cRSIDAN,
&)
Ky @

.. Universidade Nova de Lisboa

| Faculdade de Ciéncias e Tecnologia

=
i

w Departamento de Informadtica

A Debugging Engine for
Parallel and Distributed
Programs

Jodao Manuel dos Santos Lourenco

Dissertagdo apresentada para a obtengdo
do Grau de Doutor em Informatica pela
Universidade Nova de Lisboa, Faculdade
de Ciéncias e Tecnologia.

Lisboa
(2003)

This dissertation was prepared under the supervision of
Professor José Cardoso e Cunha,
of the Faculdade de Ciéncias e Tecnologia,

Universidade Nova de Lisboa.

ii

To my wife, Teresa
my son, Miguel
and my daughter, Rita

[This page was intentionally left blank]

iv

Acknowledgements

I would like to express my gratitude to all those that, directly or indirectly, have con-
tributed to make this thesis possible.

First and foremost, to my supervisor, José Cardoso e Cunha, to whom I'm in debt
for the necessary guidance on my research work and, at the same time, for providing
me with the desired freedom to pursue my own path. He was also the local task le-
ader for the research projects which motivated this research work, and I owe him for
including me in his working team. The chance I was given to participate in the project
meetings and to know and discuss my work with other researchers were invaluable
contributions to the maturity of my research.

To Vitor Duarte, who was my closest research companion, and has always been a
kind friend, ready to attend me in is office room, no matter the reason was research,
teaching, systems administration or a light chat.

To Pedro Medeiros and Paulo Lopes, who have volunteered to fulfill some of my
teaching duties, providing me with some extra time to write this dissertation. Pedro
also shares the office room with me, and he contributes to our informal, friendly and
respectful working environment.

to Cecilia Gomes, who kindly made a review of a draft of this dissertation; and to
Jorge Custédio for the friendly companionship.

To all my colleagues at Departamento de Informética of FCT /UNL, for their contri-
bution to make every working day a pleasant journey.

To those that worked with me in the development and validation of Fiddle, namely
Ricardo Anastacio, Pedro Augusto and Vitor Moreira, when students at Universidade
Nova de Lisboa; and Denise Stringini and Mairo Pedrini, from Universidade Federal
do Rio Grande do Sul, Brazil. Mairo deserves a special reference, for his courage in
“digging” into the source code of Fiddle and his wiseness in correcting some of the
remaining known bugs.

Finally, my very special thanks to my family. To my wife, Teresa, for her love,
support and permanent understanding; to my son, Miguel, for his unconditional love,
joy and tenderness; and to my newborn daughter, Rita, for bringing another lighting

star to my life. I love you all.

I also would like to acknowledge the following institutions for their financial sup-
port: Departamento de Informatica and Faculdade de Ciéncias e Tecnologia of the Uni-
versidade Nova de Lisboa; Centro de Informaética e Tecnologias da Informacao of the
FCT/UNL; Reitoria da Universidade Nova de Lisboa; Fundacédo Calouste Gulbenkian;
Fundacgdo Luso-Americana para o Desenvolvimento; Fundagao para a Ciéncia e Tecno-
logia through CIENCIA and PRAXIS-XXI Programmes, projects PROLOPPE (Contract
3/3.1/TIT/24/94) and SETNA-ParComp (Contract 2/2.1/TIT/1557/95); Instituto de
Cooperagdo Cientifica e Tecnoldgica Internacional; French Embassy in Portugal; Eu-
ropean Union Commission through the Copernicus Programme, projects SEPP (Con-
tract CIPA-C193-0251) and HPCTI (Contract CP-93-5383); and to Digital Equipment
Coorporation through the European External Research Programme, project PADIPRO
(Contract n°® P-005).

vi

Summary

In the last decade a considerable amount of research work has focused on distributed
debugging, one of the crucial fields in the parallel software development cycle. The
productivity of the software development process strongly depends on the adequate
definition of what debugging tools should be provided, and what debugging method-
ologies and functionalities should these tools support.

The work described in this dissertation was initiated in 1995, in the context of two
research projects, the SEPP (Software Engineering for Parallel Processing) and HPCTI
(High-Performance Computing Tools for Industry), both sponsored by the European
Union in the Copernicus programme, which aimed at the design and implementation
of an integrated parallel software development environment. In the context of these
projects, two independent toolsets have been developed, the GRADE and EDPEPPS
parallel software development environments.

Our contribution to these projects was in the debugging support. We have de-
signed a debugging engine and developed a prototype, which was integrated the both
toolsets (it was the only tool developed in the context of the SEPP and HPCTI projects
which achieved such a result). Even after the closing of those research projects, further
research work on distributed debugger has been carried on, which conducted to the
re-design and re-implementation of the debugging engine.

This dissertation describes the debugging engine according to its most up-to-date
design and implementation stages. It also reposts some of the experimental work made
with both the initial and the current implementations, and how it contributed to vali-

date the design and implementations of the debugging engine.

Vil

[This page was intentionally left blank]

viil

Sumario

Na tltima década uma quantidade consideravel de trabalhos de investigagdo focaram
a sua atengdo na depuracdo distribuida, um dos tépicos cruciais no ciclo de desenvolvi-
mento de programas paralelos. A produtividade do processo de desenvolvimento de
software depende fortemente da definicdo adequada das ferramentas de depuragdo
que deverdo ser disponibilizadas, e de quais as funcionalidades e metodologias de
depuracdo que deverdo ser suportadas por essas ferramentas.

O trabalho descrito nesta dissertagdo for iniciado em 1995, no contexto de dois pro-
jectos de investigacdo, SEPP (Software Engineering for Parallel Processing) e HPCTI
(High-Performance Computing Tools for Industry), ambos patrocinados pela Unido
Europeia no contexto do programa Copernicus, e que visavam o desenvolvimento
de um ambiente integrado de desenvolvimento de aplica¢des paralelas. No contexto
destes projectos, foram desenvolvidos dois ambientes disjuntos de desenvolvimento
de aplicacOes paralelas e distribuidas, o GRADE e o EDPEPPS.

A nossa contribui¢do para estes projectos concentrou-se no suporte a depuragdo.
Desenhdmos e implementdmos um protétipo de um depurador paralelo, que foi inte-
grado em ambos os ambientes de desenvolvimento de aplica¢des paralelas (foi a tinica
ferramenta desenvolvida no contexto daqueles projectos a fazé-lo). Mesmo depois do
término daqueles projectos, a investigacdo em depuragdo distribuida continuou, con-
duzindo ao redesenho e re-implementacdo do depurador distribuido.

Esta dissertagdo descreve o depurador distribuido na seu estdgio mais actual. Tam-
bém reporta algum do trabalho experimental levado a cabo com ambas as implemen-
tacOes, e como ele contribuiu para a validagdo do desenho e implementac¢do do depu-

rador distribuido.

X

[This page was intentionally left blank]

Sommaire

Dans la derniere décade, une quantité considérable de travaux de recherche se sont
focalisés sur le débogage distribué, un des principaux aspects du cycle de développe-
ment de programmes paralleles. La produtivité du proces de développement de logi-
ciel dépend beaucoup de la définition correcte des outils de débogage qui devront étre
disponibles. Il faut aussi définir les capacités et les méthodologies qui devront étre
soutenues par ces outils.

Le travail décrit dans cette theése a été commencé en 1995, dans le contexte des
deux projets de recherche, SEPP (Software Engineering for Parallel Processing) et
HPCTI (High-Performance Computing Tools for Industry), avec I'appui de 'Union Eu-
ropéenne, dans le contexte du programme Copernicus, et qui cherchaient a développer
un environnement intégré de développement d’applications paralleles. Dans le con-
texte de ces projets-1a, on a développé deux différents environnements de développe-
ment d’applications paralelles distribuées, le GRADE et le EDPEPPS.

Notre apport pour ces projets s’est centré sur le support du débogage. On a dessiné
et on a mis en oeuvre un prototype d"un débogueur parallele, qui a été intégré dans les
deux environnements de développement d’applications paralléles (c’était le seul outil
développé dans le contexte de ceux projets-la a faire ¢ca). Méme apres la fin des projets,
la recherche sur le débogage distribué ne s’est pas arrétée, conduisant a une nouvelle
mise en oeuvre de I'épurateur distribué.

Cette these décrit le débogueur distribué dans son état le plus actuel. Elle s’en
occupe aussi d'une partie du travail expérimental réalisé dans les deux mises en oeuvre
du déboguer et de la fagon dont il a contribué pour la validation du dessin et de la mise

en oeuvre du débogueur distribué.

X1

[This page was intentionally left blank]

xii

Contents

1 Introduction

1.1 Introduction e
1.2 Motivation L
1.3 Contributions of this Thesis
1.4 Outline of the Dissertation

Debugging of Parallel and Distributed Programs

21 BasicConcepts.
2.1.1 The Program Specification and Behavior
2.1.2 Program Correctness

2.2 Distributed Computations
221 Observation of Global States
2.2.2 Detection of Global Predicates

2.3 Distributed Debugging Methodologies
2.3.1 Interactive Debugging of Remote Processes
2.3.2 Trace, Replay and Debugging
2.3.3 Integrated Testing, Active Control and Debugging
234 Automated Detection of Global Predicates
2.3.5 Distributed Debugging Based on Static Analysis
2.3.6 Distributed Debugging Based on Dynamic Analysis
2.3.7 Distributed Debugging Based on Postmortem Analysis

Fiddle: a Distributed Debugging Engine

31 Introduction

3.2 Techniques for Distributed Debugging
3.2.1 Sequential Debugging Techniques
3.2.2 Distributed Debugging Techniques
3.2.3 Tool IntegrationIssues

3.3 A Proposal for a Distributed Debugging System

3.4 The Debugging System Components

xiil

CONTENTS

3.4.1 The Target Program and Processes 36

342 TheClientTools 36

3.43 The Debugging EngineCore 37

3.44 The Debugging Engine API 39

3.5 The Architecture of the Debugging Engine 42
351 LayerOg e e e 42

352 LayerO, o o e e e e 43

353 Layerl,, e 44

354 Layer2,, e 45

355 Layer3,, e 46

3.6 Extending the Debugging Engine 47
3.6.1 Internal extensibility 47

3.6.2 External Extensibility 48

3.6.3 Cooperation and Integration Ability 49

37 Summary 50
4 The Fiddle Architecture and Implementation 51
4.1 Introduction L 52
4.2 The DDBG Distributed Debugger 52
42.1 The DDBG Architecture 53

422 Evaluationof DDBG 54

43 The Fiddle Debugging Engine 55
43.1 Fiddle Software Architecture 55

43.2 Internal CommunicationinFiddle 64

44 Summary 72
5 Validation of the Debugging Engine 75
5.1 Introduction 76
52 Internal Validation 77
52.1 Functional and Operational Dependencies Between Layers 77
5.2.2 Fiddle_]J: A Java Object Oriented Wrapper for Fiddle Libraries . . 78

53 DebuggingConsoles 79
5.4 Fiddle Graphical User Interfaces 80
5.4.1 Fiddle Graphical Interface (FGI). 81

5.4.2 PArallel Debugger Interface (PADI) 84

5.5 Composition of Testing and Debugging Tools 85
5.5.1 Deterministic Execution and Interactive Program Analysis (DEIPA) 87

5.6 Integration in Software Development Environments 89
5.6.1 Integration of DDBGinGRADE 90

5.6.2 Integration of DDBG in EDPEPPS 92

5.6.3 DDBG vs. Fiddle Support for Debugger Integration in PSDE . . . 94

Xiv

CONTENTS

5.7 Integration with a Visualizer 97
58 Summary 98
6 Conclusions and Future Work 101
6.1 Conclusions e 102
6.2 Future Work e 102
A The Fiddle API 105
A1 Fiddle Utilities Library 106
A.1.1 Double Linked List (chain_t) 106
A.12 Warning or Fatal Error Message Display 110

A.2 Fiddle LayerOg Services e 110
A21 BasicDataTypes 110
A.22 Management Services 115
A.2.3 Process Control Services 116
A.24 Process Inspection Services 118
A.2.5 Thread-related Services 119
A.2.6 Miscellaneous Services 120

A.3 Fiddle Layer0O,, Services e 120
A3.1 ManagementServices 120
A.3.2 Process Control Services 121
A.3.3 Process Inspection Services 122
A.3.4 Thread-related Services 123
A.3.5 Miscellaneous Services 123

A4 Fiddle Layerl,, Services 123
A.41 ManagementServices 123
A.42 Process Control Services 124
A.43 Process Inspection Services 125
A.4.4 Thread-related Services 126
A.45 MiscellaneousServices 126

A5 Fiddle Layer2,, Services 126
A.5.1 ManagementServices 126
A.5.2 Process Control Services 127
A.5.3 Process Inspection Services 128
A.5.4 Thread-related Services 129
A.5.5 Miscellaneous Services 129

XV

CONTENTS

[This page was intentionally left blank]

XVi

1.1

2.1
2.2
2.3
24
2.5

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
49
4.10
4.11

List of Figures

State vs. temporal perspective of a distributed program 6
Definition of “bug” L oo 16
Specification and programmingbugs 17
Process-time diagram with consistent and inconsistentcuts 20
distributed debugging methodologies 24
distributed debugging methodologies 27
The debugging engine logical organization 35
The debugging engine layered architecture 37
The debugging engine logical layers 39
The LayerO;, software architecture 43
The Layer0,, software architecture 44
The Layer 1,, software architecture 44
The Layer2,, software architecture 45
Internal extensibility of the debugging engine 48
External extensibility of the debugging engine 48
Cooperation ability of the debugging engine 49
Integration ability of the debuggingengine 49
The DDBG software architecture 53
The LayerO, software architecture 56
The LayerO, internal data flow and processing 56
The Layer0,, software architecture 57
The Layer0,, internal data flow and processing 58
The Layer 1,, software architecture 59
The Server0,, internal data flow and processing 59
The Layer 1,, internal data flow and processing 60
The Layer2,, software architecture 62
The Server 1,, internal data flow and processing 62
The Layer2,, internal data flow and processing 63

Xvii

LIST OF FIGURES

412
4.13
4.14
4.15
4.16
4.17
4.18
4.19

51
52
53
54
5.5
5.6
5.7
5.8
59
5.10
511
512
5.13

The tkinstructure L o o 65
The tkout structure L Lo L 66
The tkinstructure L L oo 68
The tkout structure o o o 68
Serialization of tkout into JML and XML formats 70
Codification from JML and XML formats into binary tkout 70
Processing times for XML file 71
Sofwtare metricsfor Fiddle 73
A debugging engine as the center of a testing and debugging environment 77

Java object oriented wrapper for Fiddle libraries (Fiddle_J) 78
Two Fiddle (Layer2,,) consoles operating upon the same target process . . 79
The interaction between the debugging consoles and Fiddle 80
Fiddle Graphical Interface (FGI) 81
FGI support for debugging PVM programs 83
PArallel Debugger Interface (PADI) 85
Relationship between PADland Fiddle. 86
Tool composition of STEPS and Fiddle using DEIPA 87
Sample PVM programs and TeSSfile 88
The integration of DDBG within GRADE 91
Support of long time running debugging servicesin GRED 92
The EDPEPPS PVMDebug mainwindow 94

Xviii

List of Tables

3.1 The debugging engine internal layers and their functionalities 38
3.2 Thedebuggingengine API. 41
4.1 TItems subject to performance evaluation 69

Xix

LIST OF TABLES

[This page was intentionally left blank]

XX

Introduction

Contents
1.1 Introduction i i i i i e i e e e e e e e e e e e e e e 2
1.2 Motivation o o o e 5
1.3 ContributionsofthisThesis v .. 7
1.4 Outlineofthe Dissertation een.. 9

This Chapter introduces the motivation to the debugging activity and its role as one

important task in the software development process, enumerates the main contribu-

tions of this thesis and presents an outline of the dissertation, with a brief summary of

each of the remaining Chapters.

