of the description of design patterns .. 10

2.2 Design pattern organization and classification ... 11

2.3 Relation to idioms and frameworks... 12

2.4 Benefits from the study of design patterns ... 13

2.5 Abstract Factory ... 14

2.6 Bridge ... 16

2.7 Builder .. 17

2.8 Chain of Responsibility ... 18

2.9 Composite .. 19

2.10 Decorator ... 21

2.11 Factory Method ... 22

2.12 Mediator ... 23

2.13 Observer ... 24

2.14 Prototype .. 26

xii

2.15 Visitor ... 27

2.16 Summary .. 29

3. CaesarJ ... 31

3.1 Introduction to CaesarJ .. 31

3.2 Structure of a CaesarJ component .. 33

3.3 Virtual classes .. 35

3.3.1 Implicit inheritance ... 36

3.3.2 Family polymorphism ... 37

3.4 Illustrating Example: Observer .. 38

3.5 Collaboration Interfaces ... 40

3.6 CaesarJ Implementations ... 42

3.7 CaesarJ Bindings and Wrappers ... 44

3.7.1 Wrapper classes... 45

3.7.2 Wrapper recycling ... 45

3.8 Weavelets and Aspect Deployment .. 49

3.8.1 Weavelets .. 49

3.8.2 Aspect instantiation and deployment .. 50

3.9 CaesarJ impact on client code .. 52

4. Background to the study ... 55

5. CaesarJ Pattern Implementations ... 59

5.1 Abstract Factory ... 59

5.2 Bridge ... 61

5.3 Builder .. 64

5.4 Chain of Responsibility ... 66

5.5 Composite .. 70

5.6 Decorator ... 73

xiii

5.7 Factory Method ... 74

5.8 Mediator ... 76

5.9 Observer ... 79

5.10 Prototype .. 82

5.11 Visitor ... 84

5.12 Summary .. 86

6. Analysis ... 89

6.1 Assessment criteria ... 89

6.2 Mechanism usage .. 92

6.2.1 Pointcut and advice ... 92

6.2.2 CaesarJ modules .. 93

6.3 Reuse level .. 94

6.3.1 Direct language support .. 96

6.3.2 Reusable modules ... 96

6.3.3 Composition flexibility ... 97

6.3.4 No reuse .. 98

6.4 Pattern composition capabilities .. 98

6.5 Reuse comparison with AspectJ .. 102

6.5.1 Reusable modules comparison .. 102

6.5.2 General comparison .. 103

6.6 CaesarJ component design guidelines ... 105

7. Related Work ... 109

7.1 AOP implementation of GoF design patterns .. 109

7.2 AOP implementation evaluation .. 111

7.3 AOP design patterns ... 112

8. Conclusions and future work ... 115

xiv

8.1 Conclusions .. 115

8.2 Future work ... 116

9. Bibliography ... 119

xv

Index of Figures

Figure 1 Design pattern relationships ... 11

Figure 2 Abstract Factory pattern structure .. 15

Figure 3 Bridge pattern structure .. 16

Figure 4 Builder pattern structure ... 17

Figure 5 Chain of Responsibility pattern structure .. 19

Figure 6 Composite pattern structure .. 20

Figure 7 Decorator pattern structure .. 21

Figure 8 Factory Method pattern structure ... 23

Figure 9 Mediator pattern structure .. 24

Figure 10 Observer pattern structure .. 25

Figure 11 Prototype pattern structure ... 26

Figure 12 Visitor pattern structure .. 28

Figure 13 General structure of a CaesarJ component ... 35

Figure 14 Virtual classes in CaesarJ ... 36

Figure 15 Collaboration Interface for the Flower Observer scenario ... 42

Figure 16 CaesarJ Implementation for the Flower Observer scenario .. 44

Figure 17 CaesarJ Binding for the Flower Observer scenario .. 49

Figure 18 CaesarJ class diagram for the Flower Observer scenario ... 52

Figure 19 Abstract Factory CaesarJ implementation structure ... 59

Figure 20 Bridge CaesarJ implementation structure ... 62

xvi

Figure 21 Builder CaesarJ implementation structure .. 64

Figure 22 Chain of Responsibility CaesarJ implementation structure .. 67

Figure 23 Composite CaesarJ implementation structure ... 70

Figure 24 Decorator CaesarJ implementation structure ... 73

Figure 25 Factory Method CaesarJ implementation structure .. 75

Figure 26 Mediator CaesarJ implementation structure ... 76

Figure 27 Observer CaesarJ implementation structure ... 79

Figure 28 Prototype CaesarJ implementation structure .. 82

Figure 29 Visitor CaesarJ implementation structure ... 84

xvii

Index of Tables

Table 1 Gang-of-Four Java repositories used for CaesarJ implementations ... 5

Table 2 Pattern classification table ... 12

Table 3 Design aspects that design patterns let you vary .. 29

Table 4 Previously developed design patterns .. 57

Table 5 Use of mechanisms in the CaesarJ examples ... 57

Table 6 CaesarJ design pattern implementations by repository .. 86

Table 7 Modified CaesarJ modules ... 87

Table 8 Assessment criteria description .. 90

Table 9 Pointcut and advice use in CaesarJ and AspectJ GoF implementations .. 92

Table 10 CaesarJ module usage in pattern implementation .. 94

Table 11 CaesarJ support for reusability ... 94

Table 12 Reusable modules implementation properties ... 99

Table 13 Reusable modules composition properties ... 101

Table 14 Reusable module comparison between CaesarJ and AspectJ .. 102

xviii

xix

Index of Listings

Listing 1 Class Flower of the Java Flower Observer scenario. ... 39

Listing 2 Class Bee of the Java Flower Observer scenario. .. 39

Listing 3 Collaboration Interface of the Observer pattern in the Flower Observer scenario 41

Listing 4 CaesarJ Implementation of the Observer pattern in the Flower Observer scenario..................... 43

Listing 5 Wrapper declaration syntactic sugar .. 45

Listing 6 CaesarJ Binding of the Observer pattern for the Flower Observer scenario 47

Listing 7 Flower class without Observable inner classes .. 48

Listing 8 Bee class without Observer inner classes .. 48

Listing 9 Hummingbird class without Observer inner classes .. 48

Listing 10 CaesarJ Weavelet of the Observer pattern for the Flower Observer scenario 51

Listing 11 Instantiation, deployment and undeployment of a Weavelet ... 51

Listing 12 Aspect, participant class and wrapper instantiations ... 52

Listing 13 Participant relations definition, family polymorphism and aspect deployment......................... 54

xx

1

1. Introduction

Since its appearance in 1997, the paradigm of Aspect-Oriented Programming (AOP) is

steadily growing a common subject of research. Much research has been done on the

characteristics of (AOP) relatively to Object-Oriented Programming (OOP) and the

modularity improvements it provides [14][22][26][27][28][45][48]. These efforts have

contributed to a growing maturity of the paradigm. However, the vast majority of studies

concerning AOP have mostly been focused in a single programming language, AspectJ1.

Although AspectJ was the first AOP language to be developed, a great number of languages

have been developed afterwards and offer alternatives to AspectJ [11]. Among those

languages is CaesarJ2. This dissertation presents a study on CaesarJ based on the

implementation of design patterns, as an effort to further increase the knowledge regarding

this particular representative of AOP and the knowledge about the languages that have been

created to embrace this paradigm.

The rest of this chapter is structured as follows: section 1.1 develops on the motivation

behind this dissertation; section 1.2 describes the problem this dissertation aims to solve;

section 1.3 describes the approach chosen to tackle this issue; section 1.4 lists the

contributions of this thesis and section 1.5 ends by presenting the outline of the rest of this

document.

1.1 Motivation

Aspect-Oriented Programming (AOP) [32] and aspect-oriented software development

(AOSD) 3 have risen in software engineering with the purpose of assisting programmers in

1 http://www.eclipse.org/aspectj/

2 http://caesarj.org/

3 http://aosd.net/

2

the separation of concerns, particularly crosscutting concerns. This new paradigm led to the

creation of several aspect-oriented languages [11], namely CaesarJ and AspectJ. These new

languages brought many advances in the modularization of programs, thereby enhancing

reuse and other benefits [34] such as:

• Cleaner responsibilities of individual modules which is a consequence of code

locality of crosscutting concerns.

• Easier system evolution due to the implementation of crosscutting concerns into

specific modules that can be added to existing core modules without the need to

change them.

• Late binding of design decisions because future requirements can be implemented in a

separate module and later be flexibly introduced into a system.

However, not all languages have enjoyed equal development, research, support or general

acceptance in the programming community. While AspectJ has been the dominant language

in AOP, some studies show it still has some problems to be solved. These problems are

related to limitations to code reuse [38] and poor aspect structure [41][45] which leads to

integration issues. Meanwhile, CaesarJ’s features and characteristics remain to be properly

explored.

Relatively to AspectJ, currently AOP’s most popular language, CaesarJ still lacks

research and experimentation to assert its strengths and shortcomings. As a consequence, the

properties of the CaesarJ language constructs and concepts have not been properly assessed

so far. This dissertation aims to contribute to an assessment of CaesarJ, its concepts,

mechanisms and capabilities for separation of crosscutting concerns, modularity and reuse.

For the definition of modularity in the context of AOP, this dissertation takes the

definition provided by Kiczales et al. [33]. Kiczales el al. state that a code implementing a

concern can be considered modular if:

• it is textually local;

• there is a well-defined interface that describes how it interacts with the rest of the

system;

• the interface is an abstraction of the implementation, in that it is possible to make

material changes to the implementation without violating the interface;

3

• an automatic mechanism enforces that every module satisfies its own interface and

respects the interface of all other modules;

• the module can be automatically composed – by a compiler, loader, linker etc. – in

various configurations with other modules to produce a complete system;

CaesarJ presents a new way of looking into modularization and offers new conceptual

language modules. It also makes use of mechanisms like virtual classes [36] and family

polymorphism [18] which are absent in AspectJ. These mechanisms are described in section

3.3.

Nowadays, the AOP paradigm is characterized as a systematic approach to modularity

[46]. Consequently, the study of an AOP language can be justified by an assessment of its

support for modularity. The motivation behind this dissertation is to develop case studies

which will serve as the basis for an analysis of CaesarJ’s support for modularity

characteristics, strengths and shortcomings. This analysis will focus on CaesarJ’s abilities to

produce reusable modules, distinguishing between 4 levels of reuse. A short assessment of

the composition abilities of such modules is presented. A comparison between the CaesarJ

and AspectJ pattern implementations [28] is established as far as their reuse capabilities.

Finally, some guidelines for the development of CaesarJ components are provided based on

the experience gained from the case studies.

It is important to note that, although this thesis only mentions languages that are AOP

extensions to the Java programming language, there are other AOP languages that extend

other object-oriented languages such as AspectC++ and AspectS for C++ and Smalltalk,

respectively, or other paradigms like AspectC and AspectML, for C and ML, procedural and

functional programming languages, respectively. However, this dissertation will focus

mainly on CaesarJ, using AspectJ for comparison purposes and on Java since it is the basis

for both languages.

1.2 Problem description

Currently, there are few case studies on the CaesarJ language. The same is not true for

AspectJ, since it is the most popular language in AOP so far.

Much research on programming languages has been based on the implementation of the

23 Gang-of-Four (GoF) design patterns [21] and their consequent analysis. Design patterns

4

present common problems that can be found in large and complex systems and the

corresponding solutions. Many implementations of the GoF patterns have been collected into

various repositories. Table 1 presents some examples collected for the realization of this

dissertation. These researches have led into case studies both in Object-Oriented

Programming (OOP) languages like Java, and in AOP. As far as AOP is concerned, there are

only four repositories available for studying, and only three of them are freely available

[28][1][4]. Although some studies on CaesarJ have been based on this design patterns, there

is currently no complete repository with CaesarJ implementations of all design patterns.

The lack of practical CaesarJ case studies, particularly CaesarJ implementations of the

GoF design patterns, deters studies to be carried out. Such studies would enable a deeper

understanding of its language features and possibilities as far as the support for separation of

crosscutting concerns, the capacity for the creation of composable modules and the

reusability of those modules.

1.3 Presented solution

Repositories of the well known design patterns have provided suitable case studies for

subsequent research. Design patterns present the advantage that patterns can be approached

one at a time concentrating in a single problem and its characteristics. Each solution to a

given problem a pattern potentially solves provides insights on the language on which the

implementation is made and about its features.

This dissertation will take some existing Java repositories of the design patterns and

create new implementations of those scenarios on CaesarJ. These repositories are freely

available online, and are implemented in Java 2, the Java version currently supported by

CaesarJ. The choice to implement CaesarJ scenarios from independently developed Java

repositories instead of creating completely new CaesarJ implementations brings the benefits

of greater result independence and lesser bias probability. Table 1 lists the group of

independent repositories chosen as examples for the implementation of the CaesarJ design

patterns.

Each repository presents different styles of programming which are reflected in the

implementation of the design patterns. Each design pattern implementation is called a

scenario. A scenario is the application of a design pattern to a concrete situation. This set of

5

Repository reference

name

Author(s) Repository URL

Thinking in patterns Bruce Eckel http://www.mindviewinc.com/downloads/TIPatterns-0.9.zip
Design pattern Java

companion
James Cooper

http://www.patterndepot.com/put/8/JavaPatterns.htm

Fluffy Cat Larry Truett http://www.fluffycat.com/Java-Design-Patterns/

Hannemann et al.
Jan Hannemann and

Gregor Kiczales
http://hannemann.pbwiki.com/Design+Patterns

Huston Vince Huston http://www.vincehuston.org/dp/

Guidi Polanco
Franco Guidi

Polanco
http://eii.ucv.cl/pers/guidi/documentos/Guidi-
GoFDesignPatternsInJava.pdf

Table 1 Gang-of-Four Java repositories used for CaesarJ implementations

repositories presents scenarios that span across several language constructs to implement

the design patterns. Some scenarios illustrate design pattern producing text based examples,

others resort to Java API classes to implement the design patterns or the participant roles in

the pattern while others illustrate the design pattern through graphical interfaces using Java

API objects. This range of different scenarios is meant to expose CaesarJ to a diversity of

situations.

For comparison purposes between CaesarJ and AspectJ, scenarios from the Hannemann

et al. repository have been privileged but, at every time, a minimum of two CaesarJ scenarios

per pattern was developed. The reason for producing several implementations for the same

pattern is to correctly assert if a module can be reused in several situations.

By offering new implementations based on CaesarJ, this dissertation aims to help

increasing the knowledge about CaesarJ and its features, as well as establishing a basis for

comparisons with other programming languages.

This dissertation’s goal is to make an analysis on CaesarJ’s strengths based on 4

hierarchical criteria of reusability and modularization. Each implementation is evaluated to

(1) whether CaesarJ provides direct language support to this specific design pattern problem;

(2) if some reusable module can be produced; (3) if, although not reusable, this problem can

be modularized into a module with composition flexibility or (4) if the facet cannot be

modularized at all. Through this evaluation, it should be possible to distinguish between

these four levels of reuse, where direct language support to a pattern constitutes the highest

level since the mechanisms are embedded in the language itself.

6

In the cases when patterns with reusable modules are produced, several different

situations are tested regarding these modules’ capabilities. For evaluation purposes, the same

module is (1) composed in multiple scenarios; (2) if it can be composed several times in the

same system; (3) if different implementations of the same module can coexist within the

same system compatibly.

If patterns with reusable modules or modules with composition flexibility are produced,

these patterns are subjected to a composability assessment. They are tested whether the

module has (1) the ability to be composed only to selected instances of a class; (2) if the

composition order is observable; (3) if the modules can be easily deployed and undeployed

into existing applications.

For every pattern that has given rise to a reusable module or a module with composition

flexibility, a scenario was developed to further evaluate each pattern whose CaesarJ

implementations demonstrated such properties.

1.4 Contributions

The contributions this dissertation brings are present next:

• Thirty six implementations of GoF design patterns. These implementations are the

basis of the entire thesis. They provide the grounds for the theoretical considerations

themselves and serve as case studies for future work on CaesarJ.

• Class diagrams documenting the CaesarJ pattern implementations. These

diagrams provide illustrations for the CaesarJ implementations and their general

structure. Also, these diagrams are useful in the comparison between the produced

CaesarJ implementations and the original Java design patterns implementation.

• An analysis of the CaesarJ pattern implementations. This analysis comprises:

o An analysis regarding the level of reuse attained in the implementation of each

pattern, differentiating between four levels of reuse.

o An analysis on the composition capabilities of each pattern that derived a

module deemed as reusable or as a module with composition flexibility.

o A general comparison of the implementation of design patterns in CaesarJ and

in AspectJ.

• Guidelines for the design of a CaesarJ component.

7

1.5 Document outline

The rest of the dissertation is as follows: Chapter 2 describes the patterns approached for the

pattern implementations; chapter 3 presents the CaesarJ programming language; chapter 4

discusses previous studies that are directly related to this dissertation; chapter 5 describes the

CaesarJ pattern implementations; chapter 6 presents the analysis of the CaesarJ pattern

implementations; chapter 7 mentions related work and chapter 8 ends by presenting this

dissertation’s conclusions and future work.

8

9

2. Design Patterns

Patterns originated in Alexander’s work in architecture [5]. Later, this concept was adopted

to design decisions in object-oriented programming by Gamma et al. [21], thus giving birth

to design patterns. This group of four authors has become known as the Gang-of-Four (GoF).

A design pattern is the description of common and recurring problems in software

engineering, the general outline of the possible solutions to these problems, the context

within which these solutions work and the implications of those solutions.

The GoF design patterns are the most well known and popular design patterns. They are

the result of the study of real frameworks, and are a catalog of common programming and

design practice. This catalog serves as a knowledge repository that enables software

developers to choose between proven solutions without the need to reinvent them. The focus

of this catalog is to provide developers with solutions that are flexible and reusable, and to

offer a set of choices that can be adopted to different contexts, making reusable object-

oriented software design more productive. Patterns provide value because they capture

design knowledge [25] and document it in a methodic way that makes this knowledge easily

approachable to software designers. Although there is other literature concerning design

patterns [16][44], only the GoF design patterns will be considered within the context of this

thesis.

The rest of this chapteris structured as follows: sections Erro! A origem da referência

não foi encontrada. to 2.3 depict the structure of the description of design patterns, their

organization and classification, their relation to frameworks and idioms differentiating their

level of granularity; section 2.4 states the benefits that come from the study of design pattern;

sections 2.5 through 2.15 describe the patterns selected for the implementations of this thesis,

beginning with a transcript of the pattern’s intent as expressed by Gamma et al [21]. Section

10

2.16 concludes by presenting a short enumeration of the patterns and the aspects they should

allow to vary, i.e. their variation points.

2.1 Format of the description of design patterns

There are 23 design patterns in the GoF catalog. Their description is comprised of several

parts, namely:

• Name; naming a pattern is an obvious requirement. Nevertheless, a pattern name is

the first description of the pattern. It should be representative of problem it describes

and allows us to identify a concrete pattern unambiguously.

• Intent and applicability; the pattern intent is the problem it aims to solve. It briefly

describes the problematic situation and how this pattern tries to solve it. The

applicability of a pattern are the concrete situations where it can be applied. These

situations reflect design decisions that can be implemented in multiple cases.

• Structure, participants and collaborations; the structure of a pattern is usually a

diagram representation of the abstractions involved in the pattern. The participants are

the classes and/or objects that participate in the design pattern and what role they play

within the pattern. The collaborations between participants described in a pattern

describe the way the abstractions interact to fulfill the responsibilities they carry out

within the pattern.

• Consequences and implementation; the consequences are the trade-offs the use of

the pattern reflects in the overall design of the system. The implementation of a

pattern is related to the actual techniques involved when implementing a pattern. The

implementation techniques are related to the programming language used to

implement the design pattern.

• Sample code; a design pattern is illustrated with a sample code of a situation where

the pattern can be efficiently used.

11

2.2 Design pattern organization and classification

Patterns are often related with each other, and can sometimes be used together. There are

many situations when patterns address the same problem or can be used together to

complement each other with different functions.

Figure 1 is taken Gamma et al. [21] and illustrates the 23 GoF patterns and the relations

between them.

Figure 1 Design pattern relationships

Depending on the situations they address, the patterns can be organized according to two

criteria: purpose and scope.

The purpose of a pattern is simply what problem it addresses. Based on the purpose

criterion, patterns can be divided into creational, structural and behavioral. Creational

patterns address the activity of object creation. Structural patterns tackle the composition of

classes or objects. Behavioral patterns describe how classes or objects interact and distribute

responsibility.

The scope criterion reflects whether the pattern is aimed for classes or objects. Class

patterns deal with the relationships between classes and their subclasses, namely through

12

inheritance. Since inheritance relationships are determined at compile time, class patterns are

typically static by nature. On the other hand, object patterns are concerned with object

relationships which can be changed during run time and therefore, are more dynamic.

Table 2 is adapted from Gamma et al. [21] and reflects the categorization of the 23

patterns according to these criteria.

Purpose

Creational Structural Behavioral

Scope

Class
Factory Method Adapter Interpreter

 Template Method

Object

Abstract Factory Adapter Chain of Responsibility
Builder Bridge Command

Prototype Composite Iterator
Singleton Decorator Mediator

 Facade Memento
 Flyweight Observer
 Proxy State
 Strategy
 Visitor

Table 2 Pattern classification table

2.3 Relation to idioms and frameworks

It is also important to discuss the abstraction level of design patterns by comparing them

to idioms and frameworks. Design patterns can be placed in an intermediary level between

frameworks (that represent a concrete architectural design) and idioms, which are language

specific.

Buschmann et al. have defined idioms as low level patterns specific to a programming

language [12]. Idioms tell us how to solve a particular implementation situation using the

features of a concrete language. A programming language tutorial is an example of a

collection of idioms. Tutorials tell inexperienced developers how a particular language

implements a given situation, making the best use of its features.

Like design patterns, idioms have names which allows developers to identify them and

refer to a well defined situation. However, unlike design patterns, idioms are not easily

reproduced between languages. This reflects the fact that implementations depend on the

13

features of the language used, which has an impact on the idiom. Design patterns differ

because they are not specific to a particular language. While a pattern implementation does

depend on the language used to implement it, design patterns are not concerned with

implementation issues but on general structure principles that do not depend on a particular

language.

