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Resumo 

 

Os seres humanos conseguem identificar uma fonte sonora baseando-se apenas no som 

que produz. O mesmo problema pode ser adaptado a computadores. Vários 

reconhecedores de som foram desenvolvidos durante a última década. A sua eficácia 

reside nas propriedades dos sons que são extraídas e no método de classificação 

implementado. Existem várias abordagens a estes dois tópicos mas a maioria destina-se 

a reconhecer sons com características muito diferentes. 

 

Esta dissertação apresenta um reconhecedor de sons semelhantes. Como os sons têm 

propriedades muito parecidas o processo de reconhecimento torna-se mais difícil. 

Assim, o reconhecedor usa tanto as propriedades temporais como as espectrais dos sons. 

Para extrair estas propriedades usa o método Intrinsic Structures Analysis (ISA), que 

usa, por sua vez, Independent Component Analysis e Principal Component Analysis. O 

método de classificação implementado usa o algoritmo k-Nearest Neighbor. 

 

Os testes desenvolvidos permitem-nos concluir que estas propriedades são bastante 

eficazes em reconhecimento de som. Testámos o nosso reconhecedor com vários 

conjuntos de propriedades extraídas pelo método ISA obtendo óptimos resultados. De 

forma a comparar a capacidade humana com a do nosso reconhecedor fizemos um user 

study concluindo que os sons são de facto muito semelhantes e muito mais difíceis de 

identificar para um ser humano do que para o nosso reconhecedor.  
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Abstract 
 

 

Humans have the ability to identify sound sources just by hearing a sound. Adapting the 

same problem to computers is called (automatic) sound recognition. Several sound 

recognizers have been developed throughout the years. The accuracy provided by these 

recognizers is influenced by the features they use and the classification method 

implemented. While there are many approaches in sound feature extraction and in sound 

classification, most have been used to classify sounds with very different characteristics. 

 

Here, we implemented a similar sound recognizer. This recognizer uses sounds with 

very similar properties making the recognition process harder. Therefore, we will use 

both temporal and spectral properties of the sound. These properties will be extracted 

using the Intrinsic Structures Analysis (ISA) method, which uses Independent 

Component Analysis and Principal Component Analysis. We will implement the 

classification method based on k-Nearest Neighbor algorithm. 

 

Here we prove that the features extracted in this way are powerful in sound recognition. 

We tested our recognizer with several sets of features the ISA method retrieves, and 

achieved great results. We, finally, did a user study to compare human performance 

distinguishing similar sounds against our recognizer. The study allowed us to conclude 

the sounds are in fact really similar and difficult to distinguish and that our recognizer 

has much more ability than humans to identify them. 
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1. Introduction 

 

 

After hearing a sound, normally, humans are able to distinguish what caused it. For 

instance, we can recognize someone only by hearing his voice on the phone and we are 

able to distinguish our cell phone’s ring from the others. Over the years the possibility 

of computers doing the same has been studied. This is called (automatic) sound 

recognition. 

 

The potentialities of a sound recognizer are vast. Systems that actuate according to the 

recognized sound can improve our quality of life as they can help doing and even do 

activities for us (like turning lights on when someone claps, calling 112 when someone 

cries for help, etc.). There are two main types of sound recognizers: those that recognize 

the words in voice messages and those that recognize the sound sources.  

 

The most common sound recognition systems studied and developed are speech 

recognizers, such as those in cellular phones, cars, etc. The goal of a speech recognizing 

system is to recuperate the messages contained in the sound wave. This is done 

matching the tested samples with letters, combinations of letters and word samples. 
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From another point of view, there are sound recognizers that focus on finding the source 

that produced the sound, namely environmental sound recognizers. Most of these 

recognizers distinguish different sources of sounds like door bells, keyboards or 

whistles. Often, such recognizers can rely in the temporal signatures of the sounds 

because these sounds have very different temporal characteristics as they are produced 

not only by different objects but also by different events: there are differences in the 

properties of the objects (shape, size, material), the nature of the event (impact, ring, 

speech, etc.) and its characteristics (force, location of impact, etc.). On the other hand, 

the sounds used in this dissertation will be very similar to each other, which results in a 

more difficult problem and relying in their temporal signatures may not be enough. 

 

There are some examples of environmental sound recognizers that show how 

recognizing a sound source can be useful in mobile computing devices. In [1], sound 

classification methods to distinguish moving ground vehicle sounds (from different 

cars, trucks, SUVs and mini vans) are tested to use in a wireless sensor network. In [2], 

the main goal is to show that using audio, motion and light sensors can improve context 

awareness computing for mobile devices and artifacts. [3] shows how distinguishing 

sounds is also essential to multimedia information retrieval systems. 

 

Another good example of these potentialities is the importance of sound recognition in 

humanoid robots. A humanoid robot actuates according to the data sensed and could do 

a lot of everyday activities helping to improve our quality of life [4, 5]. It can obey to 

someone’s instructions or react according to the sensed sound (like a beep or an alarm). 
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While most environmental sound recognizers use sounds with different temporal 

signatures, here the sounds are produced by the same event, and consequently they will 

have very similar temporal signatures. We focus on the recognition of impact sounds 

caused by objects with the same size and shape which only differ on the materials. 

Since our sounds are so similar, we name the proposed recognizer a similar sound 

recognizer. 

 

We test our recognizer with both temporal and spectral features of the sounds. There are 

many proposals of how to extract these features and what temporal and spectral features 

to use. We use the Intrinsic Structures Analysis method [6], which in turn uses 

Independent Component Analysis (ICA) and Principal Component Analysis (PCA), to 

do that. Further, we compare the results retrieved using temporal and spectral 

signatures. 

 

Using the features extracted we define the classes of sounds, one for each of the object 

we use. Then we can implement the classification system: an application that matches a 

test sample with one of those classes of sounds. Many classification methods have been 

studied in order to find the one which can ensure better recognition results. Until today, 

the most useful methods use a k-Nearest Neighbor algorithm or implement Gaussian 

Mixture Models (GMM) or Hidden Markov Models (HMM) to model the existing 

classes of sounds.  We use the 1-NN algorithm in our classification system. 
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Section 2 reviews the basic theory of audio digitization and processing, while section 3 

describes previous work done in environmental sound recognition. We propose our 

solution in section 4 and discuss its implementation in section 5. Then we analyze the 

results in section 6.  We did a user study to compare the abilities of our recognizer with 

humans’ ability classifying the sounds used in this dissertation. We discuss this user 

study in section 7. We take conclusions in section 8. 
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2. Audio Processing Review 

 

In this section we review the theory of audio processing by computers: how we convert 

the audio signal from analog to digital and how we can process the digital 

representation of a sound. These topics can be extended in [7], [8], [9] and [10]. 

 

A sound is generated when something causes a disturbance in the density of gas, liquid 

or solid. These disturbances can be represented graphically as illustrated in figure 2.1. 

When those disturbances reach humans’ ears, the brain converts them into electric 

signals that travel along the brain and allow us to recognize sounds (as well as localize 

sounds sources, etc.). 

 

Figure 2.1: A sound wave example. The signal can be represented as a waveform, where 

each instant of time 𝑡 has an amplitude value 𝑥(𝑡). 
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Our goal is to process these audio signals in computers as we want to build a sound 

recognizer. Therefore, we have to see how we create the digital audio signal. Converting 

the audio signal from analog to digital, involves two processes: sampling and 

quantization. Sampling consists in storing the values of the wave at certain time 

instants. Each value stored is a sample point. After sampling is done, it returns a finite 

set of values. These values are rounded and converted to a 𝑘 bit number. This is called 

quantization. Using a low number of bits can produce higher quantization errors as the 

true amplitude values are further from their digital representation. By combining these 

processes it is possible to transform audio into a binary format that can be used in the 

computer. 

 

After the sound wave is digitized it can be processed in order to obtain more 

information about the sound. This section discusses some sound processing techniques: 

Discrete Fourier Transform (DFT), Discrete Wavelet Transform (DWT) and Discrete 

Cosine Transform (DCT). 

 

Fourier Transform converts a one variable function in another variable function. It is 

used to transform the time-varying waveform obtained after digitizing the sound into a 

frequency-varying spectrum more convenient to study the sound properties.   

 

If the input function is discrete and its non-zero values have a limited duration we can 

call this operation Discrete Fourier Transform (DFT). DFT transforms the time domain 

amplitudes sequence 𝑥0 , 𝑥1, … , 𝑥𝑁−1  into the frequency domain amplitudes sequence 

𝑋0, 𝑋1, … , 𝑋𝑁−1 as we can see in equation 2.1 where 𝑁 is the number of sampled points. 
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𝑋𝑘 =   𝑥𝑘 ∗ 𝑒− 
2𝜋𝑖

𝑁
𝑘𝑛𝑁−1

𝑘=0  , 𝑘 = 0, … , 𝑁 − 1                     (𝑒𝑞 2.1)              

 

This shows that sounds can be represented as a sum of 𝑁 sinusoidal components. These 

components describe the spectral characteristics of the sound and they can be used in 

order to recognize sound sources. 

 

However, we are interested in studying the sound in detail and Fourier transform may 

not be enough to detect highly localized information. Instead of applying the Fourier 

transform to the whole signal, we will cut the signal 𝑥 𝑡  into different sections, or 

windows, with a time based function and apply the DFT to each section. This process is 

called Short-Time Fourier Transform (STFT) and can be defined in equation 2.2 with 𝑁 

being the number of sampled points and where 𝑤(𝑡) is the time based function (window 

function) and 𝑚 and 𝜔 are the  instants of time and frequencies respectively. 