1. INTRODUCTION 1.1. Introduction

1.1 Introduction

There is a long and hard way to go, since someone realises that there is a problem
which could be solved with the aid of a computer, until the moment the computer
is contributing towards such goal. One of the most important steps in such a path
is the design and development of a computer program which will correctly meet the
requirements of the problem to be solved.

Developing a computer program is, indubitably, a complex task. There is the need
to analyse the application requirements and to produce a valid model which describes
a solution. Such model will then be carefully specified in a programming language and
refined successively until its description fits the machine language of a specific com-
puter architecture. Once such stage is reached, the specification (computer program)
will be executed by the computer.

If there were no mistakes in any of the software development stages, the computer
program will, supposedly, be correct and will implement a solution for the initial prob-
lem. However, experience shows that, frequently, there were mistakes or misconcep-
tions at some of the stages. Such mistakes or misconceptions will not only compromise
some of the activities at that specific stage but also in the following ones. The final pro-
gram will then be an inadequate, incomplete, and/or erroneous solution to the initial
problem.

Defining program correctness isn’t an easy task. Like beauty, program correctness
strongly depends on the eye of the beholder. A program may be correct from the point
of view of the implementer if it satisfies all the previously defined requirements, but
may be incorrect from the client perspective if the requirements were incomplete or
incorrectly defined. To minimize the risk of building useless computer programs, a
software development methodology should be followed [Roy70]. Even when such a
software development methodology is carefully followed, there may be discrepancies
between the theoretically correct value or behavior and the computed or observed be-
havior. In such cases the program is said to contain an error (or a set of errors).

The final aim is, ideally, to generate bug free programs at the first try. However,
often this is not the case and, thus, a careful testing of the individual program compo-
nents (unit testing) and of the full program (program testing) is mandatory. Whenever
an unexpected behavior is observed, additional verifications are required to determine
if, although unexpected, the observed behavior is or isn’t acceptable. In the latter, a de-
bugging methodology should then be followed to diagnose and correct the undesired
behavior.

A computer program may present different kinds of malfunctions, or even not to
operate at all, due to program errors. According to their nature, such errors may be

classified in the following categories:

a) Specification errors result from an inadequate characterization of the problem or from

2

1. INTRODUCTION 1.1. Introduction

an ambiguous or incomplete definition of the requirements of the proposed solu-

tion;

b) Algorithmic errors result from the application of an inadequate algorithm to imple-

ment the devised specification;

c) Logical errors result from the inadequate comprehension of the algorithm and lead to
a faulty implementation, which may cause the program to fail intermittently due to
a conjunction of factors, or to fail permanently, by not implementing the algorithm
at all;

d) Coding errors result from an inadequate understanding of the programming lan-
guage being used or from mistakes when writing the source code. Unpredictable
behavior due to unpredicted input, wrong array indexing and use of uninitialized

variables are examples of such errors;

e) Architectural errors are those due to the underlying system layers, such as the oper-
ating system or message passing libraries, typically out of the control of the appli-

cation software developers.

Many of the above errors could be avoided or, at least, minimized, if a formal spec-
ification language could be used to specify the desired program behavior and, later,
have its behavior observed and automatically matched against that specification. Re-
search has been conducted towards such goals [Jac02, Abr96, Spi95, Cho78] but is usu-
ally limited to small examples, and some authors argue that writing such formal de-
scriptions for larger programs is impracticable [Fet88].

Some coding errors, such as lexical and syntactical errors, may be efficiently de-
tected by a compiler-based static analysis of the source code and reported to the soft-
ware developer as a compiler fatal-error, forcing its immediate elimination. Even other
non-trivial errors, such as the potential usage of uninitialized variables may be de-
tected by static analysis and reported to the software developer as a compiler warning
(non-fatal error).

Just a subset of the coding errors are commonly detected at compile-time. All the
others rely on the software developer perception to detect any misbehaviors, to analyse
the program source code and to devise a possible correction.

The term debugging is usually associated with the process of locating, diagnosing
and correcting errors of the logical and coding classes which are only detectable during
program execution.

Non-intrusive debugging is based on the static analysis of the source code and on
a symbolic execution. Such symbolic execution may be performed by the software
developer, which reads the source code and mentally simulates its execution, or by
some tool, which also analyses the program source code without running it [Fau03].

Based on the input and output data, the symbolic execution will allow to hypothesize

3

1. INTRODUCTION 1.1. Introduction

about the error and to devise a correction. This approach, however, strongly depends
on the cause of the error and on the software developer skills for such analysis and,
frequently, the nature of the error can’t be found this way.

Intrusive debugging modifies the program behavior by changing the program itself
or, at least, by controlling its execution, and can only be used in reproducible errors,
when subsequent runs of the program behave identically wrong. Changing the pro-
gram itself, by adding a few memory dump commands (e.g., printing variable values)
is, by far, the most common approach for program debugging. Even if acceptable for
very simple programs, such an approach is of very limited effectiveness for larger and
more complex programs. The most effective approach to intrusive debugging is based

in the usage of debuggers.

Debugger (n.)

A program for locating operational errors in another program. The debugger usu-
ally enables the developer to step through the malfunctioning portion of the pro-
gram to examine data and check operational conditions.

In http://docs.sun.com/db/doc/805-4368 /6j450e60d

Debuggers depend on the computer hardware, operating system and also on the
programming language. This last dependency is more relevant if the debugger sup-
ports source-level debugging, i.e., allow the software developer to use the source code as
the basic reference for debugging instead of the target machine code.

For a given set of input data, sequential programs are typically deterministic and
their errors are reproducible. Such characteristics make them the perfect targets for
controlled execution by a debugger, single stepping over the sequence of machine in-
structions (or source-lines, in case of a source-level debugger) and examining process
core memory (including variable values) whenever needed. Although there is always
space for innovation, the techniques and technologies behind the debugging of sequen-
tial programs are quite stable and of widespread use nowadays.

Concurrent programs are intrinsically non-deterministic and repeated executions of
the same program with the same input data may originate different behaviors. Assuch,
their controlled execution by a debugger may pose an unacceptable degree of intrusion
and hide/mask an error. The simple act of observing the execution of a concurrent
program is another source of intrusion, which may have serious implications on a non-
deterministic program behavior.

Distributed programs bring additional difficulties to the debugging activity be-
cause they run on a distributed system architecture, which lacks a global clock, making
it impossible to have instantaneous snapshot of all the processes and communication
channels of the distributed program. As the observation of the distributed program
state is non-atomic, in the time elapsed between observing one program component

and another, the state of the first one may have changed. The resulting global state

4

1. INTRODUCTION 1.2. Motivation

obtained in such a way is outdated and may even be inconsistent, precluding reason-
ing about the program behavior. To avoid such situations, special concerns must be
considered to ensure that all the reasoning about the program state is based on valid
(consistent) global states.

Global states are built based on observations of the execution of program compo-
nents. What should be observed and how, depends on the abstraction level and the
programming model being used. Different abstraction levels may be considered, and
the debugging activity may focus in individual processes or their interactions. For
example, one may be interested in knowing the state of the communication channels
at a certain point or in a temporal perspective reporting the processes and messages
associated with those channels in specific time intervals.

Typically, although not always, one would like to observe the program state at the
same abstraction level as the one used for the program development. For example, if
the used programming language allowed the software developer to ignore the proces-
sor registers level, normally it should also be ignored during debugging. However this
is not always true, and the debugger should provide the means to deal with the mul-
tiple abstraction-levels associated with the program and its execution environment,
giving the software developer the freedom to chose, at any point, which ones should
be considered and which ones should be left out.

A distributed program is a collection of sequential processes which interact among
themselves. As such, debugging a distributed programs encompasses all the difficul-
ties of debugging sequential programs and, additionally, many new ones, such as the
need to deal with multiple flows of control (multiple threads and/or processes), pro-
cess interactions, non-determinism, additional failure sources, multiple programming
models and abstractions, and the lack of production quality software development en-
vironments with specific support for concurrency, parallelism and/or distribution.

Although there are a few commercial distributed debuggers [Etn00, Mos88], dis-
tributed debugging is still a fruitful research topic with much ongoing work in dif-
ferent points of the globe. The international conferences specifically dedicated to the
topic of (distributed) debugging, such as the past ACM/ONR Workshops on Paral-
lel and Distributed Debugging (1989 [acm89], 1991 [acm91] and 1993 [acm93]) and
the International Workshops on Automated Debugging (1993 [Fri93], 1995 [Duc95],
1997 [Duc97], 2000 [Duc01] and 2003 [RB03]), are rich information resources about the
ongoing research on this field and confirm its relevance as a specialized research topic.

1.2 Motivation

The usage of symbolic debuggers to help in the location and identification of program
errors is a major step over more ad-hoc methodologies, such as inserting variable print-

ing statements into the source code, recompiling and rerunning the program, and then

5

1. INTRODUCTION 1.2. Motivation

browsing the (potentially) large amount of output produced by those print statements.
Symbolic debuggers for sequential programs are, essentially, state based. This means
they support a debugging methodology based on stopping the program execution at
specific points and examining its computation state (variables, stack, registers, etc).

Program development for distributed systems has motivated the redesign of some
programming languages and models, and the development of new ones. Understand-
ing distributed computations in both state and temporal perspectives (see Figure 1.1)
involves a set of new difficulties, such as non-determinism, lack of global components
(memory, clock, etc.), multiple execution flows, and variable communication delays.
As debuggers are expected to help the software developer understanding the program
behavior, distributed debuggers should help the developer to cope with such new dif-
ficulties.

Process

Event

Message

Time

State

perspective Temporal

perspective

Figure 1.1: State vs. temporal perspective of a distributed program

The first and more natural approach to distributed debugging is to extend a se-
quential debugger to interact with more than one process, providing the software de-
veloper with a single debugging interface to access all the processes of the distributed
program. However, the considerable number of adaptations needed to allow a set
of sequential debuggers to operate upon distributed programs, and the even larger
number of new features that should be addressed and supported, would have strong
implications upon the size and complexity of the debugger program itself, with the
consequent difficulties in its maintenance.

Itis common for a sequential debugger to be unable to interact with the software de-
veloper while the controlled process is running, the interaction being resumed as soon
as the process stops. Distributed debuggers, however, can’t impose such restriction
on the user interface, as while some of the processes are running the developer may
have a significant activity to perform upon the remaining ones. Such requirement sug-
gests that the user interface should operate asynchronously regarding the distributed
debugger. One of the easiest ways to support such asynchronous operation is to make
the debugging interface multi-threaded, having a set of threads to control the target

processes and another set to control the user interface.

6

1. INTRODUCTION 1.3. Contributions of this Thesis

Another basic requirement for distributed debuggers is to provide transparent ac-
cess to remote processes, using a global naming scheme independent of process local-
ization and freeing the software developer from the burden of knowing which process
is running where.

The complexity of a distributed debugging tool will increase as the number of re-
quired debugging functionalities grows or changes over time. An approach to reduce
considerably the overall complexity of the distributed debugger, is to precisely defin-
ing the core functionalities as a minimal set of services, and support an extension mech-
anism. Additional services, developed as external modules, can then be incorporated
into the distributed debugger as extensions.

One basic requirement to support extensions, is to decouple the debugging engine
from the debugging user interface. In such a way, the functionalities provided by the
debugging engine may grow incrementally and independently from the user interface;
and multiple independent user interfaces can be allowed to operate concurrently upon
the same target processes, exploring the basic functionalities provided by the debug-
ging engine and some of the functionalities provided by one or more extensions.

For a better understanding of the distributed computation, it is desirable for the
software developer to have multiple perspectives of the target program, probably pro-
vided by different tools. For example, having a graphical editor of a visual parallel
programming language providing an high-level view of the source code, a distributed
debugger providing a state-based view, and a computation visualizer providing a
time-based view. Different tools have different coordination requirements and oper-
ate accordingly to different coordination models, from loosely-coupled cooperations
with simple interactions, to tightly-coupled integrations with complex data and con-
trol interactions.

The debugging engine proposed in this thesis follows the line of thinking presented
above, aiming at the provision of basic debugging services for distributed programs
and the support for interoperability and integration with other software development
tools. It provides a complete set of process-level services, such as breakpointing and
single-stepping, which was extended to include additional distributed debugging ser-
vices, such as monitoring and replaying, the possibility to cooperate with other tools,
such as computation visualizers, and the ability to be integrated in parallel software de-

velopment environments.

1.3 Contributions of this Thesis

We may summarize the research work discussed in this thesis as:

Studied the main requirements for the debugging of distributed programs, defined
a debugging engine which tries to fulfill those requirements, designed a software
architecture which supports the defined debuggqing engine, implemented this soft-

7

1. INTRODUCTION 1.3. Contributions of this Thesis

b)

d)

f)

ware architecture in Linux based machines, and evaluated the debugging engine
by designing, implementing and evaluating a set of experiments which explore its
functionalities.