Frameworks are placed in the opposite level of idioms. They are the realization of

architectural patterns. Architectural patterns specify the fundamental structure of an

application [12]. Architectural patterns attempt to give an entire system a certain property

like adaptability of the user interface. A framework has several subsystems that must

communicate and collaborate among themselves within the architectural structure defined by

the architectural pattern. Design patterns perform this function. They express how the

components in a framework should interact in a reusable fashion so that the framework is

itself reusable.

Applications have often originated from the use of frameworks, thus conforming to its

design and collaboration model. This way, frameworks cause patterns in the applications that

use them repeatedly [31]. This is what made possible the discovery and classification of the

GoF design patterns. As far as granularity, design patterns are comparatively smaller than

frameworks, and their application in a framework doesn’t have an impact in the system as a

whole [12]. Nonetheless, they might have an influence on the architecture of a given

subsystem of the framework.

2.4 Benefits from the study of design patterns

Due to their importance and popularity, the GoF design patterns have led to research in

many different areas of software engineering. Since the implementation of a pattern is

influenced by the programming language used to implement it [21], they can be used to study

language characteristics. Some studies have proven that patterns influence language

mechanisms and suggested they should be part of their constructs [8][9].

Since the collection of 23 patterns isolates individual design problems and solutions,

other studies have focused on the assessment of the features of existing programming

languages. By tackling each pattern separately, pattern implementation constitutes a practical

14

way of drawing conclusions on the capability of those languages to solve particular design

problems. As patterns focus on reusable design, an important question is how programming

languages support modular design. Within the context of AOP languages, there has been

some research on design patterns and aspects as far as their modularity [29][22], the

advantages of aspect oriented pattern implementations over object oriented [28], of

deficiencies patent in some aspect oriented implementations [41] and as illustrations for the

comparison of different AOP languages [39][45].

Design Patterns often present crosscutting behavior because typically, they are composed

of different roles. These roles communicate with each other, in a manner that should be as

modular as possible, in order to enhance reuse. Hence, they are appropriate case studies for

AOP languages.

Although there are 23 GoF patterns this thesis concentrates on 11 of those patterns. These

patterns were selected because they were considered the most interesting regarding the

characteristics of the studied language, the problem they try to solve and how these

characteristics of the language might enhance the implementation of these patterns. Not all

patterns present the same complexity and some are actually supported by some programming

languages, like the Iterator pattern in the Java programming language, for example.

The selection criteria for the patterns reflects a preference towards the creational patterns

and patterns that have been considered good examples of object oriented design that are

better modularized using AOP techniques and have thus created reusable modules [28][22].

The preference for creational patterns is based on the interest of the study of CaesarJ’s

constructs for aspect structure, while the preference for design patterns that have shown

improvements from AOP implementation is based by the interest in assessing CaesarJ’s

capability to produce reusable modules.

2.5 Abstract Factory

“Provide an interface for creating families of related or dependent objects without

specifying their concrete classes”.

15

The Abstract Factory is intimately related to the more recent concept of family

polymorphism [18]. Both Abstract Factory and family polymorphism deal with the need to

create families of related objects and aim to ensure that objects of different families do not

mix.

The solution presented by the GoF is to defer the responsibility of creating objects of a

particular family to a special object, the so called factory object. Different factory objects

create objects with implementations specific to the factory that creates them, thus ensuring

consistency between objects of the same family. If one needs to create objects with different

implementations, this can be achieved by changing the factory object.

Figure 2 shows the structure of the pattern.

Figure 2 Abstract Factory pattern structure

In the Abstract Factory pattern there is an abstract class, AbstractFactory, which acts as

the interface for the creation of objects of related families. The concrete classes that realize

the creation of the actual objects of the family, such as ConcreteFactory, hide the

implementation details for the creation of product objects in CreateProduct operations.

On the other side, different products are declared in product interfaces such as

AbstractProduct and implemented in concrete classes Product.

16

Abstract Factory ensures consistency because concrete products are referenced by the

concrete factories that define the families. It also enhances flexibility because clients only use

the interfaces declared by AbstractFactory and AbstractProduct and concrete factory

implementations can be swapped easily.

2.6 Bridge

“Decouple an abstraction from its implementation so that the two can vary

independently”.

The concern behind Bridge is to allow the development of the implementation of an

abstraction in a more flexible way than inheritance so different implementations may be

switched at run-time. Inheritance hierarchies bind an implementation to an abstraction

permanently at compile-time which results in a static, inflexible option.

Gamma et al. [21] suggest that abstractions and implementations should belong to

separate class hierarchies with the abstraction forwarding client requests to the

implementation object through an implementation reference.

Figure 3 illustrates the Bridge pattern.

Figure 3 Bridge pattern structure

Class Abstraction defines the interface for the abstractions in the pattern. Abstraction

keeps a reference to an Implementor object which is responsible for the execution of

17

operation Operation. When Operation is called, it forwards its execution to the Implementor

object referenced the Abstraction and executes operation OperationImp.

Subclasses ConcreteImplementor are responsible for the implementation of operation

OperationImp. If the implementation of operation Operation needs to be change, this can be

achieved by changing the referenced ConcreteImplementor object.

ClientService classes simply extend the interface defined by Abstraction.

This pattern illustrates the object oriented tendency to favoring object composition over

class inheritance.

2.7 Builder

“Separate the construction of a complex object from its representation so that the same

construction process can create different representations”.

Builder is different from other creational patterns because it deals with the process of

creating objects step by step instead of all at once. The separation of representation and

construction process gives additional control over the creation of complex objects to the

developer. This way, different final products can be created simply by changing the parts of

the object that are created, the order by which the parts of the object are created, or their

implementations.

The Builder pattern structure is described in Figure 4.

Figure 4 Builder pattern structure

18

The abstract class Builder acts as an interface for building different parts of the object

through the BuildPart operation. This operation is implemented in the ConcreteBuilder

subclasses. Each ConcreteBuilder subclass is responsible for the creation of specific different

parts of the complete product object. The Product class represents the parts each

ConcreteBuilder creates and holds their representation. Later, ConcreteBuilder classes are

also responsible for the retrieval of the product representation using operation GetResult.

The Director class keeps a reference to a Builder class which is the responsible for the

creation of the parts of the final product object. When a different Product must be created,

this can be achieved by changing the ConcreteBuilder referenced by the builder reference. It

also keeps a structure where the different parts of the object are stored.

Builder increases modularity because the code responsible for creating new products is

encapsulated in the ConcreteBuilder classes. This allows different representations to be

added easily simply by adding another ConcreteBuilder class responsible for creating a new

product.

2.8 Chain of Responsibility

“Avoid coupling the sender of a request to its receiver by giving more than one object a

chance to handle the request. Chain the receiving objects and pass the request along the

chain until an object handles it”.

If a request is tightly couple to a receiver, no other receivers are given the chance to

handle that request. Decoupling senders from receivers of requests allows for a flexible

definition of which receiver should handle a particular request. This approach allows

multiple receiver objects to handle a request.

The request passes along a sequence of objects until it reaches the appropriate handler.

This sequence is called the chain of responsibility. The request is passed along this chain,

from the most specific handler to the most general, until it is handled or reaches the end of

the chain.

Figure 5 further describes the pattern.

19

Figure 5 Chain of Responsibility pattern structure

Objects of class Client initiate the request to handlers in the chain of responsibility. The

chain of responsibility is composed by objects with a common interface class, class Handler.

This class defines an operation for dealing with the request, operation HandlerRequest, and

has a reference to the successor in the chain. Different ConcreteHandler classes assume the

responsibility of handling specific requests. If the request is this ConcreteHandler’s

responsibility, the ConcreteHandler handles the reuqest. If not, it passes the request to the

following ConcreteHandler in the chain of responsibility.

With the Chain of Responsibility pattern, handlers are concerned with the way how they

handle the requests they are responsible for, without the concern of the chain’s structure.

Also, because sender objects only keep references to their successor, this makes interactions

between sender and receiver objects simpler. Finally, the Chain of Responsibility pattern also

enhances flexibility because the structure of the chain can be dynamically changed without

impact on the system.

2.9 Composite

“Compose objects into tree structures to represent part-whole hierarchies. Composite

lets clients treat individual objects and compositions of objects uniformly”.

The Composite pattern uses recursive composition to treat primitive and container objects

in the same way. This makes dealing with tree structures a simpler task. To achieve this

effect, the Composite pattern defines an abstract class that represents both atomic parts and

20

their containers. This abstract class declares operations common to both primitive and

container classes, as well as operations for accessing and managing composite object’s

children.

Figure 6 exemplifies the pattern’s structure.

Figure 6 Composite pattern structure

The Component abstract class is the key to the pattern, since it declares the interface for

the objects in the composition of the tree structure, whether they are Leaf or Composite

objects. Leaf and Composite objects differ because the former has no children while the latter

can have multiple children.

The Component class declares an operation Operation, with the behavior common to all

classes and operations Add, Remove and GetChild to deal with the children of Composite

objects.

Leaf objects simply define the behavior for primitive objects in the tree structure with the

Operation operation.

Composite objects store several objects that can be both of Leaf or Composite classes,

thanks to a data structure that references an undetermined number of Component objects.

Operations Add, Remove and GetChild manage the storage of Component child objects and

the Operation operation traverses the structure that stores Component objects. If they are

Leaf objects, it calls the Operation operation of Leaf objects. If they are Composite objects, it

calls Operation on that Composite’s children.

21

The Client objects access the composite structure through the Component class.

The Composite pattern makes it easier to add new kinds of components to applications,

by making them conform to the interface defined by the Component class. Since clients

access the structure through the Component class, this makes clients simpler because they

don’t need to know if they are dealing with a Composite or a Leaf object.

2.10 Decorator

“Attach additional responsibilities to an object dynamically. Decorators provide a

flexible alternative to subclassing for extending functionality”.

Inheritance is typically used to add features to existing classes. This way, every instance

of those subclasses exhibits the existing features of the super-class and the new features it

defines. But since inheritance hierarchies are defined statically, this solution is inflexible.

Additionally, it might be desirable that only some objects of a particular class have these

added functionalities, not all instances.

The Decorator pattern addresses this problem by enclosing an object in another object

that provides additional functionality. The enclosing object is called a decorator.

Figure 7 presents the structure for the Decorator pattern.

Figure 7 Decorator pattern structure

22

The Component class defines the interface of the objects that might be added with new

responsibilities. These responsibilities might be additional members, methods or both and

also additional behavior to existing operations. Instances of ConcreteComponent classes

define objects that can be handled and later added with new responsibilities.

The Decorator abstract class defines an interface for classes that add new responsibilities

that conforms to the interface defined by the Component class. It also keeps a reference to a

Component object to which it forwards requests, namely through the Operation operation.

The ConcreteDecorator classes add the operations and state for the desired specific

functionality dynamically.

An important aspect of the Decorator pattern is that it might be desirable to add several

different functionalities to an instance of a Component object, regardless of the composition

order, or that the same functionality might be added multiple times, in cases where this is.

The Decorator pattern makes this process easier than inheritance.

2.11 Factory Method

“Define an interface for creating an object, but let subclasses decide which class to

instantiated. Factory Method lets a class defer instantiation to subclasses”.

The Factory Method is closely related to Abstract Factory. While Abstract Factory

provides an interface for creating families of related objects, the Factory Method provides the

interface for the instantiation of the appropriate objects that will ultimately compose those

families. To this effect, the Factory Method provides a superclass with an abstract operation

for creating individual objects and delegates the responsibility of creating the correct objects

to the subclasses.

Figure 8 shows the structure of the Factory Method pattern.

23

Figure 8 Factory Method pattern structure

The Creator abstract class declares the FactoryMethod operation. It returns an object of

type Product. However, the Creator class doesn’t know which ConcreteProduct object the

FactoryMethod will return, unless it provides a default method implementation. The

ConcreteCreator classes provide implementations that return instances of the appropriate

related ConcreteProduct.

As described, the Factory Method makes the instantiation of new objects more flexible

and independent of specific classes.

2.12 Mediator

“Define an object that encapsulates how a set of objects interact. Mediator promotes

loose coupling by keeping objects from referring to each other explicitly, and it lets you vary

their interaction independently”.

Object oriented practices advise the encapsulation of individual concepts into objects that

module these concepts and their responsibilities. When objects need functionalities from

other objects, they should form connections among themselves. However, when too many

connections are composed, the interactions between objects and the overall system become

difficult to manage. The Mediator pattern bypasses this problem by creating an object that

centralizes interactions between other related objects, controlling and coordinating them.

24

Participant objects only know of their intermediary object and interactions between them

must pass through this intermediary object. This also leads to the reduction of the number of

interconnections between objects, which makes the system easier to manage.

Figure 9 shows a representation of the Mediator pattern.

Figure 9 Mediator pattern structure

The Mediator class defines how Colleague objects communicate with each other. Each

Colleague has a reference to its Mediator object. Colleague objects use this reference to

communicate with the Mediator object that acts as the intermediary for its interactions with

other Colleague objects.

In order to control interactions between ConcreteCollegue objects, ConcreteMediator

keep a reference to each ConcreteColleague it serves as an intermediary.

The Mediator pattern brings advantages such as loose coupling and simpler

communication between Colleague objects. The former characteristic makes reusing

Colleague classes easier because objects are only concerned with their own behavior and not

with the cooperation. Also, it makes the system easier to understand. However, the latter

characteristic of the pattern has a downside to it, since it makes the Mediator object more

complex because it centralizes all interaction protocols a single object.

2.13 Observer

“Define a one-to-many dependency between objects so that when one object changes

state, all its dependents are notified and updated automatically”.

25

The Observer pattern shares with Mediator the fact that both deal with managing

interactions between groups of related objects in a consistent manner. However, as in the

case of Mediator, this consistency must be obtained while still avoiding tight coupling

between classes.

Observer solves the problem of decoupling objects that produces events of interest from

objects that should be notified when those events happen. Observer offers a flexible solution

in that it makes the connection between both kinds of objects without them making

assumptions about each other.

Figure 10 illustrates the Observer pattern.

Figure 10 Observer pattern structure

The Observer pattern defines two roles, one for classes that create events of interest,

other for classes that are notified of these events. These are the Subject classes, the classes

that produce events of interest, and the Observer classes, the classes that must be notified of

these events.

The Subject abstract class keeps references to Observers interested in changes in their

own state. These references are stored in a data structure that keeps references to observers.

Subject also has operations for adding and removing Observers objects to that data structure,

operations Attach and Detach, respectively. Subject also has the Notify operation. This

operation is responsible for the notification of the event to all interested Observers. It

traverses the data structure and calls the Update operation of the Observer abstract class.

This operation matches the Observer’s state to the Subject’s state.

26

The ConcreteSubject classes hold the state Observers are interested in and are responsible

for notifying the Observers through the Notify operation when they change state. Finally,

ConcreteObserver classes implement the Update operation, responsible for ensuring the

consistency between the Subject and Observer state.

The advantages the Observer pattern brings are similar to the ones Mediator does,

namely the loose coupling between Subject and Observer.

2.14 Prototype

“Specify the kinds of objects to create using a prototypical instance, and create new

objects by copying this prototype”.

The Prototype pattern offers a different approach to the creation of objects. It offers an

alternative to inheritance sharing of common behavior. Instead of creating several subclasses

to define a new behavior that share a common superclass, Prototype lets behavior be shared

by creating new instances simply by copying a default instance of a subclass and then

modifying it at will by saying how it differs from the default instance. This default instance is

called the prototype instance.

This strategy is called delegation and has been previously discussed by Liebermann [35].

Figure 11 exemplifies the Prototype pattern’s structure.

Figure 11 Prototype pattern structure

27

The Prototype pattern structure is relatively simple. The Prototype interface declares the

Clone operation that lets objects produce copies of themselves. This operation is

implemented in the ConcretePrototype classes. After the Clone operation is implemented,

clients can create new Prototype instances by calling the Clone operation through their

prototype reference.

The advantages of the Prototype pattern and its underlying delegation mechanism are

associated with the advantages of object composition over inheritance, since delegation is a

form of composition, in which the object responsible for the delegation passes itself to the

other object.

2.15 Visitor

“Represent an operation to be performed on the elements of an object structure. Visitor

lets you define a new operation without changing the classes of the elements on which it

operates”.

Instead of adding new functions to already existing classes in a given inheritance tree, the

Visitor pattern adds them in a particular manner. It encapsulates related operations in

specialized classes that add these operations. These classes can themselves create another

inheritance tree for the implementation of operations to be added to classes of the original

inheritance tree. A typical application of the Visitor pattern is when operations must be added

to objects from the original inheritance tree that are stored in an object data structure. These

operations are added dynamically to objects as objects from the specialized classes traverse

the data structure. This is useful if the structure to be traversed has a considerable number of

instances of a small number of classes and you want to perform some operation that involves

all or most of them. This way, objects of the original inheritance tree must accommodate a

new operation for accepting the new operations defined by the visiting object.

Figure 12 presents the Visitor pattern structure.

28

Figure 12 Visitor pattern structure

The Element and ConcreteElement classes define the base class hierarchy to which we

want to add operations. These operations are added through the Accept operation. This

operation takes as an argument the Visitor object that will add the operation to each object.

The Visitor class declares operations to visit each ConcreteElement class. The

ConcreteElement class to be visited is determined by the operation’s name and signature.

ConcreteElements being visited use the appropriate operation to add operations to themselves

in the definition of the Accept operation.

The ConcreteVisitor classes implement each operation declared by Visitor. Since the

object structure has elements of different types, each Visit operation in a ConcreteVisitor

define a part of the algorithm this particular ConcreteVisitor adds to the classes in the object

structure. ConcreteVisitor also provides the context for the algorithm and stores its local state

which can accumulate results during the traversal of the structure.

A language feature related to this pattern is double dispatching [15]. Most object oriented

languages, like Java, support only single dispatch. This means that the exact implementation

of method that gets executed depends only of the name of the method itself and a single

additional factor, the type of the object that receives the method call.

29

This contrasts with multiple dispatching, as it is supported, for example, by the CLOS

programming language. With multiple dispatching, the method that gets executed depends

not just on the method’s name and of the type of the object that carries out the method call. It

also depends on the types of the various arguments of that method. Double dispatching is a

special case of multiple dispatching because it deals with only one method argument.

The Accept operation is concerned with double dispatching because the exact visiting

operation depends on the Visitor’s and the Element it visits types.

The Visitor pattern’s advantage is that it makes adding new operations easy. Furthermore,

related operations can be gathered in a specific ConcreteVisitor classes. However, this

pattern makes adding new ConcreteElement classes harder because every new

ConcreteElement classes gives rise to an abstract method that must be implemented by every

ConcreteVisitor class.

2.16 Summary

This chapter introduces the set of 11 GoF design patterns that are used for the CaesarJ

design pattern implementations. Table 3 is an adaptation from Gamma et al. [21] and

summarizes the design patterns that are approached in this study and the aspects that can vary

within these design patterns.

Design pattern Aspect(s) that can vary

Abstract Factory families of related product objects
Bridge implementation of an object
Builder how a composite object gets created
Chain of Responsibility object that can fulfill a request
Composite structure and composition of an object
Decorator responsibilities of an object without sub-classing
Factory Method subclass of object that can be instantiated
Mediator how and which objects interact with each other
Observer number of objects that depend on another object; how

the dependent object stays up to date
Prototype class of object that is instantiated
Visitor operations that can be applied to object(s) without

changing their class(es)
Table 3 Design aspects that design patterns let you vary

30

31

3. CaesarJ

CaesarJ is one of several aspect-oriented programming languages. Like such, it strives to

improve software engineering goals like modularity and reuse through constructs that support

advanced separation of concerns. One of the main reasons why AOP solutions improve on

OOP solutions in many cases is because OOP lacks proper language support to the separation

of crosscutting concerns. This lack of support originates both code tangling and code

scattering [32], which consequentially hinders modularity and reuse.

The rest of this chapter is organized as follows: section 3.1 introduces CaesarJ, makes a

short comparison between CaesarJ and AspectJ and section 3.2 introduces its concepts of

aspect implementation, its conceptual modules and language features. The following sections

describe these concepts, kinds of modules and their related mechanisms in further detail.

Section 3.3 presents the virtual class and family polymorphism mechanism; section 3.4

discusses the lack of support for the separation of concerns in traditional OOP languages by

presenting an example of the Observer pattern through which some CaesarJ features are

illustrated; sections 3.5 through 3.8 describe the four conceptual modules by which CaesarJ

specifies an aspect component; section 3.9 ends the chapter by presenting an example of the

impact that programming with CaesarJ has on client code, making a comparison with a Java

implementation of the same example.

3.1 Introduction to CaesarJ

This chapter starts by drawing a comparison with AspectJ. Similarly to AspectJ, CaesarJ is

also an AOP extension to the object-oriented programming (OOP) Java programming

language. This way, any Java program (up to Java 2) can potentially benefit from CaesarJ

functionalities. Being a more recent language than AspectJ, CaesarJ benefits from the

32

knowledge and experience gained from the first years of AspectJ and both have some

common points, such as AspectJ’s joinpoint, pointcut and advice model. Some exceptions to

this case follow:

• The if(…) pointcut is not supported;

• Abstract pointcuts are not supported;

• A piece of advice can refer to the pointcuts in the declaring class or any of its

superclasses;

Besides these exceptions, there are some more significant differences between them, as

far as technical support, language constructs and conceptual models.

For years, AspectJ has been having more developed support and maintenance than

CaesarJ. Not only does AspectJ seem to have a larger team providing technical support and

maintenance, its support seems to be more complete, robust and sophisticated than CaesarJ.

Also, there are by far many more scientific articles and documentation focusing on AspectJ

than on CaesarJ.

These differences in technical support translate into the stability of the language

conception. CaesarJ’s constructs have evolved through different stages until the current

version as can be testified from an overview of key publications describing the language

[6][37][38][39][48]. Other than that, CaesarJ plug-ins for IDEs, namely Eclipse, are not as

sophisticated and robust as AspectJ’s. For instance, in the present plug-in version for the

Eclipse IDE, the build automatically option is still unreliable since it may result in

incomplete project builds.