𝑆𝑇𝐹𝑇 𝑥 𝑡  = 𝑋 𝑚, 𝜔 =   𝑥 𝑘 ∗  𝑤 𝑘 − 𝑚 ∗  𝑒−𝜔𝑘𝑖

𝑁−1

𝑘=0

    (𝑒𝑞 2.2) 

The result of STFT can be represented as a matrix 𝑆 where 𝑎𝑓𝑡  is the amplitude at 

instant 𝑡 ∈ {0, … , 𝑇} and frequency 𝑓 ∈ {0, … , 𝐹}  (equation 2.3). 

 

             𝑆 =   

𝑎00 … 𝑎0𝑇

⋮  ⋮
𝑎𝐹0 ⋯ 𝑎𝐹𝑇

                              (𝑒𝑞 2.3) 

 

A graphical display of the magnitude of this matrix is called a spectrogram. In this 

graphic, the horizontal axis represents time and the vertical axis represents frequency. 

We can see the temporal evolution of each frequency bin in the horizontal axis. The 

amplitude for each instant of time and frequency bin is given by the intensity or the 
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color of each point in the image. For instance, figure 2.2 shows a spectrogram of a 

sound sampled from a staccato violin sound. The rows in the image are the frequency bins 

(higher frequencies have shorter duration). The brightness of the image points indicates 

the amplitude values (higher amplitude if brighter). 

 

 
 

 
Figure 2.2: Extracted from [11], spectrogram from a staccato violin sound. 

 

There is a tradeoff between the temporal and spectral representation given by the STFT 

related to the window function. A long window length provides a more detailed 

frequency representation. On the other hand, a short window provides a more detailed 

temporal representation and is, therefore, more appropriate for a time-analysis of the 

sound.  

 

One alternative to STFT is the Discrete Wavelet Transform (DWT). Its purpose is to 

decompose the sound wave function recurrently in more scaled functions. To obtain the 

DWT of a signal 𝑥 𝑡 , the signal has to be passed through a series of filters with 

different cutoff frequencies at different scales. The choice of the filters has to guarantee 

a perfect reconstruction of the sound wave from the coefficients extracted. 
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A one level transform of a signal 𝑥 𝑡  would be given by equations 2.4 and 2.5 where 

 𝑡  and 𝑔 𝑡  are the high and low filter respectively.  

 

𝑦𝑑𝑒𝑡𝑎𝑖𝑙  𝑡 =  𝑥 ∗   𝑡 =  𝑥 𝑘 ∗ (2𝑛 − 𝑘)

∞

𝑘=−∞

         (𝑒𝑞2.4) 

 

𝑦𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑒  𝑡 =  𝑥 ∗ 𝑔  𝑡 =  𝑥 𝑘 ∗ 𝑔(2𝑛 − 𝑘)∞
𝑘=−∞    (𝑒𝑞 2.5)  

 

For instance, we can see a three-level wavelet decomposition tree in figure 2.3. 𝑋 𝑛  is 

the sound signal, 𝐻0 the high filter and 𝐺0the low filter. ↓ 2 is the operation that 

retrieves the detail coefficients 𝑦𝑑𝑒𝑡𝑎𝑖𝑙 (𝑡) (𝑑1 𝑛 , 𝑑2 𝑛 , 𝑑3 𝑛 ) and the approximate 

coefficients 𝑦𝑎𝑝𝑝 𝑟𝑜𝑥𝑚𝑎𝑡𝑒 (𝑡) (𝑎3 𝑛 ).  

 

Figure 2.3: Three-level wavelet decomposition tree. 

 

Other sound transformation functions exist. An also popular one is the Discrete Cosine 

Transform (DCT) which defines the sound wave as a sum of sinusoids with different 

amplitudes and frequencies. The difference to the DFT is that it only uses cosine 

functions. 
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The points  𝑥0, 𝑥1, … , 𝑥𝑁−1  of the signal are transformed into 𝑋0, 𝑋1, … , 𝑋𝑁−1 as shown 

by equation 2.6 where 𝑁 is the number of sampled points. 

 

𝑋𝑘 =   𝑥𝑛 ∗ cos   
𝜋

𝑁
 (𝑛 + 

1

2
)(𝑘 +

1

2
)  

𝑁−1

𝑘=0

 , 𝑘 = 0, … , 𝑁 − 1        (𝑒𝑞 2.6) 
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3. State of Art 

 

 

There are two main factors that change the accuracy rate in sound recognition: the 

sound features used and the classification algorithm implemented. This section is 

divided in two parts: one that describes the progress in sound features extraction and 

another that describes the classification methods. 

 

 

Sound Features Extraction 

 

A sound can be described by temporal and spectral properties. These properties are the 

features sound recognizers use to classify the sounds. It is possible to extract several 

features from the sounds. We can divide these features in three categories: features 

derived from volume contour, features derived from pitch contour and frequency 

domain features [12]. 
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Features derived from volume contour describe the temporal variation of the sound’s 

magnitude. The volume value depends on the recording process. However, the temporal 

variation of its value reflects properties of the sound useful for sound recognition. 

Features derived from pitch contour describe the fundamental period of the sound. As 

an instance, these features can be used to distinguish voice samples from music samples 

which, usually, have a longer period than speech samples. Finally, there are frequency 

domain features which describe the frequency variation of the sound. These features can 

be extracted with Fourier Transform. 

 

We can see these three different feature types in figure 3.1. This figure shows the 

variation of the volume, the pitch and the frequency centroid of a sound sample 

recorded from a news television show. As mentioned above, these features describe 

properties of the sound. For instance, the volume variation shows the speaker talks 

always at approximately the same volume and allows identifying silence intervals when 

volume decreases to zero. The pitch variation shows when the speaker is talking slower 

or faster if the values are lower or higher respectively. We can also detect the silence 

intervals using the frequency centroid variation. Other sources can also be identified by 

inspecting this feature, for instance we can identify a source different from the speaker 

by noting a peak in this feature. 
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Figure 3.1: Extracted from [12], three different type features of the same sound. On top 

the waveform of the sound. On bottom from left to right: the volume variation, the pitch 

variation and the frequency centroid variation of the sound. 

 

There are several algorithms to extract these features [13].  Even though, there are 

several approaches in audio feature extraction, most of them compute spectrograms to 

extract the features. Consequently, these are short-time features. However, selecting 

what features to use in sound recognition is not a closed topic.  

 

There are several proposals of what features to use. Scheirer et al. developed a sound 

recognizer [14] which used a set of 8 features:  

 

 4 Hz modulation energy  

 Percentage of “Low-Energy” Frames 

 Spectral Rolloff Point 

news waveform 

volume variation pitch variation frequency centroid variation 
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 Spectral Centroid 

 Spectral “Flux” (Delta Spectrum Magnitude) 

 Zero-Crossing Rate (ZCR) 

 Cepstrum Resynthesis Residual Magnitude 

 Pulse metric 

 

Analyzing some of these features may make other good features. The variances of the 

derivative of Spectral Rolloff Point, of Spectral Centroid, of Spectral “Flux”, of Zero-

Crossing Rate and of Cepstrum Resynthesis Residual Magnitude can be used as 

features, too. 

  

As described in Table 3.1, each feature can be tested to find its usefulness. Although 

some features alone show a big error rate (for instance, note that Spectral Rolloff Point 

has an error rate of almost 50%), using the features all together provided great results 

(around 90% accuracy). 

 

 

Table 3.1: Extracted from [14], the error rate of the selected short-time features. 
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Other recognizer using short-time features was proposed by Eronen et al [15]. This 

recognizer used and tests separately a set of 10 features:  

 Zero-crossing rate  

 Short-time average energy   

 Band-energy ratio  

 Spectral Centroid  

 Bandwidth  

 Spectral roll-off point  

 spectral flux   

 Linear prediction coefficients,  

 Cepstral Coefficients  

 Mel-frequency cepstral coefficients (MFCC) 

When the features were tested, MFCCs provided the best recognition rate (above 60%). 

This is not the only example where MFCCs out-perform other features. In fact, MFCCs 

are very popular in sound recognition. They consist of a set of coefficients that make a 

short-term power spectrum of a sound, just like what is done by the Fourier Transform. 

However, while the Fourier Transform uses the Hertz scale, MFCCs use the Mel scale, 

which has frequency bands that are not equally spaced (in similarity to what happens in 

the human ear). 

 

One alternative to the MFCCs consists of extracting a set of features called Auditory 

Filterbank temporal envelopes. These features are representations of the sound 

processed as it is processed in the human auditory system. In order to extract these 

features the sound has to pass through filters designed to imitate the frequency 

resolution of human hearing.  
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These features were tested in a recognizer [16] which has the purpose of distinguishing 

scenes (popular music, classic music, speech, noise and crowd). The results showed 

they could out-perform MFCCs: Figures 3.2 and 3.3 show the classification result for 

each scene using MFCCs and the classification results using Filterbank envelopes 

respectively. We can see they provide better results in classes more related to speech 

sounds (noise, crowd). In classical music, MFCCs still provide much better results than 

these features. 

 

Figure 3.2: Extracted from [16], accuracy results provided by MFCCs. 

 

 

Figure 3.3: Extracted from [16], accuracy results provided by Auditory Filterbanks. 
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Other works process audio using Wavelet Transform (WT) instead of Fourier 

Transform. This results in different features as STFT transforms the sound in a 

spectrogram and WT decomposes the sound in various functions, as mentioned before 

in section 2. These features are extracted from these functions and were tested against 

MFCCs and short-time features. Figure 3.4 shows how MFCCs are more useful in 

sound recognition. While short-time features are comparable to the wavelet features, 

MFCCs retrieves higher recognition rates in every class tested. 