The above contributions can be further detailed as:

Requirements for the debugging of distributed programs. We have studied how the
software development and execution environments influence the functionalities re-
quired from a distributed debugger, and how the testing methodology and user’s
(software developer’s) perspective influences how those functionalities may be ex-

plored;

Definition of the debugging engine. We have focused in the definition of a debugging
engine which would satisfy three main requisites:

b.1) Minimalism. To include a set of core basic services which are essential to the

debugging of distributed programs and to the support of the other requisites;

b.2) Extensibility. To allow the evolution of the distributed debugger, the support
of more complex functionalities, and the adaptation of the debugger to specific

needs;

b.3) Interoperability and Integrability. To support the exchange of data and control in-
formation with other software development tools. We define interoperability
as a loosely-coupled cooperation and integrability as a tightly-coupled coop-

eration between two tools;

Design of a software architecture for the debugging engine. The defined debugging en-
gine was structured in (five) functional layers, each new layer based upon the pre-

vious one and incrementally providing a new set of services;

Implementation of the debugging engine. We have made two major implementations
of the debugging engine: DDBG, which implemented an initial specification of the
debugging engine; and Fiddle, which implemented the specification and used the

software architecture that is described in this dissertation;

Design and implementation of extensions to the debugging engine. The debugging en-
gine was defined to incorporate a minimal core set of services, and to provide the
means for other services to be incorporated as extensions. In this context, a set
of extensions providing complementary services were designed, implemented and

incorporated into the debugging engine;

Evaluation of the debugging engine. A considerable number of experiments using
both prototypes, DDBG and Fiddle, have been performed both locally (at UNL) and
by other external research groups. Some of these experiments explored the exten-
sibility of the debugging engine to incorporate new services, while some others

8

1. INTRODUCTION 1.4. Outline of the Dissertation

involved the full development of client tools which explored the available function-
alities. In both cases, they allowed to validate the design and the implementation
of the debugging engine.

1.4 Outline of the Dissertation

This dissertation contains seven chapters, whose contents are summarized below:

Chapter 1. This Chapter introduces the motivation to the debugging activity and its
role as one important task in the software development process, enumerates the
main contributions of this thesis and presents an outline of the dissertation, with

a brief summary of each of the remaining Chapters;

Chapter 2. In this Chapter a brief overview is presented of the main dimensions in-

volved in the debugging of parallel and distributed programs;

Chapter 3. This Chapter introduces the main requirements for distributed debugging
and how traditional debugging services fulfill some of those requirements, fol-
lowed by presentation of the software architecture of a debugging engine which
fulfills some of those requirements, and how this debugging engine may be ex-
tended with complementary functionalities which may cover the remaining re-

quirements;

Chapter 4. This Chapter illustrates how the debugging engine described in the pre-
vious Chapter has been instantiated in two prototypes: the DDBG (Distributed
DeBuGger) and Fiddle (Flexible Interface for Distributed Debugging: Library and
Engine);

Chapter 5. This Chapter presents a set of case studies, where one of the debugging
engine implementations (DDBG or Fiddle) have been used, and how they con-
tributed to the operational and functional validations of the debugging engine

and its implementations; and

Chapter 6. This Chapter summarizes the achievements of research work described in
this thesis, and lists some still open issues, which should and will ground our

future research work.

1. INTRODUCTION 1.4. Outline of the Dissertation

[This page was intentionally left blank]

10

Debugging of Parallel and Distributed
Programs

Contents
21 BasicConcepts 12
2.2 Distributed Computations 19
2.3 Distributed Debugging Methodologies 24

Program debugging is one of the fundamental activities in the software development
process. In the past two decades there were continuous efforts towards improving the
debugging of concurrent, parallel and distributed programs. In this Chapter, a brief
overview is presented of the main dimensions involved in the debugging of parallel

and distributed programs.

11

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

2.1 Basic Concepts

A computer program is defined in the Lectric Law Library’s Lexicon [Lex] as,

Computer Program — A set of statements or instructions to be used directly or

indirectly in a computer in order to bring about a certain result.

According to the Hyper Dictionary [Dica], computer programs may be split in two

groups, system software and applications, defined as

System Software — System software is any software required to support the pro-
duction or execution of application programs but which is not specific to any partic-
ular application. Examples of system software would include the operating system,

compilers, editors and sorting programs;

Applications — A complete, self-contained program that performs a specific func-
tion directly for the user. Examples of application programs would include an ac-

counts package or a CAD program.

Relying on the above definition of computer program, a process can be defined
as [Dica]

Process — The sequence of states of an executing program. A process consists of
the program code (which may be shared with other processes which are executing
the same program), private data, and the state of the processor, particularly the
values in its registers. It may have other associated resources such as a process
identifier, open files, CPU time limits, shared memory, child processes, and signal

handlers.

Associated to the execution of a process is the concept of current state, which implies
the knowledge of what has already been done, what is currently being done, and what
still remains to be done.

The same computer program may be executed again and again, each time in a new
process, so that each new process provides a new execution context. It is also possi-
ble to have multiple instances of the same or different computer programs executing

concurrently in the same computing node, in a multitasking system.

Multitasking — A technique used in an operating system for sharing a single
processor between several independent jobs. [...] A multitasking operating system
should provide some degree of protection of one task from another to prevent tasks
from interacting in unexpected ways such as accidentally modifying the contents
of each other’s memory areas.

Such multitasking systems are, in general, capable of isolating and hiding each pro-
cess from the others, providing an execution environment which simulates exclusive-
ness on the access to the computing and computer resources.

In [Dica], a thread is defined as

12

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

Thread — A control (execution) flow in a process.

When a process contains a single control flow, i.e., a single thread, it is common
to associate the single control flow to the process itself and omit the references to the
thread. However, some programs may use multiple control flows evolving concur-
rently “inside” the execution environment provided by the process. Such programs
are said to be multi-threaded.

In [Dica] multithreading is defined as

Multithreading — Differs from multitasking in that threads share more of
their environment with each other than do processes under multitasking.
Threads may be distinguished only by the value of their program counters
and stack pointers while sharing a single address space and set of global
variables. There is thus very little protection of one thread from another, in

contrast to processes in multitasking.

Summarizing, one can say that programs are a passive entity and contain a set of in-
structions to be executed by the computer. Processes are active entities, resulting from
particular instantiations of programs being executed. The programs directed towards
the end-user are called applications, while those associated with the management of
system (computer) resources are called system programs. Some processes contain a
single control flow while some others do contain multiple control flows, and are said
to be single- or multi-threaded processes respectively. Systems that allow the time
sharing of the CPU between multiple processes (and their control flows) are said to
support multitasking.

Due to the isolation factors, usually it makes no difference whether a program is
being executed in a single or in a multitasking environment. In what concerns to mul-
tithreading, the situation is quite different, and the program must be aware of the mul-

tiple control flows and use them explicitly.

21.1 The Program Specification and Behavior

A computer program has, necessarily, a goal, which depends on the accomplishment of
a set of (intermediate) objectives. Such set of objectives informally define the intended
program behavior.

Frequently, such behavior model exists uniquely in the mind of the developer, being
constructed, adapted, extended and corrected as the need arises. Even when there is
an initial written specification of such intended behavior, it is frequently done in a very
high-level description language with no formal grounding, such as natural language.
This results in incomplete, ambiguous or even inconsistent behavior descriptions, with
negative implications to the program development process and its assessment.

Ideally, the programming language would be able to fully capture and express the

intended semantics for the program being developed and, therefore, its intended be-

13

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

havior. Unfortunately this is not the usual case and, to be able to express the intended
program behavior, the developer has to perform abstraction and simplification efforts,
recurring to a limited number of concepts and under the syntactic and semantics re-
strictions and limitations of the programming language.

Programming language is defined in [Dica] as

Programming Language — A formal language in which computer programs are
written. The definition of a particular language consists of both syntax (how the
various symbols of the language may be combined) and semantics (the meaning of
the language constructs).

Languages are classified as low level if they are close to machine code and high level
if each language statement corresponds to many machine code instructions.

Programs are converted to machine code (CPU instructions) by compilers or inter-

preters, defined in [Dica] as

Compiler — A program that converts another program from some source language
(or programming language) to machine language (object code) which is output to
a file for later execution. Some compilers output assembly language which is then
converted to machine language by a separate assembler.

A compiler is distinguished from an assembler by the fact that each input statement
does not, in general, correspond to a single machine instruction or fixed sequence
of instructions.

Interpreter — A program which executes other programs. [. ..]]It may be possible
to execute the same source code either directly by an interpreter or by compiling it
and then executing the machine code produced.

The compilers and interpreters verify that the program strictly complies to the syn-
tactic rules of the programming language and also do some simple semantic verifica-
tions, such as detecting that a variable is used before being initialized. However, such
semantic verifications are quite far from the intended program behavior in the mind of
the programmer.

Due to the limitations of programming languages in the expressiveness of the in-
tended program behavior, and of compilers/interpreters in its verification, one can
(and should) also verify the program behavior during execution, the observed behavior,
against the intended behavior specification. The success in such verification simply
allows the developer to have “some confidence” that its specification (program) was

correct, but does not constitute a formal proof of program correctness.

2.1.2 Program Correctness

The complex nature of the problem, the inability of the programmer to conceive a valid

solution, the adequacy of the programming language to express such solution, and the

14

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

software development tools available, are some examples of the many factors that may
influence the correction of a computer program.
Program errors result from a mental mistake made by the programmer, and are

defined in [Dica] as,

Error — A discrepancy between a computed, observed, or measured value or con-
dition and the true, specified, or theoretically correct value or condition.

Incorrect steps, processes and data definitions are examples of errors. The execution

of a program containing errors may originate faults, defined in [Dica] as,
Fault — A manifestation of an error in software.

Sometimes programs are able to handle some predicted faults. In these cases, al-
though they are still manifestations of program errors, these faults are benign, as they
allow the program execution to proceed. Serious or unpredicted faults may be the

origin of process (or even system) failures. A failure is defined in [Dica] as,

Failure — The inability of a system or system component to perform a required

function within specified limits.

Errors in software are generically called bugs, and the process of locating, diagnos-
ing and correcting software errors called debugging.

In [Dicb] there is a definition of bug which includes some interesting historical ref-
erences. Such definition is duplicated in Figure 2.1 on the next page.

Bugs can also be classified according to the way they behave or manifest them-

selves. The following definitions are also from [Dicb].

i) Bohr bug (n.) [from quantum physics]
A repeatable bug; one that manifests reliably under a possibly unknown but
well-defined set of conditions. Antonym of heisenbug.
In http://info.astrian.net/jargon/terms/b/Bohr_bug.html
ii) Mandelbug (n.) [from the Mandelbrot set]
A bug whose underlying causes are so complex and obscure as to make its
behavior appear chaotic or even non-deterministic. This term implies that the
speaker thinks it is a Bohr bug, rather than a heisenbug.
In http://info.astrian.net/jargon/terms/m/mandelbug.html
iii) Heisenbug (n.) [from Heisenberg’s Uncertainty Principle in quantum
physics]
A bug that disappears or alters its behavior when one attempts to probe or
isolate it. (This usage is not even particularly fanciful; the use of a debug-
ger sometimes alters a program’s operating environment significantly enough
that buggy code, such as that which relies on the values of uninitialized mem-
ory, behaves quite differently.) Antonym of Bohr bug; see also mandelbug,

15

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

The Jargon Dictionary — http://info.astrian.net/jargon/terms/b/bug.html

The Jargon Dictionary : Terms : The B Terms : bug

bug

bug n. Anunwanted and unintended property of a program or piece of hardware, esp. one that causes it to malfunction. Antonym of
feature. Examples: "There’s a bug in the editor: it writes things out backwards." "The system crashed because of a hardware bug." "Fred is
a winner, but he has a few bugs" (i.e., Fred is a good guy, but he has a few personality problems).

Historical note: Admiral Grace Hopper (an early computing pioneer better known for inventing COBOL) liked to tell a story in which a
technician solved a glitch in the Harvard Mark II machine by pulling an actual insect out from between the contacts of one of its relays,
and she subsequently promulgated bug in its hackish sense as a joke about the incident (though, as she was careful to admit, she was not
there when it happened). For many years the logbook associated with the incident and the actual bug in question (a moth) sat in a display
case at the Naval Surface Warfare Center (NSWC). The entire story, with a picture of the logbook and the moth taped into it, is recorded
in the "Annals of the History of Computing”, Vol. 3, No. 3 (July 1981), pp. 285-286.

The text of the log entry (from September 9, 1947), reads "1545 Relay #70 Panel F (moth) in relay. First actual case of bug being found".
This wording establishes that the term was already in use at the time in its current specific sense —— and Hopper herself reports that the
term ‘bug’ was regularly applied to problems in radar electronics during WWII.

Indeed, the use of ‘bug’ to mean an industrial defect was already established in Thomas Edison’s time, and a more specific and rather
modern use can be found in an electrical handbook from 1896 ("Hawkin’s New Catechism of Electricity", Theo. Audel & Co.) which says:
"The term ‘bug’ is used to a limited extent to designate any fault or trouble in the connections or working of electric apparatus.” It further
notes that the term is "said to have originated in quadruplex telegraphy and have been transferred to all electric apparatus.”

The latter observation may explain a common folk etymology of the term; that it came from telephone company usage, in which "bugs in a
telephone cable" were blamed for noisy lines. Though this derivation seems to be mistaken, it may well be a distorted memory of a joke
first current among felegraph operators more than a century ago!

Or perhaps not a joke. Historians of the field inform us that the term "bug" was regularly used in the early days of telegraphy to refer to a
variety of semi—automatic telegraphy keyers that would send a string of dots if you held them down. In fact, the Vibroplex keyers (which
were among the most common of this type) even had a graphic of a beetle on them (and still do)! While the ability to send repeated dots
automatically was very useful for professional morse code operators, these were also significantly trickier to use than the older manual
keyers, and it could take some practice to ensure one didn’t introduce extraneous dots into the code by holding the key down a fraction too
long. In the hands of an inexperienced operator, a Vibroplex "bug" on the line could mean that a lot of garbled Morse would soon be
coming your way.

Further, the term "bug" has long been used among radio technicians to describe a device that converts electromagnetic field variations into
acoustic signals. It is used to trace radio interference and look for dangerous radio emissions. Radio community usage derives from the
roach—like shape of the first versions used by 19th century physicists. The first versions consisted of a coil of wire (roach body), with the
two wire ends sticking out and bent back to nearly touch forming a spark gap (roach antennae). The bug is to the radio technician what the
stethoscope is to the stereotype medical doctor. This sense is almost certainly ancestral to modern use of "bug" for a covert monitoring
device, but may also have contributed to the use of "bug" for the effects of radio interference itself.

