

DEPARTAME	TO DE E	GE	HARIA ELECTROTÉC	ICA

DDPPWWSS MMIIDDDDLLEEWWAARREE TTOO SSUUPPPPOORRTT AAGGEENNTT--
BBAASSEEDD MMAANNUUFFAACCTTUURRIINNGG CCOONNTTRROOLL AANNDD

SSIIMMUULLAATTIIOONN

POR

RUI RODRIGUES MILAGAIA

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade

Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica

e de Computadores

ORIENTADOR: PROF. JOSÉ ANTÓNIO BARATA OLIVEIRA

LISBOA

2009

To my father, mother and sister

- 1 -

Acknowledgements

I would like to thank all the people that made this work possible. The invaluable

coordination provided by Prof. José António Barata de Oliveira, Dr. Armando Walter

Colombo, Dr. Ronald Shoop and Dr. Ralf Neubert. Eng. Axel Bepperling that led me closely

for the first 6 months and let me follow some dreams while keeping my feet on the ground.

Daniel Cachapa Vieira, old friend that helped me through a lot of difficult situations, personal

and work wise. Prof. Martin Feike for his precious help with the 3D Simulation Software

QUEST. All the Schneider Electric Seligenstadt HUB staff that were always available

whenever help was needed. My friends and colleagues in Portugal with whom I shared

countless ideas and worries, Pedro Miguel Faleiro and José Eduardo Cerqueira dos Santos.

And my family and girlfriend that, although could not understand what I was talking about,

always listened.

- 2 -

Sumário

O grande desafio que se coloca hoje em dia aos sistemas de manufactura é o

desenvolvimento de soluções altamente reconfiguráveis verdadeiramente distribuídas. A

tendência actual é cada vez mais os sistemas de manufactura serem construídos através de

componentes autónomos, inteligentes e distribuídos que irão suportar as funcionalidades de

reconfigurabilidade e adaptabilidade. Os paradigmas que se apresentam como mais

promissores para a implementação deste tipo de sistemas são os multiagentes e as

arquitecturas de serviços (SOA – Service Oriented Architecture), nomeadamente através da

implementação DPWS – Device Profile for Web Services, que se destina essencialmente a

dispositivos.

Uma das limitações importantes nos sistemas de multi-agentes mais utilizados hoje em

dia é o facto do sistema que gere os agentes não ser totalmente distribuído. Na verdade, uma

falha no agente responsável pelo registo dos agentes coloca imediatamente em causa o

funcionamento do sistema. O DPWS, por seu lado, não apresenta esta limitação, uma vez que

o sistema de gestão dos serviços presentes é completamente distribuído. No entanto o DPWS

não suporta tão eficientemente as noções de autonomia presentes nos agentes.

A possibilidade de tornar sistemas de multi-agentes verdadeiramente distribuídos

juntando ambas as abordagens levou à elaboração desta tese. Foi desenvolvida uma camada

middleware que permite aos agentes utilizarem as funcionalidades DPWS para atingiram o

objectivo proposto. Esta camada middleware interliga agentes, bases de dados, hardware,

simuladores, aplicações de manutenção, correcção de erros e gestão de produção, etc.

Qualquer entidade que participe num sistema de produção pode ter uma interface DPWS. Para

provar o conceito foi desenvolvido um modelo 3D de um sistema de manufactura com

transportadores que é controlado por agentes que comunicam através de DPWS.

Palavras-chave: Arquitectura Orientada aos Serviços, Sistemas de Multi-Agentes,

Device Profile for Web Services (DPWS), Sistemas de Manufactura Reconfiguráveis,

Manufactura Ágil.

- 3 -

Abstract

In present manufacturing systems, the current challenge is the development of highly

reconfigurable, truly distributed solutions. The tendency is to build manufacturing systems

with autonomous, intelligent and distributed components that will support reconfiguration and

adaptability. The most promising paradigms for the implementation of such systems are

multi-agents and service oriented architectures (SOA), mainly over the DPWS (Device Profile

for Web Services) implementation which was aimed at devices.

An important limitation of most current multi-agent systems is that the management

system is not totally distributed. Failure in the agent responsible for the registry can

overthrow the entire system. DPWS does not have this limitation, since the management

system is totally distributed. However, DPWS does not support agent autonomy notions as

efficiently.

The possibility of creating a truly distributed multi-agent system by linking both

approaches led to this thesis. A Middleware layer was developed that enables agents to benefit

from DPWS functionalities in order to reach the proposed goal. This middleware layer joins

agents, databases, hardware, simulators, human interface applications such as production

system management, error correction and maintenance, etc. To prove this concept a 3D model

of an agent controlled manufacturing system with transporters augmented with DPWS

communication interfaces was developed.

Key-Words: Service Oriented Architecture (SOA), Multi Agent System (MAS),

Device Profile for Web Services (DPWS), Reconfigurable Manufacturing System, Agile

Manufacturing.

- 4 -

Glossary of Abbreviations

ACL Agent Communication Language

BDI Belief Desire Intention

BMS Bionic Manufacturing Systems

DCOM Distributed Component Object Model

DPWS Device Profile for Web Services

EAS Evolvable Assembly Systems

EPS Evolvable Production Systems

FIPA The Foundation for Intelligent Physical Agents

HMS Holonic Manufacturing System

MAS Multi Agent System

OWL Web Ontology Language

RMS Reconfigurable Manufacturing System

SCL Simulation Control Language

SOA Service Oriented Architecture

UUID Universally Unique IDentifier

WSDL Web Service Description Language

XML eXtensible Markup Language

- 5 -

Table of Contents

1 INTRODUCTION ..11

1.1 THESIS OUTLINE .. 13

2 STATE OF THE ART & BASIC CONCEPTS...14

2.1 AGENCY ... 16

2.2 MULTI-AGENT SYSTEM (MAS) .. 19

2.3 SERVICE-ORIENTED ARCHITECTURE (SOA).. 22

2.4 MANUFACTURING PARADIGMS ... 25

2.5 SOA IN MAS .. 26

3 DPWS MIDDLEWARE ARCHITECTURE ...30

3.1 INTRODUCTION .. 32

3.2 WHY A DPWS SYSTEM ... 32

3.3 PROPOSED ARCHITECTURE ... 34

3.3.1 Overview .. 36

3.3.2 System Entities .. 37

3.3.2.1 Agent Middleware ...38

3.3.2.2 Server Middleware ..38

3.3.2.3 Client Middleware ...39

3.3.3 How It Works ... 39

3.3.3.1 DPWS STACK LAYER ...40

3.3.3.2 DPWS Middleware Layer ...41

3.3.3.3 Agent Layer ..42

3.3.3.4 Message Types ..43

3.3.3.5 Joining ..48

3.3.3.6 Leaving ...53

3.3.3.7 Service Use ..55

3.4 DPWS MIDDLEWARE ARCHITECTURE .. 56

3.4.1 Overview .. 57

3.4.2 Agent ... 58

3.4.3 DPWS Middleware ... 58

3.4.4 Server ... 59

3.4.4.1 Services ..61

3.4.5 Client.. 61

3.4.5.1 Event Handler Manager ...63

3.4.5.2 Endpoint Manager ...63

- 6 -

3.4.5.3 Known Entities ...64

3.5 IMPLEMENTATION .. 65

3.5.1 How to make a DPWS System ... 65

3.5.1.1 The WSDL Service Descriptor ..66

3.5.1.2 The Generated Code ..67

3.5.1.3 Program the DPWS Middleware ..68

3.5.1.4 Integrating Every System Entity ...69

3.5.2 Running the System ... 70

4 CASE STUDY ...71

4.1 OVERVIEW.. 72

4.2 3D MODEL ... 74

4.2.1 Workpieces .. 75

4.2.2 Decision points .. 76

4.2.3 Loader Model .. 76

4.2.4 ShiftTable Model ... 77

4.2.5 Machine Model.. 78

4.2.6 Unloader Model ... 79

4.2.7 Models DPWS Interface ... 80

4.3 AGENTS ... 80

4.3.1 Loader Agent ... 82

4.3.2 Unloader Agent ... 84

4.3.3 ShiftTable Agent .. 85

4.3.4 Machine Agent .. 86

4.3.5 Workpiece Agent ... 87

4.4 HUMAN INTERFACE .. 89

4.4.1 Configuration Tool ... 90

4.4.2 Production Manager ... 91

4.4.3 Communication Log ... 93

4.5 DATABASE .. 94

4.6 TOPOLOGY ... 95

4.7 DEMONSTRATOR COMMUNICATION .. 96

4.8 HOW IT WORKS... 97

4.9 3D MODEL SIMULATION TO REAL MACHINES ... 99

4.10 WSDL GENERATOR TOOL .. 99

5 CONCLUSION & FUTURE WORK .. 101

5.1 CONCLUSION .. 102

- 7 -

5.2 FUTURE WORK .. 104

5.2.1 DPWS Stack ... 104

5.2.2 Standards .. 105

5.2.3 Semantics .. 105

5.2.4 FIPA Compliant Communication .. 106

5.2.5 Middleware Generator .. 107

6 BIBLIOGRAPHY ... 108

- 8 -

Table of Figures

FIGURE 2-1 - GENERIC SCHEME OF A MULTI-AGENT SYSTEM [37]. .. 20
FIGURE 3-1 – JADE DIRECTORY FACILITATOR CRASH .. 33
FIGURE 3-2 - DPWS SYSTEM ENTITY CRASH .. 33
FIGURE 3-3 - DPWS MIDDLEWARE ARCHITECTURE LOCATION .. 35
FIGURE 3-4 - GENERAL ARCHITECTURE... 36
FIGURE 3-5 – DPWS MIDDLEWARE TOP LAYER ... 37
FIGURE 3-6 – THE AGENT ENTITY ... 38
FIGURE 3-7 – THE SERVER ENTITY .. 38
FIGURE 3-8 – THE CLIENT ENTITY .. 39
FIGURE 3-9 - DPWS STACK DISCOVERY FUNCTIONALITIES ... 40
FIGURE 3-10 - SERVICES TYPES ... 40
FIGURE 3-11 - SUBSCRIPTION OPERATIONS ... 41
FIGURE 3-12 - MIDDLEWARE DISCOVERY FEATURES .. 41
FIGURE 3-13 - MIDDLEWARE COMMUNICATION FEATURES ... 42
FIGURE 3-14 - MIDDLEWARE SUBSCRIPTION MANAGEMENT FEATURES .. 42
FIGURE 3-15 - LOOK UP COMMUNICATION DIAGRAM ... 44
FIGURE 3-16 - SUBSCRIPTION COMMUNICATION .. 47
FIGURE 3-17 - REQUEST METADATA ... 49
FIGURE 3-18 - METADATA REQUEST MESSAGE SEQUENCE ... 49
FIGURE 3-19 - AGENT JOINING THE SYSTEM ... 50
FIGURE 3-20 - AGENT JOIN MESSAGE SEQUENCE .. 50
FIGURE 3-21 – SERVER ENTITY JOINING THE SYSTEM .. 51
FIGURE 3-22 – SERVER ENTITY JOIN MESSAGE SEQUENCE ... 51
FIGURE 3-23 – CLIENT ENTITY JOINING THE SYSTEM ... 52
FIGURE 3-24 – SERVER ENTITY JOIN MESSAGE SEQUENCE ... 53
FIGURE 3-25 - ENTITY LEAVING .. 54
FIGURE 3-26 - ENTITY LEAVING SEQUENCE ... 54
FIGURE 3-27 - ENTITY CRASH .. 55
FIGURE 3-28 - ENTITY CRASH SEQUENCE .. 55
FIGURE 3-29 - SERVICE REQUEST .. 56
FIGURE 3-30 - SERVICE REQUEST RESPONSE ... 56
FIGURE 3-31 - SERVICE EVENT .. 56
FIGURE 3-32 - DPWS WRAPPER ... 57
FIGURE 3-33 - DPWS MIDDLEWARE ARCHITECTURE .. 57
FIGURE 3-34 - BASE AGENT ARCHITECTURE ... 58
FIGURE 3-35 - SERVER SERVICES .. 59
FIGURE 3-36 – MIDDLEWARE SERVER ARCHITECTURE .. 60
FIGURE 3-37 - SERVICES ARCHITECTURE... 61
FIGURE 3-38 - CLIENT SERVICES ... 61
FIGURE 3-39 – MIDDLEWARE CLIENT ARCHITECTURE ... 62
FIGURE 3-40 - EVENT HANDLER MANAGER ARCHITECTURE .. 63
FIGURE 3-41 - ENDPOINT MANAGER ARCHITECTURE... 63
FIGURE 3-42 - KNOWN ENTITIES ARCHITECTURE .. 64
FIGURE 3-43 - ENTITY SERVICES ARCHITECTURE .. 65
FIGURE 3-44 - SERVICE DESCRIPTION TREE ... 66
FIGURE 3-45 - GENERATED CODE ... 68
FIGURE 4-1 - 3D MODEL COMMUNICATION MODEL ... 72
FIGURE 4-2 - AGENT COMMUNICATION MODEL ... 73
FIGURE 4-3 - CONFIGURATION TOOL AND PRODUCTION MANAGER COMMUNICATION MODEL 73
FIGURE 4-4 - DATABASE COMMUNICATION MODEL ... 74

- 9 -

FIGURE 4-5 - COMMUNICATION LOG COMMUNICATION MODEL ... 74
FIGURE 4-6 - DEMONSTRATOR 3D MODEL .. 75
FIGURE 4-7 - LOADER AND WAREHOUSE 3D MODEL ... 77
FIGURE 4-8 - SHIFTTABLE 3D MODEL ... 78
FIGURE 4-9 - MACHINE 3D MODEL ... 79
FIGURE 4-10 - UNLOADER 3D MODEL ... 80
FIGURE 4-11 – AGENT ARCHITECTURE .. 81
FIGURE 4-12 - DECISION MAKING DIRECT INFORMATION GATHERING ... 81
FIGURE 4-13 - DECISION MAKING INDIRECT INFORMATION GATHERING .. 82
FIGURE 4-14 - LOADER AGENT INTERACTIONS .. 83
FIGURE 4-15 - LOADER AGENT TASKS .. 83
FIGURE 4-16 - UNLOADER AGENT INTERACTIONS.. 84
FIGURE 4-17 - UNLOADER AGENT TASKS .. 84
FIGURE 4-18 - SHIFTTABLE AGENT INTERACTIONS .. 85
FIGURE 4-19 – SHIFT TABLE AGENT TASKS ... 85
FIGURE 4-20 - MACHINE AGENT INTERACTIONS .. 86
FIGURE 4-21 - MACHINE AGENT TASKS .. 86
FIGURE 4-22 - WORKPIECE AGENT INTERACTIONS .. 87
FIGURE 4-23 - WORKPIECE AGENT TASKS ... 88
FIGURE 4-24 – REQUIRED HUMAN INTERFACE ENTITY ARCHITECTURE ... 89
FIGURE 4-25 – OPTIONAL HUMAN INTERFACE ENTITY ARCHITECTURE ... 89
FIGURE 4-26 - CONFIGURATION TOOL INTERACTIONS .. 90
FIGURE 4-27 – CONFIGURATION TOOL TASKS ... 91
FIGURE 4-28 - PRODUCTION MANAGER INTERACTIONS.. 92
FIGURE 4-29 – PRODUCTION MANAGER TASKS ... 92
FIGURE 4-30 - COMMUNICATION LOG INTERACTIONS .. 93
FIGURE 4-31 – COMMUNICATION LOG ... 93
FIGURE 4-32 – DATABASE ARCHITECTURE .. 94
FIGURE 4-33 - DATABASE INTERACTIONS .. 94
FIGURE 4-34 – DATABASE TASKS .. 95
FIGURE 4-35 - DEMONSTRATOR ENTITIES FRIENDLY NAMES ... 95
FIGURE 4-36 - FRIENDLY NAME DECOMPOSITION .. 96
FIGURE 4-37 - SINGLE WORKPIECE PRODUCTION OVERVIEW... 98

- 10 -

Table of Tables

TABLE 2-1 - COMPARATIVE ANALYSIS BETWEEN SOA AND MAS [47] .. 27
TABLE 5-1 - SEMANTIC WEB SERVICE APPROACH COMPARISON [63] .. 106

Introduction

- 11 -

1 Introduction

1.1 THESIS OUTLINE .. 13

Introduction

- 12 -

In present manufacturing systems, the current challenge is the development of highly

reconfigurable, truly distributed solutions. The tendency is to build manufacturing systems

with autonomous, intelligent and distributed components that will support reconfiguration and

adaptability. The most promising paradigms for the implementation of such systems are MAS

(Multi Agent Systems) and SOA (Service Oriented Architectures), mainly over the DPWS

(Device Profile for Web Services) implementation which was aimed at devices. The DPWS

Stack is a stack of protocols aimed at communication through a SOA for devices. It was

created in the context of the European project SIRENA [1] led by Schneider Electric.