 

 

Figure 3.4: Extracted from [17], the accuracy results from wavelet features (DWTC) against 

MFCC and short-time features (FFT). 

 

 

One alternative to the features described above is using the MPEG-7 descriptors [16]. 

MPEG-7 is a standard that describes the multimedia content retrieved. It has a set of 

features which can be used instead of the MFCCs. In 2008, it was developed an 

environmental sound recognizer which used some Low Level Descriptors (LLDs) from 

MPEG-7: 
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 Audio Waveform – description of the shape of an audio signal 

 Audio Power – temporal descriptor of the evolution of the sampled data 

 Audio Spectrum Envelope – series of features that describe the basic spectra 

 Audio Spectrum Centroid – center of the log-frequency spectrum’s gravity 

 Audio Spectrum Spread – measure of signal’s spectral shape 

 Audio Spectrum Flatness – measure of how flat a particular portion of the signal 

is 

 Harmonic Ratio – proportion of harmonic components in the power spectrum 

 Upper Limit of Harmonicity – measure of the frequency value beyond which the 

spectrum no longer has any harmonic structure 

 Audio Fundamental Frequency – estimation of the fundamental frequency 

 

 

Table 3.2 allows us to compare the results from MFCCs with the results from MPEG-7 

descriptors. We can see that using the MPEG-7 allowed higher recognition rates but 

only for some classes. The rates for crowd sounds and train sounds are higher using 

MFCCs.  However, overall MPEG-7 descriptors retrieve great results and are powerful 

for environmental sound recognition consequently. 
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Table 3.2: Extracted from [18], the accuracy obtained with MFCCs (on the left) and 

with MPEG-7 descriptors (on the right). 

 

To provide better recognition rates some improvements over MFCCs [19] have been 

done, too. ICA can be applied over these features. The result features showed ICA 

transformation is useful in sound recognition [20]. One good example is a sound 

recognizer based on kitchen events (water boiling, vegetable cutting, microwave beep, 

etc.)  [21]. ICA was tested and also improved the accuracy results (Table 3.3) from 

80.6% to 85% as we can see in table 3.6. 

System Error Precision 

BASE 12.4% 80.6% 

ICA 9.2% 85.0% 

 

Table 3.3: Extracted from [21], the results with and without ICA transformation over 

the set of MFCCs. 
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Both ICA and PCA are not fully explored in environmental sound recognition. Instead 

of being applied only to the set of MFCCs, these techniques could be applied to the 

whole spectrogram retrieving new features that can be used. In speech recognition there 

are examples of how ICA and PCA can provide better results. In [22], the sound 

features were extracted applying ICA to spectrograms which were computed to 

represent the speech samples. The number of features extracted influences the results. 

However, we can see in Table 3.4 how features extracted with ICA could out-perform 

MFCCs: using only 20 or 30 basis functions extracted with ICA as features provides a 

lower error rate than using MFCCs. 

 

Table 3.4: Extracted from [22], the error rates of feature extraction with ICA against 

MFCCs. 

 

PCA was tested in distorted speech recognition [23]. PCA is applied to the 

spectrograms retrieving the features used in the classification method. It improved the 

recognition rates in more than 10% showing how these techniques can be useful in 

sound recognition. 
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Sound Recognition and Classification 

 

Above, we have seen several approaches in sound feature extraction. After extracting 

these features, it is necessary to implement a classification algorithm that uses the 

features to match the tested sounds to the right category. This section discusses some 

sound recognizers focusing on the techniques they use for classification. 

 

A technique that is used very commonly in sound classification and that gives very 

good results is the k-Nearest Neighbor (k-NN). As an illustration of a recognizer that 

uses k-NN, here we discuss Nitin Sawhney’s environmental sound recognizer, which 

distinguishes pre-defined classes such as people, voices, subway and traffic [24]. To 

implement the k-NN, each tested class is represented by a vector in multi-dimensional 

feature space. Then each tested sample is added to this space and it is assigned the most 

represented class in his k nearest neighbors. Sawhney concluded that the k-Nearest 

Neighbor classification technique, combined with Auditory FilterBank envelopes, gives 

good results on environmental sound recognition. Table 3.5 shows the results this 

recognizer obtained showing the recognition rate of each of the tested classes. While 

some classes show great recognition rate (for instance the recognition rate for voice is 

100%), some other classes (namely people and traffic) retrieved poor recognition 

results: 40%. The overall accuracy is 68%. 
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Table 3.5: Table extracted from [24]. The accuracy rates of the recognizer using 

FilterBank and k-NN. 

 

A recurrent neural network (RNN) was also used to classify these sounds but with very 

poor results, which shows that the k-NN is more appropriate for these classes. The 

implemented RNN uses RASTA (Relative Spectral Transform) coefficients which are 

useful in speech recognition and are short-time features. The maximum recognition rate 

returned was 73.5% using the data used to train the RNN. Using other data that would 

fit in the classes used, the recognition rate was 24% which is a very poor result. 

 

Neural networks can also provide good results in sound classification. An example of a 

neural network that can be used for sounds recognition is a Multi-Layer Perceptron 

network (MPN). Bugatti et al. used a MPN to classify sounds from five different 

contexts: instrumental music without voice, melodic songs, rhythmic songs, pure speech 

and speech superimposed on music [25]. The results from this classifier were compared 

against those of a (Naïve) Bayesian Classifier which uses only the ZCR feature.  
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Table 3.6 shows the music error rate, the speech error rate and the total error rate of 

both methods. We can see MPN provides much lower error rates. Although the 

Bayesian Classifier is a simple algorithm, the difference in the music error rate is 

considerable, which shows that the MPN is more appropriate to classify these sounds. 

 

 

Table 3.6: Extracted from [25], Error Rates returned by the MPN network (first row) 

and by ZCR with the Bayesian Classifier (second row).  

 

 Neural Networks are not the only alternative to k-NN. Other alternative proposed is the 

Nearest Feature Line (NFL) and the Nearest Center methods. These methods were   

compared to 1-NN and 5-NN [26]. To do this test, 16 different classes of sounds were 

used. Table 3.7 shows NFL usually provides higher recognition rates than k-NN. 

Nearest Center algorithm returns the worse results so we can assume it is not useful for 

sound recognition. 
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Table 3.7: Extracted from [26]: the error rates retrieved by the each classification method using 

different sets of features: a set of short-time features (Perc) and a set of k MFCC’s (CepsK). 

 

Support Vectors Machine (SVM) is another alternative to the k-NN algorithm. This was 

tested using five classes of sounds (silence, music, background sound, pure speech, non-

pure speech) [27]. However, we can only apply SVM if we use only two classes each 

time. In order to do this, the silence class was separated from the others 4 classes (non-

silence). Figure 3.5 shows how these other four classes were divided.  

 

Figure 3.5: Extracted From [27], sound classes division for multi-class classification 

using SVM. 
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Therefore, SVM is not a very practical method for environmental sound recognition, 

especially if using several sound classes. However, it can provide impressive 

recognition rates as shows Table 3.8: all the accuracy rates are higher than 90%. 

 

 

 

Table 3.8: Extracted from [27], sound classes division for multi-class classification 

using SVM. 

 

Other alternative to these techniques consists of using Gaussian Mixture Models 

(GMM). GMM consists in modeling a new cluster for each of the studied classes using 

its information. Assuming a cluster is denoted by 𝑦𝑘 , each one of them will have a 

related function 𝑝 𝑥 𝑦𝑘 . Assuming 𝑁 is the number of clusters generated, the 

classification algorithm assigns the cluster 𝑦𝑘  to the tested object 𝑥 if 

 

𝑦𝑘 = arg max1 ≤ 𝑖 ≤ 𝑁 𝑝(𝑥| 𝑦𝑖)  

 

GMM was tested in a recognizer proposed by Eronen et al [15]. To study the results 

GMM was tested with MFCCs and with a set of short-time features. The same test was 

done using 1-NN instead of the GMM. 

 



37 
 

Comparing the different features used and the classification methods, GMM classifier 

provides better recognition accuracy (63.4%) when using MFCCs. Considering MFCCs 

were proven to be very useful in sound recognition, GMM consists in a good technique 

for sound classification (figure 3.6).  

  

Figure 3.6: Extracted from [15], features’ recognition rate with two different classifiers 

GMM and 1-NN. 

 

Figure 3.6 shows that the 1-NN classifier was less impressive using MFCCs. However, 

using the Band-energy ratio features also grants good results (61.5%). This last example 

was once again tested for more general classes returning 68.4% accuracy. Using more 

general classes should improve the accuracy of the recognizer, though, because the 

temporal properties of the sound are more different making the classification process 

easier.  
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Instead of a k-NN or a GMM, a hidden Markov Model (HMM) can also be used as the 

classification framework. An HMM consists of a set of states and the probabilities of 

changing from each state to each of the other states. The probability of observing a 

sequence of states 

𝑌 =  𝑆𝑎 , 𝑆𝑏 , 𝑆𝑐 , 𝑆𝑑    

is given by 

𝑃 𝑌 =   𝑃(𝑌|𝑆𝑖

𝑁

𝑖=0

)𝑃 𝑆𝑖    

where 𝑁 is the number of states. 

