
UNIVERSIDADE NOVA DE LISBOA 

Faculdade de Ciências e Tecnologia 

Depº de Ciências e Engenharia do Ambiente 

 

Monitoring Chlorophyll-a with remote sensing 

techniques in the Tagus Estuary  

 

 

 

Akli Ait Benali 

 

 

Dissertação apresentada na Faculdade de Ciências e 

Tecnologia da Universidade Nova de Lisboa para obtenção 

do grau de Mestre em Gestão e Sistemas Ambientais 

 

Orientador :   Doutora Maria Júlia Fonseca Seixas 
Co-Orientador :  Doutor João Gomes Ferreira 

 
 

Lisboa 
2008 



 2 

Acknowledgments  
 
This work has been one big and rocky road with lots of signs and complications. Many have a 

been part of it, and I dedicate my work to you all. First, my family, the ones who have 

suffered the most from the lack of patience, humour and lots of nerves. This road has been 

possible because of you and remember, every step was taken aiming at making you proud. 

Thank you. Second, to my girlfriend Liandra. I know that this thesis as been my primary lover 

for the last year, but you were always a fantastic “part time” lover ;) Thanks for the patience 

and confort you have provided, and forgive me for the lack of the same. I love you with all 

my heart.  

 

I would like to thank my scientific advisors, Drª Júlia Seixas and Drº João Gomes Ferreira, for 

the support, advises and expert knowledge. Also, thanks to Ricardo Pacheco and Bruno Urmal 

for the technical expertises in informatics, namely in the help provided using the Linux 

environment. It was a smooth shock thanks to you both. Special thanks for the NASA Ocean 

Color Group which provided extremely valuable technical assistance in ocean color issues 

and SeaDas handling. You were fantastic and without you this work would have been far 

more difficult and probably not ready on time. Many thanks to Vânia Bento for the help with 

the EcoWin2000 initial model handling. 

 

Thanks to Nuno Grosso, Joana Monjardino and Mario Sanches for the last call urgent help. 

Particularly the former, for the brief and helpful insights on remote sensing of atmosphere. 

Special thanks to João Pedro Nunes and Nuno Carvalhais for the interesting and very helpful 

scientific coffee breaks. I didn’t know that coffees had so much to teach, thank you very 

much. Particularly Carvalhais, thanks for some of your MatLab functions and knowledge 

provided during the CARBERIAN project. It made a huge difference. 

 

A last acknowledgement for the “fight budies” (companheiros de luta kirikirikirki) which 

have been many along this big path. Especially the ones who have put their faith on me. You 

know who you are. Thanks to you all, I hope that you (we) succeed. Final thanks for the 

everyday “buddy”, Mr. Marley, you have been a great inspiration…there is truly a natural 

mystic blowing in the air. 



 3 

Resumo 
 

 
Os estuários são ecossistemas de transição com elevada variabilidade espacial e temporal, 

sujeitos a elevadas pressões antropogénicas. Actualmente é um desafio monitorizar estes 

sistemas de uma forma robusta, frequente, sistemática e com precisão adequada. Com a 

implementação da Directiva Quadro Agua, os estados membros da UE são obrigados a 

monitorizar regularmente os parâmetros biológicos e físicos mais relevantes. A informação 

sobre um estuário é adquirida recorrendo a dados de campo, implementação de modelos e/ou 

através de detecção remota.  

 

Avaliou-se a aplicabilidade e precisão de produtos de clorofila-a do sensor MODIS  no 

estuário do Tejo comparando-os (2000-2002) com estimativas de um modelo ecológico, o 

EcoWin2000, previamente calibrado (1998 e 1999) e validado (2000). Propõe-se um quadro 

conceptual e metodológico para futura monitorização do estuário usando detecção remota.  

 

Numa primeira etapa, os algoritmos típicos para águas tipo 1 foram avaliados e os algoritmos 

tipo 2 foram calibrados em 2000. Os algoritmos GSM e Clark tiveram as melhores 

performances, com erros na ordem dos 1.1 µg chl-a l-1 (ou 20%) e correlações de 0.4-0.5. Na 

calibração o rácio R678/R551 apresentou uma correlação razoável (r = 0.83) e com baixos 

erros (~1µg chl-a l-1). A sua avaliação em 2002 evidenciou correlações baixas e negativas 

com erros na ordem dos 2µg chl-a l-1. Em concordância com a avaliação preliminar, em 2002, 

o algoritmo GSM apresentou a melhor correlação (r~0.50) com erros á volta de 0.8µg chl-a l-

1. A fiabilidade da aplicação dos produtos de detecção remota é superior na primavera e verão, 

e espacialmente, nas secções médias mais largas. 

 

Os produtos de detecção remota, apesar de necessitarem de um desenvolvimento extenso, são 

uma hipótese viável e com grandes vantagens na monitorização sistemática da clorofila-a no 

estuário do Tejo. Especificamente, é uma ferramenta com potencial para ajudar os estados 

membros a cumprir a Directiva Quadro Agua. 
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Abstract  
 

Estuaries are transitional ecosystems with high temporal and spatial variability and suffer high 

anthropogenic pressures. At the present there is a major challenge to monitor these systems in 

a robust, frequent, systematic and accurate fashion. With the implementation of the Water 

Framework Directive (WFD), the EU Member States must monitor regularly the most 

relevant physical and biological parameters. Estuarine information is attained using in-situ 

samples, model analysis and/or remote sensing data.  

 

This work assessed the applicability and accuracy of chlorophyll-a products from the MODIS 

sensor in the Tagus estuary, comparing them (2000-2002) with simulations of an ecological 

model, the EcoWin2000. The latter was previously calibrated (1998 & 1999) and validated 

(2000). It is proposed a conceptual and methodological framework for future monitoring of 

the estuary using remote sensing data.  

 

In a first stage, in the year 2000, typical Case 1 algorithms were pre-assessed and Case 2 

algorithms were regionally calibrated. The GSM and Clark algorithms had the best 

performances, with errors of approximately of 1.1 µg chl-a l-1 (or 20%) and correlations 

ranging 0.4-0.5. During calibration, the ratio R678/R551 had a good correlation (r = 0.83) and 

low errors (~1µg chl-a l-1). Its evaluation in 2002, showed low and sometimes negative 

correlations, with errors of about 2 µg chl-a l-1. In agreement with the preliminary assessment, 

in 2002, the GSM algorithm had the best correlation (r~0.50) and errors of approximately  

0.8µg chl-a l-1. The reliability of remote sensing is higher in the Spring and Summer, and 

spatially, in the wider mid estuary sections. 

 

Although remote sensing needs extensive further development, it was proven to be a reliable 

tool with several advantages for systematic chl-a monitoring in the Tagus estuary. 

Specifically, it is a tool with high to assist the EU Member States to accomplish the WFD 

objectives.  
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1. Introduction  

 

Transitional waters are surface water bodies near river mouths which are partly saline as a 

result of their proximity to coastal waters and are substantially influenced by freshwater flows 

(Chen et al., 2004). These systems are important and valuable in terms of biodiversity, 

ecology, support to human populations and role in the connection between terrestrial and 

aquatic ecosystems. Furthermore, over 50% of human populations live in coastal zones (e.g. 

Richardson & Ledrew, 2005). Estuaries, included on this surface water category, are highly 

productive ecosystems usually enriched with nutrients, in comparison with most offshore 

waters (e.g. Ketchum, 1967 in Liu, 2005), and have multiple sources of organic carbon to 

sustain populations of heterotrophs. Colored dissolved matter, suspended sediments and 

phytoplankton typically have higher concentrations in estuaries, when compared to oceans 

(e.g. Richardson & Ledrew, 2005). Estuaries are highly sensitive to climate variability, 

although, their communities are well adapted to temporal variability and spatial gradients such 

as salinity or temperature (e.g. Gameiro, et al 2007). 

  

In estuaries there are three main types of producers: phytoplankton, benthic algae and 

vascular plants, which ensure maximum utilization of light and nutrients, mixed by the water 

movement due to tidal action and freshwater flow (e.g. Trancoso, 2002). Producers are the 

basis of the trophic chain supporting countless ramifications. In most estuaries, phytoplankton 

is usually the most relevant contributor to total production (e.g. Day et al., 1989) and, 

therefore, it is a key component in these systems providing an essential ecological function for 

all aquatic life (e.g. Lucas et al., 1999a). The consequent intense bacterial activity promotes 

rapid cycling of nutrients, which along with the hydrodynamic conditions, gives estuaries the 

unique capacity of self-depurating systems (e.g. Trancoso et al., 2005). The central biological 

variable for phytoplankton is upper-layer chlorophyll-a concentration (hereafter chl-a), which 

can be used to estimate phytoplankton standing stocks and productivity throughout the photic 

zone (e.g. Behrenfeld et al., 2006).   

 

Phytoplankton is responsible for up to 90 percent of Earth’s oxygen production, nearly all the 

energy necessary for the oceanic food webs, and provides the basis for life on planet Earth 

(http://www.livephytoplankton.com/). Scientific focus is placed upon phytoplankton when a 

management plan or an assessment of ecosystem health is needed (e.g. Monbet, 1992; Cloern 

1999; Sin et al., 1999). Because they play an important role in the oceanic biological 

stimulation for carbon dioxide uptake (e.g. Behrenfeld & Falkowski, 1997), some scientists 
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have suggested that phytoplankton can be a solution to reverse the accumulation of 

anthropogenic carbon dioxide (CO2) in the atmosphere (Richtel, 2007). Everyday more than  

100x106 tons of carbon, in the form of CO2, are fixed into organic material by phytoplankton 

and a similar amount of organic carbon is transferred to aquatic ecosystems by sinking and 

grazing (Behrenfeld et al., 2006). There is still great uncertainty in the scientific community 

concerning the overall magnitude of global primary production, with estimates varying from 

27.1 (Eppley & Peterson, 1979) to 50.2 Gt Cy-1 (Longhurst et al., 1995). Considering only 

coastal ecosystems’ global production, estimates range between 8.9 and 14.4 Gt Cy-1 

(Longhurst et al., 1995). Day et al. (1989) estimated an average phytoplankton production in 

estuaries of 256 gCm-2 y-1, well above typical values (100 gCm-2 y-1). In temperate estuaries, 

the typical primary production rates are 160 gCm-2 y-1 and lower values may indicate light 

limitation (Heip et al., 1995). Estuarine productivity can sometimes be deceiving, where 

annual phytoplankton production can be less than that of other marine environments (Cloern, 

1987). In fact, Borges et al. (2006) stated that estuaries are significant sources of CO2 to the 

atmosphere, at an average rate of 49.9 molC m-2 yr-1, corresponding to a scaled emission over 

Europe, of 67.0 TgC yr-1. 

 

Phytoplankton information may be relevant for many applications, such as water ecology (e.g. 

Nobre et al., 2005; Ferreira et al. 2003; Richardson & Laurie, 2006), carbon budgets (e.g. 

Borges et al., 2006; Longhurst et al., 1995), socio economy (e.g. Duarte et al., 2003; Keppler 

et al., 2005; Richardson & Laurie, 2006), aesthetic and health issues (e.g. Lucas et al., 1999a; 

Zhang et al., 2006), and management of marine resources (IOCCG, 2006). Many of these 

applications interact with each other, for instance, a harmful algae bloom (HAB) will 

potentially affect aesthetic and health aspects, having negative economic impacts on existing 

culture stocks with multiple ecological consequences. There is particular relevance in 

understanding the factors that drive estuarine eutrophication and lead to changes in 

phytoplankton bloom dynamics (frequency, duration, magnitude, species composition), as a 

response to growing anthropogenic pressures (Anderson & Garrison, 1997). Also, because of 

growing public and scientific concern about global climate change, the effect of climatic 

factors on the distribution of phytoplankton biomass is of crucial importance to the 

assessment of long term changes in aquatic ecosystems (e.g. Gates, 1993 in Simas et al., 

2001). Increased knowledge about the phytoplankton’s seasonal and spatial distribution, as 

well as its magnitude, is thus of great relevance and can be used both for investigative and 

monitoring purposes, including a variety of present and future applications.  
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Regular monitoring of surface water status is fundamental to obtain estuarine information and 

to better understand its dynamics. Monitoring is carried out by assessing a range of quality 

parameters, which usually varies both, in time and space.  Logistical and financial resource 

limitations are important factors controlling the scope and range of monitoring activities. It is 

necessary to develop robust and low cost tools, which support monitoring activities, ensuring 

that objectives are accomplished and enabling optimisation, quality and reliability (Ferreira et 

al., 2007b).  

