

Universidade Nova de Lisboa

Faculdade de Ciências e Tecnologia

Departamento de Informática

Dissertação de Mestrado em Engenharia Informática

1º Semestre, 2008/2009

Viewpoints and Goals: Towards an Integrated Approach

Manuel Filipe Pimenta

Nº 26224

Orientador

Prof. Doutor João Araújo Júnior

Lisboa

19 de Fevereiro de 2009

2

1

Nº do aluno: 26224

Nome: Manuel Filipe Prista Lucas Conrado Pimenta

Título da Dissertação:

Viewpoints and Goals: Towards an Integrated Approach

Palavras-Chave:

 Engenharia de requisitos orientada a pontos de vista

 Engenharia de requisitos orientada a objectivos

 PREview

 KAOS

Keywords:

 Viewpoint-oriented requirements engineering

 Goal-oriented requirements engineering

 PREview

 KAOS

2

3

Acknowledgments

There are several people I would like to acknowledge regarding this special chapter in my

life.

Firstly I would like to thank my supervisor, Prof. Dr. João Araújo for the long hours he put in

reading my never-ending texts and straining to cut their sizes in half. His help was essential to

keep this document from a length of 500 pages or more, and the constant requests for

deliverables kept me on track.

Secondly, to Ana Sofia Penim, who despite having to deliver her own dissertation had the

generosity of always being there for me and for my short temper during stressful times. Also,

I cannot forget the five years, going on six we spent working side by side in innumerous

projects, my rambling and your organization. Thank you, you have ruined every possible team

efforts for me in the future. I cannot thank you as a friend for you are much more than that.

Thirdly, I would like to thank my parents and closest family for all the support and

understanding when all I could think about was finishing this work; especially my brother

Nuno, mother Rosário and father António: thank you for understanding my brooding silences

and my instantaneous ramblings.

Finally my closest friends: Tiago, my brother of choice; Miguel, my cousin, for always trying

to drag me to soccer games and clearing my head; and Pablo for the constant nagging and

concern.

I could not end without forwarding a special thank you to my grandfather. My teacher, my

hero, my friend. Thank you for watching over me from up there.

Thank you all.

4

5

Resumo

A elicitação e a análise de requisitos têm sido estudadas de acordo com diversas abordagens

que diferem maioritariamente na sua "orientação", neste caso baseando-se em objectivos ou

viewpoints.

As abordagens orientadas a objectivos tal como KAOS baseiam-se em objectivos para dirigir

o processo de elicitação de requisitos: um objectivo é uma meta que o sistema em

consideração deve atingir e representa uma propriedade do mesmo que pode reflectir um

requisito funcional (e.g. um serviço oferecido pelo sistema) ou não funcional (e.g. segurança,

desempenho); a sua satisfação pode implicar a participação de vários agentes e a resolução de

obstáculos que possam surgir. A abordagem KAOS oferece um método inequívoco para a

decomposição dos requisitos e pode providenciar um conjunto de heurísticas a abordagens

que não o tenham.

Abordagens orientadas a viewpoints tal como PREview focam a recolha de informação

relativa ao problema a partir de vários agentes que podem ter perspectivas diferentes,

igualmente válidas e incompletas sobre o problema. Estas perspectivas parciais reflectem as

suas diferentes responsabilidades, papéis ou interpretações das fontes de informação; portanto

a combinação do agente e da sua observação do sistema é chamada um viewpoint. PREview

beneficia de uma abordagem particularmente leve à encapsulação de requisitos, mas falha em

providenciar um conjunto de heurísticas para dirigir o seu processo de elicitação.

Considerando os factores identificados em cada abordagem, é de verificar que as abordagens

são complementares: por um lado, KAOS oferece um conjunto de heurísticas para a elicitação

de requisitos através da decomposição de goals; por outro lado, PREview é uma abordagem

leve à engenharia de requisitos orientada a viewpoints dirigida especialmente à integração,

faltando-lhe no entanto um mecanismo mais sistemático para dirigir o processo de elicitação

dos requisitos.

O objectivo desta dissertação é então propôr uma abordagem híbrida que se baseia em

PREview e aproveita os benefícios da abordagem KAOS. O resultado é sinergético no que diz

respeito ao facto de, por exemplo, a completude ser melhor endereçada providenciando

heurísticas de elicitação de requisitos.

6

7

Abstract

Requirements elicitation and analysis have been studied according to several approaches that

differ mostly on their "orientation", in this case relying on goals or viewpoints.

Goal-Oriented approaches such as KAOS rely on goals to direct their process of eliciting

requirements: a goal is an objective the system under consideration should achieve and

represents a system property that may reflect either a functional (e.g. a service provided by the

system) or a non-functional (e.g. security, performance) requirement; its satisfaction may

imply the participation of several agents and the resolution of possible obstacles that may

arise. The KAOS approach offers an unambiguous method for requirement decomposition

and may provide a set of heuristics to approaches where one does not exist.

Viewpoint-Oriented approaches such as PREview focus on gathering information pertaining

to the problem from several agents that may have different, often equally valid, and

incomplete perspectives on the problem. These partial intakes reflect their different

responsibilities, roles, goals, or interpretations of the information sources; hence the

combination of the agent and its input on the system is called a viewpoint. PREview benefits

from a particularly lightweight approach to requirements encapsulation, but fails to provide a

set of heuristics for the process of identifying the system's requirements.

Considering the issues identified in each approach, it is verifiable that both approaches are

complementary: on the one hand, KAOS offers a set of requirements elicitation heuristics

through goal decomposition; on the other hand, PREview is a lightweight approach to

viewpoint oriented requirements engineering, tailored especially for integration, however

lacks a more systematic mechanism to guide the requirements elicitation process.

The objective of this dissertation is therefore to propose a hybrid approach that builds on the

PREview approach and brings together the benefits of the KAOS approach. The result is

synergetic where, for example, completion is better addressed by providing a set of heuristics

for requirement elicitation.

8

9

Table of Contents

Acknowledgments .. 3

Resumo ... 5

Abstract .. 7

List of Figures .. 13

List of Tables .. 15

Chapter 1 Introduction .. 17

1.1 Context and Problem Description ... 17

1.2 Proposed Solution .. 19

1.3 Main Contributions ... 20

1.4 Document Structure ... 21

Chapter 2 Related Work: Viewpoint-Oriented Requirements Engineering 23

2.1 Main Concepts ... 23

2.1.1 What is a viewpoint? .. 24

2.1.2 Why use viewpoints? .. 25

2.1.3 Summary .. 27

2.2 Existing Methodologies .. 28

2.2.1 SRD ... 28

2.2.2 SADT .. 29

2.2.3 CORE .. 30

2.2.4 VOSD .. 31

2.2.5 VA ... 32

2.2.6 VOSE .. 34

2.2.7 VOA .. 36

2.2.8 VORD ... 38

2.3 PREview ... 40

10

2.3.1 The PREview Method .. 40

2.3.2 The PREview Viewpoint .. 43

2.3.3 Viewpoint Concerns ... 43

2.3.4 Case Study: The "Via Verde" System ... 44

2.3.5 The PREview Process ... 45

2.3.6 Summary... 53

Chapter 3 Related Work: Goal-Oriented Requirements Engineering 55

3.1 Main Concepts ... 55

3.1.1 What is a Goal? .. 56

3.1.2 Why use Goals? .. 56

3.1.3 Summary... 57

3.2 Existing Methodologies .. 58

3.2.1 NFR Framework .. 58

3.2.2 GBRAM .. 61

3.2.3 I* Framework ... 63

3.2.4 GRL .. 65

3.3 KAOS ... 67

3.3.1 The KAOS Method ... 68

3.3.2 The KAOS Process ... 69

3.3.3 KAOS Goal Model.. 70

3.3.3.1 Conflicting Goals .. 72

3.3.4 KAOS Responsibility Model .. 73

3.3.5 KAOS Object Model .. 74

3.3.6 KAOS Operation Model ... 75

3.3.7 Summary... 78

Chapter 4 The Hybrid Approach .. 81

4.1 Conceptual Model Analysis ... 81

11

4.2 Hybrid Approach’s Heuristics .. 84

4.2.1 Produce List of System Viewpoints ... 85

4.2.2 Develop the System Viewpoints Using Goal Models 88

4.2.2.1 Produce List of Viewpoint Goals ... 89

4.2.2.2 Produce a Goal Model for each System Goal in each Viewpoint.................... 90

4.2.2.3 Obtain Set of Developed Viewpoints.. 91

4.2.2.4 Elaborate each Viewpoint’s Set of Requirements ... 94

4.2.3 Produce and Develop the System Concerns .. 96

4.2.3.1 Produce List of System Concerns .. 97

4.2.3.2 Develop Viewpoint Concern Requirements... 98

4.2.3.2.1 Verify Applicability of Generic Goal Patterns .. 98

4.2.3.2.2 Merge System-Wide Concern Goal Models ... 100

4.2.3.3 Register Concern Requirements .. 101

4.2.4 Represent the System’s Obstacles and their Solutions 102

4.2.5 Requirements Conflict Analysis... 106

4.2.5.1 Perform Inter-Viewpoint Interaction Analysis ... 106

4.2.5.2 Perform Inter-Concern Interaction Analysis .. 107

4.2.5.3 Perform Viewpoint-Concern Interaction Analysis 110

4.2.6 Requirements Negotiation .. 110

4.2.6.1 Produce a Weighted Contributions Table ... 111

4.3 Summary .. 112

Chapter 5 The Br@in Case Study ... 115

5.1 About the Product .. 115

5.2 Context Information .. 116

5.3 Br@in App ... 118

5.4 Br@in and the Hybrid Approach .. 120

5.4.1 Step-by-Step.. 121

12

5.4.1.1 Produce List of System Viewpoints.. 121

5.4.1.2 Develop the System Viewpoints using Goal Models 124

5.4.1.2.1 Produce List of Viewpoint Goals .. 124

5.4.1.2.2 Produce a Goal Model for each System Goal in each Viewpoint 125

5.4.1.2.3 Obtain set of Developed Viewpoints ... 131

5.4.1.2.4 Elaborate each Viewpoint’s set of Requirements 132

5.4.1.3 Produce and Develop the System Concerns .. 135

5.4.1.3.1 Produce List of Viewpoint Concerns .. 135

5.4.1.3.2 Develop Viewpoint Concerns Requirements.. 139

5.4.1.3.2.1 Verify Applicability of Generic Goal Patterns 139

5.4.1.3.2.2 Merge System-Wide Concern Goal Models ... 145

5.4.1.3.2.3 Register Concern Requirements ... 146

5.4.1.4 Represent the System’s Obstacles and their Solutions.................................. 148

5.4.1.5 Requirement Analysis .. 152

5.4.1.5.1 Perform Inter-Viewpoint Interaction Analysis .. 153

5.4.1.5.2 Perform Inter-Concern Interaction Analysis... 154

5.4.1.5.3 Perform Inter-Concern Interaction Analysis... 155

5.4.1.6 Requirement Negotiation ... 156

5.4.1.6.1 Produce a Weighted Contributions Table.. 156

5.5 Summary .. 157

Chapter 6 Conclusions ... 159

6.1 Contributions ... 160

6.2 Future work ... 161

References .. 163

Appendixes ... 167

Appendix A – Administrator Viewpoint .. 167

13

List of Figures

Figure 1-1 Tabular Collection ... 31

Figure 1-2 VOSE Templates .. 35

Figure 1-3 The Spiral Model of the Requirements Engineering Process 42

Figure 1-4 The PREview Process .. 46

Figure 3-1 Softgoal Interdependency Graph (SIG) .. 60

Figure 3-2 Goal Dependency ... 64

Figure 3-3 Parking Lot Entrance Goal Model .. 71

Figure 3-4 Generic Goal Pattern with Conflict ... 73

Figure 3-5 Entrance Machine Responsibility Model .. 74

Figure 3-6 Parking Lot System Object Model .. 75

Figure 3-7 Parking Lot Entry Operation Model... 77

Figure 3-8 KAOS/Objectiver Modeling Methodology .. 78

Figure 4-1 Conceptual Model Correspondence .. 83

Figure 4-2 Parking Lot Entrance Goal Model for the User Viewpoint 91

Figure 4-3 Allow Parking Lot Entrance Goal Model for the Entry Machine Viewpoint 92

Figure 4-4 Allow Parking Lot Exit Goal Model for the Exit Machine Viewpoint 93

Figure 4-5 Allow Parking Lot Access Goal Model for the Entry/Exit Machine Viewpoint

 .. 93

Figure 4-6 Secure System Generic Goal Pattern .. 99

Figure 4-7 Secure Transaction Generic Goal Pattern .. 99

Figure 4-8 Security Concern Goal Model for the Banking Entity Viewpoint 99

Figure 4-9 System-Wide Security Concern Goal Model... 100

Figure 4-10 Allow Parking Lot Entrance Goal Model for the Entry Machine Viewpoint

with Obstacles .. 104

Figure 4-11 Realize Weekly Debit Goal Model for the Banking Entity Viewpoint with

Obstacles .. 104

Figure 4-12 System-Wide Concern Goal Model with Comparative Analysis 109

Figure 4-13 Hybrid Approach Process Model .. 113

Figure 5-1 Produce Database Information Goal Model for the Telephonic Central

Viewpoint ... 126

Figure 5-2 Produce Specified Reports Goal Model for the User Viewpoint 127

Figure 5-3 Output Costs Goal Model for the User Viewpoint .. 128

14

Figure 5-4 Manage Hierarchical Structure Goal Model for the Administrator Viewpoint

 .. 129

Figure 5-5 Manage Reports Automation Goal Model for the Administrator Viewpoint

 .. 130

Figure 5-6 Manage Assets Goal Model for the Administrator Viewpoint 131

Figure 5-7 Compatibility Concern Generic Goal Pattern .. 140

Figure 5-8 Compatibility Concern Goal Model for the Telephonic Central Viewpoint 141

Figure 5-9 Correctness Concern Generic Goal Pattern.. 141

Figure 5-10 Correctness Concern Goal Model for the User Viewpoint 142

Figure 5-11 Usability Concern Generic Goal Pattern... 143

Figure 5-12 Usability Concern Goal Model for the Administrator Viewpoint 144

Figure 5-13 Response Time Concern Generic Goal Pattern .. 144

Figure 5-14 Response Time Concern Goal Model for the User Viewpoint 145

Figure 5-15 Response Time Concern System-Wide Goal Model.................................... 146

Figure 5-16 Output Call Details Goal Model for the User Viewpoint with Obstacles ... 149

Figure 5-17 Manage Operators Goal Model for the Administrator Viewpoint with

Obstacles... 150

Figure 5-18 Produce Database Information Goal Model for the Telephonic Central

Viewpoint with Obstacles... 151

Figure 5-19 Inter-Concern Interaction Analysis ... 155

15

List of Tables

Table 1-1 Stakeholders of the "Via Verde" System.. 47

Table 1-2 Concerns of the "Via Verde" System ... 48

Table 1-3 Response Time Concern .. 49

Table 1-4 Description of the Entry/Exit Machine Viewpoint ... 50

Table 1-5 Entry/Exit Machine Viewpoint ... 51

Table 1-6 Interaction Matrix for Generic Artifacts .. 52

Table 4-1 User Viewpoint Tabular Representation .. 96

Table 4-2 Security Concern Tabular Representation ... 102

Table 4-3 Entry/Exit Machine Viewpoint Tabular Representation 105

Table 4-4 Viewpoint-Concern Interaction Analysis ... 110

Table 4-5 Weighted Contributions Analysis ... 111

Table 5-1 Administrator Initial Viewpoint ... 123

Table 5-2 User Initial Viewpoint ... 123

Table 5-3 Telephonic Central Initial Viewpoint ... 123

Table 5-4 Telephonic Central Viewpoint with Requirements .. 133

Table 5-5 User Viewpoint with Requirements .. 134

Table 5-6 Response Time Concern Tabular Representation.. 147

Table 5-7 User Viewpoint Tabular Representation with Concern Requirements 148

Table 5-8 Telephonic Central Viewpoint Tabular Representation with Obstacles 152

Table 5-9 Inter-Viewpoint Comparative Analysis (Admin. vs. Tel. Central) 153

Table 5-10 Viewpoint-Concern Interaction Analysis ... 156

Table 5-11 Weighted Contributions Analysis ... 157

Table 8-0-1 Administrator Viewpoint Tabular Representation 167

16

17

Chapter 1
Introduction

1.1 Context and Problem Description

System requirements are specifications of what should be implemented regarding the services

a system should provide and its operational constraints [23]. Requirements can be classified

according to three types:

 Functional requirements are statements of services the system should provide [23] and

describe how the system should react to particular situations;

 Non-functional requirements represent constraints on the system services, defining

characteristics the system should reflect and overall qualities it should possess;

 Domain requirements come from the system environment and may be functional or

non-functional.

Requirements Engineering (RE) entails all activities involved with the elicitation, analysis and

management of all types of requirements in a systematic manner, in order to guarantee that

requirements are complete, consistent and relevant.

These activities in RE have been studied according to several approaches that differ according

to their drive and according to their perspective of the process itself. Although there are many

techniques (e.g. Scenarios, Viewpoints, Goals), this work focuses on two of these fields of

approaches: Goal-Oriented and Viewpoint-Oriented.

Goal-Oriented approaches, such as KAOS [13], rely on goals to direct their process of

eliciting requirements, analyzing the system up for consideration regarding its several

18

organizational, operational and technical aspects and listing the detected problems and

opportunities as goals to be achieved through the ensuing requirements.

A goal is an objective the system under consideration should achieve and represents a system

property that may reflect either functional or non-functional requirements. By encompassing a

set of requirements, a goal can be used for providing rationale for its "children", assessing

their completeness and relevance, as well as their identification. Goal satisfaction may imply

the participation of several agents and the resolution of possible obstacles that may arise.

The KAOS approach's modeling framework offers an unambiguous method for the

identification of a system's requirements, the intervening agents and the relations between

them, relying on the graphical representation of a requirements model [21]. This requirements

model clearly identifies all the requirements in a project in a tree-like representation, detailing

the intervening agents, related objects and even the operationalisation of the bottom-level

requirements.

However, although KAOS is tailored for use with many differently sized projects, when

working with large and complexly structured systems, a requirements document will most

likely contain hundreds, if not thousands of requirements, and therefore, the correspondent

KAOS models may prove to be too elaborate to be understandable by the system

stakeholders. Seeing as one of the main goals of modeling requirements in such a way is to

favor stakeholder comprehension of the proposed solution, a conflict of interests emerges.

Hence, this approach would probably merit from some additional organizational elements.

Viewpoint-Oriented approaches, such as PREview [25], focus on gathering information

pertaining to the problem from several agents that may have different, often equally valid, and

incomplete perspectives on the problem [5]. These partial intakes reflect their different

responsibilities, roles, goals, or interpretations of the information sources; hence the

combination of the agent and its input on the system is called a viewpoint.

These approaches also focus on understanding and controlling the complexity of the systems

under consideration by separating the interests of various actors, organizing them into

hierarchies and formalizing this multi-perspective view into analysis methods. They strive to

balance both the preservation of multiple perspectives during system development and the

demands for consistency and coherence arising out of group work-focus [9]. This balance is

also reflected when dealing with large projects since collecting system information from

19

several sources will inevitably result in a great deal of information to manage and a great deal

of perspectives between which consistency must be assured.

However, the considered viewpoint-oriented approach (PREview) fails to provide a set of

requirements elicitation heuristics, i.e. a mechanism to aid the analyst through the process,

relying on his ability and instincts to understand the requirements that the elicited system

concerns should entail and to assure the stakeholders that the requirement set is complete.

Systematically deriving requirements from general goals could be a useful strategy for that

purpose.

If one were to look at the issues identified in each approach, it is verifiable that both

approaches are in some way complementary. On one hand, KAOS offers a set of requirements

elicitation heuristics defined as goal decomposition techniques as well as mechanisms to

verify the completeness of a given goal. However, it could probably benefit from a means to

organize the elicited requirements in a stakeholder-friendly fashion. On the other hand,

PREview focuses precisely on understanding and controlling the complexity of the systems

under consideration by separating the interests of various actors and formalizing this multi-

perspective view into analysis methods. However, it lacks a set of heuristics to guide the

elicitation process, relying on the analyst's interpretation of the system's concerns for this task,

which may lead to incomplete or ill-defined requirements.

1.2 Proposed Solution

Considering the enunciated problem description, the objective of this dissertation is therefore

to propose a hybrid approach that brings together the advantages of both approaches and also

solves some of the issues that were identified in each of them, particularly focusing on the

PREview approach.

This hybrid approach would be based on the viewpoint oriented requirements engineering

technique known as PREview and thus focus on addressing a system’s requirements

elicitation efforts from an encapsulation perspective. It would incorporate the knowledge

acquisition skills that KAOS provides for the requirements elicitation process and consequent

20

analysis, which would in turn contribute to mitigate PREview's previously referred weakness

regarding the management of information and the elimination of redundant requirements, as

well as the lack of heuristics for the elicitation process. The approach would also rely on the

grouping mechanisms of PREview to bring a greater level of organization into the

requirements model, since, in theory, complexity would be better addressed by organizing

goals in terms of viewpoints.

Summing up, in this hybrid approach PREview would provide the basis to encapsulate

requirements in a user-friendly fashion and address the issue of system complexity, while

KAOS provides the requirements decomposition mechanisms required to derive them in a

systematic way.

1.3 Main Contributions

As it has been explained thus far, the process of eliciting requirements and presenting them in

such a way as to favor stakeholder comprehension has much to gain from the KAOS

methodology. It is a clear and concise method for graphically representing the analyst's work

and basically provides a map for understanding the way in which the system will achieve the

proposed goals.

However, as it was previously explained, large KAOS models can be hard to comprehend, not

because of fuzzy concept definition, but because of the quantity of information that might be

present in a model at the same time. Furthermore, when defining the non-functional traits of

the system, KAOS models can sometimes lack information that might be useful, namely when

dealing with conflicts between these non-functional requirements.

On the other hand, although PREview viewpoints constitute useful grouping units regarding a

set of requirements, the identification process of these same requirements lacks some form of

established guidelines in order to provide insight into this particular step. It is to counteract

these problems that this hybrid approach is proposed.

The main contributions of this dissertation are the following:

21

 A study into the several goal-oriented and viewpoint-oriented approaches is provided,

establishing a state of the art and describing in some depth both the KAOS and

PREview approaches as main representatives of each requirements elicitation strategy.

 A suitable case study is used to present some aspects of both the KAOS perspective

and the PREview perspective in order to demonstrate each approach's capabilities and

limitations regarding requirements elicitation.

 A study into each approach's conceptual-model will be provided, describing in what

way a connection between the approaches could be established, namely relating the

PREview viewpoints to the KAOS goals and requirements structuring.

 The approach will define how to use viewpoints to drive the segmentation of the

KAOS requirements model into identifiable and easier to understand sections of the

system, i.e. to reduce the complexity of the overall system requirements model.

 By associating system goals to system viewpoints, the requirements elicitation effort

will be supported by the KAOS goal decomposition mechanism.

1.4 Document Structure

The present dissertation is organized as follows: a survey of the existing Viewpoint-Oriented

approaches and the main concepts they entail is shown in Chapter 2; a survey of the existing

Goal-Oriented methods and the main concepts involved is present in Chapter 3; the Hybrid

approach is proposed and its heuristics are defined in Chapter 4, detailing the several steps

based on a demonstrative case study; the application of the Hybrid Approach to a real world

industry case study is detailed in Chapter 5, focusing on the advantages brought by the

approach; conclusions are drawn in Chapter 6, along with references to future work

developments.

22

23

Chapter 2
Related Work:

Viewpoint-Oriented
Requirements

Engineering

This chapter outlines several of the Viewpoint-Oriented (VO) approaches currently existent or

strongly referenced in current work. An introduction to VO methodology is presented,

including definition of the generic concept of viewpoint and advantages in its use. Existing

methods are then described and its current uses outlined, with a particular emphasis on the

PREview methodology.

2.1 Main Concepts

Software development involves a complex combination of activities and generally entails an

also complex description or model; knowledge of the application domain is essential, as well

as experience in the several areas of software development process, methods, techniques and

languages. In order to manage all these activities, one should be able to structure them so as to

provide a sustainable organization for the software development process and its consequent

specification [7].