Actually, use of ‘bug’ in the general sense of a disruptive event goes back to Shakespeare! (Henry VI, part III — Act V, Scene II: King
Edward: "So, lie thou there. Die thou; and die our fear; For Warwick was a bug that fear’d us all.") In the first edition of Samuel Johnson’s
dictionary one meaning of ‘bug’ is "A frightful object; a walking spectre"; this is traced to ‘bugbear’, a Welsh term for a variety of
mythological monster which (to complete the circle) has recently been reintroduced into the popular lexicon through fantasy role—playing
games.

In any case, in jargon the word almost never refers to insects. Here is a plausible conversation that never actually happened:
"There is a bug in this ant farm!"

"What do you mean? I don’t see any ants in it."

"That’s the bug."

A careful discussion of the etymological issues can be found in a paper by Fred R. Shapiro, 1987, "Entomology of the Computer Bug:
History and Folklore", American Speech 62(4):376-378.

[There has been a widespread myth that the original bug was moved to the Smithsonian, and an earlier version of this entry so asserted. A
correspondent who thought to check discovered that the bug was not there. While investigating this in late 1990, your editor discovered
that the NSWC still had the bug, but had unsuccessfully tried to get the Smithsonian to accept it — and that the present curator of their
History of American Technology Museum didn’t know this and agreed that it would make a worthwhile exhibit. It was moved to the
Smithsonian in mid—1991, but due to space and money constraints was not actually exhibited years afterwards. Thus, the process of
investigating the original-computer—bug bug fixed it in an entirely unexpected way, by making the myth true! —ESR]

Figure 2.1: Definition of “bug”

16

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

schroedinbug. In C, nine out of ten heisenbugs result from uninitialized auto
variables, fandango on core phenomena (esp. lossage related to corruption of
the malloc arena) or errors that smash the stack.
In http://info.astrian.net/jargon/terms/h/heisenbug.html
iv) Schroedinbug (n.) [MIT: from the Schroedinger’s Cat thought-experiment
in quantum physics]
A design or implementation bug in a program that doesn’t manifest until
someone reading source or using the program in an unusual way notices that
it never should have worked, at which point the program promptly stops work-
ing for everybody until fixed. Though (like bit rot) this sounds impossible, it

happens; some programs have harbored latent schroedinbugs for years.
In http://info.astrian.net/jargon/terms/s/schroedinbug.html

The correctness of a program is related to some specification of its intended be-
havior. Ideally, in order to ensure program correctness, we would like to have a well-
defined formal notation to describe application behaviour rigorously and without am-
biguity. Such an approach would allow the automatic generation of correct program
code. In order to achieve a reasonable level of efficiency, such an approach usually re-
lies upon a series of program transformations, from the high-level specification down
to the executable code, with the guarantee of always generating equivalent program
representations. In such an approach, bugs can only appear at the level of the applica-
tion specification, in relation to its intended behavior: specification bugs.

However, such an approach cannot be applied in general, so a programmer be-
comes responsible for the mappings from some expression (formal or informal) of the
intended behaviour, that is converted to a program code. Depending on the expres-
siveness of the programming model and language used, such task can be greatly facil-
itated. However, such an activity gives the opportunity to introduce another kind of
bugs, programming bugs. Figure 2.2 illustrates such concepts.

I L

pplication ==y | Application ety | program
PP cd specification &
behavior

specification programming
bugs bugs

Figure 2.2: Specification and programming bugs

The lack of a formal specification of program behaviour makes the debugging ac-
tivity extremely complex, as specification and programming bugs both tend to appear
mixed at the program code level.

The debugging task becomes more difficult also due to the multiple internal soft-
ware layers of a computing system. Namely, operating system and machine code lev-
els can also contribute to the appearance of misbehaviors that are usually beyond the
programmer’s control.

17

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.1. Basic Concepts

In the past fifty years, there was a huge amount of work concerning the debug-
ging of sequential applications. Several significant debugging techniques were devel-
oped, addressing both specification and programming bugs, depending on the kind
of programming models and languages (e.g., imperative or declarative). In order to
analyse the behaviour of a sequential program, a state-based approach is appropriate,
supported by an interactive debugger. This allows the inspection of the succession
of computation states (steps), also aided by placing breakpoints at desired conditions
or regions of code. Due to its deterministic behavior, it is easy to re-execute the pro-
gram under a given set of input conditions in order to repeatedly examine its behavior
in detail. Sequential debugging is also made simpler because the program execution
follows only one thread of control.

The observation of the program execution during debugging does not change the
original program behaviour, except for real-time applications.

Parallel and distributed applications introduce several distinct aspects that make
them much more difficult to debug.

A distributed program consists of a collection of sequential processes which cooperate
by using some communication model. This definition also includes the concept of
a parallel program, although the latter term is more usually applied when there is a
need to meet the application performance requirements by exploiting simultaneous
execution of program units in distinct physical processors. In this text, the term parallel
and distributed is often used, in order to highlight the use of multiple processors, on one
hand, and in order to focus our attention on distributed architectures without global
clock, no global shared memory, and no bounds on message transmission times, on the
other hand.

The following aspects make distributed debugging much more difficult than se-

quential debugging:
i) The large number of concurrent and interacting entities;
ii) The intrinsic non-deterministic behavior of a distributed program;

iii) The difficulties of constructing accurate, up-to-date, and consistent observations

of the global states of a distributed computation;

iv) The perturbation due to the observation and control mechanisms.

The concept of a distributed computation represents possible behaviors which result
from executing a distributed program in a distributed systems (that is, supported by
the operating system plus the hardware layers).

In order to analyse the correctness of a distributed program, a possible strategy
would be to observe all distributed computations which are generated when running
the program. In such a way, a set of correctness predicates can be evaluated in mean-
ingful computation states, to give us confidence about program correctness.

18

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.2. Distributed Computations

In the following section of Chapter, a brief survey is presented of the theory of
distributed computations in order to explain the reasons why it is so difficult to debug
distributed programs. In the remaining sections of the Chapter, an overview of the

main distributed debugging approaches is presented.

2.2 Distributed Computations

Depending on the programming language used, the operational semantics of a dis-
tributed program can be defined in terms of events that correspond to process control
and communication actions. Such active computational entities (e.g., processes) and
their state transitions, described by events, are mapped into the lower level primitive
events defined by the underlying architecture of the distributed system.

Usually, for the study of distributed computations, a distributed program (system)
is defined as a collection of processes that communicate using a basic message-passing
model with the classical send and receive primitives. Such a system has asynchronous
characteristics, with arbitrary process speeds and message transmission delays, and
lacks a global physical time reference.

Such nondeterminism makes it very difficult to evaluate correctness properties that
should hold for all possible executions of a distributed program, and not only for one
observed execution. Also the generated computation usually follows distinct execu-
tion paths when repeatedly running the same distributed program, with a given set of
input conditions.

There are two main concepts for helping us to describe all possible execution runs
of a distributed program. One is the concept of local history of each sequential process
that is involved in the execution of the distributed program. The other concept is the
causal precedence ordering of events, defined by the sequential process ordering and
the event dependences originated in process interactions.

A process P; is defined as a sequence of events, which defines its local history #;. Two
main types of events are considered: internal events represent local state transitions
made by Pi alone, not involving any other processes; interaction events represent pro-
cess communications corresponding to message send and receive actions. The totally
ordered events in P;’s local history represent the evolution of the values of all the P;’s
variables and of the interactions involving P; in a distributed execution.

hi = {e?,e},...,elf}

A process starts with its event e?, that is the initialization event of P.. It defines
the process initial state, denoted by s¥. In general, the k" event in the process his-

tory, denoted by e, produces the local state s, as the state immediately right after e
f

occurrence. One can assume e; is the termination event of P, and slf is P;’s final state.
A prefix of h;, for example up to and including the k' event, is denoted by h* and it

represents the partial history of P;, up to a certain point in P;’s computation.

19

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.2. Distributed Computations

A global history (H) is defined by the union of all local histories.

A fixed number (n) of processes is usually assumed without loss of generality.
Among all the event orderings represented by H, only some of them can possibly
occur that are compatible with the causal precedence relationship (—) as defined by
Lamport [Lam78]. Event e — ¢’ iff e causally precedes ¢’. Event ¢ || ¢’ iff neither e — ¢’
nor ¢ —e.

A distributed computation is formally defined as a partially ordered set (poset)
defined by the (H,+—) pair. Intuitively, this reflects all physically feasible event com-
binations that must be obeyed by all possible executions of a distributed program by
a distributed system. Distributed computations may be represented by a process-time
diagram where the event causality chains replace the classical notion of instant physi-

cal time in a centralized system with a global clock.

el el. et
Pe o o—

e0 1
P ® "

ed el e3
po—® b

"""" frontier of an inconsistent cut FC
= === frontier of a consistent cut FC,

® cventsincut C 1 corresponding to FC

Figure 2.3: Process-time diagram with consistent and inconsistent cuts

Distributed debugging relies upon the observation of the global states of a dis-
tributed computation. A global state is a n-tuple of local states of all involved processes.

S=s51UspU...Usy,
where s; is the local state of P; (1 <i < n) corresponding to some prefix of P;’s local
history. The initial global state (denoted by S°) of a distributed computation is defined
by the initial local states of all processes i.e. s? for 1 <i<n. The final global state
of a distributed computation (denoted by §/) is defined by the final local states of all
processes i.e. slf for 1 <i <n. The difficulty with the intermediate global states is that
all combinations of local state tuples cannot occur in real executions of a distributed
program.

In relation to a process-time diagram like in Figure 2.3, the concept of a cut is de-
tined as a subset of the global history, that represents a partial global history. The
frontier of a cut is the n-tuple of the last events in each prefix of 4; for all 1 <i <n. The

20

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.2. Distributed Computations

frontier of a cut intuitively represents a view of the global progress up to a certain point
in the execution in terms of the last occurred events. For example, in Figure 2.3 on the
facing page there is a well-defined unique global state corresponding to each frontier

of a cut, that gives the last occurred local states for each process.

However, only consistent cuts are significant for the purpose of meaningful obser-

vations. A consistent cut is left closed under the — relationship, i.e.
Ve, cH:ecC.Ne —e=¢€ €C,
Intuitively, a consistent cut incorporates all the past of its own events. A cut that

would include some event e and not all events causally preceding e, cannot correspond

to a possible view of a distributed execution.

A consistent global state is the global state defined by the frontier of a consistent cut.
A consistent global state represents a global state that can possibly occur during a
distributed program execution because it represents a view of the global state that
respects the causal precedence among events. In Figure 2.3 on the preceding page FC»

is a consistent global state and FCj is not.

The consistent cut and consistent global state concepts can be used as a basis to de-
fine observation models for distributed computation that can be used for distributed
debugging purposes. An intuitive notion of the current state of a distributed compu-
tation can be visually caught by considering the events (and states) to the left of a
consistent cut, as equivalent to a past history, and the events to the right of a consistent
cut, as the ones in the future. This suggests one could consider an incremental pro-
gression of the distributed computation, followed by the user under the control of a
distributed debugger, where successive consistent global states would be examined for
evaluation of correctness predicates. Indeed this is an important research direction in
distributed debugging, but it has several inherent difficulties that will be discussed in
the following.

In order to understand the behavior of a distributed program one has to consider
all intermediate consistent global states that can possibly occur starting by the initial
state S until the final state S/. For each execution of a distributed program, a distinct
set of consistent global states may be followed so each execution generates a distinct
sequences of states, due to the nondeterminism of a distributed system. However,
to ensure correctness, one needs to reason in terms of all such possible sequences of
consistent global states.

The concept of consistent run represents a possible observation of a distributed com-
putation where all the events appear in a total ordering that extends (i.e. is compatible
to) the partial ordering defined by Lamport’s causal precedence relation.

The arbitrary event ordering in a consistent run is due to the nondeterminism. In
order to generate all possible sequences of consistent global states, one has to consider
the set of all possible consistent runs, that is the set of all paths from $° to S/ [BM93]. An

exhaustive traversal of such paths would be necessary to verify or detect correctness

21

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.2. Distributed Computations

properties of a distributed program. This approach is in general infeasible due to the
large combinatory of global states that would have to be examined. Moreover, the
problem of constructing individual global states poses additional difficulties.

More complete presentations of these concepts may be found in [BR94,CL85,Mat89]

2.2.1 Observation of Global States

The intuitive notion of global state of a distributed computation corresponds to a col-
lection of local states that could be viewed by some ideal external observer. In a dis-
tributed system, an external observer can only build such a view through message
exchange with each remote individual process. The following aspects are related to

this observation problem:

i) The global state can be obsolete at the time the global view is actually constructed
by the external observer. This occurs in case the observation is performed online,
during actual execution. If the observation is performed offline, in a postmortem

analysis of the global histories, this problem does not arise.

ii) The observed global state must be a consistent cut of the distributed computation.
Observation of inconsistent cuts may occur due to the unpredictable message de-
livery orderings in a distributed system. An inconsistent sequence of events may
be built by the observer that does not preserve the causal precedence relationship.
Algorithms to build consistent cuts are thus required [BFR95, CL85].

iii) Multiple independent observers may build distinct views of the same distributed
computation. The presentation of uniform views of a distributed computation
to multiple concurrent and independent observers requires an adequate coordina-
tion between them.This is an issue that has not been considered in most of existing
distributed debugging tools. However, it has high relevance due to the emergence
of integrated development environments where several concurrent tools act as ob-

servers (and sometimes controllers) of an ongoing distributed computation.

The difficulties of the observation depend on the adopted distributed debugging
approach:

i) Off-line. In this approach, it is possible to analyse global histories that were gen-
erated by a previous execution or by a simulation of the program model. These

methods always deal with complete histories.

ii) Online. In this approach, it is necessary to develop algorithms to construct global
states or consistent runs during an actual execution. These methods deal with

partial histories.

22

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.2. Distributed Computations

The main approaches to construct observations of a distributed computation use
an online external observer or monitor process. All existing approaches make specific
assumptions on the message delivery rules that should be enforced by the distributed
system, ranging from FIFO ordering between pairs of processes to causal delivery of
messages. A discussion of the implementation of such delivery rules is beyond the
scope of our work. A complete survey may be found in [BM93, C1403].