 

Now it is necessary to adapt the HMM to the sound classification problem. Each class 𝑣  

is modeled into a HMM  𝜆𝑣 using the features extracted. For matching the tested sample 

with one of the classes, the recognizer identifies the sequence of states 

 

𝑂 =  𝑆𝑥 …𝑆𝑦  

 

using its sound features and assigns it to the class 𝑣 if 

 

𝑣 = arg max
1 ≤ 𝑣 ≤ 𝑉

𝑝(𝑂| 𝜆𝑣) 

  

One sound recognizer which uses HMMs was proposed by L. Ma et al. [28]. This 

recognizer uses MFCCs as features for the classification because they were 

demonstrated to achieve better performances with GMM. 
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The overall accuracy obtained with ten different environments was 91.5%. The same 

test was done with persons resulting in a 35% accuracy which can be justified by the 

short samples used in the test. However, the number is much smaller than the obtained 

by the HMM model. As we can see, combining MFCCs and HMM can provide great 

results (figure 3.7): in four different contexts the recognition rate was 100%. However, 

note that street context has a lower recognition rate of 75%. This happens because these 

sounds are similar to the Rail Station, the lecture and the car context sounds and similar 

sounds make the recognizer task harder. 

 

Figure 3.7: Extracted from [28], recognition rates of 10 contexts using HMM. 

 

HMM was, again, compared directly to GMM using MFCCs [29]. The test showed that 

HMM guaranteed 10% higher accuracy than GMM. To compare these results with the 

human ability, the same tests were done with persons. The average accuracy obtained is 

slightly higher than HMM which showed there is still progress to be done (figure 3.8). 
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Figure 3.8: Extracted from [29], the comparison of recognition rates for 18 contexts. 

 

In this same work, discriminative training was tested. Discriminative training adjusts the 

parameters of the HMMs assigning rules to reduce the error rate in recognition. 

However, it did not improve the accuracy obtained. On the other hand, discriminative 

training for the classification process was also tested by Eronen in 2003 [18] showing 

minimal improvements. 

 

We can conclude the classification framework used will always depend on the features 

used and their behavior. In this dissertation we will focus more on the feature extraction 

process than in the classification method. As we use signals (see next section) that can 

be seen as short-time features we will use the k-NN algorithm which was proven to 

retrieve good results (figure 3.6). 
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We can also conclude MFCCs are the features most popular in sound recognition since 

they provide high recognition rates. We will test the results of our recognizer with the 

features extracted by the ISA method against its results with MFCCs. We will show our 

features work better with such similar sounds as the ones we use. In the next section, we 

describe our solution extensively. 
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4. Proposed Solution 

 

 

Sound recognizers have to perform three steps to achieve their goal (figure 4.1). First, 

the sound has to be digitized and processed; it is transformed into a representation that 

is suitable for the extraction of features from its new digital representation. The next 

step consists of extracting the chosen audio features. Finally, these features will be used 

in the last step where the sound is classified (assigned to a class). 

 

 

 

Figure 4.1: The three steps of an environmental sound recognizer. 

 

The data used to test the proposed similar sound recognizer is a set of impacts on rods 

[6], which includes samples from four rods with the same length and diameter but 

different materials (wood, aluminum, steel and zinc plated steel). The sounds were all 

produced by impacts on the same region of the rod (close to the edge). Even though the 

Audio Digitization 

and processing 

Audio features 

extraction 

Sound 

classification 
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sounds differ from each other due to variations on the impact force and on the location 

of impact, they are quite similar as they are produced by the same type of event and by 

objects with the same shape and size which only differ in material. The first step of our 

classifier consists of digitizing the sounds, which was already accomplished in [6] with 

a sampling frequency of 44100 Hz, and representing them with spectrograms so that 

they are ready to be used by the next step of the recognizer. 

 

The next step (second stage of figure 4.1) consists of extracting the sound features. 

Instead of extracting pre-defined features of the sounds such as MFCCs or short-time 

features, our recognizer learns them from the data. In order to learn the features, the 

recognizer uses the Intrinsic Structures Analysis (ISA) method, which in turn uses 

Independent Component Analysis (ICA) and Principal Component Analysis (PCA) of 

the spectrogram of the sounds [6]. Here we prove that the features learned in this 

manner are powerful enough for sound classification of very similar sounds. These 

techniques allow us to extract time and frequency-varying functions that we use as 

features for classification in the third stage of the classifier (the third box in figure 4.1). 

 

The final step is to classify the sound. We use the features extracted with the ISA 

method in a 1-Nearest Neighbor Algorithm as we mentioned in the end of section 3 and 

explain it with detail below. We can see these three steps in figure 4.2. 

 

 

 

 

Figure 4.2: The three steps of the proposed sound recognizer. 
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The remaining of this section is divided in two parts. First, we describe both ICA and 

PCA techniques and the features we will extract after representing the sounds with 

spectrograms. Then, we describe the classification method. 

 

1. Features extraction with the ISA method 

 

The ISA method uses spectrograms as the initial representation of the sounds and 

extracts features from the spectrograms. It proposes two different ways of using the 

spectrogram (either the original spectrogram or the transpose) along with two distinct 

techniques to analyze them (ICA and PCA). We will use all these combinations 

separately and then compare the results obtained by each technique. 

 

ICA [30, 31] is a technique to separate mixed source signals from signal mixtures. 

Given a matrix S containing the signal mixtures, ICA’s goal is to find the matrix W so 

that the rows of X, the source signals, are the most independent possible: 

𝑋 = 𝑊𝑆 
 

  

𝑆 = 𝑊−1𝑋 = 𝐴𝑋 

As we have seen, the STFT of a sound S is a matrix of amplitudes  𝑎𝑓𝑡 . By assuming 

that S consists of a set of signal mixtures, ICA is able to separate the source signals by 

learning a matrix A that verifies 

𝑆 = 𝐴𝑋 
 

  

  

𝑎00 … 𝑎0𝑇

⋮  ⋮
𝑎𝐹0 ⋯ 𝑎𝐹𝑇

 =    

𝛼0 … 𝛾0

⋮  ⋮
𝛼𝐹 ⋯ 𝛾𝐹

   

𝑥00 … 𝑥0𝑇

⋮  ⋮
𝑥𝑁0 ⋯ 𝑥𝑁𝑇

   

 

where  ai0 …  aiT   is a signal mixture,  xi0 …  xiT   is a source signal and 𝑁 ≤ 𝐹. 
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This separation is done by representing each column of A as an orientation vector (i.e. 

basis function) of the correspondent line of X so that 

 

 𝑎𝑖0 …  𝑎𝑖𝑇 =  Ai
 T  𝑋   

*
 

 

 𝑎𝑖0 …  𝑎𝑖𝑇 =  𝛼𝑖 …  𝛾𝑖   

𝑥00 … 𝑥0𝑇

⋮  ⋮
𝑥𝑁0 ⋯ 𝑥𝑁𝑇

  
 

  

 

 𝑎𝑖0 …  𝑎𝑖𝑇 = 𝛼𝑖 𝑥00 …  𝑥0𝑇 +  … +  𝛾𝑖 𝑥𝑁0 …  𝑥𝑁𝑇   

 

where ait  is the inner product of the vector  Ai
 T =   𝛼𝑖 …  𝛾𝑖  and the ith  column in X: 

 x0i …  xNi  
T  . 

 

Just like ICA, PCA [30, 32] also decomposes S into matrixes A and X. The main 

difference is that PCA’s goal is not to find a matrix W such that the rows of X are 

independent but uncorrelated.  

 

The rows of X, the source signals, are the values of the features we will use for 

classification. They can be seen as time-varying functions (figure 4.3, left column) each 

one with an associated orientation vector. This vector can be seen as a frequency-

varying function (figure 4.3, right column). 

 

                                                           
*
 Ai

 T  is the ith  line of matrix A 
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Figure 4.3: Temporal features extracted with ICA from a wood sound (left column: source 

signals  xi0 …  xiT  ; right column: the associated orientation vector  δ0 …  δF T  ). 

 

As ICA and PCA are matrix operations we can perform them over the transpose of the 

sound’s spectrogram 

 

𝑆𝑇 = 𝐴𝑋 
 

  

  

𝑎00 … 𝑎0𝐹

⋮  ⋮
𝑎𝑇0 ⋯ 𝑎𝑇𝐹

 =    

𝛼0 … 𝛾0

⋮  ⋮
𝛼𝑇 ⋯ 𝛾𝑇

   

𝑥00 … 𝑥0𝐹

⋮  ⋮
𝑥𝑁0 ⋯ 𝑥𝑁𝐹

  

 

where  ai0 …  aiF   is a signal mixture and  xi0 …  xiF   is a source signal and 𝑁 ≤ 𝑇. The 

rows of 𝑋 are now frequency-varying functions (figure 4.4, left column) with an 

orientation vector associated that can be seen as a time-varying function (figure 4.4, 

right column). 
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Figure 4.4: Spectral features extracted with ICA from a wood sound (left column: source 

signals  𝑥i0 …  𝑥F ; right column: associated orientation vector  δ0 …  δT T). 

 

These are the two different types of analysis we perform. When we use the rows of 𝑋 as 

time-varying functions for features in our recognizer, we call this temporal analysis. 

When we use the rows of 𝑋 as frequency-varying functions, we call this spectral 

analysis. 
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1. Sound classification with 1-NN 

 

The third stage of our classifier (figure 4.2) uses a 1-Nearest Neighbor algorithm. In 

order to implement this algorithm, we need to build a training data set. Once that is 

done, the algorithm is ready to classify test samples: it matches the test sample to one 

record of the training data set based on the Euclidean distance. It just sees which 

training data sample is the closest to the tested sample. The tested sample is assigned 

the class that occurs more in the 𝑘 neighbors (1 in our case). 

 

The classification method of our recognizer is described by figure 4.5. Our training data 

is composed of the coefficients associated to 𝑀 orientation vectors of 𝑁 sounds (𝑁/4 

sounds for each of the four classes we have). Each record in the training data set 

consists of those 𝑀 coefficients from one sound (figure 4.5). The tested sample is 

composed by the 𝑀 coefficients associated to the same orientation vectors.  