Due to these knowledge demands, a software project normally involves many participants,

with experts in various aspects of software development and in the application area; each of

them being required to perform different roles, acquit certain responsibilities and input

various concerns which may change as the software evolves. Also, due to the capture of

24

diverse perspectives from several stakeholders, conflicting opinions, possibilities of errors and

omissions will arise [11].

A stakeholder can be a human, role, or organization with an interest in the system and this

definition can also include both the customer's and developer's organizations. Developer's

viewpoints may also include those of the analyst(s) and other disciplines involved in the

system development [24].

In light of this fact, one can conclude that requirements elicitation from a single perspective

inevitably focuses one stakeholder's needs at the expense of other viewpoints; similarly,

attempting to synthesize multiple stakeholders into a singular perspective would be a very

difficult task. Therefore, in order to reduce the risk of overlooking these several stakeholders

and their requirements, it is essential to recognize "the distributed nature of the knowledge"

they provide [7].

A viewpoint based approach to requirements analysis recognizes this distributed nature and

thus provides a technique that adequately captures these different perspectives, their attributes

and the relationships between them [11].

2.1.1 What is a viewpoint?

The concept of Viewpoint has evolved and diversified since its original explicit presentation

in CORE [17], and even in SRD [18] and SADT [22], where the concept was present although

without explicit reference. So, in order to define a viewpoint, one must take from the several

proposed approaches their more generic descriptions.

Consider the example of a parking lot management system: what first comes to mind is to

consider the user point of view since, at first glance, the only interaction that takes place is

between a person entering the parking lot and the entry mechanism that regulates the cars that

enter; however if one would elicit a set of requirements based solely on this point of view, one

would get an incomplete list of functionalities. This can be explained simply by the fact that

the parking lot system envelops not only the user point of view but also the entry-machine's

point of view, the sensor that detects passing cars or even the requirements that come from the

parking lot manager's responsibilities. As such, it follows that many times, more than one

25

point of view is required in order to encompass the whole scope of a system's functionalities,

hence the idea of using viewpoints.

A Viewpoint provides a combination of an agent and its particular view on the system, "a

standing or mental position used by an individual when examining or observing a universe of

discourse" [14]. It captures the particular role of that agent and the several responsibilities

offered by its different perspective, encapsulating only the aspects of the application relevant

to that partition of the system's domain.

In software terms, a Viewpoint can be defined as an object, albeit a loosely coupled and

locally managed one [8], which contains partial knowledge about the system and its domain,

specified in a particular scheme or notation, and also partial knowledge of the design process.

Hence, a viewpoint may contain a set of requirements as well as a definition of the

viewpoint's perspective, a list of the sources from which the requirements were elicited and a

rationale for each requirement [24].

2.1.2 Why use viewpoints?

Many reasons can be supplied that justify the use of viewpoints, the most obvious one being

the need to guarantee that no important requirements are overlooked during the elicitation

stage; by using viewpoints and allocating time to their explicit identification, it is more likely

that a greater number of stakeholders are recognized and consequently their requirements.

Regarding expertise and knowledge of the domain, using viewpoints allows for the engineers

developing the system that may have experience with similar systems, to suggest

requirements derived from that experience. Also, seeing as system maintenance represents a

large percentage of the development costs, by collecting contributions from the technical staff

that will have to manage and maintain the system, one can simplify system support and

therefore greatly reduce the budget allotted for system maintenance.

Viewpoints also provide a clear separation of concerns by permitting the development of a set

of partial specifications in isolation from other viewpoints, avoiding conflicts during the

elicitation stage and allowing for better informed trade-offs between requirements when

necessary.

26

Also, in latter stages of an application's development, there may come a time when

requirements need to be traced back to their sources for further clarification, by associating

them to separate viewpoints this traceability is greatly enhanced and a task that might have

required a great deal of backtracking is reduced to a simple consulting of the Requirements

Document [24, 8].

Furthermore, viewpoints are complementary to a number of other requirements engineering

practices. In particular, they can help inform the development of system models, seeing as

they can be derived from each viewpoint in order to clarify their requirements.

They are useful to partition the domain information and allow for simpler formal

representations of software specifications, which are in turn described as configurations of

related Viewpoints; this facilitates distributed development, the use of multiple representation

schemes and scalability.

Seeing as the several roles may be organizationally defined, Viewpoints can also help

prioritize and manage requirements according to some hierarchy or even be used as a way of

classifying stakeholders and other sources of requirements according to three generic types

[23]:

 Interactor viewpoints represent people or other systems that interact directly with the

system and are, many times, the first to be elicited since they are the most obvious

ones;

 Indirect viewpoints represent stakeholders who do not use the system themselves but

who influence the requirements in some way through their claim in the application's

development;

 Domain viewpoints represent domain characteristics and constraints that influence the

system requirements and most often generate the non-functional system requirements.

As one can see, Viewpoints are not only concerned with human perspectives; beyond being

associated with the system's stakeholders, viewpoints may also refer to the system's operating

environment or even other systems that will, in some way, interact with the application being

developed.

Therefore, Stakeholders are not the only sources of requirements since the system is always

installed in an environment that includes other systems or components with which it must

27

exchange data or control and these exchanges impose requirements. For instance, an

interfaced system or component has a perspective on the system just as the stakeholder does;

hence it makes sense to use a viewpoint to model that particular perspective [24].

In addition, many applications are subject to the influence of the domain that concerns them;

in some, the domain-imposed requirements are trivially obvious, constituting explicit

concerns from the application environment; in others, they are implicit in the principal

stakeholders' requirements and may require a careful analysis of their responsibilities or

stakes in the application [24]. They may come from several departments in an organization

and many times concern both a favorable image for the organization and product functionality

for the user. Nonetheless, domain derived requirements are extremely important to

contemplate, since they represent the main factors that differentiate between projects, and

they are also the most difficult to appease.

2.1.3 Summary

Viewpoint-based approaches offer a clear understanding of the "distributed nature" of many

systems' requirement elicitation by offering a separate but structured way of acknowledging

the several stakeholders and their responsibilities in the project being developed. Viewpoints

provide a framework for organizing these requirements and improve traceability and

scalability in larger applications where following a spiral model, that many times generate

constant changes, is required.

In familiar domains where systems are highly constrained by inherent or explicit concerns,

viewpoints probably do not offer significant advantages, also with developing systems where

there are few or homogeneous sources of requirements, viewpoints may offer little advantage.

However, in systems where requirements rework is frequently performed or where there are

problems with managing requirements from different sources, then viewpoints may offer

significant advantages and provide the "edge" that one needs to make it all work [24].

28

2.2 Existing Methodologies

Since CORE [17], where the use of viewpoints was first made explicit, several requirement

definition methodologies have surfaced that are best suited to different activities in the

software process. The most relevant methods proposed so far are presented in the following

sections.

2.2.1 SRD

The Structured Requirements Definition (SRD) methodology [18] focuses on the structuring

of input and output data, which assists the analyst in identifying key information objects and

operations on those objects. It stems its name from a book by Ken Orr from 1981, where he

gives the basis for what he calls "defining the application context", and details it in a four step

process:

1. Construct a user level data-flow diagram (DFD) for each interview performed on

organization individuals that perform some form of task relevant to the system,

recording the input and output data obtained in the model;

2. Combine all user-level DFDs in order to create an integrated DFD. By compiling all

relevant input/output data, it is possible to resolve conflicting data flows at this stage

through a careful analysis of the designed model;

3. Construct the application-level DFD by recognizing the part of the organization being

analyzed in the combined user-level DFD and underlining it by drawing a dotted line

around it;

4. Define the application-level functionalities by listing and relating each activity being

performed to its corresponding function in the system.

The SRD perspectives/viewpoints relate to individuals that perform some manual task that

requires automation, therefore requirement elicitation can only be done by interviewing those

individuals. In highly interactive activities this proves to be a valid approach, seeing as most

of the system's requirements are human-derived ones; however, in activities that envelop little

29

human interaction, like the example of the parking lot management system, it is almost

impossible to obtain the whole scope of the application from the interview of one individual.

Therefore, information that could be obtained from several other systems or even individuals

that simply cannot be interviewed is wasted, when it could contribute to the overall

understanding of the system since they represent external viewpoints. Thus, SRD presents an

intuitive, rather than a defined notion of a viewpoint, and "does not work well if the system

being specified does not involve the automation of several manual tasks" [11].

2.2.2 SADT

SADT (Structured Analysis and Design Technique) [22] is a superset of Structured Analysis

and was the first graphically oriented method developed for use in performing requirements

definition. It was developed in the early 1970s by Ross at SoftTech, initially as a method to

provide architecture documentation for large and complex systems, and later as a

methodology to deal with system development complexity through a team-oriented approach

with textual and graphical support [22, 3].

SADT consists of two basic components: the diagramming language of structured analysis

(SA) and the design technique (DT) that offers the discipline of thought and action that is

needed to use the SA language. The diagramming language is based on a data-flow model that

represents the system's more relevant activities and provides the basis for functional

decomposition: a rectangular box representing the system's "most abstract activity", a set of

data input, data output and control arrows. Consistency maintenance can be done by checking

each level of functionalities with its higher functions, through comparison of their respective

input and output information [22, 11].

The SADT viewpoint, however, is not defined; it is derived intuitively from the modeling

technique and is not analyzed beyond being seen as a data source or sink. Also, SADT does

not provide a framework for associating control information with viewpoints on a broader

scale [11].

30

2.2.3 CORE

CORE (COntrolled Requirement Expression) [17] is a "functional requirements definition

method" developed for British Aerospace (BA) in the late 70s by System Designers, defined

to fit into a set of standards and procedures produced by the same company. Since then, it has

been used in several aerospace and defense applications in the United Kingdom (the more

notable ones being the EAP in the 80s and the EFA in the 90s) [11].

It is based on the idea of partitioning a system according to the notion of viewpoints, each

with an associated client authority [9], having been the first method to explicitly define and

adopt them as an element in requirements structuring. CORE defines its viewpoints according

to their functional or non-functional aspect on a first level and as bounding or defining,

concerning their direct or indirect interaction with the system.

The CORE methodology defines the steps in production of a requirement specification, with

particular emphasis on start-up and the link between steps. These steps comprise viewpoint

identification and structuring, tabular collection, data structuring, single and combined

viewpoint modeling and constraint analysis.

This step-by-step process starts off by identifying possible viewpoints and classifying them as

functional or non-functional through means of a brainstorming session composed of the users,

buyers and system developers. The final step in viewpoint identification involves dividing

functional viewpoints into a set of bounding and defining viewpoints.

Viewpoint structuring provides a framework for the capture and consequent analysis of the

system's requirements, iteratively decomposing it into a hierarchy of functional sub-systems,

each of them constituting a viewpoint, and placing structurally bounding viewpoints at the

same level as the target system. This hierarchy obviously separates the tasks to be analyzed

into smaller specification levels, allowing for the amount of detail at each level to be

controlled and its analysis simplified.

The use of tabular collection as seen in Figure 1-1 provides a mechanism for collecting and

organizing information about a viewpoint with respect to the action it performs, the input data

used for these actions, the output data derived and the sources and destinations of the data.

Through this, CORE is able to resolve omissions and conflicts related to the exchange of

31

information across viewpoints by checking that outputs from one tabular collection

correspond to input data in their destination viewpoints.

Figure 1-1 Tabular Collection

However, CORE presents some weaknesses. The lack of a properly defined notion of a

viewpoint, seeing as it can be any entity that exchanges information with the system, makes it

a difficult task to say what constitutes a valid viewpoint and what does not. When one

considers the distinction between bounding and defining viewpoints, this just contributes to

the problem by requiring the differentiation of external entities and sub-processes.

Furthermore, despite the previously mentioned guidelines, CORE also acknowledges that two

analysts specifying the same problem are likely to come up with different solutions and

viewpoints.

Also, CORE concentrates its efforts on analyzing internal (defining) viewpoints. Bounding

viewpoints, which represent the system's interaction environment and so being of special

interest, are not analyzed beyond being seen as data input or output [11, 17].

2.2.4 VOSD

In Viewpoints-Oriented Software Development (VOSD) [7], Finkelstein argues that

developing large software systems involves the participation of many experts, in various

aspects of the software development and the application area. Furthermore, each of these

participants constitute a constantly changing and evolving set of responsibilities and concerns

32

that follow the software's development, as well as particular knowledge that may provide

further insight into the specifications being developed. He further contends that the solution

for the management of these distributed activities and sources of knowledge is to provide a

structurally sound partitioning method that can accompany the software development process

and the subsequent specification.

Finkelstein regards viewpoints as a way to capture the role attributed to a participant and the

responsibilities it ensues at each stage of the development process. A VOSD viewpoint is

defined as a "loosely coupled, locally managed object which encapsulates partial knowledge

about the application domain, specified in a particular suitable formal representation, and

partial knowledge of the process of software development". It includes information about the

domain it relates to, a specification, a work plan that establishes the constraints that the

specification must obey and a work record. A viewpoint with information only regarding a

style and a work plan is called a template.

The concept of allowing for different representation schemes is an important one in VOSD

and much emphasis is placed on the designing of templates that may offer some measure of

standardization while allowing for each member of the development team to use the style he

or she is most comfortable with or that is best suited for the sub-problem at hand. Viewpoints

can therefore be organized in configurations that establish some form of relationships between

them.

In a final analysis, Finkelstein fails to provide a firm framework for resolving the conflicts

between representation schemes with little correspondence and therefore restricts the

development theme to a careful selection of related schemes; for instance, establishing an

obvious relationship between object-oriented models and data-flow models may require

substantial refactoring in order to be useful. It should also be mentioned that VOSD provides

no obvious way of integrating functional and non-functional requirements and capturing the

different classes of interacting entities [11, 7].

2.2.5 VA

In [14], Leite studies viewpoint resolution as a means for very early validation in the process

of requirements elicitation. By relying on the principle that a greater number of sources of

33

information guarantee a better understanding of the overall problem, one must also be able to

guarantee their validity as sources for requirement collecting. Therefore, Leite focuses on the

very early validation of viewpoints as a key for the identification and classification of

problems related to completeness and correctness.

Leite presents four essential definitions in his proposal:

 A Viewpoint is a standing or mental position used by an individual when examining a

universe of discourse (the overall context in which the software will be developed,

including all the sources of information and all the people related to the project);

 A Perspective is a set of facts observed and modeled according to a particular aspect

of reality. He considers as modeling aspects: the data perspective, the actor

perspective and the process perspective;

 A View is defined as an integration of these perspectives, which is achieved by a

view-construction process;

 A Hierarchy may be defined as a "is-a" hierarchy or a "parts-of" hierarchy of

concepts in the universe of discourse.

His approach comprises procedures to formalize viewpoints (method), to analyze the

formalized viewpoints (static analyzer) and a viewpoint language (VWPL) to represent them.

The method consists of at least two analysts (viewpoints) describing their intake on the

universe of discourse using VWPL to express it. Each of them analyses the data, process and

actor perspectives, and the hierarchies to improve their own perception, solves the internal

conflicts that might arise and integrates the final perception into a view, which is constructed

by means of the three perspectives and two hierarchies. After that, both viewpoints are

compared and analyzed and a list of discrepancies between perspectives and hierarchies and

their types is produced.

The final step is the integration of the perspectives into a view and after two of them are

available, it is possible to compare different viewpoints for correctness and completeness [14,

11].

34

2.2.6 VOSE

The VOSE (Viewpoint-Oriented Software Engineering) framework was proposed by

Finkelstein et al. [8] and supports the use of multiple perspectives in system development,

providing a means for developing and applying methods for system design. It relies on

viewpoints to partition the system specification, the development method and the formal

representations in which the system is specified.

VOSE starts off by identifying the problems in organizing development in a setting with

many actors, diverse domain knowledge and development strategies, but especially several

representation schemes. This framework then focuses on the development of heterogeneous

and composite systems, in which these settings occur, by allowing the use of these different

representation schemes in a structured, organized and recognizable framework, using

viewpoints as the basic unit.

A VOSE viewpoint is seen as a building block for the framework; it is thought of as the

combination of an actor (a participant) and his role in the development process, including the

knowledge he brings to the project. In order to allow heterogeneous representation schemes,

VOSE viewpoints have a specific composition:

 A representation style, in a notation that is particular to each developer's area or line of

work;

 A domain that outlines the world in which the scheme is developed;

 A specification that describes particular domains in the style chosen;

 A work plan that describes the specification process;

 A work record that registers the history and state of development, detailing

performed actions.

A work plan is the most complex part of the VOSE viewpoint and is divided into four types of

actions: assembly actions are the ones available to the developer to build a specification (add,

remove, etc); check actions concern consistency checks done to the specification, be them in-

viewpoint that resolve simple inconsistencies, or inter-viewpoint checks that must either be

"fought out" between developers, or transferred from a specification to another according to a

35

hierarchic structure; viewpoint actions create new viewpoints according to pre-defined

templates; and guide actions establish a type of schedule for the developer to follow.

A viewpoint template is also one of the most important VOSE concepts to be introduced.

Since that the allowance for different representation schemes may originate truly

heterogeneous solutions, the existence of an organizational "standard" is essential to, as

previously stated, guarantee some measure of order and consistency maintenance. So, as

development proceeds and new viewpoints might be required, a viewpoint template as seen in

Figure 1-2 may be created containing the specification, domain and work record slots empty,

and that afterwards may be instantiated in different ways.

Figure 1-2 VOSE Templates

Also worthy of reference is the fact that the VOSE framework may not only be used from the

method user's perspective, but also from the method developer's perspective; the framework

36

provides means to describe methods like SADT or CORE as configurations of viewpoint

templates.

However, some of the advantages that VOSE presents come with clear drawbacks. Its support

for managing inconsistency relies on the assumption that the analysts have the ability to write

inter-viewpoint consistency rules, also, the automation of these rules' analysis would require

them to be written in such a way that allowed for clear and unambiguous understanding

(formal notation), which in itself may not suffice to explain all the relationships between

requirements.

Another drawback is VOSE's demands of a formal description of each viewpoint, i.e.

although it may tolerate some inconsistency, it does not allow for informal process description

nor does it allocate space in a viewpoint's description for an informal explanation.

These drawbacks clearly limit the application of VOSE in most projects seeing as they imply

a high introductory cost and a cost-ineffective management of constantly evolving

requirements [25].

2.2.7 VOA

Viewpoint-Oriented Analysis (VOA) is an object-oriented viewpoint-based approach to

requirements definition proposed by Kotonya and Sommerville (K\&S) [11]. It extends the

definitions of viewpoints existent until then from its input/output orientations to incorporate

viewpoint classification and different aspects of interaction. VOA also supports requirements

capture and resolution, classification and analysis of viewpoint-system interaction and

integration of functional and non-functional aspects of requirements. It is service-oriented,

since it concerns interaction between entities that may exist in the surrounding system

environments and in the system itself.

Regarding system viewpoints, VOA defines viewpoint identification, structuring and

decomposition, information collection and reconciliation of information across viewpoints as

its four main stages. K\&S further state that because of this staging, viewpoints can be used to

formulate and structure requirements in a way that lends visibility to the deeper interaction

between the system and its environment.

37

Viewpoint identifying normally places most of its reliance on stakeholders (in VOA identified

as 'system authorities') so, in an attempt to improve previous viewpoint definitions, VOA

adopts a pragmatic one that is both unambiguous and complete: a viewpoint is an external

entity that interacts with the system, but does not require its existence in order to define itself.

This means that it can interact with the system by receiving one or more services (functional

requirements), providing control information to the system in order to start or stop service

provision and, finally, providing the system with the data required for service provision.

This notion of viewpoint sheds the previous mixed definitions of both internal and external

viewpoints in an attempt to simplify the process of requirements formulation; it does this by

enabling a direct analysis, capturing the natural interaction between system and environment,

distinguishing between types of viewpoint interaction and providing a framework for

associating services with their constraints and enabling their reutilization.

VOA also separates viewpoints according to their ability to initiate interaction with the

system; active viewpoints normally correspond to the customer's perspective, seeing as they

provide control information to the system; passive viewpoints are essentially representative of

data stores or sinks and control is directed by the system.

As stated before, the VOA viewpoint definition relies heavily on the integration between

functional and non-functional requirements. It acknowledges that in every application,

parallel to functional requirements (services), exist the non-functional ones that define the

overall qualities or attributes of the resulting solution, called constraints. Each service

provided to a viewpoint is therefore associated with the application's constraints (timing,

reliability, system costs, etc) in a way that previously did not exist. Furthermore, recognizing

that integrating functional and non-functional requirements along different viewpoints may

generate conflicts and constraint overlapping, VOA suggests the early validation of these

constraints by comparison of all provisions of each service across viewpoints. By identifying

and solving these conflicts at an early stage, it aims for easier conciliation of clashes and

inconsistencies.

Control information management is addressed by VOA from both the viewpoint and the

system's perspective. A viewpoint directs control information by the description of signals

and stimuli that start and stop the provision of services; the system provides viewpoints with

entities (normally functions) that will relate to them in matters of provision of services.

38

As with CORE, VOA enables viewpoint structuring and decomposition by splitting the

analytical tasks associated with viewpoints into a number of specification levels, diminishing

the amount of detail that must be analyzed at each level. However, VOA extends the notion of

hierarchy to contemplate in-viewpoint levels of abstraction, the top levels being the most

abstract. This works in a similar fashion as class inheritance: all sub-levels inherit the

services, attributes, control information and constraints of their top levels, being able to

specify their own constraints on inherited services and to specify their own service

requirements.

Information collection in VOA is handled by means of a form-oriented approach: for a

viewpoint a form collects information regarding services specification, control information

and data; for a service a form collects information on its constraints. This approach constitutes

the basis for checking the completeness and correctness of information across viewpoints and

for early constraint validation regarding services provided, thus enabling the information

reconciliation stage, and final stage, referred in the beginning.

2.2.8 VORD

Viewpoint Oriented Requirements Definition (VORD) [12] is a method for requirements

engineering that covers its process from initial requirements discovery to system modeling. Its

authors, having been responsible for the VOA method, recognized that it tended to focus the

RE process on the user issues rather than organization concerns, thus leading to incomplete

system requirements. In order to encompass organizational requirements and concerns, they

extended the concept of viewpoints to consider other inputs apart from direct clients of the

system.

As the method it extends, VORD addresses firstly the issues of viewpoint identification,

structuring, documentation, requirements analysis and specification. In order to do this,

VORD relies on a notion of viewpoint based on the entities whose requirements are

responsible for, or may constrain, the development of the intended system, and so they are

also called requirements sources. Each of them relates to the system according to its needs

and the interaction between them, and they fall into two major classes: direct viewpoints

correspond directly to clients in that they exchange control information and services with the

39

system; indirect viewpoints have an interest in some of the services the system provides but

do not interact directly with it.

VORD further extends the VOA treatment of viewpoints by generalizing the previous notion

of 'system authority' into a set of viewpoint classes organized in a hierarchic structure. There

is no generic structure, since each organization must establish its own hierarchy of viewpoint

classes based on its needs and the application domain in which the system will exist, then

constituting an important resource for the organization.

Viewpoint identification begins with abstract statements of organizational requirements and

abstract viewpoint classes; VORD then proceeds with a pruning of the abstract class hierarchy

that eliminates irrelevant viewpoint classes and follows by identifying stakeholder

representative classes that are not present, sub-systems, system operators and individuals

associated with indirect viewpoint classes; for all of these there may be associated viewpoints

that must be contemplated in the class hierarchy.

The documentation of viewpoints in VORD is addressed with special attention; seeing as

viewpoints are associated with a set of requirements, sources and constraints, and that each

requirement is made up of a set or services, non-functional constraints and control

requirements, VORD proposes that each viewpoint have an associated template, providing a

structure for documenting detailed viewpoint requirements and events depicting its interaction

with the proposed system. This offers a framework for formulating very detailed

specifications, yet maintaining a clear separation of concerns.

Tracing the exchange of control information was also one of the main issues addressed by

VORD. It was necessary to have a simple mechanism to address control requirements from a

user's perspective, trace system-level control to viewpoints, expose conflict between control

requirements and capture the distributed nature of control. VORD proposes the use of event

scenarios, a sequence of events and exceptions that may arise during the exchange of

information between the viewpoint and the system.

Event scenarios describe, at a top level, the normal course of events that a specific task might

follow, what VORD calls a normal scenario, and as exceptions may occur to the task in

question, event scenarios contemplate a branching of the main path in a series of layered

sequence of possible events.

