

Universidade Nova de Lisboa
Faculdade de Ciências e Tecnologia

Departamento de Informática

Dissertação de Mestrado em Engenharia Informática
2º Semestre 2008/2009

Analysis of Support for Modularity in Object Teams
based on Design Patterns

João Luís Lopes Gomes, nº 26530

Orientador: Prof. Doutor Miguel Pessoa Monteiro

22 de Outubro de 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/157621315?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Nº do aluno: 26530
Nome: João Luís Lopes Gomes

Título da dissertação: Design Pattern Implementation in Object Teams

Palavras-Chave:

• Object Teams/Java
• Padrões de Concepção

• Programação Orientada a Aspectos

Keywords:

• Object Teams/Java
• Design Patterns

• Aspect-Oriented Programming

To my grandmother São, who always supported me in everything but

could not see me finish my studies.

Acknowledgements

I would like to thank my supervisor, Miguel P. Monteiro, for the support and motivation he gave me
while writing this document. He’s been the best (yes, I’m expressing my opinion, and with such a
strong word like BEST!) supervisor I could ask for, always being available to help me and to provide
an incomparable knowledge which was one of the basis for all of this work. More than a supervisor,
he has been a friend, always supporting me and my work.

To my parents, grandparents, uncles and cousins for all the support they’ve been giving me in all the
years of my life. There are no words to describe everything they’ve given be and what I feel for them.

To my girlfriend Vânia, por seres a pessoa mais fixe do mundo! For encouraging me to keep working
until the end, and always being present when I needed it.

Last but not least, to all my friends (who will never read my dissertation), the ones who played Risk
with me, the ones who put up with me, the ones who would come to meet me while I was working,
even if they were not in the best conditions, the ones I’ve met abroad and might never see again, the
ones who came with me to music gigs, then ones who played Magic with me, the ones who watched
TV series with me and helped me wasting time when I should be working, the ones who waited for
me every time I was late for some meeting, the ones who I’ve known since forever and always
supported me with a beer at Charrua, and to all the others I’ve forgot to mention (you know I’m
always forgetting stuff), to everyone I’ve met in these 12+5 years of school!

To my friend Paula who actually read this dissertation without any knowledge about the subject, and
spotted my writing errors. Thanks!

Also, to João Pedro Martins Rogeiro for not lending me his laptop charger for 5 minutes.

Abstract

The paradigm of Aspect-Oriented Programming is currently being studied and matured. Many aspect-
oriented languages have been proposed, including Object Teams for Java (OT/J). However, to date
few studies were carried out to assess the contribution of the various languages available and compare
their relative advantages and disadvantages. The aim of this dissertation is to contribute to fill this
gap.

In the past, implementations of design patterns in Java and AspectJ were successfully used as case
studies to derive conclusions on the relative advantages and disadvantages of the language under
consideration. This dissertation follows this approach, with the development of a suitable collection
of examples based on the well-known Gang-of-Four design patterns.

Two repositories of implementations in OT/J of the complete collection of 23 Gang-of-Four design
patterns have been developed, to be used as a basis for subsequent analysis. The scenarios used for
the examples are based on Java repositories by independent authors, freely available on the Web.

Based on the repositories developed, an analysis of the modularizations obtained with OT/J is
presented and compared with the results obtained using Java and AspectJ.

OT/J provides direct language support for 3 of the patterns. 20 patterns yielded separate modules for
the patterns, of which 10 modules proved to be reusable. Only in 1 of the patterns, no significant
differences between Java and OT/J were obtained.

Resumo

O paradigma de programação orientada a aspectos ainda se encontra a ser estudado e maturado.
Presentemente existem várias linguagens orientadas a aspectos, incluindo a linguagem Object Teams
for Java (OT/J). No entanto, até à data, existem poucos estudos sobre a possivel contribuição das
várias linguagens existentes, assim como uma comparação das suas vantagens e desvantagens
relativas. O objectivo desta dissertação é de contribuir para preencher esta lacuna.

No passado, a implementação de padrões de concepção em Java e AspectJ foi utilizada com sucesso
em casos de estudo para tirar conclusões sobre vantagens e desvantagens das linguagens usadas. Esta
dissertação segue esta abordagem, com o desenvolvimento de um conjunto de exemplos adequado,
baseado nos conhecidos padrões de concepção do Gang-of-Four.

Foram desenvolvidos em OT/J dois repositórios completos do conjunto dos 23 padrões de concepção
do Gang-of-Four, que são usadas nas análises subsequentes. Os cenários usados para os exemplos são
baseados em repositórios Java elaborados por autores independentes, e encontram-se disponíveis na
Web.

Com base nos repositórios desenvolvidos, uma análise às modelarizações obtidas no OT/J é
apresentada e comparada com os resultados obtidos em Java e AspectJ.

O OT/J oferece suporte directo da linguagem a 3 dos padrões. 20 padrões produziram módulos
separados para os padrões, módulos dos quais 10 são reutilizáveis. Apenas para 1 dos padrões não
foram obtidas diferenças significativas entre a versão Java e a em OT/J.

Index

1. INTRODUCTION ...1

1.1 MOTIVATION ...1
1.2 PROBLEM DESCRIPTION..2
1.3 PROPOSED SOLUTION...2
1.4 CONTRIBUTIONS..3
1.5 STRUCTURE OF THIS DOCUMENT..4

2. OBJECT TEAMS FOR JAVA ...5

2.1 QUANTIFICATION AND OBLIVIOUSNESS..5
2.2 BACKGROUND ON LANGUAGE MECHANISMS..6

2.2.1 Virtual Classes..6
2.2.2 Family Polymorphism...6

2.3 ROLES IN OBJECT TEAMS...10
2.4 TEAMS AS CONTEXT FOR ROLES..11
2.5 TRANSLATION POLYMORPHISM ...12
2.6 BINDINGS BETWEEN ROLES AND BASES..15
2.7 TEAM ACTIVATION ...18
2.8 GUARD PREDICATES..19
2.9 EXTERNALIZED ROLES...20
2.10 CONFINEMENT...21
2.11 CONCLUDING REMARKS ..22

3. BACKGROUND TO THE STUDY..23

3.1 GANG-OF-FOUR DESIGN PATTERNS...23
3.2 THE STUDY BY HANNEMANN AND KICZALES...24
3.3 THE JAMES COOPER REPOSITORY..25
3.4 OBJECT SCHIZOPHRENIA AND BROKEN DELEGATION PROBLEM...26
3.5 OBJECT TEAMS EXAMPLE ..26

4. ANALYSIS OF THE IMPLEMENTATIONS31

4.1 FORMAT OF THE GROUPS IN THIS CHAPTER..32
4.2 DIRECT LANGUAGE SUPPORT: ABSTRACT FACTORY, FACTORY METHOD AND MEMENTO..................................32
4.3 REUSABLE MODULARIZATIONS: CHAIN OF RESPONSIBILITY, COMMAND , COMPOSITE, FLYWEIGHT, MEDIATOR,
MEMENTO, OBSERVER, PROTOTYPE, STRATEGY AND VISITOR...35
4.4 NON-REUSABLE MODULARIZATIONS: ADAPTER, BRIDGE, BUILDER, DECORATOR, FAÇADE, INTERPRETER,
ITERATOR, PROXY, STATE AND TEMPLATE METHOD..43
4.5 SAME IMPLEMENTATION AS IN JAVA : SINGLETON..46
4.6 LIMITATIONS DETECTED..47

4.6.1 Binding class constructors..47
4.6.2 Invasive composition of Java proprietary binaries...47
4.6.3 Roles playedBy interfaces...47

4.7 COMPARISON BETWEEN OT/J AND JAVA ...48
4.8 COMPARISON BETWEEN OT/J AND ASPECTJ ..49

4.8.1 Comparison based on Locality, Reusability, Composition Transparency and (Un)pluggability50

4.9 ANALYSIS CONCLUSIONS...52

5. RELATED WORK..55

6. CONCLUSION AND FUTURE WORK ...59

7. REFERENCES ..61

Code Listing Index
Code Listing 1 Bounding a role to a base class example ..10

Code Listing 2 Definition of a Team example ..12

Code Listing 3 Explicit role lowering example..13

Code Listing 4 Explicit base lifting example ...13

Code Listing 5 Callout to a method example ...16

Code Listing 6 Callout to a field example ..16

Code Listing 7 Callin binding syntax ..17

Code Listing 8 Callin binding example ...17

Code Listing 9 with clause example ..18

Code Listing 10 Explicit team activation example..19

Code Listing 11 Guard Predicate (at role method level) example ..20

Code Listing 12 Externalized role example ..20

Code Listing 13 Adapter example ...21

Code Listing 14 Observer pattern reusable mode ...27

Code Listing 15 Class Watch2LSubject, which plays Subject role ...27

Code Listing 16 Classes which play Observer role ...28

Code Listing 17 Concrete implementation of Observer reusable module ..28

Code Listing 18 Main class of the Object Teams Observer implementation...29

Code Listing 19 Memento concrete team example ...35

Code Listing 20 Reusable ChainOfResponsibilityProtocol team module ..39

Code Listing 21 CoR concrete team example ..42

Code Listing 22 Iterator pattern example..46

List of figures
Figure 1 Hierarchy for polymorphism example ..7

Figure 2 Relations between multiple objects captured by traditional polymorphism8

Figure 3 Relations between multiple objects captured by family polymorphism ..9

Figure 4 Family classes created by Family polymorphism...9

Figure 5 Basic structure of a team containing a role played by a base..11

Figure 6 Possible directions of the translations between role and base ...14

Figure 7 Role and Base hierarchies for smart-lifting example...15

Figure 8 Representation of callin and callout bindings ...18

Figure 9 Chain of handlers representation...40

List of class diagrams
Class diagram 1 Memento implementation class diagram ...34

Class diagram 2 CoR implementation class diagram...38

Class diagram 3 Iterator implementation class diagram...45

List of tables
Table 1 Result comparison between implementations by OT/J and AspectJ...51

Table 2 Comparison of aggregate results in terms of modularization, reusability and language support 52

1

1. Introduction

Aspect-Oriented programming (AOP) is a recent paradigm, still subject of research and maturation.
Multiple programming languages following the AOP paradigm have been proposed. However, few
studies have been taken aimed at comparing the existing AOP languages, in terms of strengths and
limitations of its constructs and mechanisms, as well as modularity potential. This document
approaches the AOP language Object Teams for Java (OT/J), providing a case study based on the
implementation in OT/J of two repositories of the 23 design patterns [9], by the Gang-of-Four (GoF).
It aims at further increase the knowledge on modularity capabilities of OT/J, as well as producing a
comparative analysis between OT/J and the AOP language AspectJ. Moreover, since OT/J is
backwards compatible with Java, some comparisons are also made with this language.

This chapter is structured in the following sections: section 1.1 introduces the motivation for this
work; sections 1.2 and 1.3 present the problem this dissertation proposes to solve, as well as the
proposed solution, respectively. The contributions of this essay are listed in section 1.4, followed by
rest of the document outline in section 1.5.

1.1 Motivation

The emerging of the Object-Oriented programming (OOP) paradigm offered software developers the
means to look at systems as groups of entities and interactions between these entities. Although this
allowed developers to implement bigger and more complicated systems in an easier way, the systems
developed were essentially built under a static model, thus if later modifications to the system were
needed it meant several hurdles. This happens due to the difficulty in separating into modules the
different concerns involved in a certain system, which means that minor changes in a system module
might require several changes in unrelated modules. AOP is introduced as a paradigm to complement
the OOP paradigm, providing the means to modularize crosscutting concerns, i.e., concerns which are
scattered along several classes. Moreover, it aims at allowing developers to dynamically modify their
system, without modifying the original system model, so it can easily grow to meet new
requirements.

The introduction of AOP paradigm was responsible to the creation of several aspect-oriented
programming languages [2], such as AspectJ and OT/J. AOP languages offer several advantages to
the developer, mainly in terms of modularization for reusability. Despite these advantages, when
compared to OOP, AOP languages still lack maturation and are subject to research.

In contrast to AspectJ, few studies have been made to assess the OT/J language mechanisms and its
support for modularization of cross-cutting concerns. OT/J makes use of some mechanisms that are
not present in AspectJ, such as virtual classes and family polymorphism (see section 2.2), however
few studies exist to assess the advantages of using these mechanisms in a AOP language. This
dissertation aims at providing a study about OT/J capabilities for modularity and reuse, as well as
producing a comparative analysis between OT/J and AspectJ.

2

Design patterns aim at producing modular solutions for recurring programs in software construction.
Their implementation provides insights on both strengths and limitations of the languages in which
they are implemented. However, to the date, few complete repositories of design pattern
implementations have been produced. The production of new repositories of design patterns in
different aspect-oriented programming languages would open ways for several comparative studies,
for instance between different languages and language features, as well as studies on which language
constructs would provide better solutions for certain problems.

Case studies, based on pattern implementation, have successful in bringing insights on the relative
advantages potential contributions of aspect-oriented paradigm and some programming languages
[10][21]. The work behind this dissertation involves developing case studies based on the
implementation of two design pattern repositories, paving the way for an analysis of OT/J support for
modularity, assessing its drawbacks and advantages, as well as to produce a comparative analysis
with other programming languages, for instance AspectJ and Java.

1.2 Problem description

There are not many studies focused on comparing the relative strengths and limitations of AOP
programming languages, as well as their potential for modularity. Even less studies have been done
with this aim focused on OT/J. One reason for the lack of publications with this intent is the
inexistence of a complete repository of the GoF design patterns implemented in OT/J. Design patterns
aim at producing reusable designs, thus their implementation is a good case study which provides
insights of languages characteristics, specially those oriented for reusability and modularity. A
complete repository of design patterns would provide enough material to produce a mature analysis to
the support for modularity offered by OT/J and various comparisons with other AOP languages.
Thus, the problem this dissertation aims at solving is the lack of studies about the OT/J language
when compared to other AOP languages, as well as the lack of code material to conduct these studies.

1.3 Proposed solution

Design patterns are reusable solutions for recurring problems in software design. Almost all of the 23
GoF design patterns have cross-cutting structures, between the pattern itself and the involved
participants in the pattern. Implementations of these patterns prove perfect to assess the modularity
support of the language where the implementations are done, providing insights on the language
mechanisms used to support the design pattern implementations.

For this dissertation two repositories of the GoF design patterns have been implemented in OT/J1.
These repositories are from independent authors, Hannemann and Kiczales [11] (which has been

1
 Project eclipse/OTDT with implementations of both repositories can be found at:

http://ctp.di.fct.unl.pt/~mpm/OTJGoF.rar

3

completely implemented in OT/J) and James Cooper [3] (there are 5 patterns from this repository
missing in the OT/J implementation, see section 3.3), and are freely available on the web. Using
independent repositories, rather than creating new examples reduce the bias probability. These
implementations provide enough material to assess the potential for modularity of OT/J. Moreover,
one of the repositories, by HK, is available both in Java and AspectJ. This provides a first source of
material to assess the relative advantages and drawbacks of the language, when compared to Java and
AspectJ. Also, James Cooper implementations are systematically based on classes from the standard
Java swing library, which permits analysing the OT/J capability of handling systems with these
properties.

