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Abstract 

Fossil fuel combustion is the major source of the increasing atmospheric concentration 

of carbone dioxide (CO2) since the pre-industrial period. Combustion systems like 

power plants, cement, iron and steel production plants and refineries are the main 

stationary sources of CO2 emissions. The reduction of greenhouse gas emissions in one 

of the main climate change mitigation measures. Carbon dioxide capture and storage 

(CCS) is one of the possible mitigation measures.  

The objective of this study was to analyze the hypothesis for the implementation of 

CCS systems in mainland Portugal based on source-sink matching. The CO2 large point 

sources (LPS) considered in mainland Portugal were the largest installations included in 

the Phase II of the European Emissions Trading Scheme with the highest CO2 

emissions, representing about 90% of the total CO2 emissions of the Trading Scheme, 

verified in 2007. The potential geological storage locations considered were the 

geological formations formerly identified in existing studies. 

After the mapping of LPS and potential geological sinks of mainland Portugal, an 

analysis based on the proximity of the sources and storage sites was performed. From 

this it was possible to conclude that a large number of LPS are within or near the 

potential storage areas. An attempt of estimating costs of implementing a CCS system 

in mainland Portugal was also performed, considering the identified LPS and storage 

areas. This cost estimate was a very rough exercise but can allow an order of magnitude 

of the costs of implementing a CCS system in mainland Portugal. Preliminary results 

suggest that at present CCS systems are not economically interesting in Portugal, but 

this may change with increasing costs of energy and emission permits. 

The present lack of information regarding geological storage sites is an important 

limitation for the assessment of implementing a CCS system in mainland Portugal.  

Further detailed studies are required, starting with the characterisation of geological 

sites and the candidate sources to CCS, from technical aspects to environmental and 

economical factors. 
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Resumo 

A queima de combustíveis de fósseis, é desde do período pré-industrial, o maior 

responsável pelo aumento da concentração atmosférica de dióxido de carbono (CO2). 

Entre as maiores fontes estacionárias de CO2 encontram-se centrais termoeléctricas, 

refinarias, cimenteiras e indústrias de produção de metais ferrosos. A redução das 

emissões de gases de efeito estufa é uma das principais medidas de mitigação das 

alterações climáticas.  Entre estas medidas encontra-se a captura e o sequestro de CO2 

(CSC). O objectivo deste estudo foi analisar as hipóteses de implementação de um 

sistema de CSC em Portugal continental, baseada no cruzamento entre as fontes e os 

locais de sequestro. As grandes fontes de emissão de CO2 (GFE) consideradas foram o 

grupo de instalações incluidas na fase II do Comércio Europeu de Licenças de Emissão 

(CELE), com maior volume anual de emissões de CO2, representando 90% do total das 

emissões verificadas em 2007 no conjunto nacional do CELE. As potenciais áreas de 

sequestro geológico consideradas foram as formações geológicas previamente 

identificadas em estudos existentes.  

Após o mapeamento das GFE e das potenciais áreas de sequestro geológico, foi 

realizada uma análise baseada na proximidade entre as fontes e os locais de 

armazenamento. Desta análise foi possível concluir que existem muitas GFE dentro ou 

na vizinhança das potencias áreas de sequestro. Foi também efectuada uma tentiva para 

estimar os custos de implementação de um sistema de CSC em Portugal continental, 

considerando as GFE e as áreas de sequestro identificadas. Esta estimativa de custos, 

apesar de ser um exercício grosseiro, permite-nos ter uma ideia da ordem de grandeza 

dos custos de implementação de um sistema de CSC em Portugal continental. 

Resultados preliminares indicam que neste momento os sistemas CSC não têm interesse 

económico, mas a situação poderá mudar se os custos da energia e das licenças de 

emissão aumentarem. 

A actual lacuna de informação em relação aos locais de sequestro geológico de CO2 é 

uma limitação importante para avaliação da implementação de um sistema de CSC em 

Portugal continental. Para tal são necessários mais estudos, começando pela 

caracterização dos locais de sequestro geológico e pela caracterização profunda das 

fontes candidatas à implementação de CSC, desde aspectos técnicos a aspectos 

ambientais e económicos.  
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1 Introduction 

In this chapter, an introduction to the dissertation theme as well as the goals of the 

dissertation and its organisation is presented. 

1.1 Background   

The first evidences of the increase of carbone dioxide (CO2) concentration in the 

atmosphere appeared in the 60’s and 70’s. In 1988, the World Meteorological 

Organisation and the United Nations Environment Programme created the 

Intergovernmental Panel on Climate Change (IPCC). The IPCC published its first report 

on climate change (IPCC First Assessment Report) in 1990, stating that global warming 

is real and that it is urgent to take measures to tackle it.  

According to IPCC, climate change “refers to a change in the state of the climate that 

can be identified (e.g. using statistical tests) by changes in the mean and/or the 

variability of its properties, and that persists for an extended period, typically decades or 

longer (…) whether due to natural variability or as a result of human activity” (IPCC, 

2007a). The United Nations Framework Convention on Climate Change (UNFCCC) has 

a different definition of climate change, where “climate change refers to a change of 

climate that is attributed directly or indirectly to human activity that alters the 

composition of the global atmosphere and that is in addition to natural climate 

variability observed over comparable time periods” (IPCC, 2007a). Climate change has 

anthropogenic and natural drivers, which can be presented in a schematic diagram 

representing anthropogenic drivers, impacts of and responses to climate change and 

their linkages (Figure 1.1). 
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Figure 1.1 - Schematic diagram representing anthropogenic drivers, impacts of and responses to climate 

change, and their linkages (IPCC, 2007a). 

The IPCC fourth assessment report on climate, published in 2007, states that even with 

emissions restraining within the next few decades climate change consequences are 

more likely to happen than not to happen. If the emissions remain at 2000 levels, the 

Earth average temperature is expected to increase 0,1 ºC per decade throughout the next 

century (IPCC, 2007a). 

CO2 is the most important anthropogenic greenhouse gas (GHG) and its emissions level 

rose from a pre-industrial level of about 280 ppm to 379 ppm in 2005 (IPCC, 2007b).  

In the 1995-2005 decade the average annual CO2 concentration growth rate was 1,9 

ppm per year, being higher than the previous verified (1960-2005 average: 1,4 ppm per 

year). Fossil fuel combustion is the major source of the increasing atmospheric 

concentration of CO2 since the pre-industrial period. Land use change is another main 

source, although smaller than fossil fuel combustion (IPCC, 2007b).  In the 1970-2004 

period there was an increase of about 70% in the emissions of the GHG covered by the 

Kyoto Protocol (KP) (CO2, N2O, CH4, SF6, PFCs, HFCs), CO2 being the largest source 

having increased by about 80% (IPCC, 2007c). 
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The reduction of GHG emissions is one of the main climate change mitigation 

measures. Carbon capture and storage (CCS) is one of the possible mitigation measures, 

although it is recognized that no single category of mitigation measures is sufficient. 

Fossil fuels will continue to play a dominant role in power generation and combustion 

in industrial processes because they are relatively abundant, cheap, available and 

globally distributed (Bachu, 2007a). In the particular case of coal, it is abundant in 

North America, China and India, which are becoming the largest CO2 emitters in the 

world (Bachu, 2007b). CO2 capture and geological storage is considered an option to 

reduce emissions from the large stationary sources of CO2. 

1.2 Goals  

The objective of this study is to analyze the hypotheses for the implementation of CCS 

systems in mainland Portugal based on source-sink matching. This analysis will 

consider the CO2 large point sources (LPS) in mainland Portugal, because they are 

considered main applicants to CCS. 

The identification of CO2 LPS in mainland Portugal will be based on the installations 

included in the Phase II of the European Emissions Trading Scheme (EU-ETS) 

corresponding to the Kyoto Protocol commitment period of 2008-2012, and on the 

verified annual CO2 emissions per installation.  

The potential geological storage locations that will be considered are the geological 

formations identified in existing studies. After the mapping of LPS and potential 

geological sinks of mainland Portugal, an analysis based on the proximity of the sources 

and storage sites is performed. An estimation of the costs of implementing a CCS 

system in mainland Portugal is also attempted considering the identified LPS and 

storage areas. 

The adopted method to achieve this dissertation goal involved several research phases 

that lead to the identification of the criteria to be applied. The main steps are 

summarized in Figure 1.2. 
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Figure 1.2- Main steps of the method. 

   

1.3 Dissertation organization 

The dissertation is organized as follows:  

Chapter 2 presents the literature search and review about CCS technological and 

environmental issues considering CO2 capture systems and technologies and transport, 

CO2 storage, monitoring, mitigation and verification systems, environmental impact 

assessment and risk evaluation, energy balance and the legal and political aspects 

related to CCS. 

Criteria definition for the identification of CO2 large 
point sources in mainland Portugal 

 
Chapter 2 
 

Literature search and review about CCS 
technological and environmental issues 

Identification of carbon dioxide stationary sources in 
mainland Portugal 

 
Chapter 3 
 

Literature search and review about the 
implementation of a CCS system 
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implementation of a CCS system in mainland 

Portugal – source sink matching 
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Chapter 3 presents the literature search and review about the selection of CO2 storage 

sites, the assessment of CO2 storage capacity, the process of identification of potential 

sites for CO2 geological storage, namely deep saline aquifers and coal beds, CO2 

sources and CCS costs. 

Chapter 4 presents the hypotheses for the implementation of a CCS system in mainland 

Portugal, based on the source-sink matching, considering the proximity of the sources 

and storage sites. An attempt at estimating costs is also presented. 

Chapter 5 presents and discusses the main conclusions of the previous chapters. 
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2 State of the art 

This chapter intends to give a brief overview of CCS technological and environmental 

issues considering CO2 capture systems and technologies and transport, CO2 storage, 

monitoring, mitigation and verification systems, environmental impact assessment and 

risk evaluation and energy balance, as well the legal and political aspects related to 

CCS. 

2.1 Problem definition 

From a simple conceptual perspective, a CCS system has three phases: capture, 

transport and storage. However, in each of these phases not only technological 

characteristics but also to environmental and safety aspects have to be considered. In the 

implementation of a CCS system as a mitigation option, costs as well the energy 

balance and consequently the net GHG emissions are high weighted decision factors. 

All these technological and environmental issues make CCS a complex system.  

Combustion systems like power plants, gas processing, cement, iron and steel 

production plants and refineries are the main stationary sources of CO2 emissions. 

Figure 2.1 shows the share of largest key CO2 source categories in 2006 for EU-15. 

Iron and Steel 
production

2%Cement 
production

2%
Petroleum 
refining

3%

Commercial/Inst.
5%

Residential
12%

Manufact. Ind. 
And Construction

16%

Road 
transportat ion

23%

Other
8%

Public Electricity 
and Heat 

production
29%

 

Figure 2.1 – Share of largest CO2 key sources categories in 2006 for EU-15 (EEA, 2008). 
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The first international step to tackle climate change happened in 1992 with the 

establishment of the United Nations Framework Convention on Climate Change 

(UNFCCC) whose ultimate objective is to achieve “(…) stabilization of greenhouse gas 

concentrations in the atmosphere at a level that would prevent dangerous anthropogenic 

interference with the climate system”. UNFCCC has been accepted in 1994 and has 

today been ratified by 192 nations. The international climate negotiations under the 

UNFCCC lead to the adoption of the Kyoto Protocol in 1997. The Kyoto Protocol 

entered into force on 2005, and has been ratified until today by 183 Parties of the 

UNFCCC. The Kyoto Protocol shares the basic principles and institutions of the 

UNFCCC, but established binding targets of GHG emissions reduction for 37 

industrialised countries and the European community. The overall target is a reduction 

of five per cent of GHG emissions against 1990 levels over the five-year period 2008-

2012. In order to meet their targets, Parties must apply national measures and the Kyoto 

Protocol also established three market-based mechanisms: emissions trading scheme, 

the clean development mechanism and joint implementation. The EU target is a 

reduction of eight per cent of GHG emissions against 1990 levels over the first 

commitment period of the Kyoto Protocol (2008-2012). In this period Portugal is 

allowed to increase GHG emissions by 27% in relation to 1990 levels.  

CO2 can be captured from installations that use of fossil fuels and/or biomass by four 

different systems: capture from industrial process streams, post-combustion capture, 

oxy-fuel combustion capture and pre-combustion capture. CO2 can be transported in the 

gas, liquid and solid stage and transported by tanks, pipelines and ships in gaseous and 

liquid stages. There are three potential CO2 storage methods: geologic storage, ocean 

storage (direct release into the ocean water column or onto the deep seafloor) and 

industrial fixation of CO2 into inorganic carbonates (IPCC, 2005). Amongst the 

geological CO2 storage reservoirs types are deep saline formations, depleted natural gas 

reservoirs, depleted oil reservoirs, deep unmineable coal seams, deep saline-filled basalt 

formations and others like salt caverns, organics shales and methane hydratebearing 

formations (Dooley et al., 2006). 

A CCS system has also to be analysed in terms of the environmental impacts and risks, 

considering the operational, closure and post closure phases. The remediation options in 

case of CO2 leakage from the storage location are defined in this stage. For all of the 

phases of a CCS system there has to be a monitoring, mitigation and verification 

(MMV) system. These are continuous systems that accompany the transport, injection 
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and storage providing crucial information to the operational system and to environment 

impact assessment and risk management (NETL, 2008).  

As the implementation of a CCS system requires additional energy, an emissions and 

energy balance is required to assess its mitigation potential. The costs also have to be 

assessed to all the components of the CCS systems: capture and compression, transport, 

injection and storage, including monitoring costs and remediation costs if necessary. 

Another important aspect is how the application of a CCS system will reflect in the cost 

of the final product, like electricity in the case the system is applied on a power plant.  

In Figure 2.2 , the technical components of CCS and the respective state of development 

are presented. 

 

Figure 2.2 – Technical components of CCS (Fernando et al., 2008). 

The legal and regulatory aspects of CCS are of major importance. However, CCS has 

not been yet subjected to an effective framework including legal and regulatory 

templates and guidelines at national or international level, particularly concerning long-

term issues. This is a big constraint and until today the regulatory issues have been 

defined on a case-by-case basis (Robertson et al., 2006). In 2008, the European 

Commission (EC) published a proposal for a directive1 on the geological storage of 

                                                 
1 COM (2008) 18 final – Proposal for a Directive of the European Parliament and of the Council on the 
geological storage of carbon dioxide and amending Council Directives 85/337/EEC, 96/61/EC, Directives 
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CO2. Part of the existent European legislation can be applied to CCS and the proposal of 

directive establishes which terms of the existing legislation should apply to which 

aspects of CCS. With the international climate change negotiations, CCS is not 

explicitly included in the UNFCCC or the KP. 

The criteria for the selection of CO2 storage sites and matching with CO2 sources are, 

according to Bachu, 2007b: “volume, purity and rate of the CO2 stream; proximity of 

the source and storage/storage sites; level of infrastructure for CO2 capture and delivery; 

existing wells, for injection and for leak prevention; injection and production strategies; 

terrain and right of way; proximity to population centres; and overall costs, and 

economics” (Bachu, 2007b). Beyond these technical suitability criteria, further 

considerations on source-sink matching are controlled by economic, safety and 

environmental aspects. According to the IPCC Special Report on CCS “assigning 

technical risks is important for matching of CO2 sources and storage sites, for five risk 

factors: storage capacity, injectivity, containment, site and natural resources” (IPCC, 

2005).  

The analysis that will be performed in this study will be based on the proximity of the 

CO2 sources and storage sites. This analysis will consider the CO2 large point sources in 

mainland Portugal, because they are considered main applicants to CCS.  To classify the 

mainland Portugal LPS, the chosen criterion is the identification of the group of 

installations with the highest CO2 emissions until representing about 90% of the total 

CO2 emissions verified in 2007. The potential geological storage locations that will be 

considered are the prior geological formations identified in a preliminary study of The 

National Institute of Engineering, Technology and Innovation (INETI – Instituto 

Nacional de Engenharia, Tecnologia e Inovação) and the Douro coalfield basin, which 

is being studied for CO2 sequestration by the Global Change, Energy, Environment and 

Bioengineering RDID&D Unit (CIAGEB) from the Fernando Pessoa University. 

2.2 Carbon dioxide capture systems and technologies 

2.2.1 CO2 capture technologies 

CO2 capture systems use many of the technologies used for gas separation which are 

integrated into the referred CO2 capture systems. Among capture technologies are 

                                                                                                                                               
2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC and Regulation (EC) No 1013/2006, Brussels, 
23.1.2008. 
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separation with sorbents /solvents, separation with membranes and separation by 

cryogenic distillation. 

In CO2 separation with sorbents/solvents, the gas contacts with a solid sorbent or a 

liquid absorbent that has the capacity to capture CO2. A general scheme of this 

separation process is presented in Figure 2.3. 

 

Figure 2.3 - General scheme of separation with sorbents/solvents (IPCC, 2005). 

During the process the sorbent within the captured CO2 is transported to another vessel 

and the CO2 is released after a change in the conditions around the sorbent (which can 

be temperature increase, pressure decrease or other). This process step is called 

regeneration. Following regeneration, the resultant sorbent is cyclically sent back to 

capture more CO2, if the sorbent is liquid. When the sorbents are solid, sorption and 

regeneration occur by cyclic changes in the vessel where the sorbent is contained. 

During the process a make-up of fresh sorbent is necessary to compensate the decay of 

activity or losses. The spent sorbent circulates to another vessel where it is re-oxidized 

for reuse. This capture technology has a problem: as the flow of sorbent between vessels 

is large, large size equipment and energy is required, implying added cost and efficiency 

penalty (IPCC, 2005). 

As membranes allow selective permeation, it is possible to use them to separate 

different gases. Membrane selectivity to different gases depends on the material, but the 

pressure difference across the membrane drives the flow of gas through it. This 

technology can have different applications in a CO2 capture system.  It allows 

separating H2 from a fuel gas stream, CO2 from a range of process streams or O2 from 

air (to aid the production of a highly concentrated CO2 stream) (IPCC, 2005).  A 

separation with membranes scheme is showed in Figure 2.4. 
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Figure 2.4 - General scheme of separation with a membrane (IPCC, 2005). 

In CO2 separation by cryogenic distillation, after a series of compression, cooling and 

expansion steps, a gas can become liquid. In the liquid form the gas components can be 

separated in a distillation column, as demonstrated in Figure 2.5 . 

 

Figure 2.5 - General scheme of separation by cryogenic distillation (IPCC, 2005). 

This technology can be applied in different CO2 capture systems like oxy-fuel 

combustion and pre-combustion capture (IPCC, 2005). 

2.2.2 CO2 capture systems  

CO2 can be captured from installations that use of fossil fuels and/or biomass by four 

different systems: capture from industrial process streams, post-combustion capture, 

oxy-fuel combustion capture and pre-combustion capture. CO2 is produced in several 

industrial processes like natural gas sweetening, steel, hydrogen, ethanol, cement and 

ammonia production, fermentation processes for food and drink processes. As these 

industrial processes emit large CO2 quantities, they represent opportunities to capture it. 

In post-combustion capture, CO2 from flue gas produced by fossil fuels and/or biomass 

combustion can be captured. In the oxy-fuel combustion capture, as in combustion, 

almost pure oxygen is used instead of air, originating a flue gas composed mainly of 

H2O and CO2, being readily captured. In pre-combustion capture2, a hydrocarbon reacts 

                                                 
2 Can also be designated as gasification, partial oxidation or steam reforming. 
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to produce separate streams of CO2 for storage and H2. (IPIECA and API, 2007) (IPCC, 

2005). The four capture systems are illustrated in Figure 2.6.  

 

Figure 2.6 - Carbon dioxide capture processes in the four capture systems (IPIECA and API, 2007). 

Table 2.1 shows a capture toolbox presented in the IPCC Special Report on Carbon 

Capture and Storage, with the current and emerging technologies for the different 

capture systems.  
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Table 2.1 Capture toolbox (IPCC, 2005). 

Separation 
task 

Capture 
Technologies Solvents (Absorption) Membranes 

Solid 
sorbents 

Cryogenic 

Current Physical solvents                        
Chemical solvents 

Polymeric 
Zeolites 

Activated 
carbon 

Ryan-
Holmes 
process 

Process 
streams 

(CO2/CH4) Emerging 

Improved solvents 
Novel contacting 

equipment Improved 
design of processes 

Ceramic 
Facilitated 
transport 
Carbon 

Contactors 

    

Current Chemical solvents Polymeric 
Zeolites 

Activated 
carbon 

Liquefaction 
Post-

combustion  
capture 

(CO2/N2) Emerging 

Improved solvents 
Novel contacting 

equipment Improved 
design of processes 

Ceramic 
Facilitated 
transport 
Carbon 

Contactors 

Carbonates 
Carbon based 

sorbents 

Hybrid 
processes 

Current n. a. Polymeric 
Zeolites 

Activated 
carbon 

Distillation  

Oxy-fuel 
combustion 

capture 
(O2/N2) Emerging 

Biomimetic solvents, 
e.g. 

hemoglobinederivatives 

Ion 
transport 

membranes 
Facilitated 
transport 

Adsorbents 
for O2/N2 
separation,  
Perovskites 

Oxygen 
chemical 
looping 

Improved 
distillation 

Current Physical solvents                        
Chemical solvents 

Polymeric  

Zeolites 
Activated 

carbon 
Alumina 

Liquefaction 
Pre-

combustion 
capture 

(CO2/H2) Emerging 

Improved solvents 
Novel contacting 

equipment Improved 
design of processes 

Ceramic 
Palladium 
Reactors 

Contactors 

Carbonates 
Hydrotalcites 

Silicates 

Hybrid 
processes 

Notes: Processes shown in bold are commercial processes that are currently preferred in most circumstances. Some process streams 

involve CO2/H2 or CO2/N2 separations but this is covered under pre-combustion capture and post-combustion capture. 

Post-combustion capture 

Large scale combustion systems fired with fossil fuels generate huge flows of gases due 

to the high nitrogen concentration in air, the low pressure and the large scale of the 

units. The CO2 concentration in flue gas (product of combustion) depends on the type of 

fuel that is used in combustion. Post-combustion capture systems can be applied to 

combustion systems with any type of fuel. The fuel impurities are very important for the 

plant design and costs calculation because the plant may have to have additional units to 

remove it prior to CO2 capture, like in absorption-based processes (IPCC, 2005). 

Different technologies can be used to capture CO2 from flue gases, being the most 
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common option to post-combustion capture, the absorption processes based on chemical 

sorbents, which is commercially available (IPCC, 2005). 

The absorption processes in post-combustion capture take advantage of the reversibility 

of chemical reactions between an aqueous alkaline solvent, normally amine, with an 

acid or sour gas (IPCC, 2005). Table 2.2 presents the key parameters that determine the 

technical and economic operation of a CO2 absorption system.  

Table 2.2 - Key parameters that determine the technical and economic operation of a CO2 absorption 

system (IPCC, 2005). 

Flue gas flow rate 
Determines the size of the absorber which represents a substantial 
contribution to the overall cost. 

CO2 content in flue gas 
Flue gas is usually at atmospheric pressure and the partial pressure of 
CO2 will be as low as 3-15 kPa – at these conditions, aqueous amines 
are the most suitable absorption solvents. 

CO2 removal 

CO2 recoveries are in practice between 80% and 95%. “The exact 
recovery choice is an economic trade-off, a higher recovery will lead 
to a taller absorption column, higher energy penalties and hence 
increased costs” (IPCC, 2005). 

Solvent flow rate Determines the size of most equipment apart from the absorber.  

Energy requirement 

“The energy consumption of the process is the sum of the thermal 
energy needed to regenerate the solvents and the electrical energy 
required to operate liquid pumps and the flue gas blower or fan. 
Energy is also required to compress the CO2 recovered to the final 
pressure required for transport and storage” (IPCC, 2005). 

Cooling requirement  

“Cooling is needed to bring the flue gas and solvent temperatures 
down to temperature levels required for efficient absorption of CO2. 
Also, the product from the stripper will require cooling to recover 
steam from the stripping process” (IPCC, 2005). 

The post-combustion based on absorption processes has a high energy requirement 

resulting in a penalty on power cycles efficiency. The high energy requirement of this 

process is mainly due to “the heat necessary to regenerate the solvent, steam use for 

stripping and to a lesser extent the electricity required for liquid pumping, the flue gas 

fan and finally compression of the CO2 product” (IPCC, 2005). Other solvents for the 

absorption process are being studied aiming to make it less energy consuming. Other 

technologies of post-combustion capture like adsorption processes, membranes and 

solid sorbents are also being developed (IPCC, 2005). 

Pre-combustion capture 

The pre-combustion capture normally involves a first step that consists of a reaction 

producing a mixture of hydrogen and carbon monoxide (syngas) from a primary fuel. 

There are two main ways: to add steam to the primary fuel, in a process called “steam 

reforming” (1) and to add oxygen to the primary fuel, this process being called “partial 
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oxidation” (when applied to gaseous and liquid fuels) or ‘gasification’ (when applied to 

a solid fuel) (2). After this step occurs a reaction to convert CO to CO2 adding steam (3) 

(IPCC, 2005). 

Steam reforming 

CxHy + xH2O ↔ xCO + (x+y/2)H2                       ∆H +ve                                       (1) 

Partial oxidation 

CxHy + x/2O2 ↔ xCO + (y/2)H2                          ∆H –ve                                        (2) 

Water Gas Shift Reaction 

CO + H2O ↔ CO2 + H2                                        ∆H -41 kJ mol-1                          (3) 

Then the CO2 is removed from the mixture produced in reaction 3. “The concentration 

of CO2 in the input to the CO2/H2 separation stage can be in the range 15-60% (dry 

basis) and the total pressure is typically 2-7 MPa. The separated CO2 is then available 

for storage” (IPCC, 2005). 

The pre-combustion capture can have two applications: it can be used in the production 

of a carbon-free fuel (hydrogen) or to decrease the carbon content of fuels, with the 

excess carbon (usually removed as CO2) being made available for storage (IPCC, 2005). 