40

Viewpoint services specification aims to allow for multiple representations, seeing as a

template is accessible to several levels of capabilities; non-technical staff may have to read it

and understand it, as well as the need for a formal specification must be faced in order to

comply with correctness demands. Therefore, VORD aims for a possibly ambiguous approach

to specification, but one that allows for greater readability, which in many cases compensates

the previous.

Last but not least, viewpoint analysis is intended to guarantee viewpoint correctness and

completeness, but it is a difficult subject for developers to face. For completeness, VORD

uses the previously referred template structure to guarantee a maximum of stored data and

traceability allowance and this fact also helps with the correctness analysis. VORD

incorporates a mechanism for attributing weights to non-functional requirements and

comparing them and their use across the several viewpoints; this way, and making use of the

traceability advantage, VORD allows for an easier and faster conflict resolution.

2.3 PREview

This particular approach merits a more profound analysis since it will be used in further work.

Therefore, the following sections will present a careful description of its process and several

stages, finalizing with a summary of the approach and a justification for its choice as basis for

future work.

Furthermore, this approach is illustrated by a case study relating the Via Verde system,

providing examples along the PREview process of a possible application of this method.

2.3.1 The PREview Method

The PREview (Process and Requirements Engineering Viewpoints) method [25] was

proposed by Sommerville et al. in the mid 1990s in an attempt to handle what they called the

"messy reality of requirements engineering". According to the authors there was a serious

need for improving the quality of requirements specification, and that could be achieved in

two ways: by improving the requirements engineering process so as to be less error-prone and

41

by improving the manner in which the specification itself was organized and specified so as to

be more validation-friendly.

The use of viewpoints had already tried to address both of these improvement dimensions by

collecting and analyzing requirements from multiple perspectives and providing a structure

for the requirement elicitation and specification processes. However, the authors state that

previous unstructured methods simply could not provide a reasonable support for viewpoint

oriented requirements handling, and the ones that provided some structure were simply too

rigid.

Also to be considered is the fact that until that time, only CORE had made the leap from

theoretical proposal into industrial use, and even so, it was restricted to UK defense

contractors. This situation could be explained by several factors, namely the overall

inflexibility of the then current viewpoint models, the demand for fixed notations when

defining requirements, limited support for both requirement evolution and negotiation, the

non-existence of industrial tools that met the support requirements that the then current

approaches required, a lack of recognition of the importance of non-functional requirements

and also the incompatibility of the approaches with other methods that companies might have

already implemented.

It is clear then that although viewpoint-oriented approaches constituted at the time, and still

do, an interesting solution for most of the requirements engineering problems, there were also

some issues with the introduction of viewpoints into the RE processes; there was a need for a

lighter approach that could be introduced at relatively low cost and required an evolutionary,

instead of revolutionary, process improvement.

PREview was originally designed to improve the processes of requirements discovery,

analysis and negotiation, separating its scope from previous proposals by restricting itself to

requirements elicitation. It possesses several key characteristics:

 Since requirements may be elicited from different sources with their particular

notations, PREview allows for requirements that are associated with a viewpoint to be

expressed in any manner. Although natural language and diagrams are the most

common, it also admits for structured or formal notations.

 Non-functional requirements, or concerns, drive the analytical effort since they

represent inherent characteristics of the system. They can be seen as generalizations of

42

the notion of goal, including both organizational goals and constraints that restrict the

system.

 Viewpoints as basic building blocks possess a limited and explicitly described

perspective in order to facilitate their requirements' discovery and analysis.

Because of all of these factors, PREview constitutes an approach that offers the required

flexibility and allows users to define viewpoints appropriate to their application,

complementing the standard notion of viewpoint with that of an organizational concern and

following the more accurate spiral model of the requirements engineering process, as shown

in Figure 1-3.

Figure 1-3 The Spiral Model of the Requirements Engineering Process

43

2.3.2 The PREview Viewpoint

As was the case in several previous methods, a PREview viewpoint is an encapsulation unit, a

means to contain some but not all information about a system's requirements that may come

from analysis of existing processes, discussions with the stakeholders or simply from domain

and organizational information. A complete view of the system can thus be obtained by

integrating requirements derived from different viewpoints.

A PREview viewpoint consists of the following information:

 Name: it is used to identify the Viewpoint and should be chosen in a way that reflects

the Viewpoint's focus. It can also reflect a stakeholder's role in an organization or a

part of the major system or even a process for which the analysis is restricted.

 Focus: it defines the Viewpoint and is attributed according to the viewpoint's

perspective. Some emphasis is put into defining what is the focus of a viewpoint and is

explained later.

 Concerns: as a default it includes all of the system's concerns, reflecting their

orthogonal nature; however, some may be eliminated if it is proven that they have no

relevance for a specific Viewpoint.

 Sources: it represents the explicit identification of the information sources associated

with the viewpoint.

 Requirements: this is the set of requirements that one may find through system

analysis according to the viewpoint's perspective and by consulting with the sources.

 History: this records changes in the viewpoint and assists with its evolution. It

includes focus, sources and requirement changes.

2.3.3 Viewpoint Concerns

The definition of concerns was introduced in PREview as a way to establish explicit links

between requirements and organizational goals or priorities, since they are defined as "high-

level strategic objectives for the system" [25]. They provide a method to ensure that elicited

44

requirements do not conflict with goals or characteristics specific to the procuring

organization.

Concerns may relate to several aspects of a system like safety or functionality and are

established as a result of several discussions between the system's stakeholders, especially

those in charge of strategic management. They are initially defined at a very high level of

abstraction and must not amount to more than 6 or 7, due to their orthogonal nature, taking in

account that the rigorous filtering process should only output the "most overriding, system-

wide high-level goals and constraints" [25].

Another fact to consider is the distinction between a concern and a viewpoint, seeing as some

types of concerns may closely resemble a type of viewpoint. Regarding this issue there are

several key distinctions:

 Concerns cut across all viewpoints in a sense that the questions generated by studying

each concern must be posed to all viewpoint sources, thus allowing for a better

understanding of their effect in each of them.

 Concerns represent critical aspects of the system in development, organizational

properties and are in fact what drive the requirement analysis process.

 Concern "requirements" apply to the system as a whole, across module boundaries, are

inherited by all viewpoints, and viewpoint requirements must not conflict with them.

Finally, concerns are also subject to decomposition into levels of details regarding subsets of

the problem space. Each of them translates into questions that serve as a checklist for

checking against viewpoint requirements and verify if there are constraint infringements.

Another usefulness of detailing concerns is the fact that perhaps their orthogonal nature is

sometimes unclear to some analysts or even stakeholders; therefore, by separating a concern

into "areas of interest", it is easier to comprehend the scope of their effect on the system.

2.3.4 Case Study: The "Via Verde" System

This case study consists of a system for automatic management of vehicle entrances and exits

from adherent parking lots. The system makes use of an identifying gizmo that all cars must

45

possess and that can be recognized by the specific machines that exist in parking lot entrances

and exits.

In order to obtain a gizmo a user must supply his personal information and afterwards must

validate the same gizmo by associating it to a bank account in an ATM.

To access a parking lot, a user must place the gizmo in a readable place (most commonly the

vehicle's windshield) and approach one of the entry machines; the machine recognizes the

gizmo and, if it is a valid one, turns on a green light and allows the vehicle to enter. To exit

the parking lot the gizmo recognition process is the same, adding to it the calculus of the

amount due to the user's stay in the parking lot, which is shown in a display unit on the exit

machine and added to the user's weekly total. This weekly total is sent to the bank in order for

it to be charged to the user's account and in case there is some problem with the transaction,

the bank should notify the system and the Accounting Department (AD) should send a letter

to the respective client.

In case there are any issues with either the entrances or exits, a user may approach a parking

lot employee in order to register a complaint in the system.

Finally, the system also contemplates informing the user of the gizmo's utilization by sending

a monthly status report.

2.3.5 The PREview Process

As was previously stated, PREview concerns itself with activities related to requirements

elicitation and follows a process as depicted in Figure 1-4, fitting into the axes of the spiral

model of the requirements engineering process. As such, it is divided in three stages of a

cycle: requirements discovery, requirements analysis and requirements negotiation. This cycle

is normally iterated until the set of viewpoints, concerns and their respective requirements

achieve a stable equilibrium and can finally be integrated into a requirements document.

46

Figure 1-4 The PREview Process

2.3.5.1 Requirements Discovery

In PREview, the stage of requirements discovery is broken down into a succession of several

activities:

1. Identification of concerns

47

2. Elaboration of concerns into requirements and questions

3. Identification of viewpoints

4. Discovery of each viewpoint's requirements

One of the defining traits of this approach is the importance of concerns in the entire process;

they provide a transversal understanding of the several aspects of the system and the

environment where it will be inserted, driving the following viewpoint and requirements

discovery process and concentrating it on the essential factors of the system.

As is stated in [25], the first step in order to guarantee their proper identification is for an

analyst to ask himself "what fundamental properties must the system exhibit if it is to be

successful?". This of course will drive the analyst to procure a set of very high-level strategic

goals the organization pretends for its system, reflecting therefore the application domain.

If one would look at the "Via Verde" case study, there would be several concerns derived

from some of the stakeholders like the customers, the banking entities or even the

manufacturers of the parking lot machines. These concerns are listed in Table 1-1 and Table

1-2 according to the several stakeholders and having in mind the fact that their total number

should not amount to more than 7.

Table 1-1 Stakeholders of the "Via Verde" System

Stakeholders

Customer

Bank

ATM

Machine Manufacturer

48

Table 1-2 Concerns of the "Via Verde" System

Concerns

Safety

Multi-Access

Response Time

Availability

Security

Compatibility

Having identified the concerns that relate to a specific problem it is then required that one

elaborates them in order to enable their direct influence on the requirement elicitation

activities that ensue. This elaboration is achieved in two stages: concern questions and

external requirements.

The first serve as safeguards against non-compliant requirements and can be seen as a

preliminary test to every requirement that may be elicited in the future.

However, these do not cover sufficient information as to guarantee the detection of all

incompatible requirements. Therefore, each concern should be decomposed into external

requirements that relate to the different sub-problems that each concern will affect, i.e. seeing

as PREview concerns are transversal to viewpoints, their span of influence envelops several

areas of a system; however, each sub-system is affected by a concern in different fashions and

in several specific manners.

For example, Table 1-3 shows the tabular representation of the decomposition of the

Response Time concern. It is clear from the several requirements that there is some distinction

between them, namely that some relate to issues of validation, others to issues of information

display and still others relating to physical aspects. When it comes to Response Time in the

"Via Verde" system it is then safe to conclude that each of the requirements focuses on a

specific hazard of the system, and thus the future requirements that derive from viewpoint

specification must comply with these in their several areas of interest.

49

Table 1-3 Response Time Concern

Concern Name Response Time

Requirements

1. The system needs to react in-time in order to:

1.1. read and validate the gizmo identifier;

1.2. turn on the light (to green or yellow) before the vehicle leaves the

gizmo indentifying area;

1.3. display the amount to be paid before the client leaves the parking

lot;

1.4. manage entrances and exits from the parking lot.

After having defined the driving concerns of a system, the analyst should then begin to

identify the system's viewpoints, what could prove to be a difficult yet crucial task. The

process of identifying viewpoints begins with defining their sources and foci, studying their

scopes for redundancy and re-examining them for possible changes. Obviously it is an

iterative process that extends until a stable set of clearly defined viewpoints is obtained.

In the "Via Verde" case study there was sufficient knowledge of the domain and therefore the

hierarchy did not provide additional input, thus the identified viewpoints were:

 ATM;

 Vehicle;

 Banking Entity;

 Entry/Exit Machine;

 User;

 Parking Lot Employee;

 Gizmo;

 Accounting Department.

Although this list seems large, several of these viewpoints will correspond to just one or two

tasks, i.e. requirements, and thus this set is not considered unmanageable. An example for

50

viewpoint description can be seen in Table 1-4 that describes the Entry/Exit Machine

viewpoint, following the structure established when defining the PREview viewpoint but

withholding for now the information regarding its requirements. Furthermore, if one were to

analyze the several foci of all the system's viewpoints it should be apparent that the full scope

of the system is contemplated (although foci analysis per se may not guarantee completeness).

Table 1-4 Description of the Entry/Exit Machine Viewpoint

Name Entry/Exit Machine

Focus Machine Responsible for controlling parking lot access and gizmo validation.

Sources Machine Manufacturer, Customer

Concerns

Response Time

Availability

Compatibility

Safety

Multi-Access

In possession of a clearly defined set of viewpoints the analyst can finally begin to elicit each

viewpoint's requirements by interviewing or studying the viewpoint's sources or even by

outlining several system models to better understand each point of view concerning the

application's tasks. In this stage it is important that each viewpoint has more than one source

so as to obtain the greatest level of requirement refinement possible. The iterative nature of

the research process will automatically sort out inconsistencies by approaching each source

with a previously elicited set of requirements, i.e. a "no blank-sheet" policy.

Additionally there might be a need to decompose a viewpoint into several sub-viewpoints to

capture specific problems, either because the elicited requirements lack cohesiveness or if

there are conflicts at this early stage. It should be referred that solving conflicts at this stage is

much more cost-effective than leaving them for later stages.

Again taking a look at the "Via Verde" case study and maintaining the approach concentrated

on the Entry/Exit Machine Viewpoint (since it is the most interesting one due to its span of

different functionalities), the several elicited requirements should be detailed according to the

51

structure established when defining the PREview viewpoint and using the tabular description

method adopted by this approach.

Note in Table 1-5 that each of the viewpoint's requirements has a unique identifier as well as a

description of its nature, this way any future trade-offs will be achieved in an informed and

unequivocal manner. Furthermore, the table's structured nature assists in segmenting each

requirement to its specific area of interest without affecting the understandability of the

representation.

Table 1-5 Entry/Exit Machine Viewpoint

Name Entry/Exit Machine

Requirements

1. The Machine detects a vehicle's gizmo.

2. The Machine attempts to validate the gizmo.

2.1. If the gizmo is valid:

2.1.1. The Machine turns on a green light.

2.1.2. The Machine opens the toll gate.

2.1.3. The Machine closes the toll gate upon detection of the

vehicle's passage.

2.2. If the gizmo is not valid:

2.2.1. The Machine turns on an orange light.

3. Upon exit:

3.1. The Exit Machine calculates the amount to be paid according to

the price range.

3.2. The Exit Machine displays the amount to be paid.

2.3.5.2 Requirements Analysis

In this phase the idea is to identify non-compliant requirements and correct them, i.e. an

analyst should detect which viewpoint requirements conflict with the concern questions,

external requirements or even other viewpoints' requirements and guarantee that the whole set

conforms to these standards.

52

In truth, the concern questions should perhaps be applied just before this stage in the

PREview process, that is, they should serve, as was previously stated, as a preliminary barrier.

Therefore, this stage relates more closely to the consistency checking between viewpoints'

requirements and the external requirements of each concern.

First of all, each viewpoint must be checked for internal consistency regarding its

requirements; only after their consistency is guaranteed should an external analysis be

performed. In [25] and [24] this consistency check is achieved by means of Interaction

Matrices, listing an artifact's requirements in one axis and the other artifact's requirements in

the other axis, thus allowing for a detailed observation of each requirement; the term artifact

in this case relates to both inter-viewpoint comparison and viewpoint versus related concerns.

Table 1-6 represents an interaction matrix for comparing two given artifacts and their

requirements. Analyzing the several cells one may encounter three types of values: 0, 1 and

1000. These values indicate the degree of the requirements' intersection as, namely and

respectively, independent, conflicting or overlapping. Independent requirements obviously do

not require further analysis, however, overlapping requirements should be analyzed to decide

whether they should be simplified and conflicting requirements should be discussed to decide

which of them should be resolved.

Table 1-6 Interaction Matrix for Generic Artifacts

 Artifact2

 Req2a Req2b Req2c Req2d

Artifact

Req1a 0 0 0 0

Req1b 1 1000 1 0

Req1c 0 1000 0 1

Instantiating Artifact2 to a Concern, only requirements req1b and req1c should follow into the

negotiation stage, since Concerns are considered as irrefutable. However, in inter-viewpoint

comparisons, i.e. considering Artifact2 as a Viewpoint, besides the above mentioned

requirements, all of Artifact2's requirements should join them.

53

2.3.5.3 Requirements Negotiation

PREview does not provide a defined method for the management of inconsistencies and

redundancies identified by the requirements analysis phase. Requirements negotiation is left

to the judgment of the analyst and the various sources; they begin with the results of the

previous stage of analysis and try to resolve the conflicts and inconsistencies, ending in a

recommendation that is fed back into the requirements elicitation stage in order to ensure their

compliance with concern related constraints.

2.3.6 Summary

PREview's defining trait is its ability to consider both a refined notion of viewpoint and also a

definition of an organizational concern. This fact allows for a better guided requirement

elicitation process, with concerns as drivers in requirement discovery, as well as generating

useful byproducts for later stages of the application's development.

Regarding the PREview notion of a viewpoint, it is clear that PREview viewpoints are

flexible, generic entities which can be used in different ways and in different application

domains. Furthermore, PREview contemplates both types of viewpoints: those associated

with system stakeholders and those associated with organizational and domain knowledge.

PREview basically constitutes a lightweight approach to requirements engineering that can be

introduced into existing design processes and adjusted to each organization's standards and

modus operandi.

All of these characteristics justify choosing PREview as the representative of viewpoint

oriented approaches in an attempt at a hybrid approach involving goal oriented methods; its

lightweight nature and the purposeful intention for its easy integration with other processes

deems it a perfect candidate.

54

55

Chapter 3
Related Work:
Goal-Oriented
Requirements

Engineering

This chapter outlines several of the Goal-Oriented (GO) approaches currently existent or

strongly referenced in current work. An introduction to GO methodology is presented,

including definition of the generic concept of a goal and advantages in its use. Existing

methods are then described and its current uses outlined, with a particular emphasis on the

KAOS approach.

3.1 Main Concepts

When one is analyzing a project statement, it is the nature of the human mind to automatically

focus on the objectives of the statement, i.e. several words almost immediately become

imprinted on one's thoughts as an answer to the question “what is this supposed to do?".

These objectives are called the goals of the project and have long been seen as important

components in the requirements engineering process.

Goal Oriented Requirements Engineering therefore studies the use of goals for requirements

elicitation, specification, analysis, negotiation and many other purposes. The process begins

56

by analyzing the system up for consideration regarding its several organizational, operational

and technical aspects and listing the detected problems and opportunities as goals to be

achieved through the ensuing requirements [13].

This is a practice that comes naturally to analysts and that relies on the uniform definition of

goals, requirements and their relationships in order to construct a model of the intended

system.

3.1.1 What is a Goal?

A goal is an objective the system under consideration should achieve [13]. They represent

properties that the system is intended to ensure and may be present at several levels of

abstraction, from high-level, strategic concerns to low-level, technical concerns [13]. Goals

also vary in type, ranging from representations of functional properties the system must offer

to non-functional concerns related to quality of service [5].

The system under construction will be constituted by passive components (the software and

its environment) as well as active components such as humans, devices and software [13];

these active components are known as agents. Goals, unlike requirements, may depend on

several collaborating agents in order to achieve satisfaction, being that a software goal that

relies solely on one agent becomes a system requirement and an environment goal that also

relies on just one agent becomes an assumption and may not be enforced.

3.1.2 Why use Goals?

Goals represent an important step in handling requirements in the RE process by:

 providing a rationale for requirements, linking high-level strategic objectives to low-

level technical details;

57

 guaranteeing a precise criterion for assessing requirement completeness;

 ensuring requirement relevance evaluation regarding their use in the proof of a goal;

 providing a natural refinement mechanism for easier requirement identification and

future readability;

 considering alternative goal refinements that consequently allow exploring different

system proposals;

 dealing with conflicts and solving them naturally through further refinements;

 separating volatile from stable information as separate requirements, without

dissociating them from the goals they relate to;

 driving the requirements identification process relating to the requirements that

support them.

3.1.3 Summary

Goals are useful tools to capture, at different levels of abstraction [13], the several properties

the system in design should reflect. Their recognition is almost, at least at their higher levels

of abstraction, immediate, constituting perhaps an approach to requirements engineering with

a less pronounced learning curve when comparing it to the viewpoint-oriented "point-of-

view".

Furthermore, goals provide rationale for requirements, assess their completeness and

relevance and are drivers of the requirement identification process.

58

3.2 Existing Methodologies

3.2.1 NFR Framework

A Non-Functional Requirement (NFR) is a definition of how the system should satisfy its

Functional Requirements, i.e. a constraint/directive for the system properties. It usually is

subjective in nature and impact and is highly influential on the quality of the final product and

its acceptance by the customer.

NFRs strongly condition system architecture and implementation choices besides assisting in

uncovering further system requirements that otherwise would remain unseen until latter stages

in the software's development. They reflect qualities the system should possess, such as

security, accessibility, etc.

To deal with these issues [6] introduces the NFR Framework, consisting of 5 main

components [5]:

 Softgoals

 Interdependencies

 Evaluation procedure

 Methods

 Correlations

Softgoals represent a system's non-functional requirements according to 3 types: NFR

softgoals, operationalising softgoals and claim softgoals. The first are a result of the analysts'

study of the domain and the system to be constructed, representing the high-level non-

functional requirements of the application.

Operationalising softgoals constitute more specific and concrete solutions (design or

implementation related) and are either reduced scoped refinements of the higher-level

softgoals, seeing as the firsts' satisfaction depends on their accomplishment, or alternatives for

the realization of their parent softgoals.

59

Claim softgoals translate domain knowledge, analysts' previous experiences and customer

demands in order to justify certain softgoals refinements or interdependencies, basically

providing a rationale for decisions regarding design and development.

This refinement of softgoals is achieved by means of IsA relationships, relating a softgoal to

its children, which in turn contribute to their parents in a positive or negative way, that is,

their completion either assists or hurts their parents' satisfaction. The refinement process is

guided by a set of methods specific for each softgoal type: decomposition methods,

operationalisation methods and augmentation methods. The ensuing softgoal hierarchy

should be catalogued and serve as a roadmap for specific softgoal refinement, that is,

according to a pre-defined catalogue and the decomposition methods, a security softgoal for

an aspect of the application would be refined according to the generic softgoals hierarchy into,

for example, availability and confidentiality softgoals [5].

Softgoals, their types and their interdependencies constitute what is called a Softgoal

Interdependency Graph (SIG) as displayed in Figure 3-1, which will be evaluated to

determine whether the root NFR softgoal is satisfied regarding its specification. In these

graphs, for each softgoal (represented by clouds) or respective descendants, exist suitable

operationalisations (represented by bolder bordered clouds) that provide them with several

solutions for their satisfaction. The evaluation procedure begins at the lowest-level

operationalisations and follows a bottom-up path according to the types of contributions and

refinements (AND - an arc between the connectors - and OR - two arcs between the

connectors), resulting in the satisfaction or denial of the top higher-level softgoals.

60

Figure 3-1 Softgoal Interdependency Graph (SIG)

The final major components of the NFR Framework are correlations. As it is obvious, non-

functional requirements do not exist isolated from the remaining qualities of the system,

therefore the several softgoals (generic or operationalising) may relate to one another,

reflecting the cross-impact of a system's concerns; these relationships are called correlations.

Their introduction into the several SIG is parallel to the decomposition and operationalisation

processes and represents considered ambiguities, trade-offs or priorities among the SIG

elements.

After completion of the initial SIG, its impact should be evaluated and the process repeated

until achievement of a satisfactory result. The final SIG should be related to its appropriate

functional requirement, representing a design decision and the lowest level

operationalisations related to the functional requirement's specifications, thus providing clear

links between functional and non-functional requirements.

61

This framework clarifies subjective needs of an application into functional requirements,

revealing hidden lackings and reutilizing available "know-how". Also, by cataloguing the

entire process during the process itself, used refinements end up contributing to the already

available "know-how" without the added weight of an ad hoc analysis. It is then safe to

assume, that this approach contributes a priori to the increase of the final product's quality.

3.2.2 GBRAM

Goal-Based Requirements Analysis Method (GBRAM) was proposed by Annie Antón in

1996 [2] and focuses on the need for a clear way of identifying and elaborating goals for

requirements specification, since at the time most approaches were based on the premise that

the elicited goals were supplied to the analyst.