An important limitation of most current multi-agent systems is that the management

system is not totally distributed. Failure in the agent responsible for the registry can

overthrow the entire system. DPWS does not have this limitation, since the management

system is totally distributed. However, DPWS does not support agent autonomy notions as

efficiently.

By merging both the SOA paradigm with the MAS paradigm we achieve a truly

distributed, autonomous and interoperable multi-agent system. The SOA paradigm provides

autonomy, interoperability and a distributed environment. These characteristics are applied to

devices with SOA frameworks, such as the DPWS protocol stack, exposing their services to

agents, human interfaces or PLCs. Allied to a multi-agent framework, a SOA multi-agent

system is possible. With such an alliance, the communication in the manufacturing system

can be completely integrated from the device level to the business-level with agents in the

loop. With such a framework it can be possible to find, communicating in the same manner,

sensors, actuators, manufacture level agents, business level agents, simulators, databases,

human interface applications amongst many others.

With the main features of SOA being the desired characteristics of MAS by definition,

building a communication interface based on a SOA framework, such as DPWS, seems to be

a promising step in the MAS paradigm. This thesis, developed in the context of the European

project SOCRADES [2], proposes an architecture that enables the DPWS Stack to be

effectively used by agents and all other entities that participate in the manufacturing system

from the device level to the business-level.

To enable such features as the possibility of creating a truly distributed multi-agent

system by linking both, SOA and MAS, the development of a Middleware layer between the

Introduction

- 13 -

DPWS Stack and the agent is proposed. This layer would enable agents, and any other entity,

to benefit from DPWS functionalities and finally be able to achieve total autonomy depicted

in its definition.

The proposed middleware layer will enable seamless communication between agents,

databases, hardware, simulators, human interface applications such as production system

management, error correction and maintenance, etc.

To prove this concept a 3D model of an agent controlled manufacturing system with

transporters, augmented with DPWS communication interfaces, will be developed.

1.1 THESIS OUTLI	E

This thesis is organized in five chapters: Introduction, State of the art & Basic

Concepts, DPWS Middleware Architecture, Case Study and Conclusion and Future Work.

The current Chapter 1 introduces the problem and briefly describes the outline of this

work.

Chapter 2 on State of the Art & Basic Concepts introduces the basic concepts in this

work and presents the current state of the art in manufacturing paradigms and in recent work

related to the theme of this thesis.

Chapter 3 on the DPWS Middleware Architecture presents the solution found to the

problem and fully describes its architecture.

Chapter 4 on the Case Study presents a system where the proposed approach was

used and how it was implemented.

Chapter 5 on Conclusions and Future Work discusses the main results of this work

and suggests direction for future research and implementation on the problem.

State of the Art & Basic Concepts

- 14 -

2 State of the Art & Basic Concepts

2.1 AGENCY ... 16

2.2 MULTI-AGENT SYSTEM (MAS) .. 19

2.3 SERVICE-ORIENTED ARCHITECTURE (SOA).. 22

2.4 MANUFACTURING PARADIGMS ... 25

2.5 SOA IN MAS .. 26

State of the Art & Basic Concepts

- 15 -

In today’s globalized market, modern enterprises have to adopt innovative business

methodologies if they are to remain high end competitors. Higher flexibility and agility are

required to achieve these goals. In the past few years developments and achievements in the

Information Technology (IT) field have provided the manufacturing world with tools that

make the implementation of old concepts possible. These tools are the grounds for new

paradigm shifts in the industry such as Bionic Manufacturing Systems (BMS) [3], Holonic

Manufacturing Systems (HMS) [4; 5; 6; 7], Reconfigurable Manufacturing Systems (RMS)

[8; 9], Evolvable Assembly Systems (EAS) [10; 11; 12; 13; 14], and Evolvable Production

Systems (EPS) [15; 16; 17].

One of the main obstacles to the realization of these new methods is usually the

conservative stance of industry. Due to years of proven methods, industry is reluctant to embark

with new paradigms. The argument “existing approaches are sufficient” given by conservative

industrial sectors is quite common. Although that stance worked until now, current market

conditions require a lot more dynamism from industry thus forcing it to change. In the next few

years we will bear witness to radical changes in the manufacturing world to accommodate current

market needs.

Another great obstacle to the adoption of new paradigms is integration with legacy

systems. Existing technology has failed to provide a complete solution that can operate

independently of platform and format. An intermediate step, in which legacy and new paradigm

systems coexist, has to be made possible. To this purpose, new paradigms, such as the emergent

Web Services paradigm and research in Service Oriented Architectures (SOA), have proven to be

a strong possibility. These paradigms are supported by platform agnostic technologies, bringing

the industry a step forward in shop floor, enterprise and business integration.

Recent paradigms such as Reconfigurable Manufacturing Systems (RMS) and Evolvable

Production Systems (EPS) foresee usage of modular intelligent devices to enable quick

reconfiguration, instead of reprogramming.

These new paradigms bring higher flexibility and agility to the shop floor but all comes at

a cost. The sophisticated systems that can provide industry with the needed modernization are

inherently complex and dynamic. Some of these systems, like agent based systems, have emergent

behavior failing to provide total predictability over the production lifecycle. The unpredictability

that is usually attributed to emergence scares industry and thus delays the application of such

systems.

State of the Art & Basic Concepts

- 16 -

A significant number of research projects around these paradigms are currently active

worldwide. Among academic proposals one may mention: ADACOR [18] – Holonic approach to

manufacturing control, ABAS [19] – Agent based approach that models assembly operations,

COBASA [20] – Multi-agent based approach for improved shop floor agility and re-

configurability, iShopFloor [21] – Agent based approach for a plug and play operational

environment over large networks, etc.

There are also a number of European projects which address the issue of reconfigurability,

evolvability and agility: EUPASS [22] – development of evolvable micro-assembly systems,

SODA [23] – creation of a service oriented ecosystem based on the DPWS framework developed

under the SIRENA [1] project, SOCRADES [2] – development of a service oriented architecture

(SOA) for automation systems.

2.1 AGE	CY

The agent concept arose in Hewitt’s Actor Model [24] and was widely researched in

the 90s in the multi-agent system context. When research in AI changed its focus from goal

seeking to rational behavior, from ideal to resource-bound reasoning, from capturing expertise

in narrow domains to re-usable and sharable knowledge repositories, from the single to

multiple cognitive entities acting in communities, agent technology made a breakthrough.

Agent technology is looked upon as a strong possibility for future manufacturing system

implementations.

In [25] Jennings and Wooldridge present the following definition for agency: “An

agent is considered a software entity situated in a production environment, with enough

intelligence that is capable of autonomous control actions in this environment and of co-

operation relationships by participating in associations agreements with other entities in

order to meet its design objectives. An agent should be able to act without the direct

intervention of humans or other agents, and should have control over its own actions and

internal state”. Most agent definitions relate to the author’s background but a number of

characteristics seem to be widely accepted [26]:

• Autonomy – an agent is autonomous when it is able to act alone without help from

third parties (like other agents or humans).

State of the Art & Basic Concepts

- 17 -

• Sociability – an agent must be able to communicate with other agents or even

other entities.

• Rationality – an agent can reason about the data it receives in order to find the best

solution to achieve its goal.

• Reactivity – an agent can react upon changes in the environment, changing its

behavior accordingly.

• Proactivity – a proactive agent has some control on its reactions basing them on its

own agenda and objectives. A proactive agent might not react against changes in

the environment should that reaction go against the achievement of its final goal.

• Adaptability – an agent is capable of learning and changes its behavior when a

better solution is discovered adapting itself to changes in the environment.

• Mobility – an agent is capable of moving inside its network keeping its state of

execution.

An agent is a computational system that operates in an environment that may include

other agents. An agent observes its environment, has its own knowledge and beliefs about its

environment, has preferences regarding the states of the environment and initiates and

executes actions to change the environment [27].

An agent can be perceived as an elaborate model to enable planning of a complex

system. To model its decision making process as well as its knowledge base regarding its

environment the BDI-model (Belief, Desire and Intention) can be used. The BDI-model

includes the agent knowledge about it environment (beliefs), preferred states to achieve in the

long-term (desires) and planned decisions to be made to complete a plan (intentions) [28]. A

BDI agent is continually updating its knowledge base (beliefs) on its environment and using it

to reason about possible plans. It acts by realizing its intentions which are based on its beliefs

and desires. This model gives the agent the means to generate actions based on goals that can

be added or retracted to the agent.

A system that has multiple agents is called a Multi Agent System (MAS). When an

agent’s environment contains other agents a community emerges and communication and

coordination protocols are needed. Agents need means to make decisions and execute plans

even when information or physical resources aren’t readily available to it. It must then gather

information and establish contracts with other agents in order to reach its goals. A widely

State of the Art & Basic Concepts

- 18 -

used protocol for this goal is the Contract Net Protocol (CNP) [29]. The contract net protocol

is modeled on the contracting mechanism used by businesses to govern the exchange of goods

and services. Whenever an agent requires that a task is to be made it announces the need and

requests for bids. Other agents that can complete the task make their bidding after which the

agent chooses the most suitable agent to perform the task evaluating its bid. The chosen agent

gets the contract.

Agent systems announced the need for communication between agents and the BDI

model provided the theoretical basis for Agent Communication Languages (ACL). The first

ACL was the Knowledge Query and Manipulation Language (KQML) that included means

for agents to tell facts, ask queries, subscribe to services and search for other agents.

Nowadays the most commonly used ACL is the Foundation for Intelligent Physical Agents

(FIPA) standard [30].

Agents work as individual problem solvers that can sense and act upon their

environment. They can use their knowledge of the environment to reason, learn and create

plans. They have means to find other agents, communicate with them and establish contracts

in order to fulfill their goals. An agent sophisticated decision model is prepared to deal with

situations not predicted by the system programmer and add dynamism to its system.

Due to their autonomous nature, software agents present themselves as a potential

solution to manufacturing systems. A number of frameworks were implemented to give voice

to this need but, due to undefined standards, most are not interoperable. Interoperability [31]

between different agent system platforms is thus a pursued goal.

Although there has not been a framework that completely complies with all of the

agents definition characteristics, some implemented frameworks show interesting

developments in this area, such as JADE [32] or ZEUS [33] amongst others. There has been

an effort in interoperation between multiagent frameworks. A number of initiatives to create

open standards arose so that different frameworks could interact with one another such as the

FIPA foundation [30], a number of European projects such as SOCRADES [2] and others.

The communication technology used by each platform differs from one another

mainly due to the implementation time. Update to modern, more suitable, communication

technology presents concerns with backward compatibility. An open set of standards that

State of the Art & Basic Concepts

- 19 -

provide the freedom required by agent technology as well as grant them their definition needs

is necessary for it to evolve to full feature interoperable platforms.

 With several initiatives and large scale research, Agency is well underway in

becoming a major player in the future of manufacturing world.

2.2 MULTI-AGE	T SYSTEM (MAS)

Multi-Agent Systems are believed to be an important approach in automated

manufacturing systems. In the 80s decade, distributed computing over LAN and expert

system advances motivated the interest in distributed agents. This new paradigm began to be

widely researched during the 90s decade due to the launch of the internet. That research was

mostly focused around agent interaction [34]. The MAS paradigm has the potential to create a

solution that has advantages, over current centralized, highly hierarchical systems, in

feasibility, robustness, flexibility, reconfigurability and redeployability [35; 36].

A Multi-Agent Systems is formed by a group of agents interacting and communicating

in the same network. Each agent has its knowledge base that includes all information gathered

from its environment constituting its model of the environment. Each agent also has a limited

set of means to gather that information and to pursue its goals. To reach them it may have to

request services from other agents if his means do not suffice. The environment can have

different models depending on the agent, for the same environment can be perceived in a

different manner depending on the agent means. Whenever a new kind of interaction with the

environment or an agent with different capabilities enters the network the MAS should be

able to incorporate these new tools and evolve. MAS are built around interactivity between

agents and that interaction enables agents to solve problems and accomplish goals that no

individual agent could accomplish. That interaction may result in emergent behavior which is

not planned when the agents are implemented.

State of the Art & Basic Concepts

- 20 -

Figure 2-1 - Generic scheme of a multi-agent system [37].

In MAS, even though there may be no centralized data or control there is organization.

That organization determines the agents’ possible activities and interactions as shown in

Figure 2-1.

Communication in a multiagent system can be made indirectly through the

environment or by direct exchange of information. In the latter there is need of a language

with syntax and semantics that both intervening agents share in order to have communication.

To that effect an Ontology can be used. Ontology is an explicit-specification of the structure

of concepts used by a given domain. All data is usually expressed in a logic-based language

that distinguishes classes, instances, properties, relations and functions in a machine-

processable way. The data can be checked for consistency and reasoning can be accomplished

in order to infer data from the available information. Ontologies can be used as a ground for

different agents to communicate effectively with each other and serve as a repository of

content and knowledge.

Enterprise integration is another field where MAS could play an important role.

Integration between business, engineering, operational and administrative functions is

required in order to facilitate information exchange, decision making, coordination and

collaboration in the enterprise. Due to globalization, the nature of enterprises tends to be

distributed. This makes modeling, monitoring and control of processes critical. A system that

improves collaboration in an enterprise would help develop better flexibility, reliability and

performance. Using the MAS paradigm in enterprise integration would enable the continuity

of operations even during temporary lapses in connectivity. For such an implementation some

State of the Art & Basic Concepts

- 21 -

issues such as scaling, temporal, representation of process models and constraints between

business functions have to be addressed. [27]

With computer systems becoming ever more complex and due to the need of more

sophisticated systems to control present manufacturing we need powerful abstractions and

metaphors to design systems capable of such tasks. The agent and MAS concept helps us to

structure our knowledge around self controlling components that have the autonomy and

capability to communicate between them and solve these new problems.

The manufacturing world called for new, more robust, adaptable, fault-tolerant,

decentralized and open organizational structures even before the agent and MAS paradigm

arose from artificial intelligence and computer science [38; 39].

Several projects in this area are being conducted to create a multi-agent platform that

implements all the required characteristics of a multi-agent system. To achieve that, some

multi-agent system characteristics have to be taken into account, such as autonomy and a truly

distributed environment, to name just a few.

Current multi-agent platforms such as JADE [32] or ZEUS [33] provide some

interesting implementations but none present a truly distributed system. Most developed

environment implementations of MAS are focused on agent models and communication. To

achieve true autonomy between agents a truly distributed platform must be implemented.

Due to different implementations of multi-agent platforms another problem that arises

is interoperability. Different protocols, message types and even technologies turn agents to

stranded software entities that can only communicate with other common framework agents.

The pursuit of standard communication protocols for agent communication began and led to

the creation of the Foundation of Intelligent and Physical Agents (FIPA) [30]. FIPA is a

foundation that promotes interoperability between different agent frameworks by establishing

agent communication standards.

Nowadays the Multi-Agent paradigm is accepted as a promising approach that

satisfies many requirements of present manufacturing. In [36] the authors show that at least

25% of manufacturing problems can be solved by using an agent based approach. There is,

now, a clear understanding that the autonomy, embodiment, communication and cooperation

provided by a society of agents can meet the requirements of modern manufacturing.

State of the Art & Basic Concepts

- 22 -

There are, however a number of disadvantages to a MAS approach, such as constraints

related to available decision making time, properties of the physical equipment and to the

limited number of acceptable manufacturing structures. There are a number of arguments for

the slow adoption of MAS in the industry. In principle MAS do not reduce the complexity of

problems. Interoperability between different agent platforms and between agent platforms and

legacy systems is expensive and, in most cases, inexistent. The increased overhead in agent

communication can degrade the performance in MAS. This problem especially affects rough-

grained systems which in consequence cannot be scaled up [40; 41]. There still is not Industry

level support to agent-oriented software engineering. The lack of methods for automatic

wrapping of legacy systems is still an issue [42]. The emergency characteristic of MAS is a

serious barrier to the adoption of this approach due to the inherent uncertainty. The industry

wants total predictability and guarantees regarding reliability and operational performance.