 

The Water Framework Directive (WFD), approved by the European Union (E.U.), establishes 

a set of water quality objectives and the overall goal is to achieve good water status for all 

E.U. waters by the year 2015. In the scope, application and practical implementation of the 

Directive, regular monitoring is stated as fundamental and determines water bodies 

classification and the need for additional measures to achieve its objectives. Member States 

must establish monitoring plans to regularly assess their aquatic ecosystems ecological status, 

determining their compliance, and must report to the European Environmental Agency (EEA) 

every two years (Chen et al., 2004; Ferreira et al., 2007b). According to the WFD, 

phytoplankton is considered to be a key biological quality element for transitional and coastal 

waters. The main parameters are composition, abundance and biomass (i.e. chl-a 

concentration), which also integrate other relevant indicators (Bricker et al., 1999; Bricker et 

al., 2003; ICES, 2004; Ferreira et al., 2005a & 2007b). 

 

Estuarine phytoplankton information can be achieved by using in-situ samples, model 

application or remote sensing data. Several studies have been conducted in estuaries using in-

situ data both for long and short term assessment (e.g. Cloern, 1987 & 2001; Conley, 1999; 

Monbet, 1992; Brogueira & Cabeçadas, 2006). In the Tagus estuary, specifically, there is 

extensive data from the 80’s, but reduced coverage in the following decades. Data is disperse 

and results from punctual campaigns usually with short term objectives. Since 1999, there is 

an ongoing monitoring programme, with monthly sampling, aimed at long term monitoring of 

the most relevant quality parameters (Cabeçadas, 2003 in Brogueira & Cabeçadas, 2006; 

Gameiro et al., 2007). Most of the in-situ data is not free and\or confidential being, therefore, 

unavailable to the scientific community. Monitoring based on in-situ samples has high cost, 

which, in a limited resource context, can be a serious limitation to program implementation. 

Moreover, in-situ sampling provides limited spatial and temporal coverage and is a very time 

consuming task (e.g. Chen et al., 2004). In Portugal, the cost of a sample ranges from 1.500 to 

2.000€ in inshore transitional waters and approximately 6.300€ in open coast waters. In an 
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annual monitoring program, the former can reach up to approximately 90% of the total cost 

due to the higher number of inshore water bodies, number of sampling stations and 

monitoring frequency (Ferreira et al., 2005b).  

 

To overcome some of the limitations of in-situ sampling, modelling is used to develop 

hypotheses and understanding the ecosystem’s dynamics, through simulation of the main 

processes. This is accomplished by using mathematical modelling that typically investigates 

the influence of each factor and then combines it in an ecosystem approach. Monitoring 

provides the necessary data to model setup, calibration and validation, while models provide 

knowledge on systems and processes that may improve the monitoring programme (Ferreira 

et al., 2005b). Furthermore, it enables the simulation of several scenarios thru testing and 

prediction (Ferreira et al., 2005b; Neves et al., 2000 in Trancoso et al., 2005), and spatial and 

temporal filling of information blanks. Therefore, modelling and monitoring are tightly 

coupled and the former may improve the efficiency by reducing the need for resources whilst 

achieving the defined objectives (Ferreira et al., 2007). Several studies have been conducted 

using modelling approaches (e.g. Trancoso et al., 2005; Nobre et al., 2005; Nunes et al., 2003; 

Ferreira, et al., 2007a) and specifically in the Tagus estuary (e.g. Antunes, 1998; Saraiva, 

2001; Trancoso, 2002; Ferreira, 1989; Portela, 1996; Alvera-Azcárate et al., 2003). Data 

availability is still considered to be the most important factor limiting the development of 

operational water quality models (James, 2002) while the compilation of a database for 

comparison purposes and system understanding is mainly being limited by scarce spatial and 

temporal data (Monbet, 1992). Modelling accuracy is limited by the calibration and validation 

data and, although a valuable tool, does not provide real system information.  

 

Remote sensing is currently one of the best methods to obtain systematic spatial and temporal 

information on coastal waters characteristics and to assess changes in relation to other factors 

(e.g. Gitelson et al., 2007; Zawada, et al., 2007; Wynne et al., 2006; Chen et al., 2007; 

Tzortziou et al., 2007; Chen et al., 2004; Hu et al., 2004). Since the 1970s, remotely sensed 

data has been used to estimate water quality characteristics of rivers, lakes and both coastal 

and open sea waters (Zhang et al., 2002b; Chen et al., 2004). One major advantage of remote 

sensing, over traditional in-situ measurements, is the provision of surface water information 

with higher spatial and temporal resolution (Lindell et al., 1999 in Zhang et al., 2002b). 

Considering resource limitation for monitoring activities, as stated previously, remote sensing 

technology can provide regular and synoptic low-cost solutions (Lindell et al., 1999 in Zhang 

et al., 2002b; Chen et al., 2004). Other benefits include the provision of observations with 
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associated continually expandable historical archives, the detection and spatial distribution of 

changes in water bodies. Remote sensing can also establish information datasets regarding 

point and diffuse sources of pollution mapping relevant to emission control and support the 

establishment of river basin management plans. Particularly under the WFD, these benefits 

have high potential to support the establishment of the monitoring programmes’, and thus, to 

assist EU states meet their obligation under the very demanding timetable and resource 

limitation (Chen et al., 2004). 

  

Remote sensing has been widely used in monitoring Case 1 waters, in which the principal 

component is chl-a usually in low concentrations. There is a growing concern in using remote 

sensing to monitor optically complex Case 2 waters. By using current advanced satellite 

sensors, a large number of water quality variables can be monitored on a regular basis, for 

instance, chl-a, total suspended sediment, type of particulate content, yellow substance or 

gelbstoff, turbidity, Secchi disk depth, wave height, colour index and surface water 

temperature (e.g. Zhang et al., 2002b; Chen et al., 2004). Proposed parameters and their 

frequencies for surveillance monitoring according to the WFD are described in Ferreira et al. 

(2007). Table 1 exhibits only the parameters with potential for direct or indirect remote 

sensing acquisition. 

 

Table 1 - Monitoring Frequencies for possible remote sensing parameters (adapted from Ferreira et 

al., 2007b) 

Water Bodies Quality Type Parameter Frequency 
Biological Phytoplankton Seasonal/ 

Six Months 
Turbidity Seasonal 

Open Coastal water 
bodies 

Physico-chemical 
Temperature Seasonal 

Phytoplankton 
(biomass & abundance) 

Monthly 

Biological 
Phytoplankton species 

composition 
Six Months 

Coastal and transitional 
water bodies 

Physico-chemical Temperature Monthly 
 

Chl-a concentration is the most widely used product derived from remote sensing ocean-

colour data. It has been used to study and monitor open coast and sea systems (e.g. Carder et 

al., 2004; Vander Woude et al., 2006; de Souza et al., 2006; Zhang et al., 2006; Lavender et 

al., 2004) and inshore transitional systems (e.g. Hu et al., 2004; Wynne et al., 2006; Tzortziou 

et al., 2007; Gitelson et al. 2007).  The approach used by Ciotti and Bricaud (2006, see also 

Ciotti et al., 2002) showed potential remote estimation of phytoplankton cell size in open 

coast waters with a good accuracy providing valuable ecological information on species 
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composition. Suspended particulate matter (SPM) can be estimated thru remote sensing in 

coastal waters with good accuracy (e.g. Miller and Mckee, 2004; Doxaran et al., 2002a & 

2002b;  Li et al., 2003; Doerffer and Schiller, 2007; Zawada et al., 2007; Chen et al., 2007; 

Hu et al., 2004), providing frequent synoptic maps of turbidity. Water surface temperature has 

been estimated using remote sensing techniques, mainly in deep sea and open coast systems 

(e.g. Zhang et al., 2002b; Zhang et al., 2004; Chan and Gao, 2005; de Souza et al., 2006; 

Vander Woude et al., 2006; Barré et al., 2006), and scarcely in transitional inshore systems 

(e.g. Davies, 2004; Li et al., 2001) The principal aim of surface temperature is to study global 

scale temperature dynamics, for instance for climate change assessment and research 

purposes.  

 

The role of remote sensing technology is presently under scrutiny and several conceptual and 

practical requirements need to be fulfilled, such as an incomplete technical and scientific 

basis, to optimize the support for regional and global scale water status monitoring (Ferreira et 

al. 2007b, Chen et al., 2004). Remote sensing provides information mainly on the surface 

layer and thus, when vertical sampling is necessary it provides valuable but incomplete 

information. Another limitation is related to operational constraints on systematic remote 

sensing monitoring. According to some authors, accessibility, poor management, inadequate 

trained staff and knowledge transfer need to be improved to facilitate further research, 

training and education in remote sensing practical applications (Rosenqvist et al., 2003; 

Kalluri et al., 2003 in Chen et al., 2004). The cost of remotely sensed data can also, in some 

cases, be a major limitation. Low resolution and product accuracy are important issues 

concerning reliability and practical implementation, especially in inshore systems (e.g. 

Tzortziou et al., 2007; Chen et al., 2004). There is a trade-off between remote sensing data 

cost, quality and application coverage. For instance, the MODIS sensor provides traditionally 

1km resolution data at no cost, whilst, the MERIS sensor provides 300m resolution data but 

with use restrictions.  

 

It is fundamental that remote sensing retrievals are statistically assessed and validated in order 

to become a robust, reliable and valuable systematic tool for water bodies monitoring. Results 

for individual scenes are not very consistent showing large variability in the determination 

coefficient, varying from 0.59-0.98 (Lindell et al., 1999 in Chen et al., 2004). For that 

purpose, in-situ measurements are necessary to the development of robust and accurate 

algorithms (Chen et al., 2004). Due to the high costs of in-situ measurements and its synoptic 

limitations, it is important to develop tools and methods capable of regularly monitoring 



 17 

phytoplankton temporal and spatial dynamics in estuaries. For estuarine applications, one of 

the major challenges is to develop multisource monitoring procedures, associating different 

sources of information, thus, minimizing their limitations and flaws (Prandle, 2000).  

 

This work assesses the usefulness of remote sensing in the systematic monitoring of chl-a in 

the Tagus estuary. The assessment focus on an ecosystem scale and monthly to seasonal chl-a 

monitoring. This large Portuguese estuary has scarce and interspersed available data, 

concerning phytoplankton biomass, in the last 20 years. The implementation of the WFD 

requires that Portugal, as well as other State Members, should develop robust tools to ensure a 

regular and accurate monitoring of its water bodies in order to fulfill its obligations. This 

work was a first step to assess the feasibility of remote sensing data to provide accurate 

phytoplankton data, at a low cost, particularly, for monitoring purposes. The approach 

proposed is innovative in Portugal, concerning chl-a. The work objectives are: 

 

 (1) Assess the accuracy and reliability of the remotely sensed chl-a, comparing it with the 

simulations of an extensively tested ecological model. 

(2) Define the conceptual and methodological framework to use remote sensing data for 

monitoring purposes in the Tagus estuary. 

(3) Evaluate and compare Case 1 chl-a algorithms, extensively developed, and regionally 

calibrated Case 2 algorithms, proposed for other estuaries. 

(4) Identify the major potentialities and limitations of remote sensing as a monitoring tool 

for chl-a in estuaries. 

(5) Identify further work needed to ensure that remote sensing is a robust, accurate and 

systematic method to monitor the Tagus estuary. 

 

Firstly, the state of the art in remote sensing of estuarine chl-a is described. In chapter 2.1, 

estuarine dynamics, concerning its relevant features, are addressed and in chapter 2.2, remote 

sensing techniques, sensors and algorithms are briefly described. The case study, the Tagus 

estuary, is presented in section 3.1, regarding the relevant features mentioned previously. 

Conceptual issues of model calibration and assessment are addressed in section 3.2, in the 

context of the modelling approach used in this work.  

 

Due to the scarcity and limited spatial coverage of the in-situ data, direct comparison with 

remote sensing data, is limited and not feasible. The EcoWin2000 (hereafter E2K) ecological 

model was used to simulate phytoplankton on an ecosystem and seasonal scale. The E2K was 
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developed using an object-oriented (OOP) approach and as proved to be a useful tool for the 

understanding of temporal and spatial annual and inter annual phytoplankton patterns on an 

ecosystem scale. The estuary was divided in 13 coarse model boxes and, the main simulated 

features were hydrodynamics, suspended matter, dissolved nutrients and phytoplankton (chl-

a) (section 3.3). The E2K was calibrated for the Tagus estuary using 1998 and 1999 in-situ 

data (section 3.4). The model was validated using the scarce in-situ data for 2000 and 2002, 

available in two system extremes, the upstream zone (Northern Channel) and the ocean inlet 

channel (section 4.1).  