The approach relies on the following concept definitions for its components:

 A goal is a high-level objective of the business, organization or system [2] that focuses

on the motivation behind certain system properties and provides a guide for the

software analysis process;

 A requirement is a specification of how a goal is to be achieved by the system under

elaboration;

 An operationalisation is a process that elaborates a goal in order for its sub-goals to

have clearly defined operational properties;

 An agent is the entity or process that seeks to realize a goal, assuming the

responsibility for its achievement or lack of it;

 A constraint is a requirement that must be satisfied by a goal and represents conditions

imposed on its achievement;

 Goal decomposition is the process of goal refinement that enables for easier

comprehension of the goal itself by defining clear steps/tasks for its achievement and

representing them as sub-goals;

62

 Scenarios are descriptions of certain system properties that may arise from constraints

or restrictions;

 Goal obstacles are impeditive behaviors represented by certain goals that pose a threat

to other goals' completion.

Furthermore, a goal belongs to two different types:

 Achievement goals represent organization objectives that translate into functional

properties of the system under analysis;

 Maintenance goals represent conditions to be satisfied by the system through

constraints imposed on the system itself and tend to translate into non-functional

requirements.

The GBRAM process is divided in two stages: goal analysis and goal evolution.

Goal analysis focuses on the extraction of information from the available sources (project

statements, diagrams, etc) in order to identify the several system goals, or at least the higher-

level ones. Several sources are advised for unequivocal goal identification and clear goal

elaboration, being also suggested the focus on key action words when analyzing stakeholder

descriptions.

This stage also serves to identify the several intervening agents, additional stakeholders and

constraints. The several agents are identified by searching for the entities responsible for each

goal's realization and the constraints, seeing as they result from conditions imposed on the

system, are identified by searching for key temporal connectives. Finally the goals are

classified according to the conditions they represent as achievement or maintenance goals.

Goal evolution consists in the refinement and operationalisation of system goals. Since

stakeholders may often change opinions over time, goals are likely to be subjected to constant

changes and improvements. Therefore it is essential to begin by elaborating each goal through

goal obstacles identification, scenario analysis, constraint definition and goal

operationalisation.

Obstacles represent the conflicts that may arise between goals or the presence of impeditive

conditions, whereas scenarios facilitate the description of priorities that might ensue from

obstacle analysis.

63

Goal refinement translates into the merging or splitting of goals according to the existence of

redundancies or the need for goal clarification, respectively. Regarding goal clarification, this

results in the decomposition of goals into clearer sub-goals that specify steps in the parent

goal's realization. Refinement also includes the identification of constraints imposed on the

several goals and the operationalisation of goals, which in turn result on the imposing of pre

and post conditions.

The GBRAM approach therefore defines a top-down analysis method for refining goals and

attributing them to agents starting from inputs such as corporate mission statements, policy

statements, interview transcripts etc. and providing an elaborate yet understandable analysis

of the several system goals and the concepts implied in their definition.

3.2.3 I* Framework

The I* Framework was developed in 1995 by Eric Yu [26] and proposes an agent based

approach to requirements engineering. By agent based it means that the approach focuses on

the use of the intentional actor as the central construct, revolving around the different system

stakeholders and their relationships. Agents relate to other agents in order to achieve goals,

carry out tasks and obtain resources, establishing a connection between depender, dependum

and dependee.

A depender is an agent that relies on another agent for a goal, task, sub-goal or resource,

which in turn is the dependum, and the agent dependent upon is the dependee [5], as shown in

Figure 3-2. The representation of a system according to these types of relationships allows for

a better understanding of the social networks implied in the system itself and the necessary

interactions required for the realization of certain system properties.

64

Figure 3-2 Goal Dependency

The driving force behind this social analysis is the question "why?" regarding the purposes of

the several requirements and regarding their types. It is many times useful to understand the

motivations and rationales behind the several activities, thus gaining a better perception of the

system for the design of the software processes.

I* proposes two stages in its approach, each with a graphical representation that makes it

understandable for dialogues with the several stakeholders: the Strategic Dependencies (SD)

Model and the Strategic Rationale (SR) Model.

In the SD stage, the purpose is to study agents and their dependencies, focusing on what is

gained or lost by the achievement or failure of a particular dependency. To be considered is

the particular nature of each agent, that is, each agent is an intentional actor with a drive to

fulfill certain commitments, with an inherent autonomy and free will, existing within a

network of social relationships with other agents, with a distinct identity and defined

boundaries and with the ability to reflect upon its actions and strive for self-achievement.

The process begins by identifying the system's agents according to the characteristics listed

above as well as the higher-level goals. The corresponding model includes the previously

referred types of dependum as well as the dependency links between the several agents [5].

Regarding the types of dependum:

 A goal is a system objective, a property that the system should reflect, and can be

achieved in multiple ways;

 A softgoal is akin to the goal but with a degree of fuzziness, i.e. it can represent a non-

functional property or a less clear goal;

65

 A task is the equivalent of a requirement and corresponds to a dependum whose

manner of achievement is clearly defined;

 A resource is a dependum that is forwarded between agents, a result to be shared.

In the SR stage, the previous analysis is elaborated regarding each agent by deepening the

degree of the driving questions why and how, as well as considering alternative solutions for

the higher level problems. This goal decomposition mechanism is similar to that of the NFR

Framework [6] in a way that each agent evaluates the goals that he is associated with and

devises methods for accomplishing them. The resulting model possesses new types of links

reflecting relationships akin to the NFR correlations and contributions and basically extends

the previous model with the rationales for the already present dependencies.

Across these two stages, the I* Framework provides several alternative dependency structures

and paths for goal completion, as well as different agent cooperation strategies, that after

careful analysis may be chosen for realization [5]. The different models reflect the intentions

of the agents and the higher-level goals that compose the system functionalities, thus

highlighting the importance of agents, their specifics and dependencies in the process of

software design.

3.2.4 GRL

GRL (Goal-oriented Requirement Language) is a language used in agent-oriented and goal-

oriented modeling and reasoning of requirements, focused in dealing with non-functional

requirements [15]. It is strongly based in the i* and NFR frameworks for specifying non-

functional requirements and is part of the URN (User Requirements Notation) along with Use

Case Maps.

GRL, like the frameworks it is based on, relies on components to represent the several

concepts involved in requirements engineering, organizing them in three categories:

intentional elements, links, and actors. The intentional elements comprise goals, tasks,

softgoals and resources and their intentional nature relates to the fact that their use aims at

explaining particular system behaviors, structural aspects and design alternatives, along with

the used criteria.

66

As with the i* framework, the analyst that uses GRL is primarily concerned with explaining

those structural options or any constraints that might be introduced, regardless of their

concrete nature (softgoals are fuzzy by nature). Implementation details are scaled back in

order to allow the analyst to assume a strategic stance and observe the higher-level

architectural alternatives aiming at a current yet extensible model that considers the

surrounding environment.

However, GRL defers from i* by not allowing agent specializations and offering constructors

for enabling relationships with external elements: non-intentional elements and connection

attributes. GRL also offers additional elements that aim at argumentation and

contextualization such as: beliefs, correlations, contribution types and evaluation labels.

Some of these elements are recognizable from the NFR framework and contribute with the

specification of satisfaction states, extending the types and ranges of qualification of the i*

relationships.

 The GRL model can be composed of a global goal model or a series of distributed goal

models for several actors, being that if more than one actor is present, inter-actor

dependencies should also be present [15].

GRL components are defined much like the approaches they derive from:

 A goal constitutes a condition that the stakeholders want the system to reflect and can

be specified as a business goal, reflecting a state of affairs the stakeholders wish to

achieve, or a system goal, i.e. a functional requirement of the application;

 A task details the method for satisfying its parent node, specifying a particular way to

achieve either the goal, the sub-goal or the higher-level task it relates to;

 A softgoal is similar to a goal but lacks the precise criteria for assessing its

achievement. It is subjective in nature and represents a NFR in the system under

consideration;

 A resource is a physical entity that is forwarded between actors considering its

availability.

In the GRL model, the several components are connected by links of several types:

67

 Means-ends links are used to connect tasks to goals, offering the tasks as alternative

methods for the goal completion;

 Decompositions define what other sub-elements need to be achieved or available in

order for a task to be performed;

 Contributions represent effects from one component to another;

 Correlations allow for expressing knowledge about interactions between intentional

elements, encoding such knowledge;

 Dependencies relate actors and components as depender, dependum and dependee.

A global GRL model is basically a set of goal model structures connected by correlation links,

allowing for a better understanding of the transversal nature of NFRs, while observing the

system from an agent oriented perspective; all of this with the benefit of the same graphical

notation as that used in the i* framework.

3.3 KAOS

The KAOS (Knowledge Acquisition in AutOmated Specification) approach stems from

cooperation between the Universities of Oregon and Louvain that began in 1990, under the

supervision of Professor Axel van Lamsweerde. It was initially proposed in forums of

Artificial Intelligence but it was quickly found to have potential regarding applications of the

machine learning domain to requirements engineering.

In [13] Lamsweerde et al. state that requirement analysis is "made of two coordinated tasks":

requirements acquisition and formal specification.

The first relates to the structuring of requirements into a preliminary model of the system,

elaborated and expressed in a "rich" modeling language. This language encompasses a set of

concepts required to provide an adequate description of the system to be designed such as

objectives, constraints, entities, relationships, etc. and should balance enough formality as to

enable a formal basis for the elicitation of requirements with the ease of understanding as to

be readable by clients.

68

The task of formal specification relates to the refinement of the requirements model into more

precise one, relying on a level of formalism necessary for detailed formal verifications and the

generation of prototypes. However this second task is not the focus of this work and is

therefore only briefly referred to.

Compared to other approaches, KAOS is the only one that allows formal specifications and

provides a full fledges commercial tool [21]. In fact, this tool called Objectiver has been used

in several industrial projects and is currently being used by some of the main players within

the European aerospace industry relating to a project aimed at improving air transportation

security. The European project is known as SAFEE [1].

3.3.1 The KAOS Method

KAOS as an overall approach is divided into three components: a conceptual model for

requirements acquisition and structuring with the respective acquisition language; a set of

strategies for the elicitation of requirements and an automated assistant to provide the

guidance required for the acquisition process corresponding to the chosen strategy.

The conceptual model is a meta-model intended to provide a basis for the requirement

acquisition language and provide abstractions for the requirement models. It allows for

functional and non-functional requirements representations and is divided into three levels:

the meta-level that provides the sufficient abstraction for representing the requirement models,

the domain-level that maps the higher level abstractions into the specific concepts pertaining

to the application domain, and the instance-level that refers to specific instances of domain-

level concepts [13]. This meta-model is essential since it drives the knowledge acquisition

process [5] and defines the concepts on which the acquisition strategies will base themselves

upon.

The acquisition strategies define methods of traversing the conceptual model as steps for

instancing the several meta-model components. For the purposes of this work a goal-directed

acquisition strategy is considered and results in a specific combination of detailed steps that

will result in a well-defined requirements model. This strategy will be detailed in further

sections.

69

Regarding the automated acquisition assistant, it comprises of a support strategy for the

acquisition process itself, based on two repositories: the requirements database and the

requirements knowledge base. These repositories are updated along the development process,

the first with up to date requirement models for the strategies under consideration, and the

second with domain knowledge organized into hierarchies for easy maneuverability.

This work will present the main concepts involving the goal-directed requirements acquisition

strategy, as well as the specific models it ensues, from a meta-model level (knowledge

structures) to an instanced level represented by the goal decomposition trees and its "brethren"

models.

3.3.2 The KAOS Process

The instancing of the KAOS acquisition process into a goal-directed strategy is defined in

[13] as having 7 steps that may overlap, iterate and require backtracking:

1. Identification of Goals, their structures and concerned Objects;

2. Identification of Agents and their Capabilities;

3. Operationalisation of Goals;

4. Object and Action Refinement;

5. Derivation of strengthened Actions and Objects to Ensure Constraints

(operationalisations);

6. Identification of alternative Responsibilities;

7. Assignment of Actions to responsible Agents.

These steps, as is said previously, may be iterated, while overlapping, and may require

backtracking regarding later changes. For the purposes of this work, these steps will be

instantiated into KAOS models as defined in [21] based on the case study enunciated in a

previous section, and furthermore, step 5 will not be considered since it relates to the formal

specification of the several requirements which, as previously stated, is not the focus of this

work.

70

3.3.3 KAOS Goal Model

The KAOS Goal Model is the set of interrelated goal diagrams necessary to tackle a particular

problem and is comprised of a number of entities and relationships whose use in its

construction enables to represent how and why a goal is achieved:

 Goals are the focus of this model and represent objectives to be met through agent

cooperation, prescribing a set of behaviors the system is supposed to reflect.

 Sub-Goals are goals that are linked to other goals through means of refinement

relationships, contributing to the satisfaction of the goal they refine. Meeting the

conditions of all sub-goals should automatically entail the satisfaction of their "parent"

goal.

 Agents are humans or automated components that are responsible for achieving

certain requirements and/or expectations.

 Requirements are low-level types of goals whose achievement constitutes a

responsibility of a given software agent.

 Expectations are goals assigned to agents that interact with the system; they reflect

interactions between the system and its environment and their achievement is not a

system responsibility.

 Domain Properties are assertions about certain objects of the software environment

enunciated as domain invariants or hypothesis, i.e. properties that are known to hold in

all states of a domain object or properties that are supposed to hold, respectively.

 Obstacles are certain conditions that prevent the achievement of system goals. The

definition of these undesired behaviors represents a defensive approach to software

modeling.

 Refinement Links are relationships between a goal and its sub-goals that represent the

decomposition of an objective into clearer steps in its achievement.

71

 Responsibility Links represent the connection between a software agent and the

requirement whose achievement it is responsible for.

 Assignment Links represent the connection between an environment agent (one that

interacts with the system) and the expectation whose achievement it is responsible for.

 Obstruction Links relate obstacles to goals, representing the impediment an obstacle

represents to a goal's satisfaction.

 Resolution Links relate goals to obstacles, representing solutions to the presented

impediments.

All of these elements can be seen in Figure 3-3 and represent the several decompositions,

interactions and conflicts that may occur when attempting to achieve the Parking Lot Entrance

goal, albeit in a simplified manner.

Figure 3-3 Parking Lot Entrance Goal Model

72

Also worthy of reference is the fact that KAOS encourages the use of requirement patterns

when eliciting the several system requirements, this way attempting to solve the "blank page"

issue when interviewing stakeholders. Many times, goal models end up being instances of

previously defined requirement patterns.

Furthermore, in [21] several completeness criteria are provided for the analysis of the overall

system model. The first two pertain specifically to the goal model:

1. “A goal model is said to be complete with respect to the refinement relationship 'if

and only if' every leaf goal is either an expectation, a domain property or a

requirement."

2. “A goal model is complete with respect to the responsibility relationship 'if and only if'

every requirement is placed under the responsibility of one and only agent (either

explicitly or implicitly if the requirement refines another on which has been placed

under the responsibility of some agent."

3.3.3.1 Conflicting Goals

Conflicting goals is a well-known phenomenon in the world of goal-oriented requirements

engineering, and KAOS is no exception. Recognizing this possibility of conflicting goals, the

KAOS/Objectiver methodology proceeds to represent them as seen in Figure 3-4. The conflict

is identified through analysis of each goal's description, along with essential knowledge of the

domain, and it is evidenced in the KAOS Goal model.

73

Figure 3-4 Generic Goal Pattern with Conflict

The above mentioned figure details a generic goal pattern with a conflict between two of the

goals; by using a generic representation it is clear to understand why those goals would

collide - robustness almost always implies growing expensiveness in building the system.

3.3.4 KAOS Responsibility Model

The KAOS Responsibility Model is the set of responsibility diagrams that can be derived

from the goal model and displays the requirements or expectations an agent is responsible for.

It therefore comprises three of the previously described elements: an Agent, its assigned

Expectations and/or Requirements.

Such a model is shown in Figure 3-5 representing the responsibilities of the Entrance Machine

agent.

74

Figure 3-5 Entrance Machine Responsibility Model

3.3.5 KAOS Object Model

The KAOS Object Model defines the several concepts of the domain that may be relevant

with respect to the known requirements or that represent constraints on the system itself in

order to satisfy requirements.

The objects may be defined as belonging to three types:

 Entities are autonomous, passive objects whose definition is independent from other

objects.

 Agents are active objects that perform operations in order to achieve several types of

goals.

 Associations are passive objects whose definition depends on the objects they link.

Their identification is parallel to the process of goal identification and definition, or may

result from browsing the goal model or even from discovering system components that are

75

necessary for a requirement's satisfaction. Their representation is compliant with the UML

standards for class diagrams.

These objects are connected to the goal model through Concerns Links, relating

requirements to the objects that are needed for them to be satisfied.

An object model can be found in Figure 3-6, representing the components of the Parking Lot

System.

Figure 3-6 Parking Lot System Object Model

3.3.6 KAOS Operation Model

The KAOS Operation Model sums up all the behaviors necessary for an agent to fulfill its

requirements. These behaviors are translated into operations that work on the previously

defined objects, being responsible for their creation, the triggering of object state transitions

and the activation of other operations through events.

76

Their elicitation happens during the stakeholder interviews, in case the stakeholders find it

necessary to describe certain behaviors in order to define a system goal, or by observing the

modeled requirements, representing the operations as how the requirements have to be

realized.

The operationalisation (fulfillment) of requirements follows a set of heuristics defined as

follows:

 Static requirements are translated into objects;

 Dynamic requirements are operationalized into operations;

 \item Requirements that are both static and dynamic} are operationalized into

interacting objects and operations.

The operation model therefore requires the definition of the following elements (illustrated by

Figure 3-7):

 Operations are performed by agents and specify objects' state transitions.

 Events are ephemeral objects that trigger operations performed by agents and can be

external or produced by other operations.

 Input Links are established between objects and the operations they serve as input

for.

 Output Links are established between objects and the operations that produce them as

output.

 Cause Links relate events to the operations they initiate or terminate.

77

Figure 3-7 Parking Lot Entry Operation Model

For this model, three more completeness criteria exist that define rules for its evaluation:

3. “To be complete, a process diagram must specify

a. The agents who perform the operations

b. The input and output data for each operation."

4. “To be complete, a process diagram must specify when operations are to be executed."

5. “All operations are to be justified by the existence of some requirements (through the

use of operationalisation links)."

The last criterion reveals a specific trait of the operation model that pertains to the finality of

the overall system model; the operationalisation of leaf nodes from the goal model provide a

conclusion to each particular branch, guaranteeing its achievement; however, requirement

nodes left unoperationalized leave much room for subjectivity.

78

Furthermore, this model bridges the gap between the problem description and the solution

description, adding to the traceability of the several models and to the flexibility of the

approach, i.e. an analyst may decide to start from goals or from a set of required operations.

3.3.7 Summary

The KAOS approach, as explained by the Objectiver methodology [21], addresses

requirements identification and of the intervening agents by relying on the construction of a

requirements model segmented into four types of sub-model: the goal model, the

responsibility model, the object model and the operation model. This conjunction of the

several models is clearly illustrated by Figure 3-8.

Figure 3-8 KAOS/Objectiver Modeling Methodology

79

This method of analysis, although presented in this work in a simplified manner, is focused on

the problem itself, introducing through means of the several diagrams, important aspects of

the application that would not be evident in the problem description.

Furthermore, KAOS addresses the issue of traceability between the problem description and

the solution description stages by operationalising the several requirements that require

completion. This way, analysts have a means to ensure that their intake on the system is

translated into the expected solution, and the developers can have some context surrounding

the solution they need to develop.

By defining completeness criteria, KAOS ensures that the completion of the established goals

is clearly defined and that every requirement is attributed to an agent, leaving no room for

"wishful thinking" [21]. This aspect of the approach is furthered by the formal specification

that would ensue, however such is not the purpose of this work.

Due to these particular capabilities and the clearly defined and unambiguous modeling

aspects, the KAOS approach using the Objectiver framework provides an almost "elegant"

method for approaching requirements modeling and therefore merits choosing it for the basis

of the proposed work.

80

81

Chapter 4

The Hybrid Approach

This thesis’s purpose is to develop the Hybrid Approach using as basis the Viewpoint-

Oriented PREview approach and taking advantage of the formal decomposition techniques the

Goal-Oriented KAOS approach provides to complement the requirements discovery process

of the base approach.

As such, seeing as integrating two complex requirements engineering approaches demands a

certain degree of understanding regarding the elements of both approaches and how they

relate to each other, if in any way, a comprehensive conceptual model analysis is required.

4.1 Conceptual Model Analysis

A conceptual model is a map of concepts and their relationships that can be used to describe

the semantics of an approach and represent assertions about its nature. Specifically, it

describes an approach’s significant components and provides means to collect information

and display characteristics of and associations between pairs of those components.

Concerning the PREview approach, no conceptual or meta-model has been, to this point, put

forward, either by the authors, or by others and validated by the original authors; this meant

that further work would encompass, at the least, designing a conceptual model of PREview.

Regarding the KAOS approach the situation is precisely opposite: much work has been put

into designing a KAOS meta-model, since its early days; seeing as it was seen from the start

as a formal approach, a meta-model would of course be essential for its definition.

However, the "problem" with the KAOS meta-model is the vast number of concepts it

includes, and thus its very complex nature. Therefore, in order to better analyze the approach

and its integration with PREview, a certain number of steps were taken when dealing with the

aforementioned model:

82

 as it is described in the following section, this hybrid approach will concern itself

merely with KAOS concepts relating to Goal Models, this means that components like

operations and events can, at least for now, be put aside;

 even considering just the KAOS Goal Models, the approach's meta-model is still

complex enough as to complicate a comparison between both approaches, so some

concepts of the Goal Model were "simplified" in order to facilitate the establishing of

correspondences.

The simplified meta-models, or conceptual models in order to minimize commitment to a

notation, are represented in Figure 4-1, as well as the correspondences found when analyzing

both approaches in parallel:

 Viewpoints are encapsulation units, but each of them symbolizes an agent's intake on

the system, and the requirements that intake generates; on the other hand, KAOS

agents are entities responsible for the fulfillment of requirements and expectations.

Therefore, it seems logical to establish a correspondence between PREview

Viewpoints and KAOS agents;

 KAOS Requirements and Expectations relate closely to PREview Requirements,

whereas PREview's external requirements only relate to KAOS Requirements;

 Both PREview Concerns and KAOS Soft-Goal are non-functional considerations on

the system and are orthogonal in nature;

83

Figure 4-1 Conceptual Model Correspondence

A final concept to keep in mind is the distinction between the nature of a Viewpoint and a

KAOS agent: although a relationship can and should be established between them, it is

important to distinguish between the position from which a viewpoint observes the system

84

and that of a KAOS agent, that is, a viewpoint is always foreign to the system, whereas an

agent may be a system module.

4.2 Hybrid Approach’s Heuristics

Choosing a starting point for this hybrid approach signifies identifying the concessions the

PREview approach should make in order to better accommodate the introduction of the

KAOS modeling components. This means that although both of these approaches have merit

and have been the target of extensive studies and applied to numerous projects, the PREview

approach’s methodology should be adapted to allow for an easier integration of the KAOS

goal decomposition mechanisms, whilst remaining true to the approach’s original principles.

Furthermore, the complementary nature of these approaches is due precisely to their specific

characteristics as approaches, not due to the elements or steps they entail. And most of all, one

should not reinvent the wheel, thus much of what each approach brings to the picture and how

it does so, should be taken advantage of, in its “natural state”.

That being said, after analyzing the many points in which both the KAOS and the PREview

approaches meet and/or complement each other, a set of Heuristics for this Hybrid Approach

was created. This set of heuristics is of course largely based on the PREview approach's

process and introduces the goal decomposition mechanism of KAOS into the method.

On a summarizing note, there are several reasons for this choice:

1. the first is the fact that PREview in itself was an approach designed to be integrated

with other approaches to suit particular needs of certain projects, furthermore, as it

was described in the corresponding section, PREview is a lightweight approach that

restricts itself to the process of requirements elicitation: this may prove to be useful in

these early stages of such an hybridization process in what concerns difficulty

management;

2. a second reason is the fact that, in PREview, from Viewpoint identification to

requirements identification there is no specific process, no set of rules or guidelines,

just some pointers that by themselves are obvious like "consult your sources", "the

85

more sources, the more information"; this of course is useful advice, but for

inexperienced analysts it might leave too much room for misunderstandings and

errors;

3. on the other hand, and as a third reason, the KAOS approach provides a systematic

method for requirements identification by means of goal decomposition, however in

requirements engineering, and keeping true to the spirit of the PREview approach,

sometimes a certain degree of flexibility is required.