 

Then, using 1-NN, we compare the value of the 𝑀 coefficients in one instant of time or 

frequency (depending on the analysis) of the training sample  

(𝐶1
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔  𝑆𝑎𝑚𝑝𝑙𝑒

, 𝐶2
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔  𝑆𝑎𝑚𝑝𝑙𝑒

 , … , 𝐶𝑀−1
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔  𝑆𝑎𝑚𝑝𝑙𝑒

, 𝐶𝑀
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔  𝑆𝑎𝑚𝑝𝑙𝑒

) 

with the 𝑀 coefficient values of the test sample 

(𝐶1
𝑇𝑒𝑠𝑡 , 𝐶2

𝑇𝑒𝑠𝑡  , … , 𝐶𝑀−1
𝑇𝑒𝑠𝑡 , 𝐶𝑀

𝑇𝑒𝑠𝑡 ) 

 

The 1-NN algorithm computes the Euclidean distances between the test sample and all 

training samples and returns the index of the training sample which is closest to the test 

sample: 

𝑖 = arg min1 < 𝑖 <𝑁   (𝐶𝑥
𝑇𝑒𝑠𝑡 − 𝐶𝑥

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔  𝑆𝑎𝑚𝑝𝑙𝑒  𝑖
)2𝑋

𝑥=1   
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with 𝑁 being the number of sounds in the training data and 𝑀 the number of used 

features. We repeat this process for various instants of time or frequency (depending on 

the analysis). The final class assigned to the tested sound is the one which occurs more 

in the instants selected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Classification scheme of our recognizer. 
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5. Implementation 

 

As discussed before, the implemented recognizer is divided in three phases. The first 

phase consists of transforming the data from a time representation (that is, from 

waveforms) into a spectrotemporal representation (which is suitable to be used in the 

next phase of the recognizer). This consists of taking the spectrograms of the sounds 

and concatenating them into a unique matrix. Then, the second phase consists of 

learning features that will later be used in a recognition algorithm. The features are 

learned by either ICA or PCA of the concatenated spectrograms. Finally, we use the 

features extracted by ICA or PCA for classification with the 1-NN algorithm. 

 

In order to train our recognizer we have to focus in two tasks. First, we have to build the 

training data. Then, we have to define how the classifier receives a sound and assigns it 

one of the classes of the training data.  
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 Building the training data 

 

As mentioned above, the sounds are initially represented by spectrograms, which are 

obtained by the STFT function with a 512-Hanning window, 512-point FFT and 256 

overlap. Figure 5.1 shows an example of a spectrogram from one of our sounds. This 

way, each sound is described by a matrix of frequency by time, i.e. an array of vectors 

𝑓1, 𝑓2 , … , 𝑓𝑡 ,  with 𝑡 being the number of spectrogram frames (that can be thought of as 

time instants) and 𝑓𝑥   the vector with the frequency values in instant  𝑥. The 

spectrograms are then concatenated into a bigger matrix. The way this concatenation is 

made depends on whether we use temporal or spectral analysis (see section 4). 

 

Let us first look into temporal analysis. In this case, the spectrograms, which have 

size  𝐹 × 𝑇 , are concatenated horizontally to obtain a bigger matrix of size  𝐹 ×  𝑁𝑇  

where N is the number of sounds, just as if the sounds were reproduced in sequence, one 

after the other. This bigger matrix is then used as input to ICA or PCA and we can see 

an example in figure 5.2. 

 

Figure 5.1: The spectrogram of one of the sounds made by a steel rod. 

F
re

q
u
e
n
c
y
 (

H
z
)

Time (s)

Spectrogram

0 0.2 0.4 0.6 0.8

0.5

1

1.5

2

x 10
4



52 
 

Figure 5.2: Example of a matrix of spectrograms for temporal analysis: (𝑆1, 𝑆2, 𝑆3 , 𝑆4) ∗. 

This matrix contains four sounds, each one made by a different rod. 

 

Now, let us look into spectral analysis. The spectrograms of size  𝐹 × 𝑇  are now 

concatenated vertically in order to compose a bigger matrix of size  𝑁𝐹 ×  𝑇 . The 

transpose of the obtained spectrogram, with size  𝑇 ×  𝑁𝐹 , is the matrix we use as 

input for ICA or PCA (figure 5.3). 

 

 

Fig 5.3: Example of a transposed matrix of transposed spectrograms for spectral analysis: 

(𝑆1
𝑇 , 𝑆2

𝑇 , 𝑆3
𝑇 , 𝑆4

𝑇). This matrix contains four sounds, each one made by a different rod. 

 

                                                           
*
 (A,B) is the horizontal concatenation of matrixes A and B. 
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The next step consists of applying ICA or PCA over the concatenated spectrograms 

described above. As explained above, ICA and PCA transform a matrix of mixed 

sources 𝑆 in a matrix of (estimated) source signals 𝑋 finding a transformation matrix 𝐴 

where each column is the orientation vector of each row of the matrix 𝑋: 

𝑆 = 𝐴𝑋 

In our implementation the matrix 𝑆 is the matrix of concatenated spectrograms. ICA 

learns matrix 𝐴 and along with it, it returns matrix  𝑋. In particular, we use the fastICA 

algorithm, which is the Matlab ICA implementation by Hyvärinen et al. [33]. Each row 

of the matrix 𝑋 is the value of one of the extracted features, strictly speaking it has the 

concatenation of 𝑁 values of one of the extracted features, where 𝑁 is the number of 

sounds.  

 

Figure 5.4 shows the values of one of the features obtained by temporal analysis with 

ICA. These values are arrays of amplitude varying over time until time instant 𝑁𝑇. 

Figure 5.5 shows the values of one of the features retrieved with spectral analysis with 

ICA. These values can be seen as arrays of frequency-varying amplitude.  

 

In both figures, the behavior of the selected feature for five aluminum sounds is 

represented in red, in blue for five zinc plated steel sounds, in green for five wood 

sounds and in black for five steel sounds. By looking into the values of the features in 

each figure, we can detect differences in the sounds according to their classes. In figure 

5.4, the steel sounds behave notoriously different from the other sounds: the amplitude 

on the beginning of first two sounds is much higher than for any other. On the other 

hand, in figure 5.5, it is the aluminum sounds that behave differently: we can see the 

aluminum sounds with much more amplitude than the others. 



54 
 

 

Fig 5.4: Values of an ICA feature obtained with temporal analysis over a spectrogram 

with 20 sounds (five from each class: aluminum in red, zinc plated steel in blue, wood 

in green and steel in black). 

 

Fig 5.5: Values of an ICA feature obtained with spectral analysis over a spectrogram 

with 20 sounds (five from each class: aluminum in red, zinc plated steel in blue, wood 

in green and steel in black). 

 

We use PCA like we use ICA because PCA also learns matrix 𝐴 to return matrix 𝑋. To 

apply PCA we use princomp Matlab function. Like in ICA, each row of matrix X 

contains N values of one feature being N the number of sounds. One of these rows 

extracted with PCA for temporal analysis can be seen in figure 5.6 and one extracted 

with PCA for spectral analysis can be seen in figure 5.7. 

 

Like with the ICA features, PCA features also allow us to distinguish some classes of 

the sounds immediately. In both figure 5.6 and 5.7, the aluminum sounds and the steel 

sounds have low amplitude values compared to the zinc platted steel sounds and the 

wood sounds. 
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Fig 5.6: Values of a PCA feature obtained with temporal analysis over a spectrogram 

with 20 sounds (five from each class: aluminum in red, zinc plated steel in blue, wood 

in green and steel in black). 

 

Fig 5.7: Values of a PCA feature obtained with spectral analysis over a spectrogram 

with 20 sounds (five from each class: aluminum in red, zinc plated steel in blue, wood 

in green and steel in black). 

 

Then we have to build our training data using the matrix X which is returned by PCA or 

ICA. As we have seen, each record of our training data set consists of the selected 

coefficients of one of the 𝑁 sounds. To select the coefficients we sort the orientation 

vectors according to the percentage of variance they account for. We select some of the 

most dominant orientation vectors and use the corresponding coefficients to build the 

training data set. Sorting the orientation vectors is an easy task for PCA but hard for 

ICA as the orientation vectors are perpendicular with PCA but not with ICA (that is, 

with PCA the inner product is zero while it may be different from zero with ICA), 

which means that it is hard to know how much of the variance of the data one 

orientation vector from ICA accounts for.  
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To build the training data set we will group the values for the 𝑀 features of each sound 

as is illustrated in figure 5.8: we will build 𝑁 matrixes with size 𝑀 × 𝑇 for temporal 

analysis or 𝑁 matrixes with size 𝑀 × 𝐹 for spectral analysis. Each matrix built is one 

record of the training data set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: A set of 10 features extracted with PCA for spectral analysis and how we 

use it to build the training data set. 
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 Classification of the tested data 

 

To classify a sound from the test data set, we do not need to perform ICA or PCA over 

its spectrogram and compare the obtained features with the ones from our training data. 

Instead, we use the orientation vector matrix that was previously learned by ICA or 

PCA (that is, matrix 𝐴). 

 

As we have seen after performing ICA and PCA we obtain two matrixes 𝐴 and 𝑋 and 

we use sub matrixes 𝐴’ and 𝑋’ to build the training data set: 𝐴′ of size (𝐹 ×  𝑀), and 𝑋′ 

of size (𝑀 ×  𝑁𝑇) with 𝑀 being the number of used features. 