The adoption of MAS is risky and expensive but the benefits may overcome these difficulties.

2.3 SERVICE-ORIE	TED ARCHITECTURE (SOA)

With current market demands overrunning the old manufacturing world legacy

systems the need for reconfigurable, robust systems that can support the new world

requirements is high. Over the last few years the Service-Oriented Architecture (SOA)

paradigm has gained much attention from the information technology scientific community.

With the advent of new technologies such as web services, the SOA paradigm is seen as a

promising approach to create platform agnostic interoperable systems.

The World Wide Web Consortium (W3C) defines Web Services as [43]: “a software

system design to support interoperable machine-to-machine interaction over a network. It has

an interface described in a machine-processable format (specifically WSDL). Other systems

interact with the Web Service in a manner prescribed by its description using SOAP [44]

messages typically conveyed using HTTP with an XML serialization in conjunction with other

Web-related standards”.

The emergence of Web Services was accompanied by the availability of low cost and

high performance embedded devices as well as the consolidation of internet related

State of the Art & Basic Concepts

- 23 -

technologies. Some of the most commonly used Web Services technologies giving it its

platform agnostic status are:

• Extensible Markup Language (XML) [45] – platform neutral data model;

• Simple Object Access Protocol (SOAP) [44] – data communication and

encapsulation protocol;

• Universal Description, Discovery and Integration (UDDI) – xml-based service

advertisement and discovery mechanism.

Web Services also have downfalls that mirror themselves in Web Service based SOA

implementations. Web Services do not properly support transactions and frequently exhibit

code explosion when there are interactions between many heterogeneous services. In most

current implementations, when adding a new service with an unknown description to an

already complex system, every service that interacts with it has to be reprogrammed. [46]

In [31] the authors provide a definition that, although incomplete, includes two very

important keywords: “A service-oriented architecture (SOA) is a set of architectural tenets

for building autonomous yet interoperable systems”. Although incomplete this definition

includes two of the most characteristics of the SOA paradigm. The main characteristics

present in most SOA definitions are: [47]

• Autonomy: all services are independent and structurally decoupled.

• Interoperability: achieved by the specifying the hosted services and interaction

patterns.

• Platform Independence: services described, ideally, using text-based formats

such as XML [45], WSDL [48], ebXML, etc. These representations are

platform, architecture, programming language and technology independent.

These languages can easily be decoded by any system.

• Encapsulation: services expose functionalities through clean interfaces that

hide the complexity therein.

• Availability/Discovery: services can be published and made available for

public use.

The emergence of the SOA paradigm has helped the research and development of

modern distributed control paradigms and architectures. Most research on this area is directed

at e-business and inter-enterprise interactions. The success achieved by SOA in these areas

State of the Art & Basic Concepts

- 24 -

motivated the development of light weight web service stacks, such as DPWS, to enable

integration from the shop floor to the business level. For this achievement, the next generation

of automation systems must rely on automated, decoupled, intelligent, low cost computing

devices. The SOA paradigm enables the development of systems with: encapsulated self-

contained functionalities, independent development of each service, environment

independency, loosely coupled, distributed complexity, etc. Combined with MAS the SOA

paradigm seems well underway to becoming one of the next generation automation standards.

A number of projects have been developed and are being developed around the SOA

paradigm:

• the ITEA-SIRE/A [1] project, led by Schneider-Electric, developed a protocol

Stack of a web-service based SOA description. The result of this project was

the Device Profile for Web Services (DPWS) [49] protocol stack aimed at the

device level.

• the SODA [23] project, following the design effort of the award winning

SIRENA, was launched with the objective to create a DPWS framework. The

SODA project has developed two compliant implementations of the DPWS

Stack in C and JAVA. With any of these protocol stacks it is possible to have

truly distributed devices exposing their services through DPWS web services.

This project is ongoing and aims to create a service oriented ecosystem based

on the Device Profile for Web Services (DPWS).

• the SOCRADES [2] project aims to develop a DPWS-based design, execution

and management platform for automation systems making the most of the

SOA paradigm at the device and application level.

• the InLife [50] project aims to include a test case that explores service oriented

DPWS-based diagnosis on distributed manufacturing systems [51]. It explores

SOA and web services for diagnosis and to optimize device’s life cycle

management.

These initiatives demonstrate the effort in the development of ubiquitous service

oriented technology and the wish to achieve embedded web services in small devices. These

can be applied in numerous areas such as automations, automotive and home electronics,

telecommunication systems, etc. In [49] it is presented the possibility, with some research, to

State of the Art & Basic Concepts

- 25 -

create dedicated hardware that will be able to process messages faster than 1 millisecond

making these systems faster to respond than present PLCs.

SOA is being widely researched in both European projects and at academic level.

Amongst many one might mention:

• in [52] the authors present an approach to integrate real and simulated

production automation devices using DPWS. The Simulation of manufacturing

systems prior and during deployment is a desired functionality in the next

generation of automation systems,

• in [53] the author presents a diagnostic infrastructure to be added to the

production line in order to avoid and predict system down-time. Self-healing is

a characteristic of the presented approach.

• In [54] the authors present a generic interface for DPWS-based devices. This

interface sustains system reconfiguration rather than reprogramming. The

authors state that this approach scales reasonably and reduces the memory

footprint.

Within SOA enabling technologies, Web Services is the most researched and explored

as it seems a promising ubiquitous computing technology. Consequently, it is often chosen as

the “vehicle” for implementing SOA platforms.

Implementation related work highlights SOA’s downside. In very complex and

heterogeneous environments where changes happen dynamically the complexity of the

application’s code explodes and reprogramming is often needed. [54]

By uniting SOA with the Multi-Agent System paradigm the desired truly distributed

multi-agent platform can be achieved. Also, with the SOA paradigm the pursued integration

of the device level with enterprise level can be achievable [55] [49].

2.4 MA	UFACTURI	G PARADIGMS

Recently, manufacturing paradigms such as Bionic Manufacturing Systems (BMS),

Holonic Manufacturing Systems (HMS), Reconfigurable Manufacturing Systems (RMS),

Evolvable Assembly Systems (EAS), and Evolvable Production Systems (EPS) are gaining

State of the Art & Basic Concepts

- 26 -

focus due to market demand. Old methods are proving unable to handle the rapid change of

the current market.

The word Holon was presented by Koestler [56]. The word is a combination of the

Greek word “holos” (the whole) with the “on” suffix suggesting a part. So a “Holon” is a

whole and part at the same time. A Holon is defined by the Holonic Manufacturing Systems

consortium as “an autonomous and cooperative building block of a manufacturing system for

transforming, transporting, storing and/or validating information and physical objects” [57].

A Holon can be a combination of other Holons and be itself a part of another Holon. Holons

are assumed to be autonomous and cooperative.

Another term regarding Holons is the Holarchy which is defined as “a system of

holons which can cooperate to achieve a goal or objective” [57].

A Holonic Manufacturing System is “a Holarchy which integrates the entire range of

manufacturing activities from order booking through design, production and marketing to

realize the agile manufacturing enterprise” [57].

In Holonic Manufacturing systems the control is distributed by all participating

Holons. Each Holon decides which actions to take based upon their knowledge. Cooperation

is a trait of a HMS. Each Holon may cooperate with other holons in order to reach his goals

and to satisfy system-wide constraints. In order to fulfill system goals holons may cooperate

and form temporary coalitions. Holonic Manufacturing Systems tries to combine the

responsiveness and robustness of decentralized, network-like organizations, and the stability

and efficiency of hierarchical control architectures. [27]

A Multi-Agent System (MAS) is a particularity of this architecture type [58]. Agents

in a Multi-Agent System, acting as Holons upon a manufacturing system and forming

Holarchies to achieve their common goals can be regarded as a Holonic Manufacturing

System.

2.5 SOA I	 MAS

The use of SOA in MAS provides a new modeling metaphor for complex systems. It

enables the development of distributed agents, encapsulated by a service interface, to interact

State of the Art & Basic Concepts

- 27 -

amongst each other in pursuit of their goals. The SOA architecture empowers agents to act in

an environment as they are designed to, by definition. This turns the system into a collection

of platform agnostic, self contained, loosely-coupled agents. As a multi-agent system the

agents can group themselves and work together in order to provide functionality that no agent

could provide alone. This reconfiguration capability is fundamental in modern production

systems. [54]

The shift to this paradigm merge is being accompanied by increased offer in tiny

embedded devices that have the processing power to support the development of intelligent

automation environments. [47]

The MAS role has been mostly related with “what lies behind the interface”. Most

MAS platforms can only fully function in a LAN and their compliance is restricted to well

defined but less interoperable standards. In contrast, SOA regards mainly the interface of a

device or system and assures interoperability with a wide range of systems. Being typically

supported by widely used web technologies it can easily spawn over the internet. SOA in

MAS completes the circle and provides agents with the tools to expose their functionalities.

By converging MAS and SOA in a unified framework we can attain unprecedented support to

a wide range of complex networked systems.

Table 2-1 - Comparative Analysis between SOA and MAS [47]

Characteristics SOA MAS

Basic Unit Service Agent

Autonomy Both Entities denote autonomy as the functionality provided is self-
contained

Behavior
description

In SOA the focus is on detailing
the public interface rather than
describing execution details

There are well established
methods to describe the behavior
of an agent

Social ability Social ability is not defined for
SOA nevertheless the use of a
service implies the acceptance of
the rules defined in the interface
description

The agents denote social ability
regulated by internal or
environmental rules

Complexity
encapsulation

Again, the self-contained nature of the functionalities provided allows
hiding the details. In SOA this encapsulation is explicit

State of the Art & Basic Concepts

- 28 -

Communication
infrastructure

SOA are supported by Web
related technologies and can
seamlessly run on the internet

Most implementations are
optimized for LAN use

Support for
dynamically
reconfigurable
run-time
architectures

Reconfiguration often requires
reprogramming

The adaptable nature of agents
makes them reactive to changes in
the environment

Interoperability Assured by the use of general
purpose web technologies

Heavily dependent on compliance
with FIPA-like standards

Computational
requirements

Lightweight implementations like
the DPWS guarantee high
performance without
interoperability constraints

Most implementations have heavy
computational requirements

In [59] the authors present an Agent-Based Service Oriented Integration Framework

where web services were used as a backbone of some of the agents. This integration was

aimed at business transactions and e-Business therefore not targeting low cost

computationally limited devices such as the ones aimed at the manufacture industry.

In [60] a reconfigurable HMS controlled by agents is presented. These agents

communicate via DCOM. The achievements presented in [60] demonstrate the effectiveness

of agent controlled manufacturing systems.

In [47] the authors present an attempt to merge MAS and SOA to create a lightweight

environment for embedded devices. The DPWS framework was used providing web service

interfaces to an execution model based on the agent concept. The case study demonstrates

nearly forty independent entities spread across several machines in NOVAFLEX’s cell

interacting to complete assembly tasks. Through a web service interface each entity provides:

• Data Encapsulation

• Communication Support

• Complexity encapsulation

• Service Publishing and Discovery.

The agent inspired execution model behind the web services supports:

• Structured communication with the adequate semantics

State of the Art & Basic Concepts

- 29 -

• State control and interactions’ monitoring

• Generic execution of process plans.

With the main features of SOA being the desired characteristics of MAS by definition,

building a communication interface based on a SOA framework, such as DPWS, seems to be

a promising step in the MAS paradigm.

DPWS Middleware Architecture

- 30 -

3 DPWS Middleware Architecture

3.1 INTRODUCTION .. 32

3.2 WHY A DPWS SYSTEM ... 32

3.3 PROPOSED ARCHITECTURE ... 34

3.3.1 Overview .. 36

3.3.2 System Entities .. 37

3.3.2.1 Agent Middleware ...38

3.3.2.2 Server Middleware ..38

3.3.2.3 Client Middleware ...39

3.3.3 How It Works ... 39

3.3.3.1 DPWS STACK LAYER ...40

3.3.3.2 DPWS Middleware Layer ...41

3.3.3.3 Agent Layer ..42

3.3.3.4 Message Types ..43

3.3.3.4.1 Discovery Messages ..43

3.3.3.4.2 Service Messages ..45

3.3.3.4.3 Subscription Related Messages ...46

3.3.3.5 Joining ..48

3.3.3.5.1 Agent Entity ...49

3.3.3.5.2 Server Entity ..51

3.3.3.5.3 Client Entity ...52

3.3.3.6 Leaving ...53

3.3.3.6.1 Entity Crash ...54

3.3.3.7 Service Use ..55

3.4 DPWS MIDDLEWARE ARCHITECTURE .. 56

3.4.1 Overview .. 57

3.4.2 Agent ... 58

3.4.3 DPWS Middleware ... 58

3.4.4 Server ... 59

3.4.4.1 Services ..61

3.4.5 Client.. 61

3.4.5.1 Event Handler Manager ...63

3.4.5.2 Endpoint Manager ...63

3.4.5.3 Known Entities ...64

3.4.5.3.1 Entity Services ...64

DPWS Middleware Architecture

- 31 -

3.5 IMPLEMENTATION .. 65

3.5.1 How to make a DPWS System ... 65

3.5.1.1 The WSDL Service Descriptor ..66

3.5.1.2 The Generated Code ..67

3.5.1.3 Program the DPWS Middleware ..68

3.5.1.4 Integrating Every System Entity ...69

3.5.2 Running the System ... 70

DPWS Middleware Architecture

- 32 -

3.1 I	TRODUCTIO	

With the main features of SOA being the desired characteristics, still not completely

achieved, of MAS by definition, building a communication interface based on a SOA

framework, such as DPWS, seems to be the next logical step in MAS.

By merging both the SOA paradigm with the MAS paradigm we achieve a truly

distributed, autonomous and interoperable multi-agent system. The SOA paradigm provides

autonomy, interoperability and a distributed environment. These characteristics are applied to

devices with the DPWS protocol stack exposing their services to agents, human interfaces or

PLCs. Allied to the multi-agent framework, a SOA multi-agent system is possible. With such

an alliance the communication in a manufacturing system would be completely integrated

from the device level to the business-level with agents in the loop. With such a framework it

would be possible to find, communicating in the same manner, sensor, actuators, manufacture

level agents, business level agents, simulators, databases, human interface applications

amongst many others.

In [60] a reconfigurable HMS controlled by agents is presented. These agents

communicate via DCOM. The achievements presented in [60] demonstrate the effectiveness

of agent controlled manufacturing systems.

This thesis, developed in the SOCRADES [2] context, proposes an architecture that

enables the DPWS Stack to be effectively used by agents and all other entities that participate

in the manufacturing system from the device level to the business-level.

3.2 WHY A DPWS SYSTEM

Most multi agent systems on the market rely on a centralized unit, such as the

Directory Facilitator (DF) in JADE [32]. This unit always has to be running and in case of a

crash the system cannot run and has to be restarted. A truly distributed agent system must not

rely on a centralized unit. Each agent must be truly autonomous.

DPWS Middleware Architecture

- 33 -

Figure 3-1 – JADE Directory Facilitator Crash

The search for a truly decentralized agent platform led to the Device Profile for Web

Services (DPWS) stack of protocols. This stack, DPWS, provides, amongst other features, a

web service interface and discovery capabilities to devices, thus disabling the need for a

Directory Facilitator. With a DPWS interface agents would be able to create a truly

decentralized, distributed system.

A truly distributed platform on a redundancy rich system, with no indispensable

entities, will enable a nonstop production. During production there will always be crashes and

errors. A certain amount of redundancy and the inexistency of unique, irreplaceable entities

form a nonstop system. The DPWS protocol stack, by enabling truly autonomous agents in a

truly distributed system, provides these possibilities.

Figure 3-2 - DPWS System Entity Crash

DPWS Middleware Architecture

- 34 -

Current DPWS implementations are only available for devices. The interface exposes

the device services to the system and has direct control over the device when a service is

requested.

In an agent system, when an agent service is requested the agent must first make the

decision to execute what was requested or not and have the means to warn the requestor of its

decision. A middleware that serves as a bridge between the agent and its communication

interface that makes all communication transparent is needed.