As it was pointed out in the KAOS approach section, when a developer reads a project

statement or gathers the stakeholders for a meeting, the most obvious and normally first

artifacts to be produced, be that imprinted on a piece of paper or on the developer's mind, are

the system goals.

"The system is supposed to do this." or "We require the system to produce that." are common

statements, and their translation to system goals is almost immediate.

However this process of identifying a system's goals can sometimes be overwhelming, as is

the case when dealing with large and complex systems; such a process would benefit from

segmentation into smaller and thus more manageable components, while ensuring that all

stakeholders and all environment components are being contemplated. Stepping from the

KAOS approach to the PREview approach, this role corresponds to that of the system’s

viewpoints.

4.2.1 Produce List of System Viewpoints

As it was the case in the PREview approach, this set of viewpoints will correspond to what

may be called foreign agents - the system's stakeholders – and of course the system's

environment, in what concerns components that may interact with the system itself. As it was

explained during the conceptual model analysis, extrapolating this definition to the set of

KAOS agents, we will obtain a specific sub-set of these elements relating to strictly non-

system components.

Identifying a system’s viewpoints in the PREview approach implied a careful and sometimes

extensive definition of the items that composed them, especially the viewpoint’s focus and its

86

sources. However, contrary to what was defined in the original approach and in order to find

some common ground with the KAOS approach, the process of identifying these “initial

viewpoints” should not worry itself with depth, in what relates to Viewpoint description, or

scale, in what relates to the number of initial viewpoints.

More precisely, these initial Viewpoints should only possess three attributes: a name, its type

(stakeholder or environmental) and a focus (albeit a simple one).

Why such a lax approach at this identification? Mainly for two reasons:

- The first attempt at identifying the system’s viewpoints in the PREview approach,

even when done so by an experienced analyst, would probably not output the final set

of Viewpoints. Furthermore, the initial set of viewpoints is constantly being revised

and modified, merging ones that are too similar in nature or splitting those that do not

make sense together, thus if one can obtain a set of identifiable Agents while avoiding

the amount of redundant work that goes into describing Viewpoints in depth at every

step, one should choose to do so;

- This hybrid approach bases is requirement identification process on the KAOS Goal

Models; these models in turn use as subjects what are called Agents. Although without

presuming to possess a set of literal KAOS agents, these initial viewpoints would

facilitate integration between the PREview Viewpoints and the subjects of KAOS

Goal Models.

Regarding the process itself, a few guidelines should be followed in order to direct the analyst

in the identification of these initial viewpoints:

 It may help to separate viewpoint identification between types, that is, identifying

separately the stakeholder related viewpoints and the environmentally related

viewpoints;

 Having in mind that the basis for this work is a project document or the analyst's notes

from an interview with the main stakeholders, a method that works well is syntactic

analysis:

o What form do project requirements normally take? "System component A is

expected to behave like this" or "Agent B interacts with the system in such a

way";

87

o If one is to study these sentences, one will find that they have a basic syntactic

structure of actor + verb or action + object;

o Seeing as a viewpoint relates to the perpetrator or the target of an action, it

makes sense that in the several sentences, the various actors or objects may

provide precious indications as to Viewpoints that should be regarded.

Considering the Case Study that was used when presenting both the PREview and the KAOS

approaches, the "Via Verde" case, the first task would then be to identify the system

viewpoints taking into account these proposed guidelines.

As such, if one were to look at the project statement, one sentence that might come up for

analysis would be:

"To access a parking lot, a user must place the gizmo in a readable place"

Analyzing this sentence from the stakeholders' point of view, an obvious viewpoint comes to

mind: the system's user. From a syntactic standing point, this viewpoint pops up as the actor

in the sentence, the entity that perpetrates the action. On the other hand, from a system's

environment point of view, the object of the sentence, the gizmo, suggests yet another

viewpoint: an agent belonging to the system's environment, seeing as the gizmo plays a part in

the system itself.

Extending this analysis to the rest of the project statement, one may achieve the following set

of initial viewpoints:

 Stakeholder Related Viewpoints:

o User;

o Parking Lot Employee;

o Banking Entity.

 System Environment Related Viewpoints:

o Entry Machine;

o Exit Machine;

o Gizmo;

o Accounting Department;

o Vehicle;

o ATM.

88

This division of viewpoints into categories is useful during the identification stage, and will

also translate into particularities when verifying the developed goal models.

4.2.2 Develop the System Viewpoints Using Goal Models

Following the identification of the system's viewpoints, the PREview approach suggests that

each viewpoint should be described in terms of the requirements it is concerned with when it

relates with the system. But as it was previously stated, this step was not immediate, nor was

it achieved in a systematic manner by the PREview approach. This is where the KAOS

approach may step in.

A system's goals are in fact the main artifacts that come from either reading the project

statement or from interviewing the several system stakeholders. By identifying these goals

one would be identifying the system's objectives, and by taking advantage of the

encapsulating units called viewpoints one would be not only guaranteeing that all interested

parties are being contemplated, but also that the several system goals would be attributed to

the stakeholders they are concerned with.

Furthermore, when dealing with requirements identification, the KAOS approach takes a path

that is precisely the opposite of the one taken by the PREview approach, that is, a clearly

defined set of formal rules to identify the system's requirements. KAOS provides a

mechanism called Goal Decomposition that takes each goal and divides it into several sub-

goals and/or requirements and/or expectations.

This method has several advantages that have already been stated in the KAOS approach

section. However, it is always good to underline that by using this method, which by adhering

to the KAOS/Objectiver Methodology can be done in a graphical way, completeness is

assured. According to it, a goal model is not complete until all leaf nodes are either

expectations or requirements; this guarantees that all system goals are decomposed into

specific tasks or conditions that may be performed or met by software or environment agents.

Furthermore, a goal's completion is assured by the completion of its children.

89

In order to develop Goal Models for the available Viewpoints one must first identify each

Viewpoint's take on the system's goals, that is, identify each viewpoint’s particular goals; this

provides the analyst with a starting point for Goal Modeling. From the process of identifying

the system viewpoints, one is left with the actions that caused the several viewpoints'

identification. These actions portray, either in a generic or in a specific way, the types of

interactions between these agents and the system and the overall objectives the system itself is

supposed to accomplish. The objective at this stage is to identify the system goals in a

localized manner, that is, contained in the viewpoint's scope, but however aiming at higher-

level goals.

4.2.2.1 Produce List of Viewpoint Goals

Beginning with the several actions that served as a means to identify the system's viewpoints,

one can observe those that refer to the system from a higher-level of abstraction or even those

that although more specific, when merged describe a more generic system objective.

Looking at the first type of sentence:

"In order to obtain a gizmo a user must supply his personal information and afterwards must

validate the same gizmo by associating it to a bank account in an ATM."

This sentence, although proposing several functional steps, ultimately translates into one

objective for these two agents:

 Associate Gizmo with User.

However there is another type of sentence(s):

"To access a parking lot, a user must place the gizmo in a readable place (most commonly the

vehicle's windshield) and approach one of the entry machines"

"The machine recognizes the gizmo and, if it is a valid one, turns on a green light and allows

the vehicle to enter."

In these, two differently timed actions are perpetrated by the agent or agents, but are too

specific in their nature, quasi-requirements. Therefore, if one abstracts to a higher level of

90

those same actions, the merger of the two actions might translate into a high-level system-

goal:

 Manage parking lot entry.

However, seeing as this should be done at a viewpoint’s particular level, the first goal that

was identified, should have been so while analyzing both the User viewpoint and the Gizmo

viewpoint; they would share a common goal, but that discovery would be an outcome of an

overview of all viewpoints.

Taking a look at the case study statement with these concepts in mind, we identify several key

system goals for a viewpoint such as the User:

- Associate Gizmo with User

- Perpetrate Parking Lot Access

o Perpetrate Entry

o Perpetrate Exit

- Declare complaint

Or from the Gizmo:

- Associate with User

- Manage usage feedback

- Participate in Parking Lot Access

Having identified the particular system goals using the guidance of the already identified

initial viewpoints, one still lacks the translation of these goals into specific requirements for

each viewpoint: thus enters the KAOS Goal Models.

4.2.2.2 Produce a Goal Model for each System Goal in each Viewpoint

As it was previously referred, the initial set of system viewpoints will probably resemble the

set of KAOS Agents that would participate in the Goal Models, therefore this step should

integrate almost seamlessly with the previous constructions.

91

Figure 4-2 Parking Lot Entrance Goal Model for the User Viewpoint

Applying this step to the Goal of Perpetrating Parking Lot Entrances, this according to the

viewpoint of system User, one would get the specific goal model regarding this particular

subset of the system, as seen in Figure 4-2. It should be referred that barring any base

document inconsistencies, if one would consider other viewpoints, for example the Entry

Machine, one would add to the overall goal model of this particular Goal, but from a different

point of view.

By adding this step to the Hybrid Approach Heuristics, one is introducing a clearly defined

way of discovering the system's requirements, which was not apparent in the PREview

approach, while maintaining a lightweight nature due to the graphical notation used for the

goal decomposition process. Therefore, each viewpoint has a set of goals, but although these

goals may be present in several Viewpoints as is natural, their decomposition need not be as

such; by considering each system goal in the scope of each viewpoint it relates to, the goal

decomposition process should only output the requirements and expectations that pertain

specifically to the above viewpoint.

4.2.2.3 Obtain Set of Developed Viewpoints

It may be the case though that the initial set of viewpoints was too granulated or even,

although that is unlikely due to the lightweight nature of their identification, too generic. In

92

the PREview approach the process of identifying viewpoints is an iterative one, although that

is similar to almost every software development techniques, but at times these iterations may

amount to too many, especially if the system viewpoints are particularly hard to identify

and/or differentiate.

Taking into account the initial set of lightweight viewpoints and their goal models, the sorting

out of mergers and separations, if based on these constructions, would be much more

informed than it would be in the case of the PREview approach. Furthermore, it would be

easier to clearly identify each agent’s scope and thus those that overlap or are too broad.

This step would thus begin by reviewing the identified viewpoints and verify if, according to

their goal models, any required a separation into more viewpoints, or if one or more

viewpoints shared a common scope and would thus merit a merger.

Such would be the case, for example, of the Entry and Exit machines: if one were to study

their particular goal models as shown in Figure 4-3 and Figure 4-4, one would verify that they

would be too similar to be considered separately, but instead should merge into a single

Viewpoint “Entry/Exit Machine”, as shown in Figure 4-5.

Allow Parking Lot
Entrance

Validate Gizmo Turn On Green
LightClose GateOpen Gate

Entry Machine

Figure 4-3 Allow Parking Lot Entrance Goal Model for the Entry Machine Viewpoint

93

Allow Parking Lot
Exit

Validate Gizmo Display Amount
ChargedClose GateOpen Gate

Exit Machine

Figure 4-4 Allow Parking Lot Exit Goal Model for the Exit Machine Viewpoint

Figure 4-5 Allow Parking Lot Access Goal Model for the Entry/Exit Machine Viewpoint

Following this sifting through the set of initial viewpoints and contrary to the initial

identification of the system’s viewpoints, this particular iteration already takes into account

the guidelines established by the PREview approach concerning the components obtained:

- The set of viewpoints should not be unmanageably large, both to reduce complexity

and to maintain system perspective;

- the “final” set of viewpoints should be explicitly defined:

o a name;

94

o its type (stakeholder or environmental);

o a focus – with more detail than the original viewpoints, using the goal models

as guidance;

o sources – collected from the initial set of viewpoints and from goal model

analysis and development;

o history – should detail if the viewpoint is a merger of several initial

viewpoints, if so which ones, or if it is a sub-viewpoint of a larger one, and if

so which.

Having the set of “final” viewpoints a-la-PREview, a more formal definition of these

viewpoints is in order, both for structural and organizational purposes. This formal definition

corresponds to the observation of the several Goal Models and the extraction of each

viewpoint’s requirements.

4.2.2.4 Elaborate each Viewpoint’s Set of Requirements

Considering the several goal models that might be drawn for each viewpoint, the ensuing

requirements and expectations can be withdrawn from the same models with some ease.

However, if one is to look at the PREview requirements definitions, one can see that they

have standard in what relates to syntax: actor A perpetrates action X; the requirements shown

in the goal models though are less verbose and more “to the point”, seeing as the graphical

context does the explaining for them.

The requirements listing for a viewpoint is, however, essential for its clear definition.

Therefore we are required to establish a method for withdrawing PREview requirements from

KAOS Goal Models. Taking into account the previously described PREview textual

representation of a requirement and its basic syntactic elements, we can find them while

traversing the nodes of a goal model. Consider Figure 4-2 that represents a goal model for a

User viewpoint; in this figure we can identify two expectations (which are the KAOS

equivalent of PREview stakeholder viewpoints requirements):

 “Place vehicle in sensor range”;

 “Gizmo correctly positioned”.

95

As it was said, these requirements’ textual definitions, when read like so are easily

misunderstood, seeing as they are out of their graphical context. As such, a way to provide a

better textual representation would be to include the graphical context in the said text: this can

be achieved by traversing the Goal model’s nodes from the requirement’s agent to the top

goal the requirement is decomposing, collecting the several textual representations as well as

the relationship between the agent and the requirement, and registering the decomposition

steps. Once again referring to Figure 4-2, these requirements would be translated into the

following representations:

 “The User is expected to place the vehicle in sensor range in order to achieve parking

lot entrance.”

 “The User is expected to have the gizmo correctly positioned in order to achieve a

valid gizmo and achieve parking lot entrance.”

As we can see the user is expected to perform actions X and Y, seeing as in the models they

are expectations; in the case it was a requirement, the user would be required to do perform X;

furthermore, an expectation or a requirement X is always in order to achieve goal A and so

on. This introduces the context for a requirement’s description. More so, and in order to

reduce verbosity in a viewpoint’s requirements listing, requirements can be grouped by the

goals they are meant to achieve:

 “In order to achieve parking lot entrance…

o The user is expected to place the vehicle in sensor range

o The user is expected to have the gizmo correctly positioned in order to achieve

valid gizmo

Having a stable set of viewpoints (achieved in the previous step) and for each of them a

clearly defined set of requirements, this information can and should be registered in a format

that enables both quick consulting and intuitive organization: a tabular representation is

therefore in order to maximize expressivity and organization.

Considering the viewpoint of the system User, taking into account the several goals it relates

with, a table much like table 1 might come up.

96

Table 4-1 User Viewpoint Tabular Representation

Name User

Type Stakeholder

Focus Regular user that interacts with the Via Verde system and may register

and use Via Verde Gizmos in parking lots.

Requirements 1. In order to have a valid gizmo…

a. The User is expected to purchase the gizmo

b. The User is expected to activate the gizmo

2. In order to achieve parking lot entrance…

a. The User is expected to place the vehicle in sensor range

b. The User is expected to have the gizmo correctly

positioned in order to achieve valid gizmo

………….

Sources Target test users of the application, city drivers.

History -

4.2.3 Produce and Develop the System Concerns

Originally, the PREview approach would have begun with the identification of the system

concerns, that is, the inherent traits every system functionality should respect. However, it is

my belief that this step is less direct than what is desirable; too much is left to the analyst's

capability to ask the right questions and too much is expected from the stakeholder's

knowledge of the domain, which is more than often less than what would be required.

Therefore, seeing that defining a set of system concerns, although not necessarily the first, is

still an important step in establishing the basis for requirement elicitation, these should be

gathered from studying the system goals, that is, from each goal, and from their preliminary

description, the analyst and the stakeholders should obtain a set of Primary-Concerns, or

Softgoals, which, merged according to areas of interest, generate a list of system Concerns.

This of course is work that can be greatly enhanced by focusing each viewpoint in turn:

although concerns are orthogonal in nature, their identification is based on information

sources; what better sources then than the system’s viewpoints? While being encapsulating

97

units and thus more focused work environments, they still maintain a notion of the system in

general by sharing common goals.

Furthermore, in order to minimize redundant work and seeing that concern sets should be of

manageable size, it seems natural that Concern decomposition into external requirements can

be achieved from the various sets of Softgoals that would be generated within each

viewpoint’s scope.

4.2.3.1 Produce List of System Concerns

Studying the case study’s statement and the work achieved so far, especially relating to the

identified viewpoints, if one would, for example, ask the Bank liaison to the project what

concerns the institution would have regarding the system, Security would immediately be

referred to as a main concern. Furthermore, if one would expose the system goals pertaining

to that same Viewpoint to the same source, a list of specific concern requirements would

emerge as properties of the system that should be safe-guarded.

On the other hand, if one would consult with the ATM or the Parking Lot Machine

manufacturers, their main concern would obviously be Compatibility. They would in turn,

when confronted with the list of system goals identified for the related Viewpoints, provide

some insight as to where this compatibility would be most important.

When reviewing all of the Viewpoints' Concerns regarding the Via Verde system, one would

probably come up with a list similar to the one that follows:

o Safety

o Multi-Access

o Response Time

o Availability

o Security

o Compatibility

This list would have been the product of collecting each viewpoint’s concerns regarding their

particular goals in the project.

98

This process of Concern discovery automatically establishes links between each Viewpoint

and the Concerns it helped spawn, that is, the particular Softgoal (in this case Viewpoint-

particular sub-Concern) that represents a higher level Concern according to that specific

Viewpoint.

4.2.3.2 Develop Viewpoint Concern Requirements

At this point, another contribution of the KAOS approach is called forth: the use of Generic

Goal Patterns. One of the fruits of the investment in KAOS technology has been the different

systems it has been applied to and the similar patterns that have been possible to identify.

These patterns are not a standard but more of a guideline, and are especially useful when

dealing with more abstract goals as are the non-functional ones. By discovering requirement

patterns in the identified concerns previous to their decomposition process, much of the

analyst's work is reduced and one also benefits from the knowledge input of previous

developers.

4.2.3.2.1 Verify Applicability of Generic Goal Patterns

If one would consider for example a generic pattern for a Secure system like the one in Figure

4-6 [21], instance the referred service with that of a Transaction, like in Figure 4-7 and

applied it to the Security concern identified for the Banking Entity viewpoint, one would

obtain a particular goal model as the one shown in Figure 4-8. The decomposition suggested

by the generic pattern simplifies some of the work of the analyst by providing guidance to the

ensuing process of eliciting external requirements.

99

Figure 4-6 Secure System Generic Goal Pattern

Figure 4-7 Secure Transaction Generic Goal Pattern

Secure System

Secure Bank
Account Association

Secure Weekly
Debit

Establish
secure

connection
with ATM

Validate Card
ID with

provided
information

Secure closure
of all data

connections
with ATM

Establish secure
connection with

Via Verde system

Validate User
Identification

with Bank
Information

Secure closure of
all connections
with Via Verde

System

Figure 4-8 Security Concern Goal Model for the Banking Entity Viewpoint

100

4.2.3.2.2 Merge System-Wide Concern Goal Models

System concerns however are orthogonal in nature, and thus, although viewpoint-particular

identification is helpful, their purpose is system-wide. Therefore, having obtained goal models

for each concern in each viewpoint, one should compile them as seen system wide, that is,

merge each System Concern sub-models.

These higher level models should not replace the particular ones, but instead be used to

transmit to the analyst and to the stakeholders the overall concerns the system must take into

account and their impact on its development.

This can be seen by once again considering the Security concern, but this time from a system-

wide point-of-view: although it was not referred previously, the Security concern affects not

only the Banking Entity viewpoint, but also the ATM and Entry/Exit Machine’s Viewpoints;

therefore a model as the one seen in Figure 4-9 would be produced, obtaining a system-wide

view of the Security concern. The benefits one can withdraw from this change in the normal

PREview process is that of using the goal models drawn for the several viewpoints to aid in

the local identification of the concerns, whereas their identification would be simpler when

with less focus but would still be able to be orthogonal after merging the several viewpoint-

specific softgoals.

Figure 4-9 System-Wide Security Concern Goal Model

101

As we can see, the same “secure transaction” pattern is applied in the ATM viewpoint, and for

the Entry/Exit Machine just the enforcing of the gizmo’s secure validation is required. It

should also be referred that in the case of overlapping concern decompositions, they should

also be merged into a single decomposition sub-tree, as would be the case of the ATM and

Banking Entity’s “Secure Bank Account Association”.

4.2.3.3 Register Concern Requirements

This step consists of formalizing the developed goal models for each concern into a tabular

representation similar to that of the viewpoints. This representation is similar to that of the

PREview approach, both creating a separate representation for each concern as well as adding

particular references to the tables already produced for each viewpoint.

Table 4-2 represents the Security concern as viewed system wide, using the textual template

already utilized when describing viewpoint requirements.

The identified requirements would then be added to the respective viewpoints’ tables.

102

Table 4-2 Security Concern Tabular Representation

Concern Security

Affected

Viewpoints

Gizmo, Banking Entity, ATM

Requirements 1. In order to achieve a secure system…

a. The system should enforce gizmo validation.

b.The system should achieve a secure bank account

association and in order to do so…

i. The system should establish secure connection

between Banking entity and ATM.

ii. The system should validate card ID with provided

information.

iii. The system should secure closure of all data

connections between bank and ATM.

c. The system should achieve a secure weekly debit and in

order to do so …

i. The system should establish a secure connection

with the bank.

ii. The system should validate user identification with

bank information.

iii. The system should secure closure of all data

connections with the bank.

4.2.4 Represent the System’s Obstacles and their Solutions

Another contribution introduced by the KAOS approach is the explicit and differentiated

declaration of the system obstacles. It would be naive to think that every system goal is

accomplished cleanly and without missteps, thus the PREview approach included in the

description of each viewpoint's requirements what could be called as "conditional"

requirements, something similar to "if scenario B does not occur then". However, this

103

identification of the system's obstacles was tightly coupled with the requirements it was

related to, and might even imply redundant developments when describing these negative

scenarios.

The KAOS approach and the Objectiver methodology solve this problem by introducing the

graphical representation of an obstacle in a Goal Model; each Goal may or may not be linked

to an exceptional scenario called Obstacle that would impair the completion of that Goal.

Directly related to this concept is also the concept of a Solution, that is, another system Goal

that is derived from the need to mitigate a certain Obstacle. These components represent

deviations of the normal course of events, "worse-case" situations that must be contemplated

when designing a system and whose solution must be identified. Furthermore, due to the fact

that the Hybrid Approach uses Viewpoints as encapsulating units, the identification of such

obstacles can be done in a more localized fashion.

In KAOS, this step would have been introduced into the process right before the elaboration

of the several Goal Models, that is, in possession of the basic system goals, functional and

non-functional, the analyst would immediately begin to consider non-optimistic scenarios.

However, it is only when the analyst begins to decompose the several goals that the obstacles

become clear and their implications translated into explicit situations; furthermore, non-

functional goal models may themselves propose specific obstacles to functional goals, thus

the inclusion of this step only at this stage of the process.

This fact is evidenced when considering the previously referred issue of a Gizmo Validation:

from the early stages of studying the problem it is clear that issues of lack of validation should

be addressed, however, it is only when one decomposes the goal of parking lot access that one

clearly identifies the moment in which that lack of validation is made clear, and its solution as

well.

Contemplating the issue of gizmo validation from the Entry Machine Viewpoint as seen in

Figure 4-10, an obvious obstacle to a valid gizmo is the fact that the same gizmo may not

have been activated. Like in the original KAOS approach, that obstacle is represented, as well

as the machine's response to that event: an orange light is turned on.

104

Figure 4-10 Allow Parking Lot Entrance Goal Model for the Entry Machine Viewpoint with Obstacles

Another Goal Model, in this case regarding the Banking Entity Viewpoint, can be drawn

regarding the goal of Realizing Weekly Debits: the Banking Entity is responsible for charging

the weekly total to the user's account and if any error occurs (an obstacle) the Main System is

immediately notified and deals with further notifications; this goal model is shown in Figure

4-11.

Realize Weekly
Debit

Charge Weekly
Total

Banking Entity
Viewpoint

Error during
transaction

Notify Main
System

Figure 4-11 Realize Weekly Debit Goal Model for the Banking Entity Viewpoint with Obstacles

105

To this point there is nothing new regarding the Hybrid approach's treatment of obstacles.

However, when transposing these obstacles to the viewpoint's description in the tabular

representation, a small change is introduced: when dealing with a viewpoint's requirements,

events might take different paths for two reasons, either there are simply optional successions

of events or there is a main succession of events that may take an exceptional turn; this

exception is what is considered an obstacle. PREview treated both types of situations the

same way, as "if-then-else" descriptions; however it is my opinion that if the KAOS-detected

obstacles were to translate into textual additions into the viewpoint description as it can be

seen in Table 4-3, the mere distinction might be an important contribution to the Viewpoint's

description.