Among the existing technologies for H2 production with CO2 capture are: steam 

reforming of gas and light hydrocarbons, partial oxidation of gas and light 

hydrocarbons, auto-thermal reforming of gas and light hydrocarbons, gas heated 

reformer, gasification of coal, petroleum residues, or biomass, integrated gasification 

combined cycle (IGCC) for power generation, hydrogen from coal with CO2 capture, 

carbon-based fuels and multi-products, pressure swing adsorption, chemical solvent 

processes and  physical solvent processes. There are also several emerging technologies 

in both natural gas reforming and coal gasification like sorption enhanced reaction, 

membrane reactors for hydrogen production with CO2 capture, micro channel reformer, 

conversion to hydrogen and carbon (example: thermal cracking or pyrolysis of methane) 

and technologies based on calcium oxide (IPCC, 2005). 
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Oxy-fuel combustion capture systems 

In the oxy-fuel combustion process the combustion of a hydrocarbon or a carbonaceous 

fuel (that can be biomass) in pure oxygen or in a mixture of pure oxygen and a CO2-rich 

recycled flue gas eliminates nitrogen from the flue gas. The combustion temperature3 of 

fuel combustion with pure oxygen is about 3500°C while in an typical gas turbine cycle 

it is about 1300-1400°C and in an oxy-fuel coal-fired boiler it is about 1900ºC. The flue 

gas is constituted mainly of CO2, water vapour and oxygen in excess, which is 

necessary to guarantee the complete fuel combustion.  The CO2 content in the net flue 

gas is about 80-98% depending on the fuel and the oxy-fuel combustion process. The 

efficiency of oxy-fuel combustion systems to capture CO2 is very near to 100%. 

Although is still necessary to develop this technology to a commercial scale (IPCC, 

2005). 

The oxy-fuel combustion systems can be classified according to “how the heat of 

combustion is supplied and whether the flue gas is used as a working fluid” (IPCC, 

2005) in: oxy-fuel indirect heating – steam cycle, oxy-fuel direct heating – gas turbine 

cycle and oxy-fuel direct heating – steam turbine cycle. In oxy-fuel combustion systems 

oxygen is a requisite and the existing large scale production methods are: cryogenic 

oxygen production and high temperature oxygen ion transport membranes (IPCC, 

2005). 

2.2.3 CO2 capture in power plants  

A large percentage of the electricity that is produced worldwide has origin in fossil-fuel 

power plants. According to the International Energy Agency scenarios, fossil fuels will 

continue to play an important role in electricity production (IEA and OECD, 2003). 

Fossil-fuel power plants are responsible for about one third of total global CO2 

emissions. So they are major candidates for the application of CCS. There is a variety of 

techniques that could be applied to various types of large-scale power plant and 

industrial activities fired on fuels but as originally most of these techniques were not 

developed for CCS, further research and development is required until they are 

considered viable IEA and OECD, 2003). 

                                                 
3 “The combustion temperature is controlled by the proportion of flue gas and gaseous or liquid-water 
recycled back to the combustion chamber” (IPCC, 2005). 
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Post-combustion capture in power plants 

Post-combustion capture uses a solvent to capture CO2 from the flue gas of power 

plants that is then regenerated. These solvents can be physical, chemical or 

intermediate. Chemical solvents are less dependent on partial pressure than physical 

solvents are, and the partial pressure of CO2 in the flue gas is low (usually 4-14% by 

volume). On the other hand, chemical solvents require more energy (as steam) to 

regenerate (to break the relatively strong chemical link between CO2 and the solvent) 

(IEA, 2007)4. 

The most mature option for post-combustion capture is the capture by amines 

absorption, which is a chemical solvent. For this reason amines are the most likely to be 

used for the first generation of CO2 post-combustion capture. In this technology the 

presence of oxygen can be a problem because it causes the degradation of some solvents 

and the corrosion of equipment. To avoid this problem, inhibitors can be mixed into the 

solvent to counteract the oxygen activity. The concentration of oxides of nitrogen and 

sulphur (NO2 and SOx) in the flue gas must be very low before it is scrubbed of CO2 

because these two compounds can react with amines to form stable, non-regenerable 

salts, causing the steady loss of amine (IEA, 2007). 

Currently the process of scrubbing CO2 with amines does not operate on the scale of 

power plants (IEA, 2007). However, it is referred in (IEA, 2007) that increasing the 

technology to power plants scale is not considered a major problem. This study also 

mentioned that for large coal-fired power plants, a demonstration of these technologies 

is necessary. In these types of power plants the application of post-combustion CO2 

capture requires an upstream de-NOx and flue gas desulphurisation5 (FGD) facilities 

(IEA, 2007).  

In a study made by the IEA GHG6, two post-combustion capture of CO2 processes were 

assessed: monoethanolamine7 (MEA) and hindered amine solvent, concluding that the 

                                                 
4 Sterically hindered amines need less steam for regeneration (IEA, 2007). Hindered amines are chemical 
compounds containing an amine functional group surrounded by a crowded steric environment. They 
have uses such as gas scrubbing, as stabilizers against light-induced degradation of polymers, and as 
reagents for organic synthesis (http://en.wikipedia.org/wiki/Hindered_amine). 
5 Flue gas desulfurization (FGD) is the current state-of-the art technology used for removing sulfur 
dioxide (SO2) from the exhaust flue gases in power plants that burn coal or oil to produce steam for the 
steam turbines that drive their electricity generators. 
(http://en.wikipedia.org/wiki/Flue_gas_desulfurization)  
6 International Energy Agency Greenhouse Gas R&D Programme (http://www.ieagreen.org.uk/).  
7 Monoethanolamine (MEA) is an organic chemical compound that is both a primary amine (due to an 
amino group in its molecule) and a primary alcohol (due to a hydroxyl group). Like other amines, 
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hindered amine process loses less energy primarily due to the solvent consuming less 

heat for regeneration than MEA solvents (IEA, 2007). 

Pre-combustion capture in power plants 

In the pre-combustion capture process a fuel is reacted with air or oxygen to produce a 

fuel that contains CO and H2. Then in a shift reactor this reacts with steam to produce a 

mixture of CO2 and H2. Subsequently the CO2 is separated and the H2 is as fuel (IEA, 

2007). 

This technology can be used for gas turbine combined cycles, in natural gas or coal 

based plants. The separated H2 is used as fuel in a gas turbine combined cycle. If coal is 

the primary fuel and the key process is its gasification8, it is known as an integrated 

gasification combined cycle (IGCC) (IEA, 2007). 

The IEA GHG assessed IGCC plants based on two types of gasifier: a slurry feed 

gasifier (in which the gas product is cooled by quenching with water) and a dry feed 

gasifier (in which the gas product is cooled in a heat recovery boiler). In an IGCC plant 

without CO2 capture and with a slurry feed gasifier, “the coal is ground and slurried 

with water and then pumped to the gasifier vessels where it reacts with oxygen. The 

products from gasification are quenched with water, the saturated gas is cooled and 

condensed water and minor impurities are removed. The sulphur compounds are 

removed from the gas by passing it through a reactor and feeding it to a Selexol9 acid 

gas removal (AGR) plant. The clean fuel gas is fed to the gas turbine combined cycle 

plant” (IEA, 2007).  If the IGCC plant has CO2 capture, “the gas from the gasifier is fed 

to a CO2-shift converter prior to cooling and the Selexol unit removes CO2 as well as 

sulphur compounds. The Selexol is regenerated to produce separate CO2 and sulphur 

compounds steams. The CO2 stream is compressed and dried for transport by pipeline” 

(IEA, 2007). In this process the removal rate of CO2 is 90%, meaning that an overall 

CO2 capture rate of 85% can be achieved (IEA, 2007). In an IGCC plant without CO2 

                                                                                                                                               
monoethanolamine acts as a weak base. MEA is used in aqueous solutions for scrubbing certain acidic 
gases. (http://en.wikipedia.org/wiki/Ethanolamine). 
8 Gasification is the partial oxidation of a fossil fuel to a gas, often known as syngas, which main 
components are CO and H2. Gasification acts as a bridge between the fossil fuel and gas turbines with the 
target of high energy efficiency and minimum emissions to the environment. (IEA, 2007) 
9 Selexol is a physical solvent, unlike amine based acid gas removal solvents that rely on a chemical 
reaction with the acid gases. Since no chemical reactions are involved, Selexol usually requires less 
energy than the amine based processes. However, at feed gas pressures below about 300 psia (2.07 MPa), 
the Selexol solvent capacity (in amount of acid gas absorbed per volume of solvent) is reduced and the 
amine based processes will usually be superior. (http://en.wikipedia.org/wiki/Selexol)  
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capture and with a dry feed gasifier, “the coal is dried, ground and then fed to the 

gasifier vessels. The gasifier product gas is quenched, cooled and then fed to a dry 

particulate removal unit. Some of the gas is recycled as quench gas and the remainder is 

scrubbed with water, reheated, the carbonyl sulfide (COS) is removed and it is fed to an 

MDEA (MethylDiEthanolAmine) solvent acid removal plant.  The clean fuel gas is fed 

to the gas turbine combined cycled plant. The configuration of the plant with CO2 

capture is the same except that the COS removal process is replaced by a two-stage shift 

converter and H2S and CO2 are separated in a Selexol AGR unit” (IEA, 2007). 

Oxy-combustion capture in power plants 

In the oxy-combustion capture process the fuel is combusted with nearly pure oxygen 

and recycled flue gas or CO2 and water/steam to produce a flue gas consisting 

essentially of CO2 and water. This technology may have potential as a part of a system 

for capturing and storing CO2 because the nitrogen concentration in the flue gas is much 

lower than when air is used. This means that CO2 can be stored with less downstream 

process (IEA, 2007). 

The pulverised fuel-fired stations (PF) are a type of coal power station. The PF oxy-

combustion plant uses the same steam conditions as the other post-combustion capture 

plant. This process requires a large amount of oxygen for combustion that is obtained 

from an air separation unit. The flue gas from oxy-combustion is compressed and 

cooled to separate nitrogen, oxygen and other impurities, obtaining a CO2 concentration 

of about 95mol%. The NOX and SOX are converted to acid and condensed from the CO2 

stream, so selective catalytic reduction10 (SCR) and FGD units may be not needed. 

Oxy-combustion capture technology is still in a relatively early stage of development 

but pilot plants are being built and the plans for the construction of commercial power 

are at an advanced stage (IEA, 2007). 

2.3 CO2 transport  

In comparison to CO2 capture and storage, the transport technology is considered 

relatively mature. CO2 can be transported in the gas, liquid and solid stage and 

                                                 
10 Selective catalytic reduction (SCR) is a means of converting nitrogen oxides, also referred to as NOx 
with the aid of a catalyst into diatomic nitrogen, N2, and water, H2O. A gaseous reductant, typically 
anhydrous ammonia, aqueous ammonia or urea, is added to a stream of flue or exhaust gas and is 
absorbed onto a catalyst. Carbon dioxide, CO2 is a reaction product when urea is used as the reductant.  
(http://en.wikipedia.org/wiki/Selective_catalytic_reduction). 
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transported by tanks, pipelines and ships for gaseous and liquid stages at a commercial-

scale. Dedicated CO2 pipelines are referred as the most efficient transport mode for 

shipment (Fernando et al., 2008). 

As a gas transported at a pressure close to the atmospheric pressure occupies a large 

volume, the gas must be compressed before the transport (IPCC, 2005).  The 

compression of CO2 into a supercritical11 fluid makes it easier and cheaper to transport, 

gas compression being a mature technology (Fernando et al., 2008).  

The compressed gas occupies less volume and then is transported by pipeline, the 

volume being reduced by transporting at a high pressure. Other processes like 

liquefaction, solidification or hydration can reduce further the gas volume. Liquefaction 

being an established technology for gas transport by ship, this knowledge can be 

transferred to the transport of CO2 in the liquid stage. Solidification requires much more 

energy than the other options.  The commercially viable technologies are currently used 

for CO2 transport (IPCC, 2005). 

2.3.1 CO2 pipeline transportation   

In CO2 transportation by pipeline, the transport infrastructure has to be considered. For 

a large scale CO2 transport a large pipelines network is required and important factors 

such as the rights-of-way for the pipelines and security issues if they cross densely 

populated zones have to be carefully taken into account in the network design (IPCC, 

2005). 

CO2 pipeline transportation systems have several specifications: the minimum 

percentage of CO2, the content of H2S, N2, NOx and SOx contaminants, the content of 

water, oxygen and the adequate temperature and pressure. These specifications have to 

be determined beforehand and are very relevant to the transport phase because of the 

corrosion rate of the pipeline material.  Field experience demonstrates that there are 

very few problems with transportation of high-pressure dry CO2 in carbon steel 

pipelines. If relative humidity is inferior to 60%, dry CO2 does no corrode the carbon 

manganese steel that is generally used for pipelines. In the presence of free water, 

corrosion rates are much higher. In practice it is unlikely that wet CO2 can be 

                                                 
11 Supercritical: at a temperature and pressure above the critical temperature and pressure of the 
substance concerned. The critical point represents the highest temperature and pressure at which the 
substance can exist as a vapour and liquid in equilibrium (IPCC, 2005). 
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transported in low-alloy carbon steel pipeline due to the high corrosion rate in the 

presence of water. However if CO2 can not be dried, the pipeline material has to be of a 

corrosion-resistant alloy. Although this is an established technology it may not be 

economically viable (IPCC, 2005). 

After the CO2 is dried and all the transportation specifications and criteria are met, it is 

measured and transported to the final destination (IPCC, 2005). In pipelines CO2 flow is 

driven by pumps at high pressure and ambient temperature (IPIECA and API, 2007). 

The pipeline design is determined by physical, environmental and social factors. The 

conceptual design considers the physical characteristics of product mixture 

characteristics, the optimal size and pressure, the mechanical material (valves, pumps, 

etc.), the topography, geotechnical considerations, among others. It also has to consider 

how the pipeline will accommodate existing and future infrastructure and will have to 

obey legal and regulatory requirements. After all these considerations the study is the 

basis of a safety review. Pipelines operational aspects are daily operations, maintenance, 

and health, safety and environment (IPCC, 2005).  

2.3.2 CO2 transportation by ship  

As already mentioned, pipelines are not the only option to CO2 transport. For small CO2 

amounts the transport can occur by truck or rail. It can also be transported by ship but 

on a smaller scale. Ship transportation occurs in insulated containers at low 

temperatures and much lower pressures than pipeline transport (IPIECA and API, 

2007).  CO2 transportation by ship is usually more suitable for short distances and for 

picking up CO2 from smaller and/or scattered sources (Fernando et al., 2008). 

As a CCS system is a continuous system, CO2 transportation by ship must include a 

temporary storage on land and a loading facility near the capture site. The delivery to 

the storage system depends on whether the delivery point is onshore or offshore. Thus 

the operational aspects of a marine transportation system include loading, transport to 

the site, unloading and return to the port (IPCC, 2005).  

2.4 Carbon dioxide storage 

CO2 geological storage refers to the process of injecting CO2 into deep reservoirs, where 

physical and geochemical trapping mechanisms prevent the CO2 from migrating to the 

surface (Fernando et al., 2008). According to Bachu, 2007a, CO2 sequestration is its 
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disposal in geological media permanently and CO2 storage is its disposal in geological 

media for significant time periods (Bachu, 2007a). A primary trapping requisite is a 

layer of impermeable caprock overlying the sequestration site. CO2 storage requires 

cautious characterization of storage sites to ensure that CCS project can sequester CO2 

for geologic periods of time (Fernando et al., 2008). 

Generally CO2 is injected as a supercritical fluid that means it is dense as a liquid but 

has a gas-like viscosity that allows it to flow very easily through the pipeline and into 

the storage site. In reservoirs at depths grater than 800 m, CO2 can be maintained as a 

supercritical fluid (Dooley et al., 2006). 

There are three potential CO2 storage methods: geologic storage, ocean storage (direct 

release into the ocean water column or onto the deep seafloor) and industrial fixation of 

CO2 into inorganic carbonates (IPCC, 2005).  

2.4.1 Underground geological storage 

Geological storage of CO2 is a natural process in the Earth’s upper crust, where the CO2 

derived from biological activity, igneous activity and chemical reactions between rocks 

and fluids accumulates in the subsurface as carbonate minerals, in solution or in a 

gaseous or supercritical form, either as gas mixture or pure. It is possible to store CO2 

onshore and offshore. The injection into deep geological formations is achieved by 

pumping fluids down into a well (IPCC, 2005). 

Among the geological CO2 storage reservoirs types are deep saline formations, depleted 

natural gas reservoirs, depleted oil reservoirs, deep unmineable coal seams, deep saline-

filled basalt formations and others like salt caverns, organics shales and methane 

hydrate bearing formations (Dooley et al., 2006). Figure 2.7 presents the options for 

storing CO2 in deep underground and geological formations.  
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Figure 2.7 - Options for storing CO2 in deep underground geological formations (IPCC, 2005). 

Hendricks et al., 2004, developed a series of methodologies to calculate the 

underground storage potential of different reservoir types. However, when storage 

capacity is mentioned, this does not mean that all storage capacity is currently available 

for CO2 storage12 (Hendricks et al., 2004). In Figure 2.8 and Figure 2.9, the results 

achieved by Hendricks et al., 2004, are presented, relating the CO2 storage potential per 

type of underground reservoirs and per world region. 

 
Figure 2.8 - CO2 storage potential per type of 

underground reservoirs (Hendricks et al., 2004). 
Figure 2.9 - CO2 storage potential per world region 

(Hendricks et al., 2004). 

                                                 
12 This is due to many factors like: hydrocarbon fields may not already be exploited or are not yet empty; 
there may also be a conflict of interest, e.g. the field is needed for natural gas storage; enhanced oil 
recovery is applied most economically before the field is abandoned and infrastructure is still in place; 
and re-installation of equipment might turn out very expensive (Hendricks, C., et al., 2004).  
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The assessment of the potential of storage of CO2 in geological formations has mostly 

been made at regional or global level. However, the levels of detail and assessment 

methods vary substantially, and besides an increase in knowledge about technical 

issues, there has also been an increase in the uncertainties associated with the details 

used in the assessment scheme (Bradshaw et al., 2004). Thus, and because one of the 

aims of capacity estimation is to guide policy directions, it is necessary that this 

estimations take into account several factors like injection depth and distance between 

source and sink (Bradshaw et al., 2004), and the range of trapping mechanisms that are 

possible at each site, considering its different geological constraints and the different 

time scales (Bradshaw et al., 2007). 

Saline formations are deep sedimentary rocks saturated with formation waters or brines 

containing high concentration of dissolved salts. Due to the high salt concentration, 

these waters are unsuitable for agriculture and human consumption. However, the 

estimation of the storage capacity in deep saline formations is not simple because of the 

multiplicity, complexity and interactions of mechanisms that occur to store CO2 in these 

formations. Among these mechanisms are physical trapping beneath low permeability 

caprock, dissolution and mineralization. They occur simultaneously and on different 

time scales. These reasons result in a main focus on physical trapping mechanisms 

and/or dissolution in the majority of estimates of CO2 capacity storage in deep saline 

formations, making a simplifying assumption that no geochemical reactions occur 

simultaneous with CO2 injection, flow and dissolution (IPCC, 2005). 

As oil and gas reservoirs have accumulated these in structural and stratigraphical traps 

over time, they are major candidates to CO2 storage. This also shows their integrity and 

safety. Furthermore, the movement and displacement behaviour and trapping of 

hydrocarbons is well known and as the infrastructures are already in place they can be 

used to CO2 storage operations. Nevertheless these infrastructures have to be assessed to 

guarantee the safety of CO2 injection and storage.  Enhanced oil recovery (EOR) by 

CO2 injection provides potential economic benefits because of incremental oil 

production, in average 13.2%. Usually, CO2 is separated from the produced oil and 

reinjected into the formation, as demonstrated in Figure 2.10. For CO2 storage in EOR 

operations, oil reservoirs need to meet additional criteria like depths greater than 600m. 

Enhanced gas recovery by CO2 injection could enhance gas recovery by repressurizing 

the reservoir but some authors argue that CO2 injection might result in lower gas 

recovery factors, principally for very heterogeneous fields. This technology has only 
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been yet implemented on a pilot scale while there are several worldwide projects of 

CO2-EOR (IPCC, 2005). 

 

Figure 2.10 Injection of CO2 for enhanced oil recovery with some storage of retained CO2 (IPCC, 2005). 

Coal contains cleats that impart some permeability and between these, solid coal has a 

very large number of micropores into which gas molecules from the cleats can diffuse 

and be tightly adsorbed. Coal can physically adsorb many gases and has higher affinity 

to adsorb gaseous CO2 than CH4 (see Figure 2.11). Consequently when CO2 is injected 

to coal, it seems it can displace CH4, thereby enhancing coal bed methane recovery 

(ECBMR) (IPCC, 2005). Considering that the injected CO2 will replace the CH4 in coal 

and will remain adsorbed in it, the freed CH4, also a GHG, has to be captured and may 

be used as an energy source in ECBMR (Bachu, 2007). Compared to conventional 

recovery, CO2 – ECBM has the potential to increase the amount of produced methane to 

nearly 90% while the first is of only 50%. If coal is not disturbed (mined or 

depressurized) it is likely that CO2 will be stored for geological time (IPCC, 2005).  
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Figure 2.11 – Adsorption of different gases on coal (Bachu et al., 2007a). 

Before geological storage, CO2 must be compressed, generally as a supercritical fluid. 

Due to the geothermal gradient13the density of CO2 increases with depth, until about 

800m or greater, and the injected CO2 will be in a dense supercritical state (IPCC, 

2005). 

The subsurface geological formations are composed of transported and deposited rock 

grains organic material and minerals that form after the rocks are deposited. Pore spaces 

as well open cavities and fractures are occupied by fluid. Thus the injection of CO2 into 

the pore spaces and fractures of a permeable formation can displace the in situ fluid or 

the CO2 can dissolve in or mix with the fluid or react with the mineral grains, or there 

may be some combination of these processes (IPCC, 2005). 

As injection increase the pressure near the well, CO2 occupies the pores initially filled 

by the in situ formation fluids.  The amount and spatial distribution of pressure depends 

on the rate of injection, the permeability and thickness of the injection formation, the 

presence or absence of low permeability barriers and the geometry of the 

hydrogeological system. After the injection, the primary flow and transport mechanisms 

that control the spread of CO2 include: migration in response to pressure gradients 

created by the injection process; fluid flow in response to natural hydraulic gradients; 

buoyancy caused by the density difference between CO2 and the formation fluids; 

diffusion; dispersion and fingering caused by formation heterogeneities and mobility 

contrast between CO2 and formation fluid; dissolution into the formation fluid; 

mineralization; pore space trapping; and adsorption of CO2 onto organic material 

                                                 
13 Rate at which temperature increases with depth. 
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(IPCC, 2005).  

The rate of fluid flow depends on the number and properties of the fluid phases present 

in the formation - if CO2 is injected into a deep saline formation in a liquid or liquid-like 

supercritical dense phase it is immiscible in water; if it is injected into a gas reservoir, it 

will locally form a miscible fluid phase of CO2 and natural gas. As supercritical CO2 is 

much less viscous than water and oil, migration is controlled by the contrast in mobility 

of CO2 and the in situ formation fluids – because of the high mobility of CO2 only some 

of the fluid will be displaced leading to an average saturation in the range of  30 -60 %.  

The comparatively large density differences between CO2 and water in deep saline 

formations create strong buoyancy forces that drive CO2 upwards – in gas reservoirs, as 

CO2 is denser than natural gas, it will migrate downwards under buoyancy forces. The 

existence of a low permeability layer forms a barrier, slowing the upwards migration of 

CO2, as it migrates laterally filling any stratigraphical or structural trap it encounters 

(IPCC, 2005). 

During the migration through the formation, some of the CO2 dissolves into the 

formation water. The time of dissolution depends on the flow of the formation water, 

taking much longer time in formations with no flow because of the absence of contact 

with unsaturated water. After CO2 is dissolved in the formation fluid it will migrate with 

the groundwater flow.  Water saturated with CO2 is slightly denser, depending on the 

salinity of the original formation water. The solubility of CO2 in brine decreases with 

increasing pressure, decreasing temperature and increasing salinity. During migration, 

CO2 is also retained in pore spaces by capillary forces, dissolving over time in the 

formation water (IPCC, 2005). 

CO2 effective permanence on geological formations depends on the existent trapping 

mechanisms, the most effective sites being those where CO2 is trapped under a tick, low 

permeability seal, or is converted to solid minerals, or is adsorbed on the surfaces of 

coal micropores. CO2 trapping depends on a combination of physical and geochemical 

trapping mechanisms (IPCC, 2005). According to Bachu, 2007a, physical trapping of 

CO2 occurs when it is immobilised as a free gas or supercritical fluid depending on the 

available storage volume; and chemical trapping of CO2 can occur as adsorption 

trapping when it is adsorbed onto materials contained on coals and shales, or as 

solubility and ionic trapping, when it dissolves in subsurface fluids and may be then 

involved in chemical reactions with the rock matrix, designated mineral trapping 
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(Bachu, 2007a). Physical trapping of CO2 can be divided into two types (Bachu, 2007a): 

• “Static trapping of mobile CO2 in stratigraphical and structural traps14, or in 

man-made caverns (mobile in this context means that the flow of CO2 is 

impeded by a physical low-permeability barrier, and that, if a pathway is 

found, CO2 will flow driven by its own buoyancy and other forces)”; and 

• “Residual-gas trapping in the pore space at irreducible gas saturation, in 

which case CO2 is immobile because of the interfacial tension between CO2 

and formation water, and flow is not possible even if a pathway is available.” 

In relation to the chemical trapping, the adsorption occurs as already mentioned, when 

CO2 is adsorbed onto materials contained on coal and shales. The solubility, ionic and 

mineral trapping mechanisms can be described by the following basic chemical 

reactions (Bachu, 2007a):  

 

 

 

 

 

 

Other more complex chemical reactions can take place, for example with Ca and Mg 

minerals. The chemical trapping mechanisms depend “on the amount of coal, formation 

water or rock that is available for reactions, but also on the contact area between free-

phase CO2 and coal, water or mineral, and CO2 saturation at the interface” (Bachu, 

2007a). 