 

To assess the use of remote sensing products to monitor systematically the Tagus estuary at 

an ecosystem and seasonal scale, comparison was performed with the E2K model simulations. 

The remote sensing data from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

instrument aboard the Terra (EOS AM) satellite was available since late February 2000 and 

was used in this assessment. Chl-a retrievals from various existing algorithms and remote 

sensing reflectances (hereafter Rrs) were generated for the Tagus estuary. The factors that 

influence their retrieval were briefly investigated, like atmospheric correction, quality control 

and geometry conditions, defining a conceptual and methodological framework for the further 

use of remote sensing data. For comparison purposes the remote sensing products were  

temporally composited, in 16 day periods, and spatially, according to the 13 E2K model 

boxes (chapter 3.5). The development of regional empirical algorithms for Case 2 waters, 

based on relations found in the literature, was addressed and tuned up using the year 2000 E2k 

simulations (chapter 3.6). All algorithms, existing and regionally tuned, were preliminary 

assessed using the E2K simulations, as ground truth, for the years 2000 and 2001 (chapter 

4.2). 

 

Finally, all existing remote sensing products and regionally tuned algorithms were assessed 

comparing them with an independent data set, the E2K chl-a simulations for the year 2002. 

Although the latter are not classic ground truth data (in-situ), usually used when testing and 

tuning remote sensing algorithms, the comparison allowed to assess the degree of accuracy, 

concerning magnitude and temporal patterns, in the chl-a estimation (chapter 4.3). Work 

limitations were addressed in chapter 5. Special emphasis was laid upon the sources of errors 

in the whole process, the expectable future use of remote sensing for estuary monitoring and 

on the necessary future work. In chapter 6 the main conclusions are exposed. 
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2. Remote sensing of estuarine chl-a:  State of the Art 

 

2.1 - Estuarine Dynamics 

 

Water quality in an estuary is governed by the combination of physical, chemical and 

biological processes and their interdependence. Parameters like light, salinity, suspended 

particulate matter, nutrients and dissolved oxygen distribution, influence biological activity 

introducing large complexity in estuarine ecosystems (EPA, 1985). The physical, chemical 

and biological dynamics in shallow estuaries are mainly influenced by land freshwater runoff, 

the exchange of water with the sea and internal processes. The freshwater inputs influence 

estuarine hydrography driving salinity gradients, stratification and large import of silt, organic 

and inorganic substances (Flindt, 1999). In estuaries quality properties have steep gradients 

between the upstream and the estuary mouth. Downstream, characteristics are mainly oceanic 

and nitrogen is the main limiting factor, while upstream light availability is the most 

important limiting factor (e.g. Antunes, 1998).  

 

The magnitude and spatial distribution of phytoplankton biomass in estuaries is controlled by 

(1) local mechanisms, governing the production-loss balance for a water column at a 

particular spatial location, and (2) transport-related mechanisms, which govern biomass 

distribution determining its spatial distribution (Lucas et al., 1999a & 1999b).  It mainly 

depends on grazing, productivity factors, like temperature, light and nutrient availability, and 

also on hydrodynamic factors like resuspension, deposition, tidal amplitude and freshwater 

flow (e.g. Underwood and Kromkamp, 1999; Nybbaken, 1993; Valiela, 1995, Lucas et al., 

1999b).  Spatially, phytoplankton biomass is usually heterogeneous and patchy due to the 

combination of two major processes. Firstly, spatial variability in population dynamics is due 

to horizontal variations in local conditions and combinations of water column height, 

turbidity, grazing rates, among others (Lucas et al., 1999a). Thus, local conditions control 

population growth rates, i.e. if a bloom is possible. Secondly, spatially variable transport, in 

hourly and weekly time scales, determines bloom biomass concentration and distribution. 

Thus, large-scale transport processes control where a bloom occurs (Lucas et al, 1999b).  

 

Eutrophication is an increasing problem in estuaries, stimulating the growth of primary 

producers, leading to oxygen depletion and structural changes which result in oscillations 

between the aerobic and anaerobic states (Flindt et al., 1999, Cloern, 2001). Eutrophication 

does not stimulate the total primary production per unit area but shifts the main productivity 
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from the benthic to the planktonic community. Oxygen production is then restricted to the 

surface layer and spatially and temporally separated from oxygen consumption (Flindt, 1999).   

 

Grazing by zooplankton has a strong indirect regulatory effect on phytoplankton biomass, 

independently of the photosynthetic rates achieved (Nybakken, 1993). Grazing may provide a 

top–down control of eutrophication symptoms (e.g. Cloern, 1982; Lucas et al., 1999b) and its 

control on phytoplankton varies indirectly with water column height and is negligible for deep 

water columns (Lucas et al., 1999a). Due to anoxic conditions, induced by eutrophication, 

potential phytoplankton grazing is reduced greatly and for long periods (Flindt, 1999). 

Temperature is generally not a critical factor in the growth of phytoplankton in coastal waters 

(Valiela, 1995; Nybakken, 1993), being an indirect regulatory factor with influence on other 

factors, like nutrient bacterial regeneration and predatory activity, influencing directly the 

metabolic rates (Valiela, 1995; Day et al., 1989). Temperature increase coupled with sea-level 

rise will have an important impact on the benthic component of estuaries, through inundation, 

and pelagic production, through net photosynthesis increase, as well as a rise in respiration 

rates (Gates, 1993 in Simas et al., 2001).  

 

Among the more relevant factors are nutrients and light availability, influencing primary 

production, and hydrodynamics, influencing transport and water column mixing, both with 

ecological impacts (Nybakken, 1993). The following sections will focus on these three main 

factors with particular focus on their impact on phytoplankton dynamics.  

 

2.1.1 - Light  

 

Primary production by phytoplankton is a light dependent process that provides the energy to 

drive the food web being limited to the uppermost layers of the water column (Liu, 2005). 

The depth to which about 1% of surface light penetrates is denominated as euphotic zone and 

its extent is determined mainly by the (1) incident surface radiation, and its consequent 

attenuation thru the water column. The efficiency in the conversion of radiation to energy by 

producers is governed by their (2) photosynthetic response to light. 

 

2.1.1.1 - Incident Surface Radiation and Sub Surface Attenuation 

 

Radiation fluxes at the Earth's surface play important roles in many ecological, climatological, 

and hydrological systems. In ecological processes solar radiation often acts as the key driving 
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force (Brock, 1981) because biological activity is strongly dependent on radiative transfer 

directly through the interaction between phytoelements and radiant energy emitted by the sun 

(Oliphant, 2006). The physical and chemical factors that influence incident surface radiation 

are particularly relevant in primary production forcing, stimulating photosynthesis. Because 

remote sensing depends on surface radiation reflectance, thus primarily on incident radiation, 

this section will provide deeper insight to the significant factors that influence the latter. 

  

The solar constant is the energy received per time at the Earth’s mean distance from the Sun 

and its seasonal magnitude is influenced by the Earth’s ellipticity during its revolution around 

the Sun. This movement around the Sun also determines the angular distance at solar noon 

between the former and the Equator. These factors, when combined, drive, for instance, 

higher spring and summer primary production due to higher light availability. Besides the 

motion around the Sun, the Earth’s daily rotation around itself influences, for instance, 

daylength. From the winter to the summer solstice the daylength increases, thus average daily 

radiation, stimulating photosynthesis and forcing spring and summer blooms (Brock, 1981). 

Incident surface radiation also depends on geometric conditions. The zenith angle is defined 

by the angle between zenith, the point vertically above one specific geographical position, and 

the Sun position (e.g. Lillesand et al., 2004). The zenith angle is related to the intensity of 

solar radiation on a flat surface and determines the incident surface angle at which the light 

strikes the surface of the water, and consequently, the amount of back-reflectance (Oliphant, 

2006). Geometric conditions influence mainly photosynthesis dynamics on a daily basis, with 

respect to the diurnal curve of solar radiation.  

 

Radiation at the surface of the Earth is composed by two components, the direct and diffuse. 

Their sum is the global incident radiation at one specific geographical position. The direct 

component of solar radiation is the result of incident Sun rays, whilst the diffuse component is 

the result of scattering from atmospheric particles (Brock, 1981). Solar radiation is attenuated 

during its passage thru the atmosphere due to scattering, absorption and turbidity. Scattering 

is mainly due to small particles which change radiance intensity and directionality. According 

to the Rayleigh theory, scattering is highly wavelength dependent and varies as wavelength-4. 

Scattering does not remove photons but increases their mean path length and the probability 

of being absorbed (e.g. Lillesand et al., 2004). Absorption is mainly performed by gases such 

as ozone, water vapour and carbon dioxide and changes radiance intensity (e.g. IOCCG, 

2006). In the ultraviolet region of the light spectrum, absorption is mainly due to ozone and in 

the infrared region, due to water vapour (Brock, 1981). Turbidity is related to large particles, 
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for instance aerosols (Brock, 1981) and can play a major role in solar radiation attenuation, 

especially in urban and industrial areas. Moreover, optical transmissivity and cloud conditions 

influence radiation pathway, and thus, magnitude (Oliphant, 2006). The attenuation of solar 

radiation limits surface light availability on a daily, and specially, on a seasonal basis. Solar 

radiation variability is relatively low considering small temporal scales, days to weeks, and is 

particularly relevant considering large scales, months to seasons, with the latter playing a 

crucial role in the variability of ecosystem functioning (e.g. Oliphant, 2006). 

 

Potential production is not always reached in estuaries due to light attenuation and/or due to 

the very fast renewal rate of the system. The former, due to water turbidity, is frequently the 

major factor controlling phytoplankton production and the turnover rate in estuaries (e.g. Cole 

et al., 1992; Cloern, 1987; Harding et al., 1986; Irigoien and Castel, 1997). Suspended 

particulate matter (SPM) is highly related to vertical light attenuation, and its spectral 

distribution, absorbing and scattering the radiation beams. Typical high SPM concentrations 

in estuaries confine the photic zone to a small shallow fraction of the water column, 

attenuating light rapidly and thus reducing phytoplankton photosynthesis, as well as, net water 

column productivity due to higher biomass loss driven by respiration (Cloern, 1987). 

Absorption and refraction by water, dissolved matter and SPM, determine the quantity and 

spectral quality of light at a given depth (Jerlov 1976 in Liu, 2005; Prieur and Sathyendranath, 

1981). Detailed understanding of the interaction between estuarine turbidity and 

phytoplankton dynamics requires good understanding of vertical mixing and phytoplankton 

production and respiration.  

 

Riverine inputs of SPM and/or tidally driven resuspension of bottom sediments act as 

mechanisms that influence the spatial and temporal variability of estuarine turbidity (Cloern, 

1987). High tidal amplitudes, typical of spring tides, are associated with strong tidal currents 

which stimulate small scale resuspension (Portela, 1996). Wind effects also play a key role in 

water mixing and resuspension (Gameiro et al., 2004; Cloern et al., 1985). Recent studies 

suggest that tidal runoff and erosion from intertidal mudflats can also be important 

contributors (Prahl and Coble 1994 in Prahl et al., 1997). Anthropogenic activities influence 

SPM concentration through waste dumping and sewage discharges (Mutua et al., 2004). 

Phytoplankton in-situ production can also act as a source of SPM (Small et al., 1990), 

however, in highly turbid systems, this component of particulate matter only accounts for a 

small percentage and is not a major determinant of turbidity (Alvera-Azcárate et al., 2003). 
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Some authors have proposed an indicator of favourable conditions for phytoplankton growth, 

thus bloom initiation and development, using the ratio between mixing (Zmix) and euphotic 

depth (Zeuf), determining the time spent by cells in the light (e.g. Alpine and Cloern, 1988; 

Gameiro et al., 2007). The time scale of mixing influences photoadaptation and inhibition of 

phytoplankton cells (Lewis et al., 1984 & Gallegos and Platt, 1985 in Duarte and Ferreira, 

1997). Sverdrup (1953) proposed the ‘‘critical mixing depth’’ approach which assumes that 

the phytoplankton population is homogeneously distributed over depth and that growth 

depends mainly on light. It indicates whether net growth is possible or not (Platt et al., 1991), 

i.e. if the ratio is lower than 1 the entire water column is located within the euphotic zone and 

a ratio of 5 is the upper limit for net growth and bloom initiation (Lucas et al., 1998).   