3.3 PROPOSED ARCHITECTURE

The current development of the Schneider Electric DPWS Stack includes a number of

protocols. The Stack currently has WS-Discovery, WS-Eventing, WS-Addressing, WS-

Policy, WS-Security and WS-MetadataExchange:

• WS-Discovery provides a mechanism through which devices can find one

another. Devices advertise their presence when they join and leave the

network. Every device can, at any time, look for devices running on the

network.

• WS-Eventing provides a mechanism for devices to announce changes through

asynchronous messages. Devices subscribe to events published by other

devices to be notified when the given event takes place.

• WS-Addressing provides a unique identifier to every DPWS entity. All

addressing information is integrated in SOAP message headers allowing for

the message content to be carried over any transport protocol (HTTP, SMTP,

TCP, UDP …).

• WS-Policy is used to express policies associated to a Web Service in the form

of "policy assertions", complementing the WSDL description of the service.

• WS-Security is an optional set of mechanisms for ensuring end-to-end message

integrity, confidentiality and authentication. The DPWS protocol stack

integrates all the above core standards. With DPWS, all messaging is based on

the use of SOAP and WS-Addressing.

DPWS Middleware Architecture

- 35 -

• WS-MetadataExchange allows for dynamical retrieval of metadata associated

to a Web Service (description, schema and policy), thus providing a Web

Service introspection mechanism.

In order to provide a transparent DPWS interface suitable for agent communication an

extra layer between the agent and stack was implemented, the DPWS Middleware.

Figure 3-3 - DPWS Middleware architecture location

The DPWS Middleware should manage all communication leading to and from the

agent. Discovery and metadata handling should be made at the middleware level, providing

only relevant information to the agent. Other entity crashes should also be handled by the

middleware whenever possible and communicated to the agent.

Event Subscription should also be managed by the middleware, it should maintain

subscriptions requested by the agent. Subscriptions are made for a short period of time after

which they expire. The middleware should maintain the subscriptions required by the agent

and warn it in case they cannot be renewed.

Every service requested to the agent will be filtered of DPWS related data and

delivered to the agent with only relevant information. Whenever the agent wants to request a

service of a system entity it should only provide the entity name and the requesting service

related information. The Middleware should then get the entity address, create the message

and deliver it to the DPWS interface provided by the stack that will deliver it to the recipient.

DPWS Middleware Architecture

- 36 -

3.3.1 OVERVIEW

Figure 3-4 - General Architecture

The proposed architecture links every entity in a system through the DPWS interface.

Every entity includes the DPWS middleware layer.

Each device will provide services that will be available for every other entity. With a

wide range of services the system can multiply its functionality possibilities by adding various

types of entities. With DPWS advantages the system can run, in a decentralized approach,

avoiding problems that one without this architecture would have, such as entity arrival and

departure warnings. The network transparency given by the DPWS Middleware layer

provides an easy, low maintenance and simple configuration of the system.

Through this DPWS Middleware interface agents will be able to acknowledge joining

entities as well as subscribe to events these devices may send and call services provided by

them. Joining agents will look up for already running entities and send a Hello message to

announce its arrival.

DPWS Middleware Architecture

- 37 -

Redundancy is a strong characteristic in this kind of systems that enforces robustness

by always providing an alternative to every entity in case of failure. This redundancy

optimizes the production output of the Shopfloor.

3.3.2 SYSTEM ENTITIES

The DPWS Middleware is composed of a client and a server. Depending of the entity

the middleware may need only one of these parts.

Figure 3-5 – DPWS Middleware Top Layer

A number of features need both the client and the server to be enabled but in some

entities these may not be necessary.

There are three entity types that can be built with different implementations of the

DPWS Middleware.

The more complex entity types, like agents and human interface applications, need

both the client and the server since they will use other entities services and expose some of

their own.

The simplest entities in a system, interface-wise, machines, sensors and actuators

provide a number of services through a server but need not a client since they do not request

services from others. The current DPWS stack is already sufficient for these entities, only in

case these want to implement more complex services the need for the Middleware may arise.

Another type of entity is possible, a monitorization or error correcting entity that only

implements the client part of the Middleware. This type of entity enters the system without

announcement and acts upon it. It can use other entities services to correct the system or

monitor it and expose no services.

DPWS Middleware Architecture

- 38 -

3.3.2.1 AGENT MIDDLEWARE

Figure 3-6 – The Agent Entity

The Agent DPWS Middleware is to be used by active parts on the system. Primarily

designed for Agents it can also be used with human interface applications as Configuration

Tools and Production Managers. This Entity Type has all DPWS features.

This Interface is the most versatile of all three as it is designed to act as the

communication interface of autonomous entities. Every Entity that has part in the Production

control should have an Agent Interface.

This interface enables the exposure of services provided by the entity and the use of

other entities services of any type. Subscription management, automated discovery and

message coding and decoding are all available through this entity type Middleware interface.

3.3.2.2 SERVER MIDDLEWARE

Figure 3-7 – The Server Entity

The Server DPWS Middleware is to be used by entities like Machines, Sensors,

Actuators, Databases and any other entity that will have a passive contribution to the system.

 It will expose its services and announce itself to the system during joining, leaving

and look up requesting by other entities.

DPWS Middleware Architecture

- 39 -

Its services will be called by other system entities, like agents, that will be unknown

for the Entity since it does not have Discovery capabilities.

In this entity the DPWS Middleware may not be necessary due to its simplicity. It may

be used just for simplicity in implementation as well as for service integration. An entity with

various services that want to interact with each other will need the Middleware to bridge

them.

3.3.2.3 CLIENT MIDDLEWARE

Figure 3-8 – The Client Entity

The Client DPWS Middleware should only be used in system monitoring entities as

well as error correction entities. It is designed to simply subscribe to system events, call

getStatus Services and use specific error correction services.

All action that this entity has upon the system will be invisible as it does not announce

when it joins and leaves. An application with this kind of interface is able to fix system errors

without introducing itself to the system.

It is directed at System Communication Loggers, Machine Monitorization and

Maintenance.

3.3.3 HOW IT WORKS

This section will contain a description of how the DPWS Middleware works as well as

the lower DPWS stack layer. Every type of message exchanged between any system entities

will be covered as well as more complex entity interactions.

DPWS Middleware Architecture

- 40 -

3.3.3.1 DPWS STACK LAYER

Figure 3-9 - DPWS Stack Discovery Functionalities

Discovery protocols included in the DPWS Stack have any entity joining the system

sending a Hello message and, if leaving correctly, sending a Bye Message. Also in Discovery,

an agent can look up for other, already running, entities by sending a probe and waiting for

matched responses. This mechanism is part of the DPWS Stack. With Metadata Exchange

protocols an entity can, at any time, request other known entity metadata as well as the

exposed services metadata.

Figure 3-10 - Services Types

When the system is running most exchanged messages are of Request, Request

Response and Event type. When an agent requests a service from an entity that does not

require an answer a Request message is sent. When an answer is required a Request Response

communication takes place. When an entity wants to announce that a certain event has

occurred, an Event message is sent to all subscribers. The type of these messages is

established at development time when designing the web service interface. Each service

operation has a pre established communication type.

DPWS Middleware Architecture

- 41 -

Figure 3-11 - Subscription Operations

For an entity to announce an event to other entities these have to, previously, subscribe

to that event. This is made through a Subscribe request sent by the entity. The Subscription

expires, after some time, before which the entity must renew the subscription with a Renew

Subscription Message. At any time the entity can get the status of a subscription or cancel it

with the Get Subscription Status message and Cancel Subscription message, respectively.

These are the basic functionalities provided by the DPWS Stack. With the proposed

architecture, by adding the DPWS Middleware layer, all these functionalities will become

available in a much simpler form. New functionalities suitable for agents and other entities are

also implemented in the Middleware.

3.3.3.2 DPWS MIDDLEWARE LAYER

Figure 3-12 - Middleware discovery features

Discovery has been simplified and filtered to present only relevant information for the

agent. Only after all the metadata structure has been acquired from new entities does the

Middleware present this new entity to the agent by giving it the entity name and type along

with some possibly relevant information such as topology data.

DPWS Middleware Architecture

- 42 -

Figure 3-13 - Middleware communication features

Agents only work with entities names and types, all information related to

communication and message coding and decoding is filtered by the Middleware. Message

building, with correct address and data types, as well as decoding received messages, to

objects the agent can work with, is made by the Middleware. It keeps tables of entities and

their services addresses in order to simplify the agent communication.

Figure 3-14 - Middleware Subscription management features

Subscriptions are kept in the Middleware and maintained. Subscriptions should always

be renewed until the agent requests their cancelation. If a subscription cannot be renewed,

then the service is no longer available and the entity can be considered out of order. In this

case the Middleware warns the agent of the abnormal departure of the entity from the system.

3.3.3.3 AGENT LAYER

The agent receives entity names and types it can contact. It can request services of

other entities by giving their name to the Middleware. The agent can request a subscription

for a service and it will be maintained. With the DPWS middleware the agent can request a

service as if it was a local method call, enabling an easy distributed decision making.

DPWS Middleware Architecture

- 43 -

3.3.3.4 MESSAGE TYPES

In this section the all of the basic DPWS Stack messages and message types will be

described.

These message types are implemented by the Discovery protocols of the DPWS Stack.

These messages are sent to announce the joining and leaving of an entity into and out of the

system. A look up method is also available to search for other entities in the system.

To get more information about any entity and its services the Discovery protocols

included metadata requests.

• HELLO

Whenever a new entity joins the system it sends a Hello message to all other entities

already running through multicasting. This message contains the unique identifier UUID of

the new entity as well as scopes, types and a list of hosted services.

• BYE

When an entity leaves the system properly it will send a Bye message to all other

entities in the system through multicasting. This message also contains the unique identifier

UUID of the leaving entity.

• LOOK UP

The look up mechanism provided by the Discovery protocols in the DPWS stack has a

number of messages involved.

3.3.3.4.1 DISCOVERY MESSAGES

DPWS Middleware Architecture

- 44 -

Figure 3-15 - Look up communication diagram

The entity that does the look up sends a Probe message to the system entities through

multicasting with the scopes and types of the entities that it wants an answer from. It then

waits for some time (default wait time is 5 seconds) to receive Probe Match messages from

every entity that matches the given scopes and types. After the waiting time the Stack gives

the Middleware the number and address of every matched entity that responded. Messages

arriving after the waiting time are ignored. The Probe Match messages contain the same

information of the Hello message.

• GET DEVICE METADATA

The Get Device Metadata message is usually sent after receiving a Hello message or

after a look up in order to get more information on the newfound entity. The entity receives

the message and responds with the requested information. Two groups of information can be

extracted from the response to this message: device information and model information. Since

DPWS was mainly developed for devices hence the given names. Device information

includes the device Friendly name, serial number and firmware version. Model information

contains manufacturer, manufacturer URL, model name, model number, model URL and

presentation URL.

DPWS Middleware Architecture

- 45 -

• GET SERVICE METADATA

The Get Service Metadata message is sent to retrieve more information about a certain

service. The response to this message contains the service ID, type and endpoint reference.

With this information the requesting entity will have all the necessary data to request services

from the responding one.

The message types described below are the messages exchanged by entities when

services are requested. When an entity requests a service from another entity it will send a

Request message for that service.

A Request Response service incorporates a response message from the requested

entity to the requesting one. Usually these types of services are used to get information.

A third service type, Event, is sent when an announcement is made to all entities that

previously requested it by subscribing.

These three operation types are built at design time in the service descriptor (WSDL).

They must be carefully chosen to expose correctly the services provided by the entity.

• REQUEST

This operation type is used often used to start an action. The requesting entity makes a

service Request to other entity as described in that entity service descriptor.

A message with the required parameters has to be build and sent. The message does

not require parameters if none are necessary.

• REQUEST RESPO�SE

This operation type is often used to request information. It is similar to the Request

operation but requires a response message in return. Both messages have their previously

designed parameters.

The Request message can have no parameters but the Response message is obligated,

to have at least one, by the stack.

• EVE�T

3.3.3.4.2 SERVICE MESSAGES

DPWS Middleware Architecture

- 46 -

The Event operation is usually used as an announcement service that an entity may

implement. This operation type has a mechanism of Subscriptions build to make it work. This

mechanism is described below.

When an entity wants to announce an event it checks the list of subscribers and sends

the Event message to all of them.

The Event message may or may not have parameters. That is an option made at design

time.

In this section the messages regarding Subscriptions are explained. When an entity

needs to receive events from another entity it subscribes to those events. Every subscription

has expiration and has to be renewed before it expires. While the subscription is valid the

entity will receive events from the entity it subscribed to.

At any time the subscribed entity can cancel the subscription, renew it or get the

subscription status from the entity it subscribed to.

Subscriptions are managed internally in the DPWS Stack on the server side, the entity

that exposes an Event service.

3.3.3.4.3 SUBSCRIPTIO/ RELATED MESSAGES

DPWS Middleware Architecture

- 47 -

Agent Entity

Subscribe
Agent Subscribes

to entity event Duration

Event

Event

Get Subscription Status

Duration

Renew Subscription

Duration

Cancel Subscription

Subscription not

needed anymore

Event

Figure 3-16 - Subscription Communication

A subscriber can subscribe to a single event or all of the events of a port type with a

single subscription by adding filters to it. When a subscription is made the service returns the

duration of the subscription to the subscriber. With that information the subscriber can renew

the subscription before it ends if necessary.

• SUBSCRIBE

The Subscribe message is sent by an agent when it wants to be warned when a certain

event takes place. The agent then sends the Subscribe message to the selected entity, with a

list of services it wants to subscribe to (entire port types or single events), and the desired

duration of the subscription. The recipient then responds with the actual duration of the

subscription. If the requested duration is more than what is defined as the maximum duration,

at the recipient, it will send the defined duration, if less then it is accepted.

• RE�EW SUBSCRIPTIO�

Every subscription has a duration after which it will expire. If an agent wants to keep

receiving events regarding that subscription it must keep renewing it before it expires. This is

DPWS Middleware Architecture

- 48 -

made with a Renew Subscription message. This message contains the subscription ID and the

desired subscription duration. The recipient responds to this message with the actual duration

of the subscription. If the subscription expires this message is ignored.

• GET SUBSCRIPTIO� STATUS

Whenever an agent needs to know what is the status of a subscription it sends a Get

Subscription Status message to the recipient. This message contains the subscription ID and

the response contains the remaining duration of the subscription. If the subscription expires

this message is ignored.

• CA�CEL SUBSCRIPTIO�

If a subscription is no longer needed by an agent the agent can cancel it by sending a

Cancel Subscription message. This message contains the subscription ID. This request is only

valid if a subscription was made and in case it expires the message is ignored.

3.3.3.5 JOINING

Joining the system is made differently depending on entity type. When an Agent

Entity joins a system it announces itself and its services and looks for other entities. The

Agent Entity subscribes to other entities services and takes subscriptions for its services.

When a Server Entity joins a system it announces itself to the system and waits for

requests. It has no further action. It accepts Subscriptions and service requests.

When a Client Entity joins a system it looks for other entities but never announces

itself. It can then use the other entities services but remain invisible to every entity. It exposes

no services.

When an entity is acknowledged by an agent, be it through Hello message or Lookup,

the agent requests its device Metadata as well as Service Metadata to know more about the

device and how to call and subscribe to each service. This procedure takes place before

subscriptions can be made, after the agent receives a Hello message and right after a look up.

Whenever a previously unknown entity is discovered the agent requests for all metadata

information. This procedure is a standard procedure in Agent and Client Entities.

DPWS Middleware Architecture

- 49 -

Figure 3-17 - Request Metadata

Figure 3-18 - Metadata Request message sequence

When the joining entity is an agent it sends a Hello message, to all entities already

running, signaling its arrival and the availability of its services. It then performs a lookup to

know what other entities can be found running. After finding them (receiving lookup

acknowledgement messages) it can subscribe to their services and start pursuing its goals.

Metadata exchange takes place after discovery but before subscription.

3.3.3.5.1 AGE/T E/TITY

DPWS Middleware Architecture

- 50 -

Figure 3-19 - Agent joining the system

Figure 3-20 - Agent Join message sequence

DPWS Middleware Architecture

- 51 -

When a Server Entity joins the system it sends a Hello message, to all entities already

running, signaling its arrival and the availability of its services. Agents can now subscribe for

its services if they are relevant for their goals. Subscriptions are made for a certain duration

before which they must be renewed or simply ignored.