At first the principal means to store CO2 in a geological formation is physical trapping 

below caprocks, such as very-low-permeability shale or salt beds (primary trapping 

                                                 
14 “Structural and stratigraphic traps refer to permeable geological media overlain and surrounded by low-
permeability rock, whose shape precludes the upward and lateral movement of a buoyant fluid such as oil 
and gas (and in this case CO2). Structural traps are the result of crust movement (faults and folds), while 
stratigraphic traps are the result of depositional and/or diagenetic processes” (Bachu, S., 2007). 
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mechanisms). Physical trapping can be stratigraphical, structural and hydrodynamic. 

Structural traps include those formed by folds in fractured rocks while stratigraphical 

traps are formed by changes in rock type caused by variation in the setting where the 

rocks are deposited. Hydrodynamic trapping can occur in saline formations, dissolving 

in the formation water and migrating with the groundwater. Geochemical trapping 

includes a sequence of geochemical interactions with the rock and water that will 

further increase storage capacity and effectiveness (secondary trapping mechanisms). 

When the solubility trapping occurs, CO2 dissolves in formation water, and once 

dissolved it no longer exists as a separate phase. Next, as the rock dissolves, ionic 

species will be formed, increasing pH. Then, mineral trapping can occur if some 

fraction is converted to stable carbonate minerals. Mineral trapping is the most 

permanent form of geological storage but is slow, taking thousands of years or longer 

(IPCC, 2005). The secondary trapping mechanisms are much slower and occur in much 

larger timeframes than the primary trapping mechanisms. This time lag means that the 

contribution of the secondary trapping mechanisms is negligible during the injection 

phase and is very important to the increase of security. This doesn’t mean that the 

operational phase is not secure, “it only indicates that storage security may increase in 

time if these secondary trapping mechanisms increase their contribution to the process” 

(Bachu, 2007a). 

Figure 2.12 presents the trapping contribution over time of the referred physical and 

geochemical trapping mechanisms after injection stops, and Figure 2.13 presents the 

operating time frame of the processes involved in CO2 geological storage. 
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Figure 2.12 Storage security of physical and 
geochemical trapping mechanisms after injections 

stops (IPCC, 2005). 

Figure 2.13 – Operating timeframe of 
processes involved in CO2 geological 

storage (Bachu et al., 2007). 

The presence of impurities in the CO2 gas stream like SOx, NOx or H2S also affects the 

injection, the trapping mechanisms and the storage capacity. These impurities affect the 

compressibility and reduce the storage capacity because of the space they take (IPCC, 

2005).  

2.4.2 Ocean storage 

As part of the carbon cycle, the oceans are natural carbon sinks, being the cycle 

component that contains most carbon. The ocean and the atmosphere interact in a 

dynamic equilibrium. However the increasing concentration of GHG in the atmosphere 

has been driving CO2 from the atmosphere to the ocean, leading to perturbations in the 

ocean surface waters chemistry, decreasing its pH.  

CO2 can be transported by ship or pipeline, and injected directly into the ocean, or 

deposited on the sea floor, as illustrated in Figure 2.14. 
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Figure 2.14 Illustration of ocean storage strategies (IPCC, 2005). 

CO2 injected in the ocean can be isolated from the atmosphere for several hundreds of 

years, and deeper injection implies that the fraction retained tends to be larger with 

deeper injection. CO2 retention can be prolonged if solid CO2 hydrates and liquid are 

formed. 

CO2 lakes form on the sea floor, and CO2 solubility can be increased, for example 

dissolving mineral carbonates. The ocean mixing would result in the loss of isolation of 

the injected CO2 and exchange with the atmosphere. No mechanisms for sudden or 

catastrophic release of injected CO2 are known (IPCC, 2005).  

Injection of large amounts of CO2, in the order of a few GtCO2, would produce a 

measurable change in ocean chemistry in the region of injection, and injection in the 

order of hundreds of GtCO2 would eventually produce measurable change over the 

entire ocean volume. The injection of these amounts of CO2 would cause negative 

effects on marine organisms and ecosystems. However, ocean storage of CO2 has not 

yet been deployed or thoroughly tested (IPCC, 2005). 

2.4.3 Industrial fixation of CO 2 

CO2 can be fixated in the form of inorganic carbonates (mineral carbonation or mineral 

sequestration) or can be utilised as a technical fluid or as a feedstock for carbon 

containing chemicals. In mineral carbonation the CO2 reacts with metal-oxide bearing 

materials to form insoluble carbonates. The stable solids that result from mineral 
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carbonation occur naturally and would provide storage capacity on a geological time 

scale. In nature, mineral carbonation is a slow process making the currently 

implemented processes very energy intensive because of the preparation of the solid 

reactants to achieve affordable conversion rates and/or additives that must be 

regenerated and recycled using external energy sources. This technology is still in the 

development stage and is not yet ready for implementation. The best case studied is the 

wet carbonation of natural silicate olivine, which has a 30-50% energy penalty on the 

original power plant and accounts for a 10-40% energy penalty in the capture plant as 

well; a full CCS system with mineral carbonation would need 60-180% more energy 

than a power plant with equivalent output without CCS (IPCC, 2005). 

CO2 can also be utilised in industrial processes that require it as a product. It can be 

used as a gas or a liquid, or as feedstock for the production of chemicals (like urea or 

methanol), preventing the captured CO2 to be emitted to the atmosphere. Industrial uses 

provide a carbon sink, as long as the pool size keeps growing and the lifetime of the 

compounds produced is long. However the lifetime of the chemicals produced in 

comparison with the scale of interest in CO2 storage is too short and the contribution of 

industrial uses of captured CO2 to the mitigation of climate change is expected to be 

small (IPCC, 2005). 

2.5 Environmental impact assessment and risk evaluation 

For the selection and determination of a geological formation to store CO2, there has to 

be a site characterization to evaluate if it is appropriate, and an assessment of the risk of 

physical leakage. Site characterization is based on the evaluation of the surface area 

land use, the geology and local hydrogeology, its capacity to store the desired amount of 

CO2, its injectivity to receive CO2 at the rate that it is supplied from the source(s), the 

presence of a secure structural or stratigraphical trap or other confining unit, and 

possible physical leakage pathways. In risk management, a structured process taking 

into account stakeholder input is applied to identify and quantify the risks, to evaluate 

these and to identify and implement appropriate monitoring and intervention strategies 

to manage the remaining risks (IPIECA and API, 2007). Risks are proportional to the 

magnitude of the potential hazards and the probability of these hazards will occur 

(IPCC, 2005). 
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For analysis of the environmental impacts and risks of a CCS system, it can be divided 

into two subsystems: the operational and the in situ subsystems. In the operational 

subsystem the most common risks are associated with pipeline and well failures, and 

less likely risks are related to corrosion or mismanagement in the form of over-

pressurization and poor engineering practices. Pipelines have safety technologies like 

automated shutdown valves that limit the leakage of CO2 if a pipeline failure occurs. 

CO2 is neither flammable nor explosive, and in case of leakage is expected to diffuse 

rapidly in the atmosphere if it is in a well-ventilated area. The operational subsystem is 

considered reliable and safe due to the large experience in other systems like enhanced 

oil recovery and acid gas injection.  

The opposite situation is verified for the in situ subsystem because of less experience 

and more uncertainties related to CO2 behaviour in a geological storage formation after 

injection. The main concerns of this subsystem are related to CO2 releases to the surface 

and water reservoirs. Slow releases of CO2 to the surface can occur via transmissive 

faults or fractures (Heinrich et al., 2003). In Figure 2.15 some potential escape routes 

for injected CO2 in deep saline formations and their respective remediation measures are 

presented. 

 

Figure 2.15 Some potential escape routes for CO2 injected into saline formations (IPCC, 2005). 
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CO2 leakages can be unnoticed as they diffuse in the atmosphere and can pose direct 

threats to the environment and safety if they concentrate to dangerous levels (Heinrich 

et al., 2003). Surface topography and atmospheric conditions influence the 

concentration of CO2 in the surface air. As CO2 is 50% denser than air, it tends to 

migrate downwards, potentially creating higher concentrations in confined spaces than 

in open terrain (IPCC, 2005).  

Still relating to the in situ subsystem, there are other risks like CO2 migration within the 

geologic formation that can contaminate groundwater and originate some type of 

leaching of toxic metals (Heinrich et al., 2003). The dissolved CO2 alters the pH of the 

solution because of the formation of carbonic acid and can cause indirect effects like the 

mobilization of toxic metals, sulphate or chloride, possibly giving the water an odd 

odour, colour or taste. If contamination reaches dangerous levels, the use of 

groundwater for drinking or irrigation has to be stopped (IPCC, 2005). 

Seismic events can be induced when a large volume of fluid is injected due to the 

increase of the reservoir pressure and displacement of other fluids. Some studies 

identified the existence of biological communities deep in the subsurface at depths 

where CO2 storage is likely to occur. But these communities are not well known and 

neither are the effects of CO2 on these. Heinrich et al., refer that even if a particular 

community is affected, the impact on the total biodiversity and ecosystem of the earth 

will be negligible (Heinrich et al., 2003). On the surface, high CO2 concentrations in 

ambient air can accelerate plant growth, but this is generally overlayed by the 

detrimental effects of elevated CO2 concentrations in soil. CO2 can be dangerous at 

concentrations above 5% and near 20% it becomes phytotoxic. The effects of high CO2 

concentrations depend on the type and density of vegetation, the exposure to other 

environmental stresses, the prevailing environmental, the presence of low-lying areas 

and the density of nearby animal populations. In marine ecosystems, CO2 leaks can be 

hazardous to benthic environment as the CO2 moves from deep geological structures 

through benthic sediments to the ocean (IPCC, 2005).  

These local environmental effects of CO2 storage can also be monitored. In the cases 

where CO2 migrates upwards into overlaying shallow groundwater aquifers, it can be 

detected and assessed by changes in water quality by collecting samples and analyzing 

major ions like Na, K, Ca, Mg, Cl, pH, alkalinity, stable isotopes and gases. However, it 

is important to identify CO2 leaks before it reaches the groundwater. This is possible 
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utilizing the already referred indirect techniques for monitoring CO2 migration. CO2 in 

the air can be monitored by continuous sensors based on infrared detection principles, 

referred as infrared gas analyzers. Field applications include the measurement of CO2 

concentrations in soil air, flux from soils and ecosystem-scale carbon dynamics. In 

respect to terrestrial and subsurface ecosystems, the monitoring can be done directly by 

measuring the productivity and biodiversity of flora and fauna, and by analysing soil 

gas composition and soil mineralogy. In some cases the monitoring can be done 

indirectly by remote-sensing techniques as hyperspectral imaging (IPCC, 2005). 

A cautious site selection, the definition of adequate monitoring and operation systems 

and the use of remediation measures to eliminate or limit the causes and impacts in case 

of leakage are effective ways of managing potential risks associated with CCS (IPIECA 

and API, 2007). The IPCC Special Report on CCS identifies remediation options for 

most of the leakage scenarios, as showed in Table 2.3.  

Table 2.3 Remediation options for geological CO2 storage projects (IPCC, 2005). 

Scenario Remediation options 

Leakage up 
faults, fractures 
and spill points 
 

• Lower injection pressure by injecting at a lower rate or through more wells; 
• Lower reservoir pressure by removing water or other fluids from the storage 
structure; 
• Intersect the leakage with extraction wells in the vicinity of the leak; 
• Create a hydraulic barrier by increasing the reservoir pressure upstream of the leak; 
• Lower the reservoir pressure by creating a pathway to access new compartments in 
the storage reservoir; 
• Stop injection to stabilize the project; 
• Stop injection, produce the CO2 from the storage reservoir and reinject it back into 
a more suitable storage structure. 

Leakage through 
active or 
abandoned wells 
 

• Repair leaking injection wells with standard well recompletion techniques such as 
replacing the injection tubing and packers; 
• Repair leaking injection wells by squeezing cement behind the well casing to plug 
leaks behind the casing; 
• Plug and abandon injection wells that cannot be repaired by the methods listed 
above; 
• Stop blow-outs from injection or abandoned wells with standard techniques to ‘kill’ 
a well such as injecting a heavy mud into the well casing. After control of the well is 
re-established, the recompletion or abandonment practices described above can be 
used. If the wellhead is not accessible, a nearby well can be drilled to intercept the 
casing below the ground surface and ‘kill’ the well by pumping mud down the 
interception well. 

Accumulation 
of CO2 in the 
vadose zone15 
and soil gas 
 

• Accumulations of gaseous CO2 in groundwater can be removed or at least made 
immobile, by drilling wells that intersect the accumulations and extracting the CO2. 
The extracted CO2 could be vented to the atmosphere or reinjected back into a 
suitable storage site; 
• Residual CO2 that is trapped as an immobile gas phase can be removed by 
dissolving it in water and extracting it as a dissolved phase through groundwater 
extraction well; 
• CO2 that has dissolved in the shallow groundwater could be removed, if needed, by 
pumping to the surface and aerating it to remove the CO2. The groundwater could 

                                                 
15 Vadose zone: Region from the water table to the ground surface, also called the unsaturated zone 
because it is partially water-saturated (IPCC, 2005). 
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then either be used directly or reinjected back into the groundwater; 
• If metals or other trace contaminants have been mobilized by acidification of the 
groundwater, ‘pump-and-treat’ methods can be used to remove them. Alternatively, 
hydraulic barriers can be created to immobilize and contain the contaminants by 
appropriately placed injection and extraction wells. In addition to these active 
methods of remediation, passive methods that rely on natural biogeochemical 
processes may also be used. 

Leakage into the 
vadose zone and 
accumulation in 
soil gas 
 

• CO2 can be extracted from the vadose zone and soil gas by standard vapour 
extraction techniques from horizontal or vertical wells; 
• Fluxes from the vadose zone to the ground surface could be decreased or stopped 
by caps or gas vapour barriers. 
Pumping below the cap or vapour barrier could be used to deplete the accumulation 
of CO2 in the vadose zone; 
• Since CO2 is a dense gas, it could be collected in subsurface trenches. Accumulated 
gas could be pumped from the trenches and released to the atmosphere or reinjected 
back underground; 
• Passive remediation techniques that rely only on diffusion and ‘barometric 
pumping’ could be used to slowly deplete one-time releases of CO2 into the vadose 
zone. This method will not be effective for managing ongoing releases because it is 
relatively slow; 
• Acidification of the soils from contact with CO2 could be remediated by irrigation 
and drainage. Alternatively, agricultural supplements such as lime could be used to 
neutralize the soil. 

Large releases 
of CO2 to the 
atmosphere 
 

• For releases inside a building or confined space, large fans could be used to rapidly 
dilute CO2 to safe levels; 
• For large releases spread out over a large area, dilution from natural atmospheric 
mixing (wind) will be the only practical method for diluting the CO2; 
• For ongoing leakage in established areas, risks of exposure to high concentrations 
of CO2 in confined spaces (e.g. cellar around a wellhead) or during periods of very 
low wind, fans could be used to keep the rate of air circulation high enough to ensure 
adequate dilution. 

Accumulation 
of CO2 in indoor 
environments 
with chronic low 
level leakage 

• Slow releases into structures can be eliminated by using techniques that have been 
developed for controlling release of radon and volatile organic compounds into 
buildings. The two primary methods for managing indoor releases are 
basement/substructure venting or pressurization. Both would have the effect of 
diluting the CO2 before it enters the indoor environment. 

Accumulation in 
surface water 
 

• Shallow surface water bodies that have significant turnover (shallow lakes) or 
turbulence (streams) will quickly release dissolved CO2 back into the atmosphere; 
• For deep, stably stratified lakes, application of active systems for venting gas 
accumulations. 

2.6 Monitoring, mitigation and verification systems 

The objective of monitoring, mitigation and verification (MMV) systems is to provide 

accurate accounting of stored CO2 and information about CO2 movements in the storage 

reservoir and its effective storage, allowing the detection in advance of any possible 

leakage. These are continuous systems that accompany the transport, injection and 

storage providing crucial information to the operational system and to environment 

impact assessment and risk management (NETL, 2008).  

The MMV systems are site-specific and are designed to detect CO2 leaks before 

representing any danger. The main concern about CO2 leakage relates to slow and 

undetectable leakage and its possible impacts for future generations. Further, the risk of 
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CO2 leakage should decrease as a function of time after injection stops as the pressure 

will drop to pre-injection levels as more of the injected CO2 dissolves into the pore 

fluids and begins the process of forming chemically stable carbonate precipitates 

(Dooley, et al., 2006). 

Independently of the type of plant, other gaseous emissions and liquid and/or solid 

wastes are produced beyond the separated CO2 stream to storage. However, the CO2 

stream contains impurities that have impacts not only on the CO2 stream transport and 

storage but also on health, safety and environment. The type and concentration of 

impurities like H2S, SO2, NO, H2, CO or CH4 depend on the type of capture process and 

plant design. The CO2 stream from post combustion capture generally has low impuritiy 

concentration (IPCC, 2005). These impurities may have some impacts on monitoring 

activities to ensure that the captured, transported, injected and stored stream is within 

the set limits (IPIECA and API, 2007). 

2.6.1 Monitoring of CO 2 transport 

Regarding MMV systems of CO2 transport, long-distance pipelines are instrumented 

with monitoring points in intervals connected to a central operations centre, allowing 

the flow to be monitored. Pipelines are inspected by internal pipelines inspection 

devices (called “pigs”), driven along the line by gas pressure. These devices can 

measure internal corrosion, mechanical deformation, external corrosion, the precise 

position of the line, and the development of spans in underwater lines.  Pipeline 

monitoring also occurs externally from air at defined intervals. Underwater pipelines are 

monitored by remotely operated vehicles, small unmanned submersibles that move 

along the line and make video records. In some cases, pipelines have an independent 

leak detection system that finds leaks acoustically or by measuring chemical releases, or 

by picking up pressure changes or small changes in mass balance (IPCC, 2005). 

2.6.2 Monitoring of CO 2 storage 

Monitoring of CO2 storage can be used to: monitor the condition of the injection well 

and measuring injection rates, verify the quantity of injected CO2 that has been stored, 

optimize the efficiency of the storage process, demonstrate that the CO2 remains 

contained in the storage formation, and detect leakage and provide an early warning for 

the case that mitigation actions are needed. Prior to subsurface storage monitoring, a 

baseline survey must be taken so it can be compared with subsequent surveys. Baseline 
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monitoring is indispensable for seismic and other remote-sensing technologies and 

geochemical monitoring. A baseline of diurnal and annual cycles of CO2 fluxes 

resulting from ecosystem cycling of CO2 is useful to distinguish natural fluxes from 

potential storage-related releases (IPCC, 2005). 

There are different technologies for monitoring injection rates and pressures and 

subsurface CO2 distribution. Measurements of injection rates and of injection pressure 

at the surface and in the formation are common practices in the oil industry and are 

commercially available. Measurements of injection rates are made by gauges either at 

the injection wellhead or near distribution manifolds and normally use meters or others 

devices that relate the pressure drop across the device to the flow rate. For the 

measurement of injection rates, pressure gauges are installed on most injection wells 

through orifices in the surface piping near the wellhead and pressure sensors are 

available and suitable for monitoring pressures at the wellhead or in the formation. The 

system provides continuous data that are usually transmitted to a central control room. 

The system of monitoring surface pressure is utilised to ensure that the downhole 

pressure does not exceed the threshold of the reservoir fracture pressure. Sometimes this 

system is also connected to shut-off valves that will stop or reduce injection if the 

pressure exceeds a predetermined safe threshold or if there is a drop in pressure as result 

of a leak. Currently the state of the technology allows to adequately meet the 

requirements for monitoring injection rates, wellhead and formation pressures. The data 

collected from these systems combined with temperature measurements provide 

information about CO2 state (supercritical, liquid or gas) and accurate measurement of 

the injected amount for inventories, reporting, verification and modelling. In some 

systems impurities are also analyzed, allowing computation of the volume of CO2 

injected (IPCC, 2005). 

The monitoring of subsurface distribution of CO2 can be made by direct and indirect 

techniques, according to the storage site characteristics. However, direct techniques are 

limited in availability at present. In CO2 enhanced oil recovery, the injected CO2 

spreads through the reservoir in a heterogeneous manner because of permeability 

variations in the reservoir, and once it reaches a production well the produce volume 

can be readily determined. In some cases the carbon in the injected CO2 has a different 

isotopic composition from the carbon in the reservoir and its distribution can be 

determined on a gross basis by evaluating the arrival of the introduced CO2 at different 

production wells. The arrival of CO2 in a producing area with several injection wells 
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gives only a general indication of the distribution in the reservoir. The use of tracers 

(gases or gas isotopes not present in the reservoir system) injected into specific wells is 

a more accurate approach as the timing of arrival of tracers at production or wells 

indicates the movement of CO2 through the reservoir. The movement of CO2 beyond 

the storage site can be directly measured by comparison of baseline surveys of water 

quality, isotopic composition and geochemical techniques. It can also be measured at 

the surface, resorting to samples of CO2 or tracers in soil gas and near-surface water 

bearing horizons, or infrared spectroscopy. Monitoring of CO2 migration in subsurface 

can also be achieved by indirect techniques that can be seismic, non-seismic 

geophysical and geochemical. Seismic techniques are based on the measurement of the 

velocity and energy absorption of waves generated artificially or naturally through rocks 

as transmission is modified by the rock’s nature and its contained fluids. Passive 

seismic (microseismic) monitoring techniques can also be applied as they detect 

microseismic events induced by dynamic responses to the modification of pore 

pressures or the recreation or creation of small fractures, allowing tracking of pressure 

changes and possibly the movement of gas in the reservoir or saline formation. Non-

seismic geophysical techniques use electrical and electromagnetic and self-potential 

techniques and measure the conducting of the subsurface as conductivity changes by 

changes in the fluid. The self-potential of the natural electrical potential of the Earth can 

also be measured to determine plume migration as well as gravity techniques (ground or 

air-based) (IPCC, 2005). In Table 2.4 a summary of direct and indirect techniques that 

can be used to monitor CO2 storage is presented. 

Table 2.4 Summary of direct and indirect techniques that can be used to monitor CO2 storage projects 

(IPCC, 2005). 

Measurement technique  Measurement parameters Example applications 

Introduced and natural 
tracers 
 

Travel time 
Partitioning of CO2 into brine or oil 
Identification sources of CO2 
 

Tracing movement of CO2 in the 
storage formation 
Quantifying solubility trapping 
Tracing leakage 

Water composition 
 

CO2, HCO3
-, CO3

2-· 
Major ions 
Trace elements 
Salinity 
 

Quantifying solubility and 
mineral trapping 
Quantifying CO2-water-rock 
interactions 
Detecting leakage into shallow 
groundwater aquifers 

Subsurface pressure 
 

Formation pressure 
Annulus pressure 
Groundwater aquifer pressure 
 

Control of formation pressure 
below fracture gradient 
Wellbore and injection tubing 
condition 
Leakage out of the storage 
formation 

Well logs Brine salinity Tracking CO2 movement in and 
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 Sonic velocity 
CO2 saturation 
 

above storage formation 
Tracking migration of brine into 
shallow aquifers 
Calibrating seismic velocities for 
3D seismic surveys 

Time-lapse 3D seismic 
imaging 
 

P and S wave velocity 
Reflection horizons 
Seismic amplitude attenuation 

Tracking CO2 movement in and 
above storage formation 
 

Vertical seismic profiling 
and 
crosswell seismic imaging 
 

P and S wave velocity 
Reflection horizons 
Seismic amplitude attenuation 
 

Detecting detailed distribution of 
CO2 in the storage formation 
Detection leakage through faults 
and fractures 

Passive seismic monitoring 
 

Location, magnitude and source 
characteristics 
of seismic events 

Development of microfractures 
in formation or caprock 
CO2 migration pathways 

Electrical and 
electromagnetic 
techniques 
 

Formation conductivity 
Electromagnetic induction 
 

Tracking movement of CO2 in 
and above the storage 
formation 
Detecting migration of brine into 
shallow aquifers 

Time-lapse gravity 
measurements 
 

Density changes caused by fluid 
displacement  
 

Detect CO2 movement in or 
above storage formation CO2 
mass balance in the subsurface 

Land surface deformation 
 

Tilt 
Vertical and horizontal displacement 
using interferometry and GPS 

Detect geomechanical effects on 
storage formation and caprock 
Locate CO2 migration pathways 

Visible and infrared 
imaging 
from satellite or planes 

Hyperspectral imaging of land surface  
 

Detect vegetative stress 

CO2 land surface flux 
monitoring using flux 
chambers or eddy 
covariance 

CO2 fluxes between the land surface 
and atmosphere 
 

Detect, locate and quantify CO2 
releases 
 

Soil gas sampling 
 

Soil gas composition 
Isotopic analysis of CO2 
 

Detect elevated levels of CO2 
Identify source of elevated soil 
gas CO2  
Evaluate ecosystem impacts 

The integrity of the injection well also has to be assured. Thus there are several 

available technologies to monitor the activity of injection wells, like the use of cement 

bond logs that can help detect deterioration in the cemented portion of the well and can 

possibly indicate any chemical interaction of the acidized formation fluids with the 

cement. Injection occurs in a pipe that is lowered into the well and packed off above the 

perforations or open-hole portion of the well to certify that the injectant reaches the 

correct level. Monitoring the pressure in the space between the casing and the injection 

pipe (the annulus) allows the detection of changes in pressures or gas composition and 

helps to ensure the integrity of the packer, casing and injection pipe (IPCC, 2005). 

At present, there are no standard protocols or established network designs for 

monitoring CO2 leakage. These are site-specific and depend on the objectives and 

requirements of the monitoring programme that is determined by regulatory 

requirements and perceived risks posed by the site. This programme should also provide 
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information to decrease uncertainties over time or increase monitoring demand in case 

things develop unexpectedly. The actual CCS projects are testing various techniques 

aiming to determine those that are most effective and less expensive (IPCC, 2005). 

Long-term monitoring of CO2 storage 

 

Beyond the monitoring during the project operation, the storage location also has to be 

monitored in the long-term. The long-term monitoring objective is to identify CO2 

movements that may lead to releases that could impact long-term storage security and 

safety, as well as prompt remedial action. The techniques can be the same used during 

the injection phase. As geological storage can persist on a geological time scale, long-

term monitoring is still an undefined issue because there are not yet defined protocols 

for the kind of monitoring that will be required, by whom, for how long and with what 

propose (IPCC, 2005). 

