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Some results presented in the paper ‘‘Modeling fractional stochastic systems as non-
random fractional dynamics driven Brownian motions” [I. Podlubny, Fractional Differential
Equations, Academic Press, San Diego, 1999] are discussed in this paper. The slightly modi-
fied Grünwald-Letnikov derivative proposed there is used to deduce some interesting
results that are in contradiction with those proposed in the referred paper.

� 2008 Elsevier Inc. All rights reserved.
The fractional calculus is a generalization of the traditional calculus that leads to similar concepts and tools, but with
wider generality and applicability. By allowing derivative and integral operations of arbitrary real or complex order, it is
to traditional calculus what the real or complex numbers are to the integers [1,2]. This means that we must recover the tra-
ditional calculus when the order is a positive integer number.

In ‘‘Modeling fractional stochastic systems as non-random fractional dynamics driven Brownian motions” [3] the intro-
duction to fractional calculus presented there leads to several statements and results that deserve some comments, because
they are in contradiction with the classic results and also with its own starting point (Eq. (1)).

Let us start as in [3] with the following definition of fractional derivative:
Da
J f ðtÞ ¼ lim

h!0þ

P1
k¼0ð�1Þk

a
k

� �
f ½t þ ða� kÞh�

ha :
ð1Þ
From this definition we can obtain several interesting results as we will see next.
(1) The above defined derivative is equivalent to the Grünwald–Letnikov derivative. In fact and following the author’s

notation FWðhÞf ðtÞ ¼ f ðt þ hÞ, we have:
ðFW � 1Þa ¼ FWað1� FW�1Þa:
and
lim
h!0þ

ðFW � 1Þa

ha ¼ lim
h!0þ

FWa lim
h!0þ

ð1� FW�1Þa

ha ð2Þ
The first factor converges to 1 and the second leads to the forward Grünwald–Letnikov derivative. We could also conclude
this directly from (1) by noting that a:h becomes negligible as h goes to zero.
. All rights reserved.

uninova.pt

mailto:mdo@fct.unl.pt
mailto:mdortigueira@uninova.pt
http://www.sciencedirect.com/science/journal/0307904X
http://www.elsevier.com/locate/apm


M.D. Ortigueira / Applied Mathematical Modelling 33 (2009) 2534–2537 2535
(2) The fractional derivative of a constant is zero. From (1), we have:
Da
J 1 ¼ lim

h!0þ

P1
k¼0ð�1Þk

a
k

� �
ha ¼ lim

h!0þ

ð1� 1Þa

ha ¼
0; a > 0
1; a < 0:

� ð3Þ
We proved also that there is no fractional primitive of a constant. When we say that the Riemann–Liouville fractional deriv-
ative of a constant is not zero, it is a wrong statement, because we are effectively computing the derivative of a Heaviside
step function.

(3) The fractional derivative of the exponential is
Da
J est ¼ est lim

h!0þ

P1
k¼0ð�1Þk

a
k

� �
esða�kÞh

ha ¼ est lim
h!0þ

esahð1� e�shÞa

ha ¼ est lim
h!0þ

ðesh � 1Þa

ha ¼ saest if ReðsÞ > 0:
ð4Þ
With this result and the use of the two-sided Laplace transform we obtain:
L½Da
J f ðtÞ� ¼ saFðsÞ for ReðsÞ > 0 ð5Þ
generalizing a well-known result. This means that there is a fractional linear system (differintegrator) with transfer function
equal to
HðsÞ ¼ sa for ReðsÞ > 0: ð6Þ
The corresponding impulse response is given by [1,4]:
hðtÞ ¼ dðaÞðtÞ ¼ t�a�1uðtÞ
Cð�aÞ ; ð7Þ
where uðtÞ is the Heaviside unit step. Using the convolution property of the Laplace transform, we obtain from (5) and (7)
Da
J f ðtÞ ¼ 1

Cð�aÞ

Z t

�1
f ðsÞðt � sÞ�a�1ds ð8Þ
that is the Liouville forward derivative. We obtained an integral formulation for the derivative without the drawbacks of the
Riemann–Liouville derivative. However, we must refer that (1) has a wider applicability. The formula (2.3) in [3] can be ob-
tained from (8) by multiplying f ðtÞ by uðtÞ.

(4)
Da
J Db

J f ðtÞ
h i

¼ Db
J Da

J f ðtÞ
h i

¼ Daþb
J f ðtÞ:
To prove this statement we start again from (1). We write
Da
J Db

J f ðtÞ
h i

¼ lim
h!0þ

P1
k¼0

a
k

� �
ð�1Þk

P1
n¼0

b

n

� �
ð�1Þnf ½t þ ðaþ bÞh� ðkþ nÞh�

� �
hahb

¼ lim
h!0þ

P1
n¼0

b

n

� �
ð�1Þn

P1
k¼0

a
k

� �
ð�1Þkf ½t þ ðaþ bÞh� ðkþ nÞh�

� �
hahb ð9Þ
for any a; b 2 R, or even 2 C. With a change in the summation, we obtain
Da
J ½D

b
J f ðtÞ� ¼ lim

h!0þ

P1
m¼0

Pm
n¼0

a

m� n

 !
b

n

 !" #
ð�1Þmf ½t þ ðaþ bÞh�mh�

haþb

As
Xm

0

b

m� n

 !
b

n

 !
¼

aþ b

m

 !