 

𝑆 =        𝐴     ∗     𝑋  

  𝐹 ×  𝑁𝑇             𝐹 ×  𝑀          𝑀 ×  𝑁𝑇 

 

Now, let’s assume 𝑆1 is our test sound spectrogram instead of the spectrogram of all the 

training sounds  

 

𝑆1 = 𝐴  ∗   𝑋1  
 

  

  𝐹 ×  𝑇    𝐹 ×  𝑀     𝑀 ×   𝑇           

   𝐴−1𝑆1  = 𝐴−1 ∗  𝐴  ∗   𝑋1   
 

  

 𝑋1 = 𝐴−1𝑆1    
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𝑋1  is the matrix with the features represented according to the orientation vectors 

stored in matrix 𝐴 (that was learned by ICA or PCA of the training data). The obtained 

matrix 𝑋1  is the one we use for classification. 

 

As we have seen, each record of our training data is a matrix  𝑀 ×  𝐹  or  𝑀 ×  𝑇  just 

like the matrix we obtained above. Each column of this matrix represents the value of M 

features in one instant of time or for one frequency bin depending on the analysis 

(spectral or temporal) we are using. 

 

We do not need to use all of the columns of these matrixes in the classification method 

due to the features usual behavior. Since this dissertation is based on impact sounds 

with very short duration, using few time instants is enough to describe the sound and 

distinguish its class. This is shown by figure 5.9 where we compare the values of the 

first feature of one aluminum sound and one wood sound extracted with temporal 

analysis respectively. It turned out that when values of the features are spectra 

(extracted by spectral analysis) it is also not necessary to use the whole spectrum to 

distinguish sounds from different classes. We obtained equally good results using the 

whole spectrum and only a sub-spectrum (figure 5.10). 
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Fig 5.9: Temporal feature extracted with ICA of an aluminum sound (left) and one 

wood sound (right). In red, the instants we use in the classification. 

 

  

Fig 5.10: Spectral feature extracted with ICA of an aluminum sound (left) and one wood 

sound (right). In red, the frequency bins we use in the classification. 

 

The 1-NN algorithm compares each (tested) column of the matrix 𝑋1 obtained for the 

test sample with the respective columns of the 𝑁 records of the training data set. For 

each tested column, the algorithm returns the index of the training record whose column 

is nearer the one obtained for the tested sound. Each training record has a class 

assigned. The class that occurs more often in the amount of columns we use is the one 

assigned to the tested sound. 
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6. Result Analysis 

 

We have conducted several experiments to test our recognizer. In this section we 

analyze the results obtained after doing both spectral and temporal analysis with both 

ICA and PCA. In the end, we validate our results: we test our recognizer with MFCCs 

and compare the results with the ones we obtained with our features. 

 

Our data consists of 18 sounds of aluminum, 15 of zinc plated steel, 16 of wood and 15 

of steel. We build two training sets for all analysis we perform: one with 20 sounds (five 

of each class) and one with 40 sounds (ten of each class). The remaining sounds are the 

sounds we use to test our recognizer. 

 

 ICA – Temporal Analysis 

 

We can see the results of temporal analysis with ICA in figure 6.1. When using the 

smaller training set, we obtained recognition rates of 92% for aluminum, 90% for steel 

with zinc, 100% for wood and 80% for steel. When using the bigger training set, the 

rates were 80% for zinc plated steel and 100% for all other sounds.  
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 ICA – Spectral Analysis 

The results of spectral analysis with ICA can be seen in figure 6.2. We obtained rates of 

100% for aluminum and zinc plated steel sounds, 73% for wood sounds and 60% for 

steel sounds with the smaller training set. On the other hand, we obtained rates of 83% 

for wood sounds and 100% for the rest of them when using the bigger training set. 

 

Fig 6.1: Temporal analysis with ICA results.

 

Fig 6.2: Spectral analysis with ICA results. 
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If we compare the spectral analysis results with the temporal analysis results we see the 

difference is minimal. When using the bigger training set the results are overall the 

same. The difference is that, in temporal analysis, one sound of zinc plated steel is not 

well recognized (which results in a recognition rate of 80% for this rod) and in spectral 

analysis this happens with a wood sound (which results in recognition rate of 83% for 

this rod). When using the smaller training set, we only get 100% recognition with wood 

sounds when doing temporal analysis. We suspect that the temporal functions from the 

other rods have more similarities and are harder to distinguish. If we look at the spectral 

analysis results, we get a recognition rate of 100% in both aluminum and zinc plated 

steel sounds. However, the rates for wood and steel sounds are smaller. We only got 

60% for the steel sounds as the recognizer classified 40% of the steel sounds as 

aluminum instead. Nonetheless, the overall results are excellent and show how powerful 

the features extracted with ICA can be for similar sound recognition. 

 

 PCA – Temporal Analysis 

The results of temporal analysis with PCA are shown in figure 6.3. When using the 

smaller training set, we obtained recognition rates of 100% for all sounds except for 

steel sounds where we get 70% rate. When using the bigger training set, the rates are 

always 100%. 

 

 PCA – Spectral Analysis 

The results of spectral analysis with PCA are shown in figure 6.4. When using the 

smaller training set, we obtained recognition rates of 100% for aluminum sounds, 90% 

for zinc plated steel sounds, 91% for wood sounds and 90% for steel sounds. When 
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using the bigger training set, the rates are 100% for all materials except for wood 

sounds where we obtain a recognition rate of 83%. 

 

 

Fig 6.3: Temporal analysis with PCA results. 

 

Fig 6.4: Spectral analysis with PCA results. 
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The results from both spectral and temporal analysis with PCA are very similar. When 

using the bigger training set, we get an overall recognition rate of 100% with temporal 

analysis and only one wood sound was not well recognized with spectral analysis 

(retrieving a recognition rate of 83% for this rod).  

 

When using the smaller training set, we registered three steel sounds badly recognized 

with temporal analysis. On the other hand, when we performed spectral analysis our 

recognizer failed to classify three sounds as well: one of zinc plated steel, one of wood 

and one of steel. 

 

Comparing these results to the ICA results, the difference is minimal. The overall 

results show PCA provided slightly better rates. We suppose this happens because when 

selecting the ICA set of features we use, we sort it by variance and use the first ones. 

Instead, we could find the features that describe the difference between the materials 

and we suppose we could retrieve better results even using fewer features than the ones 

we use. However, the main conclusion these results allow us to make is that both ICA 

and PCA are really powerful techniques to extract sound features.  

 

We can also compare the spectral analysis with the temporal analysis in general. 

Although temporal analysis also retrieves slightly better results, it is hard to conclude if 

it is really better than spectral analysis, too. Initially we thought spectral features would 

retrieve better results since the sounds are so similar. However, these techniques are 

powerful enough to extract the temporal features which distinguish the sounds. 
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 MFCCs 

 

As previously mentioned, MFCCs are very popular in sound recognition. MFCCs 

consist in a set of coefficients that describe the power spectrum of a sound. Since 

MFCCS are so popular and we want to see which features perform better, we used 

MFCCs with our data to compare their results with those obtained with our features. 

 

The results of replacing our features by MFCCs in our recognizer are shown in figure 

6.5. We use the kannumfcc Matlab function [34] and extract 11 coefficients which we 

use in our recognizer. When using the smaller training set, we obtained recognition rates 

of 83% for aluminum sounds, 70% for zinc plated steel sounds, 64% for wood sounds 

and 50% for steel sounds. When using the bigger training set, the rates are 100% for all 

aluminum and zinc plated steel sounds while we get a rate of 67% for wood sounds and 

60% for steel sounds. 

 

 

Fig 6.5: Results using MFCCs. 
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MFCCs with the lower training set provide a low overall recognition rate of 66.75%. 

We can see clearly that increasing the training set provides much better results. 

However, even with the bigger training set the results obtained with MFCC are lower 

than any other analysis we previously performed. 

 

 

Fig 6.6: Overall recognition rates provided by all the analyses made. 

 

 

Figure 6.6 shows the comparison of all the analysis made. The temporal analysis with 

PCA retrieves the best results achieving 100% recognition in all four classes of sounds 

we have. The other three analyses we performed only were mistaken in one sample 

when using a training set of 40 sounds. Even with a smaller training set of 20 sounds, 

both temporal and spectral analyses retrieved an overall recognition above 83% when 

using ICA and above 90% when using PCA. 

 

 

83,95
92,75 90,5

92,5

66,75

95,75 95,75 95
100

81,75

0

20

40

60

80

100

120

Spectral ICA Spectral 
PCA

Temporal 
ICA

Temporal 
PCA

MFCC

20 sounds

40 sounds



67 
 

 

Compared to the results we obtained using MFCCs, any of our features set is much 

better. MFCC with the bigger training set only returns an overall recognition rate of 

81,75% which is smaller than any recognition rate any analyses (even with the smaller 

training set) we made before provided. 

 

It is important to remember the sounds are very similar. This makes the recognizer task 

more difficult. Therefore, the MFCCs results can be seen as good. However, this just 

shows the features learned by ICA and PCA are much stronger in our recognizer and 

consequently in environmental sound recognition. 
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7. User Study 

 

 

As seen in the previous section, the proposed recognizer gives excellent recognition 

rates, which are even higher than those obtained when we substitute the features learned 

by the ISA method by MFCCs, which, as mentioned above, are very commonly used in 

tasks of this nature. A natural question that follows is if the recognizer can surpass 

human ability to classify similar sounds and if the sounds are actually hard to 

distinguish. To answer these questions, we conducted two user studies.  

 

In these studies, the subjects heard sounds from impacts on four rods and were asked to 

try to identify the class of the sound (that is, if the sound is from an aluminum rod, a 

wooden rod, etc.). The sounds used in the studies were the same as those used to train 

and test our recognizer. Below, we give more details about the protocols and the results. 