Verification assesses the amount of CO2 that is stored underground and the amount of 

CO2 leaking back to the atmosphere, if there is any (IPCC, 2005). Thus verification 

involves the evaluation of the monitoring methodology and the assessment of the 

inclusion and correct quantification of emissions associated with capture and transport 

activities, the integrity of the geological reservoir for long-term storage, the amount of 

CO2 that is stored underground and possible CO2 leaks. Gas migration in the storage 

formation relies on models and according to the “WRI/WBCSD Protocol for Project 

Accounting”, modelling is an acceptable means of monitoring and verifying GHG 

emission reductions, as long as any uncertainties or assumptions in the modelling are 

transparent (IPIECA and API, 2007). 

2.7 Energy and emissions balance 

The application of a CCS system in a plant requires additional energy for CO2 capture, 

compression and transport and storage operations. The additional energy required has 

associated emissions, considering that it is generated from non-renewable sources. 

These emissions are here designated as indirect emissions.  

There are also different sources of GHG emissions across the CCS chain. Thus an 

emission source and assessment boundary is established for the CCS system. Figure 

2.16 presents a generic scheme of potential GHG emissions sources in a CCS system.  
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Figure 2.16 Scheme of potential GHG emissions sources in a CCS system (Adapted from (IPIECA and 

API, 2007)). 

Beyond indirect emissions, in the CCS chain there are also vented, fugitive and 

combustion emissions. In the capture phase, additional energy is required, resulting in 

indirect emissions. As the capture process is not completely efficient, it also results in 

CO2 emissions. The separation of CO2 from other components in the captured gas, like 

dehydration to remove H2O, is a potential source of combustion, vented or fugitive 

emissions. Compression may occur in this phase resulting in combustion or indirect 

emissions. During transport, fugitive emission from pressurized equipment leaks can 

occur. From equipment maintenance, emergency releases, intermediate storage 

facilities, loading/offloading, and losses in transport, vented emissions can result. There 

are also indirect emissions associated with the required electricity to pump stations and 

other equipment (IPIECA and API, 2007). Marine transportation of CO2 induces more 

associated emissions than pipelines due to additional energy use for liquefaction and 

fuel use in ships (IPCC, 2005). 

In the storage phase there are vented, fugitive, and combustion emissions from surface 

equipment at the injection site. For monitoring and maintenance activities, additional 

energy may be required, resulting in indirect emissions.  CO2 physical leakage from the 

storage reservoir and from wells can occur, but a cautious site selection, good operating 
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practices and monitoring systems should make these leakages very small.  EOR, EGR 

and ECBM projects can result in vented emissions of CO2 as well as CH4 (IPIECA and 

API, 2007). 

In Table 2.5, the emission sources, emission types and the GHG species emitted during 

the all CCS chain are summarized. 

Table 2.5 - Emissions sources, emission type and GHG species of a CCS system (IPIECA and API, 
2007). 

 Emission source Emission type GHG species 

Combustion 
Primarily CO2; CH4 and N2O to lesser 
degree 

Vented CO2 and CH4 

Dehydration and other gas treatment 
equipment to separate the CO2 from other 
gas stream components 

Fugitive CO2 and CH4 
Fuel combustion associated with capture 
process (Note: compression may occur in 
the capture step) 

Combustion  
Primarily CO2; CH4 and N2O to lesser 
degree 
 

Purchased electricity associated with 
capture process 

Indirect  
Primarily CO2; CH4 and N2O to lesser 
degree 

Fraction of CO2 or CH4 not captured 
Vented and 
fugitive 

CO2 and/or CH4 

C
ap

tu
re

 

Use and disposal/incineration of CO2 
removal process/agent 

Primarily energy 
consumption 

Primarily CO2; CH4 and N2O to lesser 
degree 
 

Gas-fired compressor engines  Combustion 
Primarily CO2; CH4 and N2O to lesser 
degree 

Mobile source energy consumption  Combustion 
Primarily CO2; CH4 and N2O to lesser 
degree 

Purchased electricity  Indirect 
Primarily CO2; CH4 and N2O to lesser 
degree 

Pressurized equipment and pipeline 
leaks 

Fugitive 

Maintenance or emergency releases  Vented 
Intermediate storage Vented 
Loading/unloading Vented 

T
ra

n
sp

o
rt

 

Losses in transport Vented 

CO2 and potentially CH4 
 

Gas-fired compressor engines for 
injection or recycle 

Combustion 
Primarily CO2; CH4 and N2O to lesser 
degree 

Purchased electricity  Indirect 
Primarily CO2; CH4 and N2O to lesser 
degree 

Pressurized CO2 injection equipment  Fugitive 
Maintenance or emergency releases  Vented 
Production and injection wells  Vented 

CO2 and potentially CH4 

Combustion  
Primarily CO2; CH4 and N2O to lesser 
degree 

Vented CO2 and CH4 
Dehydration and other gas treatment 
equipment for recycled gas 

Fugitive CO2 and CH4 

In
je

ct
io

n
 

Purchased electricity  Indirect 
Primarily CO2; CH4 and N2O to lesser 
degree 

Physical leakage from geological 
formations 

Fugitive 

CO2 leakage from wells,  
Vented and/or 
fugitive S

to
ra

g
e 

Uncaptured CO2 co-produced with oil/gas Vented 

CO2 and potentially CH4 
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The additional energy required for the operation of the CCS system and the inefficiency 

of the capture process itself originates a large amount of emissions associated to this 

process. To determine the CO2 emissions reduction or the avoided emissions of a CCS 

project, it is necessary to compare the emissions of a plant with capture to a reference 

plant without capture. The emission reduction of a CCS project can be expressed as 

(IPIECA and API, 2007): 

CCS project emissions = VENT + CMB + FUG + IND 

 where VENT are the vented CO2 emissions, CMB are the direct combustion emissions, 

FUG are the fugitive CO2 emissions and IND are the indirect emissions resultant from 

the additional energy required (IPIECA and API, 2007). Figure 2.17 presents the CO2 

emissions of a plant without CCS and a plant with CCS, the respective emitted and 

captured emissions and the net emission reduction.  

 

 

 

 

 

 

Figure 2.17 Potential emission reduction of a CCS project (Adapted from (IPIECA and API, 2007)). 

2.7.1 Comparison of CO2 capture in different power plant technologies 

The application of a CCS system has consequences for power plant efficiency, CO2 

emissions, the investment and production costs and environmental impacts (IEA, 2007). 

Thus the comparison of the different capture technologies in the different power plant 

technologies is a useful exercise to understand the consequences and benefits of the 

application of a CCS system, comparing not only the different capture technologies in 

different power plant technologies, but also their performance, emissions, costs and 

environmental impacts with and without a CCS system. 
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The IEA GHG carried out several studies comparing the thermal efficiency of coal and 

gas-fired power plants types with and without CO2 capture. The information from these 

studies is presented in Table 2.6, as well as the CO2 emissions, the CO2 captured and the 

CO2 avoided. 

Table 2.6 Power plant thermal efficiency and CO2 emissions in gas and coal-fired power plants with and 
without CO2 capture (IEA, 2007). 

CO2 avoided (g/kWh) 

Fuel 
Power 
generation 
technology 

CO2 

capture 
technology 

Net 
efficiency 
%(LHV) 16 

CO2 

emissions 
(g/kWh) 

CO2 

captured 
(g/kWh) 

Same 
technology 

baseline 

PF 
baseline 

NGCC 
baseline 

None 44.0 743 - - - - 
Post-
combustion 

35.3 92 832 651 651 287 Pulverised 
fuel (PF) 

Oxy-
combustion 

35.4 84 831 659 659 295 

None 43.1 763 - - - - 
IGCC, dry 
feed Pre-

combustion 
34.5 142 809 621 601 237 

None 38.0 833 - - - - 

Coal 

IGCC, 
slurry feed Pre-

combustion 
31.5 152 851 681 591 227 

None 55.6 379 - - - - 
Post-
combustion 

49.6 93 362 316 680 316 Gas NGCC 
Oxy-
combustion 

44.7 12 403 367 731 367 

Natural gas-fired power plants have the highest net efficiency (55-56%). Among the 

different types of coal-fired power plants, PF has the highest net efficiency (44%) which 

is very similar to the net efficiency of dry feed IGCC (43.1%). Slurry feed IGCC plants 

have the lowest net efficiency, mainly due to lower efficiency of the conversion of coal 

to fuel gas in the slurry feed gasifier (IEA, 2007). 

The application of a CO2 capture technology requires energy resulting in the loss of 

efficiency at the power plants. With the application of CO2 capture technologies at the 

referred power plant types, the patterns of efficiency hold steady. The NGCC power 

                                                 
16 The net efficiency is calculated on a lower heating value (LHV) basis (IEA, 2007). The lower heating 
value (also known as net calorific value, net CV, or LHV) of a fuel is defined as the amount of heat 
released by combusting a specified quantity (initially at 25 °C or another reference state) and returning 
the temperature of the combustion products to 150 °C.The LHV assumes that the latent heat of 
vaporization of water in the fuel and the reaction products is not recovered. It is useful in comparing fuels 
where condensation of the combustion products is impractical, or heat at a temperature below 150 °C 
cannot be put to use. By contrast, the higher heating value (HHV) (a.k.a. gross calorific value or gross 
CV) includes the heat of condensation of water in the combustion products 
(http://en.wikipedia.org/wiki/Lower_Heating_Value#cite_note-0). The HHV efficiencies of the coal-fired 
plants and of the gas-fired plants, are respectively, 0.956 and 0.904 times the LHV efficiencies (IEA, 
2007). 
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plants with CO2 capture continue to have the highest net efficiency: 49.6% when post-

combustion technology is used and 44.7% when oxy-combustion technology is used, 

representing an efficiency reduction of 6% and 10.9%, respectively. The PF also 

continue to have the highest net efficiency within the coal-fired power plants: 35.3% 

and 35.4% with post-combustion and oxy-combustion capture technologies, 

respectively. The efficiency reduction of CO2 capture in PF power plants is of 8.6-8.7%. 

The net efficiency of dry feed IGCC plants with pre-combustion capture is 34.5%, and 

of slurry feed IGCC plants is 31.5%, representing an efficiency reduction of 8.6% and 

6.5%, respectively.  

Concerning the power plants’ efficiency reduction with CO2 capture, despite slurry feed 

IGCC plants having the lowest efficiency, they have the lowest efficiency reduction 

compared to the other types of coal-fired plants. On the other hand, the NGCC plants 

that have the highest efficiency, have the highest efficiency reduction (10.9%) when the 

oxy-combustion capture technology is applied (and a 6.5% efficiency reduction in the 

case of post-combustion capture technology). Nevertheless, even in this case they have 

the highest net efficiency.  

The loss of efficiency of CO2 capture is associated with several factors, which vary with 

the fuel and technology used for combustion. These factors and their effects on plants’ 

efficiency are presented in Figure 2.18.  

 

Figure 2.18 – Efficiency penalty for CO2 capture in different power plants types (IEA, 2007). 
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2.8 CCS legal and political aspects 

2.8.1 Legal and regulatory framework for CCS 

Provided that CCS is not yet subjected to an effective framework including legal and 

regulatory templates and guidelines at national or international level, particularly 

concerning long-term issues, until today the regulatory issues have been defined on a 

case-by-case basis (Robertson et al., 2006). The time frame of a CCS project can be 

simply divided into two phases according to the time scale: short term and long term. 

For the short-term, the time scale refers to years and decades corresponding to CO2 

capture, transport and injection.  The long-term refers to centuries and millennia 

corresponding to CO2 storage (IEA and OECD, 2005). The major legal and regulatory 

issues concerning CO2 injection and storage are the storage itself, property rights and 

intellectual property rights. Regarding the long term, the major issues concern the 

monitoring and verification and liability (Robertson et al., 2006).   

Regarding the legal and regulatory issues of CO2 storage, these include CO2 definition 

and classification and the standards for well design at the storage site. CO2 can be 

classified as an industrial product or as a waste, the latter being subjected to more 

stringent environmental regulations. CO2 classification it also an important issue as it 

will determine its legality and treatment under international treaties and national laws 

and regulations. This is particularly true for offshore projects, which are subjected to the 

London Convention on the Prevention of Marine Pollution by Dumping Wastes and 

Other Matters (London Convention) and the Protocol to the London Convention 

(London Protocol), the United Nations Convention on the Law of the Sea (UNCLOS), 

and the Convention for the Protection of the Marine Environment of the North-East 

Atlantic (OSPAR). However, CCS appearance is posterior to these treaties, meaning 

that a specific framework is needed to deal with CCS projects. In the case of onshore 

projects, the grey area is larger because international and national jurisdictions may 

overlap. The United Nations Convention on the Control of Transboundary Movements 

of Hazardous Wastes and their Disposal (Basel Convention) appears as an important 

international treaty to regulate trans-border aspects. However, it is not clear if this treaty 

is applicable to CCS due to the disagreement around CO2 definition in CCS projects. 

The standards for well design purposes are to provide a high level of prevention of 

leakage over the long term. These standards should include operational practices, 

materials used, number and age of wells, potential geophysical changes, pathways in the 
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event of leakage, and duration of storage (Robertson et al., 2006).   

Property rights definition is important to encourage investment and properly regulate 

the storage site, and has to be clearly defined as they influence liability. These can be 

divided into three main areas: surface (injection of the CO2), sub-surface (reservoir), 

and the CO2 itself. Nevertheless, this is a new issue not yet clearly defined, making it 

difficult to determine property rights in the long term. Generally, property rights are 

defined on a case-by-case basis. Intellectual property rights for CCS are sometimes 

considered a very long-term issue, not being deemed as an urgent issue and a CCS 

specific intellectual property rights legal regime has not yet been developed (Robertson 

et al., 2006).   

Every CCS project is a particular situation, and measurement, monitoring and 

verification (MMV) systems are site-specific. Thus, the best approach seems to be the 

establishment of guidelines instead of a single MMV framework with a uniform set of 

requirements. Guidelines should create consistency and uniformity when possible. For 

the specific kinds of monitoring that should be done for CCS in the short and long-term, 

including who is responsible for the monitoring process, for how long and how to 

determine long-term MMV responsibilities in case of existing CO2 compliance systems 

such as the European Union Emissions Trading Scheme (EU-ETS), there are still few 

established guidelines. Liability issues can be divided into short and long term. Short 

term liability is related to operational issues like environmental, health and safety risks 

associated with capture, transport and injection of CO2. Long term liability includes 

three types of issues: environmental, in situ and trans-national liability. The former 

relates to CO2 leakage from the storage location and can also be named as climate 

liability. In situ liability refers to leakage or migration that could result in public health, 

environmental or ecosystem damage. Trans-border liability refers to any liability issues 

that may affect more than one country (Robertson et al., 2006).    

As already mentioned, CCS projects onshore are mainly regulated by individual 

national legal frameworks. Countries like the United States and Canada have legal and 

regulatory frameworks for CCS activities (IEA, and OECD, 2005).  In the case of 

Australia there is no legal and regulatory framework specific to all CCS components 

(capture, transportation and storage) but there are existing and proposed legislative 

regimes in some States which permit a person to inject and store carbon dioxide 

underground, under the authority of a statutory licence (Minter Ellison, 2005).  It is 
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important to note, however, that there is specific legislation for the Gorgon Project in 

West Australia (IEA, and OECD, 2005).   

In 2008, the European Commission (EC) published a proposal for a directive17 on the 

geological storage of CO2. Part of the existent European legislation can be applied to 

CCS and the proposal of directive establishes which terms of the existing legislation 

should apply to which aspects of CCS. In Table 2.7, part of the already implement 

European legislation is presented that can be also applied to CCS.  

Table 2.7 Existent European legislation that can be also applied to CCS. 

Directive Scope Applicability to CCS 

96/61/EC 
Integrated Pollution 
Prevention and Control 

Regulation of the risks of CO2 
capture 

85/337/EEC 
Assessment of the 
environmental impacts of 
certain projects 

Assessment of the 
environmental impact of CO2 
capture, pipeline transport and 
storage 

2004/35/EC Environmental liability 
Regulation of the liability for 
local environmental damage 
from CCS 

2003/87/EC 
GHG emission allowance 
trading 

Regulation of the liability for 
climate damage by requiring 
surrender of allowances for 
leakage 

The EC proposal for a directive establishes the legal structure for the implementation of 

a CCS project, defining the intervenient relationship, the procedures for the 

determination of the storage location, the requisites for the exploration and storage 

permits, the rules for applications, the operation, closure and post-closure obligations, 

the third-party access. The EU also plans to have up to 12 CCS pilot projects running by 

2015, but none have yet been built. 

2.8.2 CCS and the international climate policy framework 

The UNFCCC determines the first international step to tackle climate change. The 

UNFCCC objective established in its Article 2 is the “stabilization of greenhouse gases 

concentrations in the atmosphere at a level that would prevent dangerous anthropogenic 

interference with the climate system”. The UNFCCC was signed in 1992 and ratified in 

1994 by 189 countries, and established a set of principles like the principle of common 

but differentiated responsibilities, precaution, equity, the promotion of sustainable 

                                                 
17 COM (2008) 18 final – Proposal for a Directive of the European Parliament and of the Council on the 
geological storage of carbon dioxide and amending Council Directives 85/337/EEC, 96/61/EC, Directives 
2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC and Regulation (EC) No 1013/2006, Brussels, 
23.1.2008. 
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development and commitments to promote scientific, technological and economic 

cooperation between Parties, providing special attention to developing Parties. On the 

basis of these principles, the UNFCCC distinguished developed and developing 

countries, dividing them into three groups: Annex I, Annex II and non-Annex I.The last 

group consists of developing countries that are not subjected to the same obligations  as 

other Parties. Beyond these groups of countries, there is also the group of the Least 

Developed Countries, classified by the United Nations according to a set of criteria, 

which have special attention under the Convention.  

The KP was adopted in 1997 and ratified in 2005. The Protocol establishes binding 

targets for Annex I Parties (Annex I Parties of the UNFCCC that ratified the KP) to 

reduce their GHG emissions 5.2% below 1990 levels in the commitment period 2008 to 

2012, sharing the principles and objectives of the UNFCCC.  The Non-Annex I Parties 

of the KP are not subjected to individual binding targets. Under the KP, three flexibility 

mechanisms were defined to help the Parties to achieve their targets and to promote 

cooperation and sustainable development among all the Parties: joint implementation 

(JI), clean development mechanism (CDM) and emissions trading (ET).  In JI, Annex I 

Parties can implement projects that reduce emissions or remove carbon from the 

atmosphere in other Annex I Parties, receiving emission reduction units (ERUs).  CDM 

allows Annex I Parties to implement projects that reduce emissions or remove carbon 

from the atmosphere in Non-Annex I Parties, contributing to the sustainable 

development in these countries, generating certified emission reductions (CERs). The 

ET allows Annex I Parties to exchange their emission credits in order to achieve the 

targets. 

The status of CCS is neither clearly defined in the UNFCCC nor in the KP18. This raises 

a big discussion point whether CCS projects are eligible under the flexibility 

mechanisms of the KP in order to provide credits. This is an important issue that is 

being considered in the negotiations under the UNFCCC and the KP for the post-Kyoto 

commitment period. For the inclusion of CCS in any climate change mitigation 

mechanism, key greenhouse gas accounting issues must be addressed (IEA and OECD, 

2005). 

 

                                                 
18 In Appendix I, a selection of relevant provisions under the United Nations Framework Convention on 
Climate Change and the Kyoto Protocol is presented. 
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3 Implementation of a CCS system   

This chapter intends to give an overview over the selection of CO2 storage sites, the 

assessment of CO2 storage capacity, the process of identification of potential sites for 

CO2 geological storage, namely deep saline aquifers and coal beds, CO2 sources, and 

CCS costs. 

3.1 Assessment of CO2 storage capacity  

The assessment of CO2 storage capacity can be made trough several types of estimation 

depending on the nature and purpose of the assessment (Bradshaw et al., 2007). It may 

be made at various scales – in decreasing order of size and increasing order of 

resolution: country, basin, regional, local and site-specific. The country-scale 

assessment determines the country CO2 storage capacity, what types of storage capacity 

are available and what risks may exist, without necessarily quantifying the country’s 

potential. The basin-scale assessment focuses on a particularly sedimentary basin (these 

are usually smaller than a country but in some cases it may straddle countries or be 

shared by several) to evaluate and quantify is storage potential and to identify regions 

and/or sites for CO2 storage and their type, many times also considering the major 

stationary CO2 sources in the basin on its vicinity. These two types of assessments 

should normally be performed by governmental agencies to establish future directions. 

The regional-scale assessment analyses a portion of the sedimentary basin that has large 

CO2 stationary sources and/or because its large potential for CO2 storage is known. The 

local-scale assessment is normally carried out at a pre-engineering level or prior to site-

selection decisions, where the candidate sites for CO2 storage are examined to 

determine site capacity, injectivity and containment. The site-scale assessment is made 

for the specific storage unit and normally the behaviour of the injected CO2 is modelled. 

Industries are normally responsible for the local- and site scale assessments. Depending 

on the objectives, the regional-scale assessments can be done by governmental agencies 

and/or industries (Bachu et al., 2007).  Figure 3.1 presents the level of detail and 

resolution for the different assessment scales.  
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Figure 3.1- Variation in size and resolution of different storage capacities (Bachu et al., 2007). 

 Table 3.1 describes the estimation of the CO2 storage capacity in depleted oil and gas 

reservoirs, deep saline aquifers and coal beds. 

Table 3.1 - Estimation of the CO2 storage capacity in depleted oil and gas reservoirs, deep saline aquifers 
and coal beds (Bachu et al., 2007). 

Geological storage reservoirs types Estimation of the CO2 storage capacity 

Depleted oil and gas reservoirs 
Straightforward and is based on recoverable reserves, 
reservoir properties and in situ CO2 characteristics. 

Deep saline aquifers 

Very complex because four trapping mechanisms that act at 
different rates and time scales, and they can all operate 
simultaneously. The level of detail and resolution required in 
the data make reliable and accurate estimation of CO2 storage 
capacity estimation in deep saline aquifers practical only at 
the local and site-specific scales. 

Coal beds 
The theoretical CO2 storage capacity is based on coal 
thickness and CO2 adsorption isotherms, and recovery and 
completion factors. 

Although there are defined methodologies to estimate CO2 storage capacity, there are 

still major challenges due to the lack of data, particularly for coal beds and deep saline 

aquifers, for which “lack if knowledge about the coefficients that reduce storage 

capacity from theoretical to effective and to practical, and lack of knowledge about the 

interplay between various trapping mechanisms at work in deep saline aquifers” (Bachu 

et al., 2007).  

According to Bachu et al., 2007, “CO2 storage capacity constitutes a geological resource 

(or commodity) whose availability can be expressed using the concepts of resources and 

reserves in the same way as other energy and mineral commodities such as oil and gas, 

coal, uranium, iron, gold, etc., are classified”. In Bradshaw et al., 2005, a similar 
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concept of the resource pyramids19 is presented for the capacity for CO2 storage in 

geological media. Bradshaw et al., 2005, propose three resources pyramids that 

represent high level, trap type and effectiveness and techno-economic aspects. These 

pyramids are presented in Figure 3.2, Figure 3.3 and Figure 3.4, respectively. 

 

 

 

 

 

 

 

 

 

Figure 3.2 - High level resource pyramid for CO
2 
geological storage (Bradshaw et al., 2005). 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 3.3 - Trap type and effectiveness resource pyramid for capacity for CO
2 
geological storage 

(Bradshaw et al., 2005). 

                                                 
“ 19 The concept of resource pyramids was advanced by McCabe in 1988 as a method to describe the 
accumulation around the world of hydrocarbons in different categories” (Bradshaw, J., et al., 2007). 
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Figure 3.4 - Techno-Economic resource pyramid (Bradshaw et al., 2005). 

The High Level resource pyramid for CO2 storage, Figure 3.2, has at the top “all the 

storage sites with good geological characteristics and that individually have large 

storage capacity, which are located close by to sites with low costs of capture” and at 

the base “the extremely difficult sites, with problematic geological conditions, small 

storage capacity and that are located a great distance from sources with large capture 

costs” (Bradshaw et al., 2005). The sites at the base of this pyramid have a total 

potential storage capacity much greater than those at the top (Bradshaw et al., 2005).   

The trap type and effectiveness resource pyramid, Figure 3.3, represents the relationship 

between the reservoir quality and trap types (left vertical axis), trapping mechanisms 

(bottom axis) and the timing effectiveness of trapping (right horizontal axis). According 

to Bradshaw et al., 2005, “at least 3 qualifiers need to be documented in this resource 

pyramid to explain which storage capacity estimate method has been used. At any time 

at a particular storage site, some of these trapping mechanisms might be mutually 

exclusive (e.g. dissolution into the fluids and displacement of fluids), whilst others may 

partially act simultaneously (e.g. residual gas saturation and compression of fluids and 

the rock matrix with increasing pressure), and others will compete against each other 

(e.g. simple compression of fluids such as occurs in a closed system versus 

displacement of pore fluids in an open system). Over the long term “geological” life of a 
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storage site, many of the trapping mechanisms may actually participate in the eventual 

trapping mechanism history”. 

The techno-economic resource pyramid, Figure 3.4, considers three technical and 

economic categories, being theoretical, realistic and viable capacity. These are 

described in Table 3.2. 

Table 3.2 - Technical and economic categories of the techno-economic resource pyramid (Bradshaw et 

al., 2005) (Bradshaw, J., et al., 2007). 

Techno-economic resource pyramid 

Theoretical capacity 

“Assumes that the whole of a reservoir formation is accessible to store CO2
 
in its 

pore volume, or the whole of the formation water in a reservoir formation is 
available to have CO2

 
dissolved into it, or the whole mass of coal is available to 

adsorb and store CO2. This provides a maximum upper limit to a capacity 
estimate, however it is an unrealistic number as in practice there always will be 
technical and economic limitations across a region that prevent parts of the 
reservoir formation from being accessed and/or fully utilized. This represents the 
physical limit of what the geological system can accept. It occupies the whole of 
the resource pyramid” (Bradshaw et al., 2005).  