As of January 2008, AspectJ became backwards compatible with Java 6, while CaesarJ

remains backwards compatible with Java 2. Therefore, CaesarJ lacks the support for a

number of features such as annotations and generic types. Furthermore, although CaesarJ is a

newer language than AspectJ, it currently has less technical support [3] and its most recent

version dates from April 2008 and is actually older than AspectJ’s more recent version [2], as

AspectJ’s latest version was released in December 2008. Currently, there is no indication that

CaesarJ will be compatible with newer versions of Java since there is no CaesarJ version

scheduled to be released.

33

These differences are reflected in the widespread acceptance of AspectJ and its larger

number of users. AspectJ has long since have a mailing list with heavy traffic by its users,

whereas CaesarJ’s mailing list has less traffic and is more recent.

3.2 Structure of a CaesarJ component

CaesarJ does not use the AspectJ construct aspect. Instead, CaesarJ presents the language

construct cclass, which defines a CaesarJ class. A cclass enhances a plain Java class by

providing additional Caesar features. Among these features are the pointcut and advice

mechanisms akin to AspectJ, but also virtual classes and family polymorphism (section 3.3)

and mixin composition (section 3.8). Although plain Java classes can be composed with

cclasses, these classes also present some limitations. Cclasses can implement Java interfaces

but they cannot extend regular Java classes. Consequentially, Java classes cannot be casted

into cclasses, and vice-versa. In addition, cclass arrays are not allowed, although traditional

data structures from the Java API can be used.

Both languages differ in their reuse mechanisms. The primary technique for reuse in

AspectJ is obtained through abstract aspects and concrete aspects which bind the abstract

aspect to case-specific systems. Reuse comes from the fact that different concrete aspects can

be made to inherit from a common abstract aspect.

CaesarJ has a different approach for dealing with aspects and crosscutting concerns. It

recognizes that the joinpoint interception mechanism, although a cornerstone of AOP, is not

sufficient to reflect the structural nature of aspects into modules with a rich inner structure

[38]. Since crosscutting concerns, by definition, span over different concerns and involve

different abstractions, the aspect structure should reflect this nature.

Conceptually, CaesarJ sees an aspect a component. To achieve better modularity, CaesarJ

structures a component with different kinds of modules. These modules are called

Collaboration Interfaces (CI) (section 3.5), CaesarJ Implementations (CJImpls) (section 3.6),

CaesarJ Bindings (CJBindings) (section 3.7) and Weavelets (section 3.8).

The general structure of the component, with all the participant roles of the module and

the actions they perform, is described in the CI. The CI is an abstract top level class, where

the participant roles of the CI are declared, though not implemented, as inner, nested CaesarJ

34

classes. The implementation of these inner classes is made in the CJImpls and CJBindings. In

CaesarJ, these inner classes are also virtual classes and have different properties from Java’s

inner classes. These virtual classes are used in CaesarJ to implement a mechanism called

family polymorphism. Since all CaesarJ inner classes are virtual classes, the latter

denomination will be used, to emphasize this important characteristic.

The CJImpl defines the context independent parts of a CI. There can be many different

CJImpls to a single CI. In cases where different CJImpl modules exist, it is possible to switch

a CI’s implementation by a module with an alternative implementation without any impact or

change on the code of the remaining modules.

The CJBinding defines the context specific facet of the CI. They are the “glue” that binds

the CI to the concrete application to which the component is bound. CJBindings map the

roles declared in the CI to the existing abstractions of the system where the aspect is to be

inserted. CJBindings can use AspectJ-like pointcuts and advices but also define wrapper

classes. These wrapper classes take a particular class performing a core-concern function in

the system and enhance it with additional state and behavior related to the cross-cutting

concern defined in the aspect component.

Since CJImpls and CJBindings describe different, non-overlapping facets of the CI, it is

necessary to combine them in a single module that pairs both modules and realizes the whole

aspect component. The module where this operation takes place is called a Weavelet.

Weavelets are described in section 3.8.

Not all of these modules are necessarily a part of all possible CaesarJ components, except

for the CJBindings, since they are essential to hold together the more concrete part of the

application and the more abstract which is the CI.

CaesarJ achieves reuse by isolating different facets into separate modules that are allowed

to evolve independently and easily combined to produce a complete aspect component. More

concretely, the CI supports loose coupling between the code holding the abstract component

implementation in the CJImpl, and the code in the CJBinding that attaches the component

implementation to the application where the component is to be deployed.

Figure 13 illustrates the general structure of a CaesarJ component, describing all CaesarJ

modules, their mutual relations and the relations to classes in an application.

35

Figure 13 General structure of a CaesarJ component

3.3 Virtual classes

Virtual classes provide classes the ability to treat inner classes as class attributes, the same

way as methods and fields [36]. The term virtual classes reflects the parallelism with virtual

methods present in traditional object-oriented languages, since they follow similar rules as far

as definition, overriding and reference [19]. This ability allows these inner classes to be

polymorphically redefined by its subclasses. CaesarJ defines virtual classes as inner classes

of an enclosing class, the family class. An instance of a family class is called a family object.

Virtual classes must always be accessed through an instance of the enclosing class (the

family object) where they are defined (the family class). As a consequence, the

implementation of a virtual class is late bound, as it is dependent of the object used to access

it. Therefore, the name of an inner class does not uniquely identify a specific virtual class

[18]. Additionally, because the late binding of a class operates at the level of the class name,

the name of a virtual class is not related to a single class.

36

3.3.1 Implicit inheritance

Family classes hold sets of collaborating inner (virtual) classes that must be accessed

through their family object. Thanks to the virtual class mechanism, CaesarJ is able to define

variations of abstractions represented as virtual classes by refining these virtual classes in

family subclasses. The difference between CaesarJ’s virtual class refinement and

conventional sub-class refinement is that the references to a virtual class from other virtual

classes are dynamically bound by the family object. Figure 14 illustrates this difference in

CaesarJ’s virtual class mechanism.

Figure 14 Virtual classes in CaesarJ

Figure 14 presents two family classes, SuperFamilyClass and its sub-class

SubFamilyClass. Within SuperFamilyClass there are two virtual classes, VirtualClassA

and VirtualClassB. VirtualClassB references VirtualClassA. Within

SubFamilyClass there is only one virtual class, the VirtualClassA virtual class in

SubFamilyClass which refines the VirtualClassA defined in SuperFamilyClass. The

difference to conventional sub-class inheritance mechanisms is that all VirtualClassB

references to VirtualClassA from an object of type SubFamilyClass are bound to the

refined VirtualClassA. This effect is indicated by the gray shadows in VirtualClassB.

The refined VirtualClassA also reflects another mechanism provided by virtual classes,

implicit inheritance. Because both SuperFamilyClass and SubFamilyClass define a virtual

class VirtualClassA, and SubFamilyClass extends SuperFamilyClass, an implicit

inheritance relation is created between the two family classes. The VirtualClassA in

SubFamilyClass overrides the VirtualClassA in SuperFamilyClass. This makes the

37

instantiation of VirtualClassA late-bound, depending on the family object through which it

was accessed.

3.3.2 Family polymorphism

CaesarJ uses the virtual class mechanism to implement family polymorphism [18].

Family polymorphism addresses the problem of expressing families of related classes and

managing their relations polymorphically. Family polymorphism enables developers to

flexibility redefine these classes while the type system guarantees that classes from different

families are not mixed. Through family polymorphism it is possible to statically declare and

manage relations between several classes polymorphically, in a way that a given set of

classes is known to constitute a family and the relations between its members, without

specifying statically exactly what those classes are.

Traditional object-oriented languages lack mechanisms to represent families of related

classes explicitly. This limitation poses consistency issues, since objects from unrelated class

families are allowed to mix. The issue of multi-object consistency is noticeable in parallel

inheritance chains of collaborating classes with multiple possible combinations of class

implementations [47]. However, not all combinations are consistent and the type system

should be able to distinguish between the consistent and inconsistent variations. Since no

explicit definition of related classes is present, mainstream object-oriented languages force

developers to make a decision between flexibility and safety. As a consequence, either too

many inconsistent combinations are allowed or correct combinations are blocked. To cope

with this limitation, the Abstract Factory design pattern [21] is sometimes used.

The fact that the type system relies on the identity of the family object means that it must

always be passed as an argument along with the instances of the family. In order for the type

checker to guarantee that the family object is the same in all situations, some situations

associated to the handling of the object references are not allowed. For instance, an object is

not even equal to itself in a scenario in which it is passed twice to a method, in the form of

two different arguments. This is due to the existence of multithreading in which the

referenced object may be changed between two different accesses. For this reason, the

reference to the family object must be declared final and propagated as such from its

38

definition to any point in the program that uses part of the family [6]. CaesarJ’s virtual class

mechanism and its implementation of family polymorphism have been proven sound by

Ernst el al. in [36].

3.4 Illustrating Example: Observer

The concept behind CaesarJ can be further illustrated by a concrete example of the

situations it addresses and the mechanisms used in CaesarJ’s aproach. To that effect, a Java

scenario of the Observer pattern [21] is used. This example presents the problems related to

the lack of separation of concerns in traditional OOP and to serve as comparison to CaesarJ’s

method to modularizing crosscutting concerns. This example has been taken from Bruce

Eckel’s book “Thinking in patterns” [17] which includes a repository of Java design patterns.

The Observer pattern is characterized by two roles: Observer and Subject (see section

2.13). The Observer and Subject roles are related by an observing relation, where multiple

Observers subscribe to Subjects to monitor events of interest. When an event of interest takes

places in a Subject, the Subject must notify its Observers and Observers update their internal

state. In this scenario, the Flower class performs the Subject role, where the events of interest

that may occur are the opening and closing of that flower’s petals. The Bee and

Hummingbird classes perform the role of Observer and are interested in the opening and

closing events. When a Flower opens its petals, its Observers have breakfast; when a

Flower closes its petals, its Observers go to sleep. Listing 1 presents the Flower class,

where the shaded lines discriminate the code related to the Observer pattern, particularly the

role of Flower as Subject. Listing 2 presents the Bee class, where the shaded lines

discriminate the code related to the Observer pattern, particularly the role of Bee as

Observer. The Hummingbird class is identical to the Bee class, therefore it is not presented.

This scenario takes advantage of the Java API classes, particularly the Observable class

and the Observer interface to implement the roles of Subject and Observer, respectively.

Classes that perform the Subject role must extend the Observable class to implement the

logic related to the storage of interested Observers and to notify them of events of interest.

The Observer role classes must implement the Observer interface and its update method to

provide Observers the ability to refresh their state.

39

Instead of having the participant classes extending the Observable and Observer classes

directly, inner classes are used to isolate the code related to the role played in the pattern.
01 class Flower {
02 private boolean isOpen;
03 private OpenNotifier oNotify = new OpenNotifier();
04 private CloseNotifier cNotify = new CloseNotifier();
05 public Flower() { isOpen = false; }
06 public void open() { // Opens its petals
07 isOpen = true;
08 oNotify.notifyObservers();
09 cNotify.open();
10 }
11 public void close() { // Closes its petals
12 isOpen = false;
13 cNotify.notifyObservers();
14 oNotify.close();
15 }
16 public Observable opening() { return oNotify; }
17 public Observable closing() { return cNotify; }
18 private class OpenNotifier extends Observable {
19 private boolean alreadyOpen = false;
20 public void notifyObservers() {
21 if(isOpen && !alreadyOpen) {
22 setChanged();
23 super.notifyObservers();
24 alreadyOpen = true;
25 }
26 }
27 public void close() { alreadyOpen = false; }
28 }
29 private class CloseNotifier extends Observable{
30 // Logic for the notifying closing events
31 }
32 }

Listing 1 Class Flower of the Java Flower Observer scenario.

01 class Bee {
02 private String name;
03 private OpenObserver openObsrv = new OpenObserver();
04 private CloseObserver closeObsrv = new CloseObserver();
05 public Bee(String nm) { name = nm; }
06 // An inner class for observing openings:
07 private class OpenObserver implements Observer{
08 public void update(Observable ob, Object a) {
09 System.out.println("Bee " + name + "'s breakfast time!");
10 }
11 }
12 // Another inner class for closings:
13 private class CloseObserver implements Observer{
14 public void update(Observable ob, Object a) {
15 System.out.println("Bee " + name + "'s bed time!");
16 }
17 }
18 public Observer openObserver() {
19 return openObsrv;
20 }
21 public Observer closeObserver() {
22 return closeObsrv;
23 }
24 }

Listing 2 Class Bee of the Java Flower Observer scenario.

40

An inner class is defined for every type of event of interest that might occur. The use of

inner classes is justified by their ability to refer members of the enclosing class, including

private members [47]. By using inner classes rather than extending Observable and

Observer directly, the enclosing classes are free to extend classes other than the ones related

to the pattern code. This characteristic of inner classes provides a limited form of multiple

inheritance.

The main limitation to this approach is that classes are concerned with more than one

concern, as can be seen from the shaded lines. In fact, the Flower class does not represent

solely a flower, it represents a flower that must notify its observers when it opens or closes it

petals. The inverse situation is true for Bee. This leads to code tangling because code for the

pattern logic is mixed if the code for the core class concern. Code scattering is also present

because the pattern related code is not modularized but rather spread throughout the class

[47].

CaesarJ presents a different solution to these problems. This solution and the modules

that enable it are present in Sections 3.5 through 3.9.

3.5 Collaboration Interfaces

A CaesarJ component has different parts that interact with each other. A Collaboration

Interface (CI) contains the declarations of the abstract roles of those participants as well as

their operations. These characterize how the participants interact (or collaborate) with each

other. A CI describes the roles of the objects that comprise any implementation of the

component and the relations between them. These roles are defined by collaborating classes

represented by virtual classes and are frequently mutually recursive in the sense that each

virtual class refers to the other virtual class in its own definition. Also, each role represents

an abstraction of the modular structure of the aspect [38].

Furthermore, a CI has two facets, the provided and expected facets of the component. The

provided facet tells what the component provides to the context to which it is applied and the

expected facet tells what the component expects from the context it is applied in, so it can

deliver what the provided facet promised. Initially, the provided and expected facets were

made explicit by the keywords required and expected. Nowadays, this is no longer true, as

41

the CaesarJ developers came to the conclusion that each concrete use of provided/expected

would represent only one among many possible variants [6].

The CJImpl of a component comprises the implementation of the provided part while a

CJBinding integrates the component with the base application to implement the expected

part. Although CJImpls and CJBindings are placed in different modules, they are connected

through their common CI which serves as a medium for bidirectional communication

between them since both inherit from the same CI [38]. This way, CI’s support loose

coupling between implementations and bindings, contributing to more reuse opportunities,

since different CJImpls and CJBindings of a common CI can be combined to produce

different implementations of the component. The CI itself only contains design information,

but acts as an interface for the implementation of the aspect component in the CJImpls and

CJBindings.

Listing 3 presents an example of a CI related to the Flower Observer scenario of the

Observer pattern. This example was previously developed by Sousa et al. [47][48].

01 public abstract cclass ObserverProtocol {
02 public abstract cclass Subject {
03 public abstract void addObserver(Observer obs);
04 public abstract void removeObserver(Observer obs);
05 public abstract void removeObserver();
06 public abstract void notifyObservers();
07 public abstract Object getState();
08 }
09
10 public abstract cclass Observer {
11 public abstract void refresh(Subject s);
12 }
13 }

Listing 3 Collaboration Interface of the Observer pattern in the Flower Observer scenario

The abstract cclass ObserverProtocol describes the collaboration between two other

abstract virtual cclasses, Subject and Observer. These cclasses are mutually recursive,

since they have references to each other on their own definition. In this example, there are

two different levels of abstraction in the methods in Subject and Observer. Some methods

have a closer relation to application details while others have a more abstract nature.

The methods addObserver, the two removeObserver methods and notifyObservers

in Subject are abstract, since the way we add, remove or notify an Observer is not

necessarily context sensitive. It is up to the programmers to define how these actions should

42

be performed and they are not bound to a specific application. Therefore, these methods

should be implemented in a CJImpl. The methods getState in Subject and refresh in

Observer belong to a concrete, specific case since they are directly dependent on the

application they are applied to. This way, these methods should be implemented in a

CJBinding.

Notice that although two roles are described, a collaboration typically involves several

instances of multiple types. Furthermore, virtual classes allow for an arbitrary number of

roles to be defined within a CI. These virtual classes can also define inheritance hierarchies

between them.

Figure 15 illustrates the structure of the CI developed for the Flower Observer scenario.

Figure 15 Collaboration Interface for the Flower Observer scenario

3.6 CaesarJ Implementations

CaesarJ Implementations (CJImpls) implement the context sensitive methods inherited from

the CI. They correspond to AspectJ’s abstract aspects since they are independent from any

particular case. Because they are not application specific, CJImpls are reusable by nature.

Application specific methods should be described in the CJBinding.

In order to implement the provided facet of a CI, it is necessary to create virtual classes

within a family class that have the same name as in the CI, or nested classes that explicitly

extend the nested class declared on the CI. This is a consequence of virtual classes. In Java,

declaring a nested class with the same name as an inner class of the super class is a

43

phenomenom named shadowing. However, this is not the case with CaesarJ, since virtual

classes are late bound and do not uniquely identify an inner class. Also, methods from the

expected facet declared in the CI can be called in order to implement the provided facet.

Finally, additional state and behavior can be added to virtual classes in the

implementation of the CJImpl. The virtual classes in CJImpls can extend and refine the

virtual classes defined in their CIs by adding data members or methods necessary to the

implementation of the provided facet of the CI. The reusable nature of CJImpls comes from

the fact that they are not bound to a concrete scenario, so they have some level of abstraction

from the concrete system and because it is possible to define CJImpls with different data

members and method implementations, according to the developer’s specific needs,

depending on its goals and the systems characteristics.

Listing 4 shows a CJImpl developed for the Flower Observer scenario following that CI.

01 public abstract cclass ObsImpl extends ObserverProtocol{
02 public cclass Subject {
03 private ArrayList observers = new ArrayList();
04
05 public void addObserver(Observer obs){
06 this.observers.add(obs);
07 }
08 public void removeObserver(Observer obs){
09 this.observers.remove(obs);
10 }
11 public void removeObserver(){
12 this.observers.clear();
13 }
14 public void notifyObservers(){
15 Iterator it = this.observers.iterator();
16 while(it.hasNext())
17 ((Observer)it.next()).refresh(this);
18 }
19 public Object getState(){
20 return null;
21 }
22 }
23 }

Listing 4 CaesarJ Implementation of the Observer pattern in the Flower Observer scenario

Listing 4 presents the implementation of the non context specific methods of the

ObserverProtocol CI. As we can see, ObsImpl declares itself to be both abstract and

extending ObserverProtocol. This illustrates the inheritance mechanism in CaesarJ and

also the rationale behind CJImpls. ObsImpl is abstract because only the non-application

sensitive methods of the virtual classes in ObserverProtocol are implemented. As far as the

inheritance mechanism, ObsImpl contains a virtual class Subject that refines the abstract

44

virtual class Subject in ObserverProtocol. This virtual class adds an ArrayList member

observers to ObserverProtocol.Subject and implements its addObserver,

removeObserver and notifyObservers methods based on this data structure. To illustrate

the possibility of reuse CJImpls offer, an alternative implementation could be performed

where the observers member would have a different data structure, such as a WeakHashMap.

This time, the operations regarding the set of observers would relate to a WeakHashMap

instead of an ArrayList, but that change would only have an impact in the implementation

of the CJImpl module. Reuse comes from the fact that these different implementations could

be easily switched without having to change any from the remaining in the rest of the CaesarJ

component.

The capability for CJImpls to call on methods from the expected facet of the component

is exemplified by the notifyObservers method. It calls the refresh method which is

declared in the ObserverProtocol.Observer virtual class.

Figure 16 represents the structure of the CJimpl developed for the Flower Observer

scenario.

Figure 16 CaesarJ Implementation for the Flower Observer scenario

3.7 CaesarJ Bindings and Wrappers

CaesarJ Bindings (CJBindings) are the glue that binds the component to a specific

application [39]. Application specific methods should be described in the component

binding. The CJBinding is the module that complements the CJImpl. While the CJImpl

45

implements the abstract part of the CI, the CJBinding implements the methods that enclose

the context specific logic of the component and are defined by the classes in the base

application. CJBindings map the abstract roles in the component to classes in the application

context through wrapper classes [37].

3.7.1 Wrapper classes

Wrapper classes are expressed by the wraps keyword. A wrapper class can map one or

several application objects to a role defined in the CI. The wrapped objects of the application

domain can be accessed by the wrappee keyword. Family classes cannot define wrapping

relations, only virtual classes. The expression cclass A extends B wraps X is syntactic

sugar for:
cclass A extends B {
 X wrappee;
 A(X wrappee) {this.wrappee = wrappee};
}

Listing 5 Wrapper declaration syntactic sugar

 Like such, virtual classes that define wrappers cannot be declared abstract. This

restriction poses limitations to the integration of multiple hierarchical structures into the

component.

Wrappers add behavior and state to the wrappee and can use the wrappee’s interface to

implement the expected facet methods defined in the CI. Wrapper objects are available until

the wrappee is swept by the garbage collector. Wrappers are CaesarJ’s mechanism that

replaces AspectJ’s inter-type declarations and the declare parents clause.

3.7.2 Wrapper recycling

Since wrappers establish the correspondence between objects in the application domain

and instances of the roles defined in the component, it is necessary to ensure that each

component role instance is associated with a single object in the application domain. Such

consistency is necessary to assure the correct navigation between the abstractions in the

component context and the abstractions in the base application [37]. The wrapper recycling

mechanism ensures such consistency. Wrappers are not instantiated with the new constructor

46

call. Instead, wrappers are created by a wrapper constructor call. The difference between

wrapper constructor calls and regular constructor calls is that a wrapper constructor call only

returns a new instance if a wrapper for that object does not already exist. If so, the wrapper

constructor call returns the existing wrapper. This way, the identity and state of the wrapper

is preserved [37].