It has been chosen to implement two different repositories in order to guarantee that a given pattern is
reusable, thus producing a better analysis to the support for modularity offered by OT/J. For this
analysis, the implementations have been divided into four distinct groups of reusability:

• Direct language support, grouping patterns for which OT/J mechanism provided a solution
inherent to the language;

• Reusable modularizations, for patterns that yielded a reusable module;

• Non-reusable modularizations, for patterns which did not yield a reusable module;

• Same implementation as in Java, which holds patterns that were offered no advantages with
its implementation in OT/J.

These four groups allow for an assessment of pattern characteristics that make a pattern reusable.

1.4 Contributions

The major contributions of this dissertation are:

• Implementation of two repositories (from independent authors) of the 23 GoF design patterns
in OT/J. These implementations serve as basis for the analysis and comparisons done in this
dissertation and pave the way for future studies on OT/J.

• Analysis of the OT/J pattern implementations, focused on OT/J support for modularity and
reusability, including design pattern code examples and respective class diagrams.

• Comparative analysis between results obtained with OT/J pattern implementation and the
results obtained by HK with AspectJ pattern implementation [11].

• Complete chapter on the language mechanisms and constructs of OT/J, including several code
examples from design patterns, which address the language constructs discussed.

4

1.5 Structure of this document

The rest of this dissertation is as follows: In chapter 2 Object Teams for Java is described as an
Aspect-Oriented programming language and its mechanisms are discussed, providing illustrating
examples when necessary. Chapter 3 provides relevant background information for the analysis in
chapter 4, which analyses the pattern implementations in OT/J in terms of reusability. Moreover, it
provides a comparative analysis between OT/J and Java and OT/J and AspectJ. Chapter 5 mentions
related work. Chapter 6 concludes this document and tackles the work that may be done in the future
with the material provided in this dissertation.

5

2. Object Teams for Java

This chapter is about the programming language Object Teams for Java, OT/J, which implements
role-modelling [24][25][26] from OT/J programming language perspective [12][17]. The use of roles
provides the means to a better separation of concerns [22], separating objects definition from their
behaviour. Thus, OT/J is introduced as a programming language aiming at providing Java with the
means to modularize cross-cutting concerns [17]. It is a programming language whose design is
influenced by object collaboration [12]. Moreover, quantification and obliviousness (see section 2.1)
make it aspect-oriented according to the definition proposed by Filman and Friedman [8].

The first sections of this chapter introduce some relevant concepts for OT/J. Section 2.1 shortly
describes Quantification and Obliviousness, generic properties for a programming language to be
considered Aspect-Oriented. In section 2.2, insights are provided on Virtual classes and Family
Polymorphism, relevant OT/J mechanisms.

Throughout sections 2.3 to 2.10, the primary constructs and aims of OT/J are described and
discussed. Several code fragments are used to illustrate these constructs, enabling a better
understanding of the concepts and how to work with OT/J. Except when explicitly stated, code
fragments are from an OT/J implementation of a scenario of the Observer Pattern (originally by
James Cooper [3]), which uses the reusable Observer Pattern module found at the OT/J webpage. In
section 3.5, the complete implementation code is discussed. Section 2.11 concludes this chapter.

2.1 Quantification and obliviousness

Aspect-Oriented Programming (AOP) languages provide the programmer the means to separate into
different modules the various cross-cutting concerns of a system. As proposed by Filman and
Friedman [8], a programming language should have the following characteristic in order to be
considered Aspect Oriented: being able to make quantified statements about the behaviour of
programs, keeping programs oblivious to aspect behaviour. Quantification allows for the possibility
of adding new aspects to a program, while obliviousness is the property of keeping this program
unaware of aspects. A given piece of code is said to be oblivious to the aspects if it does not include
any references or dependencies to aspects. This means that no changes are needed in existing code in
order to add new behaviour to it.

Filman and Friedman separate the types of systems which allow quantifying over them in two types:
Black-box and clear-box systems. Black-box systems quantify over interfaces, wrapping around
system members with aspect-specific behaviour [8][12]. Clear-box systems allow quantification over
parsed structure of system members, for example, quantifying over all variables which occur in a
certain condition inside a cycle [8].

Quantified assertions are actions that should be executed when some circumstances are met. In other
words, are programming statements which state that when some condition C occurs, on an existing

6

program P, some action A should be performed. In order to provide the means to quantify over
existing programs, some aspects of the language should be considered:

• What kind of C conditions can be specified? (Answer in section 2.6)
• How do A actions to be taken, interact with the existing code in program P and to other actions?

(Answer in section 2.4)
• How are actions composed into existing code? (Answer in section 2.6)
• Over what elements of the base program can one quantify? (Answer in section 2.6)

• Is quantification possible at run-time? (Answer in section 2.6)

• How do different actions interact among each other? (Answer in section 2.4)

All these questions are answered in this chapter, in the scope of OT/J.

2.2 Background on language mechanisms

2.2.1 Virtual Classes

In traditional OO programming languages like Java, inner classes are classes declared inside other
classes, which are predefined at compile-time. This means that, sub-classing the outer class will not
allow sub-classing its inner classes. Contrary to these, and analogously to virtual methods [6] (class
methods that can be redefined in subclasses), virtual classes are inner classes which can be
overridden and polymorphically redefined in subclasses of its outer classes, and are subject to
dynamic binding [19].

Virtual classes are dependent of and accessible through instances of its enclosing classes. This means
that the actual type of a certain virtual class is only known at run-time, since it is dependent of the
object used to access it [5]. Virtual classes are the basis for family polymorphism, which makes use
of an outer class to define a family of collaborating inner classes. Family polymorphism is described
in 2.2.2.

2.2.2 Family Polymorphism

Family Polymorphism (FP) is used in several programming languages, such as gbeta [5], CaesarJ [20]
and OT/J [12].

Method dispatch is the mechanism which maps a method call to a specific code block. During
compile time, compilers only have access to the static structure of programs, so they have no means
to check if the run-time type of the object is the same declared in the code or if it is some subclass. In
this case, the actual method cannot be statically determined and some kind of run-time binding must
take place, in order to determine which code is to run.

Late binding is a feature found in all OO programming languages. Late binding assures that the exact
class type of an instance or the implementation of some requested method is correctly selected at run-
time. Combining inheritance with overriding and considering the use of late binding to assure
correctness of the chosen method implementation, introduces a feature called polymorphism.

7

Polymorphism is the possibility to have members of different class types to be handled using a
common interface. In other words, it’s the possibility of several distinct classes to have different
implementations for the same method. Late binding ensures that the correct method implementation
or class type of the class instance calling the method is selected at run-time.

The next example will try to better explain the concept of polymorphism. Consider a class
TrainingProgram, which represents some kind of training course program for employees of some
company (see Figure 1). Training programs may vary depending on the employee position in the
company, thus, TrainingProgram may be sub-classed, for instance by ManagerTraining and
SalesmanTraining. TrainingProgram class implements a method startProgram() to start a certain
course, which is implemented or inherited by any of its sub-classes. The concept of polymorphism
supported by late binding allows for any TrainingProgram instance (for instance trainingInstance) to
call startProgram(), assuring that the chosen implementation for startProgram() is the one associated
with trainingInstance actual class type. This feature allows for all TrainingProgram instances to call
startProgram() and guarantees that the correct method implementation is selected at run-time.
Polymorphism enables extensibility of a given section of source code, since a given method call, in a
section of code, can be bound to multiple implementations, depending on the class instance which is
calling this method.

Figure 1 Hierarchy for polymorphism example

However, the client may need to capture relations between multiple objects. For example, consider
the existence of a hierarchy of employees, having Employee as super-class, and Manager and
Salesman as sub-classes (see Figure 2). Consider also that, in order to start a given training program
for some employee, the employee attending the course must be specified. This means that method
startProgram() from any trainingProgram instance, must receive as argument an instance of Employee
class, becoming startProgram(Employee). Moreover, the client requires that managers receive a
manager training, and respectively, the same for salesmen. For instance, startProgram method on
TrainingProgram receives an Employee instance, while ManagerTraining must receive an Employee
instance of type Manager. With traditional polymorphism it is not possible to guarantee the later
requirement, i.e., it is not possible to capture relations between several objects and their methods (see

SalesmanTraining

TrainingProgram

startProgram()

ManagerTraining

8

Figure 2). Requirements like this impose that program must not be seen as a class with some
methods, but rather as a group of relations between classes, i.e., a collaboration between multiple
classes.

Figure 2 Relations between multiple objects captured by traditional polymorphism

Family polymorphism (FP) is introduced as a mechanism to support a multi-class perspective of
polymorphism, allowing one to represent relations between several classes. Collaborating classes are
encapsulated in a single object, known as family class, representing a family of classes, i.e., a group
of distinct classes which collaborate with each other (see Figure 3). As proposed by Erik Ernst [5],
one might think of collaborating classes as attributes of an enclosing class. Collaborating classes are
inner classes uniquely owned by family class instances, known as family objects. Family objects
work as a package for concrete classes. Family objects are instances of some family class variant, but
it is not statically known which concrete class family it is. Classes within a family class are virtual
classes, thus may be redefined. As referred in 2.2.1, the actual type of virtual classes is only known at
run-time, i.e., on the basis of the family object. This enables family classes to be redefined, which
means various variants of the family class may co-exist. Moreover, with virtual classes, static
knowledge about all the subfamilies of some family class does not need to be propagated through the
whole system. FP must statically assure that within class family refinements, collaborative class
instances of different families are not mixed inappropriately at run-time, which would produce type
errors in the system. Since collaborative class instances are owned by the family object, this must be
passed as argument to every method which makes use of class family relations, ensuring consistency
among collaborating classes. FP provides flexibility, since it is possible to create subclasses of
existing family classes, and safety, since it ensures that classes from different family implementations
are not mixed.

TrainingProgram

startProgram(Employee)

Salesman

Employee

Manager
SalesmanTraining

startProgram(Employee)

ManagerTraining

startProgram(Employee)

9

Figure 3 Relations between multiple objects captured by family polymorphism

Continuing with the TrainingProgram example, the client needed to guarantee that each
TrainingProgram instance would only collaborate with correct Employee instances, i.e., startProgram
method on Manager/SalesmanTraining would receive as argument a respective Manager/Salesman
Employee instance (see Figure 3). FP allows for the creation of a family class that represents the
relation between TrainingProgram and Employee classes. The family class may be sub-classed
redefining this relation, for instance creating a family class for each relation ManagerTraining-
Manager and SalesmanTraining-Salesman (see Figure 4). Each instance (family object) of these
family classes, maintains consistent collaboration between instances of both TrainingProgram and
Employee, making sure that startTraining in each TrainingProgram instance receives the according
Employee instance as argument.

Figure 4 Family classes created by Family polymorphism

Employee
Trai ningProgram

startProgram(Employee)

Manager
ManagerTraining

startProgram(Manager)

{abstract}

TrainingProgram

Managers

Salesman
SalesmanTraining

startProgram(Salesman)

Salesmen

TrainingProgram

startProgram(Employee)

Salesman

Employee

Manager SalesmanTraining

startProgram(Salesman)

ManagerTraining

startProgram(Manager)

10

2.3 Roles in Object Teams

The term role is introduced exclusively in the context of OT/J. Roles work as a way of supporting
different actions for the same object in different situations, a mechanism to describe the behaviour of
objects within a specific context of interaction. Roles provide the possibility to focus on a particular
aspect of a base object and to refine its behaviour according to the context on which they are used.
Base objects are usually plain Java classes, whose behaviour is meant to be completely context-
independent. Contexts are modelled in OT/J with the construct team, a new keyword introduced in
OT/J (not supported by plain Java), hence the name Object Teams. Teams are discussed in subsection
2.4. Further discussion of role modelling is out of the scope of this dissertation.

An example of roles played by an object, are the different functions that can be played by some
person, Person, through the course of its lifetime. These functions are comparable to roles, since they
are refinements of the behaviour of Person. These functions might change with time (are dynamically
composable), just as roles which may be temporarily played by some base object. Person can play the
role of Student for some time in its life. When Person finishes its studies, he will find a job and start
playing the role of Employee. If Person would get sacked, he would no longer play the Employee
role, but will still maintain its original behaviour, i.e., will still be a person, since this is the core
behaviour of the base object. Similarly in OT/J, a given role is played by a base object, within some
context. In OT/J, Person would be represented as a base object, Student and Employee would be roles
played by Person and its lifetime would be the context where those roles would be played. For
instance, in the Observer implementation (see section 3.4) Watch2LSubject class creates a window,
which is a base object for the role Subject that plays in the context of Observer pattern (see Code
Listing 1).

Roles can optionally be bound to a base object. Unbound roles work as normal auxiliary classes
within the context of the team module. Bound roles are related to base objects via the OT/J reserved
word playedBy, which states that a role is played by instances of the base class. For example, in the
Observer Pattern implementation (see section 3), the base object Watch2LSubject plays the role of
Subject (line 2), in the context of WatchSubject:

01
02
03

public team class WatchSubject extends ObserverPatt ern{
 protected class Subject playedBy Watch2LSubject {. ..}
}

Code Listing 1 Binding a role to a base class example

Bound roles are attached to the base in a non-symmetric way. Base objects are not supposed to keep
track of the roles they are playing, i.e., they are oblivious to the roles. Otherwise, this would imply
that a base object would have to grow indefinitely to know all the roles which had it as its base. This
allows for flexible multiplicity, since it enables any number of roles share the same base object [17].
Base objects can play multiple roles at a given time. Also, base objects can play the same role more

11

than once, however, in order to maintain roles identifiable, base objects cannot play repeated roles in
the same context. In the remainder sections of this report the term role always refers to bound roles.

Role classes may declare fields and methods the same way as plain Java classes. For purposes of a-
posteriori integration into existing systems, the scopes of roles and its bases are non-overlapping, i.e.,
fields or methods with the same name may exist in both objects. Fields declared by roles are managed
by the role instances declaring them, in order to avoid the need for base objects to grow dynamically.

The scope of a role is always context-dependent. Roles are meant to be enclosed in their own module,
along with all context-specific state and behaviour (the constructs of OT/J were designed to achieve
this aim [17]).

2.4 Teams as context for Roles

A context for a set of collaborations is modelled in OT/J with the use of special classes called teams,
one of the key concepts of Object Teams [17]. Teams provide the capability of grouping roles that
collaborate with each-other within a given context [12].

Teams unify properties of classes and packages. Teams, in contrast to Java classes, may be active or
inactive. However, teams share some properties of plain Java classes, i.e., they have methods and
fields, can be extended through inheritance and may be explicitly instantiable with the new keyword.

Also Teams can be approached as Java packages, since they contain sets of classes (role classes). Any
inner class of a team is a role class. Teams may exist within other teams, which also makes them roles
(in addition to being teams). Figure 5 illustrates the possible relations between team, role and base
instances.