Table 4-3 Entry/Exit Machine Viewpoint Tabular Representation

Name Entry/Exit Machine (EEM)

Type Environmental

Focus Machines positioned at parking lot entrances and exits to control gizmo

validation and vehicle passage.

Requirements 1. In order to allow parking lot entrance…

a. The EEM is required to validate gizmo

b. The EEM is required to open gate

c. The EEM is required to close gate

d. The EEM is required to turn on green light.

Concern

Requirements

…

Obstacles

Opposed Req. 1.a

Obstacle Inactivated Gizmo

Solution S.1.a. The Entry Machine is required to turn on orange

light

Sources Machine manufacturer, parking lot frequent users.

History Previously Entry Machine and Exit Machine Viewpoints.

106

It should be referred though, that for comparative analysis purposes, solutions to the identified

obstacles should be treated as viewpoint requirements.

4.2.5 Requirements Analysis

According to the PREview approach this would be the perfect moment to enter the stage of

Requirement Analysis: our Knowledge Base (KB) is sufficient and therefore should be

analyzed to guarantee completeness and correctness. This analysis would be done in different

steps organized according to the impact each of them would have on the KB.

4.2.5.1 Perform Inter-Viewpoint Interaction Analysis

First of all, there are several key concepts to consider regarding the PREview approach:

o Viewpoints are encapsulation units and as such, one of the benefits of using them is

the ability for localized and independent development;

o Due to their independent nature, it is highly likely that when eliciting different

viewpoints conflicting requirements might emerge, even more so if each viewpoint is

treated by a different analyst;

o Viewpoint requirements are functional and therefore, when conflicts emerge between

them, they cannot be ordered according to importance:

o Ex: if, on the one hand, a car must pass through the gate, and on the other, it

mustn't, a conflict emerges that cannot be solved by attributing relevance.

Having these concepts in mind, it is necessary to determine the degree of interaction between

every Viewpoint's requirements, that is, for each Viewpoint Requirement, identify if there are

other independent, conflicting or overlapping viewpoint requirements (this issue may have

already been inadvertently addressed while compiling the system’s initial viewpoints into the

“final” set). This is done by means of an Interaction Matrix: on each axis of the matrix a

Viewpoint's requirements are listed; the requirements that generate conflicts are highlighted

(the cell in which they meet) and must be discussed according to their status exactly like in

the PREview approach.

107

It should be emphasized that conflicts discovered during this type of analysis cannot be

solved: conflicting viewpoint requirements are merely the fruit of independent requirement

elicitation and must be treated as "faulty elicitation".

Relating to the case study, the inclusion of the two-step requirements identification allowed

for a more finely grained definition of viewpoints, which caused the only two viewpoints that

were likely to present overlapping requirements to merge: Entry Machine and Exit Machine.

As seen in the section where that merger is referred, both of these viewpoints required

validations to occur and gates to open and close, the ensuing table would reflect precisely that

characteristic.

4.2.5.2 Perform Inter-Concern Interaction Analysis

In what relates to same type of analysis between Concerns, the fundamental concepts are

different:

o Concerns are orthogonal in nature, and as such, their requirements are non-functional,

that is, they do not describe specific actions, but instead specific qualities the system

must possess;

o Qualities in turn have a wider scope of impact on the system and can be ordered in

terms of importance:

o Ex: The system should be quick to respond, but it also should be secure.

This of course can be sorted out in terms of what is more important for the stakeholders.

For these reasons, inter-Concern analysis, as taken from the AORE approach [20] can be done

at its highest level: an interaction matrix would be produced with a list of the system concerns

on each axis, and their interaction would be studied according to the effect they have on each

other, that is, it they do not affect each other, if they are beneficial or if they have a

detrimental effect (Ex.: Security almost always has a negative impact on the system's

Response Time).

However, seeing as we are focusing on the advantages of the KAOS models, identified

conflicts should be reflected in a system and concern wide model, displaying the merged

models of all concerns, and signaling any conflicts with the correspondent KAOS notation.

108

That notation would then be extended to include not only conflicts but also cooperation,

adding new notation symbols to represent the cooperation relationship as well as information

regarding the direction of that influence (“-“ for negative contribution, or conflict, and “+” for

positive contribution, or cooperation).

However, a note to consider is the necessity for a possibly complex model as it would be the

overall concern model: would the necessary overhead that such a model would create justify

the outcome? We believe it would not. However, there is still an advantage in considering the

specific impact of each concern in each viewpoint when considering an overall model.

Therefore, it was decided that when merging all concern models, the overall model would

limit each sub-model to the viewpoint specific levels, that is, when each concern model would

begin to specify its impact on each viewpoint.

Applying this methodology to the Case Study, one would obtain a model as shown in Figure

4-12, in which the several system concerns are analyzed for effects produced on each other.

109

Figure 4-12 System-Wide Concern Goal Model with Comparative Analysis

110

4.2.5.3 Perform Viewpoint-Concern Interaction Analysis

Afterwards, and borrowing from another contribution from the AORE approach [20], there is

a need to study the effect of the several system concerns on the different system viewpoints:

on one side of the matrix a list of Viewpoints, on the other a list of Concerns; going back to

step 2 this matrix is easily filled by analyzing the connections between viewpoints and their

softgoals, both in the Viewpoints and the Concerns’ tabular representations.

It should be referred though, that this second matrix does not indicate conflicts or

redundancies, but instead merely summarizes the contributions of each Concern to each

Viewpoint. The application of this step to the case study is shown in Table 4-4.

Table 4-4 Viewpoint-Concern Interaction Analysis

 User Employee Bank Machine Gizmo Accounting Vehicle ATM

Response Time X X X X X X

Availability X X X X X

Security X X X X

Compatibility X X

Safety X X

Multi-Access X X X X X

4.2.6 Requirements Negotiation

Finally, the PREview approach would end its process by entering the Requirements

Negotiation stage. Normally, this would be a stage that would have as a basis all the matrixes

produced in the analysis stage and that would generate input for both the several viewpoints'

and concerns' requirements. In an attempt to simplify the negotiation stage, another concept is

borrowed from the AORE approach: the Weighted Contributions Table.

111

4.2.6.1 Produce a Weighted Contributions Table

This table is a merger between the results of the previous two steps: a matrix exactly like the

one in Table 4-4 would be produced and for each Viewpoint column or row, the several

highlighted Concerns would be analyzed according to the model in Figure 4-12; if a negative

contribution exists between two or more of those concerns it is required to define their relative

importance, that is, when developing Viewpoint X, Concern A would come first, then B, and

so on; this would be done by attributing weights to each conflicting concern, on a percentile

scale.

This type of analysis can only be done with the presence of the system's stakeholders, since

they are the only ones that can decide which concerns they consider more important.

Therefore, by producing Table 4-5, one is satisfying the requirements of the Negotiation

Stage: deciding on a stable set of priorities for subsequent changes.

Table 4-5 Weighted Contributions Analysis

 User Employee Bank Machine Gizmo Accounting Vehicle ATM

Response Time 1.0 X X 1.0 1.0 0.9

Availability 0.8 X X X 0.9

Security 0.9 X X 1.0

Compatibility 1.0 0.7

Safety 0.9 0.9

Multi-Access 0.8 0.9 0.8 0.8 0.8

Taking a look at Table 4-5 applied to the case study, one can see that for example, when

dealing with the User Viewpoint, if one is to take a look at Figure 4-12 and Table 4-4, one

verifies that this viewpoint considers both the Response Time and the Security concerns,

however they are conflicting in nature, that is, when considering one of them the other is

normally relaxed. Therefore stakeholders are required to define priorities for these concerns

regarding this specific viewpoint, in this case, for the User it is perhaps more important that

the system responds as quickly as possible.

112

The KAOS approach would follow onto more detailed stages of development, namely the

Operationalisation of each Requirement. However, the PREview approach limits itself to the

Requirements Management process, which is one of the attributes that makes it such a

lightweight approach. In the spirit of maintaining a certain degree of that lightweight nature

despite all the aspects that were introduced by the KAOS approach and even those borrowed

from the AORE approach, it was decided that this Hybrid Approach too should limit itself to

these three stages of requirements elicitation: Discovery, Analysis and Negotiation.

4.3 Summary

The Hybrid Approach, whose heuristics were previously described, constitutes an extension

to the original PREview approach [25], complemented by components of the KAOS approach

[13] and inspired by the conflict resolution techniques of the AORE approach [20].

The procedures we describe in this chapter therefore differ slightly from the original PREview

process, seeing as some concessions had to be made in order to allow as seamless an

integration as possible regarding the components from the other approaches.

The process of this extended PREview approach we have dubbed Hybrid Approach is shown

in Figure 4-13. The generic intentions of PREview are still apparent in the three main stages

of the approach: Requirements Discovery, Analysis and Negotiation; however there were

some elements that in their introduction triggered modifications in the original process.

113

Figure 4-13 Hybrid Approach Process Model

By removing the concern discovery process from the early stages and introducing the notion

of initial viewpoints applied to the development of KAOS goal models, this Hybrid Approach

attempted to mitigate the lack of a clearly defined requirements discovery mechanism in the

114

PREview approach. As was seen by the case study chosen to describe that process, by

following the introduced steps an analyst can easily arrive on a stable set of viewpoint

requirements and, if need be, clarify the viewpoints’ definitions supported by the

requirements they entail.

The lack of an existing set of concerns registered no impact on the discovery process and

furthermore, the process of obtaining those same concerns was greatly enhanced by the

existence of the several goal models and the identification of each of them in smaller scopes

as were the viewpoints.

The inclusion of the KAOS notion of obstacle and providing their solutions aimed at

clarifying another step of the PREview approach that was the existence of conditional

requirements. As such, erroneous situations and system options are described in a highlighted

manner in order to clearly evidence them.

Requirement Analysis in PREview was also a subjective process and by introducing

components of the AORE approach, this work intended to clarify the conflict identification

and solution procedures. Complementing these AORE elements, the use of the KAOS

graphical methodology, extended by additional symbols, aimed at providing the analyst the

required tools for an easy identification of concern conflict and/or cooperation.

Finally, the negotiation stage in PREview was also a subjective stage, relying on the analyst

to ask exactly the right questions with possibly little knowledge of the system’s issues. This

approach attempted to provide an additional aid to the analyst by adding a weighted

contributions table displaying conflicting concerns and offering the stakeholders a simple

method of registering their opinions regarding potential priorities.

This approach has a documental weight that is far superior to the PREview approach,

however, we believe that this additional overhead is required to minimize analyst errors and

maximize the requirement elicitation process. This fact is further explored in the following

chapter by applying the previously described heuristics to an industry case study.

115

Chapter 5
The Br@in Case Study

This chapter describes another case study called Br@in, a real-world industry

telecommunications billing application, with the intent of demonstrating the application of the

previously defined heuristics of the Hybrid Approach.

5.1 About the Product

Br@in (Billing Resources @ IP Networks) was born as a software platform for the automatic

treatment of billing operations for an organization. However, throughout the course of its

lifetime and based on previous successful modular implementations (specific add-ons for

different clients), Br@in’s major goal has evolved into controlling all costs of an

organization’s human resources.

These include not just telecommunications (like previous versions of the product), but also

costs related to cell phone usage, laptops, room bookings and many other assets that may be

configured with Br@in.

The product must encompass two main components: the management of all the information

required for the billing process and the interaction with the actual Br@in users.

For the first component, data analysis, Br@in is required to integrate specific connectors for

several technologies, allowing to concentrate the billing of a large amount of services onto a

single entry point:

 IP Telephony;

 Traditional IPBX Telephony;

116

 GSM Telephony;

 Data Transference (Wan and Internet);

 Video Conferences

Data must be imported from these several services, it must be analysed and unified in order to

generate a common source of information for the subsequent processing and generating of a

variety of cost reports according to pre-established criteria. These processes should be

scheduled to occur at specific times.

Regarding the second component, user interaction, Br@in must provide a carefully studied

interface that differentiates users according to their roles in the organization, enabling them to

perform role-according tasks: a normal User will be able to visualize system output according

to the data that stems from the information provided by the telephonic centrals, and an

administrator will be able to manage the several entities that make up the Database produced

by the same process.

5.2 Context Information

Seeing as Br@in must be able to control all costs of an organization’s human resources,

several concepts of a generic organizational structure must be made clear, both from the

human resources point of view and from the services’ components that must be billed:

 A user is any human resource of an organization.

 An extension identifies a phone line used for making calls and may be associated with

users.

 Departments are all organizational nodes present in the organization’s structure and

may be organized according to a hierarchy.

117

 Project accounts are special structures that allow enveloping cost centres in the Br@in

solution. An account may be associated with one or more departments according to a

particular percentage of the department’s involvement in the project at stake.

 A user can belong to one or more departments, also taking into account the percentage

of the user’s work for each department.

 A plafond is a pre-defined limit for call costs attributed to each user.

 GSM Devices are all the cellular phone numbers the organization makes available for

its collaborators.

 Assets are all organizational possessions that may be associated with users and thus be

the target of billing:

o Ex.: Renting of rooms for meetings, cellular phones, laptops, desks, square

footings occupied by a particular office, etc

 Like other services, asset billing may also be associated with particular Departments,

Project Accounts or Users.

Although Br@in’s scope is expanded from its original goal, telephony billing is still its main

purpose, and therefore there are several other important concepts that should be understood,

regarding this particular field:

 IPT/PBX Calls are all the calls made or received through the organization’s

extensions. These call records, when taken from the organization’s central telephony

processing unit, can be classified according to their success or lack thereof and

according to their origin and destination (inbound, outbound or internal).

 An operator is the contracted agent that enables the organization’s telephony

capabilities.

 A gateway is a physical exit or entry point of a call into an organization’s telephonic

network.

 Tariff Plans are the several billing options made available by an operator to its clients.

118

 Prefixes identify the operator and location of the destination of each call. They can be

associated with cost ranges according to specific tariff plans.

Dealing with telephony communication centres, Br@in should be able to gather call related

information from their databases, with a particular emphasis on allowing for different types of

data sources (Cisco, Avaya, Ericsson, etc).

This data collection should be done in the background as to minimize impact on the user

experience (Call Detail Records (CDRs) for a medium sized company are in the thousands per

year, therefore there is much data to collect, unify and process).

5.3 Br@in App

Based on the data collected, the application itself should provide Br@in users with a means to

access that information and manage it according to their privileges.

A distinction should be made at least between Administrators and simple Users, granted that

Administrators must have full access to the application, namely configurations and output,

whereas Users may only have access to the output of information.

In what relates to the Administrator, there are several tasks that it must be able to perform:

 Consult the status of the Data Collection processes that may be occurring, change their

periodicity and enforce their execution;

 Consult tracing information regarding the Data Collection processes, visualizing logs

in a very interactive manner (sorting criteria);

 Manage the sending of reports by email, allowing for specific scheduling of automatic

report sending for different destinations and/or groups, as well as the addition of

destinations;

 Control the size of the several Databases used for storing data from the background

processes, allowing for archiving old information or deleting it;

119

 Visualize several statistic information regarding the database stored information from

the data analysis processes;

 Manage the several Telephonic Centrals that are associated with the system, allowing

to add new ones and edit or eliminate existing ones;

 Handle the several system gateway locations, as well as the gateways themselves;

 Manage the system’s telephony operators, their tariff plans and device prefixes;

 Visualize and re-organize the hierarchical structure of the organization, allowing to

add, edit or remove any of the hierarchical entities referred in previous sections (users,

departments, project accounts, etc) as well as any associations that may exist between

them and billable components (extensions, assets, etc);

 Asset management, with particular emphasis on the definition of asset types and the

costs they entail, as well as their association with hierarchical entities;

 Importing of all types of information regarding the system’s database (users, devices,

tariff plans, etc) from other formats (ex: Excel).

The plain Br@in User should only be able to visualize output from the application:

 Call details (origin, destination, duration, etc);

 Call (IPT/PBX and GSM) and asset costs;

 Reports according to pre-defined parameters;

 Export to other formats (graphics, xls, etc).

Of course, output should also be available to Administrators.

Br@in should also be able to present alerts to the users, either through the application itself or

by sending emails; these alerts might relate to any system anomaly the user’s privileges allow

him to be aware of.

120

5.4 Br@in and the Hybrid Approach

The developed hybrid approach comprises, as was previously defined, of 6 major steps, each

of them divided into their own particular stages:

1. Produce List of System Viewpoints

2. Develop the System Viewpoints using Goal Models

a. Produce List of Viewpoint Goals

b. Produce a Goal Model for each System Goal in each Viewpoint

c. Obtain set of developed Viewpoints

d. Elaborate each Viewpoint's set of Requirements

3. Produce and develop the System Concerns

a. Produce List of Viewpoint Concerns

b. Develop Viewpoint Concerns Requirements

i. Verify applicability of Generic Goal Patterns

ii. Merge system-wide Concern Goal Models

iii. Register Concern Requirements

4. Represent the System's Obstacles and their Solutions

5. Requirement Analysis

a. Perform Inter-Viewpoint interaction analysis

b. Perform Inter-Concern interaction analysis

c. Perform Viewpoint-Concern interaction analysis

6. Requirements Negotiation

a. Produce a Weighted Contributions Table

As can be read in this chapter’s previous sections, the Br@in case study was chosen as a more

complex subject for applying this approach. After demonstrating the approach’s steps and the

benefits withdrawn both from each step in separate and from their succession by using the Via

Verde case study, the goal with this more complex project statement is to demonstrate the

described advantages in a clear and unequivocal manner and with a greater scope.

Furthermore, seeing as the Br@in project is integrated in a real industry context, the

conclusions that may be withdrawn from the hybrid approach’s application have a far more

credible significance.

121

5.4.1 Step-by-Step

5.4.1.1 Produce List of System Viewpoints

The first step of the approach consists of a loose identification of the project’s viewpoints; it

is called a “loose” identification because of two main factors, as explained previously and

now revised:

 First of all, to differentiate the viewpoints that come as output from this process from

the PREview viewpoints;

 Second, because loosely defined viewpoints are closer in concept to the KAOS agents,

and thus easier to integrate with the ensuing Goal Models.

 Although these initial viewpoints can be obtained in many manners, the hybrid approach

suggests using both their separation into two categories: stakeholder related viewpoints and

environment related ones; as well as the tactic of syntactic analysis: verbs in sentences portray

the actions that define the project’s objectives and their actors or objects provide insight into

what Viewpoints should be regarded.

Applying this tactic to the Br@in project statement there are several sentences that emerge

immediately:

“A normal User will be able to visualize system output according to the data that stems from

the information provided by the telephonic centrals”

From this particular sentence two different actions stand out: visualizing system output and

data stemming from the telephonic centrals. These different actions are in turn perpetrated by

two different agents: a normal User and a set of telecommunications centrals. Each of these

agents is of a different type, seeing as a User is stakeholder related and the telephonic central

is part of the system environment.

“An administrator will be able to manage the several entities that make up the Database”

122

In this sentence one can again easily identify a stakeholder related viewpoint, the

Administrator, by associating it with managing the several entities that are part of the system

database. This management capability is detailed in the Br@in App section, where it is said

for example that an administrator can:

“Consult the status of the several Data Collection processes that may be occurring, change

their periodicity and enforce their execution”

or

“Manage the system’s telephony operators, their tariff plans and device prefixes”

If one would extend this reasoning to the remaining project statement, the resulting list of the

system’s initial viewpoints would be as follows:

 Environmental:

o Telephonic Central - software or hardware components that handle telephony

processing in the company and provide call information to the system

 Stakeholder:

o User – regular utilization of the application – output visualization with minimal

configurations

o Administrator - management every aspect of the application and the

information it handles.

These viewpoints were precisely the ones detected in the previous examples, which merely

reflects the fact that the Br@in system is mostly reliant on itself, involving a minimum of

foreign components and/or intervening agents; such was not the case, for example, of the Via

Verde case study.

The tabular representation of the system’s viewpoints at this stage is important as it always is,

despite their temporary nature: it is an organized method for exposing the acquired

information and may ease the possible merger and separation processes by allowing

manageable referencing of initial viewpoints instead of explicit naming.

However, as was explained in the approach’s heuristics, this representation, as the Viewpoints

it describes, is a loose one, and aims also at reducing the time spent in documenting the

process. Examples are shown in Table 5-1, Table 5-2 and Table 5-3.

123

Table 5-1 Administrator Initial Viewpoint

Name Administrator

Type Stakeholder

Focus The top-ranked user of the application. Manages every aspect of the application

and the information it handles.

Table 5-2 User Initial Viewpoint

Name User

Type Stakeholder

Focus The regular user of the application.

Visualize output with minimal configuration possibilities.

Table 5-3 Telephonic Central Initial Viewpoint

Name Telephonic Central

Type Environmental

Focus Software or hardware components that handle telephony processing in the

company and provide call information to the system.

In what concerns stakeholder viewpoints, it is hard to “escape” the entities they relate to and

thus it is highly likely that initial viewpoints may not change entering the definition stage, but

when it comes to environmental agents, focusing on particular needs, besides facilitating the

identification process, may benefit the elaboration of the following Goal Models, while not

harming the encapsulation advantages that come from using viewpoints.

124

5.4.1.2 Develop the System Viewpoints using Goal Models

As was stated in the heuristics chapter of this thesis, one of this hybrid approach’s most

important steps is one taken from the KAOS/Objectiver method: Goal Modeling. This step

translates a clearly defined heuristic approach at requirements decomposition into a set of

graphical components that intertwine into easily understandable models of a system’s goal-

into-task decomposition.

Furthermore, this hybrid approach extends that modeling capability with the encapsulation

advantages of the PREview approach’s concept of viewpoint, thus mitigating one of the few

and main issues of the referred models: the fact that KAOS models, as has been said in this

work, have the tendency to become complicated webs of intertwined entities when the project

surpasses a certain degree of complexity.

This although should be done in a single step and thus the first thing the analyst should do is

to regard each individual viewpoint and consider the system goals that led to its identification.

5.4.1.2.1 Produce List of Viewpoint Goals

Applying this step to the Br@in case study, although the considered viewpoints may possess

more identified goals, the ones that are referred are those are both more diverse in their

modeling as well as those that are more interesting to represent in a Goal Model, seeing as

demonstrating all of them would become redundant.

The initial environmental viewpoint known as Telephonic Central is responsible for

producing the database information, specifically by forwarding the raw call detail data to the

system:

 Telephonic Central – Provide database information - provide raw call detail data.

125

Focusing a stakeholder related viewpoint, the application User is responsible for, among other

things, consulting call and asset cost details, as well as “ordering” system reports. These are

obviously UI oriented objectives, but alas so is the basis of the User’s participation in the

project’s requirements:

 User – consult output cost details, produce reports.

And finally, the system administrator is responsible for a great deal of management

objectives, both regarding database entities as well as configuring other system components.

We will focus on three particular goals for ensuing modeling:

 Administrator – manage hierarchical structure, manage reports automation and

manage assets.

The goals these three viewpoints present and that compose the subset that is considered in this

stage are representative of the different nuances both stakeholder and environmental

viewpoints might demonstrate: the User viewpoint’s goals define it as an agent of simple

intended interaction with the system, a user visualizes output and specifies reports with

minimal configuration; the Administrator viewpoint’s goals however portray it has

stakeholder viewpoint that interacts with the system in a more complex way, that is, besides

the basic user interaction, the administrator configures several system modules and performs

many database related tasks. On the other hand, the environmental viewpoint that was

identified as Telephonic Central forwards information to the system on demand.

5.4.1.2.2 Produce a Goal Model for each System Goal in each Viewpoint

This stage of the hybrid approach’s process is when the system’s requirements will start to

take form and where most of the approach’s advantages are evident. Like it was said in the

thesis’s motivation, PREview’s approach to requirement elicitation leaves too much room for

analyst subjectivity to step in; this deems it an approach that perhaps depends too much on the

analyst’s ability and/or experience. One of the KAOS approach’s main advantages however,

is its formalism and its insistent and clear definition of each and every step of the requirement

elicitation process; furthermore, the mechanism known as Goal Decomposition assures that

126

beyond obtaining a goal’s requirements, the goal modeling itself will be complete, as every

goal must correspond to a requirement or expectation.

The previous step in this approach already mitigates some of the PREview missing pieces: by

providing system goals to each viewpoint, it is a first step at obtaining its requirements;

furthermore, since goals are more generic in nature, they are more clearly identified.