 

Therefore, SPM distribution vertically regulates estuarine phytoplankton dynamics, according 

to variations in the photic and mixed depth ratio and longitudinally, due to resuspension and 

both, ocean and river inputs (Cloern, 1987; Liu, 2005; Prahl et al., 1997). Moreover, it affects 

both biological and physico-chemical processes and can serve as a source or sink of carbon 

and nutrients (Mutua et al., 2004). 

2.1.1.2 - Photosynthetic Response 

 

Photosynthesis is the process by which producers use carbon dioxide, water and nutrients to 

convert incident radiation in chemical energy producing biomass. It depends on how 

producers interact with light and their energy conversion efficiency. Phytoplankton synthesize 

less chl-a if more light is available, so the chlorophyll to carbon ratio (chl:C) decreases as 

irradiance increases. Assimilation of new cellular carbon is faster if more light is available, 

thus the depth-averaged rate of photosynthesis increases as irradiance increases (Cloern et al., 

1995). Therefore, for a given light attenuation coefficient, as the water column height 

increases the chl:C increases and photosynthesis decreases (Lucas et al., 1999a). 

 

The photosynthesis-irradiance (P-I) relationship is related to the phytoplankton response to 

the light and nutrient availability. It is fundamental to estimate phytoplankton productivity 

(e.g. Macedo and Duarte, 2006) and several mathematical models have been proposed (e.g. 

Steele, 1962; Platt et al., 1980; Eilers and Peeters, 1988; Janowitz and Kamykowski, 1991). 

Most of the models are based on empirical relationships determined experimentally and only a 

few are deduced from the physiology of photosynthesis (e.g. Fasham and Platt, 1983; Eillers 

and Peeters, 1988). Increases in light intensity lead to increased production until a maximum 
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is reached and producers can no longer use more light because the enzymes involved in 

photosynthesis cannot act fast enough to process light quanta any faster (e.g. Trancoso, et al., 

2002). The rate of photosynthesis, reaches therefore an asymptote, which is the maximum 

productivity (Pmax) with a corresponding optimal light intensity (Iopt).  

 

During the day, algal photosynthesis closely follows the variation in light intensity, the 

optimal light intensity is reached, from which the P-I relation becomes increasingly more 

nonlinear (e.g. Marra and Heinemann, 1982). When light intensity remains critical for a long 

time, photoinhibition relevance increases (Duarte and Ferreira, 1997). Some models assume a 

saturation curve in which production reaches a constant value when optimal light intensity is 

reached (e.g. Webb et al., 1974; Franks and Marra, 1994). Others consider photoinhibition 

where carbon fixation declines at high irradiance (e.g, Eillers and Peeters, 1988; Duarte and 

Ferreira, 1997). Models can be divided into static and dynamic, depending on whether the 

parameter values ruling the P-I relationship are respectively considered steady-state or time-

dependent (Macedo and Duarte, 2006; Duarte and Ferreira, 1997). The static formulations are 

the most widely used (e.g. Steele, 1962; Webb et al., 1974). Dynamic formulations consider 

the effects of time exposure to light on photosynthetic responses, including the development 

of photoinhibition (e.g. Duarte and Ferreira, 1997; Janowitz and Kamykowski, 1991).  

 

Recent evidence shows that parameters used in the P-I curves change over time due to the 

physiological adaptation to light in different time scales (Duarte and Ferreira, 1997). 

Phytoplankton can maintain a high production rate during the first minutes after initial 

exposure to critical irradiance during the day (Marra, 1978a in Macedo and Duarte, 2006). At 

night they adapt themselves to shading, exhibiting a higher photosynthetic efficiency in low 

light and, in both cases, variations in the initial P-I slope (Falkowski and Wirick, 1981 in 

Duarte and Ferreira, 1997). In coastal systems and estuaries, the assumption of static P–I 

curves might lead to a 21 to 72% underestimation of phytoplankton primary productivity 

(Macedo et al., 2002), corresponding to an increase in global primary production of 3.8-6.2 Gt 

Cy-1 (Macedo and Duarte, 2006). However, considering dynamic behaviours is more relevant 

in high light conditions and/or in the absence of vertical mixing (Duarte and Ferreira, 1997). 

 

2.1.2 - Nutrients 

 

Nutrient dynamics in estuaries strongly depend upon their external supply and internal 

regeneration. Organic matter is produced by a large variety of primary benthic and pelagic 
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producers (Flindt, 1999). The temporal and spatial variability of nutrients in estuaries is 

important in the control of producers’ growth. These are determined by riverine fresh water 

and ocean tidally driven inputs, runoff, atmospheric precipitation, waste loads and also by 

internal recycling of nutrients (e.g. Gameiro et al., 2004; EPA, 1985). The macronutrients 

required for their growth are carbon, phosphorous, which is available in the form of 

phosphate, and nitrogen, which is available in the inorganic forms of ammonia, nitrate and 

nitrite. Moreover, micronutrients like calcium, potassium, sulphur iron, manganese, sulphur, 

zinc, copper, cobalt, and molybdenum are also required and are naturally abundant in marine 

ecosystems (EPA, 1985). Some producers, like diatoms, also require silica for growth which 

limits production mainly in fresh waters (Boney, 1975).  

 

The nitrogen (N) cycle is a complex set of mechanisms and processes. Dissolved inorganic 

nutrients are removed from the water column by producers during photosynthesis. They are 

regenerated and distributed through soluble excretions, death of all organisms, the 

decomposition of suspended organic detritus and sediments, and the hydrolysis of dissolved 

organic nutrients (EPA, 1985). The processes involved depend not only on biological aspects 

but also on pH and temperature (Wetzel, 1993). Nitrogen can be assimilated by producers 

mainly as ammonia (NH4
+) and nitrate (NO3

-) forms. There seems to be a preference for the 

former form, because it is more reactive and nitrate assimilation implies conversion to 

ammonia, leading to higher energy spending (Portela, 1996; Wetzel, 1993).  

 

In most salt-water systems phosphorous (P) is released from sediments and behaves 

essentially as a conservative tracer of benthic decomposition. The lower efficiency of salt-

water sediments in binding and sequestering phosphorous, when compared to freshwater 

systems, is large enough to influence the often cited difference in phytoplankton nutrient 

limitation between both systems. Thus, it is usually abundant in estuarine systems, playing a 

smaller role in production limitation (Portela, 1996; Conley, 1999; Nixon, 1996; Caraco et al., 

1990). Furthermore, phytoplankton cells are capable of accumulating phosphorous reserves 

and zooplankton excretion products may also be an important source (Boney, 1975).  

 

Previous studies indicate that N is usually the primary limiting nutrient in coastal systems 

(e.g. Howarth, 1988; Mallin, 1994; Portela, 1996; Nixon, 1996; Conley, 1999). However, 

some studies suggest that in some estuaries P limits during spring and N limits during summer 

(D’Elia et al., 1986 in Conley, 1999). The former is often weaker than the latter and more 

pronounced near the freshwater inlets (Malone et al., 1996 in Conley, 1999). Redfield (1934) 



 26 

demonstrated a relatively constant atomic proportion in oceanic algae exhibiting, respectively, 

a molar element ratio 106:16:1 for carbon (C), nitrogen (N) and phosphorus (P). Estuarine 

phytoplankton have a similar composition and, when nutrients are not limiting, the N:P ratio 

is about 16 (in atoms). The Redfield ratio depends on life strategy being a general average 

rather than a specific requirement for phytoplankton growth (Arrigo, 2005).  

 

High freshwater inputs can stimulate primary production by importing nutrients into the 

system (e.g. Harding, 1994). Human activities have increased N and P fluxes and fertilization 

of coastal ecosystems is a growing environmental problem, disrupting the balance between 

the production and metabolism of organic matter (Cloern, 2001). According to Conley (1999), 

nutrient loading to estuarine systems has increased 6–50 and 18 to 180 times, for N and P 

respectively. Eutrophication can lead to the death of aquatic organisms, which stimulates 

significant internal nutrient loading due to their microbial mineralization (Flindt, 1999).  

 

2.1.3 - Hydrodynamics 

 

Estuaries are characteristic because of their shallow water column, often well mixed and thus 

resulting in coupled benthic and pelagic processes (Flindt, 1999). Due to their shallowness, 

estuaries are specially influenced by wind, inducing vertical mixing, tidal fluctuations, and 

broad meteorological conditions, influencing general water circulation (James, 2002). The 

connection to open marine areas imposes large scale physical and chemical forcing due to 

tidal water exchange, insuring large transport (Berner, 1996 in Flindt, 1999).  

 

Phytoplankton blooms are driven by population responses to changing physical dynamics and 

production occurs preferably between unstable and stable hydrodynamic conditions (Legendre 

and Demers, 1985). Unstable conditions are represented by vertical mixing which leads to a 

homogeneous nutrient concentration driven by resuspension, on a tidal scale, or by riverine 

water input, mainly on a seasonal scale. Stable conditions are caused by stratification, driven 

by low tidal mixing and fresh water flow, which induces phytoplankton growth. The stability 

of the water column depends on tidal and seasonal cycles (e.g. Cloern, 1991). The balance 

between fresh and saline water, along with tidal currents, contributes to the existence or 

absence of vertical stratification (e.g. Gameiro et al., 2004; Monbet, 1992).  

 

The mechanical energy driving vertical mixing in estuaries is produced by tides, wind stress, 

and freshwater runoff (Monbet, 1992) inducing vertical transport of organic and inorganic 



 27 

matter (Flindt, 1999). Tidal fluctuations regulate the amount of turbulent mixing present in 

the water column to counter the stabilizing effects of freshwater inputs. A strong tidal 

influence coupled with typical shallow depths typically results in vertically well mixed 

conditions and stratification only occurs in punctual situations (Lucas et al., 1999a). 

Moreover, the extent of vertical mixing processes is more pronounced in macrotidal estuaries 

(Monbet, 1992). Intense vertical mixing can produce changes in light conditions that change 

faster than the phytoplankton physiologic adaptation (Marra, 1980 & Demers et al., 1986 in 

Monbet, 1992). Huisman et al. (1999) showed that critical turbulence is a mechanism for the 

development of phytoplankton blooms, leading to a possible bloom if turbulent mixing rates 

are lower than a critical point. This condition is irrespective of the depth of the water column, 

demonstrating that, in the absence of water column stratification, bloom development is 

possible, particularly in shallow estuaries.  

 

The residence time reflects how long a material is maintained in a region (Lucas et al., 1999b) 

and has been pointed out as an important factor in bloom development (e.g. Huzzey et al., 

1990; Muylaert et al., 1997; Valiela et al., 1997). It is mainly governed by fresh water 

advective physical forcing and temporal shifts can change the residence time influencing the 

export rate of phytoplankton biomass. Water residence time has also been pointed out as a 

possible mechanism regulating species composition and biodiversity by physically limiting 

the capacity of phytoplankton to grow faster than it is flushed. The higher the system’s 

residence time the lower the Pmax needed to maintain a phytoplankton specie, and vice-versa. 

Therefore, a reduction in freshwater input may induce changes in phytoplankton composition 

and biodiversity with several negative impacts (Ferreira et al., 2005a). Material can be 

transported to a region thru import, leading to biomass accumulation in an unproductive 

region if the export and local losses are relatively lower. The existence of a main channel can 

play a key role as a large scale conduit for wide biomass transport and dispersion. This 

process is driven by a larger inertia:friction ratio in the channel, which results in greater tidal 

excursions and velocities. The channel productivity can significantly enhance or constrain the 

large-scale distribution of phytoplankton biomass. These three mechanisms, residence time, 

import and the role of a main channel, are low frequency subtidal transport processes which 

occur over time scales of days or weeks (Lucas et al., 1999b).  

 

High frequency mechanisms occur on tidal or hourly time scales. For instance, lateral 

sloshing is a tidal-scale-mechanism which forces material out of a shallow region and into a 

deep channel region on ebb tide, and then back into the shoal during flood tide. It depends on 
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the width of the shoal, bathymetry and lateral tidal excursion. The phasing between tidal-

time-scale changes in transport can induce a shift in mass transport and local growth, 

particularly in shallow zones, where growth rates are more sensitive to water column height 

variation (Lucas et al., 1999b). Hydrodynamic variations in water column height, due to 

bathymetric and tidal variations, affect the distribution of phytoplankton sources and sinks in 

a shallow estuary, as well as transport-related mechanisms controlling system-level bloom 

dynamics. For a given light attenuation coefficient, pelagic production decreases as column 

height increases because depth-averaged irradiance varies inversely with the former. The 

effects of the tidal cycle on growth rates in deeper waters are mainly consequence of light 

limitation, whereas in shallow waters, are consequence of the photoinhibition and benthic 

grazing. The influence of the latter increases as column height decreases because 

phytoplankton is more accessible to the benthos. For instance, the combination of low 

turbidity and high benthic grazing may lead to negative growth rates during low tide and 

positive during high tide (Lucas et al., 1999a).  