A wrapper constructor call is identified by a outerClassInstance.W(wrappee)

signature, where outerClassInstance is the family object, W is the virtual class that defines

the wrapper class, and wrappee is the application object to be wrapped. CaesarJ implements

the wrapper recycling mechanism by keeping a WeakHashMap data structure in the family

object that keeps the correspondence between application objects and wrapper instances.

When a wrapper constructor call is performed, a key is created for the constructor argument

and looked up in the WeakHashMap data structure. If the lookup fails, an instance of

outerClassInstance.W is created for the wrappee object, stored in the WeakHashMap and

returned. If the lookup does not fail, the already existing instance stored in the WeakHashMap

is returned.

In cases where it is necessary, bindings can also contain AspecJ-like pointcuts and

advices to collect data from the context of the running application.

The same way CJImpls correspond to AspectJ’s abstract aspects, CJBindings correspond

to AspectJ’s concrete sub-aspects.

Listing 6 shows a CJBinding developed for the Flower Observer scenario following that

CI. In Listing 6 we have an example of how a CJBinding glues the whole component to its

specific application.

Like ObsImpl, ObsBinding is also abstract. It is the complementary part to ObsImpl as

far as implementing the CI ObserverProtocol and, like ObsImpl, does not implement every

method in ObserverProtocol so, it must be declared abstract.

The way ObsImpl binds itself to the application classes is through the wraps clause.

There are six wrapper classes in this CJBinding, FlowerOpening, FlowerClosing,

BeeIsOpenObserver, BeeIsCloseObserver, HummingbirdIsOpenObserver and

HummingbirdIsCloseObserver, which map the virtual classes in the CI to the concrete

classes of the application.

47

01 public abstract cclass ObsBinding extends ObserverProtocol{
02 public cclass FlowerOpening extends Subject wraps Flower {}
03 public cclass FlowerClosing extends Subject wraps Flower {}
04
05 public cclass BeeIsOpenObserver extends Observer wraps Bee {
06 public void refresh(Subject s) { wrappee.dinner(); }
07 }
08
09 public cclass BeeIsCloseObserver extends Observer wraps Bee {
10 public void refresh(Subject s) { wrappee.rest(); }
11 }
12
13 public cclass HummingbirdIsOpenObserver extends Observer wraps Hummingbird {
14 public void refresh(Subject s) { wrappee.dinner(); }
15 }
16
17 public cclass HummingbirdIsCloseObserver extends Observer wraps Hummingbird {
18 public void refresh(Subject s) { wrappee.rest(); }
19 }
20
21 pointcut openCloseEvents(Flower f) : (set(* Flower.isOpen)) && this(f);
22 void around(Flower f, boolean new_val) : openCloseEvents(f) && args(new_val) {
23 boolean old_val = f.isOpen();
24 proceed(f,new_val);
25 if(old_val != new_val)
26 if(new_val)
27 FlowerOpening(f).notifyObservers();
28 else
29 FlowerClosing(f).notifyObservers();
30 }
31 }

Listing 6 CaesarJ Binding of the Observer pattern for the Flower Observer scenario

The first two are virtual classes that extend the Subject role of the CI, so they define

events to be observed on their wrapped class, in this case, class Flower. Thus,

FlowerOpening observes the opening of a flower and FlowerClosing its closing. These

wrappers don’t add any behaviour to their wrapped classes.

The last four wrapper classes extend the role of the Observer and define its behaviour

relating it to the base application by wrapping the Bee and Hummingbird classes. These

classes implement the method update, considering all cases possible between an event of the

flower opening and closing and if the Observer is a Bee or a Hummingbird. In each case, the

update method is mapped to the wrappee’s dinner or rest, depending whether the

Flower opened or closed.

ObsBinding makes use of an AspectJ-like pointcut to capture points of interest in the

program execution. The pointcut captures information about the context of the control flow

of the application and further connect the CJBinding with the concrete instance of the design

pattern. In this case, a named pointcut is used to capture the event of a modification of the

isOpen member in Flower. Finally, the advice associated to this pointcut implements the

48

update logic of the Observer according to the situation. If there is a change in the state of the

isOpen member, the advice calls the notifyObservers method on the FlowerOpening or

FlowerClosing wrapper class, depending on the event.

Together with the CJImpl, the CJBinding allows the plain Java classes performing the

roles of Subject and Observer in this scenario to be redefined, removing the crosscutting

concerns of the pattern from the base logic of the classes Flower, Bee and Hummingbird.

This way, the inner classes declared to perform the actions pertaining to the interactions

between the roles need not appear. Listing 7, Listing 8 and Listing 9 show classes Flower,

Bee and Hummingbird without any Observable or Observer members. The pattern code has

completely disappeared from these classes into the modules of the aspect component.
01 public class Flower {
02 private boolean isOpen;
03 public boolean isOpen(){return this.isOpen;}
04 public Flower(){
05 this.isOpen=false;
06 }
07 public void open(){
08 this.isOpen=true;
09 }
10 public void close(){
11 this.isOpen=false;
12 }
13 }

Listing 7 Flower class without Observable inner classes

01 public class Bee {
02 private String name;
03 public Bee(String name){
04 this.name = name;
05 }
06 public void dinner(){
07 System.out.println("Bee " + name + "'s dinner time!");
08 }
09 public void rest(){
10 System.out.println("Bee " + name + "'s bed time!");
11 }
12 }

Listing 8 Bee class without Observer inner classes

01 public class Hummingbird {
02 private String name;
03 public Hummingbird(String name){
04 this.name = name;
05 }
06 public void dinner(){
07 System.out.println("Hummingbird " + name + "'s dinner time!");
08 }
09 public void rest(){
10 System.out.println("Hummingbird " + name + "'s bed time!");
11 }
12 }

Listing 9 Hummingbird class without Observer inner classes

49

Figure 17 shows the structure of the CJBinding developed for the Flower Observer

scenario, and it’s wrapping relations to the classes in the base application.

Figure 17 CaesarJ Binding for the Flower Observer scenario

3.8 Weavelets and Aspect Deployment

Different modules are used do define the complementary provided and expected facets of a

CI. As both are incomplete parts of the same CI, they cannot be instantiated. A Weavelet

takes the provided and the expected facets of a CI, and combines them to complete the

definition of the CI.

3.8.1 Weavelets

A Weavelet is a cclass that takes a number of CJImpls and CJBindings and joins them

together, creating the complete component. This procedure is called mixin composition [10].

Mixins are abstract subclasses that may be used to specialize the behavior of parent classes

[10]. In CaesarJ, mixin composition takes abstract CJImpls and CJBindings to implement the

operations in the CI. Mixins can be seen as a form of multiple inheritance, since it combines

several different modules that implement complementary parts of a component. Since

CaesarJ classes are mixins, mixin composition can be obtained by passing a mixin as the

superclass parameter to another CaesarJ class.

50

Mixin composition is achieved in CaesarJ with the & operator and is characterized by the

following sintax:
public cclass C extends A & B{ }

The & operator defines an inheritance chain between the mixin operands represented by

classes A and B. The order of the operands defined in the mixin composition defines the order

of the linear inheritance chain there the & operator is not commutative. The operand on the

left hand side is more specific than the one on the right hand side [6]. Since CaesarJ classes

can hold virtual classes, the mixin composition mechanism is propagated to the virtual

classes where the linearization of the enclosing family class determines the linearization of

the virtual classes.

3.8.2 Aspect instantiation and deployment

Unlike AspectJ, CaesarJ aspects can be explicitly instantiated. This corresponds to the

instantiation of several Weavelets. This way it is possible to create several aspect instances in

the same application and manage them as objects with special responsibilities. This provides

the developer with enhanced control since it allows multiple instances of an aspect type with

independent state, life-cycle, and scope of deployment.

After a Weavelet is defined and both provided and expected facets are composed, the

Weavelet must still be deployed in order to activate its pointcuts and advices. In CaesarJ,

aspect deployment can be made both statically and dynamically. This constitutes another

difference from AspectJ, since AspectJ only supports static aspect deployment. Likewise,

AspectJ cannot distinguish between multiple instances of the same class. Distinctions of

these instances must be expressed programmatically.

In CaesarJ, static aspect deployment is obtained through the deployed modifier on the

declaration of a cclass. This way, an aspect is deployed in compile-time. The deployed

modifier can also be used in the instantiation of a final static object. Static deployment

automatically deploys an aspect at load time.

Aspects can also be deployed dynamically. Dynamic deployment can be either local

deployment or thread-based deployment. To carry out, an aspect must first be instanced by

the instantiation of a Weavelet and then use the deploy statement do define the scope of that

aspect. In local deployment, the activation scope of an aspect is defined by de deploy and

51

undeploy keywords, which activate and deactivate the aspect, respectively. The activation

scope in threah-based deployment is defined by a deploy block. An aspect is deployed on the

scope of the control flow inside the block and does not have any influence in concurrent

executions.

Listing 10 shows a Weavelet developed for the Flower Observer scenario following that

CI that completes the component by the composition of the corresponding CJImpl and

CJBinding.
01 public cclass FlowerObserverDeploy extends ObsImpl & ObsBinding{
02 }

Listing 10 CaesarJ Weavelet of the Observer pattern for the Flower Observer scenario

The Weavelet shown in Listing 10 simply connects the parallel hierarchies of the CJImpls

and CJBindings that extend the CI. Mixin composition is the mechanism that makes this

connection of different modules possible, by making FlowerObserverDeploy inherit both

from ObsImpl and ObsBinding.

Since FlowerObserverDeploy is not abstract it can be instantiated in order to deploy the

aspect component.

An example of local deployment is shown in Listing 11.
01 //instantiation of FlowerObserverDeploy
02 FlowerObserverDeploy asp = new FlowerObserverDeploy ();
03 …
04 deploy asp;
05 …
06 //the pointcut is active here
07 …
08 undeploy asp;
09 //the pointcut is no longer active

Listing 11 Instantiation, deployment and undeployment of a Weavelet

The constructor new FlowerObserverDeploy() creates an object of the same class that

comprises the CJImpl and the CJBinding part of the component. However, the pointcuts in

the binding are not yet active and need to be deployed. That happens only with the statement

deploy asp, when the pointcuts become active. The statement undeploy asp does the

opposite and makes the pointcuts become inactive.

Figure 18 illustrates the CaesarJ class diagram for the Flower Observer scenario.

52

Figure 18 CaesarJ class diagram for the Flower Observer scenario

3.9 CaesarJ impact on client code

To further assess how a CaesarJ component has an impact on client code, an example is

provided, once again using the Flower Observer scenario.
01 public static void main(String[] args) {
02 //aspect instantiation
03 final FlowerObserverDeploy asp = new FlowerObserverDeploy();
04 final FlowerObserverDeploy asp2 = new FlowerObserverDeploy();
05 //participant object instantiation
06 Flower f = new Flower();
07 Bee b1 = new Bee("Bee");
08 Hummingbird h1 = new Hummingbird("Hummingbird");
09 //Observer wrapper instantiation
10 asp.Observer b1_open = asp.BeeIsOpenObserver(b1)
11 asp.Observer b1_close = asp.BeeIsCloseObserver(b1)
12
13 asp2.Observer h1_open = asp2.HummingbirdIsOpenObserver(h1)
14 asp2.Observer h1_close = asp2.HummingbirdIsCloseObserver(h1)
15
16 //Subject wrapper instantiation
17 asp.Subject opening = asp.FlowerOpening(f)
18 asp.Subject closing = asp.FlowerClosing(f)
19 asp2.Subject opening2 = asp2.FlowerOpening(f)
20 asp2.Subject closing2 = asp2.FlowerClosing(f)
21 ...

Listing 12 Aspect, participant class and wrapper instantiations

53

Listing 12 provide code examples for the instantiation of aspects, the instantiation of

objects that perform the participant roles of the pattern and the wrappers that map these Java

objects to the context of the aspect component.

Lines 1-2 present the aspect instantiation mechanism in CaesarJ. Two aspect instances,

asp and asp2 are created in the same way plain Java objects are created. However, the asp

and asp2 objects are two different family objects from the same family class, thereby

establishing two different families that are not allowed to mix, thanks to family

polymorphism.

Lines 6-8 create the Java objects that will perform the roles of Subject and Observer in

the pattern. The Subject will be performed by the Flower object f, and the Observer will be

performed by the objects of classes Bee and Hummingbird, respectively b1 and h1. The

correspondence between objects in the application domain and roles in the aspect component

must be performed by the creation of wrappers.

Lines 10-20 establish this correspondence. Lines 10-11 create wrappers that define that

the Bee object b1 will perform the role of Observer in the context of the asp family object.

Since the same Java object b1 must observe both opening and closing events, different

wrappers map this object to the observed events. Lines 13-14 do the same for the

Hummingbird object h1, but in the context of the family object asp2. The lines 17-20 map

the Flower object f to the Subject role in both family objects asp and asp2. Since two

events (flower opening and closing) are to be observed, two wrappers map these events for

each of the family classes.

Next, it is necessary to define the relations between the participants in the pattern and

deploy the aspects so they can activate their pointcut and therefore capture events of interest.

Listing 13 gives some possible examples for these operations, taking the opportunity to

demonstrate an application of the family polymorphism mechanism.

Lines 2-5 perform the relations between the Subject and Observer objects. Observer

objects are added to Subject objects by the addObserver method. An effect of family

polymorphism is that Observer objects can only be added to Subjects of the same family

object. Lines 8-9 illustrate compiler errors that are detected as a consequence of trying to mix

objects of different families. Since the compiler effectively sees different family objects as

54

repositories for virtual classes of different types, the attempt to mix objects from different

family objects asp and asp2 raises a type error.

01 //Definition of the relations between participants
02 opening.addObserver(b1_open);
03 opening2.addObserver(h1_open);
04 closing.addObserver(b1_close);
05 closing2.addObserver(h1_close);
06
07 //Family polymorphism examples
08 opening.addObserver(h1_open); //compiler error
09 closing2.addObserver(b1_close); //compiler error
10
11 //Local aspect deployment
12 deploy asp;
13 f.open();
14 undeploy asp;
15 //Thread-based aspect deployment
16 deploy (asp2){
17 f.close();
18 }
19 }

Listing 13 Participant relations definition, family polymorphism and aspect deployment

Finally, lines 12-18 demonstrate the dynamic aspect deployment mechanism. Lines 12-14

show the local deployment of asp. Line 13 deploys the aspect. Line 14 presents the event of

a flower opening. Since the asp aspect is deployed, but asp2 is not, only the advice triggered

by the pointcuts in asp is performed. Line 15 defines the end of the deployment scope,

undeploying the asp aspect. Lines 15-18 illustrate the thread-based deployment of aspect

asp2. The same logic applies, except the deployed aspect is the asp2 object and line 17

presents the event of a flower closing.

55

4. Background to the study

This dissertation is closely related to previous work regarding the study of AOP languages

through the implementation of the GoF design patterns. The studies presented in this chapter

constitute a framework for this dissertation, as they provide the basis for the motivation of

this dissertation, the way to address this issue and provided previous examples of CaesarJ

design pattern implementations. This chapter starts by describing the first study to address

the issue of implementing the GoF design patterns using AOP languages, namely AspectJ. It

goes on to present a study that pointed some downsides of the AspectJ implementations and

finalizes with the studies that have previously explored the CaesarJ implementations of the

GoF design patterns, lending a precious contribution to the making of this thesis.

Hannemann and Kiczales first tackled the issue of design pattern implementation using

AOP languages [28]. The authors created Java and AspectJ implementations of the 23 GoF

design patterns that served as the basis for comparisons between the object-oriented and

aspect-oriented implementations. The AspectJ implementations were subjected to an

evaluation according to the modularity criteria of:

• Locality – All the code implementing a pattern is placed in an aspect and removed

from the participating classes. As a consequence, classes in the application

domain are free of pattern code, hence there is no coupling between participants.

Pattern implementation changes are confined to the aspect.

• Reusability – The pattern code is abstracted into a reusable aspect that generalizes

the overall pattern behavior. The aspect can be reused in several instances of the

pattern.

• Composition transparency – Multiple instances of the same pattern in one

application are not confused. The same participant object or class can assume

different roles in different instances of the same pattern.

56

• (Un)pluggability – It is possible to switch between using a pattern instance in a

system or not. Therefore, participant classes must have a meaning outside the

pattern implementation.

The pattern implementations are also characterized according to the nature of the roles

involved in the pattern, where roles could be labeled as:

• Defining – The participants have no functionality outside the pattern. The roles

define the participants completely.

• Superimposed – Roles are assigned to classes that have functionality outside the

pattern. Roles are an augmentation of the existing classes.

The authors conclude that AspectJ design pattern implementation shows variable degrees

of modularity improvement over Java implementations in 17 cases in terms of the criteria

used. Out of these 17 patterns, 12 have resulted in reusable aspects. These improvements

come from modularizing the implementation of the pattern into a separate unit. The reasons

for these improvements are directly related to the crosscutting structure present in these

design patterns, particularly in roles that have superimposed behavior.

The present study differs from the study of Hannemann et al. in that it draws a

comparison between two AOP languages, using a narrower collection of patterns. Unlike

Hannemann et al. the patterns covered were not developed completely anew, but rather

collected from independent sources, which ensures greater independence of the results. The

same qualitative criteria are applied to analyze the pattern implementation, but the present

study is also concerned with CaesarJ’s composition properties.

The AspectJ implementations of the GoF design patterns by Hannemann et al. are

regarded as standards for good AspectJ design and programming. Nevertheless, these

implementations have also exposed some problems in the way AspectJ deals with the

separation of crosscutting concerns in the patterns as well as some shortcomings in AspectJ’s

structure as far as the support for reusable aspects. Monteiro et al. [41] have analyzed these

implementations and found limitations on the Command, Composite, Decorator and

Memento patterns, as well as the set of patterns identified by Hannemann et al. as the

multiple inheritance patterns, i.e. Abstract Factory, Bridge, Builder, Factory Method and

Template Method. The authors point out that, although aspects bring improvements in most

cases, the adaptation of the Hannemann et al. reusable aspects to independent AspectJ

57

implementations of the GoF patterns sometimes resulted in awkward and inflexible interfaces

that did not lighten the burden of client programmers, thereby defeating the purpose of

reusability.

Sousa et al. first explored the implementation of the GoF design patterns with CaesarJ

[48][47]. These studies have resulted in the first GoF design patterns implemented in

CaesarJ. This study took the independent repositories of Java implementations of the GoF

patterns listed in Chapter 1 and developed implementations for 7 patterns.

Table 4 describes the patterns developed by Sousa et al.

 Thinking in

patterns
DP Java

companion
Fluffycat Hannemann

et al.
Huston Guidi

Polanco
Abstract Factory X X

Bridge X X
Chain of

Responsibility
 X X

Decorator XX
Observer XX
Singleton X

Visitor X X
Table 4 Previously developed design patterns

To better assess CaesarJ’s opportunities for reuse, several implementations for each

pattern were created. This approach allows a better understanding of CaesarJ’s characteristics

because the same design issue is reflected in different manners in different repositories. This

is reflected by the rows with several marks.

The authors have also registered the mechanisms used by CaesarJ in each pattern. The

mechanisms used are illustrated by Table 5.

Use of the mechanism: Pointcut/advice CI CJImpl CJBinding

Abstract Factory No No No Yes
Bridge No Yes Yes Yes

Chain of Responsibility Yes Yes Yes Yes
Decorator No(*) No No Yes
Observer Yes Yes Yes Yes
Singleton Yes No Yes Yes

Visitor No Yes No Yes
Table 5 Use of mechanisms in the CaesarJ examples

(*) One implementation used pointcut and advice but was not considered good practice.

58

Sousa et al. have used these implementations to compare the use of the pointcut and

advice mechanism in both languages to establish that CaesarJ uses it more sparingly than

AspectJ.

This study has provided valuable code examples of CaesarJ design patterns and has

served as the basis for this thesis. These examples served as guidelines for the new design

pattern implementations. Chapter 5 describes the several new design pattern implementations

that were developed, mentioning the cases where the original implementations suffered

changes.

59

5. CaesarJ Pattern Implementations

This chapter presents the results obtained from the implementation of the design patterns

described in Chapter 2 and the underlying CaesarJ features present in each one. A diagram

representation of the pattern implementation is provided for each pattern. Sections 5.1 to 5.11

describe the accomplished pattern implementations while section 5.12 concludes by

presenting a brief summary of the implementations.

5.1 Abstract Factory

The implementation of the Abstract Factory pattern has not resulted in any reusable

CaesarJ module.

Figure 19 shows the general implementation structure of the developed Abstract Factory

scenarios.

Figure 19 Abstract Factory CaesarJ implementation structure

60

The top level abstract classes represented by AbstractFactory contain a variable number

of abstract AbstractProduct virtual classes that represent the classes of the objects this

factory can produce. Each virtual class can declare a variable number of methods that are

also declared abstract.

For every type of AbstractProduct present in AbstractFactory, there is a corresponding

top level abstract createProduct() method. These createProduct() methods are declared

in the AbstractFactory at the same level as the AbstractProduct virtual classes. This way, an

AbstractFactory acts as an interface of the implementing ConcreteFactory sub-classes,

specifying the set of virtual classes they must define, the methods these classes have and the

methods for the creation of those classes.

Each concrete ConcreteFactory class is composed by a set of related ConcreteProduct

virtual classes, which implement the AbstractProduct virtual classes declared in

AbstractFactory and their methods. ConcreteFactory classes implement the

createProduct() top level methods by returning an instance of this ConcreteFactory’s

corresponding ConcreteProduct. Placing the createProduct() methods at the same level as

the virtual classes allows the ConcreteFactory sub-class instances to create objects of the

matching ConcreteProduct through methods with the same signature, regardless of the type

of ConcreteFactory. Different ConcreteFactory objects create different ConcreteProducts

using the same methods because these methods are defined at the level of the

AbstractFactory they extend. ConcreteFactory classes act as a unit of confinement for

families of related classes and their implementation, preventing incorrect classes to be mixed.