Figure 3-21 – Server Entity Joining the system

Before Subscribe takes place there is always metadata exchange between the agent

and the entity. This exchange is described in the beginning of this section.

Figure 3-22 – Server Entity Join message sequence

3.3.3.5.2 SERVER E/TITY

DPWS Middleware Architecture

- 52 -

When a Client Entity joins the system it does not sends a Hello message like Agent

and Server Entities. The first system related action it does is a look up for running entities.

After the look up it gets the metadata of those entities. It can now subscribe for and request

their services. This entity never announces itself to the system remaining invisible to every

other entity.

Figure 3-23 – Client Entity Joining the system

3.3.3.5.3 CLIE/T E/TITY

DPWS Middleware Architecture

- 53 -

Figure 3-24 – Server Entity Join message sequence

3.3.3.6 LEAVING

There are two possibilities when a Server or Agent entity leaves the system. The

normal possibility is when the entity is shutdown and sends a Bye message to all entities in

the system. The other possibility happens when the entity crashes.

When a Client Entity leaves the system it simply shuts down. Since it did not

announce itself when joining, it does not have to announce its leaving.

When a Server or Agent Entity leaves the system it sends a Bye message to announce

its departure so that agents know that that entity can no longer be contacted.

DPWS Middleware Architecture

- 54 -

Figure 3-25 - Entity leaving

Figure 3-26 - Entity Leaving sequence

 In case the entity crashes it does not send the Bye message. It will not reply to

Lookups made by arriving agents so no new subscriptions will be made. Since the Bye

message is not sent the system agents do not know the entity is not available anymore.

When an agent tries to contact the crashed agent it will know that the entity is no

longer available. Agents that were subscribed will know that the entity is no longer available

when they try to renew their subscriptions.

3.3.3.6.1 E/TITY CRASH

DPWS Middleware Architecture

- 55 -

Figure 3-27 - Entity crash

Figure 3-28 - Entity Crash Sequence

3.3.3.7 SERVICE USE

Most DPWS entities expose services to the network. These services can be of three

types: request, request/response and event.

DPWS Middleware Architecture

- 56 -

• The request type is called by an agent and executed by the service with no

response. This service type is usually used to request an action.

• The request/response is called by an agent, executed by the service and a

response is returned to the agent. This service is usually used to request

information such as the status of a machine or process.

• The event type is initialized by the service and every previously subscribed

agent will receive the message. The service is provided to subscribers. If an

agent wants announcements from an entity it subscribes for that entity events.

When the event occurs the agent will receive a message.

Figure 3-29 - Service Request

Figure 3-30 - Service Request

Response

Figure 3-31 - Service Event

3.4 DPWS MIDDLEWARE ARCHITECTURE

The DPWS Middleware is layer between the Entity related code and the DPWS

Communication interface (Figure 3-3).

This extra layer works as a wrapper around the DPWS Stack that filters it and bridges

all communication to the Entity.

DPWS Middleware Architecture

- 57 -

Figure 3-32 - DPWS Wrapper

The wrapper forwards all service requests and events to the entity after decoding them

and building the agent friendly object. It manages known entities and services addresses to

easy communication from the agent. Subscriptions are managed and maintained in the

middleware. Discovery services provided by the DPWS Stack are combined in the

middleware so that the agent only receives relevant information when the discovery is

complete. Only when all metadata is retrieved does the agent receive the new entity name and

type. The middleware architecture is presented below.

3.4.1 OVERVIEW

After the code generation by the DPWS Toolkit a simplified DPWS Middleware can

be implemented for the entity. This interface must be able to translate the names of other

entities to their addresses as well as translate the messages received and given to agent

understandable information. It must warn the agent whenever a new entity arrives or leaves

the system. Subscription management is also a task the Interface must support.

The necessary files to implement the Middleware with the following architecture

could be made by a generator given some configuration.

The following figure illustrates the proposed DPWS Middleware approach.

Figure 3-33 - DPWS Middleware Architecture

DPWS Middleware Architecture

- 58 -

3.4.2 AGENT

Figure 3-34 - Base Agent Architecture

Every Agent in the system will have an identification ID (a friendly name) that will be

his identification to other agents, and an Entity Type so that they will know what kind of

entity they are contacting. The agent will also have a known entities list that he will use when

he wants to contact another entity in the system. Each entity is a combination of, at least, the

entity ID (its friendly name) and its type. Other information that can be significant to the

system, like topology, may be added.

Topology and other relevant data should be included in the device metadata but,

currently, there is not a possibility to add custom metadata to the Stack.

The agent will known which type of services a certain type can provide and search the

list for entities with the required type. With the friendly name of the entity to contact, the

agent can now use its services through the DPWS Middleware. Giving the Entity name and

the action to call to the DPWS Middleware is enough to make the contact.

3.4.3 DPWS MIDDLEWARE

The DPWS Middleware is composed of a Client and Server (Figure 3-5). The Client

and Server parts of the Middleware are a higher level of the client and server made available

in the DPWS Stack.

The Middleware Client has all necessary information to contact all known entities and

keeps subscriptions. All Discovery services are provided by the Client. Events previously

subscribed to are sent to the Client that forwards them to the agent.

DPWS Middleware Architecture

- 59 -

The Middleware Server exposes the agent services to the network. The higher layer of

the Server simply eases the configuration process and bridges the exposed services requests to

the agent.

Both, the Middleware Client and Server, provide an easier configuration of the DPWS

Stack communication interface.

The Middleware has mechanisms to make one use the other, like having the client

warn the server that an entity has left the system without warning when it can’t renew a

subscription. The Server does not have the system’s entities information and so it is never

capable of telling the agent who requested the service by the name. The DPWS Middleware

higher level is the intermediary between the Client and the Server. It will receive the Request

from the Server, with the requestor address, and ask the Client the name and type of the

requesting entity. The Request is then passed to the Agent with the request data as well as the

information of the requesting entity.

In the following diagrams actions done by the DPWS stack out of the box, without

knowledge of the controlling entity are shown in grey boxes whereas actions that make use of

the middleware and reach the entity are shown in blue.

3.4.4 SERVER

Figure 3-35 - Server Services

The Middleware Server is responsible for, sending Hello and Bye messages to the

system, registering Subscribers for the agent services, sending Events and warn the entity that

its services have been requested. All Services provided by the agent, as well as agent metadata

are available to the system through the Server.

DPWS Middleware Architecture

- 60 -

The DPWS Stack has automated the sending of Hello and Bye messages as well as

subscriber registration. The device and services metadata are also configured at development

time and the requests and responses regarding metadata are handled by the DPWS Stack.

The Middleware server simplifies implementation by providing an easier

configuration, translates requests made to the agent to agent processable objects and sends

events by agent request.

Figure 3-36 – Middleware Server Architecture

The server exposes to the agents in the system the entities services and information.

When an entity enters the system the entity server announces its arrival by sending a Hello

message to all agents already running. By receiving this message every agent will now be able

to request its metadata and have access to this entity services and information. When it leaves

the system it will send a Bye message signaling that its services will no longer be available.

The services exposed by the Server should be divided in service types, a service per

entity type that will use it. Each service will have its own requests, request responses and

events for de designed type.

DPWS Middleware Architecture

- 61 -

3.4.4.1 SERVICES

Figure 3-37 - Services Architecture

The Service is responsible for sending events through the Notifier by agent order, and

announcing the service call to the agent. If a request response operation type was called it

waits for the agent answer.

Services in the DPWS Stack have to be implemented by the developer on the

generated class. Middleware Services can be generated as they translate the request to an

object that is sent to the agent. With the request information the agent can then provide the

service.

3.4.5 CLIENT

Figure 3-38 - Client Services

The Client is responsible for system Lookups, subscribe to other entities services,

maintain subscriptions, calling other agent services, receiving Hello and Bye Messages,

requesting metadata from other entities and keeping a list of known devices with their

information sorted by their friendly name. The Information kept by the Client on other entities

consists of entity address, services exposed by that entity, their addresses and entity and

services metadata.

DPWS Middleware Architecture

- 62 -

The Client is the interface of the system for the agent. It warns the agent about arrivals

and departures on the system as well as crashes when it tries to renew a subscription with an

entity that is no longer available. Whenever an entity leaves the system the Client must cancel

all subscriptions to that entity, and when the leaving entity is an agent it must warn the server

to cancel subscriptions in case it did not unsubscribe first.

The Middleware client offers a number of services to the agent that the DPWS Stack

client does not. Besides easing configuration and implementation the Middleware client filters

DPWS related information so that the agent only receives relevant data. The Middleware

Client has a higher level in every part of communication as it processes all information that

comes from and to the DPWS Stack client.

Figure 3-39 – Middleware Client Architecture

The Client is configured with the scopes and types that it should listen and look up for.

It has one Event Handler Manager, per service type that it can call, to manage Subscriptions.

Subscription management includes subscribing, unsubscribing, renewing, getting the

subscription status, verify if subscribed and maintain (auto-renew) subscriptions.

Subscriptions can be made to an entire service (port type), or to a group of available events

that the port type implements. Also, per service type, it has an Invoker with which it will call

the system entities request and request response services.

DPWS Middleware Architecture

- 63 -

3.4.5.1 EVENT HANDLER MANAGER

Figure 3-40 - Event Handler Manager Architecture

The Middleware Client has an Event Handler Manager for each Service type it can

receive events from. It includes an Event Handler that receives the events the agents

previously subscribed to and translates them to the agent. It keeps a list of made subscriptions

with related information to be able to check if still subscribed and operate on them with

available DPWS Stack operations (renew, cancel, get status).

The subscription list has Complex Subscriptions that automatically renew themselves

when they are about to expire. In case they fail to renew (the Entity that provides the service

might have left or crashed) they will notify the client, which will notify the agent that will

decide what to do with that information.

The DPWS Stack generates an interface to implement the event handler. The

implementation and extra features belong to the Middleware.

3.4.5.2 ENDPOINT MANAGER

Figure 3-41 - Endpoint Manager Architecture

DPWS Middleware Architecture

- 64 -

The Endpoint manager has all known Entities entries with every Entity endpoint and

their services endpoints. Through this manager the client will be able to search for devices

and their services when given a call is requested by the agent with the device name it wants to

send to.

The Endpoint manager is also used by the Middleware server to translate the UUID of

requesting agents into friendly names that the agent knows.

This is a complete new service the Middleware provides to the agent.

3.4.5.3 KNOWN ENTITIES

Figure 3-42 - Known Entities Architecture

The Entities list has a list of Entities along with information on how to contact them.

The structure includes the entity proxy, its metadata, scopes and types and a list of services it

provides along with their address and metadata.

This structure belongs to the Middleware Client and has all necessary information to

contact any known entity. It is a completely new structure added do the Middleware as it was

indispensable for the proposed architecture.

3.4.5.3.1 E/TITY SERVICES

DPWS Middleware Architecture

- 65 -

Figure 3-43 - Entity Services Architecture

The Entity Services list has a collection of services of a given Entity along with its

metadata, types, proxy and the means to invoke its services (the invoker).

This structure is part of the structure presented above and has the same use. It is part of

the structure which gives the Middleware the means to contact other known entities. As the

above, this structure was deemed necessary for the Middleware.

3.5 IMPLEME	TATIO	

In this section the implementation of an agent control system with DPWS

communication will be covered, focusing on the implementation of the DPWS Middleware.

3.5.1 HOW TO MAKE A DPWS SYSTEM

To implement an agent control system communicating via DPWS, the following steps

must be completed:

• Design the services descriptors, the WSDL files;

• Generate the DPWS Stack related code with the given generator;

• Implement the DPWS Middleware Layer following the above architecture;

• Integrate the implemented communication layer with the system entities.

The Middleware Layer implementation step can be avoided by creating another

generator. Given some configuration it is possible to create a generator to create all

DPWS Middleware Architecture

- 66 -

Middleware necessary files. With the generator it would be possible to design the services

descriptor and generate all the communication layer necessary code.

Due to the discovery capabilities of the DPWS protocol stack, the order in which these

run is not important. After these steps the system will be running. Every agent will know who

is on the system and ready to use their services in order to reach their goals.

3.5.1.1 THE WSDL SERVICE DESCRIPTOR

To make the DPWS Middleware, a WSDL file must be written so that a DPWS

Toolkit can generate the code needed for the interface. For this matter a WSDL generator

Tool was implemented and is explained in chapter 4.10.

The WSDL has a structure defining the Service that the device will implement. The

Service is the main node in the structure. Everything that a device exposes is through this

Service.

The structure presented here is the W3C WSDL standard [61] with some minor

changes made by the Stack developers.

Figure 3-44 - Service Description Tree

The Service has one or more Port Types. It is through these Port Types that services

can be made for a specific agent type (ex: a port type for machine agents, a port type for a

network debugger, etc). Some services should only be available for a certain type of agent

DPWS Middleware Architecture

- 67 -

given that other types do not need or should not use them. This simplifies, for example,

subscriptions, as agents subscribe only for events that they can use. Implementation is also

simplified as each agent implements only the services that they will use.

Each Port Type can have various operations that can be called (request and request

response operations) or subscribed to (event operations).

Operations, as explained in 3.3.3.7, can be of type Request, Request Response or

Event. The Request Operation receives a message that can be empty, the Request Response

receives a message that can also be empty but responds with a non empty message and the

Event Operation sends a message that can also be empty. These Messages are what will be

exchanged between entities.

 Each message description can have Elements. These Elements also have to be

declared in the WSDL file. Elements have a name and a type. The type of the Element can be

a normal type like integer, string, token, short and other XML Schema types, or a declared

Data Type.

Data Types can be Simple or Complex. Simple Data Types have a name, a XML

Schema type and may have restrictions such as minimum value, maximum value, possible

values and many more. Complex Data Types have a name and a list of elements each with its

own type, be it a XML Schema type of a Simple Data Type [62].

The Service should be as complete as possible so that each entity can provide a

number or functionalities to the system. Events should be widely used so that the system can

easily be monitored and diagnosed when something unexpected happens. A complete set of

services enables the system to accept new entity types adding new functionality without

reprogramming every other entity.

3.5.1.2 THE GENERATED CODE

Each one of the available toolkits create by Schneider Electric (the C and Java Stacks)

has a code generator for the needed code to start implementing the DPWS interface.

DPWS Middleware Architecture

- 68 -

Figure 3-45 - Generated Code

The Java DPWS generator reads the WSDL file and generates the classes and

interfaces that will be used to implement the service.

It generates:

• the classes of each Data Type and Element declared in the WSDL file;

• one Invoker per Port Type that enables clients to invoke this Port Type

services;

• one Notifier per Port Type that has at least one Event Operation that enables

the device to send events to subscribed agents;

• a Handler Interface, per Port Type with Events, that enables the agent to handle

received events. This interface is to be implemented by every entity that can

subscribe to these service events.

With the generated files the Middleware can be developed or generated.

3.5.1.3 PROGRAM THE DPWS MIDDLEWARE

After the necessary generated code, provided by the DPWS Stack generator, the

Middleware is ready to be implemented.

DPWS Middleware Architecture

- 69 -

Following the Java implementation that was made, the Middleware has two

development phases. The first phase includes the necessary Middleware files that only have to

be implemented once, the Middleware base structure.

This structure includes:

• Middleware Client;

• Middleware Server;

• Known Entities information list;

• Endpoint Manager;

• Subscription Manager.

The second phase is the entity specific implementation of the Middleware that needs

the generated code from the DPWS Stack generator.

This includes:

• DPWS Middleware (top structure to be used by the entity)

• Entity specific Client

• Entity specific Server

• Services implementations

• Event Handlers implementations

The first implementation phase only happens once since it is generic code. The second

implementation phase is quite mechanized, with only a few decision needed. This phase could

be skipped with the implementation of a configurable generator so that the complete DPWS

Communication interface of any entity depended only on designing the Service descriptor, the

WSDL file.

3.5.1.4 INTEGRATING EVERY SYSTEM ENTITY

After the DPWS Interfaces have been implemented they are ready to be integrated

with the agents. The agent needs a friendly name for which it will be known throughout the

system, an entity type so that other entities know what services it exposes and a list of known

entities with their name, type and other relevant data. With this information the agent is now

ready to use services provided by other entities to fulfill its goals. This method is fully

detailed in section 3.4.