 

The spring-neap cycle induces oscillations which influence phytoplankton production, mainly 

enhancing or dampening the effect of other factors already mentioned. For instance, grazing 

effects in shallow regions have a higher impact during spring-ebb tide than during neap-ebb 

tide, thus, day-averaged growth rates are typically negative in the former and positive in the 

latter (Lucas et al., 1999a). Spring tides increase vertical and turbulent mixing leading to 

lower photosynthetic activity and chl-a concentration because producers spend less time in the 

photic zone (Monbet, 1992). Neap-tide blooms are mainly due to reduced turbulent mixing 

(Cloern, 1991), reduced suspended sediment concentrations (Cloern et al., 1985; Thompson 

1999 in Lucas et al., 1999a) and dampened low-tide benthic grazing (Lucas et al., 1999a).  

 

Factors such as water residence time (e.g. Ketchum, 1954; Tett et al., 2003), tidal range 

(Alvera-Azcarate et al., 2003) and turbidity (May et al., 2003) are important drivers of the 

nature and magnitude of eutrophication symptoms (Ferreira et al., 2005a). Excessive 

phytoplankton biomass, nuisance or toxic algae are generally more probable in systems with 

lower flushing rates (Ferreira et al., 2004). For instance, dinoflagellates, frequent in harmful 

algal blooms, have maximum growth rates significantly lower than those of diatoms (Smayda, 

1997; Furnas, 1990) and thus may only have the capacity to grow in estuaries when the water 

residence time increases (Ferreira et al., 2005a).  
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2.2 - Remote Sensing Techniques 

 

2.2.1 - Remote Sensing of Ocean Colour 

 

Remote sensing of ocean colour was initially focused on retrieving the concentration of chl-a 

in the open oceans and to date it has been the most successful and widespread application. 

Either as a cause or consequence, space-borne remote sensors have been designed and 

implemented with the principal aim of ocean monitoring (e.g. Richardson and Ledrew, 2006; 

Chen et al., 2004). Significant progress has been achieved and there has been growing 

concern in understanding and retrieving the inherent optical properties (hereafter IOPs), 

namely the scattering and absorption. The IOPs are clear indicators of changes in the water 

mass and its constituents, both dissolved and suspended material (IOCCG, 2006).  

 

The study of coastal and transitional aquatic ecosystems could benefit greatly from the 

usefulness of remote sensing technologies, including synoptic quantitative regional and global 

data sets, repeated and continuous sampling and, in many cases, historical data. The 

limitations of remote sensing include costs, suitability for detailed monitoring, revisit time, 

accessibility to data, and poorly developed and validated algorithms (Richardson and Ledrew, 

2006; Chen et al., 2004; Lee and Carder, 2005; Chen et al., 2007). Algorithms are mainly 

driven by the optical and biological complexity of these systems, such as, typical shallowness, 

which induces bottom reflectance, benthic optical contribution and highly variable spectral 

signatures (Richardson and Ledrew, 2006). Moreover, temporal and spatial dynamics are 

much more relevant features in coastal systems than in oceans and chl-a, CDOM and SPM are 

usually in higher concentrations in the former.  

 

Contrary to in-situ methods, which measure separately the physical or chemical components 

of water, remote sensing acquires both based on the spectral appearance, in a process called 

spectral remote sensing (e.g. Lee and Carder, 2005). Passive remote sensors use the solar 

irradiance as the “power source”, whilst active sensors provide their own source, for instance, 

radar technology (e.g. Lillesand et al., 2004). Radiance received at spacecraft is driven by 

sunlight, passing through the atmosphere and being reflected, absorbed and scattered by the 

water and its constituents. Waves, sun glint, white caps, bubbles and surface slicks also affect 

the redistribution of penetrating light. Radiance is transmitted back through the atmosphere to 

the space-borne passive sensor being modified by scattering and absorption processes from 

the air, like Rayleigh scattering, suspended particles in the air, like Mie scattering and 
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selective absorption by ozone and water vapour (Clark, 1997; Lillesand et al., 2004). The 

IOPs affect the spectrum and radiance distribution of the light emerging from the ocean, 

hereafter referred to, as water leaving radiance. The IOPs do not depend on the radiance 

distribution but are highly wavelength dependent (IOCCG, 2006; Zaneveld et al., 2005). The 

normalized water-leaving radiance (nLw) is defined as the upwelling radiance just above the 

sea surface, in the absence of an atmosphere, and with the sun directly overhead. The remote 

sensing reflectance (Rrs) is the nLw divided by the solar irradiance, i.e. the relative fraction of 

radiance that reaches the sensor (http://oceancolor.gsfc.nasa.gov/). Remote sensing of water 

bodies relies in the assumption that if a successful removal of the atmosphere and surface 

effects is performed, it is possible to retrieve the scattering and absorption characteristics and 

estimates of dissolved and particulate concentrations, through the inversion of the Rrs 

acquired by the sensor (e.g. Zaneveld et al., 2005; IOCCG, 2006). One major difference 

between land and water remote sensing is the sensitivity needed in the retrieval of the water 

leaving optical signal, which is typically between 0 to 10%. Therefore, a sensor must be 

accurately calibrated to provide a high signal-to-noise. For instance, a 5% error in at-sensor 

radiances may result in a 50% Rrs error (Chen et al., 2007; Franz et al., 2006)  

 

The spectral quality and quantity of the water leaving radiance is mainly determined by the 

IOPs and algorithms usually look for a combination of signals at different wavelengths in 

order to find a mathematical relation concerning a specific water constituent. The coefficients 

of this relation are usually derived using data collected at various spatial and temporal scales, 

therefore, minimising the associated noise. Due to the complexity of processes involved, the 

water mass is often considered as a black box, diminishing the IOPs relevance (IOCCG, 

2006). Algorithms can be empirical or analytical, the former are based on simple relationships 

derived from Rrs data using the black box approach and the latter on the retrieval of process 

information i.e. the IOPs (e.g. Chen et al., 2004; IOCCG, 2006). Currently, the analytical 

approach is in fact semi-analytical because IOP determination is based on empirical relations 

at one or more wavelengths (e.g. Carder et al., 1999; Maritorena et al., 2002). 

 

Water colour is determined by the IOPs, being chl-a only one of the active components, and 

therefore, its determination is followed by a larger uncertainty than that of the IOPs 

themselves. Improvements in this area will be driven primarily by enhanced understanding on 

how reflectance and the IOPs relate and, secondarily, by how the latter relate to dissolved and 

suspended water constituents (IOCCG, 2006). This will potentially enable and optimize a 

reliable remote sensing utilization and application. Approaches based on radiative transfer, 
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both in the forward and inverse way, are essential to obtain further improvements. Detailed 

description of the latter is beyond the scope of this work but a recent review can be found in 

Zaneveld et al. (2005). Briefly, the two key IOPs relevant to the water leaving radiance are the 

total absorption a (m-1) and scattering bb (m
-1) coefficients, often separated into, dissolved and 

particulate fractions, and water (Equation 1 and 2). The subscripts "g", "p", and "w" represent 

respectively dissolved, particulate matter, and water. On the other hand, subscripts "ph" and 

"d" represent respectively, the algal and non-algal components of the particles. Scattering can 

occur in back and forward directions, with subscripts “b” and “f” respectively. The beam 

attenuation coefficient is determined by the sum of absorption and backscattering (Zaneveld 

et al., 2005; IOCCG, 2006). Note that, only the term αph relates to chl-a concentration.  

   

gdphw aaaaa +++=  Equation 1 

 

bpbwb bbb +=  Equation 2 

 

In Case 1 waters, optical properties are primarily determined by phytoplankton and related 

CDOM and detritus degradation products which covary. In coastal Case 2 waters, light 

attenuation is greater due to optical complexity in the form of inorganic particulates, and due 

to a greater variety and higher concentration of dissolved and particulate organic matter which 

do not covary with phytoplankton (e.g., Mobley et al., 2004). Therefore, given this non 

covariance and the fact that the IOPs are not all a function of phytoplankton, deriving simple 

chl-a and reflectance relationships will often lead to incorrect results (Zaneveld et al., 2005). 

Moreover, chl-a can be determined with greater accuracy if there is a full understanding of all 

the optical processes involved (IOCCG, 2006). Note that the IOPs in Case 2 waters are 

typically two to four orders of magnitude different from Case 1 waters (Schalles, 2006). 

 

Radiative transfer equations describe the interactions between the inherent optical properties, 

or IOPs and apparent optical properties (AOPs), remotely acquired (Schalles, 2006; IOCCG, 

2006). With simple approximations, the Rrs acquired by the sensor can be generically 

expressed directly in terms of the IOPs:   
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where, Lu (0
-) and Ed (0

-) are respectively, the upwelling radiance and downwelling irradiance 

just below the sea surface. Therefore, the Rrs which reaches the sensor, after the removal 
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atmospheric effects, is directly proportional to backscattering and inversely proportional to 

absorption (IOCCG, 2006). The proportionality factor g depends on how backscattering is 

related to its coefficient and on geometrical conditions, thus containing the directional effects 

of radiative transfer (Morel and Gentili, 1993; Lee et al., 2004). The equation above is the 

starting point for many current semi-analytical inversion algorithms (e.g. Carder et al., 1999; 

Maritorena et al., 2002; Lee et al., 2002). Moreover, optical modelling can also be used to 

model the Rrs using a set of IOPs, resolving Equation 3 in the forward direction (e.g. Feng et 

al., 2005; Bricaud et al., 1998 & 2004).  

 

Besides optical modelling and radiative transfer equations, which have been widely used in 

Case 1 waters, the Case 2 algorithms development has been frequently addressed using the 

spectral signatures approach (Tzortziou et al., 2007; Gitelson et al., 2007; Richardson and 

Ledrew, 2006; Schalles, 2006). This is driven by the very different optical properties between 

both, because phytoplankton, CDOM and SPM concentrations are typically one or two orders 

of magnitude higher in Case 2 waters. These components have strong effects on the water 

leaving signal when they are present in high concentrations. Algorithms developed for Case 1 

waters are not accurate under high concentrations of phytoplankton and/or SPM, which can 

lead to significant under or over estimation of the former (e.g. Richardson and Ledrew, 2006; 

Gitelson et al., 2007; Stumpf et al., 2000; Tzortziou, et al., 2007).  

 

2.2.2 - Remote sensing of Case 2 waters 

 

The advantages and main challenges of remote estimation of chl-a in Case 2 waters are well 

defined. However, operational monitoring programs are not fully developed and need further 

sensor and algorithm improvements (IOCCG, 2000). Approaches in these types of waters are 

based on the sunlight absorption by algal pigments (pigment-specific) in the presence of light 

scattering and absorption by algal and non-algal particles. This combination and diversity of 

optically active constituents partially masks fundamental phytoplankton absorption and 

scattering relationships, producing graded responses in the water leaving optical signals. The 

Case 1 algorithms are based on a simple relation: as phytoplankton concentrations increase, 

pigment absorption increasingly dominates at blue wavelengths, causing decreased 

reflectance, while scattering dominates at mid-green wavelengths causing a reflectance 

increase. Therefore, simple blue green ratios work relatively well in Case 1 waters. This 

relationship becomes less sensitive when chl-a concentrations are high and/or when CDOM 
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and SPM are significant and/or when the chl-a to total algal pigments ratio deviate from 

standard assumptions (Schalles, 2006).  

 

Chl-a has a prominent absorption peak at the blue wavelengths and a secondary red 

absorption peak (Figure 1). The variety and packaging effect of phytoplankton pigments have 

overlapping spectral absorptions, particularly in the blue region, affecting chl-a estimation. 

However, chl-a can be distinguished by the characteristic narrow red absorption peak 

(~680nm), discernable when its concentration is higher than 1 µgl-1, where water absorption is 

also high. Besides the relative contribution of accessory pigments and their packaging, the 

phytoplankton absorption spectrum is also influence by taxonomy, the size structure and 

physiological state of algal populations (Bricaud et al., 2004; Ciotti and Bricaud, 2006; Carder 

et al., 1999; Ciotti et al., 2002). The latter author states that the phytoplankton population size 

explains more than 80% of the variability in its spectral absorption shape.  