Figure 5 Basic structure of a team containing a role played by a base

12

As an example of team creation, a team WatchSubject, which extends the abstract team
ObserverPattern (see section 3.5), is declared using the following syntax:

 public team class WatchSubject extends ObserverPat tern{...}

Code Listing 2 Definition of a Team example

Roles are confined to the team where they are described, imposing a strict discipline of encapsulation.
Since roles are specific to a context, they are not supposed to be referred to outside a team. Also, one
role is in the same team of other roles with which it interacts, giving rise to a kind of a family of roles.
This is where OT/J makes use of the family polymorphism feature [17], [12]. Team classes are the
family class, while team instances are family objects.

Given that teams work as normal classes, some form of inheritance of teams should also be provided.
Teams’ inner classes are virtual classes. Since a team is a class that encapsulates a set of classes,
family polymorphism (aided by virtual class properties) is used to guarantee type safe subclassing of
teams [12]. Teams may inherit from other teams, implicitly inheriting all the roles the super team
implements. Role collaboration is supported by family polymorphism and made explicit in team
methods. Family polymorphism also guarantees role instance encapsulation in team instances [13].

2.5 Translation Polymorphism

At run-time, retrieving the base instance of a role or retrieving a certain role played by a base instance
(navigating between role and base instances) is possible. This navigation is done in such a way that
team methods do not mention any base classes, i.e., team context is fully implemented in terms of its
roles. Also, outside a team context roles are not referred to, i.e., role classes need not to be mentioned
in base packages [12]. OT/J allows for base instances to be provided in cases where role instances are
expected, and to return role instances where base instances are expected. The mechanisms that
support these substitutions between role and base instances are described next.

Lowering

When there is need to pass a role instance outside the context of its containing team, this instance is
lowered to, and passed outside team boundaries as its corresponding base object. Lowering a role
(navigating from a role instance to its base) is a matter of following its playedBy link, since every
bound role is attached to a base instance. Lowering resembles an up-cast in sub-type polymorphism,
where a class instance type is “moved up” in its hierarchy, yielding a super-class. In this case the base
object of the role is returned, as if it were its super-class. As up-casts, lowering is always type-safe,
since if a role instance needs to leave the context of a team it is guaranteed to be bound to a base
instance (except for Externalized Roles, see section 2.9), which will be returned by lowering the role.
In order to allow a role class to be explicitly lowered, it must implement the interface ILowerable
(line 1 of Code Listing 3), and use the lower() method to return its corresponding base instance (line 3
of Code Listing 3):

13

01
02
03
04
05

public class Role implements ILowerable playedBy Base{

 public Base testLowering(){
 return (Base) this. lower();

 }
}

Code Listing 3 Explicit role lowering example

In the previous example testLowering() method (line 3) will return the base instance of type Base
which plays the role Role. Again, explicit lowering is type-safe since it must be implemented by a
bound role class.

Lifting

Navigating in the opposite direction, base to role instance is called lifting. However, since a base
object may play many roles and it is oblivious of the roles it plays, this is not as trivial as lowering,
from the type-checking perspective.

Lifting takes place when a role instance from some context must be retrieved from a base instance.
This happens when a base instance is to enter the context of a team; it is lifted to the role instance it
plays in this context. In comparison with sub-type polymorphism, lifting would resemble a down-
cast, where a cast is performed from super-class to sub-class, in our case from base to role instance.
But contrary to a down-cast, lifting is always type-safe, since at the time of the lifting translation, if
such role instance does not yet exist, one will be automatically created. To ensure that a base object is
always lifted to the same role instance within some team, each team instance maintains a mapping
from base to role objects [12], which uses a base instance and a role type as a key to return as
attribute a role instance. Lifting can be seen as a function: teamInstance X baseInstance X roleType =
roleInstance, i.e., a given role instance is identified by its type, the team context instance where it is
played and its base instance.

Lifting can be done either explicitly or implicitly (in the callin binding case). Explicit lifting implies
the need to use the as keyword. Continuing with the Observer Pattern example (section 3), one base
object may be added as an Observer of a certain Subject. The team method addObserver (line 2 of
Code Listing 4) is to be used outside the team context, so it accepts base instances as arguments,
which are lifted to its corresponding role instances in the team context, for instance Watch2LSubject
base instance is lifted to its Subject role. Inside the method, since it is within the team context, it is
now possible to treat base instances as role instances:

01
02

public <AnyBase base Observer>
void addObserver(AnyBase as Observer obs, Watch2LSu bject as Subject sub){...}

Code Listing 4 Explicit base lifting example

The syntax in line 1 of Code Listing 4 asserts that AnyBase refers to any base object which plays the
Observer role in the context of this team.

14

Figure 6 Possible directions of the translations between role and base

Figure 6 illustrates lifting and lowering translation, from base to role instances and vice-versa.

The rules that state what substitutions between role and base instances are allowed are called
translation polymorphism [14], which makes use of the lifting and lowering mechanisms. The main
goal of translation polymorphism is to produce a language that provides navigation from role to base
and vice-versa, as easy as changing views in sub-type polymorphism. Mapping mismatching
structures (bases and its roles) provides ease when integrating individually developed components.
Translation polymorphism combines static and dynamic sharing, i.e., inheritance and dispatching
between instances (see section 2.6), respectively. Therefore, one must remember that the classes
involved in these translations, especially in the lifting translation, may be part of inheritance
hierarchies. This means that care must be taken, when translating a base to a role instance; base and
role classes may be related by a playedBy relation, but base and role instances may be some sub-
classes of these classes. For instance, consider Figure 7. There is an abstract role AbstRole which has
a sub-class role ConcreteRole inheriting from it. This abstract role is bound to an abstract base-class
AbstBase sub-classed by ConcreteBase. If there is a method that needs lifting from the base to the
role, one must pay attention to the dynamic type of the base instance, for instance ConcreteBase, so
that lifting works out by choosing the right role type. Just looking at the static type of the object
would lift to the abstract role AbstRole class, which would not work. Looking at the dynamic type is
called smart-lifting. Smart-lifting is the mechanism that handles divergences between different
inheritance hierarchies of base and role classes. It considers the dynamic type of base instance in
order to dynamically return a role instance of the most appropriate role type during the lifting
translation [14]. Smart-lifting provides type safety when translating from base to role instances,
considering the existence of inheritance hierarchies. The algorithm used for smart lifting is out of the
scope of this report.

15

Figure 7 Role and Base hierarchies for smart-lifting example

Roles and their bases work as two sides of the same coin, i.e., they represent different guises of the
same entity. But, an entity identity depends solely on the context where it is required. A role fully
represents its base instance, within the context of the team, and liftings and lowerings are handled
transparently by the system, avoiding the need for explicit navigation between entities. Control over
instance identity is given to the client with team creation and activation (as explained in section 2.7).
These mechanisms assure that object schizophrenia (see section 3.4) is not an issue in OT/J, since
instance identity is handled transparently depending on the context, which can be de/activated.

2.6 Bindings between roles and bases

The binding mechanisms discussed next are the most perceptible and relevant concepts, of the OT/J
programming language, for the programmer. These bindings are the constructs which allow a team to
have access to members, objects and events that occur during the execution of base objects, belonging
to the current context. Moreover, the existence of abstract methods in roles is possible, which are
bound to base members by callout bindings.

Callout Bindings

Roles may access both state and behaviour of its base. This means that, base fields and methods
might be shared with its roles, although access to these, from the role instances, must be explicitly
declared. Sharing of base members is accomplished by forwarding field and method access from a
role to its base. This is called a callout binding.

Callout bindings are accomplished by lowering the role instance to its corresponding base, i.e.,
following the playedBy link established between role and base. Callout bindings allow for a role to
bind methods and fields from its base, i.e., the role declares (or inherits) abstract methods and fields
but these are implemented by its base. The role “calls out” its base.

When calling out methods, simple forwarding to the base object is established, which means that
method execution is requested by the role to the base object and there is no information that the
method was requested by the role. This provides that, during the execution of called out base method,

{abstract}

AbstRole

ConcreteRole

{abstract}

AbstBase

ConcreteRole

ATeam

<<playedBy>>

16

calls to the current object (this()) will return the base instance. Calling out methods with simple
forwarding solves the problem of broken delegation introduced in section 3.4.

Since callout bindings are to be seen from the role side, which calls out its base methods, these are
represented as a role method that is “forwarding ->” to a base method:

01
02
03

void update(Subject s) -> void sendNotify(String selectedColor) with{
//mapping of arguments from Subject to String
}

Code Listing 5 Callout to a method example

In this code example, the update role method is forwarded to base changeColor method and executed
by the base instance. For instance, this provides that a role method can be executed as any base
method, which eases integration with existing classes.

Also, base fields may be shared by a role. To access a field from its base, a role must declare a new
method which will either return the respective field or modify it. In a callout to a field, the modifiers
get and set, will grant read or write access, respectively, to some field. For example, if there was need
to the role access the field _color in its base instance the following syntax would be used:

01

02

03
04

private abstract Color getColorFromColorFrame();
getColorFromColorFrame -> get _color;

private abstract void setColorFromColorFrame(Color c);
setColorFromColorFrame -> set _color;

Code Listing 6 Callout to a field example

where getColorFromColorFrame (line 1) and setColorFromColorFrame (line 3) methods would
respectively, get (line 2) or set (line 4), the base field _color.

When accessing its base fields, roles do not need to conform to the field access modifiers declared at
the base class. This means that, even fields declared private at the base class, can be accessed and/or
modified by roles played by instances of the base class. This is also true with base methods, i.e., these
may be shared with roles no matter what access modifiers are defined to them.

As expected, a concrete role extending an abstract role, should implement abstract methods declared
in the abstract class. Callout bindings allow roles to cover abstract methods by forwarding their
execution to their base classes.

In both cases of field and method sharing, if it is not explicitly stated, base methods and fields will
not be visible by the role. Thus, callout bindings provide great flexibility when sharing state and
behaviour from the base object, since it allows only sharing methods and fields that are necessary to
the team context.

17

Callin bindings

Overriding base methods within the role is also possible. Since one of OT/J’s goals is ease the
development of modules for a-posteriori integration into existing systems, methods may be explicitly
overridden, i.e., methods may be overridden by methods with a different signature. Also, role specific
behaviour can be composed into base code.

To perform overriding, the binding direction that should be followed is from the base to the role.
Overriding is accomplished with the use of callin bindings. Technically, callin bindings are
equivalent to triggers, in the way that they state “when some condition happens perform this action”
(i.e., quantification as defined in section 2.1). Callin bindings involve implicit lifting of a base to its
role instance, in order to look up the correct role for the actual base object.

Callin bindings, either replace base methods with role methods, or add role behaviour before or after
base methods. Replace, before and after are the three possible modifiers for callins. The replace
modifier, in a callin binding, states that some base method should be replaced (overridden) by a role
method. In OO languages, in the context of regular inheritance, overriding methods can call the
original method with super-calls. Similarly, in a replace method, invoking the original method is
accomplished with base-calls (base.m() instead of super.m()). Replace methods must to be marked as
callin methods, in order to use base-calls.

Callin bindings work as a way of intercepting base calls, i.e., make quantified statements about
existing methods, which remain oblivious to the reactions/behaviour of the team. OT/J allows for
black-box type quantification. The callin modifiers after and before, specify that an action should be
taken after or before, respectively, of the called-in method. The “wrapped” methods work as a box
with unknown content. This technique provides OT/J the flexibility of quantifying over class
methods, even when these are already compiled and there is no means to access their code. It is also
more likely to produce reusable and maintainable code [8]. Callin bindings allow great flexibility in
the integration of new aspects in existing programs.

Callin bindings are represented in OT/J by:

 role_method ← modifier base_method;

Code Listing 7 Callin binding syntax

The ← symbol, states that the role is instructing its base to “call into” its role. In the running
Observer Pattern example (section 3.5), some callin bindings can be seen, for instance:

 public void changeRadioButton(ItemEvent e){…}
changeRadioButton <- before itemStateChanged;

Code Listing 8 Callin binding example

In this code example, the role method changeRadioButton is executed prior to the base method
itemStateChanged.

18

When calling in/out methods, method signatures may be adjusted to conform to team context specific
needs, providing ease when working with a-posteriori integration into existing systems: Methods
may be shared with a different name; base method parameters and return values may be mapped. This
is done by a with sub-clause in the binding. Coming back to code example Code Listing 5 where a
with clause (line 2) is used, one can see how parameters may be mapped:

01
02
03
04

String getColorFromSubject(Subject s){...}
void update(Subject s) -> void sendNotify(String selectedColor) with{
 getColorFromSubject(s) -> selectedColor
}

Code Listing 9 with clause example

In this example, Subject parameter s is mapped to a String to conform with selectedColor type (line
3).

Figure 8 Representation of callin and callout bindings

Figure 8 illustrates the possible method bindings, between role and base, in OT/J.

2.7 Team activation

The context of interaction between role and base classes is made explicit in team classes. Not all
contexts are supposed to be active during the complete execution of some program. If some kind of
team context activation is provided, the relation between role and base instances may be established
and removed at run-time [17]. As stated in section 2.4, teams may be either active or inactive.

Since callins are context-specific, in order to intercept base calls, callins must be in active teams. All
callin bindings from an inactive team are disabled by default. Activating a team enables all bindings
of roles within this team. Before and replace callins, from the team that has been most recently
activated, are executed first, while after callins are executed last.

Teams may be activated either explicitly or implicitly [17]. The former is achieved invoking method
activate() (deactivate() for the inverse function). Again, team activation can be seen in the running
Observer Pattern example (section 3):

19

01
02

WatchSubject ws = new WatchSubject();
ws. activate(Team.ALL_THREADS);

Code Listing 10 Explicit team activation example

The Team.ALL_THREADS constant (line 2), states that ws team is active for all threads. Since in
this example Swing objects are used (which run in a different thread), teams must be active for all
running threads.

Implicit activation occurs when the control flow enters a team context. This happens whenever a team
method is invoked. The team instance will be active until the method terminates its execution. All
callin bindings of this team roles will succeed while the team method is executing. Even when a
client is unaware of the existence of roles, when a base method is invoked there might exist a role in
some active team which might affect the behaviour of the base object. Team activation and callin
bindings assure that, role changes its base object behaviour, even if a client is oblivious about the
existence of roles [12]. On the other hand, also callout bindings only occur when the enclosing team
of the role is active. Team (context) activation provides great expressiveness, stating where objects
should play certain role.

A team may be declared static if it should be active during the complete program execution. This
team will permanently modify the program behaviour. No instances of this team may be created, and
all its features are static features. Since the team is permanently active, all callin bindings of this team
will be woven into the program, except if some guard predicate prevents the callin to be performed,
thus preventing entry on the team context, maintaining the base behaviour unmodified.

2.8 Guard Predicates

Sometimes, base behaviour should only be affected by roles if some conditions are fulfilled that can
only be evaluated at run-time. OT/J introduces the notion of guard predicates [16] as the means to
control the activation of callin bindings. Guard predicates can be defined at team, role, role method
and role method binding levels. Guard predicates are conditional expressions that verify whether a
certain part of an aspect should be composed into base classes. Guard predicates are defined either
referring to the role or to base instance.