DPWS Middleware Architecture

- 70 -

Every service method will be called like a local method by the agent. The whole

system will be contactable transparently through the complete DPWS Interface as if all

requests were made locally.

3.5.2 RUNNING THE SYSTEM

Starting a DPWS system is simple as there is no order to launch the entities. The

Discovery protocols guarantee that every entity will find every other entity regardless of

running order. The complete DPWS Interface will start with the agent and the discovery

protocols will find the other entities in the system through Look ups, Hello and Bye messages.

When the minimum necessary entities, to run the production system, have been

started, the system can operate.

During system run, at whatever time any entity can start and, in case it is an agent, use

the systems services. The running agents, if previously prepared, can also use the new entity

services.

Case Study

- 71 -

4 Case Study

4.1 OVERVIEW 72

4.2 3D MODEL 74

4.2.1 Workpieces 75

4.2.2 Decision points 76

4.2.3 Loader Model 76

4.2.4 ShiftTable Model 77

4.2.5 Machine Model 78

4.2.6 Unloader Model 79

4.2.7 Models DPWS Interface 80

4.3 AGENTS 80

4.3.1 Loader Agent 82

4.3.2 Unloader Agent 84

4.3.3 ShiftTable Agent 85

4.3.4 Machine Agent 86

4.3.5 Workpiece Agent 87

4.4 HUMAN INTERFACE 89

4.4.1 Configuration Tool 90

4.4.2 Production Manager 91

4.4.3 Communication Log 93

4.5 DATABASE 94

4.6 TOPOLOGY 95

4.7 DEMONSTRATOR COMMUNICATION 96

4.8 HOW IT WORKS 97

4.9 3D MODEL SIMULATION TO REAL MACHINES 99

4.10 WSDL GENERATOR TOOL 99

Case Study

- 72 -

4.1 OVERVIEW

To demonstrate the proposed architecture with DPWS communication a Demonstrator

was build. The Demonstrator includes a 3D model of a simplified plant, a DPWS Interface

with Server Middleware per 3D entity, Agents that control the system, a Configuration Tool,

a Production Manager Tool, a Communication Log and a Database. Each of the Entities in the

Demonstrator communicates with the others via a DPWS Interface that implements the

proposed concept.

The Demonstrator was entirely built to demonstrate the Middleware operating in all

presented entity types. The only blocks that weren’t implemented were the DPWS Web

services that were generated by the DPWS Stack given the, Demonstrator specific designed,

service descriptors, the WSDL.

Figure 4-1 - 3D model Communication Model

The 3D model was designed in DELMIA Quest to mimic a system which description

was provided by Schneider Electric. The 3D model has 3 workpiece types to produce with

different colors. After the 3D model was designed the basic actions had to be programmed

into the model using the available language SCL (Simulation Control Language). The 3D

model has a total of 103 decision points that had to be programmed individually. It includes 9

entities each with its own SCL initialization code. Each of the implemented entities

communicates with their DPWS interface via sockets implemented in C. Each has a client and

a server that send and receive messages to and from the server and client implemented in the

entities DPWS Interfaces.

The rest of the system was all implemented in Java using the Schneider Electric

DPWS Java Stack.

Case Study

- 73 -

The DPWS Interfaces for the 3D model were implemented following the presented

Server Middleware concept to represent the virtual world in the system. These interfaces

could be representing a real machine instead of a virtual one without changing the system.

Figure 4-2 - Agent Communication Model

With the 3D model complete the agents had a virtual world to command. All agents

were implemented with the Agent Middleware concept. Communication between the agent

and the Middleware is local since the Middleware is an object.

To fully demonstrate the Middleware some other entities were developed: the

Configuration Tool, the Production Manager, the Database and the Communication Log.

Figure 4-3 - Configuration Tool and Production Manager Communication Model

The Configuration Tool and the Production Manager are Human Interface applications

with the Agent Middleware. The Configuration Tool enables the configuration of all agents

and the simulator. The Production Manager enables the design of production plans by

workpiece type and sends production orders into the system.

Case Study

- 74 -

Figure 4-4 - Database Communication Model

The Database is represented in the system by a Server Middleware. All system

production data has its persistency in the database. Whenever an entity crashes the production

can continue because all necessary data is secure.

Figure 4-5 - Communication Log Communication Model

The Communication Log is a Monitor entity with the Client Middleware. Every entity

in the system exposes a Standard Log Event Service to which the Communication Log can

subscribe. This entity can monitor all communication made in the system by subscribing to

this service.

All Entities are necessary to be running for the system to start but the Communication

Log, which can be run at any time or not run at all.

4.2 3D MODEL

The 3D Model of the Demonstrator is a simplified model of a motor production plant

designed by DaimlerChrysler. It was built in DELMIA QUEST software and programmed

using the available language SCL (Simulation Control Language).

Case Study

- 75 -

Figure 4-6 - Demonstrator 3D Model

The model includes a warehouse, a loader, 4 shift tables, 3 machines and an unloader.

Since the model warehouse has only three workpiece types and very basic functionality it was

logically grouped with the loader.

Each model part has a series of decision points where, when a workpiece arrives, the

associated code is executed.

Each model part communicates with the outside DPWS interface, through sockets.

One server socket and one client socket connection per part. After every one of the 9 socket

servers and clients are connected the 3D model is ready to start operating and accepting

orders.

4.2.1 WORKPIECES

Workpieces are the moving parts of the 3D model. There three types of workpieces,

each represented by a short colored cylinder. There is a red, blue and green workpiece types.

Each workpiece has an ID associated. This ID is set when the workpiece is initialized

at the loader. The ID is given by the Loader Agent. This ID can be read at any decision point

in the system. It is then sent to the agents, when necessary, to keep track of the workpieces

location.

Case Study

- 76 -

4.2.2 DECISION POINTS

Decision points are part of the 3D model. Each decision point has SCL code

associated that runs when a workpiece reaches it. Some decision points read the workpiece ID

when it is upon them and send it alongside with a message to the agent. Other decision points

simply route the workpiece to another conveyor by following a previously made decision. An

example of this is the shift table that sends a message to the shift table agent when a

workpiece arrives. It then receives the shifting order and shifts the workpiece from an

entrance to an exit without exchanging more messages with the agent even though there are

several routing decisions in the shift. This procedure makes the workpiece pass through

various decision points that act upon the workpiece by reading previously set local variables.

There are 9 decision points in the system that have the initialization code necessary to

make the socket connection with the DPWS interfaces. All of this decision points have a

socket client and server to communicate through which strings are exchanged.

4.2.3 LOADER MODEL

The loader model receives workpieces from the warehouse and releases them into the

system. It is composed by a single decision point that accepts the release order from the agent.

Any entity that enters the system has to go through this entity. Workpieces are initialized

(they are assigned an ID) in the loader decision point.

The warehouse model has 3 workpiece types. Each of these types can be called into

the system. Each type is identified by their color: red, blue or green. This model is logically

grouped with the loader therefore the workpieces are called into the system by a loader agent.

The loader and warehouse models are both controlled by a loader agent.

Case Study

- 77 -

Figure 4-7 - Loader and Warehouse 3D Model

The warehouse and loader models accepts commands to manage the entry of

workpieces into the system by type.

The loader model is represented in the agent system via its DPWS Interface. The

DPWS Interface exposes the loader and warehouse functionalities to the Loader Agent that

controls them. With 1 loader and warehouse models in the demonstrator the system needs 1

loader agent.

4.2.4 SHIFTTABLE MODEL

There are 4 shift table models in the Demonstrator. The shift table models are the

means of transportation of each workpiece to any part of the system. Their functionality is to

shift workpieces from each of the system main 3 conveyors to another.

The shift table model has a number of entries and exits. When a workpiece arrives at

an entrance this is announced. When a decision has been made the workpiece enters the shift

table, goes through a number of decision points until it has reached an exit. Only one

workpiece can enter the shift table at any moment.

Depending on the shift table model it can have up to 21 decision points.

Case Study

- 78 -

Figure 4-8 - ShiftTable 3D Model

The shift table model is composed of two conveyors perpendicular to the three main

conveyors of the system. These two conveyors can shift workpieces up and down between the

main ones.

The shift tables in the system separate the other entities topologically. Between every

two shift tables there is a machine in the lowest conveyor. Connected to the first shift table are

the loader and unloader models.

Workpieces travel through the system in the middle and top conveyors to reach their

contracted entity. The lower conveyor is only visited by workpieces that are going to be

processed by the adjacent machine.

Every shift table model accepts commands to shift workpieces from one conveyor to

another and announce relevant events.

The shift table model is represented in the agent system via its DPWS Interface. The

DPWS Interface exposes the shift table model to the ShiftTable Agent that controls it. With 4

shift table models in the demonstrator the system needs 4 shift table agents.

4.2.5 MACHINE MODEL

There are 3 machine models in the Demonstrator. The machine models simulate the

processing of workpieces in the system. Their functionality is to process workpieces and to

manage the conveyor system associated with them, so that unwanted workpieces may pass

and wanted processed.

Each machine in the system has 8 decision points

Case Study

- 79 -

Figure 4-9 - Machine 3D Model

The machine model is composed of a small conveyor system that allows it to convey

workpieces to the machine and out, or just let them pass, as needed. The model has a machine

and once a workpiece reaches the processing position it will stay there for some time until the

processing has been finished.

The machine can have a maximum of four workpieces in its system: one at the exit,

one processing, one waiting to be processed and one waiting to enter the machine conveyor

system. All these can be managed by the machine model by receiving decision commands

from the Machine Agent controlling it.

Every machine model accepts commands to manage the flow of workpieces in its

conveyor system and announces relevant events to enable that management.

The machine model is represented in the agent system via its DPWS Interface. The

DPWS Interface exposes the machine model to the Machine Agent that controls it. With 3

machine models in the demonstrator the system needs 3 machine agents.

4.2.6 UNLOADER MODEL

The unloader model receives workpieces from the system and sends them away. Its

function is to expose or archive of completely processed workpieces.

Case Study

- 80 -

Figure 4-10 - Unloader 3D Model

It is composed by a single decision point that accepts the release order. It is located at

the end of one of the main conveyors. At the end of the unloader there is a sink where

workpieces disappear.

The unloader model is represented in the agent system via its DPWS Interface. The

DPWS Interface exposes the unloader model to the Unloader Agent that controls it. With 1

unloader model in the demonstrator the system needs 1 unloader agent.

4.2.7 MODELS DPWS INTERFACE

Every one of the 9 models in the demonstrator has its own representation in the

system. There are 9 Server Entity DPWS Interfaces to represent the 3D model. Each one of

these entities translates the string sent by and to the models into DPWS services so that agents

can find and control the model. Events sent by the model are translated into DPWS messages

and commands sent to the model are translated into strings that are sent through the

designated socket.

4.3 AGE	TS

The Agents in the demonstrator control the production system. In order to make the

best decision they communicate between themselves to get the needed information.

Case Study

- 81 -

Figure 4-11 – Agent Architecture

Every agent in the system has the agent Middleware which is the agent interface to the

rest of the system.

The demonstrator has 5 agent types: loader agents, shift table agents, machine agents,

unloader agents and workpiece agents. Each agent type is responsible for something in the 3D

environment.

Some decisions that an agent has to make need more information than the one it has.

Therefore the agent must gather the required information from the other entities in the system.

There are two forms of information gathering.

Figure 4-12 - Decision Making Direct Information Gathering

The simplest one is having the agent directly request the needed information from

another entity by calling a service. The entity then responds with the requested information.

This method requires that the entity provides that service.

Case Study

- 82 -

AgentAgentAgent

Make

decision

Agent

Need Info

Need Info

Need Info

Do not have

needed info

Wait for

replies

Info

Check

replies

Info

Figure 4-13 - Decision Making Indirect Information Gathering

The other method has the agent advertising its need for information and waiting for

responses from other entities that may have it. After a pre defined time the agent will check

the received information and make its decision.

Every agent in the system has a service to enable a communication log. When a

Communication Log entity joins the system it can choose which entities to include in the log

and subscribe to them.

4.3.1 LOADER AGENT

The Loader Agent is responsible for the demonstrator warehouse and loader. Its task is

to bring in the unprocessed workpieces from the warehouse to the system and introducing

them to their responsible workpiece agents. The workpiece to workpiece agent assignment is

made through advertisement. The loader agent advertises that it has a workpiece that needs

representation and waits for workpiece agent responses. It then checks them and chooses the

most suitable to represent the workpiece.

Case Study

- 83 -

Figure 4-14 - Loader Agent Interactions

The Loader Agent accepts production orders from the Production Manager, calls

workpieces from the warehouse, initializes and advertises them so that a workpiece agent will

agree to take responsibility for that workpiece after which it releases it into the system.

Figure 4-15 - Loader Agent Tasks

The warehouse in this demonstrator has three types of workpieces and the orders,

made by the production manager, can be of any of these types. The order also includes the

number of workpieces to produce and their base priority. In case there are many orders the

Loader Agent must first dispatch the higher priority ones.

Case Study

- 84 -

4.3.2 UNLOADER AGENT

The Unloader Agent is responsible for the unloader model. Its task is to unload

workpieces from the system. Every workpiece that enters the system must leave through the

unloader.

Figure 4-16 - Unloader Agent Interactions

Figure 4-17 - Unloader Agent Tasks

It receives workpiece advertisement from the workpiece agent when they have been

completely processed and after a contract is established the workpieces are transported to it.

After the workpiece arrives it then warns the workpiece agent that finishes the contract it has

with the workpiece, and the workpiece is unloaded from the system finishing its production

cycle.

Case Study

- 85 -

4.3.3 SHIFTTABLE AGENT

The ShiftTable Agents are responsible for shift table models. Their task is to route

workpieces inside the system. They receive transportation requests and try to execute them

when the workpieces in question arrive.

Figure 4-18 - ShiftTable Agent Interactions

The ShiftTable is composed by entrance and exit conveyors and a shifter that shifts

workpieces from an entrance conveyor to an exit one. A workpiece can arrive in a conveyor

and be shifted to another conveyor on another level. The shifter can shift workpieces up and

down the three main conveyors of the system.

Figure 4-19 – Shift Table Agent Tasks

Whenever a workpiece arrives on an entrance, the shift table will warn the ShiftTable

Agent and it will verify if there is a request for that workpiece. It will then try to execute it

considering the present status of the shift table. After shifting, the shift table agent will signal

Case Study

- 86 -

the responsible Workpiece agent that the workpiece has been shifted. The shift table also

warns the agent every time an occupied exit becomes free.

4.3.4 MACHINE AGENT

The Machine Agent is responsible for a machine model. Its task is to process system

workpieces according to their process plan.

Figure 4-20 - Machine Agent Interactions

The workpiece is advertised by the workpiece agent and the machine agent responds.

After the workpiece agent chooses the processing machine it will try to add the workpiece to

the machine processing list. If acknowledged the workpiece is then transported to the

machine.

Figure 4-21 - Machine Agent Tasks

Case Study

- 87 -

When it arrives, the machine will guide it to the processing position and process the

workpiece as requested by the Workpiece Agent.

After the process is finished, or canceled, the machine agent will announce it to the

responsible workpiece agent that will plan the next action. The workpiece is then released

again into the system.

4.3.5 WORKPIECE AGENT

The Workpiece Agents are the center piece of the system. They have no hardware to

control. They are responsible for the planning of production, transportation, loading,

unloading, workpiece record creation and management of all workpieces in the system. The

Workpiece Agent is the entity with more interactions on the system as it interacts with almost

every other entity.

Figure 4-22 - Workpiece Agent Interactions

The first task of the workpiece Agent is to accept responsibility for the workpiece

when it is entering the system. It then creates the workpiece record on the database and has

the responsibility of keeping it updated throughout the process.

After the workpiece has been introduced into the system the workpiece agent must

advertise it to machine agents in order to follow the workpiece process plan downloaded from

the database. The agent will receive advertise responses, choose the best one and establish a

contract with the chosen machine.

Case Study

- 88 -

Figure 4-23 - Workpiece Agent Tasks

After the contract has been established it must then guide the workpiece through the

shift tables until it reaches the machine. In this guidance the workpiece agent must announce

the workpiece arrival, step by step, and request each shift necessary until the workpiece

arrives at the machine. The machine processes the workpiece and announces it to the

workpiece agent which updates the workpiece process status in the database.