In one scenario the AbstractProduct virtual classes are performed by classes from the

standard Java Swing API - JLabel and JButton. In these cases, the AbstractProduct and

ConcreteProduct virtual classes disappeared from the AbstractFactory and ConcreteFactory

modules, respectively, due to CaesarJ’s support for the inclusion of Java native classes as

members of top level classes. Only the createProduct() top level methods remained,

returning customized JLabel and JButton objects. An alternative implementation for this

scenario was developed, adding a Label and a Button virtual class as AbstractProduct’s to the

AbstractFactory class, with a JLabel and a JButton data member in the corresponding

virtual class. Although functional, this implementation seems a bit contrived and is not

61

considered to be as corrected. This alternative implies unnecessary programming overhead,

since it adds unnecessary virtual classes that can be instead instanced by simple constructor

calls.

Since the goal of Abstract Factory is to prevent objects of different family classes to be

mixed incorrectly and CaesarJ’s virtual class and family polymorphism mechanisms enable

the creation of well defined and confined families, it is possible to consider that CaesarJ

directly supports the pattern. Any top level class with virtual classes constitutes a factory

object because it establishes a relation between the virtual classes it declares, defining a

family of related classes. The family polymorphism mechanism present in CaesarJ ensures

that objects from different families are not mixed. The impacts in the client code are that a

family object of type AbstractFactory must be created before instances of type

AbstractProduct can be created and that the created objects are not Java classes but CaesarJ

classes. Since the definition of the family classes is declared in CaesarJ top level classes, the

additional structures introduced by OO implementations of Abstract Factory disappear.

5.2 Bridge

The CaesarJ implementation of Bridge is an aspect component whose structure includes

all three kinds of CaesarJ module.

Figure 20 illustrates the structure of the component developed for Bridge.

The Bridge aspect component includes the BridgeProtocol CI, a single CJImpl module

and different CJBindings specific to each scenario where the aspect component has been

applied. These CJBindings have a more complex structure, and can be seen as having three

modules, BridgeFamily, BridgeImpls and BridgeAbs.

The BridgeProtocol module is a top level abstract class that comprises two virtual

abstract classes that represent the roles involved in this pattern, classes Abstraction and

Implementation.

The Abstraction virtual class declares the abstract methods related to the behavior of an

entity playing the role of Abstraction must carry out, namely:

• setImplementation(Implementation i) - sets the Implementation of a specific

Abstraction.

• getImplementation() - gets the Implementation of a specific Abstraction.

62

Figure 20 Bridge CaesarJ implementation structure

These methods define the operations necessary for a class playing the role of Abstraction

to dynamically hold, change and retrieve an associated Implementation. The Implementation

virtual class declares no methods because no methods can be generalized to every class

playing the role of Implementation.

The CJImpls developed for Bridge contain a single virtual class Abstraction that

implicitly extends the virtual class Abstraction present in BridgeProtocol. The Abstraction

virtual class present in the CJImpl contains a private Implementation data member imp that is

a reference to this Abstraction’s Implementation, dynamically associating an Abstraction

with an Implementation. This class uses this data member to implement the

setImplementation(Implementation i) and getImplementation() methods by storing

and retrieving the Implementation object referenced by imp. The composition of the

Abstraction class with an Implementation data member provides a more flexible way of

associating these two roles than static inheritance. Since this logic can be generalized for all

instances of the Bridge pattern, it can be expressed in the CJImpl.

63

All CJBindings follow a similar structure. There is a top level abstract CJBinding,

BridgeFamily, which consists of two virtual classes, AbsFamily and ImplFamily. They

declare virtual classes that extend the Abstraction and Implementation virtual classes in

BridgeProtocol and adapt them to each concrete scenario of the pattern.

The AbsFamily and ImplFamily classes represent the Abstractions involved in each

scenario and the Implementations used to implement the Abstractions. The AbsFamily virtual

class is not abstract and must implement the method impl(). This method refines the

getImplementation() method and returns an ImplFamily object that corresponds to this

family class’ specific Implementation type. Furthermore, the AbsFamily class can also

implement a number of methods that make use of the impl() method, exemplified by

methods method1() and method2(). These methods correspond to operations of the

AbsFamily that make use of the methods declared in the ImplFamily.

The ImplFamily abstract virtual class can declare a number of abstract methods that can

be used in the implementation of the methods of the AbsFamily virtual class exemplified by

methods methodA() and methodB(). These abstract methods correspond to operations used

by the AbsFamily that can have different implementations in ImplFamily sub-classes.

The structure of the BridgeFamily family class reflects the connection between families

of related Abstraction and Implementation classes, represented by the AbsFamily and

ImplFamily in specific scenarios. These classes reflect the concrete relations between an

Abstraction and an Implementation in each specific scenario by the manner how the methods

declared in ImplFamily are used to implement the methods in AbsFamily.

The abstract BridgeAbs family class can refine the AbsFamily virtual class in

BridgeFamily by declaring virtual classes Abs that extend AbsFamily. This classes can then

add extra methods to that class, as exemplified by method3() and method4().

The abstract BridgeImpls family class can refine the ImplFamily virtual class in

BridgeFamily by declaring virtual classes Impls that extend ImplFamily. This classes can

then implement methods methodA() and methodB(). The alternative implementation of

these methods is used to flexibly provide Abstractions with different Implementations.

To instantiate a Bridge aspect component, a Weavelet must be created to unite the

BridgeImpl, BridgeAbs and BridgeImpls modules through mixin composition, illustrated by

BridgeDeploy. The BridgeAbs and BridgeImpls modules could have been implemented in a

64

single class family, and the mixin would use the module where they were implemented.

However, since the Weavelet enables mixin composition of more than two modules, it was

chosen to create a Weavelet that would unite the three separate modules. This separation into

three distinct modules has the advantage of placing related roles in smaller modules, which

enhances readability and understanding of the code.

With this aspect component, all the logic related with the pattern facet has been removed

from the original classes and placed in one of the aspect modules. The impact on the client

code is that the Java classes were replaced by CaesarJ classes. A final BridgeDeploy family

object must be created to instance new objects of types Abstraction and Implementation. This

family object supplies family polymorphism to the instances it creates. This way, it is not

possible to set an Abstraction with an Implementation if they are instances of different family

objects. Family polymorphism ensures that objects of different families are not mixed.

5.3 Builder

The implementation of the Builder pattern has not resulted in any reusable CaesarJ

modules.

Figure 21 illustrates the structure of the component developed for Builder.

Figure 21 Builder CaesarJ implementation structure

65

The Builder aspect component is composed by the BuilderInterface and BuilderFamily

modules.

The BuilderInterface includes three virtual classes, classes Director, Result and Builder.

The Builder abstract class is responsible for the building process. It declares a set of

building operations exemplified by the buildPartA(Part p) and buildPartB(Part p)

methods. The Builder class also declares the getResult() method that returns the final

Result after the building operations are finished.

The Result class represents a structure where the built parts are stored while the building

operation takes place. The Result class reflects the different manners by which the result of

the building can be represented in a flexible way. In the two scenarios studied for this pattern,

Result was performed by a custom Java class Media (in the Eckel scenario) and Java’s

String class (in the Hannemann et al. scenario).

In the Eckel scenario, class Media emulates an ArrayString. In the original Java

scenario, Media extended ArrayList. Since CaesarJ cclasses cannot extend Java classes, the

alternative was to compose Media with an ArrayList data member and adapt the default

constructor call to create a new ArrayList and the toString() method to call the

toString() method in ArrayList. It was also necessary to implement a getList() method

that would return the ArrayList data member. In the Hannemann et al. scenario, the Result

role is performed by the Java API String class. Therefore, it was not necessary to perform

any adaptation.

The concrete Director class implements the construct() method, which represents the

generic action of building all the parts of the final product and returning the finished Result.

In the two scenarios implemented, the construct() method took an argument of different

types. In the Eckel scenario, the Director class has a Builder data member and the

construct() method took an argument of type List. The method would traverse through

this data structure and make the refereneced Builder build all the Part objects in that

structure. In the Hannemann scenario, the construct() method took an argument of type

Builder. The method would execute a fixed sequence of building actions performed by the

Builder in the argument.

The BuilderFamily top level class extends BuilderInterface and has two virtual classes,

ConcreteBuilder and ConcreteResult. Placing ConcreteBuilder and ConcreteResult classes in

66

the same BuilderFamily illustrates the strong relation between both virtual classes. The

definition of a ConcreteBuilder and ConcreteResult in a common BuilderFamily, reflects the

connection between a Builder and the Result it produces.

ConcreteResult refines the Result class in BuilderInteface. This proved necessary in the

Eckel scenario, where there were 3 different classes in the original Java scenario that extend

the Media class. This way, different family classes of the Builder scenario produce different

Results.

ConcreteBuilder refines the Builder class declared in BuilderInterface by implementing

the buildPart(Part p) methods. This makes it possible that the same method can produce

and store different part of the final result differently, while ensuring family class consistency.

The getResult() method returns this BuilderFamily specific ConcreteResult object with the

final result.

With this aspect component, all the logic related with the pattern facet has been removed

and placed in one of the aspect modules, leaving the Java classes that perform the role of

Part and the ConcretePart classes that extend them in the application domain. The

implication on the client code is that, for every type of BuilderFamily, a family object of type

BuilderFamily must be created before instancing ConcreteBuilder and Director objects. This

provides additional safety given by family polymorphism. Family polymorphism ensures that

ConcreteBuilder and Director objects from different BuilderFamily objects are not mixed.

5.4 Chain of Responsibility

The CaesarJ implementation of Chain of Responsibility is an aspect component whose

structure includes all three kinds of CaesarJ module.

Figure 22 illustrates the structure of the component developed for Chain of

Responsibility.

The Chain of Responsibility aspect component consists of the

ChainOfResponsabilityProtocol CI, the CoRImpl CJImpl and the CoRBindings CJBindings

to compose the aspect component to the individual scenarios where the aspect component

was deployed.

67

Figure 22 Chain of Responsibility CaesarJ implementation structure

ChainOfResponsabilityProtocol includes two virtual classes, Request and Handler, which

represent the roles involved in the pattern.

The Handler virtual class represents an entity responsible for handling Requests or

passing them along a chain of responsibility to other Handlers.

It declares the following methods:

• chain(Request r) – checks whether this Handler can handle this request or if

should forward the Request to another Handler in the chain of responsibility.

• handle(Request r) – tries to handle this Request and returns a boolean value

whether it handled the Request successfully or not.

• setSuccessor(Handler h) – sets the next Handler in the chain of responsibility.

• getSuccessor() – gets the next Handler in the chain of responsibility.

The Request virtual class declares one method:

68

• getState() – returns information about a particular Request’s state.

Both the virtual classes in ChainOfResponsabilityProtocol and their methods are declared

abstract.

The Handler virtual class in the CoRImpl CJImpl implements the methods responsible for

the request handling and forwarding policy. This is because the implementation of a chain of

responsibility does not depend on a specific scenario and there can be several alternative

ways of implementing this chain. This class implements all methods in the Handler class,

except handle(Request r). It contains a private Handler data member succ that is a

reference to the next Handler in the chain. This class implements the

setSuccessor(Handler h) and getSuccessor() methods by storing and retrieving the

Handler object referenced by succ. If the getSuccessor() method is not successful, i.e., if

there is no successor to this Handler, getSuccessor() raises a

ChainOfResponsibilityException. The chain(Request r) method takes a Request and

verifies if this Handler is able to handle it, by calling the handle(Request r) method. This

is possible because handle(Request r) is declared, although not implemented, in the CI. If

the Handler is not able to handle the Request, it gets the next Handler in the chain with

getSuccessor() and forwards the Request to the successor Handler by calling the

chain(Request r) method again. These methods are implemented in the CJImpl because

they hold the rationale behind the Chain of Responsibility pattern. They do not determine if a

Handler is able to handle a request, but rather the operations that must take place if a

Handler succeeds in handling a Request or not. The logic of the handling operations is

context sensitive and should be specified in the CJBindings.

The CJBindings for Chain of Responsibility declare HandlerBinding and RequestBinding

virtual classes that extend the Handler and Request virtual classes in

ChainOfResponsabilityProtocol. Other than extending the virtual classes in the CI, the virtual

classes also wrap plain Java classes in an application, composing them with the additional

logic from the roles of the pattern.

The HandlerBinding virtual classes wrap the classes in the application that will perform

the role of Handler and implement the handle(Request r) method. This method will define

69

the condition under which a Handler is able to handle a Request using operations in its

wrappee.

The RequestBinding virtual classes wrap the classes in the application that will perform

the role of Request and implement the getState() method. The getState() method returns

information about the wrappee’s state. The RequestBinding makes it possible for custom

classes to perform the role of Request, but also for native Java classes to perform that role,

such as String or Integer. This design makes this component more extensible, since this

role is not restricted to a single class.

Finally, the CJBinding must define which events should trigger the handling logic in the

Chain of Resposibility module. This is accomplished by pointcut and advice mechanisms.

The pointcut defined in the CJBinding must specify the events that raise handling request

events and the advice for that pointcut starts the chain of responsibility, by calling the

chain(Request r) method.

To combine the CoRImpl and CoRBinding modules, a CoRDeploy Weavelet must be

created so the aspect component can be instantiated.

Although only one CJImpl was developed for the Chain of Responsibility pattern, others

could have been created. It would be a question of defining a different handling logic or a

different manner of building the chain of responsibility.

With this aspect component, all the logic related with the pattern facet has been removed

and placed in one of the aspect modules. This implementation of the pattern has an impact on

the client code in four manners:

• A family object of type CoRDeploy must be created.

• HandlerBinding and RequestBinding objects must be created to wrap the objects of

the application domain that perform the corresponding roles.

• The creation of the chain of responsibility must use the HandlerBinding and

RequestBinding wrapper objects instead of the plain Java objects.

• The CoRDeploy object must be deployed so the aspect can trigger the pattern logic at

the events captured by the pointcuts defined in the CJBindings.

70

5.5 Composite

The CaesarJ implementation of Composite is an aspect component whose structure

includes all three kinds of CaesarJ module.

Figure 23 illustrates the structure of the component developed for Composite.

Figure 23 Composite CaesarJ implementation structure

The Composite aspect component includes the CompositeProtocol CI, two alternative

CJImpl modules and different CJBindings specific to each scenario where the aspect

component has been applied.

The CompositeProtocol module is a top level abstract class that comprises three virtual

abstract classes that represent the roles involved in this pattern, classes Component,

Composite and Leaf. Since both Composite and Leaf are specific kinds of Component, they

are declared as sub-classes of that virtual class. This way, CaesarJ enables the Component

71

abstract virtual class to act as an interface for both kinds of components of the Composite

pattern.

The Component virtual class declares the methods that both Composite and Leaf must

implement, specifically:

• operation() – a generic operation performed on Component entities.

• getState() – returns information about a Component’s state.

Since these operations are common both to Composite and Leaf they can be abstract into

a higher level, illustrated by the Component virtual class.

The Composite virtual class declares the methods specific to the entities that will perform

the role of Composite. These methods are responsible for adding, removing and returning this

Composite child Components. These methods are:

• add(Component c) – adds a child Component to this Composite.

• remove(Component c) – removes a child Component from this Composite.

• getChildren() – returns a Collection of every Component children of this

Composite.

• getChild(int i) – returns a child Component of this Composite in a specific

position.

Since Leaf must only implement the methods declared in Component, it declares no

additional methods.

The CompImpl CJImpls developed for Composite contain a single virtual class

Composite that implicitly extends the virtual class Composite in CompositeProtocol and

implements all its methods. To deal with the addition and removal of Components of a

particular Composite, a data structure children is included in the CJImpls. This data

structure is responsible for the storage of Components related to each individual Composite.

The add(Component c) and remove(Component c) methods perform operations on this

data structure, the getChildren() methods returns the data structure with all the Component

children and the getChild(int i) method traverses through the data structure returning a

component in a specific position. Since getChildren() returns an object of type

72

Collection it is possible to create alternative CJImpls using different data structures. In the

two developed CJImpls, ArrayList and WeakHashMap data structures were used.

Different CJBindings were developed to compose the aspect component to the specific

scenario where the pattern is to be deployed. These methods are implemented in the CJImpl

because they comprise the context independent part of the pattern. They are common to

every scenario of Composite and can therefore be abstracted to a CJImpl module.

The CompBinding CJBindings declare virtual classes that extend the Composite and Leaf

virtual classes in CompositeProtocol and wrap plain Java classes that will perform these

roles.

Both the classes that extend the Composite and Leaf virtual classes in CompositeProtocol

implement the getState() and operation() methods. The getState() method will return

information about the Java class that performs the role of Composite or Leaf, and the

operation() method will perform a different generic operation on a Component object,

distinguishing whether it was called by a Composite or a Leaf.

In the Composite scenario by Cooper it proved necessary to add three auxiliary methods

to the Component entities. These methods had to be added in the Component role, so both

Composite and Leaf entities could perform them. Since this was necessary in only one

scenario, these methods should not be added in CompositeProtocol. Due to their specific

nature, it was appropriate to add them in the CJBinding. This way, an abstract virtual class

Component was added to the CJBinding, containing three abstract methods. This virtual class

implicitly refined the Component virtual class, adding these extra methods. This was a

flexible way of extending the Component virtual class, adding extra methods to both

CompositeBinding and LeafBinding. This approach allowed for polymorphic method calls,

which removed the use of several instanceof clauses in the CaesarJ implementation of this

scenario. The trade-off is that when it is necessary to access the methods of the Component

objects defined in the CJBinding, it became mandatory to perform static casts to this

particular family class.

With this aspect component, all the logic related with the pattern facet has been removed

from the original Java classes and placed in one of the aspect modules. This implementation

of the pattern has an impact on the client code in three manners:

• A family object of type CompositeDeploy must be created.

73

• CompositeBinding and LeafBinding objects must be created to wrap the objects of the

application domain that perform the corresponding roles.

• The creation of the Composite structure must use the CompositeBinding and

LeafBinding wrapper objects instead of the plain Java objects.

5.6 Decorator

The implementation of the Decorator pattern has not resulted in any reusable CaesarJ

modules.

Figure 24 illustrates the structure of the component developed for Decorator.

Figure 24 Decorator CaesarJ implementation structure

The Decorator aspect component is composed by the AbstractDecorator and

ConcreteDecorator modules.

The AbstractDecorator abstract top class has one virtual class, also abstract,

AbsDecorator. This virtual class implements the Component interface present in the

application and its methods, represented by the operation() method. To implement this

method, this virtual class declares an abstract method getWrappee() that returns the wrappee

74

of a wrapper class. This is necessary because AbsDecorator does not wrap any class but still,

the operation() method must be implemented based on the classes in the application.

The ConcreteDecorator family class holds virtual classes that will act as wrappers for

Java classes in the application. These classes are represented by the ConcDecorator virtual

class and extend the AbsDecorator virtual class in AbstractDecorator. Since these classes

declare they wrap the Component interface, they can wrap any class of type Component. This

way, they can wrap both the Java classes in the application and other AbsDecorator classes

and their sub-classes, like ConcDecorator.

This means that it is possible to compose wrappers independently of their order, since all

wrapper classes can also be wrapped themselves. Nevertheless, one limitation to CaesarJ’s

wrapper mechanism has proven to be an obstacle. One of the scenarios of the Decorator

pattern implicated that one wrapper class should be able to wrap two objects. This is

currently not possible in CaesarJ. The alternative is to compose such classes with a data

member of the extra class to be wrapped and manage it like common Java wrapper classes.

This implies abdicating the wrapper recycling mechanism. The CaesarJ developers have been

working on a mechanism that enables one wrapper class to wrap more than one class [23].

Another issue in the Decorator implementation is the fact that wrapping relations are not

inherited by sub-classes. This is why it is necessary for every ConcDecorator virtual class to

wrap Component classes. Preferably, AbsDecorator should wrap Component and provide a

default implementation for the operation() method.

With this aspect component, all the logic related with the pattern facet has been removed

from the original Java classes and placed in one of the aspect modules. In order to decorate a

class in the application domain, a ConcreteDecorator object must be created. After this

object is created, Component objects in the application domain can be dynamically decorated

by wrapping them with ConcDecorator virtual classes.

5.7 Factory Method

The implementation of the Factory Method pattern has not resulted in any reusable

CaesarJ module.

Figure 25 represents the generic structure of the implementations developed for Factory

Method.

75

Figure 25 Factory Method CaesarJ implementation structure

The top level abstract class FactoryMethodInterface declares two virtual classes, Product

and Creator.

The Creator abstract virtual class is characterized by an operation() method that

creates an instance of the Product class by means of a constructor call. That is why the

Product virtual class is not declared abstract, unlike Creator. However, since

FactoryMethodInterface is declared as abstract, it is not possible to create an instance of a

FactoryMethodInterface family object, and consequentially the concrete Product instance

will be defined by the type of the FactoryMethodFamily family object.

FactoryMethodFamily class families refine the virtual classes defined in

FactoryMethodInterface and act as a unit of confinement for related classes, preventing

Product and ConcreteCreator classes from different families to be mixed incorrectly. More

importantly, the Product virtual class in FactoryMethodFamily implicitly extends the

Product virtual class in FactoryMethodInterface.

This implicit inheritance mechanism makes it possible to create different kinds of objects

with the same constructor call in the operation() method. The kind of concrete Product

object depends on the kind of FactoryMethodFamily family object instance, thanks to the

CaesarJ’s virtual class mechanism.

Since the same constructor call can create different kinds of objects, one can say that

CaesarJ enables polymorphic constructors. As the goal of Factory Method is to provide a

76

single method that creates different objects, depending on the context of its call, it is possible

to consider that CaesarJ directly supports the pattern.

5.8 Mediator

The CaesarJ implementation of Mediator is an aspect component whose structure

includes all three kinds of CaesarJ module.

Figure 26 illustrates the structure of the component developed for Mediator.

Figure 26 Mediator CaesarJ implementation structure

The Mediator aspect component includes the MediatorProtocol CI, a single CJImpl

module and different CJBindings specific to each scenario where the aspect component has

been applied.

The MediatorProtocol module is a top level abstract class that comprises two virtual

abstract classes that represent the roles involved in this pattern, classes Colleague and

Mediator.

The Colleague virtual class declares the methods related to the behavior an entity playing

the role of Colleague must carry out. These methods are:

77

• setMediator(Mediator m) - sets the Mediator of a specific Colleague.