Realistic capacity 

“Applies a range of technical (geological and engineering) cut-off limits to 
elements of an assessment such as quality of the reservoir (e.g. permeability and 
porosity) and seal, depth of burial, pressure and stress regimes, size of the pore 
volume of the reservoir and trap, and whether there may be other competing 
interests that could be compromised by injection of CO2

 
(e.g., existing resources 

such as oil, gas, coal, water, national parks). This is a much more pragmatic 
estimate that can be done with some degree of precision, and gives important 
indications of technical viability of CO2

 
storage. These estimates are within the 

main body of the resource pyramid, but exclude the basal parts of the resource 
pyramid” (Bradshaw et al., 2005).  

Viable capacity 

“Is the capacity arrived at by also considering economic, legal and regulatory 
barriers to CO2

 
geological storage, and thus builds upon the realistic capacity 

assessment. Detailed source/sink matching is performed at this stage to match 
the best and nearest storage sites to large emission sources. The source/sink 
matching should extend beyond just geotechnical aspects, and include social and 
environmental aspects of locating storage sties. At this level of assessment, it 
may be possible to also express the capacity estimate as an injection rate, not just 
as a total volume. Because the direct match of nearby suitable sites to emissions 
sources has been performed, the figures quoted become an annual sustainable 
rate of injection, where economics, supply volume and reservoir performance are 
integrated to define the viability of the resource. These capacity estimates are at 
the top of the resource pyramid” (Bradshaw et al., 2005).  

Bachu et al., 2007, presented a new version of the techno-economic resource pyramid 

after Bradshaw et al., 2007 and Bradshaw et al., 2005 (Figure 3.5).  
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Figure 3.5 – Techno-economic pyramid after (Bradshaw et al., 2007) and (Bradshaw et al., 2005) (Bachu 
et al., 2007). 

In this pyramid various storage capacities are represented, and “their size and position 

varies in time as data, knowledge, technology, policy, regulatory framework and 

economics of CO2 geological storage change” (Bachu et al., 2007). Thus, when the 

storage capacity is estimated, it is essential that the nature of the estimate and its 

position in the resource pyramid are specified (Bachu et al., 2007). Table 3.3 describes 

the categories of this version of the techno-economic resource pyramid. 

Table 3.3- Technical and economic categories of the Bachu et al., 2007, version of the techno-economic 

resource pyramid (Bachu et al., 2007). 

Techno-economic resource pyramid 

Effective storage capacity 
(called previously 
“Realistic capacity”) 
(Bradshaw, J., et al., 2005) 
(Bradshaw, J., et al., 2007). 

“Represents a subset of the theoretical capacity and is obtained by 
applying a range of technical (geological and engineering) cut-off limits to 
a storage capacity assessment, including consideration of that part of 
theoretical storage capacity that can actually be physically accessed. This 
estimate usually changes with the acquisition of new data and/or 
knowledge” (Bachu et al., 2007). 

Practical storage capacity 
(called previously “Viable 
capacity”) (Bradshaw, J., et 
al., 2005) (Bradshaw, J., et 
al., 2007). 

“Is that subset of the effective capacity that is obtained by considering 
technical, legal and regulatory, infrastructure and general economic 
barriers to CO2 geological storage. As such, it is prone to rapid changes as 
technology, policy, regulations and/or economics change. The Practical 
Storage Capacity corresponds to the reserves used in the energy and 
mining industries” (Bachu et al., 2007). 

Matched storage capacity 

“Is that subset of the practical capacity that is obtained by detailed 
matching of large stationary CO2 sources with geological storage sites that 
are adequate in terms of capacity, injectivity and supply rate. This capacity 
is at the top of the resource pyramid and corresponds to the proved 
marketable reserves used by the mining industry. The difference between 
matched and practical storage capacities represents stranded storage 
capacity that cannot be realized because of lack of infrastructure and/or 
CO2 sources within economic distance” (Bachu et al., 2007). 
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The resource pyramid concept as well the concepts of different operating time frames 

for the various trapping mechanism and of different assessment scales, are absolutely 

essential to the assessment of CO2 storage capacity (Bachu et al., 2007). 

3.2 Identification of potential CO2 geological storage locations  

A geological medium is considered suitable for CO2 storage if it has the following 

characteristics (Bachu, 2007a) (Bachu, 2007b): 

� Capacity to accept the intended volume of CO2; 

� Injectivity, to take in CO2 at the rate at which it is supplied from the CO2 

emitters; 

� Confinement to prevent the migration and leakage of buoyant and mobile 

CO2 from the storage space to other places in the subsurface, to shallow 

potable groundwater and/or to the surface; 

� Resource protection, which means that if a potential storage site meets 

the previous conditions, it is unacceptable if other resources are put at 

risk during the process. 

The geological media found in sedimentary basins can present the adequate 

characteristics for CO2 storage, “because generally only sandstone and carbonate rocks 

have the porosity needed to provide storage capacity and the permeability required for 

injectivity, while confining low permeability shales and evaporites (caprocks), such as 

salt beds and anhydrites, provide a primary physical barrier to CO2 migration20 and/or 

leakage out of the intended storage unit” (Bachu, 2007a). Coals can also be found in 

sedimentary basins (Bachu, 2007a).  

Rocks suitable for CO2 storage generally occur in major accumulations of sedimentary 

rocks known as sedimentary basins that may be up to a few kilometres thick and cover 

thousands of square kilometres. However, not all sedimentary basins are suitable for 

CO2 storage. CO2 geological storage has to be done under specific physical conditions 

and CO2 trap can occur by different mechanisms (Holloway, 2007). 

                                                 
20 In this context, migration is defined as lateral movement within the injection stratum, while leakage is 
defined as upward flow across strata (Bachu, S., 2007). 
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The viability of geological storage depends on its available capacity to store CO2. As 

water-bearing reservoir rocks have reduced economic value and are highly variable, 

they are not well characterized. This means that the storage capacity of water-bearing 

reservoirs is not known and is difficult to estimate (Holloway, 2007). Holloway, 2007, 

mentions that in face of this situation, it is difficult to construct representative 

geological models of CO2 injection and flow in this type of reservoirs and that there are 

no accepted methods of estimating their storage capacity based on commonly available 

public domain data. In the evaluation of coal bed methane, two parameters are 

determinant: the total gas in place and the reservoir deliverability. After its 

identification, the CO2 storage capacity has to be estimated (Bachu, 2007b). 

The identification of suitable CO2 geological storage sites involves several phases, as 

showed in Figure 3.6. 

 

Figure 3.6 Phases of the identification of a site for CO2 geological storage (Adapted from Chadwick et 

al., 2006). 

Storage capacity 
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Basic overburden properties 
Basic reservoir flow simulations 
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Site screening allows evaluating if a determined region is appropriate to store CO2 by 

identifying, assessing and comparing possible candidate storage sites. Screening is 

based on geological, environmental, economic and logistical considerations (Chadwick 

et al., 2006).  

3.2.1 Deep saline aquifers  

The main geological indicators that determine the suitability of a deep saline aquifer as 

a storage site are reservoir depth, thickness, porosity, permeability, seal integrity and 

salinity, which are presented in Table 3.4 (Chadwick et al., 2006). 

Table 3.4 Geological criteria to storage site suitability (Chadwick et al., 2006). 

 Positive indicators Cautionary indicators 

Storage capacity 

Total storage capacity 

Total capacity of reservoir 
estimated to be much larger than 
the total amount produced from 
the CO2 source 

Total capacity of reservoir 
estimated to be similar to or less 
than the total amount produced 
from the CO2 source  

Reservoir properties 

Depth (pressure) >1000 m <2500 m  <800 m, >2500m 

Reservoir thickness (net) >50 m <20 m  

Porosity >20% <10% 

Permeability > 300mD* <10-100 mD 

Salinity > 100gl-1 < 30 gl-1 

Caprock properties 

Lateral continuity Unfaulted Lateral variations, faulting 

Thickness > 100m <20 m  

Capillary entry pressure 

Capillary entry pressure much 
greater than buoyancy force of 
maximum predicted CO2 column 
height 

Capillary entry pressure similar 
to buoyancy force of maximum 
predicted CO2 column height 

*millidarcy (mD) (1 darcy 10−12m2) 

Suitable aquifers for CO2 storage should contain the mentioned salinity threshold 

(salinity > 100 gl-1) to avoid spoiling potable water resources, should exceed the 

referred porosity and permeability, should provide storage at depths of 800 m or more 

(because CO2 is in a dense fluid phase and distant from the ground surface or sea bed), 

should have a minimum thickness (to limit the potential storage areal footprint) and 

must be overlain by low permeability caprocks. Nevertheless, they should have other 

boundaries permeable to the native pore fluids (mainly brine) that will allow the 

displacement of these pore fluids (Chadwick et al., 2006). 
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Due to CO2 buoyancy, efficacy of the topseal is usually a prerequisite and in dipping 

aquifers, the nature of lateral sealing features is very important too. The  

compartmentation of reservoirs, i.e. lateral sealing of reservoirs, can help retain CO2 in 

the desired storage location, but can also impair injectivity and lead to elevated injection 

pressures (Chadwick et al., 2006).  

The determination of the storage capacity of a reservoir formation depends on the 

properties of the reservoir rock itself and on the nature of its boundaries. However, to 

assess aquifer storage capacity in detail, a considerable amount of   additional 

information about the reservoir is required (Chadwick et al., 2006). According to 

Chadwick et al., 2006, volume storage in aquifers depends on many commonly poorly-

determined parameters and issues, including: 

• The pore volume in structural or stratigraphical traps; 

• Whether any of the traps will leak; 

• The achievable CO2 saturation in traps; 

• Where there are many small traps, and the percentage of these that can be 

accessed by a realistic number of wells; 

• The amount of CO2 that will dissolve into the saline pore fluids; 

• The amount of CO2 that will be trapped along the CO2 migration path as a 

residual saturation; 

• Whether local or regional pressurization of the aquifer due to CO2 injection will 

limit its storage capacity. 

• The density of CO2 and any other gas components. 

The determination of the storage efficiency21 depends on several factors like the 

structural geometry and stratigraphical heterogeneity of the storage formation and as it 

                                                 
21 Storage efficiency is defined as that fraction (by volume) of the reservoir pore space that can be filled 
by CO2 (in free or dissolved form). It is useful to distinguish between regional storage efficiency, a 
parameter used during screening and relating to the total pore volume of a reservoir in a (large) area 
covering several potential traps and local storage efficiency, a parameter normally used during site 
characterisation/planning and relating to the pore volume in a specific trap or linked trap system 
(Chadwick et al., 2006).  



Matching CO2 Large Point Sources and Potential Geological Storage Sites in Mainland Portugal, Ana Ferrada Gomes, 2008 

 

63  

is not an intrinsic property of reservoir, its one of the greatest uncertainty in storage 

estimation (Chadwick et al., 2006).  

After site screening, the selected sites are deeply characterised in order to refine storage 

capacity estimates and confirm all the requirements that will assure effective CO2 

storage in safe conditions. A reasonable geological characterization of the storage 

reservoir and its overburden22 is a major step in the process, producing information on 

the structure of the reservoir and its stratigraphy and physical properties. This phase 

objective is to confirm and refine the screening studies, providing basic data for the 

predictive fluid flow and geochemical simulations, and including legal issues, seismic 

data, risk assessment, geomechanical assessments, monitoring plans and remediation 

strategies. The basis of the calculations of the reservoir volume is geological models 

(Chadwick et al., 2006). According to Chadwick et al., 2006, the key datasets for a 

robust characterisation of reservoir and overburden are: 

• A regular grid of 2D seismic data over sufficient area to characterise broad 

reservoir structure and extents; 

• A high quality 3D seismic volume over the injection site and adjacent area, 

tuned if possible for satisfactory resolution of both reservoir and overburden; 

• Sufficient well data to permit characterisation of reservoir and overburden 

properties. 

The geological characterization involves the characterization of the reservoir structure 

and its properties and the characterization of the overburden and caprock properties. 

The characterization of the reservoir structure is essential both at a local and regional 

level to the determination of CO2 migration patterns and bulk storage potential. In this 

stage several studies have to be done, like structure mapping of depth to top reservoir, 

reservoir thickness, reservoir structural compartmentation and the estimation of the 

probable storage footprint. The characterization of the reservoir properties is important 

to assess its lateral and vertical stratigraphical and hydraulic properties, as these 

properties control the evolution of the CO2 plume. A detailed geochemical and 

mineralogical assessment is also important to predict probable reactions between 

                                                 
22 The whole geological succession overlying the reservoir can, for convenience, be termed the 
overburden and, forming the lower part of this, the sealing formation directly overlying the reservoir, can 
be termed the caprock (Chadwick et al., 2006). 
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dissolved and gaseous CO2, the host rock and saline fluids within the reservoir. The 

characterization of the overburden and caprock properties is an important element for 

the assessment of safety in long-term storage. It can provide additional information 

about the reservoir, like the presence of other reservoirs and sealing formations in the 

overburden. The analysis of the long-term integrity caprock is crucial. When it cannot 

be robustly demonstrated, the consequences of migration scenarios should be included 

in risk assessment. Several laboratory and field techniques can be applied to examine 

the transport characteristics, like intrinsic permeability, capillary entry pressure, relative 

permeability, dilatancy and pathway flow (Chadwick et al., 2006). 

Flow modelling is a key element in the site characterization as it provides quantitative 

predictions of reservoir behaviour. According to Chadwick et al., 2006, flow can be 

used to refine capacity estimates, to evaluate the likely lateral spread of CO2 in the 

future (essential for designing effective monitoring programmes) and to examine 

putative leakage scenarios (for site risk assessment) (Chadwick et al., 2006).  

The geochemical assessment is an important aspect in assessing the safety of a CO2 

storage site as the reactivity between CO2, porewater and minerals will influence the 

long-term storage potential of the reservoir. This phase of the site characterisation 

studies these chemical interactions that might change the physical characteristics of 

parts of the storage site and thus potentially enhance CO2 migration towards the surface. 

Dry CO2 in a dense phase is chemically inert but when it dissolves in water it will form 

carbonic acid, acidifying the formation water which may then alter many types of rocks. 

These alterations can occur in the reservoir where it is injected, in the overlying 

caprock(s), in fractures present in the caprock and/or the reservoir and at the wellbores 

(Chadwick et al., 2006).  The geochemical impact assessment at the storage site 

involves four steps, which are presented in Figure 3.7  
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Figure 3.7 Steps for geochemical impacts assessment of the storage site (Adapted from Chadwick et al., 

2006). 

Risk assessment can me made following the Features Events and Processes (FEP) and 

Scenario methodology. In the FEP method, risk assessment is based on simulations of 

different scenarios built up from FEPs. The monitoring programme’s aim is to provide 

information to enable site remediation in the case of unpredicted events and to enable a 

good site closure strategy because it allows demonstrating that the site is performing in 

accordance to predictions and will probably continue after closure (Chadwick et al., 

2006). 

3.2.2 Coal beds 

For CO2 storage in coal beds and CBM recovery, beyond the adequate capacity, 

injectivity and confinement characteristics, they should (Bachu, 2007b): 

• “possess adequate permeability of at least 1–5 mD (this relates to injectivity); 

Geochemical impact assessment of the storage site 
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Step 1 
 

Construction of a geochemical model of the water and rock 
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fracture fillings (if appropriate); 
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• Measurement of the pressure and temperature conditions; 
• Establishing the gas composition and chemical properties 

of the CO2 to be injected. 
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• have simple structure (i.e., the reservoir should be minimally faulted and/or 

folded); 

• be homogeneous and confined (i.e., the presence of an overlying seal will 

prevent upward leakage of mobile CO2 that is not adsorbed onto the coal 

matrix); 

• have low water saturation (coals with low water saturation are preferable 

because the coal seam has to be dewatered before it can be used for storage); 

• have high gas saturation (from a methane-production perspective); 

• have concentrated coal deposits (fewer, thick seams); however, more recently 

this criterion has been challenged because thick coals could be mined at some 

time in the future, thus, rather than sterilize a potential resource, multiple thin 

coal seams should be used; 

• be unmineable, now or in the future. Unmineable coals are coals that are too 

thin, too deep, or too unsafe to mine; they may be too high in sulphur or mineral 

matter, or be too low in heat value to be economically profitable”. 

This set of criteria, besides having been specifically applied in the identification of 

suitable CO2 storage sites in Alberta’s, Canada, coal beds, according to Bachu, 2007b, 

can be easily adapted and applied to other regions (Bachu, 2007b). One determinant 

factor in the viability of a CO2 storage site is coal permeability, which “varies widely 

and generally decreases with increasing depth as a result of cleat closure with increasing 

effective stress” (Bachu, 2007b). The gas that is in contact with coal also affects coal 

permeability which can be “reduced by up to two orders of magnitude in the presence of 

gaseous CO2 as a result of swelling” (Bachu, 2007b). Another important factor is that 

CO2 is a plasticizer for coal, “lowering the temperature required to cause the transition 

from a glassy, brittle structure to a rubbery, plastic structure, destroying any pre-existing 

permeability that would have allowed CO2 injection” (Bachu, 2007b). Despite these 

effects negatively affecting the CO2 storage in coal beds, they depend on coal type, rank 

and characteristics. For temperature and pressures above the critical point, the process 

of CO2 trapping in coals is still not completely understood. This lack of understanding 

represents some constraints to CO2 storage in coal beds (Bachu, 2007b). Bachu, 2007b, 

states that this lack of understanding “indicates that, unless significant advances in 
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science and technology are made, only coals at in situ temperature and pressure 

conditions where CO2 is in gaseous phase should be considered for the time being as 

suitable for CO2 storage” and that “these constraints reduce the depth window for CO2 

storage in coal beds to a range of a few hundred metres to less than 1000 m depth” 

(Bachu, 2007b).  

3.3 Sources characterisation  

In the identification of suitable sources for the application of a CCS system, several 

factors like the source type, the flue gas volume, the CO2 content in the flue gas and the 

scale of emissions have to be considered. Source types can be divided into mobile or 

stationary and according to the type of industrial activity. The characterization of the 

composition of the flue gas is important not only to identify the concentration of CO2 

but also the CO2 partial pressure23. These parameters are determinant for the selection of 

the capture process. Low CO2 partial pressure requires more stringent conditions for the 

capture process and high partial pressure requires only dehydration and some 

compression, lowering capture costs. The volume of flue gas and the content of CO2 in 

it depend on the type of fuel used and the excess air level used for optimal combustion 

conditions. Among the already identified industrial processes suitable to CCS are power 

generation, cement manufacture, oil refining, ammonia production, iron and steel 

manufacture and production of hydrogen (IPCC, 2005). 

Large facilities that produce significant quantities of CO2, designated large stationary 

sources, are considered as the main applicants to CCS. However there has to be a 

threshold for the definition of large stationary source24. Despite dispersed stationary 

sources like buildings and mobile sources like transports having high CO2 emissions, 

the emission volumes from the individual sources in these sectors tend to be smaller 

than those from the power and industry sectors, and they are not considered suitable for 

the application of CCS technology due to the economies of scale associated with the 

capture processes as well as the difficulties and costs of transporting small amounts of 

CO2 (IPCC, 2005). 

                                                 
23 Partial pressure is the pressure that would be exerted by a particular gas in a mixture of gases if the 
other gases were not present (IPCC, 2005). 
24 For example, in the scope of the IPCC Special Report on CCS the large stationary sources considered 
involve fossil fuel and biomass use in fuel combustion activities, industrial processes and natural gas 
processing, that emit more than 0.1 MtCO2 yr-1 because sources emitting less than these value together 
account for less than 1% of the emissions from all the stationary sources under consideration. 



Matching CO2 Large Point Sources and Potential Geological Storage Sites in Mainland Portugal, Ana Ferrada Gomes, 2008 

 

68  

3.4 Worldwide CCS projects 

Worldwide, there are several CCS projects that have already occurred, others are 

currently in progress or planned. Some of these projects are presented in Table 3.5. 

Table 3.5 – CO2 storage projects (IPCC, 2005). 

Project 
name 

Country 
Injection 

start (year) 

Approximate 
average daily 
injection rate 
(tCO2 day-1) 

Total 
(planned) 
storage 
(tCO2) 

Storage reservoir 
type 

Weyburn Canada 2000 3000 – 5000 20000000 EOR 
In Salah Algeria 2004 3000 – 4000 17000000 Gas field 
Sleipner Norway 1996 3000 20000000 Saline formation 
K12B Netherlands 2004 100 8000000 EGR 
Frio USA 2004 177 1600 Saline formation 

Fenn Big 
Valley 

Canada 1998 50 200 ECBM 

Qinshui 
Basin 

China 2003 30 150 ECBM 

Yubari Japan 2004 10 200 ECBM 
Recopol Poland 2003 1 10 ECBM 
Snohvit Norway 2006 2000 Unknown Saline formation 
Gorgon 

(planned) 
Australia 2009 10000 Unknown Saline formation 

The International Energy Agency Greenhouse Gases R&D Programme produced a 

world map of large CO2 capture and storage projects, which is presented in  

Figure 3.8 and  

Figure 3.9. 

 

 

 

 

 

 

 

 
Figure 3.8 – CO2 capture projects 

(http://www.co2captureandstorage.info/docs/IEAGHGccsworldmap.pdf). 
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Figure 3.9 - CO2 storage demonstration projects  

(http://www.co2captureandstorage.info/docs/IEAGHGccsworldmap.pdf). 

3.5 CCS costs 

The assessment of CCS costs considers all components of the system: capture and 

compression, transport, injection and storage, including monitoring costs and 

remediation costs if necessary. These costs are dependent on many factors like fuel 

prices, the cost of capital and costs for meeting potential regulatory requirements 

(IPCC, 2005). Other very important factors to take into account are if the CCS system 

will be retrofit to an existing plant or if it will be applied to a new plant, and how the 

application of a CCS system will reflect in the cost of the final product, like electricity 

in the case the system is applied on a power plant. 

3.5.1 CO2 capture costs 

Considering the complete CCS system, the most expensive component refers to the CO2 

capture. This varies with the pressure and concentration of CO2 in the flue gas or 

process stream, generally being cheaper in pure and high-pressure CO2 stream. These 

characteristics lower the capture cost as less compressing is necessary before the CO2 is 

introduced to a pipeline to be transported to the storage location. But the costs of CO2 

capture also depend considerably within technology classes (type of industrial process, 
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plant’s age, efficiency, fuel type, technology selection, emissions controls, capture 

process and efficiency) (Dooley et al., 2006).  

The total cost of CO2 capture includes operation and maintenance costs and a 

substantial part of the total costs pertain to the energy requirements for capture and 

compression. There are different options to integrate the cost of additional energy 

requirements for CO2 capture. It can be assumed that the energy needed to operate the 

CO2 capture is provided within the plant boundary or it is purchased from outside the 

plant boundary. In some cases it is considered that new equipment is installed to 

generate auxiliary energy on-site (IPCC, 2005). 

The IPCC Special Report on CCS defines four measures of CO2 capture costs: capital 

cost, incremental product cost, cost of CO2 avoided and cost of CO2 captured or 

removed. The capital cost for CO2 capture systems generally represents the expenses 

necessary to design, purchase and install the system. The best way to determine the total 

incremental cost of CO2 is by calculating the difference in total cost between plants with 

and without CO2 capture, producing the same amounts of product (e.g. electricity). The 

cost of CO2 capture will be reflected in the cost of the final product. For example, the 

incremental cost of electricity is the difference in electricity cost with and without CO2 

capture. The cost of CO2 avoided reflects the average cost of reducing atmospheric CO2 

emissions by one unit while providing the same amount of product as a plant without 

CCS.  Sometimes, this cost is taken as a measure of the cost to society of reducing GHG 

emissions, in this case reflecting the average cost of moving from one situation to a 

different situation with lower emissions (e.g. different technologies and fuel mix). The 

cost of CO2 captured reflects the economic viability of a CO2 capture system given a 

market price for CO2. The cost of CO2 captured is numerically lower than the costs of 

CO2 avoided due to the energy required to operate the capture system which raises the 

amount of CO2 emitted per unit of product (IPCC, 2005).  

According to Hendricks et al., 2004, the financial performance of a particular capture 

process depends on the full load hours / yearly operating hours; the capital change 

rate25; and on the fuel costs (defined on lower heating value26). Hendricks et al., 2004 

developed a computer programme to calculate efficiency losses and capture costs 

                                                 
25 The capital change rate is used to annualise the capital investment of the plant and can be calculated 
from the presumed discount rate and lifetime of the capital. 
26 Lower heating value: energy released from the combustion of a fuel that excludes the latent heat of 
water. 
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depending on the size of the plant, type of fuel used, production technology, and 

concentration of CO2 in the flue gas. Table 3.6 presents the costs and plant 

characteristics for various types of power plants (natural gas combined cycles (NGCC) 

integrated gasification combined cycles (IGCC) and pulverised coal-fired power plants) 

with capture of CO2. 

Table 3.6 Costs and plant characteristics for power with CO2 capture (Hendricks et al., 2004). 

Type of 
capture 

technology 

Pre-
combustion 

Pre-
combustion 

Post-
combustion 

Post-
combustion 

Post-
combustion 

Type of plant 
Natural Gas 

(NGCC) 
Coal  (IGCC) 

Natural Gas 
(NGCC) 

Natural gas 
fired (steam) 

Coal 
(pulverised) 

Without capture 
Plant efficiency 
(%LHV) 

58% 47% 58% 42% 42% 

Emission factor 
(kgCO2/kWh) 

0.35 0.72 0.35 0.48 0.81 

Power costs 
(€/kWh) 

3.1 4.8 3.1 3.8 4.0 

With capture 
Plant efficiency 
(%LHV) 

51.5% 42.2% 52% 36.4% 33.7% 

Emission factor 
(kgCO2/kWh) 

0.05 0.09 0.05 0.07 0.12 

Loss of plant 
efficiency 

6.5% 4.8% 6% 5.6% 8.3% 

Power costs 
(€/kWh) 

4.6 6.4 4.1 5.0 6.0 

CO2 avoided 
(%) 

85% 88% 85% 85% 85% 

Costs  
(€/t CO2) 

43 26 37 30 29 

In Table 3.7 are showed the typical cost of CO2 capture for industrial plants. 