As an example of a guard predicate, the base object (in the Observer example in section 3.5) would
only play the Subject role, if the selected colour was different than red, i.e., it would only be observed
if a different colour was chosen. The itemStateChanged base method would only be affected by the
callin if this condition succeeded. This condition is specified at role method level, with the use of the
when clause (line 3 of Code Listing 11):

20

01
02
03
04
05
06
07

08
09
10

11

protected class Subject playedBy Watch2LSubject{
 public void changeRadioButton(ItemEvent e)
 when (((JRadioButton)e.getSource()).getText() != " Red")
 {
 if (e.getStateChange() == ItemEvent.SELECTED){
 selectedColor = ((JRadioButton)e.getSource()).ge tText();
 this.changeOp();

 }
 }
 changeRadioButton <- before itemStateChanged;
}

Code Listing 11 Guard Predicate (at role method level) example

2.9 Externalized Roles

As referred in section 2.4, role instances are not supposed to leave the context of their enclosing team,
i.e., be referenced outside the team where they are created. The reason for this strict discipline of
encapsulation is that roles are context dependent, and therefore roles from different teams could be
mixed, giving rise to inconsistencies. However, exceptions are permitted, as it may be necessary to
make roles visible outside their enclosing team in some cases. Roles used this way are called
externalized roles.

Externalized roles must meet strict typing rules, to avoid inconsistent mixing of roles. Roles are
context dependent, thus, even outside their enclosing team they must be denoted as relative to its
team instance. Externalized roles use the concept of family polymorphism (see section 2.2.2), where a
role is dependent of its team instance.

To maintain type consistency of an externalized role, the team instance to where it belongs must be
immutable, i.e., marked as final [5]. Teams are used as type anchors [14], ensuring that a specific
externalized role type stays dependent of the context where it belongs. Anchoring a role type to a
team is achieved by declaring a variable of the desired role type, specifying its enclosing team
instance:

 final ATeam myTeam = expression;

ARoleType<@myTeam> myRole = expression;

Code Listing 12 Externalized role example

Since roles may be passed outside their enclosing team, they may also be passed back inside. If a role
type is argument of a team method, this role type is anchored to this team. Consequently, team
methods with roles as arguments must receive role instances anchored to the team itself.

21

A good example for the need to use externalized roles is the Adapter pattern. The aim of this pattern
is to adapt a certain class interface to conform to another interface the client expects.
Implementation of this pattern is relatively straightforward, since roles can implement interfaces and
access their base class methods. As such, in order to adapt a given class, a role Adaptee is created and
bound to the class to adapt. This role implements the interface expected by the client, and delegates
its methods to the existing base class methods. In order to make this role accessible to the client, it
must be externalized from its enclosing team, working as the adapted class.

For instance, consider the HK [11] example for this pattern. In Code Listing 13 the respective OT/J
code for this example is shown. HK example aims at adapting the interface of SystemOutPrinter
class, which can print strings to System.out, to conform to interface Writer. SystemOutPrinter uses
method printToSystemOut(String s) to print strings, while the client expects to call the write(String s)
method from Writer interface, for the same effect. Thus, a role Adaptee implementing interface
Writer is created and bound to SystemOutPrinter (line 2), which delegates the implementation of its
method to the base class (line 3). To create this role, the base class SystemOutPrinter is passed inside
the team context, being lifted (line 5) to Adaptee role. This role is then externalized (line 15),
allowing the client to access its methods (line 18), which conform to the interface the client expects.
As referred above, the externalized role is denoted as relative to its team instance (lines 14-15).

01
02
03
04
05
06
07
08
09
10

11

12
13
14
15
16
17
18
19
20

public team class PrinterAdapterTeam{
 public class Adaptee implements Writer playedBy Sy stemOutPrinter{
 write -> printToSystemOut;
 }
 public Adaptee getAdaptee(SystemOutPrinter as Adap tee adaptee){
 return adaptee;
 }
}

public class Main {
 public static void main(String[] args) {

 private SystemOutPrinter classToAdapt = new Syste mOutPrinter();

 final PrinterAdapterTeam pat = new PrinterAdapter Team();
 Adaptee<@pat> adaptedClass = pat.getAdaptee(class ToAdapt);

 private Writer myTarget = adaptedClass;
 myTarget.write("OT/J Test successful.");
 }
}

Code Listing 13 Adapter example

2.10 Confinement

Object confinement strives for a kind of alias control where certain objects are owned by another
object, which has exclusive access to its elements [15].

22

As referred in 2.4, and following family polymorphism rules stating ownership of inner classes by
family objects, roles are owned by their enclosing team. Also, as stated in 2.9 roles can be
externalized, thus it may be necessary to ensure that certain roles will be confined in its enclosing
team, i.e., will not escape its scope. Role confinement should provide the enclosing team the privilege
of being the only object with access to its roles features.

OT/J provides mechanisms to ensure strict role confinement and strict encapsulation of
representation. The former guarantees that certain role objects are completely inaccessible from
outside the context of its team. In some cases, this approach may be too extreme. Thus, the latter
mechanism defines the enclosing team as the unique owner of certain roles, while allowing external
objects to access their representation but not to modify them.

The mechanisms referred above are put into use either by extending class Confined from package
org.objectteams.Team or implementing IConfined interface, creating confined and opaque roles,
respectively. Confined roles guarantee that no object outside the enclosing team will ever have a
reference to this role, while opaque roles can be passed outside a team instance while ensuring that
external clients cannot access any features of this role. These mechanisms provide sufficient means to
ensure different levels of role protection by teams.

Memento pattern proves to be a good example of the use of role confinement. In section 4.2 a
concrete implementation of this pattern, using opaque roles, is described.

2.11 Concluding Remarks

OT/J offers the means to improved separation of concerns, distinguishing object definition from its
behaviour in different contexts. Mechanisms used by OT/J which AspectJ does not have, for instance
family polymorphism, seem to provide better support for class collaboration. OT/J seems promising
as a means to handle pattern implementation in an efficient and modular way.

23

3. Background to the study

This chapter presents some background information used for this dissertation. Section 3.1 introduces
the notion of design patterns and describes their aims. Section 3.2 provides a summary of the study by
Hannemann and Kiczales, focused on design pattern implementation in AspectJ and Java
programming languages [11]. Section 3.3 provides a brief description of the design pattern repository
by James Cooper implemented in Java [3]. Object schizophrenia and broken delegation problems, are
presented in section 3.4, as hurdles which appear with design pattern usage. Section 3.5 presents an
implementation of the Observer pattern in OT/J, which uses an already existing reusable module.

3.1 Gang-of-Four Design Patterns

Software design, as a part of computer science, also entails problems to be solved. There are a several
types of design problems that keep recurring in software design, which have already been solved,
only the context where they happen is different. Recurring problems may be solved with a pattern
solution which worked to solve similar problems, within different contexts. These solutions are called
design patterns. A design pattern describes a recurring design problem, and systematically explains a
solution to this problem, describing when to apply this solution and the consequences it entails [27].
Design patterns aim at producing reusable designs for systems with crosscutting concerns, helping
developers to save time when designing software. Moreover, design patterns are not new and untested
solutions to problems. Rather, they are proven concepts that survived over time and lots of try-outs.

The GoF is the name usually given to the group of authors, Gamma, Helm, Johnson, and Vlissides, of
the widely cited book on the subject of design patterns [9]. This book introduces 23 different design
patterns for common problems in software design.

One way to evaluate both strengths and limitations of the aspect-oriented programming languages is
implementing design patterns and analysing the results obtained. Case studies, based on pattern
implementation, have been successful in bringing insights on the relative advantages and potential
contributions of aspect-oriented paradigm and some programming languages [10][20]. Moreover,
since design patterns aim at producing reusable design for a system with crosscutting concerns, they
are a good case study to assert the potential for modularization of the language where they are
implemented.

To date, few complete repositories of design pattern implementations have been produced. The
production of new repositories of design patterns in different programming languages would open
ways for several comparative studies, for instance between different languages and respective
language features, as well as studies on which language constructs would provide better solutions for
certain problems.

24

3.2 The study by Hannemann and Kiczales

This section summarizes the study by Hannemann et al. (HK) on design pattern implementation in
AspectJ and Java programming languages [11]. This study asserts the improvements introduced by
the implementation of design patterns in AspectJ, when compared to Java, with the implementation of
a complete repository of the GoF design patterns in both programming languages (freely available on
the web). The study by HK provides comparison material and introduces metrics that are used in the
present study.

Hannemann et al. say that benefits are mainly introduced in AspectJ pattern implementation by
inverting dependencies, i.e., making pattern code dependent of participants rather than the opposite,
maintaining dependencies contained in the pattern code. Benefits introduced are locality, reusability,
composition transparency and (un)pluggability. These benefits are discussed in this section.

If a participant instance or class is free of pattern-specific code, making it oblivious about playing
some role in a pattern, it can be used in different contexts without being modified. Adding it to or
removing it from a pattern instance can be done by simply removing the pattern-related module from
the system and performing a new build, which makes this participant (un)pluggable as well as
reusable. In order to benefit from this, the participants in the pattern must have functionalities and
responsibilities outside the pattern context, i.e., the roles they play must be superimposed [11]. For
instance Observer and Subject roles in the Observer pattern are examples of such roles. Participants
are not restricted to a single role or pattern instance since they have a meaning outside the pattern
context. Roles played by participants that have no functionality outside the pattern are called defining
roles.

Design pattern modularity, achieved by maintaining modules that exclusively contain pattern code,
allows for better documentation, as well as, easy identification of what patterns are being used in
certain system. Since all code related to a pattern is maintained in a single module, i.e., the pattern
description is localized, the core parts of pattern implementation may be abstracted into reusable
code. Pattern code becomes itself (un)pluggable, since existing participants can be promptly
incorporated into a pattern and if any changes are necessary, these are to be performed in the pattern
instance, not in the participants. Localizing pattern implementation makes its presence and structure
more explicit, allowing for global policies to be easily imposed to patterns. Moreover, it allows for
multiple instances of the same pattern, as well as, different patterns, to co-exist in an application
without being confused, i.e., makes pattern instances composition transparent.

Hannemann et al. analyse all GoF patterns in question of the following criteria: locality, reusability,
composition transparency and (un)pluggability. They distinguish between patterns with defining
roles, superimposed roles and both. It is concluded that in patterns with only defining roles, no
benefits are introduced by the AOP language AspectJ. On the contrary, in patterns with superimposed
roles (or both), which crosscut other classes other than the pattern classes themselves, potential for

25

modularization exists, benefiting of all or almost all the modularity properties referred (locality,
reusability, composition transparency and (un)pluggability).

For the pattern implementations in OT/J, the concepts of super-imposed and defining roles allow for
an a-priori identification of which patterns have potential for modularization, i.e., may produce
reusable modules. Moreover, concepts such locality, which permit one to achieve reusability and
(un)pluggability, are important when implementing pattern examples (see section 4), as well as, to the
conclusions drawn at the implementations analysis.

The present study differs from the one by HK, since besides analysing the OT/J language
performance given the pattern implementations, it draws a comparison between OT/J and
programming languages AspectJ and Java. The bases for this comparison are the existing design
pattern repositories in both AspectJ and Java [11], as well as the implementation of the same
repository in OT/J (implemented for this dissertation).

3.3 The James Cooper repository

The design pattern repository by James Cooper is presented in James Cooper book [3]. This book
provides and discusses Java implementations of the 23 GoF design patterns.

This repository differs from the one by HK [11], since all 23 Java design pattern implementations by
James Cooper are systematically based on classes from the standard Java swing library. These
implementations provide material to assess OT/J capabilities to handle examples with graphical
objects, proprietary classes (such as the Java swing library) and several threads running
simultaneously.

Although the intent of James Cooper pattern implementations well serves the above mentioned
purpose, the existing Java code does not follow a good coding style. For instance, in several
implementations the main method and GUI functionalities of the example are all in a single class.
This goes against good OOP coding style, since each single class should maintain a single scope of
functionalities. For this reason, some refactoring has been done by Miguel P. Monteiro to the original
Java code presented in James Cooper book2, since good OOP coding style is essential to apply AOP
to any example [28].

A few patterns from this repository (Builder, Façade, Factory Method, Interpreter and State) have not
been implemented in OT/J, since their original code would need a lot more refactoring than the other
examples.

2
 Refactored version available as an eclipse/JDT project at: http://ctp.di.fct.unl.pt/~mpm/PatternsJamesCooper.rar

26

3.4 Object schizophrenia and Broken delegation problem

Sometimes patterns introduce extra complexity to the problem to be solved. One cause for extra
complexity is object schizophrenia, i.e., splitting what initially was supposed to be a single object [4].
For instance, several patterns encapsulate an object within another, for example the Decorator which
decorates an object, by wrapping it with a new one. This creates an indirection between the wrapper
and the original object. Thus two object identities must be maintained, causing extra complexity and
increasing the possibility of errors to occur, for example passing the encapsulated object identity to
the outside of the wrapper. This also introduces a problem called broken delegation. When an
algorithm is part of an object and it must send a request to the object it is part of, it will call the self
variable. If the algorithm is called by the wrapper object, again extra complexity is introduced, having
to provide the algorithm the information it needs from the original object. Object schizophrenia and
broken delegation problems are no hurdle in OT/J, as explained in sections 2.5 and 2.6, respectively.

3.5 Object Teams example

The team class presented in this example is a concrete implementation of the reusable Observer
Pattern module. This example is originally taken from the James Cooper book [3], and subsequently
refactored by Miguel P. Monteiro3. This reusable module has been found at the OT/J webpage4, and
is shown here has an example of an existing OT/J pattern example.

The Observer reusable module declares two abstract roles, Subject and Observer, to be played by
base classes. The Subject role maintains a list of its Observers (line 3 from Code Listing 14), and
provides methods for adding (line 4) and removing (line 9) them. Whenever there is a state change,
Subject calls the changeOp() method (line 14) which notifies the Observers of this change (variant for
multiple changes in one method call has been omitted). The Observer role provides interface of an
update method (line 20), called by changeOp(), to be realized into a base method when there is a
Subject state change. Besides declaring these two roles, this abstract team declares a method to add
an Observer to a certain Subject (line 22).

01

02
03
04
05
06
08
09

public abstract team class ObserverPattern {

 protected abstract class Subject {
 private LinkedList<Observer> observers = new LinkedList<Observer>();
 public void addObserver (Observer o) {

 observers.add(o);
 }
 public void removeObserver (Observer o) {

 observers.remove(o);

3
 These refactorings have been made with the intent of conveying more structure to the GUI related existing code, since this was

initially in a flat form, i.e., all the members were at the same level in a single class.