• getMediator() - gets the Mediator of a specific Colleague.

• notifyMediator() - responsible for the Colleague’s notification logic.

• getState() – returns information about a particular Colleague’s state.

The Mediator virtual class declares one method:

• getState() – returns information about a particular Mediator’s state.

The MediatorImpl CJImpls developed for Mediator contains a single virtual class

Colleague that implicitly extends the virtual class Colleague present in MediatorProtocol.

The Colleague virtual class present in the CJImpl contains a private Mediator data

member mediator that is a reference to this Colleague’s Mediator. This class implements the

setMediator(Mediator m) and getMediator() methods by storing and retrieving the

Mediator object referenced by mediator. These methods are implemented in the Colleague

virtual class in MediatorImpl, because these methods constitute the context independent facet

of the pattern.

The MediatorBind CJBindings declare virtual classes that extend the Colleague and

Mediator virtual classes in MediatorProtocol. The classes from the CJBinding wrap plain

Java classes that will perform the roles defined by the pattern.

The MediatorBinding virtual class extends Mediator and implements the getState()

method in a context sensitive manner, suitable for the given scenario.

The ColleagueBinding virtual class extends Colleague and declares which Java class will

perform the role of Colleague, again through a wrapper declaration. This class also

implements the getState() method by returning information about the wrappee and the

notifyMediator() method. The notifyMediator() method will use the getMediator()

method to retrieve this Colleague’s Mediator, the getState() method to retrieve the Java

class that performs that role in the application and then some operation with the notification

logic contained in that Java class. Both the getState() and notifyMediator() methods

are implemented in the CJBindings because they are context specific methods whose

implementation depends on the specific scenario where the aspect is composed.

78

To capture the events in a Colleague that should start the notification of Mediators, the

CJBinding also uses pointcut and advice mechanisms. The CJBindings contain pointcut

declarations that capture the relevant change events in a Colleague. Then, an advice triggers

the actions that should be performed when this event takes place. In the case of the Mediator

pattern, this advice triggers the notification event on a Colleague, and the consequent

notifyMediator() method.

There were scenarios where the Colleague virtual classes in the CJBinding also

implemented the setMediator(Mediator m) method. Such was the case when the

Colleague had to store its Mediator but the Mediator also had to store its Colleague in a

particular data member of the Mediator wrappee class. There are two alternatives for

carrying out this operation:

• Use a super.setMediator(Mediator m) call, taking advantage of the method

implementation in MediatorImpl and then perform the additional actions on the

Mediator wrappee class. This is possible because the CI effectively acts as a

communication interface between the CJBinding and the CJImpl.

• Create pointcuts and advices in the CJBinding that would capture the calls to

setMediator(Mediator m) and perform the actions on the Mediator Java class.

The first alternative has been chosen because it is more extensible, since pointcuts are not

flexible by nature.

To instantiate a Mediator aspect component, a Weavelet must be created to unite both the

MediatorImpl and MediatorBinding modules through mixin composition. However, in the

case of the Mediator pattern, the mixin composition order must present the CJBinding

module prior to the CJImpl module. This is because the mixin order must always be

serialized [6]. Since there are two implementations of the setMediator(Mediator m)

method, the mixin composition order must reflect that the most specific implementation of

that method is in the CJBinding, hence it should be declared first.

With this aspect component, all the logic related with the pattern facet has been removed

from the classes that perform the role of Colleague and placed in one of the aspect modules.

This was not possible in the classes that perform the roles of Mediator. This was not to be

expected, because the role of Mediator is defining, contrary to the Colleague role, which is

79

superimposed [28]. This implementation of the pattern has an impact on the client code in

four manners:

• A family object of type MediatorDeploy must be created.

• ColleagueBinding and MediatorBinding objects must be created to wrap the objects

of the application domain that perform the corresponding roles.

• The relations between Colleague and Mediator objects must be defined using the

ColleagueBinding and MediatorBinding wrapper objects instead of the plain Java

objects.

• The MediatorDeploy object must be deployed so the aspect can trigger the pattern

logic at the events captured by the pointcuts defined in the CJBindings.

5.9 Observer

The CaesarJ implementation of Observer is an aspect component whose structure

includes all three kinds of CaesarJ module.

Figure 27 illustrates the structure of the component developed for Observer.

Figure 27 Observer CaesarJ implementation structure

80

The Observer aspect component includes the ObserverProtocol CI, several alternative

CJImpl modules and different CJBindings specific to each scenario where the aspect

component has been applied.

The ObserverProtocol module is a top level abstract class that comprises two virtual

abstract classes that represent the roles involved in this pattern, classes Subject and Observer.

The Subject virtual class declares the methods related to the behavior an entity playing

the role of Subject must carry out. These methods are:

• addObserver(Observer obs) - adds an Observer to this Subject’s set of interested

Observers.

• removeObserver(Observer obs) - removes an Observer from this Subject’s set of

interested Observers.

• removeObserver() - removes all Observers from this Subject’s set of interested

Observers.

• notifyObservers() - responsible for the Subject’s notification logic.

• getState() – returns information about a particular Subject’s state.

The Observer virtual class declares one method:

• refresh(Subject s) - responsible for the update of the Observer state after a

Subject notifies that its state has changed.

Three different CJImpls have been developed for Observer. The developed CJImpls

contain a single virtual class Subject that implicitly extends the virtual class Subject present

in ObserverProtocol and implements all its methods, except for getState(). To deal with

the addition, removal and notification of Observers of a particular Subject, a data structure

observers is included in ObsImpl1 and ObsImpl2. This data structure is responsible for the

storage of Observers related to each individual Subject. ObsImpl3 takes advantage of the

Java API Observer and Observable classes. These methods are implemented in the Subject

virtual class in ObsImpl, because these methods constitute the context independent facet of

the pattern.

81

The ObsBinding CJBindings declare virtual classes that extend the Subject and Observer

virtual classes in ObserverProtocol. The classes from the CJBinding wrap plain Java classes

that will perform the roles defined by the pattern.

The virtual class that extends Subject implements the getState() method in a context

sensitive manner, suitable for the given scenario.

The virtual class that extends Observer implements the refresh(Subject s) method

and declares which Java class will perform the role of Observer, again through a wrapper

declaration. Both the getState() and refresh(Subject s) methods are implemented in

the CJBindings because they are context specific methods whose implementation depends on

the specific scenario where the aspect is composed.

To capture the events of a Subject’s state change, the CJBinding also makes use of

pointcut and advice mechanisms. The Bindings contain pointcut declarations that capture the

relevant change events in a Subject. Then, an advice triggers the actions that should be

performed when this event takes place. In the case of the Observer pattern, this advice

triggers the notification event on a Subject, and the subsequent notifyObservers() method.

It is worth mentioning that, according to the scenario, a CJBinding can have a variable

number of virtual classes depending on the number of classes that play a certain role. As a

consequence, if several Java classes play a role within the pattern, we simply have to define a

wrapper class for each.

Like the CJImpl virtual class, the CJBinding is also declared to be abstract. To instantiate

the aspect component in a certain scenario, a related Weavelet has to be created to realize the

complete component. The Weavelet uses mixin composition to unite the different parts of the

component implemented both in the CJImpl and CJBinding.

With this aspect component, all the logic related with the pattern facet has been removed

from the original classes and placed in one of the aspect modules. This implementation of the

pattern has an impact on the client code in four manners:

• A family object of type ObsDeploy must be created.

• SubjectBinding and ObserverBinding objects must be created to wrap the objects of

the application domain that perform the corresponding roles.

82

• The relations between Subject and Observer objects must be defined using the

SubjectBinding and ObserverBinding wrapper objects instead of the plain Java

objects.

• The ObsDeploy object must be deployed so the aspect can trigger the pattern logic at

the events captured by the pointcuts defined in the CJBindings.

5.10 Prototype

The CaesarJ implementation of Prototype is an aspect component whose structure

includes all three kinds of CaesarJ module.

Figure 28 illustrates the structure of the component developed for Prototype.

Figure 28 Prototype CaesarJ implementation structure

The Prototype aspect component includes the PrototypeProtocol CI, two CJImpl

modules and different CJBindings specific to each scenario where the aspect component has

been applied.

Since Prototype deals only with an action to perform copies of objects, this is the aspect

component with the simpler structure.

83

The PrototypeProtocol module is a top level abstract class that comprises one virtual

abstract class that represents the role involved in this pattern, class Prototype.

The Prototype virtual class is concerned with one operation, creating copies of itself.

Hence, Prototype has one abstract method:

• myClone() – creates a replica of this object.

To implement this virtual class and its single method, two CJImps have been developed.

These CJImps distinguish between two cloning methods, shallow or deep clones. Although

two CJImps were developed, only one of them is functional, the shallow clone variation. The

reasons why the deep clone variation is not functional will be discussed in the end of this

section.

The Prototype virtual class present in the CJImp implements the myClone() method in

the Prototype virtual class declared in the PrototypeProtocol class. The shallow clone CJImp

makes use of the Java API maker interface Cloneable to produce a shallow copy of the

object. This is possible because cclasses can implement Java interfaces. The virtual class in

the CJImp declares it implements the Cloneable interface and calls the Java API clone

method.

The CJBindings in this pattern simply attach the cloning operation to Java classes in the

application through wrappers. The virtual classes in the CJBinding extend the Prototype class

in PrototypeProtocol and declare which classes in the application they wrap, enabling them

to create clones of themselves. The wrappee can be retrieve by calling the getWrappee()

method. Since the cloning operation is implemented in the CJImp module, neither the inner

classes in the CJBindings or the Java classes they wrap need to implement the Cloneable

marker interface. This effectively separates the aspect facet from the classes of the

application.

The CJImp that should generate a deep clone was not successfully implemented. The

myClone() method implementation that should produce a deep clone copy of an object

would had to resort to the Java API Serializable marker interface. However, it was

discovered that CaesarJ’s inner class mechanism differs from the one in Java. Several

attempts were made to produce a functional CJImpl that supported the deep clone

implementation of myClone(), however that was not possible. Although the aspect

84

component is compilable, when the myClone() method is called a

NotSerializableException is raised.

With this aspect component, all the logic related with the pattern facet has been removed

from the original classes and placed in one of the aspect modules. Its limitation to greater

reusability is its constant use of static casts. This implementation of the pattern has an impact

on the client code in three manners:

• A family object of type PrototypeDeploy must be created.

• PrototypeBinding objects must wrap the objects of the application domain to enhance

them with the cloning operation.

• The cloning operations must be performed on the wrapper objects, which will return

copies of the wrapper objects. The plain Java class can be retrieved by a

getWrappee() call.

5.11 Visitor

The implementation of the Visitor pattern has not resulted in any reusable CaesarJ

modules.

Figure 29 illustrates the structure of the component developed for Visitor.

Figure 29 Visitor CaesarJ implementation structure

85

The Visitor aspect component includes the VisitorProtocol, VisitorFamily and

ConcreteVisitor modules.

The VisitorProtocol top level abstract class encloses two virtual abstract classes that

represent the roles involved in this pattern, classes Visited and Visitor, both abstract.

The Visited abstract virtual class declares the accept(Visitor v) method. This method

tells an object of class Visited to accept a Visitor object that will then add an extra operation

to that Visited. This method is declared abstract.

The Visitor abstract virtual class in VisitorProtocol declares no methods and serves only

as a virtual class for other virtual classes to refine, according to the scenario where the

pattern is applied and the operations to be added.

The VisitorFamily module contains two kinds of virtual classes, the classes that extend

the Visited virtual class in VisitorProtocol represented by classes VisitedA and VisitedB, and

the Visitor virtual class, that implicitly extends the Visitor class in VisitorProtocol.

The VisitedA and VisitedB classes in VisitorFamily wrap different plain Java classes in

the application, enabling them to receive the additional behavior added by the Visitor objects.

VisitorFamily also has a top level method VisitedFor(Visitable vis). The

VisitedFor(Visitable vis) method is necessary for the component to choose the

appropriate wrapper class for the Visitable object in the argument. Given an object vis of

class Visitable, this method determines the correct Visited wrapper for the object, depending

whether it is of class ClassA or ClassB, resorting to the instanceof clause. This method

must be placed at the top level because it does not belong to any of the virtual classes, but

must rather choose the appropriate wrapper between. The VisitedFor(Visitable vis)

method has been implemented to overcome a limitation in CaesarJ. Although described in

[6], the mechanism of dynamic wrapper selection was never implemented. This method

programmatically emulates that mechanism. Currently, the CaesarJ developers are studying

ways to implement this functionality in the language [24].

The Visitor class declares the extra behavior to be added to the classes in the application.

Each different class must have its own visit method, represented by the visit(ClassA v)

and visit(ClassB v) methods.

The ConcreteVisitor module contains the virtual classes that implement the different

concrete visitors and their additional behavior to classes in the application. The virtual

86

classes are illustrated by the ConcreteVisitor1 class, and the methods that add behavior to

classes in the application by methods visit(ClassA v) and visit(ClassB v). Each

different implementation of these methods adds extra behavior to objects in ClassA and

ClassB, respectively. This implementation of the pattern has an impact on the client code in

three manners:

• A family object of type ConcreteVisitor must be created.

• Individual visitors must be created through the ConcreteVisitor object.

• The wrappers for objects of the application domain must be selected by calling the

VisitedFor(Visitable vis) method.

• After the visitors and the wrappers for the objects in the application domain are

created, the accept(Visitor v) performs the operation to be added to the objects in

the application domain.

5.12 Summary

A total of thirty CaesarJ design pattern implementations were developed from the

existing Java design patterns. These implementations are spread through different scenarios

from different repositories. Table 6 lists the design pattern implementation distribution,

specifying the number of implementations per pattern, and the original repository from which

the scenario was taken.

 Thinking

in patterns
DP Java

companion
Fluffycat Hannemann

et al.
Huston Guidi

Polanco
Abstract Factory X X

Bridge X X
Builder X X
Chain of

Responsibility
 X X

Composite X X X XX
Decorator X X X

Factory Method X X
Mediator X X X
Observer X X X
Prototype X X X

Visitor X X X
Table 6 CaesarJ design pattern implementations by repository

87

This work has also used the implementations previously developed by Sousa et al. [48].

However, some of the modules provided as a basis were subjected to design modifications.

Table 7 describes the cases where the pattern modules suffered changes (Yes) and where the

module design remained the same (no). This table lists only the patterns in common between

this dissertation and the studies of Sousa et al. [47][48].

 CI CJImpl CJBinding

Abstract Factory n/a n/a no
Bridge no no no

Chain of
Responsibility Yes Yes no

Decorator n/a n/a Yes
Observer no Yes Yes
Visitor no n/a Yes

Table 7 Modified CaesarJ modules

An additional six completely new pattern implementations have been created in the

context of this dissertation for analysis purposes, making the total number of CaesarJ design

pattern implementations rises to 36 implemented patterns. Chapter 6 describes the analysis

performed on the 30 patterns implemented from existing Java repositories, while section 6.4

describes the need for further design pattern implementations and the analysis that ensued.

88

89

6. Analysis

This chapter discusses the design pattern implementations in Chapter 5 as a basis for

considerations on CaesarJ’s support for reuse and draws a comparison with the AspectJ

implementations by Hannemann and Kiczales [28]. It also suggests some directives on

programming with CaesarJ, based on the experience gained with the implementation of the

design patterns and the underlying study of the language.

The rest of this chapter is structured as follows. Section 6.1 introduces the criteria under

which the patterns are evaluated; section 6.2 analyzes the patterns as far as the criteria for

language mechanisms and reusability levels; section 6.4 presents the results of scenarios

developed to further assess the composition capabilities of six selected patterns; section 6.5

draws a general comparison between the CaesarJ and AspectJ languages and section 6.6

gives some general guidelines on the design of CaesarJ components.

6.1 Assessment criteria

This study uses a set of qualitative criteria to assess the attributes of the pattern

implementation. These criteria evaluate the pattern implementations as far as their language

mechanisms, reuse and composition.

Table 8 is used to present the criteria for this analysis and brief description of each

criterion.

The language mechanism criteria review the language constructs and modules used in the

pattern implementations. Their intent is to portray the support for reuse provided by CaesarJ

as reflected by the implementations’ constructs and modules.

a. Pointcut/advice utilization criterion reports whether it was necessary to use these

mechanisms. This criterion reflects whether CaesarJ is able to cope with crosscutting

behavior using other mechanism besides pointcuts and advices.

90

b. Component modules used criterion lists the CaesarJ modules used in the pattern

implementations.

Properties Criteria Description

Language
mechanisms

Pointcut/advice utilization
Pointcuts and advice are used to implement the
pattern

Component modules used The CaesarJ modules used to implement the pattern

Reuse level
assesment

Reuse level Reuse level resulted in the pattern implementation

Same module, different scenarios Possibility of a given component to be composed in
multiple scenarios

Same module, same scenario, several
instances

Different instances of the same pattern can be
composed in the same scenario

Same module, same scenario,
different implementations

Possibility of multiple implementations of a
component to co-exist in the same application
having different pattern implementations

Composition
ability

Ability to discriminate between
instances of a class

Possibility of a component to compose to just a
selected subset of the existing instances of a given
class.

Observable composition order
The order by which the pattern is composed to the
application produces different results.

(Un)pluggability
The pattern can be easily removed or added to a
system, maintaining a functional system.

Table 8 Assessment criteria description

The reuse level assessment criteria evaluate the extent to which the modules resulting

from the pattern implementation are reusable. Different levels are considered, reflecting how

reusable the module is.

a. The Reuse level criterion establishes different levels of reuse according to the

modules used in the pattern implementations. It differentiates between 4 distinct

levels of reuse, listed in descending order:

1. Direct language support – CaesarJ language constructs provided direct support for

the pattern implementation. This criterion is considered the most favorable level for

reuse because the pattern is inherent to the language. As a consequence, no reusable

modules are necessary.

2. Reusable modules – This level of reuse reflects the generalization of the pattern code

into a module with reusable code. This is considered the second most favorable level

of reuse because the pattern logic is modularized into a reusable module.

3. Composition flexibility – This criterion reflects that, although no reusable modules

were achieved, the pattern implementations still present enhanced composition

91

abilities. This means that the pattern logic could not be abstracted into a reusable

module but the pattern implementation can be easily composed with classes in the

base application domain. It is considered the third most favorable level of reuse.

4. No reuse – This criterion reflects that neither of the above advantages could be

accomplished. It is considered the forth and lower level of reuse.

If the patterns have originated reusable modules, an additional assessment can be made.

a. The Same module, different scenarios criterion determines if the pattern

implementation can be used in different scenarios. If a reusable pattern

implementation is obtained, it must be able to be applied to different scenarios. This

criterion is the most basic level of reuse for reusable modules.

b. The Same module, same scenario, several instances criterion tells if more than one

aspect instance can be used in one scenario without the aspect instances interfering

with each other. If several autonomous aspect instances can be created and composed

within the same scenario, pattern management can be dealt in a flexible manner. This

criterion corresponds to an intermediate level of reuse.

c. The Same module, same scenario, different implementations criterion judges if it

possible to have several autonomous aspect instances in the same scenario,

functioning with different implementations. If this criterion is positive, it illustrates

the possibility to compose different aspect instances with different functionality in the

same scenario. If so, it is possible to select which aspect to compose with particular,

depending on the desired functionality. This is considered the highest level of reuse.

The composition criteria assess the composition characteristics of the pattern

implementations that have achieved produced reusable modules or modules with composition

flexibility.

a. The Ability to discriminate between instances of a class criterion assesses how far the

component can go in managing individual instances. If this criterion is positive, the

aspect can determine which objects can perform the roles defined in the pattern. This

allows the object level definition of the pattern participants.

b. The Observable composition order criterion tells if the order by which the

participants are composed to the pattern has any influence on the pattern

92

functionality. If it does, the pattern should present different results according to the

composition order.

c. The (Un)pluggability criterion states whether the pattern can be easily removed or

added to the base application. Furthermore, the removal of the pattern from the

application must not imply that it will not function or not make sense.

6.2 Mechanism usage

The CaesarJ pattern implementations invite analysis between the different mechanisms

CaesarJ uses to cope with crosscutting concerns present in the 11 approached patterns. This

analysis can serve as the basis for comparisons with AspectJ.

6.2.1 Pointcut and advice

An immediate comparison can be made between the pointcut/advice mechanism use in

the two languages. Table 9 summarizes the use of pointcuts and advices in every pattern.
Use of pointcut/advice: CaesarJ AspectJ
Abstract Factory No No
Bridge No No
Builder No No
Chain of Responsibility Yes Yes
Composite No No
Decorator No Yes
Factory Method No Yes
Mediator Yes Yes
Observer Yes Yes
Prototype No No
Visitor No No

Table 9 Pointcut and advice use in CaesarJ and AspectJ GoF implementations

Of the 11 CaesarJ pattern implementations, 3 patterns make use of the pointcut and

advice mechanism, against 5 of the AspectJ implementations. The 3 patterns where both

languages make use of this mechanism are Chain of Responsibility, Mediator and Observer.

The two patterns where AspectJ uses pointcuts and CaesarJ does not are Decorator and

Factory Method. These patterns share a common factor: they are not concerned with the

dynamic behavior of objects. Chain of Responsibility, Mediator and Observer are indeed

labeled as behavioral by Gamma et al [21], and the use of pointcuts seems adequate to

93

capture events of interest that trigger actions through advices. However, Decorator and

Factory Method are not the typical case that lends itself to the use of pointcuts, such as

scattered method calls. These patterns deal with specific situations: additional functionality

attached to an object by enclosing it in another object (Decorator) and the appropriate

instantiation of objects that will ultimately compose families of related objects (Factory

Method). CaesarJ provides other language mechanisms that replace the use of pointcuts and

advices.

For Decorator, CaesarJ is able to use the wrapper mechanism. CaesarJ’s wrapper

mechanism has a close relation to the intent of the Decorator pattern, and this has proven a

more flexible way to compose objects with Decorators. With the wrapper mechanism, it is

possible to decorate the same object with the same object several times (as it is in AspectJ),

but it is also possible to decorate the same object with several different decorators, in an

arbitrary order. This proves to be an advantage relatively to the mechanisms used by AspectJ,

where it is necessary to declare precedence between aspects. Furthermore, in CaesarJ the

same object can be composed multiple times with the same Decorator.