Da
J ½D

b
J f ðtÞ� ¼ lim

h!0þ

P1
m¼0

aþ b

m

 !
ð�1Þmf ½t þ ðaþ bÞh�mh�

haþb ¼ Daþb
J f ðtÞ:
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This general result contradicts those presented in [3] (Section 3.4). We may ask where is the reason for the noncommuta-
tivity of the derivative proposed in [3]. If we compare the above Liouville derivative (8) with formulae (3.6)–(3.8) in [3],
we conclude that there

(a) We are computing the derivative of the product f ðtÞ:uðtÞ.
(b) The derivative has several steps that introduce ‘‘initial conditions”.

These facts together with the following result explain the noncommutativity of the derivative introduced in [3].
(5) To explain the above referred behaviour, we are going to compute the derivative of the product of two functions:

f ðtÞ ¼ uðtÞ � wðtÞ. Assume that one of them has a Taylor expansion:
u½t þ ða� kÞh� ¼
X1
n¼0

uðnÞðtÞða� kÞnhn
and the other has Laplace transform, WðsÞ. Then
Da
J f ðtÞ ¼

X1
n¼0

uðnÞðtÞ lim
h!0þ

P1
k¼0ð�1Þk

a
k

� �
ða� kÞnhnw½t þ ða� kÞh�

ha
ð10Þ
and
L½ða� kÞnf ½t þ ða� kÞh�Þ ¼ ða� kÞnhnesða�kÞhwðsÞ ¼ wðsÞ:d
nesða�kÞh

dsn
ð11Þ
that leads to
L
X1
k¼0

ð�1Þk
a
k

� �
ða� kÞnhnw½t þ ða� kÞh�

" #
¼ wðsÞ: d

nðesh � 1Þa

dsn
:

As ðe
sh�1Þa

ha tends to sa as h decreases to 0, and the nth derivative of sa is equal to ð�aÞnð�1Þn
n!

sa�n ¼ a
n

� �
sa�n we obtain" #
L
X1
k¼0

ð�1Þk
a
k

� �
ða� kÞnhnw½t þ ða� kÞh� ¼

a
n

� �
sa�n
and finally
lim
h!0þ

P1
k¼0ð�1Þk

a
k

� �
ða� kÞnhnw½t þ ða� kÞh�

ha ¼
a
n

� �
wða�nÞðtÞ: ð12Þ
Inserting (12) into (10) we obtain the derivative of the product:
Da
J ½uðtÞwðtÞ� ¼

X1
n¼0

a
n

� �
uðnÞðtÞwða�nÞðtÞ: ð13Þ
This is the generalized Leibniz rule. The deduction presented here is different from others presented in literature [1,2] be-
cause it is based on the Grünwald–Letnikov derivative. As we can see it is non-commutative in agreement with our above
affirmation. Eq. (13) states a result that conflicts with equation (4.12) in [3].

(6) The definition of fractional derivative stated in formulae (3.6)–(3.8) in [3] is of limited interest since it cannot be ap-
plied to important functions like the negative power t�auðtÞ, a > 0, or tm�1P1

n¼0
antnc

CðnmþmÞ � uðtÞ that is the inverse Laplace trans-
form of 1

sm�a. This is a very important function in fractional linear systems theory.
(7) The fractional Taylor series presented in Section 4.1 in [3] is also of limited interest. To see why, let us apply it to the

exponential eat , a > 0. We have:
eaðtþhÞ ¼
X1

0

hak

Cðakþ 1Þ a
akeat
or
eah ¼
X1

0

ðahÞak

Cðakþ 1Þ
that is an incorrect relation if a–1.
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(8) The fractional Brownian motion (fBm) is currently defined by [5–7]:
BHðtÞ � BHð0Þ ¼
1

CðH þ 1=2Þ

Z 0

�1
ðt � sÞH�1=2 � ð�sÞH�1=2
h i

dBðsÞ þ
Z t

0
ðt � sÞH�1=2dBðsÞ

� �
ð14Þ
and enjoys several interesting properties. Its autocorrelation is given by [6,7]:
RHðt; sÞ ¼
VH

2
jtj2H þ jsj2H � jt � sj2H
h i

ð15Þ
with
VH ¼
r2

Cð2H þ 1Þ sin Hp ð16Þ
In [3] the author defines the fBm by:
BHðtÞ � BHð0Þ ¼
1

CðH þ 1=2Þ

Z t

0
ðt � sÞH�1=2wðsÞds ð17Þ
This formula was rejected by Mandelbrot and van Ness [6] because it ‘‘puts too great importance on the origin for many
applications”. Besides (17) cannot lead to (15) as it is easy to verify by direct computation of the autocorrelation. In fact,
the fBm can be defined in terms of the integral of a fractional noise that is the Liouville derivative, (8), of white noise [8].
Recently, it was proved that the backward and central derivatives can also be used [9].
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