4 http://www.objectteams.org/

27

10

11
12
13
14
15
16

17
18
19
20

21
22
23
24
25

 }
 public void removeAllObservers() {

 observers.removeAll(observers);
 }
 public void changeOp() {

 for (Observer observer : observers)
 observer.update(this);

 }
 }
 protected abstract class Observer {
 abstract void update(Subject s);
 }
 public void addObserver(Observer obs, Subject sub) {
 sub.addObserver(obs);
 }
}

Code Listing 14 Observer pattern reusable mode

This concrete implementation of the Observer is an example already existing in Java, by James
Cooper. For this example, using Java Swing objects, three windows are created. Watch2LSubject has
three radio buttons which allow for the selection of a colour. This will be the base class for the
Subject role, and a state change occurs when a new colour is chosen (line 5 from Code Listing 15).

01
02
03
04

05
06

public class Watch2LSubject extends JxFrame impleme nts ItemListener{
 //declaration of private fields
 public Watch2LSubject(){...}
 private class RadioButtonsGroup extends Box {...}

 public void itemStateChanged(ItemEvent e) {...}
}

Code Listing 15 Class Watch2LSubject, which plays Subject role

The other two windows, WindowListFrameObserver and ColorFrameObserver will change their
appearance according to the selected colour in Watch2LSubject. Thus, they play the role of
Observers. Both classes have a sendNotify method (lines 4 and 9, respectively, from Code Listing
16), where update actions to state changes in the Subject, should be taken.

01
02
03
04
05
06
07
08
09
10

public class WindowListFrameObserver extends JFrame{

 //declaration of private fields
 public WindowListFrameObserver () {...}
 public void sendNotify(String s) {...}

}
public class ColorFrameObserver Observer extends JFrame{

 //declaration of private fields
 public ColorFrameObserver Observer () {...}
 public void sendNotify(String color) {...}

}

28

Code Listing 16 Classes which play Observer role

These three classes work as base classes for the roles Subject and Observer in team Watch2LSubject,
which extends the reusable module class ObserverPattern. Watch2LSubject plays the Subject role
(line 2 from Code Listing 17), and when a state change occurs (itemStateChanged on base class)
changeRadioButton is called (line 12) which calls update on Observers (line 9). Observer role is
played by ColorFrameObserver and WindowListFrameObserver classes (lines 15 and 20-21). Update
method on these classes will call-out sendNotify methods on the base classes (lines 16, 22), mapping
the entry parameter from Subject to String to agree with base methods signature (lines 17, 23).
addObserver and remObserver methods, which respectively add and remove Observers from a certain
Subject, receive as arguments base objects which play the role of Observer and Subject. These are
lifted to the corresponding roles in order to work within the team (lines 27, 31).

01
02
03
04
05
06
08

09
10

11
12
13
14
15
16
17

18
19
20

21
22
23
24
25
26
27
28
29
30

31
32
33
34

public team class WatchSubject extends ObserverPattern{
 protected class Subject playedBy Watch2LSubject{

 private String selectedColor = "none";
 public String getSelectedColor() {...}
 public void changeRadioButton(ItemEvent e){
 if (e.getStateChange() == ItemEvent.SELECTED){
 selectedColor = ((JRadioButton)e.getSource()).g etText();

 this.changeOp();
 }
 }
 changeRadioButton <- before itemStateChanged;
 }
 private String getColorFromSubject(Subject s){...}
 protected class ColorObserver extends Observer playedBy ColorFrameObserver{

 void update(Subject s) -> void sendNotify(String selectedColor) with{
 getColorFromSubject(s)->selectedColor

 }
 }
 protected class ColorListObserver extends Observer playedBy

WindowListFrameObserver {
 void update(Subject s) -> void sendNotify(String s) with{
 getColorFromSubject(s)->s
 }
 }
 public <AnyBase base Observer>
void addObserver(AnyBase as Observer obs, Watch2LSu bject as Subject sub){
 sub.addObserver(obs);
 }
 public <AnyBase base Observer>
void remObserver(AnyBase as Observer obs, Watch2LSu bject as Subject sub){
 sub.removeObserver(obs);
 }
}

Code Listing 17 Concrete implementation of Observer reusable module

29

In the Main class, the team and base instances are created (lines 3, 5-7 from Code Listing 18), the
team instance ws, is explicitly activated (line 4) and the base objects which play the Observer role,
cframeObs and lframeObs, are added as observers to the subject (lines 8, 9), which is represented by
the base object Watch2LSubject which plays the Subject role.

01

02
03
04
05
06
07
08
09
10

11

public class Main {

 public static void main(String[] args) {
 WatchSubject ws = new WatchSubject ();

 ws.activate(Team.ALL_THREADS);
 Watch2LSubject subject = new Watch2LSubject();
 ColorFrameObserver cframeObs = new ColorFrameObse rver ();
 WindowListFrameObserver lframeObs = new WindowLis tFrameObserver ();
 ws.addObserver(cframeObs, Watch2LSubject);
 ws.addObserver(lframeObs, Watch2LSubject);
 }

}

Code Listing 18 Main class of the Object Teams Observer implementation

Although there are more classes involved, this implementation is easier to comprehend than the Java
version by HK [11], since it introduces a better separation of concerns. It separates the windows
specific code from the roles they play, i.e., from the Observer pattern code, producing a much more
readable and understandable code.

30

31

4. Analysis of the implementations

This chapter provides an analysis of the pattern implementations obtained in OT/J.

To ensure consistency, two complete Java pattern repositories from independent authors have been
implemented in OT/J. Since one of the aims of the study presented in this document is assess the
support for module reusability in OT/J, having two different scenarios, guarantees consistency in
terms of reusability. Moreover, the choice of implementing already existing examples, rather than
creating new ones, guarantees non-biasing.

The two repositories chosen to be implemented in OT/J are the following:

• The HK repository [11], since functionally equivalent implementations in AspectJ are also
available. This provides a first source of material for comparisons between both AOP
languages (AspectJ and OT/J), one of the aims of this document.

• The collection by James Cooper [3], because scenarios from this repository are systematically
based on classes from the standard Java swing library. Invasive composition on such classes is
not supported (see section 4.6.2), which poses additional hurdles. As a consequence, criteria
for categorizing a given module as reusable (see section 4.3) are rather stringent and have an
impact on the results presented in this chapter.

Patterns have been divided into a few groups, which seamed to best provide information about the
capabilities of OT/J in different scenarios, and discussed in the scope of the group where they are.
These groups focus on assessing language support for specific patterns and whether a successful
modularization was attained; if yes, whether the modularization yielded a reusable module.

Section 4.1 provides a brief description of the format in which each group is described. Each other
section (up to 4.6) represents one of these groups:

• Section 4.2 groups patterns which are directly supported by the language mechanisms of
OT/J;

• Section 4.3 groups patterns for which a reusable module has been produced;

• Section 4.4 groups the ones which have not produced a reusable module;

• Section 4.5 groups the patterns for which the OT/J implementation provided no further
advantageous than the Java one.

In section 4.6 drawbacks of the implementations in OT/J are discussed.

Sections 4.7 and 4.8 present a comparison between OT/J and Java and OT/J and AspectJ,
respectively.

32

4.1 Format of the groups in this chapter

Each group in this chapter has its own section, with its title and the patterns which fit in the group. In
these sections a brief description of the group is provided, specifying which type of patterns fit in it
and why. The patterns that fit in a group are discussed in terms of group specific characteristics.
Moreover, an implementation example of one of the patterns in this group is discussed, providing an
illustrative example for the group.

Note that language support for specific patterns and issues related to reusability do not necessarily
yield disjoint groups: Memento features in both.

These groups aim at providing the reader a good understanding of the implementation results
obtained in OT/J.

4.2 Direct Language Support: Abstract Factory, Factory Method and Memento

Three patterns have been identified, whose purposes are directly supported by the language constructs
of OT/J. Language mechanisms, such as family polymorphism (section 2.2.2) and confinement
(section 2.10), provide the means for the implementation of these patterns to be directly supported by
OT/J. Direct language support for these patterns makes them inherent to the language, (usually)
allowing for a better representation of the pattern intent. These patterns are discussed in this section.

Abstract Factory and Factory Method are implemented through family polymorphism, which makes
use of virtual classes.

Abstract Factory: supported by family polymorphism

Abstract Factory purpose is to create factories of objects with a common theme, i.e., all from the
same family, prohibiting that objects from different families mix. That is the purpose of family
polymorphism [5]. In order to do so, an abstract team is created, comprising a virtual class for each
object factory. This abstract team represents the family class, in terms of family polymorphism. As
referred in section 2.2.2, the family class acts as a capsule for its virtual classes. Therefore, this
abstract team defines which classes are related to each other, preventing classes from different themes
to get mix. The abstract team is to be extended by concrete teams, while family polymorphism with
direct support from the type checker, guarantees that these sub-classes maintain family consistency.

Factory Method: supported by virtual classes

Factory Method’s aims at emulating polymorphic constructors, i.e., create a super-class that defines
in its constructor the creation of a certain type of object, but lets its subclasses specify the concrete
objects they create. The super-class maintains an abstract role representing the object to create, which
is sub-classed making the role concrete. Since the concrete roles are virtual classes, which depend on
the enclosing team (the super-class) they can be polymorphically instantiated using the same

33

constructor call, i.e., using polymorphic constructors. The intended effect is thus directly supported
by the language.

Memento: supported by confined types

The purpose of Memento is to save a snapshot, i.e., the current internal state, of a given object, and
externalize it, ensuring that only the originating object can access the saved memento, i.e., without
violating the original object encapsulation. Mementos are to be kept by a caretaker that must not
modify the mementos it keeps. In many languages, keeping an object’s internal state outside the
object is hard or impossible to implement without violating encapsulation to some extent, due to
limited language support for this kind of enhanced encapsulation.

In OT/J there are two mechanisms, confined and opaque roles (see section 2.10), which provide the
strict protection required for implementing Memento. Confined and opaque roles prove perfect to
implement Memento pattern, since this pattern aims at maintaining a Memento role without violating
its encapsulation [9].

Creating a confined Memento role will guarantee that instances of this role will never be passed
outside their team scope. Creating an opaque Memento role, allows this role to be passed outside its
enclosing team, as an externalized role, and be referenced by any class, having the guarantee that only
the memento’s originator role instance has access to any of its features.

Example of Memento

Memento pattern implementation in OT/J is described below as an illustrative example of a pattern
directly supported by the language.

As referred in 4.3, an abstract reusable team module was created for Memento. As the other patterns
that yielded reusable team module, Memento has some common parts to all of its concrete instances.
These parts are declarations of two abstract roles, an unbound Memento role and an Originator role,
as well as team methods to save and set mementos, given a specific originator. Role methods to save
and set mementos are to be concretized in teams implementing the abstract team.

Since the scope of this section is the language mechanisms which directly support pattern
implementations, the reusable team module code will not be shown. On the other hand, an example of
a Memento concrete team is considered relevant, since it shows confinement mechanisms at use.
Both OT/J confinement mechanisms (confined and opaque roles, see section 2.10) have been used in
distinct versions of the same Memento example, although, for this example only the version using
opaque roles will be considered. The complete concrete team code is listed in Code Listing 19.
Abstract and concrete teams are illustrated in Class diagram 1.

34

Class diagram 1 Memento implementation class diagram

Originator and Memento roles

In concrete teams, the Originator role is to be bound to a base object whose internal state we want to
save (line 12 in Code Listing 19 Memento concrete team example). Also, Originator methods to get
and set its state must be delegated to its base class, as shown in Class diagram 1.The Memento role
keeps the internal state of the Originator and must assure that only its originator has access to this it.

Concrete Memento team

In order to allow for mementos to be kept outside the pattern context, the abstract team provides a
method to pass a memento object outside its boundaries, i.e., to the participant classes, which is
overridden with explicit lifting in the concrete team (line 20). As referred above, encapsulation of
mementos must be preserved, therefore the Memento role is declared as implementing IConfined
interface, making it an opaque role (line 2). As such, this role can passed outside its enclosing team as
an IConfined object (line 21), guaranteeing that objects outside the team context will not access any
of its features.

In this concrete example (see Code Listing 19 Memento concrete team example), the Originator role
is played by an instance of Counter class (line 12), whose internal state is simply an integer, and
which provides a method to increment this value (see Class diagram 1). At some point, the client asks
for a memento of the current internal state of a Counter by calling the team method
createMementoFor (line 20). The Counter instance is passed into this method and lifted to its
corresponding Originator role, which creates a memento of its internal state and returns it in form of
an IConfined object to the external client. Since this memento is an opaque role object, external
clients cannot access any of its features, preserving its encapsulation.

{abstract}

Memento

{abstract}

Memento

Memento(o:Originator)

getState():Object

<<interface>>

IConfined

{abstract}

Originator

setState(m:Memento)

getState():Object

createMemento():IConfined

createMementoFor(o:Originator):IConfined

setMemento(o:Originator, m:IConfined)

currentValue:int

increment()

getCurrentValue():int

setCurrentValue(i:int)

print()

Counter

<<connector>>

Memento Team

Originator = Counter

getState �getCurrent Value

setState � setCurrentValue

Memento

state:int

<< adapt >>

35

01
02
03
04
05
06
07

08
09
10

11
12
13
14
15
16
17

18
19
20

21
22
23
24
25
26

public team class MementoTeam extends MementoProtoc ol{
 public class Memento implements IConfined{
 private int state;
 public Memento(Originator o){
 this.state = (Integer)o.getState();
 }
 public Object getState() {

 return state;
 }
 }

 protected class Originator playedBy Counter{
 public abstract Object getState();
 getState -> getCurrentValue;
 public void setMemento(Memento m){
 currentValue = (Integer)m.getState() ;
 }

 }

 public IConfined createMementoFor(Counter as Origi nator o) {
 return super.createMementoFor(o);
 }
 public void setMemento(Counter as Originator o, IC onfined m) {
 super.setMemento(o, m);
 }
}

Code Listing 19 Memento concrete team example

4.3 Reusable modularizations: Chain of Responsibility, Command, Composite,
Flyweight, Mediator, Memento, Observer, Prototype, Strategy and Visitor

Some patterns have common parts to any of its instances and (inevitably) parts that are instance-
specific. As expected, in terms of reusability, the common parts are the interesting ones. These can be
abstracted into reusable abstract modules, which are to be concretized by each concrete part of the
pattern.

Every pattern in this section has common parts, which have been abstracted, thus producing reusable
teams. Concrete instances of the pattern must extend these reusable modules, specifying which
participating classes play which roles, thereby giving rise to case-specific concrete teams.

A pattern is considered to yield a reusable module, if more than abstract declarations can be obtained
in common to multiple instances of a given pattern. Also, modules are only considered reusable if
they can be used in implementations from both scenarios, HK [11] and James Cooper [3].

36

The patterns which yielded reusable modules can be separated into two groups: The ones with only
super-imposed roles (Observer, Mediator, Chain of Responsibility and Prototype), and the ones which
also have defining roles (Memento, Composite, Visitor, Command, Strategy and Flyweight).

In the Java implementation of the patterns with defining roles, these defining roles had to be made
concrete by participating classes, whose sole functionality is to represent these roles. On the other
hand, in OT/J, apart from Command and Strategy patterns, participating classes can avoid holding
pattern specific code in. Either the team itself represents the defining role:

• Component role in Composite;

• Visitor role in Visitor;

• Caretaker in Memento;

• FlyweightFactory in Flyweight;

 or there are unbound roles representing them:

• Memento in Memento.