   
 

 

  

 Wavelength (nm)  

Figure 1 - In vivo weight-specific absorption spectra of the main pigments, a*sol,i(λ)  in m2 mg-

1 (taken from Bricaud et al., 2004). 
 

Photosynthetic and non photosynthetic carotenoids are shown in red and blue, respectively. 

 

 

Colored dissolved organic matter (CDOM), also called gelbstoff or gilvin, is largely 

composed of humic substances, which result from the decomposition of plant materials from 

land inputs or in-situ production. At wavelengths greater than 300nm absorption by CDOM is 

inversely related to wavelength and described by an exponential decay curve (Figure 2) 

(Schalles, 2006; Keith et al., 2002; Ciotti and Bricaud, 2006). Although CDOM absorbs 

especially in the blue region, in very high concentrations it can affect reflectance over the 

whole visible spectrum, particularly attenuating the prominent green peak (Schalles, 2006).  
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 Wavelength (nm)  
 Figure 2 – Average CDOM (filled) and chlorophyll-specific (clear) absorption spectra for 

Narragansett Bay (taken from Keith et al., 2002). 
 

   
Scattering is driven by the interaction, mainly reflection, of light with inorganic and organic 

suspended particles. Scattering increases reflectance decreasing monotonically with increased 

wavelength, but, in turbid waters the photon emergence at infrared is not negligible (Figure 3) 

(Mobley, 1994 in Schalles, 2006). Therefore, the “black pixel” assumption, frequently used in 

atmospheric correction over the ocean, does not work in turbid waters and can lead to errors 

in the chl-a estimation (e.g. Chen et al., 2007; Miller and McKee, 2004; Schalles, 2006; 

Siegel et al., 2000). The combination of CDOM, phytoplankton and SPM signals enhances 

the complexity of Case 2 waters and spectral signatures analysis have been used to discern the 

combined effects (Gitelson et al., 2007; Schales, 2006; Doxaran et al., 2002a). 

   
 

 

 

 Wavelength (nm)  
 Figure 3 – Water reflectance spectra measured at various coastal, estuarine, and inland 

locations representing a broad range of optically active constituents. 
 

 Note: C = µg chl-a l-1 of; S = mgl-1 of SPM; A = m-1 of CDOM absorption at 440 nm (taken from 
Schalles, 2006) 
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Schalles (2006) provides an excellent review of the spectral effects of these components: 

Concerning only phytoplankton, at wavelengths below 510nm, reflectance decreases with 

increasing cell density due to pigment absorption and increases above it, resulting in a hinge 

point near 510nm. With the addition of SPM, the hinge point shifts towards higher 

wavelengths. Because scattering decreases monotonically with increased wavelength, the 

SPM increase leads to increase reflectances, particularly, in the blue and green regions. High 

CDOM concentrations can suppress the dominant scattering in the green region and flatten the 

reflectance spectra (Figure 3). When phytoplankton concentration increases a green peak, near 

550nm, becomes evident at chl-a above 4 µgl-1, with a slight proportional wavelength shift. 

With increasing concentration, a well defined minimum (through) develops near 670nm, 

associated with specific chl-a absorption, as well as the adjacent reflectance maximum (peak) 

near 700nm. The peak is due to increased cell scattering and/or chl-a fluorescence 

phenomenon. The chl-a increase drives a shift in the peak position from 685 (not noticeable) 

to higher wavelengths (about 5-10nm), due to a shift in the position of minimum combined 

absorption by pigment and water (Figure 4). The shift is due to increased phytoplankton cell 

scattering and is relatively independent of fluorescence. Therefore, over the VNIR spectrum, 

spectral analysis is done by inspecting the appearance and intensification of peaks and troughs 

with increasing chl-a concentration (Figure 3). Reflectance troughs coincide with stronger 

pigment and/or water absorption, while peaks appear in spectral regions where absorption is 

minimum and biological scattering plays an important role. These features are the starting 

point for remote sensing retrieval of chl-a in Case 2 waters. Algorithms for these types of 

systems should be based in the red absorption and NIR reflectance peak feature. A band ratio 

using both features can potentially isolate the chl-a signal from other absorption features. 

   

 

  
 Wavelength (nm) 
 Figure 4 – On the left: Combined absorption coefficients for water and phytoplankton pigment at 

different concentrations (Bidigare et al., 1990 & Smith and Baker, 1991 in Schalles, 2006).  On 
the right: Graded series of reflectance spectra for different chl a levels for a dilution/enrichment 
scheme experiment (taken from Schalles et al., 1997 in Schalles, 2006)  
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2.2.3 - Remote Sensing Sensors and Algorithms for chlorophyll monitoring 

 

Space-born optical sensors observe aquatic systems since the Coastal Zone Color Scanner 

(CZCS) was launched in October 1978, which contributed significantly to the understanding 

of Case 1 waters. The follow-on sensors SeaWiFS (Sea-viewing Wide Field of view Sensor) 

and the newer instrument MODIS (MODerate resolution Imaging Spectroradiometer) aboard 

the Terra spacecraft, launched in 1997 and 1999 respectively, stimulated further 

improvements. The MODIS flown aboard the Aqua spacecraft aimed at obtaining information 

on the Earth's water cycle was launched in May, 2002 (http://aqua.nasa.gov/). Also in 1999, 

the Landsat ETM+ instrument was launched following his predecessors since the early 70’s, 

providing high resolution imagery (30m) with the revisit time of about 16 days 

(http://landsat.gsfc.nasa.gov/). The long revisit time and possible cloud cover, along with data 

cost, limit its application to highly dynamic systems like estuaries (e.g. Gitelson et al., 2007). 

In contrast, SeaWiFS and MODIS sensors have shorter revisit time, for instance near daily 

overpasses, but the coarse and low spatial resolutions, about 1.2 and 1km respectively, also 

limit their application. The MODIS sensor, in particular, has bands with finer resolution (250 

and 500m), which were designed especially for land and atmosphere applications. In 2002 the 

European Medium Resolution Imaging Spectrometer (MERIS) was launched with full-

resolution of 300-m bands, with near-daily coverage. Its good trade-off between spatial and 

temporal resolution is limited by the cost of the acquisition (e.g. Chen et al., 2007). 

Particularly, MODIS and MERIS are able to optically measure the radiance leaving surface 

water in six or more bands in the visible and near-infrared (VNIR) region (e.g. Chen, et al., 

2004; Zhang, et al. 2002b). In the future, the combination of optical and SAR technologies is 

expected to greatly improve the chl-a estimation. Although both technologies have co-existed 

for over than a decade, few discussions have been made on the combined use of these two 

very different technologies (Chen et al., 2004; Lindell et al., 1999; Zhang et al., 2002b). 

  

Due to the combination of temporal contextualization, data availability, technical support, 

high temporal frequency, free access to data and widespread application, the MODIS Terra 

images were chosen for this work. The MODIS instrument provides high radiometric 

sensitivity in 36 spectral bands, ranging in wavelength from 0.4 µm to 14.4 µm and 

supporting land, atmosphere, and ocean applications. Two bands are imaged at a nominal 

resolution of 250 m at nadir, with five bands at 500 m, and the remaining 29 bands at 1 km. 

Data from MODIS Terra is available since 24 February 2000 (http://modis.gsfc.nasa.gov/). 

The principal aquatic scope of MODIS Terra was global ocean monitoring and therefore the 
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bands centred at relevant wavelengths have a 1km resolution. As already mentioned, this can 

be a limitation in finer coastal and transitional systems. Recently, several studies, have 

demonstrated the potential of high and medium resolution bands to monitor these systems (Hu 

et al., 2004; Miller and Mckee, 2004) using MODIS Aqua data. Terra high resolution bands 

are not well-calibrated, contain significant noise (Hu et al., 2004) and the sensor itself has 

suffered severe band degradation since 2003, with particular impact in the Rrs retrievals. 

Specifically, the radiometric response of the 412-nm band has degraded by more than 40% up 

to 2006, with similar but less extreme changes in the longer wavelengths rising significant 

cross-scan artifacts, mirror-side differences, and detector-to-detector striping in the retrieved 

water-leaving radiances (Franz et al., 2007). Two different approaches have been proposed to 

explore high resolution capabilities from MODIS data. Franz et al., (2006) proposed to correct 

1km bands for atmospheric effects using high-medium resolution SWIR bands. Shuttler et al. 

(2007) proposed a method for radiance interpolation from low to medium resolution bands.  

 

There are several algorithms developed for the retrieval of chl-a using Rrs. It was beyond the 

scope of this work to make a deep review of existing algorithms, which can be found in detail 

in IOCCG (2006). Furthermore, the algorithms described below can be found in the NASA 

Ocean Color Group processing software, SeaDas (http://oceancolor.gsfc.nasa.gov/seadas/) 

and in specific Case 2 waters literature (e.g. Gitelson et al., 2007; Tzortziou, et al., 2007). The 

majority of algorithms have been developed for Case 1 waters due to their optical simplicity 

and scope (e.g. Gordon and Morel, 1983; Morel and Prieur, 1977 in Zhang et al., 2002b). 

Some of them are theoretically also applicable to Case 2 waters with some restrictions, for 

instance, the Carder algorithm, although some studies have reported its inaccuracy when 

applied to these systems (e.g. Tzortziou et al., 2007). The chl-a algorithms selected for 

application in this work are the following: 

 

• OC3M Empirical (O’Reilly et al., 2000) 

• Clark Empirical (Clark, 1997) 

• Carder Bio-Optical (Carder et al., 1999) 

• GSM Bio-Optical (Garver and Siegel, 1997; Maritorena et al., 2002) 

 

Because the above algorithms are more fit for chl-a retrieval in Case 1 waters and because 

they are complex, with multiple equations, describing these algorithms thoroughly is beyond 

the scope of the work and the reader should address the literature cited for the remaining. 

Carder et al. (1999) found a significant increase in prediction accuracy when the MODIS 
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ocean color algorithms were adapted to 3 bio-optical sets, suggesting that regional calibration 

may improve greatly the accuracy of globally tuned algorithms (see also Ciotti and Bricaud, 

2006). Therefore, for simplicity, the OC3M algorithm will be selected for this task (see 3.6) 

and only its governing equation will be showed in detail. All these Case 1 algorithms will be 

tested in the estuary in order to assess their accuracy and limitations (see 4.2 and 4.3). 

 

The OC3M empirical chl-a algorithm is a 4th order polynomial which relates the greater of the 

blue and green ratios, Rrs443/Rrs551 or Rrs488/Rrs551 to [chl-a]: 
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Equation 4 

  

The Clark empirical chl-a algorithm was originally based on an empirical 3rd order 

polynomial derived from chl-a measurements and blue and green reflectance ratios 

Rrs443/Rrs551 or Rrs488/Rrs551 in Case 1 and Case 2 waters (Clark, 1997). The algorithm uses 

different polynomial constants for waters with high and low [chl-a]. A recently proposed 

version of the algorithm (updated 19 March 2003, D. Clark, personal communication in 

Tzortziou et al., 2007) is a 5th order polynomial with potential improved performance in very 

high and very low [chl-a] environments.  

 

The Carder bio-optical chl-a algorithm is based on a bio-optical model that relates [chl-a] with 

measured IOPs. It relates Rrs to backscattering and absorption by phytoplankton and a 

combined term for CDOM and non-algal particles (Carder et al., 1999). However, when [chl-

a] is higher than 1.5-2.0 µgl-1, the algorithm switches to an empirical 3rd order polynomial 

relating [chl-a] and to the ratio Rrs488/Rrs551 (Carder et al., 2002). Therefore, the algebraic 

portion is for oceanic low absorption waters and the empirical portion is for high absorption 

coastal waters (IOCCG, 2006). The polynomial constants are adjusted dynamically (based on 

information on the sea surface temperature) in order to account for pigment packaging effects 

(‘packaged’, ‘un-packaged’, and transitional cases) in nutrient-replete and nutrient-deplete 

conditions (Carder et al., 2002). For mathematical details see Carder et al. (1999 and 2002) or 

IOCCG (2006).  