Table 3.7 Typical costs of CO2 capture for industrial plants (Hendricks  et al., 2004). 

Facility €/tCO2 
Cement plants 28 
Iron and steel plants 29 
Ammonia plants (flue gas) 36 
Ammonia plants (pure CO2) 3 
Refineries 29-42 
Hydrogen (flue gas) 36 
Hydrogen (pure CO2) 3 
Petrochemical plants 32-36 

Applying a CCS system to existing plants might be more expensive and might cause 

higher efficiency losses than applying it to newly built plants (Hendricks et al., 2004). 

The costs of retrofitting a capture system to an existing coal-fired power plant are 

influenced by plant age, size, low efficiency and high energy requirement for capture 

due to less efficient heat integration for sorbent regeneration. All these factors, in 
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conjunction with site-specific difficulties like land availability and access to plant areas, 

increase the capital cost of a retrofit project relative to a new equivalent one (IPCC, 

2005). The IPCC Special Report on CCS summarizes the key assumptions and results 

of several studies of post-combustion CO2 capture using an amine-based absorption 

system at new coal-fired power plants and retrofitting to an existing coal -fired power 

plants (Table 3.8). 

Table 3.8 CO2 capture costs for existing and new pulverized-coal (PC) power plants using current 
technology (IPCC, 2005). 

Existing PC power 
plant 

New PC power plant 

Range Range 
Study assumptions and results 

Min Max  Min Max  
Reference plant (without capture) 
Reference plant size/net output (MW) 248 470 462 758 
Plant capacity factor 27 (%) 67 91 65 85 
Net plant efficiency, LHV (%) 33 37 41 45 
Coal cost, LHV (US$ GJ-1) 0.98 3.07 0.98 1.50 
Reference plant emission rate (tCO2 
MWh−1) 

0.90 1.00 0.74 0.81 

Capture plant design 
Net plant size/output with capture (%) 140 400 329 676 
Net plant efficiency, LHV (%) 19 25 30 35 
CO2 capture system efficiency (%) 90 96 85 90 
CO2 emission rate after capture (t 
MWh−1) 

0.06 0.37 0.09 0.15 

CO2 captured (Mt yr-1) 1.48 2.66 1.83 4.17 
CCS energy requirement (% more 
input MWh-1) 

43 77 24 40 

CO2 reduction per kWh (%) 63 94 81 88 
Cost results 
Reference plant cost of electricity 
(US$ MWh−1) 

18 26 43 52 

Capture plant cost of electricity (US$ 
MWh−1) 

51 70 62 86 

Incremental cost of electricity for 
capture(US$ MWh−1) 

31 62 18 34 

Percent increase in capital cost (over 
reference plant) 

  44 74 

Percent increase in cost of electricity  
(over reference plant) 

149 291 42 66 

Cost of CO2 captured (US$/tCO2) 31 56 23 35 
Cost of CO2 avoided (US$/tCO2) 45 73 29 51 

The range of the cost of CO2 captured and avoided is higher when the CCS system is 

applied to an existing coal-fired power plant. Although there is an increase in the cost of 

electricity whenever a capture system is applied, the range of incremental cost of 

                                                 
27 The net capacity factor of a power plant is the ratio of the actual output of a power plant over a period 
of time and its output if it had operated at full nameplate capacity the entire time. 
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electricity is higher for retrofitting a capture system to an existing plant. The energy 

requirement for a CCS system is much higher when it is retrofitted to an existing plant.  

The costs presented in Table 3.8 are based on current technology and refer only to 

capture. The capture cost confidence level is moderate, meaning that “no commercial 

application for the system and/or scale of interest, but technology is commercially 

deployed in other applications; issues of scale-up, operability and reliability remain to 

be demonstrated for this application” (IPCC, 2005). Compression costs depend on the 

pressure that is required to the CO2 transport. Higher pressures imply more energy and 

investment costs (Hendricks et al., 2004).   

3.5.2 CO2 transport costs 

The costs of transport and storage are much lower than the costs of capture (Friedmann 

et al., 2006). The determination of CO2 transport and storage costs depends on the mean 

of transportation, on the distance of the CO2 source to the storage location and on the 

characteristics of the storage reservoir. Pipeline costs can be divided into construction 

costs, operation and maintenance costs (including monitoring), and other costs like 

design, fees and rights-of-way. The transport costs differ between onshore and offshore 

pipelines, the latter often being about 40% to 70% more costly than the former. Onshore 

pipeline transport costs depend significantly on the terrain characteristics as they could 

increase by 50% to 100% or more if the route is congested and heavily populated 

(IPCC, 2005).  Assuming that the CO2 will be transported via land-based pipelines, as 

this is a common via to transport this and other gases, costs like the pipeline diameter 

and construction issues like circuitous routing and terrain characteristics  have to be 

considered in the overall CO2 transport costs. From the natural gas pipeline land 

construction experience, the capital costs for transport pipelines are in the order of $40 

000/mile per inch of pipeline diameter (Dooley et al., 2006). 

The tank truck and rail CO2 transport options are more than twice as expensive as 

pipelines. The costs of marine transportation systems comprise investments for ships 

(design and operation), loading and unloading facilities, and intermediate storage and 

liquefaction units. Ship transport becomes cost-competitive with pipeline transport over 

larger distances. The cross-over point at which it happens depends on many factors like 

distance, loading terminals, water depth, fuel  cost, construction costs and security 

(IPCC, 2005). In Figure 3.10, the variation of transport cost with distance for onshore 

and offshore pipelines and ships is presented. The costs include intermediate storage 



Matching CO2 Large Point Sources and Potential Geological Storage Sites in Mainland Portugal, Ana Ferrada Gomes, 2008 

 

74  

facilities, harbour fees, fuel costs, and loading/unloading activities and consider 

additional costs for liquefaction compared to compression.  

 

Figure 3.10 Costs of CO2 transport against distance, for onshore and offshore pipelines, and ships (IPCC, 

2005). 

It also has to be considered who is responsible for the operation and maintenance of the 

CO2 transport system. The costs associated with the pipeline infrastructure construction 

and development of the storage site can be supported by utilities, or the transport system 

can be constructed and operated by midstream pipeline operators, and long-term storage 

can be handled by another company or a government agency (Fernando et al., 2008). 

3.5.3 CO2 storage costs 

The costs of storage exclude those from the previous components. The main capital 

costs of CO2 geological storage are drilling wells, infrastructure and project 

management, while operating costs include manpower, fuel and maintenance (IPCC, 

2005). The injection costs depend mainly on drilling wells and operational costs. 

Storage costs are largely influenced by the number of required wells, which depends on 

the injectivity and the allowed overpressure, and the years of operation (Hendricks et 

al., 2004). However, these costs are site-specific, depending on the type of reservoir, 

location, depth and other characteristics of the storage reservoir formation. The costs of 

offshore storage are generally higher due to higher operational costs (IPCC, 2005). 

The main items of CO2 storage in saline formations are reservoir and injection 

characteristics like permeability, thickness and depth that affect injection rates and well 

costs. In Europe, cost estimations for CO2 geological storage in onshore saline 
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formations for depths of 1000-3000 m are between 1.9-6.2 US$/tCO2stored, the most 

likely value being 2.8US$/tCO2 stored (IPCC, 2005). 

In disused oil and gas reservoirs, the costs may benefit from reduced exploration and 

monitoring costs. In Europe, CO2 storage costs on onshore in these reservoirs at depths 

of 1000-3000 m are in the range of 1.2-3.8 US$/tCO2 stored, the most likely value being 

1.7US$/tCO2 stored. Offshore storage costs are 3.8-8.4 US$/tCO2 stored and the most 

likely value is 6US$/tCO2 (IPCC, 2005). 

In EOR, EGR and ECBM projects that use CO2 injection, the CO2 is purchased, 

representing a significant proportion of the operating costs. The costs of CO2 storage 

can be offset in these projects as CO2 injection and storage are combined with enhanced 

oil or gas recovery and ECBM. Onshore EOR operation costs are in the range of 10-16 

US$/tCO2 (37-59 US$/tC) (IPCC, 2005). The costs of storage in EOR, EGR and ECBM 

projects are sensible to oil and natural gas prices (Hendricks et al., 2004). 

The cost elements of ocean storage include offshore transportation and injection of the 

CO2, depending respectively on distance and depth.  The costs of storage via mineral 

carbonation are uncertain because this technology is still in a research and development 

phase. The cost elements are mining and chemical processing (Table 3.9) (IPCC, 2005).  

The monitoring costs depend on the monitoring strategy and technologies used and how 

these are adapted for the duration of storage projects. They also depend on regulatory 

requirements and how long-term monitoring strategies evolve (IPCC, 2005).  

Table 3.9 presents a summary of estimates of CO2 storage costs. 

Table 3.9 Estimates of CO2 storage costs (IPCC, 2005). 

Option 
Representative Cost Range 

(US$/tonne CO2 stored) 
Geological – Storage a 0.5-8.0 
Geological – Monitoring 0.1-0.3 
Ocean b  
     Pipeline 6-31 
     Ship (Platform or Moving 
Ship Injection) 

12-16 
 

Mineral Carbonation c 50-100 
a does not include monitoring costs. 
b includes offshore transportation costs; range represents 100-500 km distance offshore and 3000 m depth. 
C unlike geological and ocean storage, mineral carbonation requires significant energy inputs equivalent 
to approximately 40% of the power plant output. 
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4 Hypotheses for the implementation of a CCS system in 

mainland Portugal – source sink matching  

The implementation of a CCS system involves several stages that were already 

described in the previous chapters. The formulation of hypotheses for the 

implementation of a CCS system in mainland Portugal will be based on the 

identification of the main large point sources of CO2 and of the possible geological 

storage locations.  

4.1 Methods overview 

The first step was the identification of carbon dioxide stationary sources in mainland 

Portugal. The CO2 stationary sources considered were the installations included in the 

phase II of the EU-ETS. As LPS are the main applicants to CCS, two criteria were 

defined for their identification. These criteria depend on the annual CO2 emissions per 

installation. The last available data are from 2007. For the identification of LPS, the 

criteria defined were: the group of installations with the highest CO2 emissions, until 

representing about 90% of the total CO2 emissions in 2007  or the group of installations 

whose annual emissions in 2007 were larger than 0,1 MtCO2 yr-1. This last criterion is 

defined in the IPCC Special Report on CCS. The results achieved with the application 

of these two were exactly the same – 24 LPS. The next step was the mapping of these 

LPS and of the potential geological CO2 storage areas. The storage areas considered 

were the geological formations identified by INETI and CIAGEB studies: the zone to 

the west of the Anadia-Ferreira do Zêzere axis and the Pombal-Ourém region, the 

Setubal Peninsula zone, the Sines zone and the Douro coal basin. After the mapping of 

LPS and storage areas, the source-sink matching criteria were identified. Then, the 

analysis of the hypotheses for the implementation of CCS systems in mainland Portugal 

based on source-sink matching was performed, considering only the proximity of the 

sources and storage sites. A cost estimation for a CCS system in mainland Portugal, 

considering only CO2 capture, transport and storage, was also attempted.  
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4.2 Sources of CO2 in mainland Portugal  

4.2.1 Overview of GHG emissions in Portugal 

According to the Portuguese National Inventory Report on Greenhouse Gases28, 1990 – 

2006 (hereafter called NIR 2006) (Ferreira et al., 2008), the energy sector is the main 

source of GHG emissions in Portugal as it is highly dependent on fossil fuels. CO2 is the 

gas emitted in the largest quantities, representing 77.5 % of total GHG emissions in 

2006, the energy related activities being responsible for about 90% of total CO2 

emissions in the same year. In 2006 the share of the energy sector represented 72% of 

national GHG emissions, transport and energy industries being responsible for 24.2% 

and 26.8% of total GHG emissions respectively (Figure 4.1). In the period 1990-2006 

an increase of about 49% of total emissions was registered in the energy sector (Ferreira 

et al., 2008).  

Energy
72%

Agriculture
10.1%

Industrial 
Processes

9.5%

Waste
8.0%

Solvent use
0.4%

Energy Industries
26.8%

Transport
24.2%

Manufact. Ind. 
And Construction

12.0%

Fugitive
1.8%

Other sectors
7.2%

 

Figure 4.1 – GHG emissions in Portugal by sector in 2006 (adapted from Ferreira et al., 2008). 

The CO2 emissions from energy related activities depend on the type of fuel and its 

carbon intensity. In the period 1990-2006, about 84% of the primary energy consumed 

was produced by fossil fuel combustion. In this period, the GHG with the greatest 

increase in emissions was CO2, whose emissions grew by 48%. The majority of CO2 

                                                 
28 Submitted under the United Nations Framework Convention on Climate Change and the Kyoto 
Protocol. In concordance with the UNFCCC Reporting Guidelines, where emissions estimates are 
grouped into six large IPCC categories: Energy, Industrial Processes, Solvent use, Agriculture, Land-Use 
Change and Forestry, and Waste. 
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emissions is from fossil fuel combustion in energy-related activities. The industrial 

processes sector, whose emissions are generated as a by-product of many non-energy-

related activities (cement production, road paving, limestone and dolomite use, lime 

production, glass and ammonia production), also represents a considerable part of CO2 

emissions (Ferreira et al., 2008). In Figure 4.2 the sources categories of CO2 in 2006 are 

presented. 

 

Figure 4.2 - 2006 source categories of CO2 in mainland Portugal (from Ferreira et al., 2008). 

4.2.2 Identification of CO2 stationary sources in mainland Portugal 

The identification of CO2 stationary sources in mainland Portugal was based on the 

installations included in the Phase II of the EU-ETS29, corresponding to the Kyoto 

Protocol commitment period of 2008-2012 (see Appendix II). In this period the EU-

ETS will continue to comprise mandatorily only the CO2 emissions from the 

installations included in the categories of activities defined in the EU-ETS Directive 

(energy activities, production and processing of ferrous metals, mineral industry and 

pulp and paper production). The national installations included in the phase II of the 

EU-ETS are listed in the National Allocation Plan II (NAP II) (2008-2012) (see 

Appendix II). For the definition of the installations to be included in the second 

                                                 
29 Created by Directive 2003/87/EC of the European Parliament and of the Council of 13 October and 
amended by Directive 2004/101/EC of the European Parliament and of the Council of 27 October 2004. 
These Directives were transposed to the national law by Decree-Law no. 233/2004, of 14 December, 
Decree-Law no. 234-A/2004, of 31 December, Decree-Law no. 230/2005, of 29 December, and by 
Decree-Law no. 72/2006, of 24 January. 
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commitment period, the NAP II respected the European Union guidelines regarding the 

definition of combustion installation, namely30 the EU-ETS Directive and the Directive 

concerning Integrated Pollution Prevention and Control (IPPC) 31 (RCM 1/2008). This 

reinterpretation affected the chemical and ceramic sectors, as can be seen in Figure 4.3, 

which compares the number of installations per sector in the EU-ETS periods of 2005-

2007 and 2008-2012 (MAOTDR, 2008). The national installations included in the phase 

I of the EU-ETS are listed in the National Allocation Plan I (NAP I) (2005-2007). 
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Figure 4.3 – Number of installations included in the NAP I (2005-2007) and in the NAP II (2008-2012) 

per sector (PNALE I, 2005) (PNALE II, 2008). 

The number of installations included in the NAP I and II were 248 and 212, 

respectively. In the NAP II the number of installations of the ceramic sector decreased 

and the number of combustion installations increased. In Figure 4.4, the emissions 

allowances per sector for these two periods are presented. 

                                                 
30 The articulation between the EU-ETS and the IPPC Directive was clarified by the European 
Commission communications COM(2003)830 of 7 January 2004 and COM(2005)703 of 22 December 
2005. 
31 Council Directive 96/61/EC of 24 September 1996 and amended by Directive 2008/1/EC of the 
European Parliament and of the Council of 15 January 2008, transferred to the national law by Decree-
Law 194/2000, of 21 August. The IPPC Directive includes economic activities with which is potentially 
associated a pollution level that is considered significant and is defined according to the installation 
nature and production capacity.  
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Figure 4.4 – Emissions allowances (tCO2/year) attributed per sector in the NAP I (2005-2007) and in the 

NAP II (2008-2012) (PNALE I, 2005) (PNALE II, 2008). 

In both periods, power plants had the greatest share of emissions allowances, followed 

by the lime and cement sector, refineries and cogeneration installations. In mainland 

Portugal, 204 installations are included in the phase II of the EU-ETS, 84 being of the 

energy sector (including power plants, refineries, cogeneration and combustion 

installations) which account for about 68% of the total annual emissions allowances 

attributed for the 2008-2012 period. The biggest share is assigned to power plants that, 

with nine installations, account for about 44% of the total annual emissions allowances. 

Within the power plants sector, the coal subsector has the major share of annual 

emissions allowances, representing about 67% of the allowances endorsed to this sector. 

The two refineries included in the EU-ETS account for about 11% of the total annual 

emissions allowances. Among the non-energy related sectors, the ceramic sector is the 

one with most installations included, but only represents about 2% of the total annual 

emissions allowances attributed for the 2008-2012 period. The cement and lime 

subsector account for about 25% of the total annual emissions allowances, with 13 

installations included.  

During the 2005-2007 period, 38,16 MtCO2eq/ year were allocated to the installations 

included in the EU-ETS, where 36,91 MtCO2eq/year correspond to the existent 

installations and the remaining 1,25 MtCO2eq /year were reserved to new installations.  

For the 2008-2012 period, the yearly amount of emissions allowances is 34,81 
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MtCO2eq /year, 30,5 MtCO2eq /year being attributed to the existent installations and 4,3 

MtCO2eq /year constituting a reserve for new installations. The allowances attributed to 

this period imply the effort installations included in the EU-ETS will have to make to 

comply with the Kyoto targets 32 (MAOTDR, 2008). 

An analysis of the phase I of the EU-ETS in Portugal (2005-2007) performed by the 

Portuguese Ministry for Environment, Spatial Planning and Regional Development 

(MAOTDR – Ministério do Ambiente, Ordenamento do Território e do 

Desenvolvimento Regional), concluded that the emissions of the installations included 

in the EU-ETS correspond to about 40% of the total national GHG emissions 

(MAOTDR, 2008). 

The installations included in the EU-ETS have to report their annual emissions, by 

presenting a GHG Emissions Report to the National Authority, until the 31st of March 

of the following year. Figure 4.5 presents the sectoral CO2 emissions in 2007, according 

to the communications of the installations to the Portuguese Environmental Agency for 

that year. 

Energy/Power plants
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Energy/Refineries
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1%Glass

2%

Lime and cement
23%

Ferrous metals
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Energy/Cogeneration
7%

 

Figure 4.5 - Sectoral emissions in 2007 (APA, 2008a). 

                                                 
32 The yearly amount of emissions allowances for the 2008-2012 period (30,5 MtCO2eq /year) is inferior 
to the emissions verified in 2005, 2006 and 2007 (36,4 MtCO2eq /year, 33,1 MtCO2eq /year and 31,2 
MtCO2eq /year, respectively) (MAOTDR, 2008). 
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It can be concluded that the energy sector was the main responsible for CO2 emissions 

in 2007, power plants being the main source. The lime and cement sector was the 

second responsible, accounting for about 23% of the CO2 emissions in 2007. 

Location of carbon dioxide stationary sources in mainland Portugal 

 

The location of the mainland Portugal installations included in the NAPII was identified 

through the respective geographic coordinates. The methodology applied to the 

installations mapping is presented in Figure 4.6. 

*The GHG emission permits for the 2008-2012 are not yet available at the Portuguese Environmental Agency webpage. 

Figure 4.6  Installations mapping methodology. 
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Following the application of this methodology, the location of the mainland Portugal 

installations included in the NAP II is presented in Figure 4.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7- Location of the 204 installations included in PNALE II per sector. 

Selection of carbon dioxide large point sources in mainland Portugal 

Large point sources (LPS) of CO2 being considered the main applicants to CCS, these 

will be identified in mainland Portugal. The identification of CO2 LPS in mainland 

Portugal was based on the installations included in the NAP II and on the verified 

annual CO2 emissions per installation. As the installations included in the NAP I (2005-

2007) do not totally coincide with the ones included in the NAP II (2008-2012), it was 

not possible to know the annual CO2 emissions of all the installations included in the 
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period in analysis (2008-2012). The match between the mainland Portugal installations 

included in the NAP I and II resulted in 198 installations. As the NAP II includes 204 

installations, six installations that were not included in the period 2005-2007 of the EU-

ETS were not considered for this analysis,. From these six installations, five are 

included in the combustion installations sector and one in the pulp and paper sector. 

These six installations represent 0,62% of the annual CO2 emissions allowances 

attributed for the  mainland Portugal installation included in the period 2008-2012. 

From the analysis of the phase I of the EU-ETS in Portugal (2005-2007) developed by 

MAOTDR, it was concluded that the emissions verified in 2005, 2006 and 2007 were 

36,4 MtCO2eq /year, 33,1 MtCO2eq /year and 31,2 MtCO2eq /year, respectively 

(MAOTDR, 2008). This analysis considered all the installations and not only the ones 

in mainland Portugal.  As the installations included in the EU-ETS have to report their 

annual emissions, the values of the annual CO2 emissions per installation are available 

for 2005, 2006 and 2007. For this analysis, the year considered was 2007, because this 

is the most recent year with available data. It has to be kept in mind that this analysis is 

for the 198 installations that resulted from the match of the NAP I and II. 

In 2007, the CO2 emissions were verified for 179 installations and were not available 

for 19 installations. These 19 installations belong to the ceramic and pulp and paper 

sectors and represent about 0,20% of the annual CO2 emissions allowances attributed to 

the  mainland Portugal installations included in the period 2008-2012.  

To classify the mainland Portugal LPS, the chosen criterion was the identification of the 

group of installations with the highest CO2 emissions, until representing about 90% of 

the total CO2 emissions verified in 2007. The application of this criterion resulted in 24 

LPS in mainland Portugal. In the scope of the IPCC Special Report on CCS, the LPS 

considered involved fossil fuel and biomass use in fuel combustion activities, industrial 

processes and natural gas processing, which emit more than 0.1 MtCO2 yr-1 (IPCC, 

2005). This criterion was also applied to the installations considered and the results 

achieved were exactly the same. The 24 LPS per sector are presented in Figure 4.8 . 
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Figure 4.8 – The 24 LPS identified in mainland Portugal per sector (data from (APA; 2008b)). 

None of the LPS belongs to the ceramic and pulp and paper sectors. All the installations 

of the ferrous metals and refineries sectors are LPS (two for both sectors). The power 

plants sector includes all the installations of coal, combined cycle gas turbine (CCGT) 

and fuel subsectors, the ones from the biomass and diesel subsectors being excluded. 

From the 12 installation of the lime and cement sector, seven are LPS. The cogeneration 

sector includes 35 installations, four of which are LPS. Only one of the 33 combustion 

installations is a LPS. From the nine installations of the glass sector, one is a LPS. The 

locations of the LPS are presented in Figure 4.9. 
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Figure 4.9 – Location of the 24 LPS. 

In Figure 4.9 it is possible to observe that the majority of the LPS are concentrated on 

the coastline, mainly in the Setubal district, followed by the Lisbon, Leiria and Oporto 

districts.   

4.3 Potential geological CO2 storage sites in mainland Portugal  

4.3.1 Brief description of mainland Portugal’s geology 

Mainland Portugal has four large morpho-structural units: the Hesperic Massif (or 

Iberian Massif or Ancient Massif), the Occidental Mesocenozoic Border, the Meridional 
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Mesocenozoic Border and the Tertiary Basins of Tejo and Sado. These are presented in 

Figure 4.10.  

 

Figure 4.10 Mainland Portugal’s large morpho-structural units (Adapted from SNIRH, 2008). 

In Portugal there are on and off-shore activities of prospection of petroleum in the 

sedimentary basins. The resultant seismic and gravity data allowed a better delineation 

of the Mesocenozoic sedimentary basins. These can be grouped into inner basins, which 

are located in the inner part of the continental margin and often extending onshore, and 

outer basins, which are mostly located in deeper waters to the west and south of the 

former. The inner basins are the Oporto Basin, the Lusitanian Basin and the Algarve 

Basin. The outer basins are the Galicia Interior Basin, the Peniche Basin, the Alentejo 

Basin, the Sagres Basin and the Gulf of Cadiz Basin (DPEP, 2008). These are presented 

in Figure 4.11. 
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Figure 4.11 Portuguese inner and outer Mesocenozoic sedimentary basins (DPEP, 2008). 

The Lusitanian basin expands from the onshore to the offshore and is the largest inner 

basin with a total area of about 22000 km2 and a maximum sedimentary thickness of 

about 6km.  Jurassic sediments are thicker than the Cretaceous sediments and the 

Cenozoic sediment cover is normally thin. On the other hand the Oporto basin develops 

entirely offshore and has an area of about 2150 km2 (to 200m water depth) or 2800 km2 

(to 1000m water depth). This basin has up to 8 km of Late Triassic to Late Cretaceous 

sediments and is normally overlaid by a thin Cenozoic cover. The Algarve basin 

expands on and off-shore presenting an area of about 8500 km2. According to DPEP, 

2008, “Depth to the Carboniferous basement may exceed 7 km and the fill is again of 

Late Triassic to Recent age. The relative thickness of the Cenozoic, particularly the 

Neogene sediments, is larger than in the western inner basins”. Among the inner basins, 

the Lusitanian basin is the most explored. There is little information about the outer 

basins (DPEP, 2008). 
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4.3.2 Identification of potential geological CO2 storage sites in mainland Portugal  

The potential geological storage locations considered in this work are deep saline 

aquifers and the Douro coal basin. The National Institute of Engineering, Technology 

and Innovation (INETI – Instituto Nacional de Engenharia, Tecnologia e Inovação) 

presented a preliminary study for CO2 storage in deep saline aquifers (Sampaio et al., 

2007). It was then stated that the work developed is based on the little information 

available and that further studies are necessary to develop in the future to allow a deeper 

characterisation of the identified formations. The Global Change, Energy, Environment 

and Bioengineering RDID&D Unit (CIAGEB), of the Fernando Pessoa University, is 

currently developing a project about CO2 sequestration in the Douro Coalfield. The 

objectives of this project are to define the CO2 storage capacity in a range of coal beds 

of different geologic characteristics and to establish the feasibility of a CO2-free 

industry based on CO2 storage in coal seams (abandoned mines or non-mined deep 

seams) by a systematic study of selected sites (Sousa et al., 2007).  