The fact that all roles in these two groups of patterns (except for Command and Strategy) are either
super-imposed or represented by teams and OT/J roles, allowed for the removal of pattern-specific
code from participating Java classes. This is possible, since participating classes also have
functionality outside the pattern context, other than inside. Therefore, pattern-related functionality
can be located in the pattern module. Moreover, there is no need to have participating classes
representing defining roles, which again allows for the criteria of locality to be met by the patterns
from this section.

Although, Command pattern implementation produced a reusable team module, all that could be
abstracted (other than mere abstract declaration of pattern roles) was the creation and maintenance of
auxiliary data structures. The purpose of these data structures is to keep a mapping between
Commands and its Invokers and Commands and its Receivers. Moreover, concrete instances of
Command pattern have no other functionality than keeping these mappings, and specifying which
events on the base classes trigger the execution of a certain Command. For this reason, and since
several commands can exist in the same example, the defining role Command is represented by
participant classes, allowing them to be used in several pattern instances. The same happens with the
defining Strategy role in Strategy. Since each existing concrete Strategy does not depend on any
pattern instance, their implementation is placed on participant classes, allowing them to be used in
multiple pattern instances.

The separation of concerns between pattern behaviour and participating classes’, allows for
(un)pluggable pattern instances. Since pattern code is removed from participating classes, patterns
can be easily composed into (and removed from) participating classes.

37

Example of Chain of Responsibility

Chain of Responsibility (CoR) is one of the patterns which yielded a reusable module. Its intent is to
allow for a request to be passed along a chain of request handler objects – until one handler accepts
the request or the end of the chain is reached – while avoiding a tight coupling between sender and
receiver.

CoR prescribes the Handler role, played by all participants in the pattern. Each handler has a link to
its successor in the chain and has operations to check if it should handle a specific request and if so,
to handle it.

The Handler role is plainly a superimposed role, and therefore lends itself to be represented in its own
OT/J module, separately from example-specific classes.

CoR is a pattern which produced a reusable module, since it has a number of parts that are common
to any instance of the pattern, and example-specific parts.

The common parts to all instances of CoR are:

• Logic for the Handler role.

• A Handler operation to handle requests from other handlers.

• Management of the mapping between handlers and their successors.

• The logic to either handle a request or pass it along the chain.

• The Request role.

In the abstract team module, besides the Handler role, there is a Request role. The purpose of this role
is to allow for requests to be treated as first class entities in the context of the pattern. This provides
better control over the requests, which are to be passed from Handler to Handler.

The parts specific to each pattern instance:

• Which classes can play the role of Handler and which can play the Request role.

• The implementation of accept and handle request methods.

• What action(s) on the participant classes initiate the handling of a request.

The abstract reusable team module for this pattern, which reflects the above mentioned
commonalities, is illustrated in Class diagram 2 by CoRProtocol and its code is shown in Code
Listing 20.

38

Class diagram 2 CoR implementation class diagram

<< adapt >>

Widget Hierarchy

Button

doClick(click:Click)

Panel

Frame

Click

event: ActionEvent

hasShiftMask():boolean

hasCtrlMask():boolean

hasAltMask():boolean

<<connector>>

ClickChainTeam

Handler

ButtonHandler = Button PanelHandler = Panel FrameHandler = Frame

handleDoClick after doClick

Request = Click

hasAltMask�hasAltMask

hasShiftMask�hasShiftMask

hasCtrlMask�hasCtrlMask

{abstract}

CoRProtocol

{abstract}

Handler

acceptRequest(r:Request):boolean

handlerRequest(r:Request)

{abstract}

Request

successors:weakHashMap

receiveRequest(h:Handler,r:Request)

setSuccessor(h:Handler,succ:Handler)

getSuccessor(h:Handler):Handler

39

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

public abstract team class ChainOfResponsibilityPro tocol {
 protected abstract class Handler {
 public boolean acceptRequest(Request request) {
 return false;
 }

 public abstract void handleRequest(Request request);
 }

 protected abstract class Request { }

 protected void receiveRequest
 (Handler handler, Request request) {
 if (handler.acceptRequest(request)) {
 handler.handleRequest(request);
 } else {
 Handler successor = getSuccessor(handler);
 if (successor == null) {
 System. err.println("END OF CHAIN REACHED)\n");
 } else { receiveRequest(successor, request); }
 }

 private WeakHashMap successors = new WeakHashMap() ;

 public void setSuccessor (Handler handler, Handler successor) {
 successors.put(handler, successor);
}

 protected Handler getSuccessor(Handler handler) {
 return ((Handler) successors.get(handler));
 }
}

Code Listing 20 Reusable ChainOfResponsibilityProtocol team module

Handler and Request roles

Handler and Request roles are realized as abstract roles in the reusable team
ChainOfResponsibilityProtocol (lines 2-8, 10 respectively, from Code Listing 20). These are used to
represent the roles played by participat classes in the context of this pattern.

The abstract Handler role defines an acceptRequest method (lines 3-5) to confirm handling of
requests, which returns false by default, and an abstract handleRequest method (line 7) to handle
requests. Both methods are to be implemented in concrete instances of the pattern, or have their
execution delegated to the classes playing the Handler role.

The Request role is declared as an empty role with no methods, since it will only be used to allow a
base class to represent a request in the pattern context, which has no other intent than to be passed
from Handler to Handler.

In concrete teams extending this abstract team, Handler and Request roles are to be bound to
participating base classes (see Class diagram 2), adapting their behaviour according to the context of
the concrete Chain of Responsibility instance.

40

Keeping a chain of handlers

The abstract team keeps a data structure to maintain a mapping of Handlers and their respective
successors, representing a chain of handlers (see Figure 9). This data structure is a weak hash map
(line 23), which keeps a Handler and its successor (if it has one) as the pair (key, value). Each
concrete instance of the pattern, extending ChainOfResponsibilityProtocol, will have its own data
structure to maintain the chain of handlers.

Figure 9 Chain of handlers’ representation

The abstract team public method setSuccessor (lines 25-27 of Code Listing 20) sets a mapping from
Handler to its successor. This method is to be called from outside the context of the team instance.
Therefore, this method is to be overridden by concrete instances of the pattern, introducing explicit
lifting in its signature, from base instance to the role it plays in the pattern (line 42 from Code Listing
21).

The protected method getSuccessor (lines 29-31 of Code Listing 20) is only used internally by
receiveRequest method (lines 12-21), to retrieve the successor of a given Handler.

Handle requests and pass along the chain logic

The receiveRequest method (lines 12-21), implemented in the body of the abstract team module,
reflects the handling/pass-along logic.

This method receives a Handler handler and a Request request as arguments (line 12), and starting on
handler it checks whether this handler will handle the request (line 14). If it does, handleRequest
method is called (line 15) on the current handler instance. If not, the request is passed to the successor
of the current handler, and so on, until it is handled or the end of the chain is reached.

receiveRequest method is to be executed upon certain points of program execution. These are to be
specified by concrete roles, in concrete teams extending ChainOfResponsibilityProtocol. In OT/J,
these are specified by means of callin bindings, stating that when a certain point of execution of the
program is reached, the receiveRequest method should execute. Although callin bindings are defined
in terms of base class methods, these classes are oblivious about the execution of any action at the
team level, such as executing receiveRequest.

Specific parts to each CoR instance

The specific parts of each pattern instance are implemented in concrete teams extending the abstract
team module.

client

aHandler
aHandler

successor
aHandler

successor

41

In each concrete team, a context specific chain of Handlers is defined. This chain can have any
number of Handlers, and can possibly handle any type of requests (which was not tested, but would
only require a switch clause at the beginning of the handler methods).

In concrete teams it is also defined:

• What kinds of concrete Handlers exist, which is done by subclassing the abstract Handler role.

• Which classes play the role of Handler and which represent a Request.

• How each Handler handles a request and what requests will it handle. Handling and accepting
requests is done either by simply implementing the abstract methods handleRequest and
acceptRequest, or by delegating their execution to participant base classes, via callout
bindings.

• What triggers the execution of the “handle request or pass along the chain” logic, provided by
receiveRequest method. This method is usually invoked by the Handler at the top of the chain,
when certain operations are performed at base class level, for instance, after the execution of
some method at the base class playing this Handler role. The execution of the base method is
captured by the Handler role via a callin binding.

Code Listing 21 shows a concrete team, extending ChainOfResponsibilityProtocol.

This team implements an example based on swing graphical objects, where a click on a button (line 6
from Code Listing 21) triggers a request (line 4 from Code Listing 21) that is passed along a chain of
Handlers, composed by the widget hierarchy Button (line 2) -> Panel (line 15) -> Frame (line 24).

The Request role (line 33) is played by Click class, which knows if any key was being pressed at the
time the button was clicked. Depending on the pressed key a different Handler will handle the
Request (lines 34-39) (see Class diagram 2).

The method setSuccessor is overridden in the concrete team (line 42 from Code Listing 21), using
explicit lifting in its entry arguments. This allows it to be called from outside the team, where base
classes are at hand, rather than role classes.

42

01
02
03
04
05
06
07

08
09
10

11
12
13
14
15
16
17

18
19
20

21
22
23
24
25
26

27
28
29
30

31
32
33
34
35
36
37
38
39
40

41
42
43
44
45

public team class ClickChainTeam extends ChainOfRes ponsibilityProtocol {
 protected class ButtonHandler extends Handler play edBy Button{
 public void handleDoClick(Click c) {
 receiveRequest(this, new Request(c));
 }
 void handleDoClick(Click c) <- after void doClick (Click c);
 public boolean acceptRequest(Request request) {

 System.out.println("Button is asked to accept th e request...");
 return request.hasShiftMask();
 }
 public void handleRequest(Request request) {
 System.out.println("Button is handling the event .\n");
 }
 }
 protected class PanelHandler extends Handler playe dBy Panel{
 public boolean acceptRequest(Request request) {
 System.out.println("Panel is asked to accept the request...");

 return request.hasCtrlMask();
}
 public void handleRequest(Request request) {
 System.out.println("Panel is handling the event. \n");
 }
 }
 protected class FrameHandler extends Handler playe dBy Frame{
 public void handleRequest(Request request) {
 System.out.println("Frame is handling the event. \n");

 }
 public boolean acceptRequest(Request request) {
 System.out.println("Frame is asked to accept the request...");
 return request.hasAltMask();
 }
 }
 protected class Request implements ILowerable play edBy Click {
 public abstract boolean hasAltMask();
 hasAltMask -> hasAltMask;
 public abstract boolean hasCtrlMask();
 hasCtrlMask -> hasCtrlMask;
 public abstract boolean hasShiftMask();
 hasShiftMask -> hasShiftMask;
 }
 public <AnyBase base Handler, AnyBase1 base Handle r>
void setSucessor(AnyBase as Handler handler, AnyBas e1 as Handler successor){
 super.setSuccessor(handler, successor);
 }
}

Code Listing 21 CoR concrete team example

43

4.4 Non-reusable modularizations: Adapter, Bridge, Builder, Decorator, Façade,
Interpreter, Iterator, Proxy, State and Template Method

In the patterns from this group, the OT/J implementations were successfully modularized but could
not be used in more than one scenario, i.e., did not yield a reusable module. In some cases, all that
could be achieved would be the abstract declaration of operations. The absence of the possibility to
create a reusable module for these patterns is due to the nature of the pattern instances being very
scenario-specific.

Adapter, Bridge, Decorator, Proxy and State

The purpose of Adapter, Bridge, Decorator and Proxy is to adapt a given class (which is concretized
in OT/J by callin bindings). A reusable module for these patterns was not produced since adaptations
are non-reusable by their very nature, as associated code serves to adapt case-specific classes (i.e.,
glue code). However, some language constructs from OT/J have been used to concretize these
patterns implementation, such as Guard Predicates (Decorator) and Externalized Roles (Adapter).

State keeps track of the current state of a given base class. This state can be related to any member of
the base class (callin bindings, in the style of AspectJ around advice, are used to determine when and
what state to maintain), which is again a case-specific decision. Since both state and how to keep
track of it are case-specific (depending on what the client needs) this pattern cannot be abstracted into
a reusable module.

Template Method and Builder

The intent of Template Method is to define the skeleton of an algorithm in an operation, deferring
some steps to subclasses. Template Method can also be viewed as a technique to prevent duplication
through the use of traditional inheritance, by factoring out common code to a (possibly abstract)
super-class and leaving case-specific code in the subclasses. OT/J implementation of Template
Method uses a module composition mechanism other than inheritance: the playedBy binding between
role and base class (see section 2.3). This relation has similarities to the relation between a (possibly
abstract) super-class and a concrete subclass, to the extent that a role can defer to the base the
definition of the operations it declares. The OT/J version of the HK Template Method illustrates this:
the team has a role standing for the abstract class and an example-specific class that stands for the
concrete sub-class. This approach could not be used on the example from the Cooper collection
because the abstract class has a single constructor declaring several arguments. Using this approach
on this example would be tricky, because it would entail providing the role with a constructor with
parameters and explicitly instantiate it, instead of usual practice of instantiating the base and let the
corresponding role instance to be implicitly created.

The intent of Builder is to separate the construction of a complex object from its representation so
that the same construction process can create different representations [9]. Structurally, the HK
Builder is another instance of Template Method. The OT/J version is similar, but is structured in such

44

a way that the representation is a virtual class (i.e., an unbound role), with the consequence that code
for the actual instantiation of different representations become variation points, as with Factory
Method (see section 4.2).

Façade, Interpreter and Iterator

Iterator provides the means to iterate over elements of an aggregation of objects. In the analysis by
HK [11] to their AspectJ implementations, it is stated that for the Iterator implementation, a reusable
module was produced. However, in the OT/J implementation, no reusable module was derived for
this pattern, thus it is considered that Iterator does not respect the Reusability criteria. This
assumption is due to consider that just extending the Iterator Java interface in pattern instances does
not count as reusability, since this reusability comes from the Java platform rather than from OT/J.
What could be abstracted was mere declaration of operations of a common Iterator (done in Java’s
Iterator interface). The primary advantage brought by OT/J to these examples is the ability to package
together the Aggregate and Iterator pattern roles into a common team module. This packaging
capability also marks the difference between the OT/J implementations of Interpreter and Façade and
the corresponding implementations in Java and AspectJ – note that Façade is the sole pattern from
the HK study in which the Java and AspectJ implementations are identical.

Iterator example

Iterator makes use of family polymorphism and externalized roles in its concrete implementations.
Thus, it is a good example of a pattern for which a reusable module was not produced, however, its
OT/J implementation allowed for a separation of concerns, between participant classes and pattern
code.

A team module was produced, reflecting the participants in this pattern. This team declares an
Aggregate role, which is bound to the base class to iterate and any number of role classes
implementing Java Iterator class, representing concrete iterators which can iterate over Aggregate
instances of this team. Family polymorphism guarantees that Aggregate instances and concrete
Iterators from different team instances do not mix, ensuring type consistency among class
collaboration.