Lastly, we analyze the results by material and compare them with the results our 

recognizer obtained. 
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 Protocol 1 – user study without feedback 

 

Before the actual test starts, the users hear two sounds of each of the four classes 

(aluminum, steel, zinc plated steel and wood). A dialog box (figure 7.1) is presented 

that indicates the type of sound that is going to be played and that guarantees that the 

users only hear the sound when they are ready. In order to have no presentation order 

effects, the order of presentation of the sounds varies so that different subjects can hear 

the sounds in different orders but the sounds from the same class are always presented 

consequently. For example,  the user may first listen to two aluminum sounds, then two 

wood sounds, etc. or he/she may first hear two steel sounds, then two aluminum sounds, 

etc. The same sounds were used for all subjects. 

 

 

Figure 7.1: Dialog box for the first listening samples 

 

Afterwards, subjects were explained that they would hear sounds from the same four 

classes that they heard in the first part of the test and that they had to identify the class 

of the sound. In order to familiarize the subjects with the process there were eight 

training trials (with no feedback): using the dialog boxes presented in figure 7.2 and 

figure 7.3 the user hears eight sounds presented randomly (two from each class) and 

tries to identify the material of the rod that produced the sound. The order of the buttons 

varies from user to user but the sounds used are always the same. 
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Figure 7.2: Dialog box to listen to the train and test samples 

 

 

Figure 7.3: Dialog box to identify the material that caused the heard sound 

 

Then the actual test begins with the same dialog boxes (figures 7.2, 7.3). The subjects 

heard 41 sounds present in random order and with no repetitions: 7 of aluminum, 11 of 

zinc plated steel, 12 of wood and 11 of steel. The sounds presented are the same for all 

tests done, only the order of presentation differs. The study is performed in a laptop 

using headphones. 

 

 Protocol 2 – user study with feedback 

 

While doing the user study described above, we concluded it was very difficult for the 

users to distinguish the sounds. Therefore, we conducted a new user study very similar 

to the previous one but in which we provided feedback in the training phase. 
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Like before with protocol 1, first the users heard two sounds from each class. Also like 

before, they were explained that in the next stage they would hear sounds from the same 

four classes that they heard in the first part of the test and that they had to identify the 

class of the sound. They are presented 12 training trials but here they receive feedback 

on whether their answers were correct or wrong: the subjects heard 12 sounds (three 

from each class) and tried to identify the class of the rod which caused the sound 

(figures 7.2 and 7.3). After the user identifies the class, a dialog box (figure 7.4) pops up 

with the answer: “correct” if the user identifies the class with success or “wrong” with 

the right answer otherwise. 

 

 

Figure 7.4: Dialog box with the right answer during the training samples. 

 

Lastly, like in protocol 1, the actual test begins. The user, using the dialog boxes of 

figures 7.2 and 7.3, tries to identify the classes of 32 sounds: 7 of aluminum, 10 of zinc 

plated steel, 5 of wood and 10 of steel. The sounds used are always the same, only the 

order changes. The study is performed in a laptop using headphones. 
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 Results 

 

The first user study we conducted had 12 participants with ages between 23 and 55. 

None had hearing problems and two had acoustics knowledge. The results can be seen 

in table 7.1.  

 

 Aluminum Zinc plated steel Wood Steel 

Aluminum 22.619% 53.571% 0% 23.81% 

Zinc plated steel 43.939% 24.242% 0% 31.818% 

Wood 1.3889% 0% 97.917% 0.69444% 

Steel 28.03% 25.758% 0% 46.212% 

Table 7.1: The table of answers of our first user study. Each row states the answers 

obtained for each material. 

 

For aluminum sounds, there were only 22.619% right answers. When mistaken, 

53.571% of the answers were zinc plated steel and 23.81% were steel. No user thought 

that an aluminum sound came from a wooden rod. For zinc plated steel sounds, we 

registered 24.242% right answers. Like with aluminum sounds no user mistaken zinc 

plated steel with wood. However, 43.939% of the answers were aluminum and 31.818% 

were steel. The set of answers for the wood sounds had much better results: 97.917% of 

right answers. On the other hand, we had three wrong answers: two answers with 

aluminum (1.3889%) and one with steel (0.6944%). Finally, we had 46.212% right 

answers for the steel sounds. For the wrong answers, 28.03% were aluminum and 
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25.758% were zinc plated steel. Like with aluminum and zinc plated steel sounds, none 

of the wrong answers of the steel sounds were wood. 

 

The second user study we conducted provided better results as the users had more 

“training” than in the first user study. We had 11 participants with ages between 23 and 

50. None had hearing problems and one had a high level of acoustics knowledge. The 

results are shown in table 7.2. 

 

 Aluminum Zinc plated steel Wood Steel 

Aluminum 53.247% 23.377% 0% 23.377% 

Zinc plated steel 26.364% 40.909% 0% 32.727% 

Wood 0% 0% 100% 0% 

Steel 27.273% 28.182% 0% 44.545% 

Table 7.2: The table of answers of our second user study. Each row states the answers 

obtained for each material. 

 

For the aluminum sounds, we registered 53.247% of right answers. 23.377% of the 

answers were wrong stating zinc plated steel and 23.377% stating steel. Like in the first 

user study nobody has mistaken wood for aluminum. For the zinc plated steel sounds, 

we saw 40.909% right answers. 26.364% of the answers were mistaken for aluminum 

and 32.727% for steel. The wood sounds we got 100% of right answers. Finally, we 

registered 44.545% of right answers for the steel sounds. 27.273% of the answers were 

mistaken for aluminum and the rest (28.182%) for zinc plated steel. 
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 Result Analysis 

 

The results show that the sounds used in this dissertation are very hard for humans to 

distinguish. The low percentage of right results for aluminum and zinc plated steel 

sounds registered in the first study made us do a new user study with more training for 

the users. The results improved for these materials in the second study. The percentages 

of right answers are inferior to 55%, though. This shows how hard it was for the users to 

distinguish the metal sounds. The random order of the sounds during test also influences 

the results because people tend to forget the characteristics of the sounds they 

memorized before. 

 

The mistaken answers also reveal that the sounds are so similar. For instance, in the 

second study, when missing the aluminum answer, we detect the same percentage of 

wrong answers for steel and zinc plated steel. The users assume it can be any of the 

three metals when confused. 

 

On the other hand, the wood sounds are easy to recognize for the users. The sound from 

the wood rods is really different from the sounds of the metal rods. This is proved by 

the 100% right answers we registered in the second user study we performed. 
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The percentage of steel sounds recognition was much higher than the percentage of 

right answers for aluminum or zinc plated steel in the first user study. However, it did 

not improve in the second user study where users got more training. 

 

We did register in the second user study, one test where the user had a high knowledge 

of acoustics. He only missed six answers out of thirty-two: three zinc plated steel 

sounds and three steel sounds. This shows the sounds have in fact different 

characteristics and can be distinguished from each other. It is just hard for the untrained 

human ear to do so.  

 

We can see in figure 7.5 the comparison of the results obtained in the two user studies 

with the ones obtained from our worst case scenario recognizer (spectral ICA) and the 

ones obtained using MFCCs. Our recognizer has much better recognition rates than 

those of humans. Even with MFCCs, which retrieve much worse results than our 

recognizer, the system gives better recognition rates than those of humans. The only 

case where humans register more correct answers is for the wood sounds. However, our 

recognizer also registers 100% rate for wood sounds with temporal ICA and temporal 

PCA. 
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Figure 7.5: Comparison of the recognition rates obtained by our user studies with the 

ones obtained with MFCCs and with Spectral Analysis with ICA (both with training set 

of 20 sounds). 
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8. Conclusions 

 

 

A system for recognizing very similar sounds has been described. This environmental 

sound recognizer uses the features retrieved by the ISA method which in turn uses ICA 

and PCA to learn them. Afterwards, the recognizer uses these features to train a 1-NN 

algorithm that can then be used to classify new sounds. 

 

The results obtained give very good recognition rates. We performed several tests with 

different sets of features and in our worst case scenario it retrieved an overall 

recognition rate of 83.5%. However, increasing the number of training samples of our 

recognizer improved these results for an overall recognition rate of 95.75%. In our best 

case scenario, the recognizer retrieved an overall recognition rate of 100%. 

 

We used four different set of features: we made two different analyses with both ICA 

and PCA. First, we did temporal analysis where we extracted the temporal properties 

from the sound spectrogram. Then, we made spectral analysis where we extracted the 

spectral properties of the sound.  
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It is difficult to say which analysis is better because the results are very similar. The 

higher rate we obtained with the smaller set was with spectral analysis with PCA 

(92.75%). On the other hand, the higher rate we obtained with the bigger training set 

was with temporal analysis with PCA (100%). Therefore, both retrieve really good 

results and it is hard to say one is better. 

 

Comparing ICA to PCA, PCA returns slightly better results. However, the difference is 

not significant since it is not over 5%. Both techniques are really powerful to perform 

both spectral and temporal analysis. 

 

In order to validate our recognizer, we, then, tested it with MFCC features instead of 

our features since MFCCs are really popular in sound recognition and, usually, return 

good results. We obtained an overall recognition of 66.75% with the smaller training set 

and 81.75% with the bigger set. Considering the smaller recognition rate we obtained 

with our features with the bigger training set was 95% we can conclude our features are 

much more powerful for sound recognition than MFCCs at least with the 1-NN 

algorithm in the classification method. 