Looking at the Telephonic Central’s viewpoint and its goal, one can see that there is a top

goal for the viewpoint, which is to Produce Database Information. “How will the Telephonic

Central achieve that?” is the question that the goal decomposition mechanism imposes while

focusing on this particular viewpoint; by reviewing the project statement and considering the

instancing of this goal, the forwarding of call detail information is a specific task, and thus a

requirement of the top goal.

This however is a textual description of a process that, being undertaken in a graphical way,

produces a model like the one in Figure 5-1. As one can see, the top goal is, as was stated,

“Produce Database Information” and is decomposed into the “Provide Call Detail Records”

requirement, directly linked to the Telephonic Central agent.

Figure 5-1 Produce Database Information Goal Model for the Telephonic Central Viewpoint

Looking at the User viewpoint, two of its main goals are being considered for modeling:

consult output cost details and produce reports. Seeing as these two goals only have in

common the fact that they are perpetrated by the same viewpoint, they should merit two

different goal models for their decomposition.

127

In what relates to the report production, it is a fairly simple goal to decompose: producing a

specified report from the viewpoint of the user requires him to choose the report type he

wants to produce and then input the parameters he is required to specify; these of course are

specific enough actions to be considered requirements, however, according to the KAOS goal

model notation, any requirement that is perpetrated by an agent outside of the system

environment is considered an expectation, that is, these particular requirements are out of the

system’s control, and therefore the agents are expected to achieve them, not required. This

decomposition is described in Figure 5-2, where the expectations are evidenced in a different

graphical representation.

Figure 5-2 Produce Specified Reports Goal Model for the User Viewpoint

Regarding the User browsing of the cost details, this represents a more complex goal

decomposition process. First of all, it is clear that the foremost goal is to output costs, that is,

get them on display, which implies search parameters and the displaying of the results; search

parameters in turn require both definition or selection and application, and although their

definition is pretty straightforward, their application should be differentiated according to the

output one requires, that is, whether they are to be applied to IPT/PBX, GSM or Asset costs,

as is also differentiated in the project statement.

Thus, it is possible to conclude that the definition of filtering parameters constitutes a

requirement for the goal of outputting costs, while applying them is a sub-goal that in turn is

decomposed into three requirements for the three types of costs required; this can be seen in

Figure 5-3. What can also be seen in Figure 5-3 is the fact that the outputting of results also

128

allows for the request of other formats to view the same results; this request of course should

also be differentiated according to costs type and as such be reflected in the model.

Figure 5-3 Output Costs Goal Model for the User Viewpoint

The remaining viewpoint is that of the Administrator. The goals chosen to be modeled are

also diverse, as were that of the normal User, and therefore one should treat them separately.

The first goal to be considered is the management of the organization’s hierarchical structure.

This management is referred in the project statement as the addition, deletion or editing of the

several organizational nodes that compose the said hierarchy; the first two can be immediately

attributed to specific actions and thus expectations in the correspondent goal model. However,

the editing of an organizational node entails several baser concepts as the simple editing of its

details, changing its position in the hierarchical tree or managing the billable components

associated with it.

Once more, the first two actions are specific enough to be granted expectation status, whereas

the last can be further decomposed into the normal adding and removing operations, as well

as an edition of the percentage attributed to each association between an organizational node

and a billable component. These concepts and the above described decomposition are

evidenced in Figure 5-4.

129

Figure 5-4 Manage Hierarchical Structure Goal Model for the Administrator Viewpoint

Once more, the UI interaction is patent in the model, seeing as the actions portrayed as

expectations are UI-related. This nature continues apparent in the next goal to be considered:

management of reports automation.

Although the concept of reports automation is that of an almost independent system that

triggers scheduled emissions of emails to target users containing specified reports, there are

still issues of configuration that are involved when dealing with such a system. As such, the

top goal of managing reports automation can be decomposed into the creation and edition of

those automations, as well as the activation of those already created. The activation process is

straightforward enough to be considered a specific action, ergo an expectation, however both

the creation and the editing of a report automation can be further decomposed and therefore

should be considered sub-goals.

Figure 5-5 demonstrates how this decomposition is achieved: each of these sub-goals deals

with three concepts that are referred in the project statement for a report automation, these

being the definition of the report to be sent, the schedule the automation should follow and the

130

destinations that it should be sent to; these concepts are present both in the creation and in the

edition stages.

Figure 5-5 Manage Reports Automation Goal Model for the Administrator Viewpoint

The last goal to be addressed in this step is that of asset management. As one can see in

Figure 5-6, asset management from the Administrator viewpoint is segmented: there are the

entity-related actions that constitute base expectations for the administrator, and this same

type of decomposition is apparent for the two sub-goals that correspond to both asset type and

asset association management.

131

Figure 5-6 Manage Assets Goal Model for the Administrator Viewpoint

At this point the goal modeling step should be completed, taking into account that the

remaining viewpoint goals are developed in a similar fashion, however there are still two

concepts that although having already been referred, should be revisited.

5.4.1.2.3 Obtain set of Developed Viewpoints

After having developed each initial viewpoint’s goal models, the analyst possesses a clearer

notion of the system and the several agents and components that need to interact to guarantee

the best configuration.

It is not the case with this particular case study, however it is important to remind that if one

were to look at the list of system viewpoints realize that the list is too large to be handled

confidently, it might be due to the a fact that in KAOS, agents are not limited to a number,

which in turn is due to the fact that the Objectiver methodology deals only with models, and

despite their complexity, models are usually easier to keep track of than textual

representations, or particular entity development.

Furthermore, seeing as the hybrid approach is heavily based in PREview and focuses also on

the AORE extension for comparative analysis, it is important that, as well as PREview did,

this approach establish a limit for the number of viewpoints. Therefore, for complexity

132

management and maintenance of system perspective, the number of viewpoints would do well

to keep to a 7±2 upper limit [16] and in order to formalize this transformation, they should be

defined with more care as is explained in the heuristics chapter.

Before approaching the set of viewpoints to perform any changes one should first observe the

set of stakeholder-related viewpoints. These naturally correspond to actual entities or

interested parties in the system’s development, entities that of course are not separable or even

that do not belong in the same scope of interest. If one were to instance this train of thought to

the case study, one realizes that indeed each of the two stakeholder-related viewpoints belong

separated and should remain so.

Concentrating instead on the environmental viewpoints, one should once again take a look at

them and identify those that make sense to group, or even divide, according to their sphere of

action. Once more that is not the case with this case study, since the only environmental

Viewpoint is that of the Telephonic Central, which is of course indivisible and there are no

other viewpoints of the same type with whom to share a scope and merit a merger.

5.4.1.2.4 Elaborate each Viewpoint’s set of Requirements

After these changes have been decided by the analyst, these new viewpoint definitions should

be formalized into the tabular notation that has already been used with the initial ones.

However, as was defined in the heuristic chapter, these finalized viewpoints should present a

name, type, focus, sources of information, history and their requirements. In the case of the

stakeholder-related viewpoints, the first two hold their initial definition, adding to it any

changes that they might have suffered in the history section and collecting the identified

requirements from their goal models (in this case requirements will correspond to

expectations).

In the case of the environmental viewpoints, if there would have been any mergers or

separations, their types would obviously stay the same, but their names should be defined

during that transformation and a new focus should be defined either by joining or refining

initial definitions. Furthermore, merger or separation history should be recorded in the new

viewpoint’s history while requirements should also be collected from goal models, but

according to the new viewpoints scope.

133

In both cases, sources should be collected through the entire process and be detailed in the

appropriate section of each viewpoint. Such was not the case with the sole environmental

viewpoint: the telephonic central.

Regarding the collection of requirements from the goal models we can start by addressing the

Telephonic Central viewpoint. Taking a look at figure A and applying the method explained

for constructing the requirements textual description we would obtain the sole requirement

definition:

“The Telephonic Central is required to provide call detail records in order to produce

database information.”

Seeing as it is indeed the only requirement of this viewpoint, the finalized tabular

representation can be constructed, outputting a result as seen in Table 5-4.

Table 5-4 Telephonic Central Viewpoint with Requirements

Name Telephonic Central

Type Environmental

Focus Software or hardware components that handle telephony processing in the

company and provide call information to the system.

Requirements 1. The Telephonic Central is required to provide call detail records in

order to produce database information.

Sources Telephonic Centrals re-sellers and manufacturers and respective

documentation.

History None

Observing the User viewpoint and its exhibited goal models, a larger set of requirements

would be withdrawn and inserted into the tabular representation of the said viewpoint, as seen

in Table 5-5. Regarding the “Produce Specified Reports” goal model, two requirements will

be produced grouped under their parent goal, whereas in the “Output Costs” goal model, the

case is more complex: there are two goal grouping levels, where the textual representation of

those sub-goals should contextualize the case while making sense when read aloud.

Therefore, according to the decomposition that sub-goal suffers, “the viewpoint is

134

expected/required to do action A and in order to do so…”, followed by the requirements or

expectations in order.

Table 5-5 User Viewpoint with Requirements

Name User

Type Stakeholder

Focus The regular user of the application. Visualize output with minimal

configuration possibilities.

Requirements 1. In order to produce specified reports...

a. The User is expected to choose Report type.

b. The User is expected to select report parameters.

c. The User is expected to request report generation.

2. In order to output costs…

a. The User is expected to define filter parameters.

b. The User is expected to apply parameters, and in order to do

so…

i. The User is expected to apply to IPT/PBX Costs.

ii. The User is expected to apply to GSM costs.

iii. The User is expected to apply to Asset costs.

c. The User is expected to request other formats and in order to

do so…

i. The user is expected to request format for IPT/PBX

Costs.

ii. The user is expected to request format for GSM costs.

iii. The user is expected to request format for Asset costs.

Sources Target test users of the application (regular company employees, department

managers).

History None

Regarding the Administrator, a table for the presented goal models would is present in Table

8-0-1 Appendix A displaying the same type of syntactic analysis of the corresponding models.

135

5.4.1.3 Produce and Develop the System Concerns

As was previously stated, although the concept of non-functional goal is present in many

requirements engineering methodologies, in the PREview approach it has a special

preponderance seeing as it drives the requirement gathering effort; in this hybrid approach

however, the KAOS goal decomposition mechanism takes on that particular part.

The identification of non-functional goals, or concerns as they are called in the PREview

approach, still represents a major part in the approach, seeing as they represent the inherent

traits every system functionality should respect. However, contrary to what is stated in the

PREview approach, it is my belief that, since non-functional requirements are many times

difficult to identify, taking advantage of already developed goal models presents a useful

stepping stone to obtaining a set of relevant concerns and their requirements.

By relying on the encapsulation mechanism viewpoints present, this identification, although

still orthogonal in nature, can be successfully segmented into scopes of interest and still

maintain a notion of the system in general by sharing common goals between those same

viewpoints.

5.4.1.3.1 Produce List of Viewpoint Concerns

Producing a list of viewpoint concerns corresponds to the identification of the system’s non-

functional goals according to the scope of each viewpoint, i.e. inquire next to the sources

associated with each viewpoint, registered previously in the tabular representation segment.

In what relates to the Br@in case study, although the registered sources were real, that is,

despite the fact that during the project’s development those sources were effectively

considered and addressed to gather viewpoint information, it was passed on to this work’s

author by proxy through senior project analysts and they were the sources considered for this

particular stage of the case study analysis.

136

According to the project’s senior analysts and interviews and inquiries distributed throughout

Br@ain’s clients (using previous versions of the product), the foremost concerns for a system

administrator (SA) are:

- Usability: a SA normally spends a great deal of time using the application and

performing complex and tiresome tasks, therefore it is of great importance to

maximize the productivity of the application and minimize the effect of repetitive

actions, which implies usability. Furthermore, the system interface should be able to

minimize also the complexity of the more arduous tasks.

- Response Time: once more, keeping in mind the total time that the SA spends

interfacing with the application and the total number of actions that he is required to

perform, a quick to respond system is essential.

- Availability: the vast majority of the SA operations are critical for the normal

execution of the remaining system, thus their completion is mandatory; furthermore,

many of those tasks are time-sensitive, like forcing certain scheduled executions, and

so their availability should be assured.

- Security: as it has already been stated, a great deal of the administrator’s tasks are

system critical, it is safe to say that this status merits special permissions for accessing

those particular system components; security is therefore an important issue,

specifically relating to authenticating credentials.

- Correctness: issues of correctness are normally related with presented information,

however when dealing with SA tasks, one recognizes that most of them involve

mainly input; still, that input is required to be correct since the SA introduced

information will serve as a basis for the system execution: entities details and

associations with billable components, as well as scheduled tasks are critical systems

regarding correctness of the data involved. Furthermore, seeing as an administrator

contemplates all of the normal user’s tasks, the description of this concern for said

viewpoint also applies to this.

Regarding the environmental viewpoint known as Telephonic Central, its concerns derive

from those expressed by the hardware manufacturers and technicians involved in setting up

the environment for Br@in’s interaction with these structures. Once more, these concerns

were transmitted by proxy through the project’s senior analysts:

137

- Compatibility: these hardware and/or software components are manufactured by

different companies; also, they provide domain specific information that may vary

between manufacturers. Therefore, although unification of collected data is a system

goal, communication with the different telephonic centrals still requires specific

connectors, in order to adapt to different developments.

- Security: when one is dealing with a delicate piece of hardware and/or software like a

telephonic central, a great deal of factors can go wrong, which will produce an impact

on the whole system and also the telephonic central itself. Therefore authentication is

essential, as well as handling access permissions for each data connector the system

will create for communication.

Finally, considering the User viewpoint, its main interaction with the application is that of

data browsing: inputting parameters, obtaining search results, exporting the results; and

reporting viewing. Thus the concerns that affect him are mostly UI related:

- Usability: as a focal point in the application’s UI experience, the browsing manager

expects a carefully studied approach to usability; although this viewpoint observes

mainly search forms and tabular outputs, those forms are expected to be quite intuitive

and direct the user along a logical path to obtain the required results; the results

themselves are expected to be of easy consultation and indexation according to user

needs.

- Response Time: although the quickness of response is not as important for this

particular UI experience as it is for the administrator’s, any UI experience should

minimize tiredness and the wait period for a system’s response to a user request,

particularly the submission of search parameters.

- Availability: this may an important issue when dealing with companies whose regular

users are mindful of their expenses and constantly check call details and costs.

Although the system should be tailored for multi-access (as we’ll see next), the system

is expected to remain constantly available for any searches, no matter their volume;

once more, the need for availability for a regular user is less than for an administrator.

- Correctness: since this viewpoint focuses mainly on the output, correctness is perhaps

the most important concern to be considered, next to, obviously, usability; both call

detail records and cost records should be carefully revised when processing data and if

138

necessary keep track of changes and processing logs in order to facilitate possible

audits. Furthermore, reports are one of the main interactions between the user and the

application; they are also the most commonly used basis for evaluation of particular

departments (most department directors will not even user the browsing capabilities

but instead will rely on the reports that may be automatically sent at specific periods);

these reasons justify that correctness should be one of the highest concerns regarding

this viewpoint, seeing as it should be assured at all stages of producing a specific

report.

- Multi-Access: the scenario of a high number of users accessing the application’s

browsers is not likely; this tool is probably most appropriate for department managers

than simple employees, and thus less likely to be used concurrently; however since

heavy search procedures may be required, multi-access to the database to perform

those searches should be assured.

- Security: issues of security regarding this viewpoint deal mainly with reporting and

alerts privileges (ex: it could be a problem if regular employees could have access to

particular administrative call records); special care should therefore be had during the

setting up of destination lists for reports automations and for alert targets.

After consulting with the senior project analysts and taking into account the amount of

concerns to be analyzed, it was decided that only four of them would be studied in depth,

granted that these four would be considered the most important ones, according to the senior

project analysts:

 Correctness, since it is the foremost concern of this application from the analysts’

point of view.

 Response Time, due to the amount of tasks the administrator is required to perform as

well as the department directors’ (regular users) time spent using the application.

 Compatibility with the Telephonic Centrals is also of very high importance, seeing as

a great deal of regular clients from past versions use Telephonic Centrals from

different manufacturers and require the application to adapt to that fact seamlessly.

139

 Usability because there is a high probability that the client’s users will not be used to

this type of applications, as well as the designed administrators, therefore the learning

curve must not be a steep one.

5.4.1.3.2 Develop Viewpoint Concerns Requirements

Having obtained a list of system concerns for the several system viewpoints, the hybrid

approach’s heuristics suggest the use of generic requirement patterns for handling the non-

functional requirements that come from decomposing the discovered concerns. We will visit

some of the patterns that were used for this particular case study and apply them to some of

the identified viewpoints concerns, i.e. one per identified overall concern.

5.4.1.3.2.1 Verify Applicability of Generic Goal Patterns

Observing the Telephonic Central viewpoint and considering its concern, Compatibility, we

are required to obtain a known compatibility pattern and apply it, instancing it to the activities

developed in this viewpoint’s scope, of if it is the case that such a pattern is not found or does

not exist, provide one ourselves.

Compatibility is defined as the software’s ability to operate with other products that are

designed for interoperability with another product. For example, a piece of software may be

backward-compatible with an older version of itself.

Seeing as the goal of this viewpoint is to provide call detail records and taking into account

the project statement where it refers to the specific data connectors Br@in requires for each

type of telephonic central as well as previous models of said types, one may try to

contemplate that information on a requirement pattern (ex: Cisco Call Managers (the Cisco

telephonic central) are constantly updating and various versions of that software are used in

the several studied Br@in clients).

After careful research it was found that the compatibility issue has been addressed mostly in

self contained code or modular components of self-contained systems. This however is not the

case when dealing with the Telephonic Central. If we analyze the data we are provided in the

140

project statement and forwarded by the senior analysts, two generic compatibility goals

emerge:

 It is a well-known practice for product manufacturers, be it a hardware or a software

based product, to provide an API to allow other systems to easily interact with these

components;

 If such is not the case, the interacting systems must be required to produce data

connectors that adapt to the different products, their specific types and each type’s

specific model.

Transposing this to a generic goal model we have Figure 5-7. This pattern could be instanced

to this case study regarding the Telephonic Centrals, but it could also be instanced to many

other situations: interoperability with Microsoft Office tools, with Reporting Tools, etc.

Figure 5-7 Compatibility Concern Generic Goal Pattern

As such, instancing this pattern to the Br@in case study, we obtain Figure 5-8, where we can

see that if the Telephonic Central does not provide an API, as is the case with many

manufacturers, the Br@in application is required to provide brand specific and version

specific data connectors in order to enable a compatible interaction, i.e. uploading of call

detail information.

141

Figure 5-8 Compatibility Concern Goal Model for the Telephonic Central Viewpoint

Analyzing the User Viewpoint, we note that three of the identified concerns stand regarding

the top four chosen for analysis. Focusing on the Correctness concern, the User expects the

system’s data browsers to output correct information regarding both call details as well as

costs, and he expects correct report generation and exporting of browsed information.

Analyzing generic necessities of an application that produces “browsable” output and allows

conversion of that same output to several formats, a generic goal model can be produced as

seen in Figure 5-9. This model focuses on correctness as viewed by conformity with standards

and conformity with minimal error margins of the industry.

Figure 5-9 Correctness Concern Generic Goal Pattern

142

Instancing this pattern to the User viewpoint we have Figure 5-10 where both types of output

are subject to appliance of this pattern, on the one hand focusing both on their conformity

with Call Detail standards as well as with spreadsheet standards, while maintaining a 0% error

margin policy, and on the other hand focusing on conformity with report templates and

reporting tools minimum requirements.

Correct User
Output

Maintain Data Consistency
when exporting to Excel

Conformity with
Data Standards

Verify spreadsheet
compliance with

standards

Verify conformity
with call detail

defaults

No allowed Error
Margin

Verify
Maintenance of
0% error margin

Correct Browser
Output

Correct Report
Output

Maintain Data Consistency
through reporting tools

Conformity with
Data Standards

Verify conformity with
reporting minimum

requirements

Verify conformity
with organization

templates

No allowed Error
Margin

Verify
Maintenance of
0% error margin

Figure 5-10 Correctness Concern Goal Model for the User Viewpoint

Observing the issue of Usability, there is a pattern described in [21] that is emulated in Figure

5-11. This particular pattern does not extend its analysis to requirement leafs but instead

allows its instances to define how to do so.

143

Figure 5-11 Usability Concern Generic Goal Pattern

On the other hand, analyzing other documentation regarding usability patterns [10] we can

further decompose this pattern into a more concrete one. According to [10], one should

decompose usability traits or attributes into usability properties that provide help regarding

those attributes and furthermore identify patterns that derive from said properties.

Focusing on figure K sub-goals, we can ask “what is a fair system?” where we could say that

it is one that is consistent and grants status-equivalent access time; transposing this analysis to

the “easy to use” attribute, we can state that in order to do that, a system must guarantee

guidance for specific tasks and natural mapping of those tasks in the interface; a robust and

reliable system is one that focuses on error prevention and access policy control and at the

same time maintains a functional and evolutionary consistency; finally, keeping users

informed means providing feedback on their tasks and warning about erroneous situations.

This analysis instanced to the Administrator Viewpoint, and considering its goals in a generic

light, translates into figure L.

144

Figure 5-12 Usability Concern Goal Model for the Administrator Viewpoint

Finally, considering the Response Time concern, we can consider the example of the W

AJAX design pattern [4] where the interface is rendered while the results are still being

obtained, as well as adding some input regarding database access and browser common

knowledge, obtaining Figure 5-13.

Figure 5-13 Response Time Concern Generic Goal Pattern

This pattern applied to the User viewpoint is particularly interesting since most user requests

pertain to Department Directors and the amount of records to be consulted by a Department

145

Director for example is sometimes immense. Segmenting those results into smaller sets that

could be uploaded to the UI in short bursts would allow the user to start consulting them

while the rest are being loaded. Also, granting temporary “all-access passes” to department

directors during their searches allows optimizing their queries with minimal impact to

concurrent regular users, whose result space is normally smaller and thus less resource

consuming. This is seen in Figure 5-14.

Figure 5-14 Response Time Concern Goal Model for the User Viewpoint

5.4.1.3.2.2 Merge System-Wide Concern Goal Models

Finalized the concern analysis for each viewpoint there is still the fact that Concerns are

orthogonal in nature, and as such need to be contemplated from a system-wide point of view.

Taking advantage then of the softgoal models developed for each viewpoint, and relying on

the fact that viewpoint segmentation allows for a full scope of the system when totalized, it is

safe to assume that merging the several viewpoint specific concern models according to each

concern, will produce an accurate system-wide view of that concern.

The compatibility concern is presented only in the Telephonic Central viewpoint and

therefore its view is already system wide as portrayed in Figure 5-8. However other system

concerns, as is the case of the Response Time concern, can only be viewed in system-wide

perspective when considered from all of their viewpoints. A merged concern model can be

seen in Figure 5-15 where both the administrator and the user viewpoints provide input on

146

this concern. The user viewpoint’s input more reliant on reducing the time spent in large

result space queries, and the administrator focusing on simple UI maximization by working

with asynchronous data sources.

Highly Responsive
Browsing

Segment tabular
output of large
sets of rows

Grant priority
database access

policies

Reduce Communication
Time with Database

Apply query
optimization
algorithms

Reduce Browser
Impact

Allow Cancelling of
ongoing browsing

searches

Highly Responsive
System

Highly Responsive
Admin Management

Work with
asynchronous
data sources

Assure Database
Synchronization

Privilege Working
with local

database caches

Group similar
database
operations

Figure 5-15 Response Time Concern System-Wide Goal Model

5.4.1.3.2.3 Register Concern Requirements

Regarding the model drawn for the Response Time concern, its requirements would be

registered in Table 5-6, where the same textual quasi-algorithm is followed to produce the

requirements to be inserted.

147

Table 5-6 Response Time Concern Tabular Representation

Concern Response Time

Affected

Viewpoints

Administrator, User

Requirements 1. In order to achieve a highly responsive system…

a. The system should achieve highly responsive

browsing and in order to do so…

i. The system should reduce browser impact and

in order to do so...

1. The system should allow cancelling of

ongoing browsing searches.

2. The system should segment tabular

output of large sets of rows.

ii. The system should reduce communication

time with database and in order to do so...

1. The system should grant priority

database access policies.

2. The system should apply query

optimization algorithms.

b. The system should achieve highly responsive

administrative management and in order to do so…

…

References to those requirements should then be added to the viewpoints they pertain to, as is

shown in Table 5-7.