Having the Aggregate role bound to the base class to iterate in the same team as the Iterator role
which iterates it, provides pattern locality, i.e., all pattern related code is located in the team module.
This avoids the need to have Iterator related code scattered through base classes.

45

Class diagram 3 Iterator implementation class diagram

In this specific scenario, there is an OpenList class instance, implementing SimpleList interface, over
which the client wants to iterate. This list plays the role of Aggregate, providing the role access to its
methods via callouts, avoiding need to have pattern code in OpenList class (see Class diagram 3). The
iteration in question is supposed to be from the end to the start of the list, i.e., performed by a
ReverseIterator (line 7). This unbound role implements Java Iterator class, and it is instantiated with
an instance of the Aggregate over which it will iterate (line 10).

Both Aggregate and ReverseIterator are externalized to the client (lines 30-31). Family polymorphism
guarantees that only an Aggregate object anchored to the same team as the Iterator will collaborate.
Moreover, both Aggregate and Iterator can be used for other tasks than the one presented in the
example (line 34).

ListIteratorTeam

Aggregate = OpenList

ReverseIterator

list:Aggregate

hasNext():boolean

remove()

next():Object

ReverseIterator(agg:Aggregate)

<<interface>>

java.util.Iterator

CreateIterable(list:OpenList):Aggegate

<<interface>>

OpenList

OpenList

list:LinkedList

get(i:int):Object

(…)

<< adapt >>

46

01
02
03
04
05
06
07

08
09
10

11
12
13
14
15
16
17

18
19
20

21
22
23
24
25
26

27
28
29
30

31
32
33
34

public team class ListIttTeam {
 public Aggregate createIterable(OpenList as Aggreg ate list){
 return list;
 }
 public class Aggregate implements SimpleList playe dBy OpenList{ }

 public class ReverseIterator implements Iterator{

 protected int current;
 protected Aggregate list;
 public ReverseIterator(Aggregate list) {
 super();
 this.list = list;
 current = list.count();
 }
 public boolean hasNext() {...}
 public void remove() {...}
 public Object next() {...}

 }
}

public class Main{
 private static void print(Iterator iter) {
 while(iter.hasNext()) {
 System.out.println(iter.next());
 }
 }

 public static void main(String[] args) {
 final ListIttTeam listItt = new ListIttTeam();
 OpenList openList = new OpenList();
 Aggregate<@listItt> iterable = listItt.createIter able(openList);
 Iterator iter = new ReverseIterator<@listItt>(ite rable);
 print(iter);
 }
}

Code Listing 22 Iterator pattern example

4.5 Same implementation as in Java: Singleton

Singleton is the sole pattern whose implementation resulted identical to that in Java. The intent of
Singleton is to ensure a class only has one instance, and provide a global point of access to it [9]. The
standard way to implement Singleton in Java is to block access to constructors through non-public
visibility and to provide an accessor method that always returns the same class instance whenever it is
called.

The AspectJ implementation of Singleton uses advice to intercept calls to the constructor and always
return the same class instance, kept in the aspect. However, OT/J does not provide a means to

47

intercept class constructors. For this reason, OT/J does not bring any benefits for Singleton, compared
to Java.

4.6 Limitations detected

This section provides insights on some language drawbacks, which have been noticed while
producing design patterns implementations.

4.6.1 Binding class constructors

Although OT/J supports composing context-dependent code into already existing base classes, it does
not support composing additional (role) behaviour into base class constructors. This is due to the fact
that the base class instance is not yet created at the time the constructor is called, therefore neither the
corresponding role instance is. If composing code into class constructors were possible, it would
allow roles to instantiate its base classes, providing direct language support for the Singleton pattern.

In order to overcome this shortcoming, one might program the class constructor in an auxiliary
method that is called in the constructor itself. Contrary to the constructor, code may be composed into
this auxiliary method, thus allowing roles to access it, providing a solution for this limitation.

4.6.2 Invasive composition of Java proprietary binaries

Invasive composition of Java proprietary binaries is constrained by to legal issues, whereas by
composing context code into these classes the programmer is changing them, which is not legal in
cases where the resulting binaries are to be shipped to clients. Therefore, composing code into Java
proprietary classes is not supported in OT/J.

This issue introduces hurdles when trying to compose context-dependent functionalities into existing
examples which use some of the aforementioned classes.

For instance, all the pattern examples by James Cooper are based on classes from the Java Swing
library, as referred in section 4. While implementing James Cooper examples in OTJ language, when
it was necessary to compose code into swing classes, there was need for some workaround. Often, the
hurdles were dealt with by adapting the example, through the use of sub-classes of the swing classes.

4.6.3 Roles playedBy interfaces

A feature in OTJ yet to be implemented is the possibility of roles being playedBy interfaces. If a role
could be playedBy an interface, any participant class implementing the chosen interface could play
this role.

Bounding roles to interfaces would allow roles to reference any methods of the interface, without
actually reference their concrete implementation. It would provide the programmer ease to modify
concrete participant classes (always respecting the interface), with no need to change anything in
team modules.

48

For instance, in the Iterator implementation example (see Code Listing 22), the Aggregate role could
be bound to a list interface, allowing this role to be played by any concrete instance of this interface.
Since this is not possible, the role must be bound to a concrete class, reducing variability.

4.7 Comparison between OT/J and Java

OT/J offers all the support and mechanisms provided by Java, since it is backwards compatible with
Java. However, OT/J provides more options to the user.

Team classes and inner role classes, in conjunction with the concept of family polymorphism,
provides a type safe way to maintain families of collaborating classes. To implement this kind of
class collaboration in Java, the programmer needs to create a lot of hand-made conditions, or resort to
some design patterns, such as Abstract Factory.

The usage of virtual classes and family polymorphism make OT/J a more polymorphic and reusable
language, when compared to Java, since it is possible to polymorphically refine both outer (teams)
and inner (roles) classes. For instance, with OT/J it is possible to declare a set of collaborating
classes, via a team and its roles, and use this team in different scenarios, simply by sub-classing the
existing roles, in sub classes of the team. In Java, in order to declare a set of classes which collaborate
with each other, a new set of collaborating classes would have to be created for each refinement of
any of the classes in the set. Moreover, as consequence of supporting family polymorphism, OT/J
supports polymorphic constructors for its roles, i.e., in team refinement, not only role methods and
fields but also constructors are implicitly inherited (see section 2.4). Language features like family
polymorphism and polymorphic constructors provides the means for OT/J to offer direct language
support to Abstract Factory and Factory Method, as stated in section 4.2.

With the use of teams to define contexts of interaction, and roles which can access all members of
base classes, OT/J introduces a separation of concerns that Java lacks. In OT/J, it is possible to isolate
context-independent code in base classes (code that is similar in all base class instances and does not
depend on a specific context), while keeping all context-dependent code in roles and their respective
teams. Moreover, context-dependent code may be composed into existing classes, while keeping
these classes oblivious of this composition. This means that improved modularity is introduced, by
keeping code from different concerns in distinct modules, and allowing new code to be easily
composed into existing classes. The concept of role modelling and contexts of collaboration provides
the means to compose distinct hierarchy structures, allowing the possibility of interaction/integration
of systems which have not been built to work together. For instance, with OT/J it is possible to
produce classes for a system without the need to regard any future requirements, since future
requirements can be produced in a separated module and later integrated into existing classes without
changing their code, adapting their behaviour to what is needed. In Java, adapting a system or even
class behaviour would mean modifying its code, which is usually a painful process. As an illustrating
example, consider the Adapter (see section 2.9 for a code example), which aims at adapting the
interface of a given class to one the client expect. In OT/J this is done straightforward by creating a

49

role, to be externalized, which implements the expected interface and delegates its methods to the
class to adapt, always maintaining this class oblivious of the existence of the pattern. This way, the
programmer only has to maintain the role, which respects the expected interface. On the other hand,
the solution in Java involves creating a class implementing the expected interface, which encapsulates
the class to adapt and calls its methods, making the programmer have to manage two distinct objects.

OT/J also provides better means for object confinement (see section 2.10), allowing the programmer
to specify that certain classes should not be accessible outside a certain context. Again, in Java this is
would be a painful job to implement, since Java does not provide means for the creation of contexts,
and the strongest form of encapsulation provided is declaring a class and its fields as private, which
either way lets this class be instantiated anywhere.

4.8 Comparison between OT/J and AspectJ

In contrast to AspectJ, OT/J aspect team modules are always, and by default, entities accessible
through an object reference. This difference in handling aspects instances gives OT/J some additional
flexibility with respect to AspectJ:

• Team instance creation is controlled by the programmer, allowing for a more precise control
over which aspects are executing. As referred in 2.7, team composition into participant classes
may be “turned on/off” at run-time. In design pattern implementations, if patterns meet the
locality criteria, i.e., if all pattern related code is placed enclosed within the team, pattern
instances are easily (un)pluggable from base classes, merely by (de)activating them. For
instance, in Memento, this would let the programmer decide when to have the Memento team
instance saving mementos, without changing the team code. By contrast, in AspectJ advice
cannot be activated or deactivated dynamically, which has an impact on the implementation of
some patterns – Decorator is a good example, since in AspectJ it is not possible to decide at
run-time whether or not to decorate a certain object.

• Team instances are straightforward to reference, allowing the programmer to build his own
systems based on team instances. Several instances of the same team can be created and easily
distinguished by their unique instance name. For instance, in the Observer pattern, this would
enable the use of different instances for each observing relationship.

Moreover, the use of roles in OT/J allows for a more fine-grained control over participant class
instances. It is possible to specify if all instances, or only specific ones, of a certain participant class
play some role. Roles are mapped to participant instances via team methods, without the need to keep
any extra data structure, since teams keep a mapping from roles to participant instances (see section
2.5). In contrast with this, AspectJ offers no way to assert which participant instances play which role
in the pattern, without keeping an extra data structure for this mapping. This means that, either a data
structure is kept in the pattern module to know which participant instances play which roles, or the
pattern is applied to all participant instances. For some cases this may not be the desirable effect.

50

Consider for instance the Adapter example (see section 2.9). While in the OT/J version it is specified
which SystemOutPrinter instance is adapted (line of 15 from Code Listing 13), in the AspectJ version
by HK [11] (not shown in this document), all instances of SystemOutPrinter are adapted, since there
is no way to specify (without the use of an extra data structure) which instances should be adapted.

4.8.1 Comparison based on Locality, Reusability, Composition Transparency and
(Un)pluggability

Table 1 was built having as basis the table presented in [11] by HK. It covers all 23 GoF patterns,
having each pattern analysed in terms of the criteria used by HK (easing the comparison between
results obtained in OT/J and AspectJ): Locality, Reusability, Composition Transparency and
(Un)pluggability (see section 3 for further detail on these criteria). Moreover, classification of pattern
roles into defining and superimposed is also included in the table (when the distinction of the two
kinds of role is not totally clear, role names are shown in parentheses in either or both categories).
Table 1 presents the results obtained from the OT/J implementations (identified in the
“Implementation” column by the label “OT/J”) and provides the results obtained by HK in AspectJ
(identified in the “Implementation” column by “AspectJ”). This correspondence paves the way to the
comparison between OT/J and AspectJ.

Since there are qualifications to be pointed out for both languages, a few clarifications are provided
next. In the results obtained from the OT/J implementations, a few “no” entries relative to properties
reusability and composition transparency are qualified with an asterisk. This is merely to indicate that
the reason why the pattern instance does not enjoy the given property is due to the nature of the
pattern and not attributable to limitations of the language. Also, in the AspectJ results, HK classify
some pattern properties with “(yes)” instead of a plain “yes” to indicate that limitations of some sort
apply [11]. In general, these are caused by the presence of defining pattern roles. For instance, take
the locality property: though AspectJ successfully enables the separation of superimposed roles,
defining roles remain in multiple classes (e.g. State classes for the State pattern).

The above limitation is not felt in the OT/J implementations, since teams make it possible to group
multiple pattern components into a single cohesive scope. This capability, granted by family
polymorphism, has a wide-ranging impact on the OT/J implementations. Family polymorphism
allows one to enclose pattern roles (from patterns with more than one significant role) within a single
team, providing enhanced cohesion. For this reason, most pattern implementations in OT/J
theoretically consist of a team with (possible abstract) roles representing pattern roles. Thus, all OT/J
pattern implementations respect the locality property, since it always seems possible to package and
encapsulate pattern participants into a larger module.

51

Table 1 Result comparison between implementations by OT/J and AspectJ

For the reusability criteria column in Table 1, results obtained in OT/J largely match the ones by HK.
All the patterns that produced a reusable module in the AspectJ implementations also produced
reusable modules in OT/J, except for Singleton (for which the Java and OT/J implementations are the
same) and Iterator (see section 4.4).

Kinds of roles Pattern
Defining Superimposed

Implementation Locality Reusability Composition
Transparency Unpluggability

OT/J yes no yes no* Abstract
Factory

Factory, Product _
AspectJ no no no no

OT/J yes no yes yes
Adapter Target, Adapter Adaptee

AspectJ yes no yes yes
OT/J yes no yes yes

Bridge
Abstraction,
Implementor

_
AspectJ no no no no

OT/J yes no yes no*
Builder

Builder,
(Director)

_
AspectJ no no no no

OT/J yes yes yes yes Chain of
responsibility

_ Handler
AspectJ yes yes yes yes

OT/J yes yes no* yes
Command Command

Commanding,
Receiver AspectJ (yes) yes yes yes

OT/J yes yes yes (yes)
Composite (Component) (Composite, Leaf)

AspectJ yes yes yes (yes)
OT/J yes no yes yes

Decorator
Component,
Decorator

ConcreteComponent
AspectJ yes no yes yes

OT/J yes no yes yes
Façade Façade _

AspectJ Same implementation for Java and AspectJ
OT/J yes no yes no* Factory

Method
Product, Creator _

AspectJ no no no no
OT/J yes yes no* yes

Flyweight FlyweightFactory Flyweight
AspectJ yes yes yes yes

OT/J yes no yes no*
Interpreter Memento Originator

AspectJ no no n/a no
OT/J yes no yes yes

Iterator (Iterator) Aggregate
AspectJ yes yes yes yes

OT/J yes yes yes yes
Mediator _

(Mediator),
Colleague AspectJ yes yes yes yes

OT/J yes yes yes yes
Memento Memento Originator

AspectJ yes yes yes yes
OT/J yes yes yes yes

Observer _ Subject, Observer
AspectJ yes yes yes yes

OT/J yes yes no* yes
Prototype _ Prototype

AspectJ yes yes (yes) yes
OT/J yes no yes yes

Proxy (Proxy) (Proxy)
AspectJ (yes) no (yes) (yes)

OT/J Same implementation for Java and OT/J
Singleton _ Singleton

AspectJ yes yes n/a yes
OT/J yes no yes yes

State State Context
AspectJ (yes) no n/a (yes)

OT/J yes yes no* yes
Strategy Strategy Context

AspectJ yes yes yes yes
OT/J (yes) no (yes) (yes) Template

Method
(AbstractClass),
(ConcreteClass)

(AbstractClass),
(ConcreteClass) AspectJ (yes) no no (yes)

OT/J yes yes yes yes
Visitor Visitor Element

AspectJ (yes) yes yes (yes)

52

A column with the criteria of extensibility for each implementation is not included in Table 1, since
values are always “no” for AspectJ and “yes” for OT/J. Interpreter provides a good illustrating
example. Interpreter implementation in OT/J is organized as a super-team and a sub-team, illustrating
a different benefit brought by family polymorphism: OT/J modules can always be extended through
team inheritance, and team instances (enclosing role objects) can be used polymorphically (see
section 2.4). The same is not possible in AspectJ examples because concrete aspect modules cannot
be further extended.