For Factory Method, CaesarJ uses the virtual class mechanism and implicit inheritance to

allow for the polymorphic instantiation of classes. If virtual classes are declared as concrete

they can be polymorphically instantiated because the created object will depend on its

enclosing family class. This provides direct language support for the pattern. AspectJ makes

use of the pointcut and advice mechanisms to intercept the calls to each class’ factory method

and define different implementations.

6.2.2 CaesarJ modules

The different pattern implementations have resulted in a diverse use of the available

CaesarJ modules. Table 10 lists the modules that have resulted from the pattern

implementations. As portrayed in chapter 3, the different CaesarJ modules present varied

reuse nature.

94

 CI CJImpl CJBinding w/ wrappers CJBinding Weavelet

Abstract Factory No No No Yes No

Bridge Yes Yes No Yes Yes

Builder No No No Yes No

Composite Yes Yes Yes No Yes

CoR Yes Yes Yes No Yes

Decorator No No Yes No No

Factory Method No No No Yes No

Mediator Yes Yes Yes No Yes

Observer Yes Yes Yes No Yes

Prototype Yes Yes Yes No Yes

Visitor Yes No Yes No No

Table 10 CaesarJ module usage in pattern implementation

6.3 Reuse level

As it could be expected, not all GoF patterns yielded modules with the same level of

reusability. This is a result of the nature of the patterns themselves, but also of the

mechanisms CaesarJ provides to developers for the separation of concerns into reusable

modules. Table 11 describes the CaesarJ level of reuse obtained in the implementation of the

11 design patterns.

 Direct support Reusable module Composition flexibility No reuse
Abstract Factory X - - -
Bridge - X - -
Builder - - - X
Composite - X - -
CoR - X - -
Decorator - - X -
Factory Method X - - -
Mediator - X - -
Observer - X - -
Prototype - X - -
Visitor - - X -

Table 11 CaesarJ support for reusability

The criteria shown in Table 11 provide an approximate overview of the level of reuse that

was obtained in the patterns. Direct language support is considered the highest level of reuse.

If the pattern has direct language support, it does not produce any reusable modules because

95

the language itself has mechanisms that serve the purpose of the pattern. It is worth

mentioning that direct language support can be mistaken for lack of reuse, because no

reusable modules are produced, but it is not the case. Reusable modules can be produced to

overcome a shortcoming in a programming language. If it directly supports a design pattern,

there is no need to create a reusable module.

If the pattern does not support the pattern directly, it is necessary to distinguish between

the modules produced. If the only produced CaesarJ module with a reusable nature is a CI,

only the general component design information has been captured in a reusable manner. The

logic of the pattern is described in the structure of the CI but it is not a functional module by

itself. There must be a CJBinding, or preferably a combination of CJImpl and CJBinding to

compose a concrete module.

If a CJImpl is obtained, it is therefore possible to have a pattern with alternative

implementations. This allows the developer to choose among a set of options for how the

pattern will function in a flexible manner. The CJImpl reflects that it was possible to remove

the pattern logic from classes in the domain application into a localized and context

independent module. It also enables the pattern specific code to be composed into several

scenarios, by composing it with CJBindings. If a pattern implementation is not directly

supported by a CaesarJ language mechanism, but has originated a CJImpl, it is placed in the

Reusable modules level of reuse.

CJBindings are always present in every scenario of every pattern, being the CaesarJ

module that reflects the context specific module of the pattern. Nevertheless, it is possible to

make a distinction between CJBindings that wrap classes in the domain application and ones

that must completely move the classes from the domain application into the CJBinding.

CJBindings with wrappers are more flexible to compose to existing applications. Wrappers

are also less intrusive than placing the code in a CaesarJ module. Sometimes the code might

not even be available to developers. Therefore, if a pattern implementation has not originated

a CJImpl, but it originated a CJBinding with wrappers it is placed in the Composition

flexibility level of reuse.

If neither a CJImpl nor a CJBinding have been produced, it is considered that the pattern

implementation provided no reuse and is therefore placed in the No reuse level.

96

6.3.1 Direct language support

From Table 11 we see that 2 of the 11 patterns are directly supported by CaesarJ,

Abstract Factory and Factory Method. In Abstract Factory, CaesarJ’s implementation of

family polymorphism through virtual classes directly supports the patterns. As discussed in

Section 5.1, a top level class that comprises several virtual classes acts as unit of

confinement. This top level class sets up the group of classes that are related with each other,

preventing unrelated classes to mix. Classes can be grouped by putting them inside the same

top level class. The virtual class mechanism enables classes of the same family to be refined

in sub-classes while still maintaining family consistency. This assures both type safety and

flexibility. The downside to this approach is that classes have to be removed from the

application domain into a CaesarJ module. Factory Method makes use of the virtual class and

implicit inheritance mechanisms to produce polymorphic constructors as mentioned in

Section 6.2.1. Polymorphic constructors solve the problem addressed by Factory Method, by

enabling different classes to be instantiated by the same constructor call, without losing

control over the exact concrete type of the object created. The created object is defined by its

family class. To use polymorphic constructors it is first necessary to create an object of the

desired family class, a family object. This family object will define the context of the virtual

class created, hence allowing control over the object created by the polymorphic constructor.

6.3.2 Reusable modules

The following 6 patterns have originated an implementation with reusable modules:

Bridge, Composite, Chain of Responsibility, Mediator, Observer and Prototype. Still, these

patterns can be divided into 2 smaller sets.

In a higher level of reuse, a set of 5 patterns has resulted in pattern implementation

separated into CIs, CJImpls and CJBindings modules with wrappers. These patterns are

Composite, Chain of Responsibility, Mediator, Observer and Prototype. These

implementations have allowed the removal of pattern specific code from classes in the

application into easily composable CaesarJ modules. The modules are straightforward to

compose thanks to the wrapper mechanism. Wrappers attach roles in the pattern to specific

97

instances of desired classes in the application domain. This enhances composition flexibility

because wrappers function at object level, rather than of the class level. The virtual classes in

the CJBindings declare they wrap classes in the application, but the wrapper instantiation

mechanism selects the desired object to which to compose the patterns. The wrapper

recycling mechanism also maintains mappings between each wrapper and the corresponding

object in the application. This way, wrapper objects of the pattern logic are uniquely

identified by objects in the application domain. The CJImpls allow the deployment of

different pattern implementations, allowing developers to choose between a number of

alternative ways to implement the context independent part of the component of the pattern.

Generalizing the context independent part of the component into a separate module from the

context specific allows for code locality and separation of concerns, which leads to

reusability. Within this group, Mediator constitutes a particular case where full separation of

concerns was not achieved. As mentioned in Section 5.8, the role of Mediator was not fully

removed from classes in the application domain. This is contrary to the findings of

Hannemann et al. [28]. Hannemann et al. argue that the role of Mediator is superimposed,

which proved not to be the case in the studied scenarios. In [28], the Mediator role is actually

scattered through 2 classes, Main and Label, and it is the Main class that holds static

references to the objects playing the roles of Colleague. Since Label holds no references to

Colleague objects or methods to manage these references, it only holds the notification logic.

It then resorts to conditional tests to check which static reference in the Main class triggered

the notification operation to establish which Colleague should be informed.

The Bridge pattern originated a CI, a CJImpl, and a CJBinding but that CJBinding

module does not declare any wrappers. This makes it necessary to place all the code in a

CaesarJ module. The Bridge pattern presents the flexibility CJImpls bring to pattern

implementation, but the disadvantages of placing the pattern code entirely in a CaesarJ

module.

6.3.3 Composition flexibility

The Decorator and Visitor patterns can be placed in the following level of reuse.

Although these patterns did not result in the implementation of CJImpls, they still benefit

98

from the composition advantages brought by the wrapper mechanism. Decorator and Visitor

differ because the latter has originated a CI. The CI adds the benefits of design information to

the pattern. The formation of a CI is useful because the two roles, Visited and Visitor, can be

abstracted into a higher level in the pattern, as well as an operation that can be placed into

one of the roles, as described in Section 5.11. The Decorator pattern places only one role in a

CaesarJ module, a Decorator that is composed with Component objects in the application.

Since the operations a Decorator performs depend solely on the Components they decorate,

no operations can be placed in a CI. The benefits mentioned for the wrapper mechanism for

the previous set of patterns still apply to this group, but the benefits of deriving a CJImpl do

not. That is why this group should be placed in a lower level of reuse.

6.3.4 No reuse

Finally, Builder can be considered the pattern that has presented the worst reusability

results, since no reusable modules were produced and neither was a CJBinding with

wrappers. The advantage that can be recognized for the Builder pattern implementation in

CaesarJ is improved type safety. By declaring a BuilderFamily class, family polymorphism

prevents unrelated ConcreteBuilder and ConcreteResults to be mixed. See Section 5.3 for

illustration. This advantage can nevertheless be found in all CaesarJ modules that define

virtual classes with the corresponding family class.

6.4 Pattern composition capabilities

As could be expected, not all CaesarJ pattern implementations proved reusable to the same

degree. This results either from the intrinsic nature of the pattern but also from the

mechanisms provided by CaesarJ for supporting modularity of aspects and their consequent

composition with the specific application. Among the 11 developed patterns, 6 have been

selected for an in-depth analysis of the possibilities CaesarJ provides for composing its

independently developed modules with modules previously developed in other applications.

The 6 patterns are:

99

• Chain of Responsibility

• Composite

• Decorator

• Mediator

• Observer

• Visitor

The analysis from this section is focused on CaesarJ’s ability to compose independently

developed modules, so the 6 patterns consist of the patterns that use the wrapper mechanism

to compose themselves to classes of existing applications, with the exception of Prototype.

The reason for the exclusion of Prototype is that its CI only has a virtual class, and its

composition mechanism is straight forward because the pattern does not imply the interaction

of objects playing different roles. Wrappers exist in Prototype solely to add the cloning

operation to individual objects in the application.

The 6 patterns included in this analysis can be divided in two different sets: patterns that

have originated reusable modules with the possibility for different implementations (Chain of

Responsibility, Composite, Mediator and Observer), and patterns that have not originated

reusable modules (Decorator and Visitor).

For this evaluation, new scenarios were developed for each of the patterns. The aim was

to test each pattern implementation’s level of reusability. Together with the implementations

from previously existing Java repositories, the total number of CaesarJ design pattern

implementations ascends to 36 design pattern implementations.

Table 12 is used to describe the properties of the CaesarJ modules that have originated

CJImpls, i.e., modules of the first set.

 Same module,

different scenarios
Same module, same

scenario, several instances
Same module, same scenario,

different implementations
Composite Yes Yes Yes
CoR Yes Yes Does not apply
Mediator Yes Yes Does not apply
Observer Yes Yes Yes

Table 12 Reusable modules implementation properties

100

The columns from Table 12 correspond, from left to right, to increasing levels of

reusability.

The second column from Table 12 indicates whether the reusable module can be

composed with several scenarios. This criterion always yields a positive result, as it

corresponds to the minimum level from which a module can be considered reusable.

The third column from Table 12 indicates whether it is possible to create several

instances of the same modules in the same scenario. This criterion is also always positive due

to CaesarJ’s aspect instantiation mechanism. CaesarJ enables a user to create an arbitrary

number of aspect instances in typical object oriented fashion. The tests have proven that

every aspect instance is fully autonomous. Consequently, creating several aspect instances in

the same scenario does not interfere with each instance’s execution.

The forth column from Table 12 indicates if it is possible to create multiple aspect

instances in the same scenario, but with each aspect instance comprising different CJImpls

modules. These instances share a common interface but have different functioning. The

experiments have proven that this is true for the Composite and Mediator patterns. It has not

been possible to apply this criterion to the Chain of Responsibility and Mediator because only

one CJImpl has been developed. In the patterns where it was possible to test this criterion, all

cases yielded a positive result. These results are due to two factors: loose coupling between

modules and mixin composition. CaesarJ effectively enables loose coupling between its

modules, which results in enhanced flexibility when composing modules into a full aspect

component with mixin composition. Mixin composition allows the abstract and concrete

facets of an aspect to be implemented in clearly separated modules and then combined into

one module that corresponds to the developers needs.

In order to evaluate CaesarJ capability for composing independently developed aspects

with the domain application classes, the pattern implementations were evaluated under

different criteria.

Table 13 shows the results the pattern implementations have displayed for these

composition criteria.

The first column indicates whether the modules are able to distinguish between instances
of the same class. This is true for all cases due to CaesarJ’s wrapper mechanism. Each
wrapper declaration creates a unique relation between an object in the application, the
wrappee object, and the object performing a role in the pattern, the wrapper object. This way,

101

 Ability to discriminate
between instances of a class

Observable
composition order

(Un)pluggability

Composite Yes Yes Yes
CoR Yes Yes Yes
Decorator Yes Yes Yes
Mediator Yes Does not apply Yes
Observer Yes Yes Yes
Visitor Yes Does not apply Yes

Table 13 Reusable modules composition properties

wrapper objects establish a mapping between objects in the application context and roles in

the context of the aspect. These wrapper objects are dynamic extensions to the objects in the

application domain can be treated individually as regular Java objects.

The second column indicates whether the module composition order has any impact on

the aspect behavior. This is true for all cases except Mediator and Visitor, where the criterion

does not apply. Visitor aims to add operations to all instances of a class. Therefore, this

criterion is not applicable. In the case of Mediator, the application of the criterion depends on

the notifying logic of the Mediator role. If the Mediator notifies its Colleagues by traversing

a data structure, the composition order is observable. If it holds references to its Colleagues

by keeping data members, then the composition order is not observable. In the Composite

pattern, the composition order is reflected in the children nodes of objects performing the

role of Composite. In the case of the Chain of Responsibility pattern the composition order is

reflected in the order of the chain of responsibility. The Decorator pattern exhibits the most

clear observable effect of the composition order. The Decorator module enables an object in

the application to be decorated with several Decorators. However, if an object Obj is

decorated with two decorators A and B, the composition order of the decorators defines two

distinct results. Finally, the composition order can be seen in the Observer pattern in the

notification logic of the Subject role. The order by which Subjects add Observers is reflected

in the order by which Observers are notified of changes in the Subject’s state.

The third column indicates whether the application will still be functional if the CaesarJ

pattern module is removed from the system and the participants in the pattern have some

meaning outside the pattern implementation. In all patterns, the CaesarJ module can be easily

removed because the pattern-specific code has been completely removed from the domain

application. This way, the pattern can be composed to instances of the classes of the

application while they still maintain their responsibilities outside the pattern.

102

6.5 Reuse comparison with AspectJ

This section summarizes a comparison between the support for reuse given by CaesarJ and

AspectJ. Section 6.5.1 discusses the modules that have originated reusable modules in both

languages, while section 6.5.2 discusses the subject of reusability in the two languages in

from a more general point of view.

6.5.1 Reusable modules comparison

Due to the pattern implementations resulting from this study, and the analogue

implementations in the Hannemann and Kiczales study [28] it is possible to draw a direct

comparison between the patterns that have resulted in a reusable module. Hannemann and

Kiczales have obtained reusable modules in the form of AspectJ abstract modules. The

CaesarJ patterns that have originated reusable modules are the pattern implementations that

have been created resorting to language mechanisms in CaesarJ that provide direct language

support and patterns that derived CJImpls (see section 6.3). Table 14 summarizes this

comparison.

 Reusable modules

Pattern name CaesarJ AspectJ

Abstract Factory D.L.S.* No

Bridge Yes No

Builder No No

Chain of Responsibility Yes Yes

Composite Yes Yes

Decorator No No

Factory Method D.L.S.* No

Mediator Yes Yes

Observer Yes Yes

Prototype Yes Yes

Visitor No Yes

Table 14 Reusable module comparison between CaesarJ and AspectJ

* D.L.S. – Direct Language Support

103

A total of 8 CaesarJ design pattern implementations have resulted in a reusable module,

including patterns with direct language support, while the analog AspectJ implementations

have originated 6 reusable modules. The results for the pattern implementation largely match.

The differences occur in the Bridge pattern, where it was possible to derive a reusable

CJImpl and AspectJ was not able to produce a reusable abstract aspect, in the Abstract

Factory and Factory Method patterns, where CaesarJ provided direct language support for

the pattern implementation and for Visitor where AspectJ was able to produce a reusable

abstract aspect and CaesarJ was not able to produce a reusable module.

6.5.2 General comparison

Except for the case of the Visitor pattern, CaesarJ has obtained similar results to AspectJ

as far as the number of reusable modules. Except for Visitor, all patterns that originated

reusable modules in AspectJ did so with CaesarJ. Nevertheless, the analysis in Sections 6.1

and 6.2 have established differences in the level of reuse among the 2 languages. The highest

level of reusable modules in AspectJ corresponds to developing abstract and concrete

aspects. In CaesarJ it corresponds to developing modules with CI, CJImpls and CJBindings

with wrappers. The advantage this brings is that it is possible to have several alternative

implementation strategies for each pattern. Mixin composition allows developers to choose

the desired implementation strategy for the pattern, compose it to the CJBinding for the

concrete scenario and derive a concrete aspect component. AspectJ does not allow this level

of flexibility.

Another difference between CaesarJ and AspectJ is their module’s internal structure. In

AspectJ, pattern aspects present a flat internal structure, where interfaces, methods and data

structures are at the same level. With virtual classes, CaesarJ offers a richer internal structure

to aspects, clearly defining role responsibilities between the virtual classes declared within

the aspect module. These classes are able to represent the roles involved in the pattern, but

can also hold methods and data structures that are related to them. This approach is closer to

object oriented languages, where the logic associated with a concept is enclosed by the class

that modules that same concept. This structural difference constitutes a basic advantage to

104

CaesarJ because it enables dealing with the roles associated with patterns and the operations

they must perform in a more intuitive manner.

Since CaesarJ allows for the explicit instantiation of aspects, aspects can be managed as

objects with additional constructs. This shortens the conceptual gap between aspects and

classes. Also, it makes for a more natural control over aspect deployment and composition.

Since several instances can be created, this corresponds to several aspect components

functioning in the same scenario. The deployment scope of these scenarios can also be

explicitly controlled. When an aspect instance is created, it must still be deployed before it is

effective. CaesarJ has mechanism to dynamically deploy and undeploy aspect instances,

allowing developers to control several aspect instances’ scope in an intuitive manner.

Another advantage of creating aspect instances is that it allows different instances to

compose themselves to selected objects in the application domain. The composition of

aspects to objects in the application domain is carried out by wrappers.

A further advantage of the wrapper mechanism was observed in the implementation of

the Prototype design pattern. The CaesarJ pattern implementation can make use of the Java

API marker interface Cloneable. This marker interface allows classes to use the clone

method to produce copies of its instances. CaesarJ implements the cloning operation in the

CJImpl and glues the pattern implementation to classes in the application through

CJBindings with wrappers. This approach removes the need for classes in the application

domain to use the Cloneable marker interface, becoming oblivious of the role they play in

the pattern. AspectJ is able to produce a reusable abstract aspect that implements the cloning

operation however the classes in the domain application must still declare they implement

Cloneable.

Nevertheless, the Visitor pattern revealed some limitations to CaesarJ’s wrapper

mechanism. Visitor exposes the limitations of CaesarJ’s wrapper mechanism when dealing

with inheritance hierarchies in classes of the application domain. Since CaesarJ does not

allow classes with wrapper declarations to be refined in sub-classes that declare different

wrappers, CaesarJ lacks a mechanism to integrate with inheritance hierarchies

polymorphically. The developer is forced to declare different wrappers for subclasses of

already wrapped classes. This lack of subtype polymorphism defeats the double dispatch

intent of the Visitor pattern. It is necessary to programmatically enforce mechanisms to deals

105

with the selection of the appropriate wrapper for the class, in the base application. The

VisitedFor method is a direct consequence of this need. See Section 5.11 for the CaesarJ

implementation of the Visitor pattern. In comparison CaesarJ, the intertype declaration

mechanism of AspectJ yields better results. AspectJ uses intertype declarations to introduce

marker interfaces that assign the roles of the pattern to classes in the base application. The

difference is that the aspect is able to hold the inheritance hierarchy between the marker

interfaces. Since the marker interfaces keep their inheritance hierarchies, AspectJ is able to

remove the pattern specific code into an aspect and still allow for double dispatch.

6.6 CaesarJ component design guidelines

This section presents some guidelines for the design of CaesarJ components. The

following considerations derive from the experience gained in the context of this dissertation.

Nevertheless, these guidelines do not aim to be strict rules for the refactoring of Java code

into CaesarJ. Such studies would presume deeper research on this subject and formal

description of refactoring processes [40]. However, the CaesarJ implementations developed

during this dissertation and their Java equivalents can serve as code examples for such future

studies.

When design a CaesarJ component, it is first advisable to consider the roles involved in

the component. Components can sometimes deal with several participant classes. These

classes should be generalized into abstract virtual classes that model functional roles in a

CaesarJ component. Each role is in turn responsible for specific operations it must carry out

in the context of the functioning of the component. Each of these operations should be placed

in the corresponding virtual class. Together, the description of the roles that abstract

participant classes and the operations these roles must carry out form the interface of the

pattern. Therefore, the constructs should be placed into a CI because they describe the

component through abstract classes and roles, but do not implement any.

In the functionalities a component adds to a system, components should be able to

distinguish between functionalities that can be implemented independently of the system

where the component is deployed or functionalities that directly depend on classes in the base

system. These are normally seen as the provided and expected facets of a component. The

106

provided facet comprises the functionalities that the component adds to the base system and

the expected facet is the functionalities that are dependent on the classes in base system in

order to be implemented. CaesarJ supports the separation of these two facets with the CJImpl

and CJBinding modules.

The key to deriving reusable modules in the form of a CJImpl is that it must not reference

classes in the base system, as that leads to tight coupling to a concrete system. If that is the

case, that module should be considered a CJBinding, as it is strongly context dependent. To

keep CJImpls context independent, they should refer only to abstractions described in the CI

in the implementation of the provided facet. This way, the functionalities of the provided

facet can be implemented resorting solely to abstractions contained in the component, which

can be considered higher level abstractions of the participant classes that take part in the

component. Thanks to the CI, the CJImpl is able to use the functionalities of the expected

facet without knowing their specific implementation. This loose coupling provided by the CI

is paramount to the development of alternative and reusable CJImpl modules.