This process is repeated until the workpiece is fully processed after which the

workpiece agent will advertise the workpiece to available unloader agents. It then chooses the

unloader agent, establish a contract with it and guide, once again, the workpiece to it. After

the workpiece arrives at the unloader agent it will announce it to the workpiece agent which

performs the last update of that workpiece and archives its process in the database. The

workpiece is then released by the unloader and the process deleted from the workpiece agent.

All workpiece agents in the system must share the processing workpieces

responsibility so that the control load is well distributed. When an unknown workpiece arrives

in any place it will have to be represented. In case it is not, one of the workpiece agents must

accept responsibility over it. This will happen especially if one of the workpiece agents

crashes. The workpieces will have no representation and other workpiece agent must continue

their, the lost workpieces, process. The, always updated, record in the database has this goal.

Case Study

- 89 -

4.4 HUMA	 I	TERFACE

The Human Interface entity category includes all entities that have a User interface

and are controlled by human interaction. These entities have control over activities such as

system configuration, higher level commands, maintenance and error correction.

This category includes two subcategories. In these we have the applications that the

system requires to operate such as the Configuration Tool and Production Manager, and the

applications that are optional at run time. These optional are maintenance and error correcting

entities such as the implemented Communication Log. These entities are needed to keep the

system running on the long run but not needed every time.

• Required entities

Figure 4-24 – Required Human Interface Entity Architecture

Since these applications need all the communication features of agents, they too have

the Agent DPWS Middleware. The difference being that the control is made by humans

instead of software agents.

In the implemented demonstrator there are two such entities: the Configuration Tool

and the Production Manager.

• Maintenance and Error Correction entities

Figure 4-25 – Optional Human Interface Entity Architecture

Case Study

- 90 -

Since these applications just need to use system services and not to provide services of

their own they just require the Client DPWS Middleware. With this interface they will join

the system without introduction, look for other entities and act upon them. That possibility

enables these types of entities to join, fix and leave the system without acknowledgement.

These entities can join the system at any time and in large numbers when needed, and leave

without notification.

In the implemented demonstrator there is one such entity: the Communication Log.

Every application in the system has a service to enable the Communication Log

functionality. This service is a standard service in this demonstrator. To have more

maintenance and error correcting tools in the system, it would have to implement standard

service interfaces to enable their action.

4.4.1 CONFIGURATION TOOL

The Configuration Tool is responsible for the dynamic configuration of all

configurable entities in the system. In the implemented demonstrator these include all agents.

The Configuration tool is the repository of all configuration of the system.

Before any agent can act upon the system, it must first get its configuration on the

configuration tool. Afterwards it can finally start acting upon the system.

Figure 4-26 - Configuration Tool Interactions

Configurations can be changed at system run time and announced to the respective

agents. When a new configuration is available for an agent the configuration tool announces it

Case Study

- 91 -

so that the agent can update itself. Every configurable entity in the system is always

subscribed to this entity to receive these announcements.

Figure 4-27 – Configuration Tool Tasks

When an agent enters the system and finds the Configuration Tool it checks if it has a

valid configuration for it. If so, it requests it. The new Configuration Announcement sent by

the Configuration Tool includes the new configuration.

Server entities cannot request configurations since they have not got a client interface.

In this particular case the Configuration Tool has to detect the new Server Entity and provide

its configuration through a service. The Server entities have to implement this standard

service.

4.4.2 PRODUCTION MANAGER

The production manager is the highest level entity in the system. All workpiece

process graphs are made through this application and stored in the database. Production orders

are created at this entity and sent to the Loader Agent that will introduce the requested

workpieces to the system.

Case Study

- 92 -

Figure 4-28 - Production Manager Interactions

The workpiece plan is designed for each workpiece type and recorded in the database

where all workpiece agents will be able to request it.

Figure 4-29 – Production Manager Tasks

The workpiece production orders consist of the workpiece type to produce, the number

of units to produce and the base priority of every workpiece in the order. This order is then

sent to the Loader Agent which controls the entry of workpieces into the system.

The Production Manager can also keep track of production by receiving events when

each workpiece has been produced, sent by the unloader agent.

Case Study

- 93 -

4.4.3 COMMUNICATION LOG

The Communication Log was designed to debug the system. Every multi agent system

needs debugging tools and its distributed nature makes this task very difficult. The

communication log enables the user to choose which entities to listen for and subscribe to log

messages.

Figure 4-30 - Communication Log Interactions

To have this kind of functionality in the system all entities in it have to expose the

same service that sends a log message for every other message it sends to any other entity.

Figure 4-31 – Communication Log

Case Study

- 94 -

The Communication Log is an example of a Monitorization Tool. These types of

entities listen to the system and sometimes act upon it but never present themselves to its

entities. All Monitorization Tools are invisible to the system.

4.5 DATABASE

The Database plays a passive part in the system as it does not start communication

with any other entity. It announces its arrival and its services to every entity but does not have

discovery capabilities.

Figure 4-32 – Database Architecture

The database has the same DPWS interface as a 3D model because of its passive role

in the system.

Figure 4-33 - Database Interactions

The database DPWS interface was made so that every communication link in the

system would be DPWS based.

Case Study

- 95 -

Figure 4-34 – Database Tasks

It is responsible for every workpiece record in the system, produced and still

producing. It accepts workpiece record updates from Workpiece Agents. It has an important

role in system recovery by having updates workpiece records. Business level information,

such as process graphs for joining workpieces, is stored in the database.

4.6 TOPOLOGY

In the implemented demonstrator, the routing process was made step by step. The

workpiece agent checks the best way to proceed after each interaction. After the workpiece

has been shifted the Workpiece Agent verifies which is the best action to take next.

To make this decision the Workpiece Agent needs topological information about the

system. In the demonstrator no entity knows the entire topology of the system, but through the

names of each entity it is possible to infer its relative position.

Figure 4-35 - Demonstrator Entities Friendly 	ames

Case Study

- 96 -

The topological information, as well as type, of each entity should be in the same

entity metadata, but since the current DPWS Stack does not have that possibility an

alternative solution was made. With an entity friendly name it is possible to extract its type

and relative position.

Figure 4-36 - Friendly 	ame Decomposition

From the first part of the name the type can be extracted. The second part of the name

is a number that indicates the relative position of the entity. From the number we can infer

that lower numbers are before this entity and higher are after, considering that the upper

conveyor goes to the lower numbers. So, if the goal is MA-150 and the workpiece is in ST-

200 it has to go back (go to the upper conveyor).

The shift tables divide the system topology by the 100 power. Every entity between

the shift table 100 and shift table 200 has to have a number between these two.

Whenever a workpiece leaves an entity this entity sends the next entity name to the

responsible Workpiece Agent. With this information the Workpiece Agent can route the

workpiece toward its goal.

4.7 DEMO	STRATOR COMMU	ICATIO	

All communication, between entities, in the Demonstrator is made via DPWS. Each

entity in the system has its DPWS Interface through which it receives and sends requests to

other entities.

The only exception is the communication between the 3D model and the DPWS

Interface that exposes it, which is done by sockets.

Following the 3.3.2 entity classification we can divide the Demonstrator entities in:

• Agent Entities:

Case Study

- 97 -

- Loader Agents

- Machine Agents

- ShiftTable Agents

- Workpiece Agents

- Unloader Agents

- Configuration Tools

- Production Managers

• Server Entities:

- Loader and Warehouse Model

- ShiftTable Model

- Machine Model

- Unloader Model

- Database

• Client Entities:

- Communication Log

Agent Entities announce their arrival and departure, expose their services to the

system, search for other entities, request and subscribe to other entities services. These entities

have an Agent DPWS Middleware.

Server Entities announce when they join and leave, expose their services to the system

and accept requests and subscriptions. These entities have a Server DPWS Middleware.

Client Entities look for other entities, request and subscribe to them. These entities

have a Client DPWS Middleware.

In this demonstrator every entity has Middleware but an entity that just exposed its

services through DPWS without the Middleware could enter the system as well.

4.8 HOW IT WORKS

In the following graph it is shown the overview of the processing of one workpiece.

Case Study

- 98 -

Figure 4-37 - Single Workpiece Production Overview

The workpiece production graph is made by the Production Manager entity. The

production graph indicates the process names and sequence to produce a workpiece. After

making the workpiece process graph and saving it in the database the Production Manager

sends a Production Order to the Loader Agent.

The Loader Agent requests the order workpiece type from the warehouse and waits

until it arrives at the loader. Upon its arrival the Loader Agent initializes the workpiece and

advertises it to Workpiece Agents. Interested Workpiece Agents leave their offer at the

Loader Agent. After a predetermined amount of time the Loader agent checks the received

offers and grants the workpiece to the Workpiece agent responsible for less workpieces.

 The Workpiece Agent creates a workpiece record at the database and requests the

process graph for the workpiece type. With the process graph it then advertises the workpiece

to Machine Agents. Machine Agents leave their offer and after a predetermined time the

Workpiece Agent analyses their offers. A Machine Agent is chosen and a contract is

established for the workpiece.

Case Study

- 99 -

The Workpiece Agent then routes the workpiece one shift table at a time until the

workpiece reaches the machine. The routing is decided step by step at each node.

When the workpiece reaches the machine the Machine Agent makes all the necessary

routing in its conveyor system to guide the workpiece into the processing position. It then

processes the workpiece. After processing it announces it to the Workpiece Agent and routes

the workpiece out of its conveyor system.

The Workpiece Agent updates the workpiece record in the database and, if the process

graph is complete, advertises the workpiece to Unloader Agents. The Unloader Agents leave

their offer and wait until the Workpiece Agent makes its decision. After it chooses the

Unloader Agent, the Workpiece Agent establishes a contract with it and routes the workpiece

to its goal.

When the workpiece arrives at the unloader the Workpiece agent archives the

workpiece record in the database a commands the release of the workpiece out of the system.

4.9 3D MODEL SIMULATIO	 TO REAL MACHI	ES

With the proposed architecture where all interaction in the system is made through a

DPWS Interface, agents could either be controlling a 3D model or a real machine with exactly

the same set of services providing that the 3D model has the same interface as the real

machine.

Considering that the 3D model has the same interface as real machines a system tests

with the simulator will work, without any changes in the real system. [52]

4.10 WSDL GE	ERATOR TOOL

The Java DPWS Stack implemented by Schneider Electric uses the WSDL Service

Descriptor File to generate the necessary code to implement the service. With the large

number of entities to implement in the demonstrator, and various changes during

implementation, it would not be viable to always be editing the WSDL files. So, the WSDL

Case Study

- 100 -

Generator Tool was developed to ease this task. With the generated WSDL file the DPWS

Stack generator generates the required code to implement the DPWS Interface.

The WSDL Generator Tool helps the DPWS Designer to build the WSDL file that

describes the entity services. Easily create and change the service, port types, operations,

messages, message information, data types, elements and all associated documentation.

Conclusion & Future Work

- 101 -

5 Conclusion & Future Work

5.1 CONCLUSION 102

5.2 FUTURE WORK 104

5.2.1 DPWS Stack 104

5.2.2 Standards 105

5.2.3 Semantics 105

5.2.4 FIPA Compliant Communication 106

5.2.5 Middleware Generator 107

Conclusion & Future Work

- 102 -

5.1 CO	CLUSIO	

The Middleware layer, for all three entity types, was designed, implemented and tested

successfully. Agents were able to communicate with each other and with other entities via

DPWS as expected. The DPWS Middleware layer provides a transparent means of

communication for agents in a system without a centralized communication entity like

JADEs’ Directory Facilitator.

3D Simulation was also studied and a model was implemented in order to test the

approach in a virtual production line. The connection between the system entities and the

Simulator was successfully established. The demonstrator was successfully implemented with

a significant number of different entities communicating via DPWS with the DPWS

Middleware.

In the first attempt to implement the DPWS middleware, the communication layer,

including the DPWS stack and middleware was completely independent from the entity. It

communicated with it via events and the connection was made by a launcher. This approach

was successful and provided a modular implementation approach. While successful this

approach had a downside in Request Response type services. In these the implementation had

an unnecessary level of complexity and thus was abandoned to a more integrated approach.

The DPWS stack and the middleware were then grouped into an object ready to be used by

the entities providing a much easier way to implement. This implementation proved as

successful as the latter.

The middleware was designed for agent communication. The middleware architecture

explores all DPWS features, adds a few others and exposes them to the controlling entity in a

simplified functional manner. It is composed of a server and client parts and an extra layer

that groups them. Since agents are the most complex entities in the production line they make

use of all of its features. Having the DPWS Middleware for agent communication complete, a

different middleware had to be designed for other entities present in the production line such

as databases and maintenance entities. Only a subset of the agent middleware features are

necessary for such entities and two other middleware architectures were devised: a Server and

a Client Middleware. The Server Middleware is designed for passive entities that just expose

Conclusion & Future Work

- 103 -

their services and consume none and the Client for active entities that enter the system

without presentation, act upon it and leave, also without notification. Error handling and

monitorization are some of the goals for this interface. All three interfaces were designed,

implemented and tested successfully.

This approach presents a number of advantages over classic implementations. The

DPWS interface enables a, much sought, truly distributed production system. Some previous

implementations already provided a distributed system but there always was a required

centralized entity for it to run. The DPWS Discovery system grouped with the Middleware

enables truly independent entities, including agents, in the production system. With this

approach every entity from the production level to the business level can enter, search for

other entities, request and subscribe to services, post orders and leave seamlessly. The

absence of a critical entity without which the system could not function is a major

achievement brought by the DPWS Stack and enhanced by the Middleware.

The Schneider Electric agent platform used in this demonstrator presented a number of

shortcomings due to its overly simplistic model. These agents were mostly reactive software

without the main agent features. JADE agent platform is much more suited to agency and

enriching it with this approach could provide very interesting results such as the elimination

of the Directory Facilitator.

The development of dedicated hardware that can run the DPWS Stack natively will

increase the response time enabling the deployment of DPWS interfaces deep down into the

most basic elements of the production line. Development in this direction is being undertaken

by Schneider Electric.

During the beginning of this thesis, Semantics were studied as they present a great

future improvement to these communication models. To enable a possible future addition of

semantics to the approach the DPWS interfaces must be designed with specific non-generic

services. These non-generic services can then include semantic description and be used in

real-time by, previously unaware of such services, agents. This is discussed more thoroughly

in the Future Work Section.

During this project it was noted that current agents, due to the slow response caused

by its decision making features are not suitable for lower level control. Until hardware that is

Conclusion & Future Work

- 104 -

powerful enough to uphold its processing needs, agency should be limited to high level, non

time critical, decision making.

The DPWS Stack was thoroughly studied and its flaws identified. Minor changes had

to be made to the Stack in the stated use case in order to expose functionality that was hidden.

The Stack created the service instances and hid them. In order to listen to their events they

had to be exposed so the entities could subscribe to them.

During the implementation of the demonstrator some standards were found lacking

such as standard maintenance services and a topology description model. Both are discussed

below.

This work was presented to the Vice President Connectivity Architectures &

Platforms and to the Manager of European Projects of Schneider Automation GmbH

(Germany) and had a very positive reaction.

5.2 FUTURE WORK

A number of possible additions to the approach presented in this thesis were

identified, such as improvements to the current DPWS Stack, standard DPWS interface port

types, semantic notation to service descriptions and FIPA compliant communication model.

5.2.1 DPWS STACK

The DPWS Stack available still has to implement some key features to enable a simple

interaction between entities. Entity Type as well as Topology Information should be included

in the entity metadata. Since more information will be added over time, Custom Metadata

should be implemented. With Custom Metadata all information can be added as needed. With

Topology Information and Entity Type in the Custom Metadata every entity will have the

necessary data when it acknowledges other entities. Friendly names will still have to be

unique but no extra data will be extracted from it.

Every message has a sender and the sender friendly name or UUID (Universally

Unique IDentifier) should be easily extracted from the message. Any agent always has to

know who requested each service and that information should not be in the body of the

Conclusion & Future Work

- 105 -

message, but in the header. The current JAVA DPWS Stack does not currently expose that

feature.

5.2.2 STANDARDS

In order to have a system capable of Monitorization a standard port type was

implemented in every entity. This port type had just an event that would be sent to subscribers

whenever the entity would send a message. This port type had log functionality.