4.9 Analysis conclusions

In the HK study results are grouped differently than in this document, reflecting differences in
language mechanisms. To facilitate comparisons, Table 2 presents the aggregate results of both
studies (the present one and HK studies), organized into groups according to the criteria presented in
this chapter. There is also a group called “Pattern not modularized” in Table 2. This group contains,
for each programming language (OT/J and AspectJ), the patterns that did not yield a successful
modularization.

 AspectJ Object Teams for Java

criterion
Nr. of
cases

Patterns in the group
Nr. of
cases

Patterns in the group

Direct language
support

4
Adapter, Decorator, Strategy, Visitor,

Proxy
3

Abstract factory, Factory method,
Memento

Reusable
modularization

12

Chain of responsibility, Command,
Composite, Flyweight, Iterator,
Mediator, Memento, Observer,

Prototype, Singleton, Strategy, Visitor

10

Chain of Responsibility, Command,
Composite, Flyweight, Mediator,
Memento, Observer, Prototype,

Strategy and Visitor

Non-reusable
modularization

3 Proxy, State, Template method 10
Adapter, Bridge, Builder, Decorator,
Façade, Interpreter, Iterator, Proxy,

State and Template Method
Pattern not

modularized
5

Abstract factory, Bridge, Builder,
Factory method, Interpreter

0 __

Implementation
identical to Java

1 Façade 1 Singleton

Table 2 Comparison of aggregate results in terms of modularization, reusability and language support

Five of the AspectJ examples do not have the locality property (see Table 1), which is a minimum
requisite for deeming a modularization successful. For this reason, the patterns in those examples are
placed in the group “Pattern not modularized”. In OT/J, all implementations provided a successful
modularization, since they all respect the locality criteria, i.e., the pattern code is always localized in
team modules.

An overall look at the analysis carried in this chapter shows OT/J has a clear advantage in terms of
extensibility and, in general, of what can be done with the resulting modules. AspectJ aspect modules

53

are generally not extensible, while OT/J team modules seem to be always extensible, the only
observed limitations being due to the specifics of a given pattern.

54

55

5. Related Work

This chapter provides a short survey of insights acquired from analyses of design pattern
implementation in different aspect-oriented programming languages, namely AspectJ [18], Eos [23]
and CaesarJ [20].

Hannemann et al. [11] developed a study which involved producing a repository of the GoF patterns
implemented in an AOP language. Several studies have been performed on this repository. One of
these studies is aimed to produce metrics for comparative results between OOP and AOP (using Java
and AspectJ respectively), by Garcia et al. [10].

After the GoF patterns [9] were documented, implementations of the patterns were written with the
existing knowledge about OOP languages at that time. In OO implementation of patterns, pattern
code is scattered and tangled with participant code, making it hard to reuse the pattern code and to
document code. In Hannemann et al. [11], the effect of AOP techniques on the GoF design patterns
implementation is discussed. They state that, the bigger improvements appear in implementation of
patterns that have crosscutting structures between participant classes and the roles they play in the
pattern. Thus, they suggest that it is worthwhile to apply AO techniques to pattern implementation, in
particular, using the AspectJ programming language, which was specifically designed to modularize
crosscutting structures.

In Rajan [23] the effects of the Eos programming language constructs on the implementation of the
GoF patterns are analysed and compared to the implementations on AspectJ. Since the Eos language
model is in part inspired on that of AspectJ, the results of implementing the design patterns in this
language are at least as good as the ones obtained in AspectJ. The improvements attained with the use
of this language are mainly related with being able to state the intent of design patterns more clearly,
as well as producing more concise implementation code.

Rajan H. argues that the AspectJ implementation of the design patterns could be improved [23]. In
the Eos language a new language construct is introduced, called classpect. This is the basic unit of
modularity in this language, which unifies the concepts of aspects and classes. Classpects have all the
capabilities of both classes and aspects (in AspectJ-like languages).

The primary difference between the AspectJ and Eos implementations is that all concerns are
modelled as classpects in Eos. In addition, classpects enable instance-level advising. Eos allows for
the creation of aspect instances and for selectively advising object instances, creating an implicit
relation in the aspect between participant instances. This enables a given aspect to refer to just some
instances of a class, instead of the AspectJ way, where aspects affect all instances of the classes
advised. OT/J also allows one to choose to which class instances the aspect should be composed.
Bound roles can be instantiated just like plain Java classes, creating a relation between a specific role
instance and a class instance. Decorator is one example of a case where it may not be desired to
decorate all the participant class instances, i.e., the aspect should not be composed into all the

56

participant class instances. Moreover, while in AspectJ relations between participant instances have
to be emulated using, for instance, hash maps to store and retrieve relationships, in Eos a direct
representation of the pattern relationship is provided, relating participant instances with each other in
the classpect, as implicit advising structures. Likewise, OT/J Team instances maintain a mapping
from base to role instances (see section 2.5), avoiding the need for extra data structures to keep these
mappings.

For the analysis of the Eos implementation results, the criteria used by Hannemann et al. was used, as
well as the Lines of Code metric, to measure size and Close match to pattern intent which evaluates to
true if the intent of the pattern implementation closely matches the pattern specification. Rajan
concludes that Eos implementation of some patterns becomes clearer than the ones in AspectJ. Also,
the use of classpects provides better representation of the relationships between pattern participants
(without resorting to the use of data structures), and allow for selective instance advising, which
provides closer matches to the intent of the patterns. Neither Lines of code nor Close match to pattern
metrics are used in the analysis of OT/J pattern implementations in this dissertation. This dissertation
aims at assessing OT/J modularity capabilities, and these two metrics show little contribution for this
goal.

A master thesis has been carried out by Sérgio Braz [1], whose topic is related with design pattern
implementation in the AOP language CaesarJ. His work is focused on the implementation of 11 of the
GoF patterns in this language and to produce comparative analyses between the results obtained with
these implementations and implementations in other AOP languages.

The analysis by Braz conveys which CaesarJ mechanisms have been used for each design pattern
implementation, and asserts about the possible reusability level for each pattern. Criteria used for the
analysis to the reusability level, is divided into several groups: Direct language support, reusable
modules, composition flexibility and no reuse.

Braz implementation analysis showed that Bridge yielded a reusable CaesarJ module, in contrast to
AspectJ’s result where no reusable module was produced for this pattern. However, in the present
dissertation, the criterion for a pattern to be considered to have yielded a reusable module (see section
4.3) is different from the one in Sérgio’s dissertation [1]. A module for a given pattern should have
more than mere abstract declarations to be considered reusable, which is not the case of Bridge
implementation in OT/J or in CaesarJ’s.

The family polymorphism mechanism (see section 2.2.2) is supported by both CaesarJ and OT/J
programming languages. This mechanism allows both languages to directly support Abstract factory
and Factory method patterns, since these patterns have to do with creating objects which belong to a
certain theme or family.

On the other hand, Visitor implementation produced a reusable module on both AspectJ and OT/J and
that was not the case for CaesarJ version. However, in the AspectJ version the only non-abstract code
in the reusable module are new methods to be added to pattern base participants. In the OT/J Visitor

57

implementation, the reusable team module maintains the context for the visitor, and concrete teams
represent concrete visitors. Contrary to the AspectJ Visitor implementation where there is an extra
class to specify which classes are visitors and visitable, in the OT/J version the visitors are the teams
themselves and classes to be visited are specified in the concrete teams, avoiding the need for extra
classes.

The work by Braz paves the way for comparisons between CaesarJ and OT/J. However, a systematic
analysis cannot be made since a complete pattern repository has not been implemented in CaesarJ.

From the related work study, one can conclude that different programming languages and different
programming mechanisms offer different benefits to the implementation of design patterns. OT/J
benefits from some of the mechanisms, which are also used in other languages, such as family
polymorphism.

58

59

6. Conclusion and future work

AOP is a recent programming paradigm, still subject to research and maturation. Several
programming languages exist, but few studies have been done focused on their support for modularity
and on comparison of different AOP languages. The implementation of design patterns has been used
to provide insights about programming languages mechanisms and their constructs. Moreover, since
design patterns usually crosscut over distinct features of a sysem, these prove perfect to assess some
language potential for modularity.

For this dissertation two repositories of the 23 GoF patterns have been implemented in Object Teams
for Java. These implementations are described and analysed in chapter 4. Moreover, code examples
from these implementations are used all over this document, either to illustrate some OT/J mechanism
or to provide examples for the analysis, as well as class diagrams for some of these examples. This
analysis assesses which patterns are given to reusability in OT/J. Also, the Java and AspectJ design
pattern repositories by HK and the respective AspectJ study by HK provide enough material to the
comparative analysis in sections 4.7 and 4.8.

The implementations done for this thesis, as well as the conducted analysis, pave the way for future
researches. The development of new repositories of implementations of the same Design Patterns in
different AOP languages opens way for several comparative studies, whether between different
programming paradigms, for instance OT/J and Java, or between different AOP languages, for
instance OT/J and AspectJ. Also, studies directly comparable with the results of Garcia et al. [10] are
possible.

In this dissertation the composition ability of patterns is studied only in individual cases, having at the
most two instances of the same pattern active at the same time. Supplementary tests can be made in
order to assess the composition ability of different patterns in the same application.

Similar studies to this dissertation could be conducted focused on different AOP languages. On the
grounds that design patterns implementation brings insights on the constructs and mechanisms of the
language used for the implementation, the existence of design pattern repositories in other languages
would provide more material for future analysis. Moreover, increasing the number of languages
implementing complete design pattern repositories provides a broader basis of available information
for comparisons between programming languages and respective constructs.

60

61

7. References

[1] Braz S., A Qualitative Assessment of Modularity in CaesarJ components based on
Implementations of Design Patterns. M.Sc. thesis, Universidade Nova de Lisboa, Departamento
de Informática, 2009.

[2] Brichau, G., Haupt, M., Report describing survey of aspect languages and models. AOSD-Europe
Deliverable D12, AOSD-Europe-VUB-01, 2005.

[3] Cooper J., Java Design Patterns: A Tutorial. Addison-Wesley 2000. (Available at
http://www.patterndepot.com/put/8/DesignJava.PDF)

[4] Czarnecki K., Generative Programming: Principles and Techniques of Software Engineering
Based on Automated Configuration and Fragment-Based Component Models. Germany,
Ilmenau, 1998.

[5] Ernst E., Family Polymorphism. In Proceedings ECOOP 2001, LNCS 2072, pp.303-326,
Springer-Verlag, Budapest, Hungary, 2001.

[6] Ernst E., Ostermann K., Cook, W. R., A Virtual Class Calculus. 33rd ACM Symposium on
Principles of Programming Languages (POPL’06). ACM SIGPLAN-SIGACT, 2006.

[7] Ernst E., Lorenz D., Aspects and polymorphism in AspectJ. AOSD 2003, Boston,
Massachusetts, USA, 2003.

[8] Filman R. and Friedman D., Aspect-Oriented Programming is Quantification and Obliviousness.
In Workshop on Advanced Separation of Concerns, OOPSLA 2000, pp. 21-35, Minneapolis,
2000.

[9] Gamma E., Helm R., Johnson R. and Vlissides J., Design Patterns: Elements of Reusable Object-
oriented Software. Professional Computing Series, Addison-Wesley, 1995.

[10] Garcia A., Sant'Anna C., Figueiredo E., Lucena C., Staa A.v., Modularizing Design Patterns with
Aspects: A Quantitative Study. In LNCS Transactions on Aspect-Oriented Software
Development, Springer vol.1, pp.36-74, 2006.

[11] Hannemann J., Kiczales G., Design Pattern Implementation in Java and AspectJ. In OOPSLA
02, Seattle, USA, 2002.

[12] Herrmann S., A Precise Model for Contextual Roles: The Programming Language
ObjectTeams/Java. In Applied Ontology, Volume 2, Number 2 / 2007, pp. 181-207, IOS Press ,
Berlin, 2007.

[13] Herrmann S., Balancing Language Concerns: Who Decides? In SPLAT Workshop at AOSD'08,
Brussels, Belgium, 2008.

[14] Herrmann S., Christine Hundt, Katharina Mehner, Translation Polymorphism in Object Teams.
Technical Report 2004/05, Fak. IV, Technical University Berlin, 2004.

[15] Herrmann S., Confinement and representation encapsulation in Object Teams. Berlin, 2004.

[16] Herrmann S., Hundt C., Mehner K. and Wloka J, Using Guard Predicates for Generalized
Control of Aspect Instantiation and Activation. In AOSD 05, Chicago, 2005.

[17] Herrmann S., Object Teams: Improving Modularity for Crosscutting Collaborations. In
Proceedings of Net.ObjectDays, Erfurt, 2002.

[18] Kiczales G., Hilsdale E., Hugunin J., Kersten M, Palm J. and Griswold W., An overview of
AspectJ. In ECOOP 2001, 2001.

62

[19] Madsen O. L., Møller-Pedersen B., Virtual classes: a powerful mechanism in object-oriented
programming, OOPSLA’89, New Orleans, Louisiana, USA, 1989.

[20] Mezini M, Ostermann K., Conquering aspects with Caesar. In Proceedings of AOSD 2003, pp.
90–99, Boston, USA, 2003.

[21] Monteiro M., Fernandes J., Towards a Catalogue of Refactorings and Code Smells for AspectJ.
Transactions on Aspect-Oriented Software Development, Springer LNCS vol. 3880/2006, p.
214-258, 2006.

[22] Parnas D. L., On the criteria to be used in decomposing systems into modules. Communications
of the ACM 15 (12), pp. 1053-1059, December 1972.

[23] Rajan H., Design Pattern Implementations in Eos. In PLoP '07, Conference on Pattern
Languages of Programs, Monticello, September 2007.

[24] Riehle D., Gross T., Role Model Based Framework Design and Integration. In Proceedings of
OOPSLA '98. ACM Press, Page 117-133, 1998.

[25] Reenskaug T., Wold P., Lehene A., Working with Objects—The OOram Software Engineering
Method, Addison-Wesley/Manning, 1996.

[26] Steimann F, Wissensverarbeitung R., Role = Interface - A merger of concepts (2001). In Journal
of Object-Oriented Programming, Vol.14, Page 23-32, 2001.

[27] Tešanovic A., What is a pattern? Paper in Design Pattern seminar, IDA, 2001.

[28] Yuen I., Robillard M., Bridging the gap between aspect mining and refactoring. In LATE '07,
Proceedings of the 3rd workshop on Linking aspect technology and evolution, Vancouver,
Canada, 2007.