Since the provided facet implemented in the CJImpl modules resorts to the functionalities

implemented in the CJBindings, the CJBindings must be able to correctly map the operations

of the classes in the base system to the abstract operations of the collaborating roles

described in the CI. Wrapper classes are able to incorporate objects of the classes in the base

system and translate them into the abstractions defined in the CI, and accessing their

wrappee’s methods. Wrappers present advantages over moving a class of the base system

into a CaesarJ module because different wrappers can be created to wrap the same class

multiple times. This can be useful if the same class can perform different roles in the

component context or variations of the same role. CJBindings can be seen as specialized

classes that make possible the transition between the context of the base system and the

context of the component, therefore enabling CJImpls to remain oblivious of the base system

implementation details.

If a component must react to specific events of a general nature, typically scattered

through different classes, CJBindings should define pointcuts to define which events the

component must react to and advices to detail which operations should be triggered.

Combining wrappers and advices allows different pointcuts to trigger different events in a

107

flexible way, where an operation performed by a single class can trigger actions on several

different wrappers, depending of the pointcut.

Finally, the family polymorphism mechanism provides additional expressiveness and

safety for the definition of interactions between related implementations of the participants of

a component. Family classes that extend the CI can have multiple refinements of the abstract

roles defined in the CI. However, not all of these refinements may be compatible with each

other. Therefore, classes that define refinements of the abstract roles of the CI should be

placed in a common family class, while classes that are not compatible should be placed in

different family classes.

Weavelets comprise the complete realization of the pattern and are put together through

mixin composition. A small detail must be kept in mind when defining the order of the

mixin. Mixins define superclasses in a serialized order, which means that the modules that

implement the most context specific methods must be declared first. This detail is revealed

when CJImpls and CJBindings contain overlapping implementations of the same method

declared in the CI. Such was the case in the Mediator pattern, where the CJBinding

implemented a method that was also implemented in the CJImpl. Because the CJBinding is

more closely related to the pattern, the mixin composition order reflected this conflict. See

section 5.8 for further detail.

108

109

7. Related Work

The work related to this thesis can be placed in 3 different categories: AOP implementation

of the GoF design patterns, the evaluation of these implementations and the appearance of

aspect-oriented design patterns that has come from the increasing experience of

programming with aspect-oriented languages. Section 7.1 details other AOP implementations

of the GoF design patterns, section 7.2 describes methodologies for the evaluation of AOP

implementations of GoF design patterns and section 7.3 presents some AOP design patterns

that have been suggested as the use of AOP languages has become more widespread.

7.1 AOP implementation of GoF design patterns

Nordberg has elaborated on the potential of AOP to significantly reshape or even make

obsolete many common object-oriented design patterns [43]. According to Nordberg, object-

oriented design patterns anticipate change at the price of extra overhead for object-oriented

indirection. This overhead can be reduced by introducing aspect-oriented design patterns

with better designs. Nordberg’s study also presents an AspectJ implementation of the

Factory Method pattern.

Rajan has provided a case study of implementation of the GoF design patterns in the Eos

AOP language [45]. Unfortunately, the source code that has resulted from this case study is

not freely available. The drive behind this study is the concept that the notions of aspect and

class can be unified in a new module. The Eos language supports this concept in the form of

the classpect module construct. The author has taken the AOP design pattern

implementations in [28] and created equivalent implementations in Eos, for comparison

purposes. These comparisons were based on the modularity qualitative criteria used by

Hannemann et al. but also on two metrics, the number of lines of code used in the aspect and

if the implementation keeps a Close Match to Pattern Intent (CMPI). The author concluded

110

that 7 pattern implementations showed improvement over the AspectJ implementations and

the remaining 16 patterns showed no worse results. Our work shares the intent of comparing

2 different AOP languages based on design pattern implementation by developing

implementations of independently developed design patterns. However, Rajan’s study is

based in Hannemann et al. AspectJ implementation where ours is based in several Java

implementations. Furthermore, our study does not contemplate the metrics used by Rajan,

focusing instead in characterizing CaesarJ’s composition abilities. Another resemblance

between Rajan’s study and ours is the concept of unifying classes and aspects. Although this

concept is shared by both languages, CaesarJ still separates the method and advice constructs

in an AspectJ-like manner, whereas Eos unifies the constructs of methods and advices.

Furthermore, CaesarJ presents the virtual class mechanism to establish structural

collaborations between classes of related families and Eos does not. Finally, Eos’ underlying

language is C# while CaesarJ is an extension to Java.

Hachani et al. also recognized that objected-oriented implementation of design patterns

could be improved by aspect-oriented technologies [27]. This study lists a set of 4 problems

associated with the objected-oriented design approach, namely Confusion, Indirection,

Encapsulation Breaching and Inheritance Related problems as particular cases of code-

scattering and code-tangling. The authors take the Visitor pattern as an example of a design

pattern that could be improved using AOP and offer an alternative AspectJ implementation

for this pattern. This study has served as motivation for another work by Hachani et al. [26]

where the same 4 problems are addressed and an implementation of the Strategy pattern is

presented. The study argues that not only do design patterns gain from aspect-oriented

implementation but also that the aspect-oriented pattern implementation should be complete

with aspect-oriented description, similar to the descriptions in [21], so that pattern description

also benefits with easier documentation evolution. This study mentions the implementation

of the 23 GoF design patterns, but presents no evaluation besides mentioning benefits in code

locality and pattern traceability. The AspectJ implementation of the design patterns can be

found in [4]. The same page also holds a HyperJ implementation of the GoF design patterns,

but mentions no subsequent studies.

Hirschfeld et al. tackle the question of design pattern implementation using the aspect

oriented language AspectS [29]. These authors state that object-oriented design pattern can

111

be enhanced by aspect-oriented representation, but mainly from a native AOP approach to

design patterns, improving design pattern solutions both in development time and at run-

time. The authors discuss the need for explicit variation points in order to allow the

development of system parts independently and later join them together to form the desired

system with no performance degradation. The authors characterize the parts of a system as

the fixed and variable parts as well as the glue code that binds the two. While AOP

representations of design pattern effectively improves the separation of the fixed and variable

parts of a system and removes the need for glue code in the fixed part, the weaving process

necessary to compose both parts results in performance degradation because the end system

run-time behavior is hindered by messaging overhead caused by indirection levels and

context-dependent change of identity. The authors defend that a native AOP approach can

provide support for the separation of fixed and variable parts of a system but also to

seamlessly combine the two parts at run-time, eliminating glue code and performance issues

like messaging overhead. The Visitor and Decorator design patterns are used to illustrate this

approach.

7.2 AOP implementation evaluation

Garcia et al. have produced an exhaustive study in the quantification of modularity

improvements in the AspectJ implementations of the GoF design patterns [22]. This group of

authors has established a quantitative study that compares the Java and AspectJ solutions for

the 23 GoF patterns presented in [28] to claim that most aspect-oriented showed

improvement in the separation of pattern-related concerns but only the aspect-oriented

implementations for Composite, Mediator, Observer and Visitor exhibited significant reuse.

The authors replicated the study described in [28] but with a larger number of participant

classes to perform pattern roles which is justified by the authors by the small number of

participant classes in the original study. The resulting implementations were then subject to

the measurement process with the aid of a CASE tool. This tool gathered data in metrics for

attributes such as separation of concerns, coupling, cohesion and size. Our study has

privileged the 4 patterns that were considered significantly reusable in the CaesarJ

implementations to assess if this would also be true for this study. Although our study is not

quantitative in nature, it confirms the reusability for Composite, Mediator and Observer.

112

However the CaesarJ implementation of Visitor exposed some limitations in CaesarJ’s

support for reuse.

The study documented in [22] explored the scalability factor of the AspectJ

implementations. The study of issue was further continued in the study of Cacho et al. [14].

This study focused not only on the scalability of aspect-oriented implementations of design

patterns in large system, but also how the composition of these patterns scales up. Again, the

separation of concerns, coupling, cohesion and size attributes were used to evaluate the

pattern compositions according to 4 categories for composition issues: invocation-based

composition, class-level interlacing, method-level interlacing and pattern overlapping. The

authors studied 3 medium-sized systems implemented in Java and AspectJ and evaluated 62

compositions in these systems to conclude that the results depend greatly on the patterns

involved, the composition intricacies and the application requirements. The authors also

consider that the aspectization of the pattern composition is not straightforward and that

several design options need to be considered and a global reasoning of the system is

sometimes necessary to understand the impact of each design option in the context of the

whole system implementation.

Bartholomei et al. recognize the need for a framework that evaluates coupling measures

for languages other than AspectJ [7]. The authors present a coupling measurement

framework that takes into account both AspectJ and CaesarJ as representatives of 2 of the

most well known families of AOP languages. This framework accommodates the definition

of different coupling metrics that enable the comparison of Java, AspectJ and CaesarJ

implementations. This framework takes into account the different composition mechanisms

inherent to both languages. The design pattern implementations provided by this study can be

considered good candidates for use cases for this framework, since they provide grounds for

coupling comparison between CaesarJ and AspectJ.

7.3 AOP design patterns

The growing number of studies concerning AOP has resulted in a considerable body of

knowledge. This accumulating experience can now be used to analyze the common design

practices when using aspect-oriented technologies, namely aspect-oriented design patterns.

113

Noble et al. have produced a study that catalogs 5 patterns of aspect-oriented design [42].

These patterns are called Spectator, Regulator, Patch, Extension and Heterarchical Design.

The authors also describe the problem solved by the pattern, show how aspect-oriented

language features are used in the pattern, give characteristic examples of the pattern’s use

and assess its benefits and liabilities.

Bynens et al. present the aspect-oriented Elementary Pointcut design pattern [13]. This

pattern aims to improve the reusability of aspects, more specifically, aspects that combine

pointcuts and advice in one module. It does so by decomposing the structure of a pointcut in

a base aspect into elementary pointcuts that be overridden by concrete sub-aspects. This

pattern depends on two language features to take full advantage of its benefits. These features

are aspect inheritance with both advice and pointcut inheritance and pointcut overriding and

explicit aspect deployment. The former is necessary to reuse pointcut expressions and refer to

the inherited pointcut expression inside a redefinition. The latter is necessary to choose which

aspects are active. Although CaesarJ supports both this features, this pattern is not present in

this work because there is no redefinition of pointcuts present. Pointcuts are used scarcely

and at specific occasions. This pattern can be considered as the Template Method pattern

applied to pointcut definitions.

Horne describes another study about an aspect-oriented design pattern [30]. The

Availability Manager pattern is described as a solution for applications that are not self-

sufficient and need to communicate with external applications and system running locally or

remotely, which may not be available at some point. This pattern allows the business part of

applications to handle the unavailability the systems on which it depends. This pattern can be

related to the Façade design pattern because it accommodates for the communication

between different applications, but focusing on the particular case of the unavailability of a

component.

114

115

8. Conclusions and future work

This chapter presents the final conclusions of this dissertation and points some research

directions for the future.

8.1 Conclusions

This dissertation has created 30 CaesarJ implementations for 11 design patterns from

already existing Java examples. These implementations are described in chapter 5 as well as

expressed by a diagram illustrating the structure of the pattern implementation.

The implementations have been characterized by the CaesarJ mechanism used in the

pattern implementation and a direct comparison for the use of the pointcut and advice

mechanisms has been established. Section 6.2 describes this characterization.

According to the modules used to implement the pattern, the implementations have been

submitted to an analysis regarding the level of reuse achieved, differentiating between 4

levels of reuse. The 11 patterns have shown different reuse abilities, where 2 patterns showed

direct language support in the CaesarJ implementation, 6 patterns originated reusable

modules, 2 patterns presented composition flexibility abilities and 1 pattern demonstrated no

ability for reuse. Section 6.3 describes the analysis of the level of reuse achieved.

The patterns that originated reusable modules or presented composition flexibility have

been further analyzed as to their composition features. To access these implementations

abilities, an additional 6 new pattern implementations have been developed. This analysis is

described in section 6.4.

A direct comparison between CaesarJ’s and AspectJ’s support for deriving reusable

modules from pattern implementation is made in section 6.5.

Finally, some general CaesarJ component design guidelines are suggested in section 6.6.

116

8.2 Future work

This section presents some research directions for future work. It points out some

limitations in our work and opportunities for further studies that can use this work as its

basis.

This work has created implementations for 11 out of the 23 GoF design patterns. The

implementation of the remaining patterns may provide additional insights that could not be

derived from this set of implementations. Furthermore, other patterns from different authors

should also be the subject of AOP implementations so that aspect-oriented languages can be

evaluated in more situations. Such implementations would further expose the strengths and

liabilities of AOP languages to new design issues.

This work tackles the composition of individual patterns to an application. A

supplementary test to the patterns composition abilities would be to systematically access the

problem of composing several patterns into a single application.

Since this work is focused in the comparison between the implementation of 11 design

patterns in CaesarJ and AspectJ, more case studies would provide a more significant

background for similar studies. Extra implementations in both languages would ease the

generalization of the findings presented in this work or challenge them.

This study presents a qualitative analysis of the pattern implementations. Quantitative

studies would provide further considerations about the patterns developed and their

properties. Such studies have previously focused on AspectJ to measure its modularity,

scalability and composition capabilities as well as its coupling attribute. Similar studies

would also increase the knowledge about CaesarJ’s potential, relative to other AOP

languages.

The investigation of AOP languages and AOP itself in general could also benefit from the

extension of this work to other AOP languages. Since pattern implementation brings insights

regarding the mechanisms existing in a certain language, extending this study to other

languages would benefit the study of those languages’ mechanisms. Increasing the number of

repositories of AOP design pattern implementations would establish a broader basis for the

comparison of multiple AOP languages and their respective constructs.

117

The patterns developed can also be used as the case study for the refactorings for CaesarJ.

Since this study comprises the implementation of at least two scenarios of the same design

pattern, these implementations can provide the basis on which to derive refactorings.

Similarly, the implementations can serve as the subject for the investigation of aspect-

oriented design patterns.

These implementations have focused on the implementation of object-oriented design

pattern using an aspect-oriented language, namely CaesarJ. The CaesarJ implementations

also lend themselves to an investigation of the existence of aspect-oriented design patterns

existing in the developed examples.

118

119

9. Bibliography

[1] AspectJ implementation of GoF design patterns http://www-
lsr.imag.fr/Les.Personnes/Ouafa.Hachani/GoFPatternsInAspectJ.zip

[2] AspectJ project home page, http://www.eclipse.org/aspectj
[3] CaesarJ homepage, http://caesarj.org
[4] HyperJ implementation of GoF design patterns http://www-

lsr.imag.fr/Les.Personnes/Ouafa.Hachani/GoFPatternsInHyperJ.zip
[5] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I.,

Angel, S., A Pattern Language, Oxford University Press, New York, USA, 1977.
[6] Aracic, I., Gasiunas, V., Mezini, M., Ostermann, K., An overview of CaesarJ.

Transactions on Aspect-Oriented Software Development I. LNCS, Vol. 3880, pp.
135-173, Feb 2006.

[7] Bartolomei, T., Garcia, A., Sant'Anna, C., Figueiredo, E., Towards a unified
coupling framework for measuring aspect-oriented programs, SOQUA’06,
Portland, Oregon, USA, 2006.

[8] Baumgartner, G., Läufer, K., Russo, V. F., On the Interaction of Object-Oriented
Design Patterns and Programming Languages, Technical report CSD-TR-96-020,
Perdue University, 1996.

[9] Bosch, J., Design Patterns as Language Constructs, Journal of Object-Oriented
Programming, 11(2): 18-32, 1998.

[10] Bracha, G., Cook W., Mixin-Based Inheritance. Proceedings of ECOOP/OOPSLA,
Ottawa, Canada, 1990.

[11] Brichau, G., Haupt, M., Report describing survey of aspect languages and models,
AOSD-Europe Deliverable D12, AOSD-Europe-VUB-01, 2005.

[12] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Pattern-
Oriented Software Architecture: A System of Patterns, Jon Wiley and Sons, 1996.

[13] Bynens, M., Lagaisse, B., Joosen, W., Truyen, E., The elementary pointcut pattern,
BPAOSD’07, Vancouver, British Columbia, Canada, 2007.

[14] Cacho, N., Sant'Anna, C., Figueiredo, E., Garcia, A., Batista, T., Lucena, C.,
Composing design patterns: a scalability study of aspect-oriented programming,
AOSD’06, Bonn, Germany, 2006.

[15] Chambers, C., Object-Oriented Multi-Methods in Cecil, ECOOP’92, Ultrecht, The
Netherlands, 1992.

120

[16] Coplien, J.O., Schmidt, D. C., Pattern languages of program design, Addison-
Wesley, 1995.

[17] Eckel, B., Thinking in patterns, revision 0.9. Book in progress, May 20, 2003.
Available at http://www.mindviewinc.com/downloads/TIPatterns-0.9.zip.

[18] Ernst, E. Family Polymorphism. ECOOP 2001, Heidelberg, Germany, 2001.
[19] Ernst, E., Ostermann, K., Cook, W. R., A Virtual Class Calculus. 33rd ACM

Symposium on Principles of Programming Languages (POPL’06). ACM
SIGPLAN-SIGACT, 2006.

[20] Filman, R. E., Elrad T., Clarke S., Aksit M., Aspect-Oriented Software
Development, Addison-Wesley, 2005.

[21] Gamma, E., Helm, R., Johnson R., Vlissides, J., Design Patterns – Elements of
Reusable Object-Oriented Software, Addison–Wesley, 1995.

[22] Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., Staa, A.,
Modularizing Design Patterns with Aspects: A Quantitative Study, LNCS TAOSD
I, Springer vol. 3880, 2006.

[23] Gasiunas, V., Mezini, M., Ostermann, K., Depedent classes, OOPSLA 2007,
Montréal, Quebec, Canada, 2007.

[24] Gasiunas, V., Ostermann, K., Mezini, M., Multidimensional Virtual Classes,
Techinical Report TR TUD-ST-2006-03, Technische Universität Darmstadt, 2006.

[25] Greenfield, J., Short, K., Cook, S., Kent, S., Software Factories: Assembling
Applications with Patterns, Models, Frameworks, and Tools, Wiley Publishing,
2004.

[26] Hachani, O., Bardou, D., On Aspect-Oriented Technology and Object-Oriented
Design Patterns. AAOS’03, Darmstadt, Germany, 2003.

[27] Hachani, O., Bardou, D., Using aspect-oriented programming for design patterns
implementation, OOIS’02, Montpellier, France, 2002

[28] Hanneman, J., Kiczales, G., Design Pattern Implementation in Java and AspectJ,
OOPSLA 2002, Seattle, Washington, USA, 2002.

[29] Hirschfeld, R., Lämmel, R., Wagner, M.,Design Patterns and Aspects – Modular
Designs with Seamless Run-Time Integration, 3rd German GI Workshop on AOSD,
2003

[30] Horne, J., The availability manager design pattern, OOPSLA’06, Portland, Oregon,
USA, 2006.

[31] Johnson, R. E., Frameworks = (Components + Patterns), Communications of the
ACM 40, vol. 10, pp. 39-42, 1997.

[32] Kiczales, G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier J-M.,
Irwin J. Aspect-Oriented Programming, ECOOP’97, vol.1241, pp. 220–242,
Jyväskylä, Finnland, 1997.

[33] Kiczales, G., Mezini, M., Aspect-Oriented Programming and Modular Reasoning,
ICSE '05, St. Louis, Missouri, USA, 2005.

121

[34] Laddad, R., AspectJ in Action, Manning, 2003.
[35] Liebermann, H., Using Prototypical Objects to Implement Shared Behavior in

Object Oriented Systems, OOPSLA’86, Portland, Oregon, USA, 1986.
[36] Madsen, O. L., Møller-Pedersen, B., Virtual classes: a powerful mechanism in

object-oriented programming, OOPSLA’89, New Orleans, Louisiana, USA, 1989.
[37] Mezini, M. Ostermann, K, Integrating Independent Components with On-Demand

Remodularization, OOPSLA’02, New York, New York, USA, 2002.
[38] Mezini, M., Ostermann K., Conquering Aspects with Caesar, AOSD’03,

Boston,USA, 2003.
[39] Mezini, M., Ostermann, K., Untangling Crosscutting Models with Caesar, Chapter

8 of [20].
[40] Monteiro, M. P., Fernandes, J. M., Towards a Catalogue of Refactorings and Code

Smells for AspectJ. Transactions on Aspect-Oriented Software Development
(TAOSD), A. Rashid, M. Aksit (Eds.), Springer LNCS vol. 3880/2006, p. 214 –
258

[41] Monteiro, M. P., Fernandes, J.M., Pitfalls of AspectJ Implementations of Some of
the Gang-of-Four Design Patterns, DSOA’2004, Málaga, Spain, 2004.

[42] Noble, J., Schmidmeier, A., Pearce D. J., Black A. P., Patterns of Aspect-Oriented
Design, EuroPLoP’07, Irsee, Germany, 2007.

[43] Nordberg, M. E., Aspect-Oriented Dependency Inversion, OOPSLA’01, Tampa
Bay, Florida, USA, 2001.

[44] Pree, W., Design Patterns for Object-Oriented Software Development, Addison-
Wesley, 1994.

[45] Rajan, H., Design Patterns in EOS, PLoP ’07, Monticello, Illinois, USA, 2007.
[46] Rashid, A., Moreira A., Domain Models are NOT Aspect Free, Models’06, Genoa,

Italy, LNCS, Vol 4199, Springer-Verlag (2006): pp. 155-169.
[47] Sousa, E., Monteiro, M. P., An Exploratory Study of CaesarJ Based on

Implementations of the Gang-of-Four patterns. Technical report FCT-UNL-DI-
SWE-2008-01, New University of Lisbon, 2008

[48] Sousa, E., Monteiro, M. P., Implementing Design Patterns in CaesarJ: an
Exploratory Study, SPLAT 2008, Brussels, Belgium, 2008.