 

Finally, to compare human ability to distinguish our sounds from our recognizer’s 

ability, we performed two user studies where users had to hear a sound and then identify 

what material caused it. The sounds used are the same as those used to train and test our 

recognizer: impact sounds made by rods which only differ in their material. We 

concluded that the metallic rods (composed by aluminum, zinc plated steel or steel) 

were really hard to distinguish. Only nearly half of the metallic sounds were well 
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identified in the second user study. On the other hand, the wood sounds were very easy 

to identify for the users since in our second user study all of them were well identified. 

However, the overall recognition rate is much smaller than our recognizer’s. We 

concluded the sounds are, in fact, very similar and hard to distinguish which makes the 

recognizer’s task harder. Nonetheless, the recognition rates obtained are very good even 

with few training samples proving ICA and PCA extract powerful features for sound 

recognition. 

 

 Future Work 

 

For future work, it is possible that other classification method retrieves even better 

results. We saw in section 3 that MFCCs combined with HMMs retrieved great results. 

However, as our features act as short-time features we implemented the classification 

method based on a 1-Nearest Neighbor algorithm since it always retrieved good results 

in sound recognition with this type of features. It does not necessarily mean 1-NN 

algorithm is really the best for these features and other methods should be tried such as 

k-NN with k higher than 1, GMM, neural networks,  SVM, or k-means. 

 

As seen above, the ISA method is able to learn both temporal and spectral features. We 

only used these sets of features separately. However, together, they could retrieve even 

better results. It would be interesting to see the type of improvement on the recognition 

rate that would result by combining both types of features. 

  



80 
 

 

 

 

 

 

 

9. References 

 

  

[1] Baljeet Malhotra, Ioanis Nikolaidism and Janelle Harms. “Distributed classification 

of acoustic targets in wireless audio-sensor networks”, in: Computer Networks: The 

International Journal of Computer and Telecommunications Networking, volume 52, 

issue 13, pages 2582-2593. Year of Publication: 2008. 

[2] Hans-W. Gellersen, Albrecht Schmidt and Michael Beigl. “Multi-Sensor Context-

Awareness in Mobile Devices and Smart Artifacts”, in: Mobile Network Applications, 

volume 7, issue 5, pages 341-351. Year of Publication: 2002. 

[3] Joan C. Nordbotten, “Multimedia Information Retrieval Systems” web-book in 

http://nordbotten.com/ADM/ADM_book/ . Year of Publication: 2008.  

[4] MIT Artificial Intelligence Laboratory, webpage: 

 http://www.ai.mit.edu/projects/humanoid-robotics-group/ 

[5] European Robotics research Network, webpage: http://www.euron.org/ 

[6] Sofia Cavaco and Michael S. Lewicki, “Statistical modeling of intrinsic structures 

in impact sounds”, in: Journal of the Acoustical Society of America, vol. 121, n. 6, 

pages 3558-3568. Year of Publication: 2007. 

[7] Ken C. Pohlmann, “Principles of Digital Audio” (edition 5). Year of Publication: 

2000. Publisher: McGraw-Hill/TAB Electronics. 

http://nordbotten.com/ADM/ADM_book/
http://www.euron.org/


81 
 

[8] Karlhein Gröchenig, “Foundations of Time-Frequency Analysis”. Year of 

Publication: 2000. Publisher: Birkhäuser Boston. 

[9] Stéphane G. Mallat, “A Wavelet Tour of Signal Processing”. Year of Publication: 

1999. Publisher: Academic Press. 

[10] K. R. Rao, P. Yip, “Discrete Cosine Transform: Algorithms, Advantages, 

Applications”. Year of Publication: 1990. Publisher: Academic Press.  

[11] Tristan Jehan. “Creating Music by Listening”. Massachusetts Institute of 

Technology, dissertation submitted September 2005. 

[12] Zhu Liu, Yao Wang and Tsuhan Chen. “Audio Feature Extraction and Analysis for 

Scene Segmentation and Classification”, in: The Journal of VLSI Signal Processing, 

vol. 20, numbers 1-2, pages 61-79. Year of Publication: 1998. 

[13] Silvia Pfeiffer, Sptephan Fischer and Wolfgang Effelsberg. “Automatic audio 

content analysis”, in: Proceedings of the fourth ACM international conference on 

Multimedia, pages 21-30. Year of Publication: 1997. 

[14] E. Scheirer and M. Slaney. “Construction and Evaluation of a Robust Multifeature 

Speech/Music Discriminator”, in: Proceedings of the 1997 IEEE International 

Conference on Acoustics, Speech, and Signal Processing (ICASSP '97), vol. 2, page 

1331. Year of Publication: 1997. 

[15] A.J. Eronen, V.T. Peltonen, J.T. Tuomi, A.P. Klapuri, S. Fagerlund, T. Sorsa, G. 

Lorho, J. Huopaniemi. “Audio-based Context Recognition”, in: Audio, Speech, and 

Language Processing, vol. 14, issue 1, pages 321-329. Year of Publication: 2006. 

[16] J. Breebaart and M. McKinney. “Features for audio classification”, in Proc. 

SOIA2002, Philips Symposium on Intelligent Algorithms, Eindhoven. Year of 

Publication: 2002. 

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10376
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=10376


82 
 

[17] George Tzanetakis, Georg Essl and Perry Cook. “Audio Analysis using the 

Discrete Wavelet Transform”, in: Proc. Conf. in Acoustics and Music Theory 

Applications. Year of Publication: 2001. 

[18] Stavros Ntalampiras, Ilyas Potamitis and Nikos Fakotakis. “Automatic Recognition 

of Urban Environmental Sounds Events”, in: New Directions in Intelligent Interactive 

Multimedia , pages 147-153. Year of Publication: 2008. 

[19] Selina Chu, Narayanan, S. and Jay Kuo, C.-C. . “Environmental sound recognition 

using MP-based features”, in: Acoustics, Speech and Signal Processing, pages 1-4. Year 

of Publication: 2008. 

[20] A. Eronen. “Musical instrument recognition using ICA-based transform of features 

and discriminatively trained HMMs”, in: Signal Processing and Its Applications, vol. 2, 

pages 133-136. Year of Publication: 2003. 

[21] Florian Kraft, Thomas Schaaf, Alex Waibel and Rob Malkin. “Temporal ICA for 

Classification of Acoustic Events in a Kitchen Environment”, in ICSA International 

Conference on Speech and Language Processing / Interspeech. Year of Publication: 

2005. 

[22] Jong-Hwan Lee, Ho-Young Jung, Te-Won Lee and Soo-Young Lee . ”Speech 

feature extraction using independent component analysis”, in: Acoustics, Speech, and 

Signal Processing, vol. 3, pages 1631-1634. Year of Publication: 2000. 

[23] Tetsuya Takiguchi and Yasuo Ariki. “PCA-Based Speech Enhancement for 

Distorted Speech Recognition”, in: Journal of Multimedia, vol. 2, no. 5, pages 13–18. 

Year of Publication: 2007. 

[24] Nitin Sawhney and Pattie Maes. “Situational Awareness from Environmental 

Sounds”. MIT Media Lab. Final Report for Modeling Adaptive Behavior (MAS 738), 

1997. 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Potamitis:Ilyas.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fakotakis:Nikos.html
http://www.informatik.uni-trier.de/~ley/db/series/sci/sci142.html#NtalampirasPF08
http://www.informatik.uni-trier.de/~ley/db/series/sci/sci142.html#NtalampirasPF08
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=4505270
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6939
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=6939


83 
 

[25] Alessandro Bugatti, Alessandra Flammini, and Pierangelo Migliorati. “Audio 

Classification in Speech and Music: A Comparison between a Statistical and a Neural 

Approach”, in: Applied Signal Processing, vol. 2002, issue 1, pages 372-378. Year of 

Publication: 2002. 

[26] Stan Z. Li. “Content-based Classification and Retrieval of Audio Using the 

Nearest Feature Line Method”, in: Speech and Audio Processing, vol. 8, issue 5, pages 

619-625. Year of Publication: 2000 

[27] Lie Lu, Stan Z. Li and Hong-Jiang Zhang. “Content-based audio segmentation 

using support vector machines”, in: Multimedia Systems, vol. 8, nr. 6, pages 749-752. 

Year of Publication: 2001 

[28] L. Ma, D.J. Smith and B.P. Milner. “Context Awareness using Environmental 

Noise Classification”, in: Proceedings of Eurospeech, vol. 3. Year of Publication: 2003. 

[29] Antti Eronen, Juha Tuomi, Anssi Klapuri, Seppo Fagerlund, Timo Sorsa, Gaëtan 

Lorho and Jyri Huopaniemi. “Audio-Based Context Awareness Acoustic Modeling and 

Perceptual Evaluation”, in: Proc. IEEE International Conference on Audio, Speech and 

Signal Processing (ICASSP). Year of Publication: 2003. 

[30] James V. Stone. “Independent Component Analysis, A Tutorial Introduction”. 

Year of Publication: 2004. Publisher: The MIT Press. 

[31] Aapo Hyvärinen, Juha Karhunen and Erkki Oja. “Independent Component 

Analysis”. Year of Publication: 2001. Publisher: Wiley-Interscience. 

[32] I.T. Jolliffe. “Principal Component Analysis” (edition 2). Year of Publication: 

2002. Publisher: Springer 

[33] H. Gävert, J. Hurri, J. Särelä, A. Hyvärinen, FastICA for Matlab 5.x, version 2.1, 

January 15, 2001. 

[34] O.Omogbenigun, kannuMFCC for Matlab 5.x, September 11, 2007. 

http://www.hindawi.com/80358139.html
http://www.hindawi.com/37812973.html
http://www.hindawi.com/90872324.html