 

The GSM algorithm is also bio-optical chl-a algorithm based on the quadratic relationship 

between the Rrs and, the absorption and backscattering coefficients. The algorithm parameters 

were optimized from a large global Case 1 in-situ data set. However, in waters where optical 
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characteristics differ strongly from those used to tune the model, i.e. coastal Case 2 waters, 

the model performance can be significantly lower (IOCCG, 2006). Both Carder and GSM 

algorithms have base equations similar to Equation 3, differing in the IOP determination 

procedure and parameters used.  

 

Simple band ratios, developed for Case 2 waters and based on spectral signatures analysis, 

were also be employed and discussed regarding their suitability to retrieve chl-a in the Tagus 

estuary. Varied forms have been proposed and the majority are based on the ratio between the 

NIR reflectance peak and the red absorption (e.g. Gitelson et al., 2000 & 2007; Schalles, 

2006). Tzortiziou et al. (2007) proposed a different approach using a ratio between the red 

reflectance and the green peak. There is no general equation, but relationships between 

reflectance ratios and chl-a are generally defined thru regression analysis, resulting mainly in 

linear, power, logarithmic, exponential and polynomial forms. Most of the algorithms 

proposed, avoid the blue region and explore the key optical feature in Case 2 waters, the 

reflectance peak corresponding to the chl-a fluorescence and cell scattering, in the upper red 

and lower NIR spectral region. Schalles et al. (2006) provides a good review of some of those 

relationships. Some algorithms are currently used in operational monitoring of Case 2 waters 

(see Ruddick et al., 2003 & Kallio et al., 2003 in Schalles, 2006; Gitelson, et al., 2000). 
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3. Methodology 

 

3.1 - Study area: The Tagus Estuary 

 

3.1.1 - General Description 

 

Tagus estuary is one of the largest estuaries in the western coast of Europe, covering an area 

of 320 km2 (e.g. Bettencourt et al., 1980 in Antunes, 1998), located in the most populated area 

of Portugal, the great Lisbon, with about 1.6-2.3 million inhabitants. About 120 km2 (35-40%) 

corresponds to intertidal zones, of which 19 km2 are occupied by salt marsh vegetation, and 

81 km2 are mudflats (www.aml.pt; Ferreira et al., 2003). This mesotidal estuary has a 

longitudinal extension of about 50 km, from the upstream boundary defined by tidal 

excursion, near Muge, to the downstream boundary, near São Julião da Barra - Cova do 

Vapor (Bettencourt, 1990 in Fernandes, 2005). Morphologically, the estuary is divided into 

three very distinct sections: upstream, middle and downstream (Ferreira et al., 2003; 

Brogueira and Cabeçadas, 2006). The upstream shallow section is located between Vila 

Franca de Xira and the Alcochete/Sacavém section. It has an average depth of 2m and 

includes most of the mudflats and salt marshes (Figure 5). This section is fresher and nutrient 

enriched with some small permanent islands (Mouchões), which separate this section into a 

wider and a small channel, the Northern Channel (or Cala do Norte) from Alhandra to Santa 

Iria da Azóia. 

   

 

 

 

 Figure 5 - Bathymetry, Intertidal Areas and Wetlands in Tagus estuary  
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The middle section, Mar da Palha, is wider and deeper, with an average depth of 7m, 

containing a higher average phytoplankton biomass (Brogueira and Cabeçadas, 2006). The 

downstream section is narrower, more saline, with low nutrient concentration and deeper, 

reaching depths of 46m and is currently the main navigation channel (Ferreira et al., 2003).  

 

The mean air temperature is 16 ºC and the total average annual precipitation is 700 mm. 

Between 1999 and 2006, air temperature ranged from 6.4 ºC in the winter and 33.5ºC in the 

summer. The monthly mean wind speed is on average 3 ms-1 and higher in the summer (3-4.6 

ms-1), with dominant wind generally from N and NW (Gameiro et al., 2007).  

 

The Tagus River is the largest of the Iberian Peninsula and drains an area of 86 000 km2 

acting as the major pollution source, mainly due to agriculture and industrial activities in the 

watershed upstream (Figure 6). The Tagus river has an annual average flow of approximately 

300-400 m3 s-1 with high seasonal variability, ranging from 145, in the summer, to 813 m3 s-1 

in the winter. Therefore, the residence time is highly variable, in average 23 days and 8 to 26 

days for the seasonal flows mentioned (Cabrita and Brotas, 2000; Martins et al., 1984 in 

Brogueira and Cabeçadas, 2006; Gameiro et al., 2007; Câmara et al., 1987). Extreme events, 

like droughts and floods can cause flows of 30 and 2000 m3 s-1, respectively (Loureiro, 1979 

in Saraiva, 2001; Câmara et al., 1987).  

   

 

 

 

 Figure 6 - Tagus river watershed land use Corine2000  
   

The main pollution sources are the Tagus river, the tributaries Sorraia and Trancão rivers, 

punctual domestic and industrial effluents, with or without wastewater treatment plants 

(WWTP), and nearshore diffuse pollution (Annex III). The Sorraia and Trancão rivers are 

significant nutrient contributors to the system but of very distinct origins. The former, has a 
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catchment mainly influenced by agricultural activities and the latter, by industrial and 

domestic activities. Moreover, small tributaries also contribute to freshwater and nutrient 

inputs, like the Barcarena, Laje, Jamor, Moita creeks and the rivers, Coina and Judeu. In 

2003, 17 WWTP adjacent to the estuary had secondary treatment, with a mean efficiency of 

about 70% in the removal of nitrogen compounds. On the North shore, the sewage treatment 

plants serve 90% of the population and on the South shore, only 30% of the residents are 

served by a WWTP. Despite the high organic discharges, the estuary’s mesotidal 

characteristics and high dilution potential (Ferreira et al., 2003) induce a high estuarine 

export, maintaining the system in equilibrium (Câmara et al., 1987). In what concerns 

eutrophication risk, Ferreira et al. (2003), using the NEEA methodology, states that the 

overall eutrophic condition is Moderate or Low. 

 

3.1.2 - Hydrodynamics 

 

Hydrodynamics in the Tagus estuary are mainly driven by tidal forcing and wind. The latter 

influences vertical mixing and surface currents. In the lower section, topography tends to 

dampen the dominant N-NW wind effect (e.g. Fernandes, 2005). The upper section of the 

Tagus estuary is mainly intertidal, and in the midsection the water column height changes (on 

average) by 35-45%, thus the tidal scale variability is an important feature. 

  

Physically, salinity influences the existence of vertical gradients, conditioning vertical 

diffusion and, therefore, sediment transport and primary production. Chemically, salinity 

influences suspended particle flocculation leading to increased sedimentation and thus 

influences light penetration in the water column (e.g. Antunes, 1998). Biologically, salinity 

influences mainly species composition within an estuary (e.g. Gameiro et al., 2004; Ferreira et 

al., 2005a). Salinity in the Tagus estuary is mainly driven by the degree of mixing between 

tidal and freshwater flow and, in the summer, specifically by heat exchanges in the surface, 

evaporation and precipitation (Antunes, 1998). Annually, salinity tends to be lower in the 

winter and higher in the summer (e.g. Gameiro et al., 2004; Grillot and Ferreira, 1996) due to 

variations in the rainfall and freshwater input, especially in the upper section. Furthermore, 

variations in salinity in the upper section are more pronounced than closer to the mouth and 

salinity shows a significant inverse correlation with the river discharge (Grillot and Ferreira, 

1996; Gameiro et al., 2007). Salinity differences between the bottom and surface are not 

significant in the estuary (e.g. Martins and Duffner, 1982 & Martins et al., 1983a & Martins et 

al., 1983b in Antunes, 1998; Gameiro et al., 2004). Salinity’s vertical distribution is more 



 43 

homogeneous in the downstream estuary, reaching a maximum gradient in the Mouchões 

region, thus potentially presenting some stratification (Portela, 1996).  

 

On average hydrological and tidal conditions, in flood tide, salinity varies from 36‰ to 27.5 

‰ downstream, immediately after the Mouchões. Upstream, the gradient is steep, reaching 

null salinity at 50 km from the ocean, near Muge. In ebb tide, in the ocean inlet channel, 

salinity is about 30‰, maintaining the steep gradient upstream (Câmara et al., 1987). The 

Tagus estuary can be divided into three main regions according to salinity. The first one is 

located upstream of Vila Franca de Xira, with an average salinity lower than 3‰ driven by 

the riverine influence (oligohaline). Midstream, between Vila Franca de Xira and the Póvoa 

Mouchão, salinities ranges from 15 to 20‰ (mesohaline to polyhaline). Salinity progressively 

increases towards the ocean with average salinity around 36‰ and vertical homogeneity 

(euhaline) (e.g. Antunes, 1998). 

 

Tides are semi-diurnal (12h25m cycle) with an average amplitude of 2.4 m, ranging from 

0.9m, at neap tide, to 4.1 m, at spring tide (e.g. Gameiro et al., 2004; Ferreira, 1988).  For 

average tide, the tidal prism is about 750 x 106 m3 and the average volume is 1.9 x 109m3 

(Vale, 1990 in Antunes, 1998). According to Portela (1996), the freshwater flow is typically 

two orders of magnitude lower than tidal flow, in the mid and lower sections of the estuary. 

Also, in the average tidal cycle, the maximum flow near the ocean inlet is 40x103 m3s-1, 

during flood and 50x103 m3s-1. Ebb currents are faster due to a temporal shift in ebb and flood 

tides that increases with the distance to the ocean. In the midsection, during spring tides, the 

maximum current velocities are 1.0 ms-1 during the flood and 1.2 ms-1 during the ebb. In neap 

tides, currents decrease significantly. Near the ocean, the current velocities are tidally driven, 

reaching a maximum of 1.3 ms-1 during flood and 1.7 ms-1 during the ebb, and sometimes 

reaching 2.3 ms-1 (Bettencourt et al., 1980). Moreover, current intensity generally decreases 

from the surface to the bottom (Portela, 1996). 

 

River flow variability rules the degree of separation between brackish and fresh water and 

thus the upstream extension of saline intrusion. Brogueira and Cabeçadas (2006) stated that 

three homogeneous regions had different delimitations based on the magnitude of the winter 

flow. For instance, in high flow conditions, the more oxygenated river influenced zone 

extended downstream and the marine influenced area is restricted. As a consequence of high 

flow and transport conditions, materials tend to remain entrained in a limited area nearby 

extensive salt marshes in the mid section of the estuary, potentially favouring the 
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accumulation of suspended particles, as well as nutrients and phytoplankton (Cartaxana, 1999 

in Brogueira and Cabeçadas, 2006). 

 

Using the NEEA methodology, Ferreira et al. (2003) classified the Tagus estuary as having a 

High dilution potential and a Moderate flushing potential, resulting in overall Low 

susceptibility to dilute and flush nutrients. The combined factors of low average depth, strong 

tidal currents, and low input of river water make this a well-mixed estuary, with stratification 

occurring only in specific situations, such as neap tides or after heavy rains (Ferreira et al., 

2003; Vale and Sundby, 1987 in Antunes, 1998; Bettencourt et al., 1980). 

 

3.1.3 - Light and Suspended Particulate Matter 

 

In the Tagus estuary the main driver of SPM concentration is the tidally driven bottom 

resuspension, followed by the riverine inputs, although the former is typically several orders 

of magnitude higher (Ferreira, personal communication). Gameiro et al. (2004) reinforced the 

idea that riverine input, mainly due to upstream erosion and highly flow dependent, is an 

important source of SPM in the Tagus estuary. High tidal amplitudes, typical in spring tides, 

are associated with high tidal currents, which may be an important source of SPM driven by 

bottom resuspension (Portela, 1996). Due to the erosion of the intertidal areas and consequent 

sediment transport, SPM concentrations are higher in ebb tide than in flood tide (Vale and 

Sundby, 1987 in Antunes, 1998). The concentration in the Tagus estuary can vary from 

20mgl-1, in ebb tide, to more than 140 mgl-1, in flood tide (Castanheiro, 1985 in Antunes, 

1998). Longitudinal variations are especially due to the tidal amplitude and the maximum 

turbidity zone is located in the upper section, reaching concentrations higher than 200mgl-1 in 

spring tide. Transversal variations are also due to tidal amplitude, in neap tides the estuary is 

transversally homogeneous and, in spring tides, suspended matter tends to increase in the 

south half, where the majority of intertidal areas are located (Antunes, 1998). 

 

Seasonally, concentrations tend to be slightly higher in the winter, probably due to riverine 

input but, globally, are relatively constant throughout the year. Boundary concentrations are 

on average below 5mgl-1 for the ocean, and approximately 10mgl-1 from the river (Ramos, 

2002). Spatially, suspended matter, and thus turbidity, is higher in the middle and upper 

sections of the estuary and lower in the downstream section (Brogueira and Cabeçadas, 2006). 