The geological formations identified in these studies are presented in Figure 4.12. 
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4.4 Source sink matching  

A detailed source-sink matching is crucial to understanding the relationship between the 

emissions sources and the storage opportunities in order to assess the impact of CCS on 

emissions reduction and what the role of CCS could be among other mitigation options. 

A good relationship between sources and sinks leads to the possibility of significant 

reduction of the amount of the CO2 emissions from these sources. However and as 

stated in the IPCC Special Report on CCS, if CO2 sources and sinks “are not well 

matched geographically, then there will be implications for the length and size of the 

transmission infrastructure that is required, and this could impact significantly on the 

cost of CO2 capture and storage, and on the potential to achieve deep reductions in 

global CO2 emissions” (IPCC, 2005). 

Source-sink matching requires a detailed assessment not only of sources and sinks but 

also of transport options and economic and environmental factors. If there is a high 

 

 

Figure 4.12 - Geological formations identified in the INETI preliminary study as 
potential sites for CO2 storage (Sampaio, J., et al., 2007) and Douro coalfield basin. 
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level of technical uncertainty associated with a CCS project or if the distance between 

sources and sinks is too large, the storage potential is compromised (IPCC, 2005). 

In addition to all the technical criteria that CCS involves, the selection of CO2 storage 

sites and matching with CO2 sources should, according to Bachu, 2007b, consider the 

following criteria: “volume, purity and rate of the CO2 stream; proximity of the source 

and storage sites; level of infrastructure for CO2 capture and delivery; existing wells, for 

injection and for leak prevention; injection and production strategies; terrain and right of 

way; proximity to population centres; and overall costs, and economics” (Bachu, 

2007b).  Beyond these technical suitability criteria, further considerations will be 

controlled by economic, safety and environmental aspects. According to the IPCC 

Special Report on CCS “assigning technical risks is important for matching of CO2 

sources and storage sites, for five risk factors: storage capacity, injectivity, containment, 

site and natural resources” (IPCC, 2005).  For all of these assessments and 

considerations, the project lifetime has to be taken into account and the post-closure 

phase must be contemplated. 

For the source-sink matching in mainland Portugal, the CO2 LPS and potential 

geological storage sites above identified will be considered. Figure 4.13 shows the LPS 

by sector and annual CO2 emissions, which range from 0,1 MtCO2/year to more than 7 

MtCO2/year. 
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Figure 4.13 – Sectors and annual CO2 emissions in megatons per year of the identified LPS (data from 
(APA; 2008b)). 

From Figure 4.13, it could be concluded that the majority of the identified LPS are 

concentrated in the Setubal district and this is the district with the highest annual CO2 

emissions. Lisbon and Leiria districts have the same number of installations. However, 

the annual CO2 emissions are higher in Lisbon, which is the second district with larger 

CO2 emissions (Table 4.1). Santarem with two LPS is the district with the third largest 

annual CO2 emissions, followed by Oporto with three installations. In Table 4.1, a 

summary of the number of LPS per district, their annual CO2 emissions in 2007 and 

represented sectors is presented. 
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Table 4.1 – Analysis of the LPS per district. 

District 
Number of 

LPS 
CO2 Emissions 2007 

(MtCO 2/year) 
Sectors 

Coimbra 2 2,0 
Lime and cement; 
Energy/Cogeneration 

Faro 1 0,5 Lime and cement 

Leiria 4 1,5 
Lime and cement; 
Energy/Cogeneration; Glass 

Lisbon 4 4,4 
Energy/power plants; Lime and 
cement; Energy/cogeneration 

Oporto 3 2,6 
Ferrous metals; Energy/refineries; 
Energy/power plants 

Santarem 2 3,5 Energy/power plants; Lime and cement 

Setubal 8 12,3 

Energy/power plants; 
Energy/refineries; Lime and cement; 
Energy/cogeneration; Ferrous metals; 
Energy/combustion installations 

total 24 26,8  
Total (for the 

installation whose 
emissions where 
verified in 2007) 

198 29,6 

 

 

The location of the potential geological storage sites identified for mainland Portugal is 

presented in Figure 4.14. For the potential geological storage sites mapping, the 

mentioned geological formations and localities were considered. Due to the scarce 

information about these, however, the locations presented here are essentially 

illustrative. 

 

 

 

 

 

 

 

 



Matching CO2 Large Point Sources and Potential Geological Storage Sites in Mainland Portugal, Ana Ferrada Gomes, 2008 

 

95  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 4.14 – Location of the potential geological sinks in mainland Portugal. 

Figure 4.15 shows the map resulting from source- sink matching after the identification 

of LPS and potential geological sinks of mainland Portugal. 
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Figure 4.15 – Matching of CO2 LPS and potential geological sinks in mainland Portugal. 

By considering only the proximity of the source and storage sites, it is possible to verify 

that there is at least one LPS within each identified area of potential CO2 geological 

storage. In Sines and on the Setubal Peninsula, there are several LPS within the 

potential storage area. Even for the LPS that are not within these areas, it is plausible to 

consider that they are relatively near.  
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4.5 Attempt of costs estimation  

In this attempt of estimating costs of implementing a CCS system in mainland Portugal, 

the following factors will be considered: CO2 capture costs by industry types, the cost of 

CO2 transport by pipeline and the cost of CO2 storage in geological formations.  

The analysis will be performed by areas of potential CO2 geological storage and 

considering the LPS located in the surrounding districts/localities (Table 4.2). 

Table 4.2  – Distribution of the LPS by the four areas of potential geological storage. 

Areas of potential 
CO2 geological 

storage 

District/ 
localities 

Number 
of LPS 

CO2 Emissions 2007 
(MtCO 2/year) Sectors 

Oporto 3 2,6 
Ferrous metals; 
Energy/refineries; 
Energy/power plants Douro coal basin 

total 3                        2,6 

Coimbra 2 2,0 
Lime and cement; 
Energy/Cogeneration 

Leiria 4 1,5 
Lime and cement; 
Energy/Cogeneration; 
Glass 

Santarem 2 3,5 
Energy/power plants; 
Lime and cement 

Zone to the west of 
the Anadia-Ferreira 
do Zêzere axis and 
Pombal Region-

Ourém 
 

total 8 7,0  

Lisbon 4 4,4 
Energy/power plants; 
Lime and cement; 
Energy/cogeneration 

Setubal 5 2,7 

Energy/power plants; 
Lime and cement; 
Ferrous metals; 
Energy/combustion 
installations 

Setubal Peninsula 
Zone 

 
 

total 9 7,1  

Sines 3 9,7 
Energy/power plants; 
Energy/refineries; 
Energy/cogeneration; 

Faro 1 0,5 Lime and cement 

Sines Zone 
 

total 4 10,2  
Total 24 26,9  

The CO2 capture costs considered were based on the costs presented by Hendricks et al., 

2004 for the different types of industrial and power plants. In the LPS and areas of 

potential storage, the grouping analysis followed the methodology presented by Joanaz-

Melo, 1992. The CO2 storage cost was based on the IPCC Special Report on CCS 

estimates for geological storage. 

The length of the pipelines was determined in Google Earth calculating the approximate 

linear distance between the groups of LPS and the LPS closest to the centre of the 

correspondent storage area, which was considered the CO2 injection point.  
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The estimation of the investment cost of the pipeline systems considered the individual 

branches and shared parts of the pipeline system. This cost was calculated considering 

the annual CO2 volume, the length and the diameter of the pipeline. The transport costs 

were shared proportionally to the sources emissions. The pipeline diameters33 

considered were 70 cm for an annual CO2 volume larger than 2 Mt CO2 yr -1; and 40 cm 

for an annual CO2 volume less than 2 Mt CO2 yr -1.  

The costs were estimated for a timeframe of 15 years and assuming a 10% loss in the 

CO2 capture. The following general data were also assumed: 

Table 4.3 – General data considered for costs estimation. 

General data Value 
70 cm pipeline cost (M€/km)34 0,7 
40 cm pipeline cost (M€/km)35 0,4 
Coefficient of distance aggravation  1,3 
Operation cost/investment cost (%yr-1) 5 

In Table 4.4, a summary of estimates of CCS costs in mainland Portugal is presented 

per storage area.  

Table 4.4 - Estimates of CCS cost per area of potential CO2 geological storage. 

Areas of potential CO2 geological storage Estimates of CCS cost (€/tCO2) 
Douro coal basin 40-45 
Zone to the west of the Anadia-Ferreira do 
Zêzere axis and Pombal Region-Ourém 

31-46 

Setubal Peninsula Zone 31-45 
Sines Zone 31-46 

The estimated costs range from 31 €/tCO2 to 46 €/tCO2. Capture costs are responsible 

for the major portion of the total costs. The transport costs have a direct linear 

relationship with distance. In the estimated costs, the transport cost is more significant 

for distances greater than 100 km. This is also true when the transportation investment 

costs are supported by a single LPS. 

The cost estimation of CCS was a very rough exercise not only because of the presumed 

assumptions, but also because the costs of all the components of a CCS system were not 

considered. The capture costs depend on many factors like the capture system and 

                                                 
33 The pipeline diameters of the Portuguese system of natural gas transportation are between 15 cm and 
80 cm. More than half of the pipelines have a diameter bigger than 70 cm 
(http://www.ren.pt/VPT/GAS/TRANSPORTE/Pages/gas-natural_transporte.aspx).  
34 Approximate value based on the reference value of $40 000/mile per inch of pipeline diameter 
presented by Dooley et al., 2006.  
35 Approximate value based on the reference value of $40 000/mile per inch of pipeline diameter 
presented by Dooley et al., 2006. 
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technology, the pressure and concentration of CO2 in the flue gas, and the fuel type. 

Thus capture costs have to be specifically calculated according to the plants’ technical 

characteristics, which did not happen in the performed estimate. For the estimate of 

transport costs only the annual CO2 volume, the pipeline length and diameter and a 

coefficient of distance aggravation were considered. Pipeline design depends 

significantly on several factors like terrain characteristics (as they could increase the 

costs by 50% to 100% or more if the route is congested and/or heavily populated) and 

environmental constraints. Consequently, transport cost depends on the pipeline system 

configuration and on many other factors like the type of material, pumps, valves and 

compressors costs. The CO2 storage cost considered was the same for all storage areas. 

The storage costs are site-specific depending on the type of reservoir, location, depth 

and other characteristics of the storage reservoir formation and also depend on injection 

costs. The operation and maintenance costs also have to be considered in all the 

components of a CCS system – capture, transport and storage. 

Beyond the rough assumptions mentioned, not all the components of a CCS system 

could be considered. The assessment of CCS costs has to consider all components of the 

system: capture and compression, transport, injection and storage, including monitoring 

costs and remediation costs if necessary. The required environmental impact 

assessments also have to be a part of the overall equation. As a CCS system requires 

additional energy, this also has to be taken into account. 

Despite the present being a very rough estimate, it still allows a perception of the order 

of magnitude of what the costs of implementing a CCS system in mainland Portugal can 

be. The estimated costs can be seen as the minimal costs of implementing a CCS system 

in mainland Portugal. From a strictly economic point of view, CCS can only be a viable 

mitigation option when the cost of a tonne of CO2 on the carbon market is similar or 

higher than the cost of CCS per tonne of CO2. Assuming the estimated costs as the 

minimal costs of CCS in mainland Portugal, and considering the reference price of of 12 

€/tCO2e per tonne of CO2 on the KP flexibility mechanisms market (RCM1/2008), CCS 

is still far from being a viable mitigation option.  
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5 Conclusions 

The objective of this study was to analyze the hypotheses for the implementation of 

carbon capture and storage (CCS) systems in mainland Portugal based on source-sink 

matching. It has to be noticed that due to the lack of information, this is a very 

preliminary analysis. 

The performed analysis was based on the proximity of the sources and storage sites, 

which is just one of the criteria that involve the selection of CO2 storage sites and 

matching with CO2 sources. Still considering only the proximity criteria, the storage 

locations considered refer to areas because specific injection sites were not yet 

identified. From this analysis it is possible to conclude that several large point sources 

(LPS) are within or near the potential storage areas. By itself, this is an insufficient 

analysis but it can work as a base for future projects and studies. 

Estimating costs of implementing a CCS system in mainland Portugal was also 

attempted considering the identified LPS and storage areas. This cost estimate was a 

very rough exercise not only because of the predefined assumptions but also because 

only the costs of CO2 capture, transport and storage were considered. The cost estimate 

resulted in a CCS cost ranging from 31 €/tCO2 to 46 €/tCO2. Capture costs were 

responsible for the major part of the total costs. Transport costs are more significant for 

distances greater than 100 km and when the transportation investment costs are 

supported by a single LPS. 

Despite the cost estimate being rough, it allows us to have an idea of the order of 

magnitude of the costs of implementing a CCS system in mainland Portugal. It can be 

seen as the minimal costs of implementing a CCS system in mainland Portugal. 

Assuming the estimate costs as the minimal costs of CCS in mainland Portugal, and 

considering the reference price of a tonne of CO2 in the market of the Kyoto Protocol 

(KP) flexibility mechanisms at 12 €/tCO2e, CCS is still far from being a viable 

mitigation option.  

The current lack of information regarding geological storage sites is an important 

limitation to the assessment of implementing a CCS system in mainland Portugal.  

Further detailed studies are required, starting with geological site characterisation. 

However, the development of further studies depends on industries as these are the 
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major stakeholders. This implicates a deep characterisation of the candidate sources to 

CCS from technical aspects to environmental and economical factors. 

In relation to CO2 sources, the identification of LPS was based on the annual volume of 

CO2. A further characterisation of the purity and rate of the CO2 stream is necessary. 

These parameters are important not only for the selection of the capture process but also 

to transport and storage. The level of infrastructure for CO2 capture also has to be 

assessed, assessing whether a new plant should be installed or retrofitted to an existent 

one. The possibility to retrofit a capture system to the identified LPS will have to be 

assessed. Retrofitting may have some constraints relating to the availability of land for 

the capture equipment, the large investment of installing the equipment and the plant 

efficiency.  

None of the criteria related to the storage sites can be verified because there is no 

available information about these. For the areas identified as potential CO2 geological 

sinks to be considered suitable for CO2 storage, they will mandatorily have to meet the 

following requirements: capacity, injectivity, confinement and site and natural resources 

protection. Thus, each of the potential geological sites will have to be characterised in 

detail. The site characterisation involves a geological characterisation, predictive flow 

modelling, geochemical assessment, geomechanical assessment, risk assessment and 

monitoring programme design. In addition to sources and sinks characterisation, the 

infrastructure for CO2 transport also has to be assessed.  Other major variables have to 

be considered in the selection of CO2 storage sites and matching with CO2 sources: 

terrain and right of way, proximity to population centres, costs, environmental impacts, 

risk and safety. 

However, even beyond sources, transport and sinks characterisation and considering all 

the technical, environmental and safety aspects, many other components have to be 

assessed. The planning of a CCS system has to consider construction, operation, closure 

and post-closure phases. The implementation of a CO2 capture, transport and storage 

system requires additional energy, and there are emissions during the CCS chain. This 

means that the energy and emissions balance of a plant with and without a CCS system 

is crucial to properly evaluate its deployment.  

Costs are also an important factor. The assessment of CCS costs must consider all 

components of the system: capture and compression, transport, injection and storage, 

including monitoring costs and remediation costs if necessary. The required 
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environmental impact assessments have also to be part of the overall equation. As a 

CCS system requires additional energy, this also has to be taken into account. The costs 

of each component depend on several factors.  The impacts of the implementation of 

CCS on the cost of the final product and the cost of CO2 captured and avoided also have 

to be determined. From a strictly economic point of view, CCS can only be a viable 

mitigation option if the cost of a tonne of CO2 on the carbon market is similar or higher 

than the cost of CCS per tonne of CO2. 

There is no single solution to reduce CO2 emissions. The solution may consist in an 

integrated combination of the several mitigation measures available. CCS is one of the 

many mitigation measures available to reduce GHG emissions. Beyond all the rigorous 

criteria that CCS involves to determine whether it is a viable option or not, it has to be 

compared with other mitigation options. Some of the factors that have to be considered 

in this comparison are: the potential of CO2 emissions reduction, the available 

resources, the national emissions reduction commitments, the environmental impacts 

and the costs.  

There are still many challenges and barriers in the implementation of a CCS system. 

These challenges and barriers are not only of scientific and technical nature but also 

economical, legal, political and regulatory. Public attitude and acceptance as well as the 

determination of the CO2 storage capacity also constitute major challenges and barriers. 

Relating to the different CO2 storage reservoirs, many questions have not yet been 

answered. The behaviour of CO2 after injection and its geochemical interactions in the 

subsurface are not yet clarified. It is not known if CO2 can be injected safely, what its 

behaviour after injection is and what the effects and/or the risks of leakage are. CO2 

leakage constitutes a risk to health and ecosystems and can undermine mitigation 

efforts. 

One of the main constraints is the lack of legal and regulatory issues. Many of the 

existent legislations can be adapted and applied to CCS, but there is no existing 

legislation specific to CCS. CCS requires strong legal and regulatory guidelines. 

However, this is not a simple task, especially relating to ownership and access rights of 

underground geological formations and trans-boundary aspects are required. Another 

major concern relates to long-term liability: the determination of who will be 

responsible for the stored CO2 in the long term, for monitoring operations and 
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remediation measures in the post-closure phase. There are already several CCS projects 

worldwide that have been regulated on a case-by-case basis.  

The international community is developing efforts to overcome all these technical, 

scientific, legal and regulatory challenges and barriers. The EU is working on a CCS 

directive and planning several CCS pilot plants. The international climate targets can 

motivate the development and deployment of CCS. Within the international climate 

change framework, CCS is not explicitly included in or excluded from the United 

Nations Framework Convention on Climate Change (UNFCCC), and the same applies 

to the KP. One of the main discussions within the climate negotiations under the 

UNFCCC is the inclusion of CCS in Clean Development Mechanism (CDM).  

For now, there are more questions than answers. Further work is required to overcome 

all the challenges and barriers that have already been identified for CCS. This is 

imperative for the assessment of CCS viability. The establishment of strong 

international regulatory, legal and liability guidelines is determinant for the 

implementation of any CCS project.  

Portugal already exceeded its Kyoto target (a 27% increase of its GHG emissions in 

relation to 1990 in the 2008-2012 period). Thus it is necessary to understand which 

mitigation measures are available and can be more effective to reduce Portugal’s GHG 

emissions. At this stage, it is not possible to assess the potential for CCS in mainland 

Portugal. First, geological sites have to be characterised in detail. If suitable sites for 

CO2 geological storage are identified, it is necessary to identify the adequate sources, 

the infrastructures required for the CCS systems, the environmental impacts, the risks, 

safety, the costs and the impact on the national reduction of CO2 emissions. After this, 

CCS has to be weighted with the other mitigation options available. Although the 

performed analysis was based only on the proximity of the sources and storage sites, it 

provides a first integrated approach to the implementation of a CCS system in mainland 

Portugal. 
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7 Appendixes 

 
 
 
 
 
 
 
 
 
 

Appendix I - Selection of relevant provisions under the United Nations 
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Selection of relevant provisions under the United Nations Framework Convention 
on Climate Change and the Kyoto Protocol (IEA and OECD, 2005). 

 
United Nations Framework Convention on Climate 
Change 

Kyoto Protocol 

Article 1 Definitions 
For the purposes of this Convention: 
[…] 
3. "Climate system" means the totality of the 
atmosphere, hydrosphere, biosphere and geosphere 
and their interactions. 
[…] 
7. "Reservoir" means a component or components of 
the climate system where a greenhouse gas or a 
precursor of a greenhouse gas is stored. 
8. "Sink" means any process, activity or mechanism 
which removes a greenhouse gas, an aerosol 
or a precursor of a greenhouse gas from the 
atmosphere 

Article 2  
1. Each Party included in Annex I, in achieving its 
quantified emission limitation and reduction 
commitments under Article 3, in order to promote 
sustainable development, shall: 
(a) Implement and/or further elaborate policies and 
measures in accordance with its national 
circumstances, such as: 
(i) Enhancement of energy efficiency in relevant 
sectors of the national economy; 
(ii) Protection and enhancement of sinks and  
reservoirs of greenhouse gases not controlled 
by the Montreal Protocol, taking into account its 
commitments under relevant international 
environmental agreements; promotion of sustainable 
forest management practices, afforestation and 
reforestation; 
(iii) Promotion of sustainable forms of agriculture in 
light of climate change considerations; 
(iv) Research on, and promotion, development and 
increased use of, new and renewable forms of 
energy, of carbon dioxide sequestration technologies 
and of advanced and innovative environmentally 
sound technologies; 
(v) Progressive reduction or phasing out of market 
imperfections, fiscal incentives, tax and duty 
exemptions and subsidies in all greenhouse gas 
emitting sectors that run counter to the objective of 
the Convention and application of market 
instruments; 
(vi) Encouragement of appropriate reforms in 
relevant sectors aimed at promoting policies and 
measures which limit or reduce emissions of 
greenhouse gases not controlled by the Montreal 
Protocol; 
(vii) Measures to limit and/or reduce emissions of 
greenhouse gases not controlled by the Montreal 
Protocol in the transport sector; 
(viii) Limitation and/or reduction of methane 
emissions through recovery and use in waste 
management, as well as in the production, transport 
and distribution of energy; 
[…] 

Article 2 Objective 
The ultimate objective of this Convention and any 
related legal instruments that the Conference 
of the Parties may adopt is to achieve, in accordance 
with the relevant provisions of the Convention, 
stabilization of greenhouse gas concentrations in the 
atmosphere at a level that would prevent 
dangerous anthropogenic interference with the climate 
system. Such a level should be achieved 
within a time-frame sufficient to allow ecosystems to 
adapt naturally to climate change, to ensure 
that food production is not threatened and to enable 

Article 3  
1. The Parties included in Annex I shall, individually 
or jointly, ensure that their aggregate anthropogenic 
carbon dioxide equivalent emissions of the  
greenhouse gases listed in Annex A do not exceed 
their assigned amounts, calculated pursuant to their 
quantified emission limitation and reduction 
commitments inscribed in Annex B and in 
accordance with the provisions of this Article, with a 
view to reducing their overall emissions of such 
gases by at least 5 per cent below 1990 levels in the 
commitment period 2008 to 2012. 
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economic development to proceed in a 
sustainable manner. 