2.2.2 Detection of Global Predicates

A general method underlies the work by several authors to support the distributed

debugging activity, according to the three following steps.

i) Global predicate specification. This step starts by the identification of desired or
undesired program properties corresponding to a set of correctness criteria. These
properties are then expressed as global predicates which are boolean expressions
involving conditions on the local variables of multiple processes or on the states

of communication channels.

ii) Evaluation of global predicates. This step is responsible for the detection of global
predicates using off-line or online approaches. The problem of evaluating gen-
eral forms of global predicates has been studied and found NP-hard, so several
authors have focused on the evaluation of restricted forms of global predicates,
such as conjunctive and disjunctive. Although restricted, such global predicates
are still useful in distributed debugging. An important distinction is established
among stable properties, such as deadlock and termination, and unstable properties
of a distributed program, which may dynamically change their truth values dur-
ing the computation. The detection of unstable properties is obviously more dif-
ficult. It cannot be ensured by online observations based on the global snapshot
approach, as the constructed state may miss the point of the computation where
that property holds. Concerning the online construction of consistent run, even
if the property holds for a certain consistent global state in that constructed run,
this does not gives information about how it behaves in other possible runs. Ex-
tended forms of global properties have been proposed by several authors that try
to express the program behavior in terms of the entire distributed computation, in-
stead of related to a single global state.Several authors have exploited approaches
for building and traversal the entire space of consistent global states, which are ad-
equate for evaluation of both stable and unstable predicates. Other authors have
tried to exploit specific and simplified forms of global predicates, e.g., consistent

global predicates, in order to avoid an exhaustive search of that space. These ap-
proaches are further discussed in [CG98, CM91, HPR93, BM93, GCMK96, TG93].

iii) Reaction on detection of a global predicate. Depending on the user interpretation
of the logical condition that was evaluated, a particular action may be necessary.

23

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.3. Distributed Debugging Methodologies

For example, if the detected global predicate corresponds to a bug situation, a dis-
tributed debugger should be able to stop the execution and restore the local states
of all processes in a meaningful consistent global states that satisfy the detected

global predicate.

2.3 Distributed Debugging Methodologies

Distributed debugging methodologies can be classified according to the level of sup-
port they provide to the user concerning the activities of global predication specifica-

tion and detection, and the search for the causes of the bugs.

of remote processes f|

{Interactive debugging] memmeesi By

smté based debugging

to obtain
reproducible behavior
Trace, replay s By
and debugging deterministic re—execution
to analyze
alternative paths Integrated testing, i \
active control —
and debugging systematic state exploration
to evaluate
local correctness properties GP detection, i
active control — \
. \ and debugging correctness
. > the result of applying each method predicate

specification
the required aspect
provided by the following method in the chain

Figure 2.4: distributed debugging methodologies

In the following, these approaches are successively discussed, starting from the
simpler approaches to the more complex ones. These approaches are complementary
to each other, in the sense that each approach tries to overcome a limitation of the

previous approach in the sequence.

2.3.1 Interactive Debugging of Remote Processes

Conventional sequential debugging commands can be extended to allow individual
online observation and control of the execution of remote processes. This is a limited
approach that only allows to examine local histories of individual processes of a dis-
tributed program. As each local history only describes the evolution of each process
in terms of its internal and interaction events, it is the programmer’s task to build the
global picture of the corresponding distributed computation. However, as such basic
remote debugging mechanisms are required to enable more sophisticated approaches,

they are supported by almost all existing commercial or academic debuggers. The

24

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.3. Distributed Debugging Methodologies

main distinction between existing distributed debuggers of this kind is related to the
functionalities and design of their architectures.
This approach is important as a first step. However, it does not handle the nonde-

terminism behavior of a distributed program.

2.3.2 Trace, Replay and Debugging

In order to address the nondeterminism, this approach is based on collecting a trace
of the relevant events generated by a distributed computation, during a first program
run. The trace describes a computation path (a consistent run) that can be analysed at a
postmortem stage. If erroneous situations are found, the program can be re-executed un-
der the control of a supervisory mechanism. This mechanism uses the traced sequence
of events to force the execution to follow the same path as the ones in the previous
run. This allows the user to examine the behavior of that path within a cyclic inter-
active debugging session, in a reproducible way. In such a session, the user may use
the observation and control functionalities provided by the previous approach. The
trace and replay technique has been the focus of intensive research in the past decade,
mostly concerning the reduction of the probe effect and of the volume of the traced
information [Net94, Net93, FCdK95, LMC87, RK98, Wit88, RBC™03]. However, not all
commercial debuggers include such a facility.

From the view point of distributed debugging, there is a limitation in this approach
if it gives no support to analyse other computation paths besides the traced one. If
the first run which is used to collect the trace is a ‘free’ run i.e. under the control of
no supervisory mechanism, the resulting trace describes only a randomly occurring
path from the large set of possible paths. This gives no guarantee that such is an (the)
interesting path to consider for analysis. Indeed, it is highly unlikely this will be the
case.

Although this approach improves on the first one, it still needs to be complemented
by the following approach.

2.3.3 Integrated Testing, Active Control and Debugging

This approach tries to overcome the above mentioned limitation of a simple passive
trace and replay approach. Multiple authors have proposed approaches for the active
control of distributed program execution for debugging purposes. They try to provide
a facility to enforce the execution of specific runs of a distributed computation in order
to ease the location of erroneous situations. They differ in the way they generate and
specify the desired consistent run that a controlled execution should follow. In the
following, one of these approaches is briefly described for illustrative purposes.

The approach considers two separate phases in the distributed debugging activ-

ity. It is based on the integration of a static analysis and testing phase and a dynamic

25

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.3. Distributed Debugging Methodologies

analysis and debugging stage. The goal of the testing phase is to assist the user in the
generation of interesting runs that may exhibit violations of correctness properties. In
general it is not feasible (or even possible) to provide a completely automated testing
phase. An interactive testing tool is useful to cooperate with the user to specify and
refine the conditions and regions of program code that should be considered for anal-
ysis. The testing phase is then used to generate a sequence of commands that will be
used to drive a program run, in order to exercise the paths defined by the above test-
ing scenarios. Such a run can then be the subject of a trace and replay approach, and
integrated in a cyclic debugging session.

The main advantage of this methodology is that it allows the user to interactively
‘walk’ through the testing and debugging phases, until one is convinced about the sat-
isfaction of the correctness properties that are being investigated. Another advantage
of this approach is that it combines the advantages of static and dynamic analysis in
order to help the user to understand program behavior (cf below).

The main problem with this approach is that it basically relies upon the user convic-
tion that all relevant scenarios were specified and generated, tested and analysed, so
that one gets confidence on distributed program correctness. There is no full guarantee
that no important situations went unnoticed. Still, this approach has been the basis of

intensive research and has produced interesting results [LCK*97].

2.3.4 Automated Detection of Global Predicates

This approach is an attempt to help the user increasing the confidence on the re-
sults of the previous approach, by allowing the specification of the correctness cri-
teria in terms of global predicates. Such global predicates are then automatically
evaluated by detection algorithms, working off-line or on-line distributed debug-
ging [Bat95, Bat88, CG98, CM91, Cla03]. As the efficient evaluation of global predi-
cates is limited to restricted classes of global predicates, this approach may be seen
as complementary to the testing and debugging approach. Their integration seems a

promising research direction to improve.

2.3.5 Distributed Debugging Based on Static Analysis

This approach uses the program code as a basis and it does not require actual program
execution. It relies on formal models of program behavior that can be used to check
certain kinds of properties, usually expressed as temporal logic formulas. However,
model checking techniques can only be used to analyse certain properties and do not
give information on dynamic properties that depend on actual runtime program be-
havior, e.g., termination. Also, they usually incur great computational costs in their
search for all allowable state transitions in the modelled computation space.

Still, static analysis of the program source code is one approach that can reveal

26

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.3. Distributed Debugging Methodologies

Verify program

source static
ofitine)" | properties

static

analysis \ Help identifying /

ti ..
/.genera ing A Observe
testing scenations .
testing
scenarios
- @
. (.
On-line Check dynamic
dynamic — properties
analysis on—the—fly
- @@
-
ﬁ
Generate
dinamic -~
trace info Al

Analyze trace
- @@
/ (
Perform

Off-line
—> post—mortem [|—| complex event

analysis processing
- @
ﬁ
Request further
dynamic or static

analysis

Figure 2.5: distributed debugging methodologies

itself as of great importance for distributed debugging, if adequately combined with

complementary approaches.

2.3.6 Distributed Debugging Based on Dynamic Analysis

Due to the mentioned limitation of static analysis, one needs to use online approaches
that help evaluating the actual program behavior on-the-fly. Such approaches rely
upon online observation techniques so they must deal with the difficulties of accu-
rate construction of consistent global states. Once a specific program behavior pattern
was detected, these approaches also require adequate control mechanisms to help the
user inspecting the individual computation states of interest. This approach must deal
with the probe effect, in order to ensure that the observed computation path exhibits
the same logical behavior as the original computation would, when running with no
observation mechanisms.

Dynamic and static analysis approaches can be combined in order to provide the
distributed debugger with functionalities as the ones required by the mentioned inte-

grated testing, active control and debugging approach.

2.3.7 Distributed Debugging Based on Postmortem Analysis

Postmortem analysis approaches provide an effective way to analyse program behav-
ior because they rely upon previously collected traces of the processes’ local histories.
On one hand, it becomes easier to construct a consistent global state, out of these local

27

2. DEBUGGING OF PARALLEL AND DISTRIBUTED PROGRAMS 2.3. Distributed Debugging Methodologies

histories, by regenerating the causal precedence chains. This reduces the runtime over-
head incurred by online approaches. It also enables facilities for analysis of complete
computation histories, with the help of a diversity of event analysis and visualization
tools. On the other hand, postmortem techniques can be integrated with online tech-
niques, in order to exploit tracing, replay and debugging methods, to address the non
reproducibility issue. Incremental methods consisting of online and postmortem stages
also allow to handle the potentially large volume of traced information. A first run is
used to collect only the minimum amount of information to ensure reproducible re-
execution, and further postmortem analysis can determine the need to collect further
information on successive runs.

The summary of how such approaches are complementary to each other:

i) Off-line. Verify certain properties using static analysis and help identifying rele-

vant scenarios for testing

ii) Online. Check dynamic properties on-the-fly, and observe testing scenarios, under

an actively controlled execution

iii) Postmortem. Analyse traces of complete global histories, perform more complex
event processing (e.g., high level event abstractions) and visualization. Use the

results of such analysis to determine further runs and dynamic analysis.

Further discussion on the classification of distributed debugging approaches can be
found on [CLDO1a].

28

Fiddle: a Distributed Debugging Engine

Contents
31 Introduction 30
3.2 Techniques for Distributed Debugging 30
3.3 A Proposal for a Distributed Debugging System 33
3.4 The Debugging System Components 35
3.5 The Architecture of the Debugging Engine 42
3.6 Extending the Debugging Engine 47
37 Summary. e e e e e e e 50

This Chapter introduces the main requirements for distributed debugging and how
traditional debugging services fulfill some of those requirements, followed by presen-
tation of the software architecture of a debugging engine which fulfills some of those
requirements, and how this debugging engine may be extended with complementary

tunctionalities which may cover the remaining requirements

29

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.1. Introduction

3.1 Introduction

There is a large diversity of approaches commonly used to locate bugs in programs,
depending on the hardware, the operating system, the programming model, the pro-
gramming language and, most of all, on the program developer.

Traditionally, the software developer has the possibility to execute a program under
control of a debugger. This allows to inspect the process core image, e.g., the memory
contents, and to have a detailed control over program execution by using techniques
such as breakpointing and single-stepping. However, they are less effective for dis-
tributed programs, composed by multiple processes executing on multiple computing

nodes, due to the intrinsic non-determinism of the corresponding computations.

3.2 Techniques for Distributed Debugging

Errors in distributed programs may, naturally, be due to unplanned process interac-
tions as well as errors in sequential code in any of the processes. Distributed debug-
gers should not neglect the latest kind of errors as, although easier to locate and correct,
their frequency in distributed programs is much higher then those resulting from un-
wanted process interactions.

Different classes of techniques may be used to debug distributed programs:

i) Sequential debugging techniques. Distributed programs also include sequential sec-
tions of code, and such sections are not, necessarily, bug free. Sequential debug-
ging services, such as breakpointing, single-stepping and inspecting/changing

process variables, are also a basic requirement for distributed debugging;

ii) Distributed debugging techniques. Distributed programs are composed of interact-
ing processes, whose behaviors reflect mutual interdependencies. The need to
understand these interdependencies puts specific requirements upon distributed

debuggers;

iii) Information sharing and tool cooperation. Distributed programs are considerably
more complex than their sequential counterparts, and the software developer fre-
quently relies on different tools to analyse the distributed program behavior. Us-
ing such tools separately forces the software developer to a permanent “context
switch” in the working environment every time a different tool is used. Most im-
portant, this puts a strong demand upon the software developer to analyse and

correlate the data gathered from multiple tools.

This motivates the requirement to support a set of software tools which are able
to cooperate with each other, by exchanging data and control information and, if
possible, to coexist and be accessed through uniform and consistent user inter-

faces.

30

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.2. Techniques for Distributed Debugging

The above identified techniques to support distributed debugging are discussed in

the following sections.

3.2.1 Sequential Debugging Techniques

Sequential debugging techniques can be applied to the debugging of the sequential
sections of code of a distributed program. These techniques can be organized into the

following main classes of services.

i) Breakpointing services. To stop program execution at points corresponding to spe-

cific source code locations or on read /write accesses to specific memory locations;

ii) Control services. To control the program execution, through the classical step, next

and continue operations;

iii) Data services. To examine and change the program core image, for example, to

access local and global variables contents;
iv) Stack services. To inspect and manipulate the program execution stack;

v) File services. To inspect and control the source and executable files associated to a

target program;

vi) Management services. To support the management of the debugging tool itself, such

as initiating and terminating the distributed debugging tool.

These services allow the software developer to examine and debug the individual
processes of a distributed program, but do not consider the additional needs resulting

from distribution and process interaction, which are covered by the next class.

3.2.2 Distributed Debugging Techniques

The software development environments, and the distributed debugging system in
particular, must address the difficulties introduced by distributed computations. Con-
cerning the debugging activity, the following list of functionalities contribute to handle

such difficulties.

i) Behavior record and replay. Due to the inherent non-determinism of distributed
computations, the simple act of observing a distributed computation may mod-
ify its behavior, changing or even hiding a bug manifestation. This is frequently
called the probe effect or the Heisenbug effect.

The undesired effects of such changes in the program behavior can be reduced
by registering and recording the distributed program behavior in a first run. The
same distributed program can then be replayed, i.e., re-executed and forced to fol-

low the same steps which were registered in the first run. This allows to perform

31

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.2. Techniques for Distributed Debugging

the required inspection and even control operations during the replayed execu-
tion.

ii) Controlled execution. A specification of the intended program behavior can be gen-
erated from annotations introduced in the source code by the software developer,

or by a testing tool which analyses the distributed program and its source files.