148

Table 5-7 User Viewpoint Tabular Representation with Concern Requirements

Name User

Type Stakeholder

Focus The regular user of the application. Visualize output with minimal

configuration possibilities.

Requirements ...

Concern

Requirements

1.a.*

Sources Target test users of the application (regular company employees, department

managers).

History None

5.4.1.4 Represent the System’s Obstacles and their Solutions

Concerning this step in the Hybrid Approach there is a particular concept that should be

referred: viewpoints concern entities that are foreign to the system, they interact with the

system and regarding the goal models that are designed to obtain their requirements, their

interaction with the system implies that they are expected to perform particular actions (in the

case of stakeholder viewpoints) or are required to perform particular actions (in the case of

environmental viewpoints). This does not extend however to how the system can and should

mitigate certain aspects of its normal functioning, therefore this obstacle analysis will limit

itself to obstacles the viewpoints themselves will encounter when interacting with the system

and how they should respond to those obstacles.

Applying this step to the Br@in case study, more precisely to the User viewpoint and its

browsing of call details, we verify that the only error prone point would be the generation of

output on behalf of the system. Barring any malfunctions, the only error would be the lack of

search results, either due to search parameters that were too strict or by loss of connection to

the database. On both accounts there is a possible response from the User: to the first he can

re-define search parameters, to the second he can either wait a few seconds and try again or

report this lack of connection to the tech support. This is shown in Figure 5-16.

149

Figure 5-16 Output Call Details Goal Model for the User Viewpoint with Obstacles

Throughout user interaction with the system these are the obstacles he should be faced with:

either while browsing cost details or even when generating reports. Regarding the reporting

tools, the user expectations are very clear as seen in Figure 5-2: reports are selected by type,

then their parameters are also selected, not defined, and therefore this leaves little room for

user-derived errors; thus the only error-prone point would also be the generation of said

reports regarding their contents, and to which the user responses would be similar to those

referred above.

Regarding the Administrator and its managing of database entities there is a specific error

prone point pertaining to licensing limits. The Br@in application will obviously impose

licensing limits regarding its interaction with the database, that is, according to senior analysts

consulted for the purpose, a client would purchase a Br@in license and according to the

contract, that license would limit the number of entities of each type to be considered.

Looking at the goal model regarding the Administrator’s management of the system

operators, we verify that when adding an operator to the system, there is a likelihood that the

150

license limit may be infringed, thus an obstacle to this requirement would be said

infringement. Another obstacle might appear related to dependencies between database

entities: although call details and cost details that make up the information Br@in processes

may refer to an operator, information which is not bound to that operator’s existence.

However, there are tariff plans and other database relevant information that may depend on

the operator’s existence; thus when eliminating it, some dependencies might constrain that

action. These obstacles and their solutions are demonstrated in Figure 5-17.

Figure 5-17 Manage Operators Goal Model for the Administrator Viewpoint with Obstacles

We now a look at the Telephonic Central in Figure 5-18 to complete a viewpoint-wide

analysis of possible obstacles that might impede system functions and how the viewpoints

regard those obstacles and their solution. While performing the only interaction with the

system that the Telephonic Central perpetrates, that same interaction known as collection

process, might be terminated abruptly, which can happen for two reasons: first and most

obviously due to a communication failure, in which case the Telephonic Central is required to

cache the records that it was sending and wait for a re-connection attempt; on the other hand,

during the collection process, a licensing limit might be reached concerning the call details

that the application is allowed to import to the system, in which case the telephonic central is

required to warn system of licensing limits and advice license extension.

151

Produce Database
Information

Telephonic Central

Provide Call Detail
Records

Collection process
terminated

Cache call detail records
for re-connection

Communication failure
during collection process

Licensing limits
exceeded

Warn system of
licensing limits and
advice extension

Figure 5-18 Produce Database Information Goal Model for the Telephonic Central Viewpoint with Obstacles

Finalized this stage of modeling the obstacles for the several goal models each viewpoint

presents, it is required that those obstacles and their solutions be registered in the tabular

representation of each viewpoint for documentation, as is shown in Table 5-8 for the

Telephonic Central viewpoint. As we can see, when faced with composite obstacles, that is,

obstacles that are decompositions of more generic ones, a full context textual description is

required by traversing the obstacle nodes.

152

Table 5-8 Telephonic Central Viewpoint Tabular Representation with Obstacles

Name Telephonic Central

Type Environmental

Focus Software or hardware components that handle telephony processing in the

company and provide call information to the system.

Requirements 1. The Telephonic Central is required to provide call detail records in

order to produce database information.

Concern

Requirements

…

Obstacles

Opposed Req. 1.

Obstacle Collection process terminated due to licensing limits

exceeded.

Solution S1.1. The Telephonic Central is required to warn system of

licensing limits and advice extension.

Opposed Req. 1.

Obstacle Collection process terminated due to communication failure

during collection process.

Solution S2.1. The Telephonic Central is required to cache call detail

records for re-connection.

Sources Telephonic Centrals re-sellers and manufacturers and respective

documentation.

History None

5.4.1.5 Requirement Analysis

Requirement analysis is a particularly important stage of the PREview approach. It is a three

step comparative take on the elicited viewpoints, concerns and their requirements and has the

intent of clarifying the elicited components by filtering those that are erroneous or

overlapping, while clarifying the importance of those that are quantifiable.

153

5.4.1.5.1 Perform Inter-Viewpoint Interaction Analysis

Inter-Viewpoint analysis is a step of the Hybrid Approach that although conceptually

interesting is maintained from the PREview approach more as a precaution than for any other

reason. Viewpoint requirements are functional tasks the system viewpoints are required or

expected to perform; their functional nature does not allow establishing priorities seeing as

they either are performed or they are not.

As was said while describing this approach’s heuristics, this is a step that is particularly

important if one considers that, in a team effort, each viewpoint’s requirements might be

elicited by different team members. As such, it would be of extreme importance to compare

the different requirements and verify if they indeed conflict or overlap and re-design is

required.

Seeing that this case study was developed by this thesis’ author, there was throughout the

process a persistent knowledge of each viewpoint’s requirements and how they should not

conflict with other viewpoints that were elicited. Due to that fact, realizing this analysis would

likely output no relevant results. However, in the interest of demonstrating the approach’s

applicability to industry case studies, we present Table 5-9.

Table 5-9 Inter-Viewpoint Comparative Analysis (Admin. vs. Tel. Central)

 Administrator

1.a 1.b 1.c.i 1.c.ii 1.c.iii.1

…

…

X.a X.b X.c

Telephonic

Central

1 - - - - - - - -

S1.1 - - - - - - - -

S2.1 - - - - - - - -

In Table 5-9, an inter-viewpoint analysis is conducted between the administrator and the

telephonic central. These two viewpoints have a possible conflict point when it comes to

managing the collection process on behalf of the administrator and executing said process on

behalf of the telephonic central. The first requirements seen in the table from the

administrator’s input are regarding the management of the hierarchical structure, it would

154

follow on detailing every requirement’s reference until it reached a hypothetical X

requirement branch that would represent the three expectations of the management of data

processes from the administrator viewpoint. Although these requirements would have been

the most probable source for errors regarding this analysis, such does not happen.

5.4.1.5.2 Perform Inter-Concern Interaction Analysis

Inter-Concern analysis is yet another entry point for KAOS contributions, this time merged

with a contribution from the AORE approach [20]. The overall concern model that is

suggested in this approach’s heuristics represents the conflict and cooperation that might exist

between the several system concerns, analyzed at a viewpoint specific depth.

For the Br@in case study, such a model is seen in Figure 5-19, where the concern

contributions are clearly identifiable by the “+” and “-“ symbols, detailing their conflict or

cooperation. This particular set of concerns presents a great number of positive contributions

between concerns which is a very good sign: it means that the stakeholder needs have an

overall positive contribution to the system’s development and few concessions will have to be

made in order to obtain a stable and final set of system requirements.

155

Figure 5-19 Inter-Concern Interaction Analysis

5.4.1.5.3 Perform Inter-Concern Interaction Analysis

Although this step may be considered a summarizing one, it constitutes an important stepping

stone for the final stage of the approach. We are required to produce a Viewpoint-Concern

interaction matrix that summarizes the relationships between each viewpoint and the several

system concerns, in order to provide a basis for the previously referred final stage.

Regarding the case study, if we consider the different viewpoints and concerns considered and

analyze their respective tabular representations, we obtain Table 5-10. There we can see for

example, that this limited scope of concerns outputs similar characteristics for both the User

and Administrator viewpoints.

156

Table 5-10 Viewpoint-Concern Interaction Analysis

 User Administrator Telephonic Central

Compatibility X

Response Time X X

Usability X X

Correctness X X

5.4.1.6 Requirement Negotiation

Entering the requirements negotiation stage of the approach means that most of the analyst’s

work has already been done and all that remains is to analyze inter-concern relationships and

their co-existence within each viewpoint’s scope, and negotiate compliances for potential

conflicts.

5.4.1.6.1 Produce a Weighted Contributions Table

As is presented in the heuristics section, this final stage of the approach consists of

consolidating an analysis that has been performed in previous steps, along with gathering

stakeholder input in order to resolve conflict that might emerge.

The limited scope of the considered concerns and the nature of the concerns themselves will

of course limit this analysis; however there is still a sufficient sample to present relevant

results. The large amount of positive contributions present in Figure 5-19 is not reflected in

this last analysis, which is due to the fact that the goal is to solve conflicts and of course

cooperation does not require the establishing of priorities. If we focus on the conflicts and

verify those that exist in the same viewpoint, we verify that in the case of correctness and

response time, where correctness efforts can have a detrimental effect on the system’s

response time, there is a conflict, and seeing that is occurs in the scope of a viewpoint it must

be settled.

This weight attribution is obtained by presenting this conflict to the stakeholders for them to

resolve it by defining priorities. This analysis is present in Table 5-11.

157

Table 5-11 Weighted Contributions Analysis

 User Administrator Telephonic Central

Compatibility X

Response Time 0.8 0.8

Usability X X

Correctness 1.0 1.0

5.5 Summary

The goal of this chapter was to demonstrate this Hybrid Approach’s capabilities, as they were

described in the previous chapter, in a real world case study. The intent was to carefully

follow the identified steps and in the end obtain a stable set of functional requirements

organized according to viewpoints, and non-functional requirements organized according to

concerns.

Furthermore, there was also the intention of demonstrating that regarding the PREview [23]

approach, the additional components this hybrid approach included would result in a clear

gain in what concerned requirements discovery both from the functional and non-functional

sides of the system. Requirement analysis and negotiation were also intended to be better

addressed as a result of both AORE [20] and KAOS [13] contributions.

From the onset of applying the approach to this case study it was clear that it would present a

different challenge than that of the Via Verde case study: firstly because it was a real

industrial application, and second because it was a different type of system.

The Via Verde case study produced a large set of viewpoints, even in a finalized state, this

identified it as somewhat of a distributed system, that is, a system composed of many foreign

components, and therefore, perspectives. This however was not the case with the Br@in case

study.

158

Br@in is a self-contained application that interacts mostly with two types of users and a

possible set of telephonic centrals that provide the call data for the application to process. This

implies that most of the work is done by the system itself and thus cannot be modeled using

an approach like PREview. Another fact to consider is that although having fewer viewpoints,

each of this system’s interacting agents was responsible, for the most part, for a large set of

tasks, which represented another change regarding the Via Verde case study.

Iterating through the approach’s steps revealed itself to be intuitive and always produced a

result set, which of course reflects the analyst’s progress in a quantifiable manner. Providing

clear heuristics for obtaining the system’s requirements, both functional and non-functional,

produced a precise set of requirements that required little rework and avoided some of the

inevitable iterations that a subjective approach like PREview would have implicated.

Reaching the last stages of the approach, the analysis of the obtained requirements was

achieved also in an intuitive manner, with a minimum of overlapping or conflicting

requirements between viewpoints and a clear exposure of conflicts and contributions between

system concerns. This in turn provided the analyst with a last useful tool with which to

discuss with the project’s stakeholders (in this case, senior project analysts from the Br@in

project) regarding the establishment of priorities for each concern pertaining to each

viewpoint’s scope.

159

Chapter 6
Conclusions

I have worked with both the PREview and the KAOS approaches in academic contexts for

several times; in all accounts, both approaches seemed well cut out for the job they were

devised to develop and although very different in nature, both adjusted to the work and the

projects they were used for. The nature of this work was born precisely from the usage of the

two approaches and the issues identified with using each of them, mostly the PREview

approach.

This work began by presenting a brief analysis on two Requirements Elicitation and Analysis

inclinations: viewpoint oriented and goal oriented. Several approaches were presented on

either account, with special emphasis on one from each inclination: KAOS and PREview.

Each approach was then described in detail, focusing on their main traits and the

complementarities of both approaches with an emphasis on directing the analysis for an

attempt at merging these two techniques, analyzing the benefits of such an attempt.

Considering the issues identified in each approach, it was verifiable that both approaches were

complementary. On the one hand, KAOS offers a set of requirements elicitation heuristics

through goal decomposition, however lacks a means to organize the elicited requirements in a

stakeholder-friendly fashion. On the other hand, PREview focuses on the understanding and

controlling the complexity of these systems by separating the interests of various stakeholders

and formalizing this multi-perspective view into analysis methods, however lacks a

mechanism to guide the elicitation process and thus relies heavily on the analyst’s abilities

and forcefully, his experience.

The objective of this thesis was therefore to propose a hybrid approach that brought together

the advantages of both of the base approaches, however focusing on the PREview approach as

a basis, since it was the one which had more to gain by incorporating components from the

other approach. The result would be synergetic where, for example, completion is better

addressed by providing heuristics to the process of requirements elicitation.

160

6.1 Contributions

On a first look, it might seem that this Hybrid Approach adds aspects and routines to the

processes of an already effective approach. However, if one is to look at both of the base

approaches, it is clear that PREview is a much more subjective approach, as KAOS is a more

systematic approach, or too formal. This Hybrid Approach is therefore an attempt at finding a

half-way point between paradigms, taking advantage of each approach's benefits and

attempting to focus on mitigating PREview’s lacking.

As it is shown during the course of this work and mainly through the case study analysis, the

inclusion of the KAOS heuristics into the PREview process of identifying viewpoint

requirements greatly simplifies the work of the analyst, as it is simpler to follow clearly

defined steps when comparing to subjectivity. Furthermore, the complex nature of the KAOS

approach does not appear as an intruder, seeing as it is greatly reduced when approaching

system design considering each viewpoint in turn. It might add some redundancy to the

existing processes, seeing as several viewpoints might share similar requirements, but it will

treat larger knowledge bases in a far more informed manner.

The inclusion of the AORE approach when dealing with conflicting requirements and

concerns is an important contribution to the approach as it provides an informed input into the

negotiation process. Its translation into KAOS goal models with extended notation to reflect

concern conflict and cooperation proves to be a good source of information when producing

informed documentation for negotiation with project stakeholders, both relying on KAOS’

graphical capabilities and the AORE inspired extended notation’s compliant input.

It is fair to say that, although this approach implies a significant overhead regarding

documentation and modeling, the advantages that come from taking such a subjective

approach like PREview and extending it with a set of requirements discovery heuristics, a set

of methods for requirements analysis and a basis for requirements negotiation, far outweighs

the effort it implies. Furthermore, despite KAOS’ formal nature, its graphical notation in the

form of the Objectiver Methodology represents a lightweight manner to include the same

161

principles of formal mechanisms the approach stands for. This maintenance of a lightweight

nature was of the utmost importance, seeing as it was one of PREview’s main goals.

As was said before, this thesis proposes a hybrid approach and describes its possible

application to both a simple but descriptive case study, when explaining its heuristics, and a

more complex and real world industry case study, developed in a corporate environment, and

thus demonstrative of the industrial applications of this Hybrid Approach for detailed

analysis.

Its successful application to the real world case study reveals it not only as a theoretical

approach, but also as one that might have interesting usage in an industrial environment.

6.2 Future work

Possible evolutions for this approach consider firstly technical aspects that could be

experimented in order to deem advantageous.

An aspect that was not considered while detailing viewpoint requirements decomposition was

that of, while interpreting the KAOS goal models, considering the AND and OR branching

differences and contemplating them in each viewpoint’s tabular representations. Although

their importance is notable in a graphical model, benefits regarding the listing of a

viewpoint’s requirements with such detail are not clear.

Viewpoints relate to entities that interact with the system, directly or indirectly, but that are

not part of the system; the KAOS approach however extends this analysis to also contemplate

system components as agents. Extending the notion of viewpoint to envelop system

components as modules could perhaps contribute with additional knowledge of the system,

with the counterpart of adding more overhead to the original PREview approach.

Applying this hypothesis to the Br@in case study, we could obtain modules responsive for

handling the UI back-end of each user’s interaction with the system, demonstrating how to

handle error-prone situations, not only from the foreign viewpoints’ side, but also from that of

the system itself. These Agents would not be viewpoints per se, seeing as a viewpoint’s

definition is exactly that of a foreign agent, but the notion of an encapsulated development

sub-space could produce interesting results.

162

It is an obvious evolution for any development technique that it should develop tool support

for the theoretical knowledge it provides; even more so if it is a modeling technique with

graphical components.

The KAOS approach is already supported by the Objectiver tool for goal modeling and the

subsequent models that the KAOS approach entails, however for the PREview approach, to

current date, there is no official tool support, which makes sense since it is a heavily

subjective and textual approach.

For this work though, the Objectiver tool was not used, but instead the Microsoft Office Visio

2007 tool. For the specific purpose of developing goal models, a new stencil was created at

the early stages and used throughout the development of both case studies. Any tool support

for this approach would therefore require a hybrid tool for both modeling and textual support,

that is, a modeling tool similar to Visio or Objectiver for the goal models and a form based

tool for Viewpoints documentation. Introduction of an XML notation instead of a tabular

representation for registering Viewpoint and Concern information could demonstrate

usefulness when registering form information in a data source.

Another interesting development would be integration with previous work developed by

myself and colleague Ana Sofia Penim for the Semantic Web course in 2008 [19], concerning

Ontology support for the KAOS approach: similar ontological support would be a useful

complement for this approach since it relies on the base completeness criteria of KAOS goal

modeling, and would integrate well with a PREview oriented XML notation support for

example.

163

References

[1] Safee project. http://www.respect-it.com/index.php?id=88

[2] Annie I. Anton. Goal-based requirements analysis. In ICRE '96: Proceedings of the

2nd International Conference on Requirements Engineering (ICRE '96), pages 136–144,

Washington, DC, USA, 1996. IEEE Computer Society.

[3] John W. Brackett. Software requirements. Technical Report SEI-CM-19-1.2, Software

Engineering Institute, Carnegie Mellon University, USA, 1990.

[4] Wael Chatila. W ajax design pattern.

http://waelchatila.com/2006/07/08/1152426781706.html

[5] R. Chitchyan, A. Rashid, P. Sawyer, A. Garcia, Mónica P. Alarcon, J. Bakker,

B. Tekinerdogan, S. Clarke, and A. Jackson. A survey of analysis and design approaches.

Technical Report AOSD-Europe Deliverable D11, AOSD-Europe-ULANC-9, Lancaster

University, May 2005.

[6] L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. Non-Functional Requirements in

Software Engineering. Kluwer Academic Publishers, Boston, USA, 2000.

[7] A. Finkelstein, J. Kramer, and M. Goedicke. Viewpoint oriented software

development. In Proc. of Third Int. Workshop on Software Engineering and its Applications,

pages 337–351, 1990.

[8] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints:

A framework for integrating multiple perspectives in system development. International

Journal of Software Engineering and Knowledge Engineering, 2(1):31–58, 1992.

[9] A. Finkelstein and I. Sommerville. The viewpoints faq. BCS/IEE Software

Engineering Journal, 11(1):5–18, 1996.

164

[10] Eelke Folmer and Jan Bosch. Usability patterns in software architecture. In

Proceedings of the 10th International Conference on Human-Computer Interaction,

volume 1, pages 93–97, Crete, Greece, June 2003.

[11] G. Kotonya and I. Sommerville. Viewpoints for requirements definition. Software

Engineering Journal, 7(6):375–387, Nov 1992.

[12] G. Kotonya and I. Sommerville. Requirements engineering with viewpoints. Software

Engineering Journal, 11(1):5–18, 1996.

[13] Axel Van Lamsweerde. Goal-oriented requirements engineering: A guided tour. In

Fifth IEEE International Symposium on Requirements Engineering (RE'01), pages 249–262,

Los Alamitos, CA, USA, 2001. IEEE Computer Society.

[14] J. C. S. P. Leite. Viewpoint analysis: a case study. In IWSSD '89: Proceedings of the

5th international workshop on Software specification and design, pages 111–119, New York,

NY, USA, 1989. ACM.

[15] L. Liu and E. Yu. From requirements to architectural design - using goals and

scenarios. In ICSE-2001 Workshop: From Software Requirements to Architectures, pages 22–

30, May 2001.

[16] A. G Miller. The magical number seven, plus or minus two: some limits on our

capacity for processing information. Psychological Review, 63:81–97, 1956.

[17] G. P. Mullery. Core - a method for controlled requirement specification. In ICSE '79:

Proceedings of the 4th international conference on Software engineering, pages 126–135,

Piscataway, NJ, USA, 1979. IEEE Press.

[18] Ken Orr. Structured Requirements Definition. Topeka, Kansas, 1981.

[19] Ana Sofia Penim and Manuel Pimenta. Ontologies in software engineering: A kaos

ontology. Semantic Web Course, June 2008.

[20] Awais Rashid, Ana Moreira, and Joao Araújo. Modularisation and composition of

aspectual requirements. In AOSD '03: Proceedings of the 2nd international conference on

Aspect-oriented software development, pages 11–20, New York, NY, USA, 2003. ACM.

[21] Respect-IT. A KAOS Tutorial, Oct.18 2007. V1.0.

165

[22] Douglas T. Ross. Applications and extensions of sadt. IEEE Computer, 18(4):25–34,

1985.

[23] I. Sommerville. Software Engineering. Pearson Education Limited, Essex, England,

8th edition, 2007.

[24] I. Sommerville and P. Sawyer. Requirements Engineering: A Good Practice Guide.

John Wiley & Sons, Inc., New York, NY, USA, 1997.

[25] I. Sommerville and P. Sawyer. Viewpoints: Principles, problems and a practical

approach to requirements engineering. Annals of Software Engineering, 3:101–130, 1997.

[26] Eric Siu-Kwong Yu. Modelling strategic relationships for process reengineering. PhD

thesis, University of Toronto, Toronto, Ont., Canada, Canada, 1995.

166

167

Appendixes

Appendix A – Administrator Viewpoint

Table 8-0-1 Administrator Viewpoint Tabular Representation

Name Administrator (Admin)

Type Stakeholder

Focus The top-ranked user of the application. Manages every aspect of the application and

the information it handles.

Requirements 1. In order to manage the hierarchical structure...

a. The Admin is expected to add organizational nodes.

b. The Admin is expected to eliminate organizational nodes.

c. The Admin is expected to edit organizational nodes and in order to

do so…

i. The Admin is expected to edit organizational node details.

ii. The Admin is expected to move organizational nodes.

iii. The Admin is expected to manage billable components

associations and in order to do so…

1. The Admin is expected to associate component.

2. The Admin is expected to edit association

percentage.

3. The Admin is expected to remove association.

2. In order to manage reports automation…

a. The Admin is expected to create reports automations and in order

to do so…

i. The Admin is expected to define a report template.

ii. The Admin is expected to define a schedule.

iii. The Admin is expected to select destinations.

168

b. The Admin is expected to activate reports automation.

c. The Admin is expected to edit reports automations and in order to

do so…

i. The Admin is expected to edit report template.

ii. The Admin is expected to edit report schedule.

iii. The Admin is expected to edit report destinations.

3. In order to manage assets…

a. The Admin is expected to manage asset types and in order to do

so…

i. The Admin is expected to define an asset type.

ii. The Admin is expected to modify an asset cost/type.

iii. The Admin is expected to eliminate an asset type.

b. The Admin is expected to add an asset.

c. The Admin is expected to delete an asset.

d. The Admin is expected to edit an asset’s details.

e. The Admin is expected to manage asset associations and in order to

do so…

i. The Admin is expected to add asset associations.

ii. The Admin is expected to modify an asset association.

iii. The Admin is expected to eliminate an asset association.

Sources Target administrators of the application, accounting department, tech-support.

History None