2. Each Party included in Annex I shall, by 2005, 
have made demonstrable progress in achieving its 
commitments under this Protocol. 
3. The net changes in greenhouse gas emissions by 
sources and removals by sinks resulting from direct 
human-induced land-use change and forestry 
activities, limited to afforestation, reforestation and 
deforestation since 1990, measured as verifiable 
changes in carbon stocks in each commitment 
period, shall be used to meet the commitments under 
this Article of each Party included in Annex I. The 
greenhouse gas emissions by sources and removals 
by sinks associated with those activities shall be 
reported in a transparent and verifiable manner and 
reviewed in accordance with Articles 7 and 8. 
4. Prior to the first session of the Conference of the 
Parties serving as the meeting of the Parties to this 
Protocol, each Party included in Annex I shall 
provide, for consideration by the Subsidiary Body 
for Scientific and Technological Advice, data to 
establish its level of carbon stocks in 1990 and to 
enable an estimate to be made of its changes in 
carbon stocks in subsequent years.  The Conference 
of the Parties serving as the meeting of the Parties to 
this Protocol shall, at its first session or as soon as 
practicable thereafter, decide upon modalities, rules 
and guidelines as to how, and which, additional 
human-induced activities related to changes in 
greenhouse 
gas emissions by sources and removals by sinks in 
the agricultural soils and the land-use change and 
forestry categories shall be added to, or subtracted 
from, the assigned amounts for Parties included in 
Annex I, taking into account uncertainties, 
transparency in reporting, verifiability, the 
methodological work of the Intergovernmental Panel 
on Climate Change, the advice provided 
by the Subsidiary Body for Scientific and 
Technological Advice in accordance with Article 5 
and the decisions of the Conference of the Parties. 
Such a decision shall apply in the second and 
subsequent commitment periods. A Party may 
choose to apply such a decision on these additional 
human-induced activities for its first commitment 
period, provided that these activities have taken 
place since 1990. 
[…] 

Article 3 Principles 
1. Each Party included in Annex I shall have in place, 
no later than one year prior to the start of 
the first commitment period, a national system for the 
estimation of anthropogenic emissions 
by sources and removals by sinks of all greenhouse 
gases not controlled by the Montreal Protocol. 
Guidelines for such national systems, which shall 
incorporate the methodologies specified in 
paragraph 2 below, shall be decided upon by the 
Conference of the Parties serving as the 
meeting of the Parties to this Protocol at its first 
session. 
2. G-Methodologies for estimating anthropogenic 
emissions by sources and removals by sinks of 
all greenhouse gases not controlled by the Montreal 

Article 5 
1. Each Party included in Annex I shall have in 
place, no later than one year prior to the start of 
the first commitment period, a national system for 
the estimation of anthropogenic emissions 
by sources and removals by sinks of all greenhouse 
gases not controlled by the Montreal Protocol. 
Guidelines for such national systems, which shall 
incorporate the methodologies specified in paragraph 
2 below, shall be decided upon by the Conference of 
the Parties serving as the meeting of the Parties to 
this Protocol at its first session. 
2. G-Methodologies for estimating anthropogenic 
emissions by sources and removals by sinks of 
all greenhouse gases not controlled by the Montreal 
Protocol shall be those accepted by the 
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Protocol shall be those accepted by the 
Intergovernmental Panel on Climate Change and 
agreed upon by the Conference of the Parties 
at its third session. Where such methodologies are not 
used, appropriate adjustments shall be 
applied according to methodologies agreed upon by 
the Conference of the Parties serving as 
the meeting of the Parties to this Protocol at its first 
session. Based on the work of, inter alia, 
the Intergovernmental Panel on Climate Change and 
advice provided by the Subsidiary Body 
for Scientific and Technological Advice, the 
Conference of the Parties serving as the meeting 
of the Parties to this Protocol shall regularly review 
and, as appropriate, revise such methodologies 
and adjustments, taking fully into account any relevant 
decisions by the Conference of the 
Parties. Any revision to methodologies or adjustments 
shall be used only for the purposes of 
ascertaining compliance with commitments under 
Article 3 in respect of any commitment period adopted 
subsequent to that revision. 
[…] 

Intergovernmental Panel on Climate Change and 
agreed upon by the Conference of the Parties at its 
third session. Where such methodologies are not 
used, appropriate adjustments shall be applied 
according to methodologies agreed upon by the 
Conference of the Parties serving as the meeting of 
the Parties to this Protocol at its first session. Based 
on the work of, inter alia, the Intergovernmental 
Panel on Climate Change and advice provided by the 
Subsidiary Body for Scientific and Technological 
Advice, the Conference of the Parties serving as the 
meeting of the Parties to this Protocol shall regularly 
review and, as appropriate, revise such 
methodologies and adjustments, taking fully into 
account any relevant decisions by the Conference of 
the Parties. Any revision to methodologies or 
adjustments shall be used only for the purposes of 
ascertaining compliance with commitments under 
Article 3 in respect of any commitment period 
adopted subsequent to that revision. 
[…] 

Article 4 Commitments 
1. All Parties, taking into account their common but 
differentiated responsibilities and their specific 
national and regional development priorities, 
objectives and circumstances, shall: 
(a) Develop, periodically update, publish and make 
available to the Conference of the Parties, in 
accordance with Article 12, national inventories of 
anthropogenic emissions by sources and removals by 
sinks of all greenhouse gases not controlled by the 
Montreal Protocol, using comparable methodologies 
to be agreed upon by the Conference of the Parties; 
(b) Formulate, implement, publish and regularly 
update national and, where appropriate, regional 
programmes containing measures to mitigate climate 
change by addressing anthropogenic emissions by 
sources and removals by sinks of all greenhouse gases 
not controlled by the Montreal Protocol, and measures 
to facilitate adequate adaptation to 
climate change; 
[…] 
(d) Promote sustainable management, and promote 
and cooperate in the conservation and 
enhancement, as appropriate, of sinks and reservoirs 
of all greenhouse gases not controlled by the Montreal 
Protocol, including biomass, forests and oceans as 
well as other terrestrial, coastal and marine 
ecosystems; 
[…] 
2. The developed country Parties and other Parties 
included in Annex I commit themselves 
specifically as provided for in the following: 
(a) Each of these Parties shall adopt national1 policies 
and take corresponding measures on the mitigation of 
climate change, by limiting its anthropogenic 
emissions of greenhouse gases and protecting and 
enhancing its greenhouse gas sinks and reservoirs 
[…]. 
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Appendix II –  List of the mainland Portugal installations included in the 
National Allocation Plan II (2008-2012) 
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Sector Subsector Instalação Operador LE (tCO2/ano) 
Central Termoeléctrica do Pego Tejo Energia, Produção e Distribuição de Energia Eléctrica, S.A. 2723011 

Carvão 
Central Termoeléctrica de Sines CPPE - Companhia Portuguesa de Produção de Electricidade 5833317 

Biomassa Central Termoeléctrica de Mortágua O&M Serviços S..A. 1153 

Central Termoeléctrica do Ribatejo Companhia Portuguesa de Produção de Electricidade 1423103 
CCGT 

Central de Ciclo Combinado da Tapada do Outeiro Turbogás - Produtora Energética, S.A. 1198020 

Central Termoeléctrica do Carregado Companhia Portuguesa de Produção de Electricidade 377234 

Central Termoeléctrica do Barreiro Companhia Portuguesa de Produção de Electricidade 138977 Fuel 

Central Termoeléctrica de Setúbal Companhia Portuguesa de Produção de Electricidade 1118999 

E/Centrais Termoeléc. 

Gasóleo Central Termoeléctrica de Tunes Companhia Portuguesa de Produção de Electricidade 4537 

Refinaria de Sines Petróleos de Portugal - Petrogal S.A. 2137550 
E/Refinação Refinção 

Refinaria do Porto Petróleos de Portugal - Petrogal S.A. 1098025 

Unicer - Central de Produção combinada de calor e electricidade UNICER, Energia e Ambiente, S.A. 33560 

Unicer - Central de Produção combinada de calor e electricidade UNICER, Energia e Ambiente, S.A. 10982 

CTE - Central Termoeléctrica do Estuário, Lda. CTE - Central Termoeléctrica do Estuário, Lda. 22905 

Companhia Térmica Tagol, Lda Companhia Térmica Tagol, Lda 41603 

RAR-Cogeração Unipessoal Lda RAR-Cogeração Unipessoal Lda 50577 

DAI, Sociedade de Desenvolvimento AgroIndustrial, S.A. DAI, Sociedade de Desenvolvimento AgroIndustrial, S.A. 84008 

Agroalimentar 

POWERCER GALP POWER, SGPS, S.A. 47192 

Siaf - Sociedade de Iniciativa e Aproveitamentos Siaf - Sociedade de Iniciativa e Aproveitamentos 19480 

Enercaima - Produção de Energia, S.A. Enercaima - Produção de Energia, S.A. 53147 

Enerbeira - Recursos Energéticos Lda. Enerbeira - Recursos Energéticos Lda. 41028 

Sonae Indústria - Produção e Comercialização de Derivados Sonae Indústria - Produção e Comercialização de Derivados 28953 

de Madeira, S. A. - Oliveira do Hospital de Madeira, S.A.   

Agroflorestal 

(Casca Sociedade de Revestimentos, S.A)     

SOPORGEN - Sociedade Portuguesa de Geração de 239306 
Central de Cogeração da Soporgen 

Electridade e Calor, S.A.   

ENERPULP - Cogeração Energética de Pasta, S.A. (Setúbal) ENERPULP - Cogeração Energética de Pasta, S.A. 65832 

SPCG - Sociedade Portuguesa de Cogeração Eléctrica, S.A SPCG - Sociedade Portuguesa de Cogeração Eléctrica, S.A 156 099 

ENERPULP Lavos ENERPULP - Cogeração Energética de Pasta, S.A. 85807 

Central de Cogeração de CACIA ENERPULP - Cogeração Energética de Pasta, S.A. 98590 

Caima Energia: Constância Caima - Energia, Empresa de Gestão e Exploração de Energia, S.A. 13476 

Pasta e papel 

Portucel Viana Energia Portucel Viana Energia 206091 

E/Cogeração 

Químico Central de Cogeração da Energin ENERGIN - Sociedade de Produção de Electricidade e Calor, S.A. 225955 
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Bamiso BAMISO - Produção e Serviços Energéticos, S.A. 53613 

Selenis Energia, S.A Selenis Energia, S.A 51079 

Carriço Cogeração GALP POWER, SGPS, S. A. 161539 

REPSOL - Central Termoeléctrica Repsol - Produção de Electricidade e Calor, ACE 411058 

ENERLOUSADO - Recursos Energéticos Lda ENERLOUSADO - Recursos Energéticos Lda  42469 

Saramagos Saramagos - Soc.Prod.Energia, S.A. 56675 

Lameirinho Recursos Energéticos S.A. Lameirinho Recursos Energéticos S.A. 38617 

SEVA - Central de produção combinada de calor e electricidade SEVA - Sociedade Energética de Valdante, S.A. 29835 

SPE-Sociedade de Produção de Electricidade e Calor, S.A. SPE-Sociedade de Produção de Electricidade e Calor, S.A. 46027 

Fábrica do Arco - Recursos Energéticos, S.A. Fábrica do Arco - Recursos Energéticos, S.A. 26643 

Companhia Térmica do Serrado, ACE Companhia Térmica do Serrado, ACE 17712 

Companhia Térmica Oliveira Ferreira, ACE Companhia Térmica Oliveira Ferreira, ACE 11421 

Companhia Térmica Mundo Textil, ACE Companhia Térmica Mundo Textil, ACE 20938 

Têxtil 

MABERA - Acabamentos Têxteis, S.A. MABERA - Acabamentos Têxteis, S.A. 13569 

Extracção de mat.min. Unidade de Cogeração (Adelino Duarte da Mota) Adelino Duarte da Mota, S.A 48733 

Vários Central de Cogeração do Parque das Nações Climaespaço - Soc. Prod.Distrib.Urb.Energia Térmica, S.A. 29259 

Tagol - Companhia de Oleaginosas do Tejo S.A Tagol - Companhia de Oleaginosas do Tejo S.A 24328 

TATE & LYLE Açúcares de Portugal  TATE & LYLE Açúcares de Portugal  38654 

(ex-Alcântara - Refinarias Açúcares, S.A.) (ex-Alcântara - Refinarias Açúcares, S.A.) 18861 

Fábrica de Avanca  Nestlé Portugal, S.A. 31714 

Fábrica de Benavente  Indústrias de Alimentação IDAL, Lda 24930 

COMPAL - Central Térmica  COMPAL - Companhia Produtora de Conservas Alimentares 13374 

Rogério Leal & Filhos, S.A. Rogério Leal & Filhos, S.A. 14765 

Instalação de Combustão (Avilafões)  Avilafões - Aviários de Lafões Lda. 4195 

SUGAL - Alimentos, S.A. SUGAL - Alimentos, S.A. 15678 

LACTOGAL - Produtos Alimentares, S.A. LACTOGAL - Produtos Alimentares, S.A. 11829 

SOPRAGOL - Soc. Indust.Prod.Agríc S.A: SOPRAGOL - Soc.Ind.Prod. Agrícolas,S.A. 8732 

CAMPIL Agro Industrial do Campo do Tejo, Lda CAMPIL Agro Industrial do Campo do Tejo, Lda 5376 

F.I.T. - Fomento da Indústria de Tomate, S.A. F.I.T. - Fomento da Indústria de Tomate, S.A. 9667 

Tomsil - Soc. Ind. Conc.Tomate, S.A. Tomsil - Soc.Ind. Conc. Tomate, S.A. 2112 

ITALAGRO - Ind. Transformação AlimentarS.A. ITALAGRO - Indústria de Transformação Alimentar, S.A. 12175 

COPAM - Indústria de amidos e derivados COPAM - Companhia Portuguesa de Amidos, S.A. 13997 

Ind. Agroalimentar 

Fromageries Bel Portugal S.A. Fromageries Bel Portugal S.A. 14717 

E/Inst. de Combustão 

Ind. Agroflorestal Luso Finsa - Indústria e Comercio de Madeiras S.A. Luso Finsa - Indústria e Comercio de Madeiras S.A. 4426 
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JOMAR - I ndústrias JOMAR - Madeiras e Derivados JOMAR - I ndústrias JOMAR - Madeiras e Derivados 14945 

I.F.M. - Indústria de Fibras de Madeira, S.A. I.F.M. - Indústria de Fibras de Madeira, S.A. 10097 

Ind. Met. Ferrosos Lusosider - Aços Planos, S.A. Lusosider - Aços Planos, S.A. 29849 

Quimigal - produção de anilina e derivados e cloro alcalis Quimigal, Quimica de Portugal, S.A. 32856 

UFAA-Unidade Fabril de Adubos de Alverca  ADP-Adubos de Portugal, S.A. 8264 

DOW - Fabrico de matérias plásticas sob formas primárias - DOW Portugal, Produtos Químicos, SUL 48149 

UFAL - Unidade Fabril do Lavradio AP - AMONÍACO DE PORTUGAL, S.A. 120846 

REPSOL Polímeros, Lda - Fábrica de Olefinas REPSOL Polímeros, Lda - Fábrica de Olefinas 620936 

CIPAN - Companhia Industrial Produtora de Antibióticos, S.A. CIPAN - Companhia Industrial Produtora de Antibióticos, S.A. 5909 

CARBOGAL - Carbonos de Porugal, S.A. CARBOGAL - Carbonos de Porugal, S.A. 119804 

Termolan 1 - Vila de Aves TERMOLAN 14504 

Ind. Química 

Termolan 2 - Santo Tirso TERMOLAN 19065 

Riopele  Fábrica Têxtil Riopele, S.A. 4781 

Arco Têxteis, S..A. Arco Têxteis, S..A. 7088 

TMG - Acabamentos Têxteis TMG - Acabamentos Têxteis 17197 

Tinturaria e Acabamentos de Tecidos, Vale de Tábuas, Lda. Tinturaria e Acabamentos de Tecidos, Vale de Tábuas, Lda. 8143 

Coelima Indústrias Têxteis, S.A. Coelima Indústrias Têxteis, S.A. 13624 

ATB-Acabamentos Têxteis de Barcelos, Lda ATB-Acabamentos Têxteis de Barcelos, Lda 6484 

Ind. Têxtil 

Malhas Eica Malhas Eica 5274 

Tabaqueira, S.A. Tabaqueira, S.A. 5833 
Outros 

Iberol - Sociedade Ibérica de Oleaginosas, S.A. Iberol - Sociedade Ibérica de Oleaginosas, S.A. 39488 

Fábrica do Seixal da SN Seixal Siderurgia  Nacional, S.A SN Seixal Siderurgia  Nacional, S.A 197292 
Metais ferrosos Metais ferrosos 

Fábrica da Maia da SN Maia - Siderurgia Nacional, S.A. Fábrica da Maia da SN Maia - Siderurgia Nacional, S.A. 138144 

Microlime, Lda  Microlime - Produtos de Cal e Derivados, Lda 37767 

Calcidrata  Calcidrata - Indústrias de Cal, S.A. 87982 

Manuel Piedade Batista e Irmão, Lda Manuel Piedade Batista e Irmão, Lda 17039 
Cal 

LUSICAL - Indústria Mineral-Calcinação de Calcários Lusical - Companhia Lusitana de Cal S.A 321234 

Secil Martingança, Lda Secil Martingança, Lda (1) 15718 

Fábrica de Cal Hidráulica do Cabo Mondego da CIMPOR – Indústria  50886 
Fábrica de Cal Hidráulica do Cabo Mondego 

de Cimentos, S.A.   

Fábrica Maceira-Liz  CMP - Cimentos Maceira e Pataias, S.A. (1) 762823 

Fábrica Secil-Outão  SECIL - Companhia Geral de Cal e Cimento, S.A. (1) 1489648 

Centro de Produção de Alhandra  Centro de Produção de Alhandra da CIMPOR – Indústria de Cimentos, S.A. 1748681 

Cimentos e Cal 

Cimentos 

Centro de Produção de Loulé Centro de Produção de Loulé da CIMPOR – Indústria de Cimentos, S.A. 503429 
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Centro de Produção de Souselas Centro de Produção de Souselas da CIMPOR – Indústria de Cimentos, S.A. 1750901 

Fábrica Cibra-Pataias  CMP - Cimentos Maceira e Pataias, S.A. (1) 421805 

Saint-Gobain Mondego, S.A. Saint-Gobain Mondego, S.A. 84342 

RICARDO GALLO - Vidro de Embalagem, S.A. RICARDO GALLO - Vidro de Embalagem, S.A. 96530 

Santos Barosa Vidros, S.A.  Santos Barosa Vidros, S.A 154633 

Fábrica da Marinha Grande BA- Fábrica de Vidros Barbosa & Almeida, S.A. 147401 

Fábrica de Avintes   79213 

Embalagem 

Sotancro, embalagem de vidro, S.A. Sotancro, embalagem de vidro, S.A. 58476 

Fábrica de Vidros  Dâmaso-Vidros de Portugal, S.A. 12519 
Outros (cristalaria) 

Crisal - Cristalaria Autmoática, S.A.  Crisal - Cristalaria Autmoática, S.A 37746 

Vidro 

Plano Saint-Gobain Glass Portugal, Vidro Plano, S.A. Saint-Gobain Glass Portugal, Vidro Plano, S.A. 96177 

Integrado (papel) Soporcel SOPORCEL - Sociedade Portuguesa de Papel, S.A. 56467 

Portucel - Fábrica de Pasta de Setúbal PORTUCEL - Empresa Produtora de Pasta e Papel, S.A. 35646 
Pasta e papel 

(Complexo Industrial de Setúbal da Portucel)     

CELBI CELBI 62580 

Caima - Indústria de Celulose: Constância Caima Indústria de Celulose, S.A. 0 

Fábrica de CACIA PORTUCEL - Empresa Produtora de Pasta e Papel, S.A. 32608 
Pasta 

CELTEJO - Empresa de Celulose do Tejo S.A. CELTEJO - Empresa de Celulose do Tejo S.A. 34079 

Fábrica de Papel de Ponte Redonda  Manuel José de Oliveira & Cª Lda 4881 

Companhia de Cartões do Cávado, S.A. Companhia de Cartões do Cávado, S.A. 3160 

Sociedade Transformadora de Papéis Vouga, Lda Sociedade Transformadora de Papéis Vouga, Lda 3470 

Fapovar - Fábrica de Papel de Ovar, S.A. Fapovar - Fábrica de Papel de Ovar, S.A. 3371 

Fábrica de Papel e Cartão da Zarrinha, S.A. Fábrica de Papel e Cartão da Zarrinha, S.A. 8769 

Oliveira Santos & Irmão, Lda Oliveira Santos & Irmão, Lda 2414 

António Marques, Lda António Marques, Lda 4407 

Fapajal - Fábrica de papel do Tojal, S.A. Fapajal - Fábrica de papel do Tojal, S.A. 11503 

CPK - Companhia Produtora de Papel Kraftsack, S.A. CPK - Companhia Produtora de Papel Kraftsack, S.A. 0 

Luís Santos & Monteiro, S.A. Luís Santos & Monteiro, S.A. 5274 

Renova - Fábrica 2 Renova - Fábrica de Papel do Almonda, S.A. 27990 

Joaquim Mariz de Carvalho,& CA, Lda Joaquim Mariz de Carvalho,& CA, Lda 2090 

Renova - Fábrica 1 Renova - Fábrica de Papel do Almonda, S.A. 11561 

Portucel Viana Portucel Viana, Empresa Produtora de Papéis Industriais, S.A. 20673 

Fábrica de Papel da Lapa, Lda Fábrica de Papel da Lapa, Lda 3424 

Pasta e Papel 

Papel 

Papeleira Portuguesa, S.A. Papeleira Portuguesa, S.A. 9624 
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Cemopol Celuloses Moldadas Portuguesas, Lda Cemopol Celuloses Moldadas Portuguesas, Lda 10529 

Gopaca - Fábrica de Papel e Cartão, S.A. Gopaca - Fábrica de Papel e Cartão, S.A. 0 

Prado-Cartolinas da Lousã, S..A. Prado-Cartolinas da Lousã, S..A. 0 

Prado Karton  Prado Karton - Companhia de Cartão, S.A. 16382 

ILHAVENSE - Soc. Industrial de Papel, Lda ILHAVENSE - Soc. Industrial de Papel, Lda 4040 

FAPULME - Fábrica de Papel do Ulme, Lda FAPULME - Fábrica de Papel do Ulme, Lda 13378 

Cerâmica Outeiro do Seixo, S.A. Cerâmica Outeiro do Seixo, S.A. 10689 

CONSTRUCER - Cerâmica de Construção, S.A. CONSTRUCER - Cerâmica de Construção, S.A. 408 

CEPABIL - Cerâmica de Tijolos e Pavimentos, S.A. CEPABIL - Cerâmica de Tijolos e Pavimentos, S.A. 9489 

Cetipal - Cerâmica de Tijolos e Pavimentos, S.A. Cetipal S.A. 7471 

Cerâmica F. Santiago, Lda. Cerâmica F. Santiago, Lda. 10062 

Cerâmica de Santo André Cersan 2 - Cerâmica de Coruche, Lda. 196 

A. Silva & Silva - Cerâmica, S.A. A. Silva & Silva - Cerâmica, S.A. 6528 

Cerâmica Vala, Lda Cerâmica Vala, Lda 3714 

Cerâmica Certrês, Lda. Cerâmica Certrês, Lda. 218 

Cerâmica Rosário S.A. Cerâmica Rosário S.A. 8913 

Inacer - Indústria Nacional de Cerâmica, Lda. Cerâmica das Quintãs, Lda. 8541 

Cerâmica das Quintãs, Lda. Cerâmica das Quintãs, Lda. 10765 

Cerâmica Domingos F. Anacleto, S.A. Cerâmica Domingos F. Anacleto, S.A. 3402 

Cerâmica de Ferreirós, Lda. Cerâmica de Ferreirós, Lda. 6218 

A Telheira de Chaves, Lda.  A Telheira de Chaves, Lda. 6619 

Sociedade Cerâmica Silmar, S.A. Sociedade Cerâmica Silmar, S.A. 4616 

Cerâmica do Centro, Lda. Cerâmica do Centro, Lda. 8605 

Faceal - Fábrica de Cerâmica do Algarve Faceal - Fábrica de Cerâmica do Algarve 6323 

Cerâmica do Boialvo, Lda. Cerâmica do Boialvo, Lda. 7045 

J. Coelho da Silva, Lda. J. Coelho da Silva, Lda. 15211 

Sociedade Cerâmica do Alto, Lda Sociedade Cerâmica do Alto, Lda 9218 

Cerâmica Castros, S.A. Cerâmica Castros, S.A. 8079 

Cerâmica Flaviense, Lda. Cerâmica Flaviense, Lda. 3857 

Empresa Cerâmica Cervar, S.A. Empresa Cerâmica Cervar, S.A. 9314 

M. A. Lopes D'Avó, Lda M. A. Lopes D'Avó, Lda 6048 

Cerâmica do Salvadorinho, S.A. Cerâmica do Salvadorinho, S.A. 3485 

Cerâmica Torreense - F4+F5 Cerâmica Torreense 13367 

Cerâmica Tijolos, telhas, ac. 

Cerâmica da Floresta, Lda Cerâmica da Floresta, Lda 5924 
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Cerâmica Estrela D'Alva Barbosa Coimbra, S.A. 4418 

Cerâmica Moderna do Olival Cerâmica Moderna do Olival 1424 

Tijolar - Cerâmica do Olival S.A. Tijolar - Cerâmica do Olival S.A. 4276 

Cerâmica Avelar, S..A. Cerâmica Avelar, S..A. 15671 

Cer. Prélis (ex.- J. Monteiro e Filhos) Cer. Prélis (ex.- J. Monteiro e Filhos) 7793 

LUSOCERAM - Unidade Industrial de Bustos LUSOCERAM - Empreendimentos Cerâmicos, S.A. 23703 

LUSOCERAM - Unidade Industrial do Ramalhal LUSOCERAM - Empreendimentos Cerâmicos, S.A. 10501 

LUSOCERAM - Unidade Industrial do Outeiro LUSOCERAM - Empreendimentos Cerâmicos, S.A. 46112 

Nergal  Nergal - Nova Cerâmica Algarvia Lda. 5116 

F. S. e Cerâmica Amaro de Macedo, S.A. F. S. e Cerâmica Amaro de Macedo, S.A. 3306 

Cerâmica Vicente e Filhos, Lda Cerâmica Vicente e Filhos, Lda 5446 

Campos- Fábricas Cerâmicas, S.A. Campos- Fábricas Cerâmicas, S.A. 18019 

Cerâmica Sotelha, S.A. Cerâmica Sotelha, S.A. 12987 

A Tijoleira Central de Estarreja, Lda A Tijoleira Central de Estarreja, Lda 5068 

CERAVE - Cerâmica Avelense, S.A. CERAVE - Cerâmica Avelense, S.A. 356 

Cerâmica Condestável, Lda Cerâmica Condestável, Lda 7179 

Cerâmica das Alhadas, S.A. Cerâmica das Alhadas, S.A. 7775 

Empresa de Cerâmica da Carriça, S.A. Empresa de Cerâmica da Carriça, S.A. 5546 

Cosbar  Cosbar - Cerâmica do Barlavento, S.A. 7065 

Abílio Duarte da Mota & Filhos, Lda Abílio Duarte da Mota & Filhos, Lda 12799 

Abílio Duarte da Mota, Lda Abílio Duarte da Mota, Lda 6006 

Cerâmica do Planalto - Variz Cerâmica do Planalto, Lda. 11656 

Unidade Industrial da Chamusca Faceril - Fábrica de Cerâmica do Ribatejo, S.A. 4348 

Unidade Industrial de Mortágua Cerâmica Vale da Gândara, S..A. 6210 

Martelha, Lda  Martelha - Cerâmica de Martingança, Lda 6107 

Cerâmica de Pegões  Cerâmica de Pegões - J. G. Silva, S.A. 6339 

CERPOL - Empresa Cerâmica Portugal, S.A. CERPOL - Empresa Cerâmica Portugal, S.A. 5901 

Cerâmica da Cruz do Campo  Iberoceram 8623 

Cerâmica Central do Algoz, Lda Cerâmica Central do Algoz, Lda 4206 

Cerâmica Torreense - F3 Cerâmica Torreense  9771 

Grésil Grésil 1852 

Lusotelha, Telhas e Tijolos de Águeda, Lda. Lusotelha, Telhas e Tijolos de Águeda, Lda. 6200 

Cerâmica Ulmense, Lda Cerâmica Ulmense, Lda 7310 

ECC - Empresa Cerâmica de Candosa, Lda ECC - Empresa Cerâmica de Candosa, Lda 703 
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Preceram - Cerâmica 1 Preceram - Indústrias de Construção S.A. 20299 

Preceram - Cerâmica 2 Preceram - Indústrias de Construção S.A. 14264 

Preceram Norte (ex. Fabricel) Preceram - Norte, Cerâmicas, S.A. 12801 

Tijolágueda - Cerâmica de Águeda - Lda Tijolágueda - Cerâmica de Águeda - Lda 16547 

Placfort - Empresa de Pre-esforçados, S.A. Placfort - Empresa de Pre-esforçados, S.A. 347 

Soladrilho, S.A. Soladrilho, S.A. 13052 
Pisos e azulejos 

Grestejo, Indústrias Cerâmicas, S.A. Grestejo, Indústrias Cerâmicas, S.A. 6201 
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