Inspecting a distributed computation generated by a distributed program under
controlled execution will not influence its behavior, as it is being forced to follow

well specified paths corresponding to a specification of such intended behavior;

iii) Checkpointing. For long time runs, it may be unacceptable to re-run the application
from the very beginning once a program failure is detected. In such cases, it is
common to periodically perform execution checkpoints, where the global state of
the distributed computation is saved. Once a failure is detected, the computation

may be resumed to a previously saved state, and proceed from that point on;

iv) Inspection and control of system level entities. A distributed program frequently de-
pends on third party software packages, e.g., communication libraries, or runtime
or operating system “objects”, e.g., semaphores and mutexes. The ability to exam-
ine and change such external entities is necessary for a better understanding of the
distributed program behavior and, therefore, for the identification and correction

of its errors;

v) Log analysis and error detection. By analysing a log file where the behavior of a
distributed program was registered, and correlating that information to the source
code, many program errors can be detected, e.g., some race conditions, even before

they actually generate a fault and a failure.

The distributed debugging techniques enumerated above, when adequately sup-
ported by a debugging environment, allow the software developer to reach a better
understanding and control of the distributed program behavior, and of the interac-
tions between its processes. However, the tools providing those services should be

able to share information and cooperate with each other, as discussed in the following.

3.2.3 Tool Integration Issues

The development of distributed programs encompasses a hierarchy of abstraction lev-
els, supported by a diversity of models and tools. Such models and tools may con-
siderably help the software developer to understand the process interactions and the

global application behavior, and may include:

i) High(er)-level programming languages. To allow problem specification and coding;

32

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.3. A Proposal for a Distributed Debugging System

ii) High(er)-level programming languages editors. To support the effective development

of programs on those languages;

iii) Code generators and compilers. To convert the high(er)-level programs into interme-
diate and executable code;

iv) Simulators. To help predicting and evaluating the program behavior without the

need of a real execution;

v) Mapping and load balancing tools. To define the initial distribution of processes on
the computing nodes, and to balance during execution;

vi) Performance evaluators. To analyse and optimise the overall program performance;

vii) Computation visualizers. To graphically represent the behavior of computation
nodes and processes, and display their interactions;

viii) Debuggers. To help detecting, locating and correcting program errors, by providing

the means to inspect and control the distributed program behavior.

The above tools are, often, developed by different tool-makers, thus having limited
compatibility and interaction capabilities. The result is, typically, a complex devel-
oping environment, where the software developer has to constantly switch between
different tools to edit, compile, test and debug the distributed program.

The difficulties of using such development environments, where multiple tools
from different origins and vendors are used together, motivated the efforts towards
the specification of standard services and interfaces [LWSB97], and increased the rele-
vance of tool integration and interoperability issues.

Frequently, the interoperability of a distributed debugger with other tools in a soft-
ware development environment, such as graphical program editors and computation

visualizers, is a key requirement.

3.3 A Proposal for a Distributed Debugging System

Many of the distributed debugging tools available from both the research and the com-
mercial communities have a stronger emphasis on the distributed debugging services,
partially (or even completely) neglecting the other two classes, the sequential debug-
ging services and the tool cooperation and integration services.

In this dissertation we propose a different approach. We start with a minimalist
debugging engine, which supports some basic sequential debugging services for dis-
tributed programs. This debugging engine can thus be extended with additional ser-
vices, that can be integrated in a debugging software architecture. New services can be
defined by an adequate combination of those already available, or by implementing a

new set of servers and libraries and linking them to the debugging engine.

33

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.3. A Proposal for a Distributed Debugging System

We use the term “debugging engine” and not “distributed debugger” because its

definition is restricted to the debugging services to be supported and not how they

should and will be used. Consequently, the proposed engine does not include any

specification of a built-in user interface, neither graphical nor text oriented.

By separating the definition of the user interface from the specification of the debug-

ging engine, we allow the development of a diversity of user interfaces with different

targets and goals. Other important characteristic of the proposed debugging engine is

the tool interoperability and integration facilities.

i)

ii)

iif)

Vi)

In summary, the proposed debugging engine aims at:

Allowing the access and control of multiple distributed processes. Distributed programs
are composed of a set of cooperating processes, and the debugging engine will be
able to access and control all or some of those processes;

Allowing the access and control of multi-threaded processes. In the last years there
has been a trend towards thread-based programming models, and thread-based

programming is an issue which is also addressed by the debugging engine;

Supporting symbolic process identifiers. The debugging engine supports a symbolic
process naming mechanism, allowing to abstract from the physical location of the

processes under debugging;

Providing a minimalistic set of debugging functionalities. There is such a diversity of
distributed execution environments, regarding the hardware, the operating sys-
tem, the communication libraries, and the distributed programimg models, that
the range of supported execution environments by each debugging engine are
considerably restricted. Attempts to design a debugging engine in order to accept
a wider scope of execution environments may lead to a huge and unmaintainable
tool. We opted to provide just a minimalistic set of debugging functionalities in
the debugging engine core. Tis has the effect of limiting its size and easing its
maintenance. It also allows to provide a common set of basic functionalities that

may be useful in distinct environments;

Being extensible. The minimalist set of debugging functionalities may not be
enough for a particular use of the debugging engine or for a particular execution
environments. The debugging engine should be adaptable to particular execution
environments or to support specific needs. This should be achieved by design-
ing and implementing debugging engine extensions which are incorporated into the

debugging engine core;

Supporting a diversity of user interfaces. Typically, a distributed debugger includes
a generic (sometimes graphical) user interface, which allows to generically debug
different classes of programs, but lacks the ability to adapt to the specific needs
imposed by each application or by the execution environment;

34

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.4. The Debugging System Components

This desired adaptability and flexibility of the debugging engine can be achieved
by decoupling its core from the user interface. In such a way, besides any generic
debugging user interface available in the debugging engine distribution, both
generic and customized debugging user interfaces can be developed and inte-
grated into the debugging engine;

vii) Supporting for multiple concurrent user interfaces. Multiple debugging user inter-
faces to coexist and operate concurrently, being involved in the task of debugging
the same distributed program. This is achieved by keeping each debugging user
interface as a small and simple unit, and by building more complex user interfaces
through the composition of the simpler units.

3.4 The Debugging System Components

Three main components are involved in the debugging of a distributed program: the
client tools, the debugging engine and the target application processes. These compo-
nents are discussed in the following.

Application
Process 1

Debugging

« APl Engine
Core

Application

Process 2

2R

Application
Process 3

Client Tools Deb. Engine Core and API Target Application

Figure 3.1: The debugging engine logical organization

i) The target program. The execution of a distributed program involves the execution
of a set of interacting processes (possibly) running on different nodes. Debugging
such a program involves observing and controlling not only some of its processes
but also their interactions;

ii) The client tools (debugging user interfaces). Provide access to the debugging func-

tionalities supported by the debugging engine;

iii) The debugging engine. Implements the basic debugging functionalities which can
be accessed from the client tools. The debugging engine is defined by:

35

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.4. The Debugging System Components

a) The debugging engine core. This is the center of all the debugging operations.
It manages, among other things, the status of the target processes. It also in-
terprets the debugging service requests, and handles their application to the

target processes;

b) The application programming interface (API). The specification of how the client
tools can access the services provided by the debugging engine core.

In the following, each of these components is discussed further.

3.4.1 The Target Program and Processes

When testing a distributed program, we may believe that a certain misbehavior is be-
ing originated in one (or in a subset of) the processes of that distributed program. In
this case, we may be interested in debugging just this subset and not all the processes.

A program under debugging is called the target program. The subset of its processes
under debugging are called the target processes. Target processes are said to be local
or remote, depending on whether they are executing in the same physical node as the

client tool (user debugging interface) or in some other (remote) node, respectively.

3.4.2 The Client Tools

The debugging engine provides a set of debugging services, each set being accessible
through an API, but the engine does not provide the interface for the software devel-
oper to access those services. Each client tool must implement this bridge between the
software developer and the debugging engine, providing a user interface to access a
subset of the services available in the debugging engine.

The debugging engine does not specify the kind of functionalities to be provided
by the client tools, neither how will they be accessed and presented to the software de-
veloper. The functional and operational specifications of the client tools are completely
left open to their developers.

In Figure 3.1 on the preceding page, three different kinds of client tools are depicted:

i) A controller (client tool 1), whose main function is to act upon the target applica-

tion, by changing its internal state or controlling its behavior;

ii) An observer (client tool 2), whose main function is to collect and display informa-

tion about the application status and behavior; and

iii) An interactive tool (client tool 3), which acts simultaneously as both a controller and

an observer.

The debugging engine services are made available to all the client tools through
an API (described in Section 3.4.4). In our experimental work, such services were ac-
tually explored by a wide range of tools, from text oriented and graphical debugging

36

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.4. The Debugging System Components

interfaces, such as Fiddle consoles (described in Section 5.3) and FGI (described in Sec-
tion 5.4), to automated debugging tools, such as DEIPA (described in Section 5.5), and
even to parallel software development environments, such as GRADE and EDPEPPS
(both described in Section 5.6).

According to the above classification for the client tools, DEIPA is a possible exam-
ple of a controller. Any program visualizer, such as Pajé (whose possible cooperation
with our debugging engine is discussed in Section 5.7), may be classified as an ob-
server. Finally, any debugging interface, such as Fiddle consoles and FGl, belongs to the

interactive tool category.

3.4.3 The Debugging Engine Core

The debugging engine core is internally organized in multiple functional layers, as
depicted in Figure 3.2. The set of services available successively extend the debugging

functionalities as we move from the lower to the higher layers of the debugging engine.

APls —>

Layer3m

Layer2m

Layerim

Layer Om

Layer Os

Figure 3.2: The debugging engine layered architecture

The functionalities provided by each layer have a well defined API that gives access
to an associated service library (there is one service library for each layer). There are
only minor differences between the APIs of all layers. The exception is Layer3,,, which
differs considerably from the others, both syntactically and semantically, due to the
nature of the services it provides.

There is a minimum set of functionalities, common to all layers, which are always
available: support for one or more client tools (depending on the layer being used),
support for multiple target processes (both local and remote, also depending on the
layer being used), where each of the target processes may be single- or multi-threaded.

37

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.4. The Debugging System Components

are

vid
i)

iii)

Besides the above common features for all the layers, there are some others which

specific to each layer, as summarized in Table 3.1.

LayerO, Layer0O,, Layerl,, Layer2, Layer3,

Multiple target processes Yes Yes Yes Yes Yes
Multi-threaded target processes Yes Yes Yes Yes Yes
Multi-threaded client(s) No Yes Yes Yes Yes
Remote debugging No No Yes Yes Yes
Multiple concurrent clients No No No Yes Yes
Events and call-back routines No No No No Yes

Table 3.1: The debugging engine internal layers and their functionalities

Any layer may be directly used by a client tool, as long as the set of services pro-

ed by that layer are enough for the tool needs.

LayerO;. Provides debugging services at a single local node. By local we mean
that both the target processes and the client tool must be executing in the same
computing node. Only a single thread in the client tool may be issuing service
requests to this layer. The debugging engine gives a symbolic identifier to each
target process, and this identifier must be used by the client tools to identify each

process that is targeted by their service requests;

Layer0,,. Extends the services provided by Layer(; to guarantee a thread-safe en-
vironment. When accessing this layer, a multi-threaded client tool may issue con-
current requests to the debugging engine, which will be executed concurrently if

directed to different target processes, otherwise they will be applied sequentially;

Layer1,,. Extends the services provided by Layer0,, to provide transparent debug-
ging services to remote target processes. At this level all symbolic identifiers are
made global in the distributed system and can, therefore, refer to any process in-

dependently from their physical location;

Layer2,,. Extends the services provided by Layer1,, to allow multiple concurrent
client tools. By using this layer, it is possible to have as many client tools as de-
sired, all of them concurrently issuing debugging requests to the same set of target
processes. Such multiple client tools may provide complementary views and de-
bugging functionalities over the target program, by exploiting and manipulating

different (but not exclusive) sets of debugging services;

Layer3,,. Was designed to support a common shared knowledge to all client tools.
This common shared knowledge would include the status of the target applica-
tion and of the debugging engine itself. To accomplish this goal, an event noti-

fication mechanism was introduced by this layer, such that changes in the target

38

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.4. The Debugging System Components

application data or execution state, or changes in the state of the debugging en-
gine core, may originate events which will trigger the execution of event handlers
in the client tools. Client tools may react to those events by changing their own

state or by storing the event details in an internal database for later access.

The hierarchical structure of the debugging engine architecture implies that each
layer £; (j~¢) is a direct client of layer 2;_; (see Figure 3.3). In this figure, Layer3,, has
two client tools (CTg’" and CT?’”), Layer2,, also has two client tools CT%’” and Layer3,,),

and each of the remaining layers has a single client tool (the immediately above layer).

Client Tools

Fiddle Target Application

Figure 3.3: The debugging engine logical layers

When a service is requested by a client tool, it will be interpreted and passed to
the successively underlying layers, until Layer0; is reached. At this point, the request
is applied to the target process. The result of such an operation is also successively
passed back to the upper layers until the client tool gets the reply. In the meanwhile,
the invoking thread in the client tool is blocked waiting for the reply, except for a
Layer3,, client, which may define a reply handler for this service request and proceed
with its computation.

3.4.4 The Debugging Engine API

All the services provided by the debugging engine core have well defined semantics
and application programming interfaces. Such services provide a set of basic function-
alities which operate upon individual processes and may be classified into the follow-
ing main categories:

i) Internal services. Management services related to the debugging engine itself and

not to the target program;

ii) Breakpointing services. To set different kind of breakpoints in the target processes,
so that they will stop at specific code locations, unconditionally or when certain
conditions are verified;

39

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.4. The Debugging System Components

iii) Running services. To control the execution of target processes, such as single-

stepping or proceed with program execution until a breakpoint is reached;

iv) Data services. To examine or change the target processes core state, such as local

and global variables;
v) Stack services. To inspect and manipulate the target processes’ stack contents;

vi) File services. To inspect and control the source files associated to the target pro-

cesses;
vii) Thread services. To operate upon process threads;

viii) Miscellaneous services. For those services that do not fit in any of the previous
classes.

Other classes of services, such as operations upon groups of processes, record and
replay of distributed computations, checkpointing, etc... may be implemented as ex-
tensions to the debugging engine core and its API. The works on RPVM [LC98b] and
PADI [SNC00] are examples of such extensions to the debugging engine. RPVM extends
the debugging engine with the ability for deterministic replay of distributed programs.
PADI extends the debugging engine with a set of services which operate upon process
groups, and a graphical interface to access those services.