To achieve full Monitorization functionality of a system, as well as error correction, a

standard Monitorization port type has to be devised and always implemented in every Entity.

Each Entity will then expose every action to subscribers as well as enable other tools to act

upon it in order to correct possible system errors at run-time.

5.2.3 SEMANTICS

Semantic Web Services could play an important role in automation by having agents

acknowledge previously unknown entity services at run-time, and use them.

There are a number of different approaches to bring Semantics into Web Services.

Three were presented in [63]:

• Develop a SW version service description language, then map to WSDL

(OWL-S)

• Annotate WSDL; provide additional information that defines semantics of a

part of the document. (WSDL-S, Data Dictionary Link)

• Transform WSDL into a semantic language (WSDL-RDF Mapping)

To these three approaches the author points down issues and makes comments giving

the WSDL-S approach the most positive review.

He states that OWL-S needs tools and that it is too complex for non-experts amongst

other issues.

WSDL-S is a good approach mainly because WSDL is a widely spread standard and

incremental approach. It is easier to be accepted. He also stated that adapting existing tools to

Conclusion & Future Work

- 106 -

support WSDL-S is easy. WSDL-S is presented by the author to be very flexible accepting

any ontology representation language or a combination of multiple representation languages.

The last possible approach presented by the author, WSDL-RDF is not so thoroughly

discussed as the previous two maybe because it is the newest of the three and there is not

much information on it.

The approaches are displayed in a comparison table:

Table 5-1 - Semantic Web Service Approach Comparison [63]

 OWL-S SWMO/FLOWS WSMO WSDL-S

Services General Web Service

How semantics
are given

From Semantic Service Description to
(Web) Service

WS to
Semantic

Comparing WSDL-S with OWL-S it is noticeable that WSDL-S is specifically

bringing semantics to Web Services whereas OWL-S first brings Semantics to the Web, and

also Web Services.

The WSDL-S approach can be implemented easily in the current DPWS Stacks by

including the WSDL request which would be processed by other entities or included in the

entity metadata ready to be processed.

Whichever approach is taken the advantages to systems that implement it are

numerous. With sophisticated Agents controlling the production few changes would have to

be made every time a new product is to be produced by the system.

5.2.4 FIPA COMPLIANT COMMUNICATION

FIPA is the standard in Agent Communication. With DPWS made available for

agents, the communication protocols should follow the same route.

FIPA compliant communication could prove valuable as it would make testing of new

features easier since there are already some implementations using its standard.

To make the current DPWS Stack FIPA compliant, it would have to undergo a serious

number of changes. The result would include a communication suitable for agents with all

Conclusion & Future Work

- 107 -

necessary data in each message and possible interaction with other agent based infrastructures

such as JADE [32].

5.2.5 MIDDLEWARE GENERATOR

The implementation of the approach presented in this thesis provided the means to

create a generator that could automatically, given some configuration, generate the

middleware for any entity. A generator could be made which would require the input of the

service interface and few other parameters and would output the full middleware ready to be

added to the entity. This generator added to a DPWS JADE would provide a full featured and

easy development of multi agent systems.

Bibliography

- 108 -

6 Bibliography

[1]. SIRENA, "Service Infrastructure for Real-time Embedded Network Applications". [Online] 2006.

http://www.sirena-itea.org.

[2]. SOCRADES, "Service-Oriented Cross-layer infRAstructure for Distributed smart Embedded

deviceS". [Online] 2006. http://www.socrades.eu.

[3]. K.Ueda. "A concept for bionic manufacturing systems based on D/A-type information". s.l. : in

PROLAMAT Tokyo: IFIP, 1992.

[4]. L.Gou, P.B.Luh, and Y.Kyota. "Holonic Manufacturing Scheduling Architecture, Cooperation

Mechanism and Implementation". s.l. : Computers in Industry, vol. 37, pp. 213-231, 1998.

[5]. S.Bussmann, and D.C.Mcfarlane. "Rationales for Holonic Manufacturing". s.l. : Second

International Workshop on Intelligent Manufacturing Systems, Leuven, Belgium, 1999, pp. 177-184.

[6]. H.Van Brussel, J.Wyns, P.Valckenaers, L.Bongaerts, and P.Peeters. "Reference Architecture

for Holonic Manufacturing Systems: PROSA". s.l. : Computers in Industry, vol. 37, pp. 255-274, 1998.

[7]. R.Babiceanu, and F.Chen. "Development and applications of holonic manufacturing systems: a

survey". s.l. : Journal of Intelligent Manufacturing, vol. 17, pp. 111-131, 2006.

[8]. M.G.Mehrabi, A.G.Ulsoy, and Y.Koren. "Reconfigurable Manufacturing Systems and their

Enabling Technologies". s.l. : International Journal Manufaturing Technology and Management, vol. 1, pp 113-

130, 2000.

[9]. Y.Koren, U.Heisel, F.Jovane, T.Moriwaki, G.Pritchow, A.G.Ulsoy, and H.Van Brussel.

"Reconfigurable Manufacturing Systems". s.l. : CIRP Annals, vol. 48, 1999.

[10]. M.Onori, H.Alsterman, and J.Barata. "An Architecture development approach for evolvable

assembly systems" . s.l. : International Symposium on Assembly and Task Planning: From Nano to Macro

Assembly and Manufacturing, Montréal, Canada, pp. 19-24, 2005.

[11]. M.Onori, J.Barata, and R.Frei. "Evolvable Assembly Systems Basic Principles". s.l. :

Conference on Information Technology for BALANCED AUTOMATION SYSTEMS in Manufacturing and

Services, Ontario, Canada: Springer, 2006.

[12]. J.Barata, P.F.Santana, and M.Onori. "Evolvable Assembly Systems: A Development Roadmap.

s.l. : IFAC Symposium on Information Control Problems in Manufacturing, Saint-Etienne, France, 2006.

[13]. R.M.Frei, L.Ribeiro, J.Barata, and D.Semere. "Evolvable Assembly Systems: Towards User

Friendly Manufacturing". s.l. : International Symposium on Assembly and Manufacturing, Ann Arbor,

USA:IEEE, 2007.

Bibliography

- 109 -

[14]. M.Onori. "Evolvable Assembly Systems - A /ew Paradigm?". s.l. : 33rd International Symposium

on Robotics, Stockholm, 2002.

[15]. J.Barata, R.Frei, and M.Onori. "Evolvable Production Systems Context and Implications". s.l. :

International Symposium on Industrial Informatics, Vigo:IEEE, 2007.

[16]. J.Barata, M.Onori, R.Frei, and P.Leitão. "Evolvable Production Systems: Enabling Research

Domains". s.l. : International Conference on Changeable, Agile, Reconfigurable and Virtual Production,

Toronto, Canada, 2007.

[17]. R.Frei, J.Barata, and G.Di Marzo Serugendo. "A complexity theory approach to evolvable

production systems". s.l. : International Conference in informatics and control, automation and robotics, Angers,

France, 2007.

[18]. P.Leitão. "An Agile and Adaptive Holonic Architecture for Manufacturing Control", PhD Thesis.

University of Porto : s.n., 2004.

[19]. J.Lastra. "Reference Mechatronic Architecture for Actor-Based Assembly Systems, PhD Thesis".

s.l. : Tampere, 2004.

[20]. J.Barata. "Coalition Based Approach for Shop Floor Agility, PhD thesis". Monte da Caparica,

2003 : s.n.

[21]. W.Shen, S.Lang, and L.Wang. "iShopFloor: An Internet-Enabled Agent-Based Intelligent Shop

Floor". s.l. : IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS - PART C:

APPLICATIONS AND REVIEWS, vol.35, 2005 .

[22]. EUPASS. "Evolvable Ultraprecision Assembly Systems". [Online] 2006. http://www.eupass.org/.

[23]. SODA. "Service Oriented Device and Delivery Architecture". [Online] 2006. http://www.soda-

itea.org.

[24]. Hewitt, C. Control structure as patterns of passing messages. [ed.] R.H. Brown (Eds.), Artificial

intelligence: An MIT Perspective P.H. Winston. s.l. : MIT Press, 1979. pp. 435-465.

[25]. 	.R.Jennings and M.L.Wooldridge. Applications of intelligent agents. s.l. : N.R.Jennings,

M.J.Wooldridge (Eds.), Agent Technology: Foundations, Applications, and Markets, Springer, 1998. pp. 3-28.

[26]. L.M.Camarinha-Matos, M.Vieira. "Intelligent Mobile Agents in Elderly Care". s.l. : Journal of

Robotics and Autonomous Systems, 27(1-2), 59-75, 1999.

[27]. L.Monostori, J.Váncza, S.R.T.Kumara. "Agent-Based Systems for Manufacturing". s.l. : Annals

of the CIRP vol.55, 2006.

[28]. P.Wooldridge. "An Introduction to Multiagent Systems". s.l. : Addison-Wesley, Reading, MA,

2000.

[29]. R.G.Smith. "The Contract /et Protocol: High-Level Communication and Control in Distributed

Problem Solving". s.l. : IEEE Trans. on Computers, C-29/12: 1104-1113, 1980.

Bibliography

- 110 -

[30]. FIPA, The Foundation for Intelligent Physical Agents . [Online] http://www.fipa.org/.

[31]. F.Jammes, H.Smit. Service-Oriented Paradigms in Industrial Automation. s.l. : IEEE

Transactions on Industrial Informatics, 2005.

[32]. JADE technical description. [Online] http://jade.tilab.com/description-technical.htm.

[33]. ZEUS. [Online] http://labs.bt.com/projects/agents/zeus/.

[34]. M.Huhns, et al. Research Directions for Service-Oriented Multiagent Systems. s.l. : IEEE Internet

Computing, 2005.

[35]. S.Bussmann, 	.R.Jennings, M.Wooldridge. "Multiagent Systems for Manufaturing Control: A

Design Methodology". s.l. : Springer, Berlin, 2004.

[36]. V.Marik, D.C.Mcfarlane. "Industrial Adoption of Agent-based Technologies". s.l. : Intelligent

Systems, 20(1), 27-35, 2005.

[37]. 	.R.Jennings. "And Agent-Based Approach for Building Complex Software Systems". s.l. :

Communications of the ACM, 44/4: 35-41, 2001.

[38]. J.Hatvany. "Intelligence and Cooperation in Heterarchic Manufacturing Systems". s.l. : Robotics

and Computer-Integrated Manufacturing, 2/2:101-104, 1985.

[39]. T.Vámos. Co-operative Systems - An Evolutionary Perspective". s.l. : IEEE Continuous Systems

Magazine, 3/2:9-14, 1983.

[40]. X.F.Zha. "A Knowledge Intensive Multi-Agent Framework for Cooperative / Collaborative

Design Modeling and Decision Support of Assemblies". s.l. : Knowledge-Based Systems, 15:493-506, 2002.

[41]. G.H.Anthes. "Agents of Change". s.l. : Computer World, January 27, 2003.

[42]. M.P.Singh, M.	.Huhns. "Service Oriented Computing - Semantics, Processes, Agents". s.l. :

John Wiley, 2005.

[43]. D.Booth, H.Hass, F.MacCabe, E.	ewcomer, M.Champion, C.Ferris, D.Orchard. "Web

Services Architecture, W3C Working Group /ote 11 February 2004". s.l. : 2004.

[44]. D.Box, D.Ehnebuske, G.Kakivaya, A.Layman, 	.Mendelsohn, H. 	ielsen Frystyk, S.Thatte,

D.Winer. "Simple Object Access Protocol (SOAP) 1.1, W3C /ote 8 May 2000". s.l. : 2000.

[45]. T.Bray, J.Paoli, C.M.Sperberg-McQueen, E.Maler, F.Yergeau. "Extensible Markup Language

(XML) 1.0 (Fourth Edition), W3C Recommendation 16 August 2006". s.l. : 2006.

[46]. M.	.Huhns, M.P.Singh. "Service-Oriented Computing: Key Concepts and Principles". s.l. :

Internet Computing, 9(1), 75-81, 2005.

[47]. L. Ribeiro, J. Barata, and P. Mendes. "MAS and SOA: Complementary Automation Paradigms".

s.l. : Innovation in Manufacturing Networks. vol. 266/2008, A. Azevedo, Ed.: Springer Boston, 2008, pp. 259-

268.

Bibliography

- 111 -

[48]. E.Christensen, F.Curbera, G.Meredith, S.Weerawarana. "Web Services Description Language

(WSDL) 1.1, W3C /ote 15 March 2001". s.l. : 2001.

[49]. Jammes, F. and Smit, H. Service-Oriented Architectures for Devices - the SIRE/A View. s.l. :

3rd IEEE International Conference on Industrial Informatics, 2005.

[50]. InLife. "Integrated Ambient Intelligence and Knowledge Based Services for Optimal Life-Cycle

Impact of Complex Manufacturing Assembly Lines". [Online] 2006. http://www.uninova.pt/inlife/.

[51]. J. Barata, L. Ribeiro, and A. W. Colombo. "Diagnosis using Service Oriented Architectures

(SOA)". s.l. : International Conference on Industrial Informatics Vienna: IEEE, 2007.

[52]. D.Cachapa, A.Colombo, M.Feike, A.Bepperling. An approach for integrating real and virtual

production automation devices applying the service-oriented architecture paradigm. s.l. : IEEE Conference on

Emerging Technologies & Factory Automation, 2007. pp. 309-314.

[53]. L.Ribeiro. "A Diagnostic Infrastructure for Manufacturing Systems". s.l. : in Electrical and

Computer Science Engineering. vol. MSC Lisbon: New University of Lisbon, 2007.

[54]. L. Ribeiro, J. Barata, A. W. Colombo, and F. Jammes. "A Generic Communication Interface

for DPWS-based Web Services". s.l. : IEEE International Conference in Industrial Informatics INDIN Daejeon,

Korea: IEEE, 2008.

[55]. R.S.Cost, T.Finin, Y.Labrou, X.Luan, Y.Peng, I.Soboroff, J.Mayfield, A.Boughannam. An

agent-based infrastructure for enterprise integration. s.l. : Proc. of ASA/MA'99, Palm Springs, CA, 1999. pp.

219-233.

[56]. A.Koestler. The ghost in the machine. Arkana Books, London, UK : s.n., 1967.

[57]. E.H.Van Leeuwen, D.H. 	orrie. Intelligent manufacturing: holons and holarchies. s.l. :

Manufacturing Engineer 76(2), 1997. pp. 86-88.

[58]. S.Bussmann. An agent-oriented architecture for holonic manufacturing control. s.l. : Proc. of

IMS1998, Lausanne, Switzerland, 1998. pp. 1-12.

[59]. W.Shen, Y.Li, Q.Hao, S.Wang, H.Ghenniwa. "Implementing Collaborative Manufacturing with

Intelligent Web Services". s.l. : Proceedings of the 2005 The Fifth International Conference on Computer and

Information Technology, 2005.

[60]. A.W.Colombo, R.Shoop, R.	eubert. An agent-based intelligent control platform for industrial

holonic manufacturing systems. s.l. : IEEE transactions on industrial electronics, Vol. 53, No.1, 2006.

[61]. W3C. Web Services Description Language (WSDL). [Online] http://www.w3.org/TR/wsdl.

[62]. —. XML Schema Data Types. [Online] http://www.w3.org/TR/xmlschema-2/.

[63]. Song, Zhexuan. Bring Semantics into Web Services. s.l. : CMSC 828W Class Presentation, 2005.

[64]. Schneider Electric. [Online] http://www.schneider-electric.com.

Bibliography

- 112 -

[65]. S.M.Deen. Agent-Based Manufacturing - Advances in the Holonic Approach. Springer-Verlag,

Heidelberg, Germany : s.n., 2003.

[66]. I.M.Delamer, J.M.Lastra. Loosely-couple automation systems using device-level SOA. s.l. : 5th

IEEE International Conference on Industrial Informatics, Vol 2, 2007. pp. 743-748.

[67]. J. Barata, L.Ribeiro, M.Onori. "Diagnosis on Evolvable Production Systems". s.l. : International

Symposium on Industrial Electronics Vigo: IEEE, 2007.

[68]. Ribeiro, L. "A Diagnostic Infrastructure for Manufacturing Systems". s.l. : Electrical and

Computer Science Engineering. vol. MSC Lisbon: New University of Lisbon, 2007.