Similar services at different layers have only minor differences in their syntax
and/or semantics. For example, services f0m_step () and f1m_step () only have a mi-
nor semantic difference, as the former is only applicable to local processes and the
latter also applies to remote processes; and services f0m_attach() and fIlm_attach()
have minor differences in both syntax and semantics, as the latter receives one more
argument than the former.

The API for all layers, except Layer3,,, have an invocation semantics which follows
a synchronous model. This means that, for the majority of the layers, when a thread
in a client tool issues a debugging request by invoking a function from the API, it
will remain blocked until the debugging engine handles the request and generates a
reply. The handling of a service may require the arguments of the called service to be
encoded, packed and transfered to a remote node, and the reply to follow a similar
path, but in the opposite direction. Once received, the reply is unpacked, copied to the
output arguments of the API function call, and passed back to the caller.

Table 3.2 on the facing page presents a list of the basic services provided by all
layers. For each functional layer of the debugging engine there is a programming li-
brary which implements its API. For each library, the “X” in the service name prefix
on Table 3.2 is changed to the layer’s name, e.g., for Layer1,, API, £X_initialize() is
changed to flm_initialize(). Full details of the syntax and semantics of these ser-

vices are presented in [LC99].

40

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE

3.4. The Debugging System Components

Internal services
fX_ initialize()
fX_terminate ()
fX_clients()
fX_tids()

Initialize the debugging engine

Terminate debugging engine

List active clients of the debugging engine

List the IDs of currently available target processes

Breakpointing services

fX _break ()
fX_delete()
fX_info_break ()

Set a breakpoint
Delete a breakpoint
Get info about current breakpoints

Running services
£fX_attach{()
fX_detach()
fX_kill()
fX_file()
fX_symbol_file()
fX_run()
fX_step()
fX_next ()

fX_continue()
fX_finish()
£fX call()
fX_signal ()

Attach to a running process

Detach from a running process

Kill a target process

Load program and symbols into memory

Specify where to find program symbols

Run a program

Execute until the next instruction

Execute until the next instruction (considering a function call as a single
instruction)

Continue the execution

Execute until returning from current stack frame
Call a function in the current context of the process
Send a signal to a process

Data services
fX_set_variable()
fX_evaluate ()
fX_display()

fX_undisplay()
fX_info_display ()
fX _info_locals()
fX_info_args()

Change the contents of a variable

Evaluate an expression in the current context of the target process
Evaluate and display an expression every time the process execution
stops

Undisplay an expression

Get info about current display expressions

Get name and value of local variables

Get name and value of function argument

Stack services
fX_info_stack()
fX_up()

£X_down ()
fX_frame ()

Get info about current stack frames
Go up in the stack frame list

Go down in the stack frame list
Select a specific stack frame

File services
fX_1ist()
fX_info_line()
fX_info_program()

List the process source code
Get info about current line
Get info about current program

Thread services
fX_thread()
fX_info_threads()

Select a thread
Get info about the existing threads

Miscellaneous services

£X_tty()
fX_sendto ()

Set a TTY for future IO
Send a command directly to a node debugger, bypassing the debugging
engine

Table 3.2: The debugging engine API

41

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.5. The Architecture of the Debugging Engine

3.5 The Architecture of the Debugging Engine

The debugging engine is, itself, a distributed program, consisting of a set of processes
and libraries which cooperate to provide a set of distributed debugging services. The
debugging engine is structured in functional layers whose functionalities and architec-

ture are discussed in detail along this section.

3.5.1 LayerO;

This is the first (lowest) layer. It defines a set of debugging functionalities available in

a single node (node-level services), namely:

i) Attach and detach the debugging engine to/from processes running on the local

node;
ii) Launch new processes under the control of the debugging engine;
iii) Inspect the target processes, which may be single- or multi-threaded processes;

iv) Manipulate the execution status and memory map contents of the target processes,
through operations such as breakpointing, single-stepping and the change of pro-

gram variables.
This layer also provides some additional functionalities besides the above ones:

iv) Symbolic naming of local processes. For each target process, a symbolic identifier is
generated by the debugging engine which will be used during an entire debug-

ging session to refer to that process;

v) Concurrent debugging of multiple local processes. The debugging engine can be at-
tached to more than one process, as long as they are executing in the same physical

node as the debugging engine;

All the above functionalities are available through a well defined API and imple-
mented in a software library, which must be linked to the client tool (the debugging
user interface), as depicted in Figure 3.4 on the next page.

The main components of Layer(; software architecture are:

i) Node debuggers. Attached to each target process there is a node debugger. Each
node debugger carries out the debugging operations upon its associated target
process. New node debuggers are dynamically launched by the debugging engine
core as required and terminated when no longer needed. The debugging engine

core ensures these operations are fully transparent to the user.

Any existing sequential or parallel debugger which runs on the host where the

process is being executed may be used as a node debugger. The only requirement is

42

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.5. The Architecture of the Debugging Engine

ii)

Debugging Target
tool Layer Os application

Node Debugger Target Process
VT

[
|
)Y

Client Té()l i\ o/
.\

Node Debugger Target Process
E 0\

FOs—Lib

Figure 3.4: The Layer0; software architecture

that it supports some form of interaction with other programs, either by providing
an API or by using a text oriented command language. This is, indeed, a minimal
requirement for tool interaction. Still, several existing commercial tools only pro-
vide graphical user interfaces, thus are not amenable to interaction neither to be

used as node debuggers in the debugging engine.

LayerOQy service library (FOs-Lib). This library implements the API as defined for
this layer, plus all the internal management services, such as launching and ter-
minating node debuggers whenever needed. At any time, only one thread in the
client tool may be calling services from this library and, therefore, issuing service

requests to the debugging engine.

To support the AP], this service library must manipulate and adapt the API func-
tion call arguments, by converting them into a set of commands which are under-
standable by each node debugger. Also, the replies from the node debugger must
be processed and transformed into return arguments to the API function call.

3.5.2 LayerO,,

The system components known to this layer are identical to those known to Layer0;, as

depicted in Figure 3.5 on the following page. The only difference is that there is a new

service library which implements the new features supported by this layer.

iii)

There is a single new system component in Layer0,,:

Layer0,, service library (FOm-L1ib). This service library stands between the client tool
and the LayerOy library (F0s-Lib in Figure 3.5 on the next page), provides thread-

safe access to the debugging engine.

For example, multi-threaded client tools may explore this layer by using an indi-

vidual thread to control each target process. Each of these threads may independently

issue service requests to the debugging engine.

43

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.5. The Architecture of the Debugging Engine

Debugging Target
tool application

Client é'iTool

Figure 3.5: The Layer0,, software architecture

3.5.3 Layerl,,

This layer extends Layer0,, by providing support for the debugging of remote pro-
cesses. Its software architecture is presented in Figure 3.6.

Target
Layer Im application

Debugging
tool

FOm-Server

Figure 3.6: The Layer 1,, software architecture

The system components known to this layer include all of the above described for

the previous layers, plus:

iv) Node server (FOm-Server). On each physical node there is a node server which man-
ages all the local node debuggers. It is up to the node server to launch new node
debuggers, to establish the communication channels to these new node debug-
gers, and to terminate the node debuggers when no longer needed. It is also up to
the node server to manage the communication channel to the client tool. From the
perspective of the client tool, the node server is the only intermediary for all the
target processes in that node.

44

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.5. The Architecture of the Debugging Engine

v) Layerl,, service library (F1m-Lib). This service library provides a (multi-threaded)

client tool with transparent access to remote target processes. It also introduces a

symbolic global naming mechanism for all target processes.

3.5.4 Layer2,

This layer extends Layer1,, by providing support for multiple concurrent client tools.

Its software architecture is presented in Figure 3.7.

e - FOm-Lib

Target

Debugging
gging Layer 2m application

tools

Node Debugger Target Process \‘

Client Tdol ! |
§§§ X 3 3 FOm-Server

' Flm-=Server

Node Debugger Target Process

FOs—Lib
FOm—Lib

Client Td 3 3 Flm-Lib 3 . NI
§ § g X Y g | FOm—Server Node Debugger i Target Process | :

FOs—Lib

Figure 3.7: The Layer2,, software architecture

The system components known to this layer include all of the above described for

Layer 1, plus:

vi) Main server (Flm-Server). The main server acts as the access point to the debug-

Vii)

ging engine. It centralizes all the client connections at one point, and plays the role
of a router, forwarding the service requests to the appropriate node server and re-
sending the replies back to the client. It should be noticed that no heavy processing
is done in this main server, avoiding it to become a bottleneck and allowing the

number of clients and servers to scale;

Layer2,, service library (F2m-Lib). This service library provides a (multi-threaded)
client tool with a non-exclusive access to the debugging engine. In this way,
multiple client tools may be concurrently operating upon the same set of target
processes, possibly (and hopefully) providing the developer with complementary

views of the target application and extended debugging functionalities.

45

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.5. The Architecture of the Debugging Engine

3.5.5 Layer3,,

Layer 3,, is only partially defined. It aims at supporting an asynchronous calling model.
Services requested to this layer will never block the caller, but return immediately a
service-request-id to the client tool.

Such request-id may then be used by the client tool to inquire the debugging en-
gine about the status of the associated service, or given as an argument to a call-back
function which will be activated when the processing of the service terminates.

Call-back functions (if defined) will be executed when the processing of a service
is terminated. Additionally, the client tool may also define call-back functions to be
executed when the status of the debugging engine changes (e.g., there is a new client
tool connected to the debugging engine) or when the status of one of the target pro-
cesses changes (e.g., one process hit a breakpoint and switched from the running to the
stopped state).

As such, four different classes of events relevant to the debugging activity were
identified:

i) A service was requested by another client tool . Service requests from a client tool
may, or may not, have consequences upon the other client tools. Thus, client tools
should have the means to be notified and, therefore, to react, to other tools” activ-

ity;
ii) The processing of a service request is terminated. Some service requests may have no
implications in the target application state neither in the debugging engine state.

In such cases, it may be interesting to receive an acknowledge that the service was

completed;

iii) The target application state has changed. This change may result from a change in its
execution state, such when a breakpoint is reached, or from a change in its core
image, such as when a program variable receives a new value;

iv) The debugging engine state has changed. This may be due to management tasks, such
as when a new client tool connects to the debugging engine, or to program activity,
such as when a new process is spawned.

Any of the above identified relevant occurrences are propagated to the debugging
engine and to the remaining client tools as events. Client tools may define handlers to
react to those events, changing their own state or storing event details in an internal
queue/database for later processing.

Events may be processed by the client tools synchronously, where the debugging
engine keeps the notification of the event pending until the client tool explicitly re-
quests it, or asynchronously, where the tool defines event handlers, which are triggered
by the event notification and executed by a new thread. In both cases, a description of

46

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.6. Extending the Debugging Engine

the event is passed as an argument to the handling function, so it can react appropri-

ately to the event.

3.6 Extending the Debugging Engine

The architecture of a distributed debugging system generally imposes strong limita-
tions on its ability to cooperate with other tools and to adapt to specific developer (or
system) needs.

Multiple tools are used toward the software development of a distributed program.
When these tools have different origins it is, in general, a programmer’s task to make
the bridge between these tools at both, conceptual and operational levels. Integrated
development environments aim at providing a consistent set of tools which are able
to exchange data and control information, and that ease the task of establishing the
correspondence between concepts at distinct abstraction levels.

Aiming at facilitating such integrated developer environments, the debugging en-

gine includes some relevant features, namely:

i) Internal extensibility. By changing the existing debugging engine libraries or by
adding new ones. To keep the complexity of the debugging engine low, such kind
of extensions should only be used to support new (and simple) basic services. For

more complex services, external extensions should be used;

ii) External extensibility. By adding new modules to the debugging engine. Being
less dependent from the debugging engine core, adding such modules will not
increase significantly the complexity of the debugging engine. Thus, such external

extensions are, therefore, appropriate to implement more complex services;

iii) Cooperation and integration ability. The debugging engine supports multiple client
tools acting concurrently upon the same target processes. By making use of such
feature, other software development tools may have access to debugging services
by registering themselves as client tools of the debugging engine, share informa-
tion with the debugging engine and get notifications from the debugging engine

on state changes in the target processes.

In the following we discuss how such features are supported by the software archi-

tecture of the debugging engine.

3.6.1 Internal extensibility

The debugging engine is structured in functional layers and new layers can be added to
provide additional functionalities. In this sense, Layer0y is extended by Layer0,, which,
in turn, is extended by Layer1,,, and so on. Additional facilities, such as process and

47

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.6. Extending the Debugging Engine

thread groups management or API wrappers to other languages, can easily be added
to the debugging engine as (internal) extensions. Figure 3.8 illustrates how internal

extensions are incorporated into the debugging engine software architecture.

-— New API

APl —»

Figure 3.8: Internal extensibility of the debugging engine

Our experimental work on Fiddle_J (see Section 5.2.2), which implements an object-
oriented API for the Java programming language, is a good example of an internal

extension to the debugging engine.

3.6.2 External Extensibility

Although some new functionalities may be provided as internal extensions to the de-
bugging engine, others require or recommend the client tool to have explicit knowl-
edge or even to directly interact with some of the additional components of the new

layer. These are called external extensions and are illustrated in Figure 3.9.

APl —

Figure 3.9: External extensibility of the debugging engine

Our experimental work on DEIPA; (reported in Section 5.5) is an example of such
and external extension. DEIPA was developed as an intermediary between a testing tool
and the debugging engine, aiming at supporting the testing and debugging sub-cycle
of the software development process.

48

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.6. Extending the Debugging Engine

3.6.3 Cooperation and Integration Ability

The adequate combination of software development tools, sharing information and
control data (see Figure 3.10) may contribute to make the software development pro-
cess more effective.

For example, combining a program visualizer and a distributed debugger in order to
cooperate by sharing data and control instructions may originate very interesting re-
sults. The former may present the software developer with an high-level view of the
distributed program, focusing on processes interactions and state changes. The latter

may provide the mechanisms for fine inspection and control of those processes, and to

Data exchange

Distributed Other
Debugger Tool

identify and locate their errors.

Figure 3.10: Cooperation ability of the debugging engine

Some efforts have already been made (although not completed yet) in providing
a close cooperation between the debugging engine and the Pajé visualizer, developed
at ID-IMAG, France. The benefits (and difficulties) of such cooperation are further
discussed in Section 5.7.

Parallel software development environments aim at providing the software devel-
oper with a consistent and uniform set of tools. These tools should be able to cooper-
ate and exchange data and control information. The proposed debugging engine may
play a relevant goal in such integrated development environments, as illustrated in
Figure 3.11.

Distributed
Debugger \
. Dataand control interchange
Other Other Other Other
Tool 1 Tool 2 Tool 3 Tool 4

Figure 3.11: Integration ability of the debugging engine

Previous experimental work was done towards the integration of the debugging

engine with graphical program editors, which were also used to provide animation of

49

3. FIDDLE: A DISTRIBUTED DEBUGGING ENGINE 3.7. Summary

the program execution to give debugging support to the developer. Such work on the
integration of the debugging engine in GRADE and EDPEPPS is reported in Section 5.6.

3.7 Summary

Distributed debugging has to deal with an increased set of difficulties, when compared
to sequential debugging, such as non-determinism, lack of global components (mem-
ory, clock, etc.), multiple execution flows, and variable communication delays.

The first and more natural approach to distributed debugging is to extend a sequen-
tial debugger to interact with more than one process, providing the software developer
with a single debugging interface to access all the processes of the distributed program.
Such an approach, however, needs to be complemented with services and functional-
ities which deal with the inherent characteristics of distributed programs and compu-
tations. In such a way;, it is possible to provide the software developer with a complete
debugging environment, which will help in the understanding of process interactions
and, therefore, in localizing, isolating and correcting the errors in the distributed pro-
gram.

In this Chapter we have presented a debugging engine for distributed programs.
The services and functionalities proposed for the debugging engine were strongly sug-
gested by the requirements posed by parallel software development environments
which supported visual parallel programming languages and models.

This debugging engine was described in detail, by discussing its aims, software
architecture, and how this software architecture allowed to fulfill those aims. One of
the aims that deserved particular attention was extensibility, which motivated the lay-
ered software architecture of the debugging engine. The debugging engine provides
a basic set of debugging functionalities and allows these functionalities to be comple-
mented with others, which can be developed anew and integrated into the debugging

environment.

50

The Fiddle Architecture and

Implementation
Contents
41 Introduction i, 52
4.2 The DDBG Distributed Debugger 52
4.3 The Fiddle Debugging Engine 55
44 SUMMAIY v vt ittt e et et e e e e 72

This Chapter illustrates how the debugging engine described in the previous Chapter
has been instantiated in two prototypes: the DDBG (Distributed DeBuGger) and Fiddle
(Flexible Interface for Distributed Debugging: Library and Engine).

51

4, THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.1. Introduction

41 Introduction

The debugging engine proposed in the previous Chapter was the result of an evolu-
tionary process which started with DDBG [CLD98, CLD01b, CLA99], our first design
and implementation of a distributed debugger, followed by PDBG [LC98a, CLV 98],
TDBG [LC98c] and, finally, Fiddle [LCMO03, LC01, LC99].

Although being the first design/implementation of the debugging engine, DDBG
already included many of its significant features. Much was learned with our experi-
ences with DDBG, and a reevaluation of the debugging engine functionalities, specially
concerning the basic services that should be provided and how they should be sup-
ported. This has driven to the design of DAMS and PDBG.

After our experiences with DDBG, the DAMS [CLV198] (Distributed Application
Monitoring System) research project was started. DAMS was much more ambitious
than DDBG, aiming at becoming a distributed monitoring and control infrastructure,
defining low level mechanisms which could be extended to support a set of services,
such as distributed debugging. Any service using the DAMS infrastructure could access
methods from other the services, easily exchanging data and control operations.

PDBG [CLV'98] (Process-level Debugger), a process-level distributed debugger
that was defined as a DAMS service, aiming at validating the DAMS architecture
and providing a distributed debugger would supersede the DDBG functionalities.
TDBG [LC98c](Thread-level Debugger) design aimed at extending PDBG to support
multi-threaded processes.

The first versions of DAMS and PDBG, although promising as research topics, had
very unstable implementations, limiting considerably the exploitation of their poten-
tial as research topics. Research work on DAMS has been continued in [Dua04]. TDBG
design relied on DAMS (like PDBG) as a basic infrastructure. The instability of the first
DAMS prototype and their repercussions on the stability of PDBG allowed to infer that
we would have similar repercussions on TDBG.

With Fiddle, we returned to a simpler software architecture and to a functionally
much closer to the original DDBG, targeted exclusively to debugging.

This Chapter contains a brief discussion (description and evaluation) of DDBG and
its software architecture, followed by a similar, although more detailed, discussion of
Fiddle.

4.2 The DDBG Distributed Debugger

Being a predecessor of Fiddle, DDBG has, indubitably, some historical interest in the
context of our research work. However, besides the historical interest, DDBG was a
major step in our work, as most of the main features of the distributed debugging

engine described in the Chapter 3 were already available in this tool.

52

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.2. The DDBG Distributed Debugger

421 The DDBG Architecture

The software architecture of DDBG has a distributed organization, consisting of mul-
tiple monitor/debugger instances which are scattered on the nodes of a distributed
computing platform. Figure 4.1 illustrates such software architecture with three differ-
ent kinds of processes involved: the target processes, the DDBG processes, and the user

interface (client tool) processes.

User machine

Machme 1:
(Debugger !

Controller library

ocal daemon

3 Process Pl
A -------------------------------- :

Main daemon-~ -

:-' Client tools DDBG Target processes
Figure 4.1: The DDBG software architecture

DDBG has a basic client-server architecture which follows the lines of the p2d2 de-
sign [Ho096]. The client processes are depicted in Figure 4.1 as user debugging in-
terfaces and other (debugging related) tools. These client processes are linked to the
DDBG Library, which provides access to the central controller and to all DDBG debug-
ging functionalities.

The target processes belong to the application being debugged. These application
processes may be spread over multiple nodes, and nodes may have different hardware
and/or operating systems. Heterogeneity concerns are handled by DDBG at the level
of its internal communication layer. It uses PVYM [GBD 98] for supporting the commu-
nication between the central controller and the local daemons and uses UNIX sockets
for the interactions between each client tool and the central controller. Heterogene-
ity is also handled by allowing multiple possible types of local node debuggers to be
integrated into the DDBG architecture.

The DDBG architecture internally consists of several component processes:

i) Central Controller. Coordinates the handling of the client requests, converting them

into a set of commands and distributes them to the relevant local node debuggers.

53

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.2. The DDBG Distributed Debugger

iif)

It is also responsible for processing the local node debuggers’ replies, and for send-

ing them back to the client processes;

Local Front-ends. There is one of these processes in each physical node with at
least one target process. Besides some local interpretation of the debugging com-
mands, it distributes them to the local debuggers and gets their answers back. The

collected answers are then passed unprocessed to the central controller;

Local Node Debuggers. A system-dependent sequential debugger, for a specific pro-
gramming language and the underlying hardware. There is a local node debug-
ger attached to each process of the target application processes, that applies the

inspection and control commands to that process.

The Interface Library. Any user tool can access the DDBG system as a client pro-
cess that uses an interface library to interact with the central debugging controller.
Through this interface library, client tools may control the DDBG system itself, the

target processes, and even interact with the other client tools.

The debugging services provided by the central controller to operate upon the
target processes are similar to those typically available in sequential debugging,
such as breakpointing and single stepping. However, the central controller may
access/control multiple target processes simultaneously. A detailed list of those
services is provided in [CLA96b, CLA96a].

Detailed information about DDBG software architecture and its services may be

found in [CLDO01b].

4.2.2 Evaluation of DDBG

DDBG was used in a large set of experiments, where its design options have been tested

and validated, some of them described in Chapter 5. From those experiments, we could

conclude that:

i)

iif)

The clear separation between the debugging engine and the user interface(s) pro-
vided the necessary freedom to allow the usage of DDBG in a wide (in scope and

complexity) set of experiments;

The library, as provided by DDBG, could be used by simple distributed debugging
user interfaces as well as for supporting loosely-coupled interactions with third

party tools;

Integration of DDBG with other tools, which require much tightly-coupled re-
lationships, required support for asynchronous event-based interactions. Such

mechanisms were not included in the initial planning of the debugging engine;

54

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

iv) To use sequential debugging requirements as the basis to define a minimal set of
services has proved to be an acceptable choice, as long as new (and more complex)

services could be defined and integrated into the debugging engine;

v) Different clients have different requirements and needs concerning the debugging
services to be supported by the debugging engine. To use a single layered software
architecture has proved to be acceptable but also to lack the flexibility necessary

to allow the extension of the debugging engine with new services;

vi) Experience has also shown that a stable implementation/prototype was a major
requirement for further evaluation and validation of the debugging engine and

for the development of its functionalities.

Based on the above analysis, we have redesigned the debugging engine software
architecture. The result was described in Chapter 3 as the Fiddle debugging engine,

whose internals of the software architecture will be analysed in the following.

4.3 The Fiddle Debugging Engine

The Fiddle debugging engine is, itself, a distributed program, and its multiple soft-
ware layers are supported by a set of processes (daemons) and libraries which are
distributed over the executing nodes.

The transfer of information between Fiddle layers implies the exchange of data be-
tween Fiddle components (libraries and daemons). Section 4.3.1 will discuss the Fiddle
software architecture, with a detailed analysis of each component and some of the most
relevant implementation issues. Section 4.3.2 focus in the discussion of how that data
is exchanged between Fiddle components. This discussion includes the performance

evaluation of two alternative communication protocols.

4.3.1 Fiddle Software Architecture

Functionally, each Fiddle layer supersedes the preceding one. Fiddle software archi-
tecture reflects this functional organization into layers, with each layer enclosing the
software architecture of the preceding one. In the following, the software architecture
is discussed in a bottom-up perspective, including a detailed explanation of each layer,

its components and their interactions.

The Layer0;

In simple words, we can say that Layer0;, the lowest layer, provides a function-based

interface to access a set of local node debuggers!.

!The GNU GDB is the only node debugger supported in current Fiddle implementation.

55

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

The software architecture of this layer is presented in Figure 4.2, in the center, to-
gether with two target processes on the right side and a client tool on the left. In this
example, the client tool (a debugging interface) is using Fiddle LayerO; library to operate

upon two local multi-threaded target processes.

Debugging Target
tool Layer Os application

Node Debugger éTargct Process
» //,;’(\\

,((' \
YY) |

< i |

Client Tol \\ 0 /’J

,
// N

Node Debugger é'[‘zu‘gcl Process

FOs—-Lib

Figure 4.2: The Layer0, software architecture

The LayerO, Library (FOs-Lib). Using LayerQ;, it is possible to transparently launch
a node debugger and attach it to a process already in execution, or to launch a new
process under the control of a new node debugger. In both cases, the final result will
always be identical: the target process will be stopped with a node debugger attached
to it, and under the control of Fiddle.

Any bidirectional local communication channel can implement the links between
the Fiddle LayerO library and the node debuggers. As an alternative to a bidirectional
channel, two unidirectional channels may also be used. In the current implementation
of Layer(Q,, these communication links are alternatively supported by Unix pipes or
Unix named pipes (fifos), selectable at compile time.

The internal data flow in the LayerOy library follows the scheme described in Fig-

ure 4.3.
ceeeoo..._ layerOsLibrary ___________
i O | (2] ’i Command
Generator

Figure 4.3: The Layer0; internal data flow and processing

Service requests arrive in the input port in the form of a function call [1], whose
arguments depend on the service requested. The service name and its arguments are

passed to a command generator [2], which creates the appropriate command for the

56

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

node debugger being used to control the target process. This string is then forwarded
to the IO manager [3], which is in charge of the communication with the node debug-
gers. The IO manager sends the command [4] to the appropriate node debugger and
waiting for its reply [5]. It then forwards the received reply to the parser [6], which
extracts all the relevant data in the reply into a tkout data structure. This structure is
then returned to the caller of the service function [7] and [8].

Itis assumed that there is only one execution flow (process/thread) interacting with
Fiddle by using Layer0;. If this is not the case, e.g., when multiple threads need to issue
service requests simultaneously, then one of the upper layers must be used.

The Layer0,,

The Layer0,, is backwards compatible with Layer0y, including the same set of services,
with identical syntax and very similar semantics. The only significant difference is the
additional support for simultaneous service requests from multiple programs flows
(threads) in the single client tool. Figure 4.4 describes the software architecture of this

layer (please note that, although very similar, Figures 4.4 and 4.2 are not identical).

Debugging Target
tool Layer Oom application

Node Debugger Target Process

B

Client Tool

Node Debugger Target Process

FOs—Lib
FOm—Lib

< i

Figure 4.4: The Layer0,, software architecture

The Layer0,, Library (FOm-Lib). Relying upon Layer0;, the Layer0,, is an internally
multi-threaded library, which multiplexes the service requests from the multiple pro-
gram flows of a Fiddle client tool to the multiple local target processes and vice-versa.
Figure 4.5 on the next page describes the execution and data flows of the Layer0,,.
Layer0,, contains one input and one output queue for each target process being de-
bugged, each holding the service requests to a specific target process and their replies
respectively. An additional pair of input/output queues is reserved for general service
requests which are not specific to any target process (yet), e.g., attaching Fiddle to a run-
ning process, or for services which deal with Fiddle internal status, e.g., list of processes
currently under debugging with their names, and their real and symbolic process IDs.
As in Layer0y, the client tool service requests arrive in the input port in the form
of a function call [1], whose arguments depend on the service being requested. The
arguments are then packed into a structure (the tkin structure) which is enqueued in

57

4. THE FIDDLE ARCHITECTURE AND IMPLEMENTATION 4.3. The Fiddle Debugging Engine

Main
Manager

Layer Om Library

Process 1
10 Manager

2 Process 2
10 Manager

Figure 4.5: The Layer0,, internal data flow and processing

the appropriate request queue [2] and the calling thread will block waiting for the reply
to be available in the reply queue [8].

If the service requested by the client tool is not specific to any target process, it is
directed to the main manager [3]. Some of the services processed by this component
will add a new target process into Fiddle and, in these cases, a new IO manager thread is
created [4], that will manage all future service requests directed to that specific target
process. The main manager will then ask the lower layer (Layer0;) to process the ser-
vice [5] and [6] and, once completed, the reply is enqueued into the output queue [7].
The original thread will then be unblocked and will receive the reply for the requested
service [8] and [9].

However, the vast majority of the client tool service requests are directed to a spe-
cific processes [a] and, in this case, the request will be enqueued to the process specific
request queue [b]. The IO manager thread, which was blocked waiting for requests to
arrive on its queue, is resumed [c] and requires the lower layer (Layer0O;) to process
the service [d] and [e]. The received reply is enqueued in the process reply queue [f]
and the IO Manager thread blocks again waiting for new service requests in its queue.
The calling thread will then be resumed and will receive the reply for the requested
service [g] and [h].

By holding requests (and replies) in thread-safe queues, it is possible to ensure the
internal queues consistency even when