In the lower estuary concentrations vary between 5 and 10mgl-1, in the downstream narrow 

channel, to 15mgl-1 near Cacilhas (Almada). Upstream, differences are even steeper increasing 
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20mgl-1 from the latter point to the mid section (Ramos, 2002; Gameiro et al., 2004; 

Fernandes, 2005). Ramos (2002) reported average values in the Northern Channel of 20 to 35 

mgl-1 and Gameiro et al. (2004) reported higher values ranging from 40 to 50 mgl-1. 

According to the latter, the wider mid section has SPM values between 20 and 25mgl-1. To 

summarise, typical SPM concentration increases proportionally with the distance to the ocean, 

rising from average values of 5mgl-1, in the inlet channel, to more than 40mgl-1 in the mid 

section, in the intertidal areas. This increase follows roughly an exponential function 

translating into large and rapid variations (Fernandes, 2005). The most significant variations 

are due to bottom resuspension driven by tides and SPM can reach very high concentrations 

in spring tide (Ferreira, personal communication).  

 

SPM is especially important to phytoplankton production due to the light limitation imposed. 

Gameiro et al. (2007) reported that light attenuation coefficients ranged from 0.4 to 8.0 from 

1999 to 2007, and suggested that turbidity was mainly due to SPM rather than phytoplankton 

cells, thus they probably do not shade themselves. The same author, indicates that the 

Zmix:Zeuf ratio was similar for all seasons, ranging from 0.4 to 4.1 and in only 22% of the 

samples the entire water column was located within the euphotic zone. Thus, light limits 

production in some extent. However, the ratio of 5 was never reached, which according to 

Cole and Cloern (1984) is the upper limit for net primary productivity. 

 

3.1.4 - Nutrients 

 

In recent years, the total annual nitrogen loading was around 26 000 tons (Cabrita and Brotas, 

2000). According to Ferreira et al. (2003), the nutrient load to the estuary is 39ton N d-1 and 

about 12ton P d-1. According to the same author, the Tagus river is the major source 

respectively introducing approximately 65% and 46% of N and P, mainly due to agriculture 

activities in the watershed. Average dissolved inorganic nitrogen (DIN) for the Tagus estuary 

is about 40 µmol l-1 and, in the last 20 years, concentrations have not changed significantly 

probably due to the low population increase and the equilibrium between increased effluent 

discharges and improvements in sewage coverage and treatments Approximately 30% of the 

population originates untreated effluents, which are responsible for 15-20% of total nutrient 

input. Treated effluents introduce 15% of total nitrogen and about 40% of phosphorus because 

of to the type of treatment used in most WWTP, which does not remove the latter from the 

effluents. In the south margin about 70% of the population is not covered by WWTP, whereas 
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in the north margin, only 10% is not covered (Gameiro et al., 2004 & 2007; Cabeçadas et al., 

2000 in Brogueira and Cabeçadas, 2006; Ferreira et al., 2003). 

 

Considering nitrogen inputs, nitrate is mainly supplied by freshwater inflow (Cabrita and 

Moita, 1995, Cabrita, 1997 in Gameiro et al., 2004; http://www.maretec.mohid.com) as is the 

case also in other estuaries (Malone et al., 1988; Mallin et al., 1993; Selmer and Rydberg, 

1993). Therefore, nitrate input is highly flow dependent, typically with higher in the winter 

and lower in the summer, exhibiting a marked seasonal variation. Concentrations are higher in 

the spring (25-125 µmol l-1), reaching extremely low values in the summer (0-10 µmol l-1) and 

increasing in the autumn and winter due to river flow (Gameiro et al., 2004 & 2007). The 

seasonal pattern of nitrite is similar to nitrate, in spring it reaches 6-12 µmol l-1, remaining 

constant throughout the year, with an average concentration of 4µmol l-1 in the upper and mid 

sections (Gameiro et al., 2004). Concentrations usually do not limit production, however, 

some authors have suggested that, especially in the mid estuary and during the summer, 

nitrogen can limit phytoplankton growth (Antunes, 1998; Gameiro et al., 2007). Spatially, 

average annual nitrate concentrations are lower with increased distance to the river, with 

average values of 40µmol l-1 in the upstream section, decreasing to values of 13µmol l-1 in the 

middle section, and even lower values near the mouth (Gameiro et al., 2004). 

 

Ammonia has highly variable concentrations with no clear seasonal pattern and appears to be 

spatially related to sewage inputs and sediment resuspension. Lower peaks tend to be related 

to higher consumption by producers (Gameiro et al., 2004 & 2007; Brogueira and Cabeçadas, 

2006). The WWTP and the Trancão River are responsible for up to 60% of total ammonia 

load, whilst the remaining is distributed by the Tagus and Sorraia rivers 

(http://www.maretec.mohid.com). The total nutrient removal by WWTP has negligible effects 

on primary production at an ecosystem scale (Saraiva, 2001). However, locally, it is relevant 

as reported by Gameiro et al (2004) in the Northern Channel (Cala do Norte) where ammonia 

concentrations are typically higher than 12µmol l-1 reaching up to 900µmol l-1, mainly due to 

industrial and domestic activities upstream (Antunes, 1998), significantly higher than the mid 

and lower sections (Ramos, 2002). Gameiro et al. (2004) reported that ammonia 

concentrations, in 1999 and 2000, fluctuated between 0 and 30µmol l-1, specifically, with 

average annual values of 8µmol l-1 and 20µmol l-1 in the upstream section and the Northern 

Channel, respectively. Brogueira and Cabeçadas (2006) reported that the upper section has 

ammonia values lower than the mid and lower sections, specifically an average of 3µmol l-1, 

in the summer, and 5µmol l-1, in the winter against 8 and 9µmol l-1, respectively.  
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Phosphate concentrations typically decrease as depth increases suggesting that, similarly to 

other estuaries, they are mainly driven by sediment dynamics (Câmara et al., 1987) and 

salinity (Gameiro et al., 2007). Phosphate is higher in the upper section, where salinity is low 

(Neves et al., 1991 in Antunes, 1998), and lower in the downstream section estuary, with 

average values of 3-4µmol l-1 (Brogueira and Cabeçadas, 2006; Gameiro et al., 2007). 

According to the latter author, phosphate lower limit concentrations were never reached 

between 1999 and 2006. Ferreira et al. (2003) states that, according to the NEEA 

eutrophication assessment methodology, the Tagus estuary susceptibility to nutrient inputs is 

Low, mainly due to hydrodynamic conditions, and the progressive increase in waste water 

treatment, especially in the south margin, will probably improve the present situation.  

 

3.1.5 - Phytoplankton 

  

The total number of species in the Tagus estuary is around 300-350 (Ferreira et al., 2005a). 

The composition is mainly dominated by diatoms, contributing on average to about 60%, well 

represented by Skeletonema costatum, Thalassiosira minima and Detonula pumila (Gameiro 

et al., 2004 & 2007). Specifically, in the mid and upstream sections, Bacillariophyceae and 

Cryptophyceae, species below 20µm in diameter, represent more than 90% of the 

phytoplankton bulk (Gameiro et al., 2004). Spatial and temporal distribution varies for the 

different taxonomic groups, mainly due to physical preferences, like salinity (Gameiro et al., 

2007), residence time (Ferreira et al., 2005a), precipitation patterns, stream flow (e.g. 

Lehman, 1992 in Gameiro et al., 2007), vertical turbulence (Huisman et al., 1999) among 

other factors. These drive bloom timing and localization with different contributions for total 

chl-a (Gameiro et al., 2007). Dinoflagellates, morphologically buoyant species, have a higher 

contribution during summer, when vertical turbulence is low and the water residence time is 

higher, which favours them over typical sinking species like diatoms (Huisman et al., 1999). 

Also, according to Gameiro et al. (2007), these species are more frequent downstream, while 

diatoms are predominant in upstream fresh waters, as also found in other estuaries (Marshal 

and Alden, 1990). Cloern (1996 & 2001) indicates a progressive shifting from diatom 

dominance to other taxa such as flagellates and dinoflagellates in European estuaries. 

However, Gameiro et al. (2004 & 2007) reveals that the Tagus estuary is still balanced. The 

Tagus has a typical residence time higher than one week and would, therefore potentially, be 

capable of accommodating phytoplankton species with a Pmax of about 1 day−1 or lower, 

consistent with reference values for dinoflagellates (Ferreira et al., 2005a). 
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Average annual chl-a values for the whole estuary are typically between 4-8 µgl-1 and range 

between 1 and 35 µgl-1 (Gameiro et al., 2004 & 2007; Ferreira, 2000). The nature of the 

spring/summer blooms changes from year to year. External climatic factors are the principal 

drivers for long term biomass fluctuations, whilst short scale processes, strongly dependent on 

tidal variations which play a major role on intra annual bloom development (Gameiro et al., 

2007) as stated for other estuaries (e.g. Lucas et al., 1999a & 1999b). Therefore, chl-a 

concentration has a strong seasonal variation and biomass peaks are spatially and temporally 

heterogeneous. Higher values occur during the summer, peaking from May to July, but, can 

also occur in August/September, in the same year, but in different locations of the estuary 

(Antunes, 1998; Gameiro et al., 2004 & 2007). The summer increase is probably due to 

relatively stable conditions in the water column and a more adequate light climate, as 

productivity is often light limited. Chl-a decreases and reaches very low values during the 

winter (Brogueira and Cabeçadas, 2006; Cabeçadas, 1999 in Gameiro et al., 2007). 

 

According to Ferreira et al. (2003), maximum chl-a occurs in the tidal freshwater and mixing 

zone, being classified according to NEEA methodology as High, whilst the lower values 

occur in the seawater zone, classified as Medium. Gameiro et al. (2007) indicated a general 7 

year pattern, in which unimodal blooms were more frequent in the upstream region and 

occurred in the late spring and summer months. Upstream typical values, were about 2-3 µg l-

1 in the winter and above 10 µg l-1 in the summer. Some occasional bimodal peaks occur, 

especially in the middle section, which as annual average chl-a of 5 to 10 µgl-1 and peaks 

reach 15 to 20 µgl-1 (e.g. Antunes, 1998; Grillot and Ferreira, 1996). Although the average 

time spent by phytoplankton cells in the euphotic zone is similar in both, according to 

Gameiro et al. (2007), the more frequent upstream blooms were essentially due to nutrient 

availability and taxonomic composition. In the Northern Channel, values are highly variable 

and range from 3 to 8 µgl-1 (e.g. Ramos, 2002; Gameiro et al., 2004) and peaks higher than 

10µgl-1 have been reported (Grillot and Ferreira, 1996). In the downstream section of the 

estuary, the average annual chl-a values are 1 and 5µg l-1 in the winter and summer months 

respectively (e.g. Brogueira and Cabeçadas, 2006; Grillot and Ferreira, 1996) and late spring 

peaks higher than 10 µg l-1 have been observed (Antunes, 1998). The variability of the 

collected chl-a values suggests that phytoplankton dynamics are highly dependent on 

measurement methodology, environmental forcing and local conditions, thus were addressed 

with caution. 
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3.2 – Procedures of Model Calibration and Assessment (adapted from Janssen and 

Heuberger, 1995) 

 

Models are based on mathematical approximations of the processes that occur in a given 

system and contain various quantities like parameters and boundary conditions. These 

quantities are often not totally known or directly measurable and therefore require information 

to make accurate performance inferences. Calibration is a crucial phase and depends on the 

aim and intention of the model. Calibration consists in comparing model results with 

measurements and prior knowledge, adjusting and determining the model parameters and/or 

structure, which provide adequate output matches. Calibration can be done manually, by 

tuning up some parameters until the model predictions match the data observations 

adequately. This subjective trial-and-error approach can be successful when models have few 

parameters but lack exactness and objectivity, leads to inconclusive results, and limits 

reproducibility and uncertainty management. A structured and systematic calibration 

approach can substantially improve reproducibility, objectivity, diagnosis information and the 

quality of the calibrated model and its results. 

 

Comparisons between measurements and model predictions can be performed qualitatively or 

quantitatively. Qualitative approaches are done by visual comparison between observed and 

predicted data, for instance, using scatter plots, pairs of time series, histograms, among others. 

Quantitative approaches analyze numerically the agreement between observed and predicted 

data using performance measures (misfits), which are functions of the error between both. The 

model is adjusted so that the agreement between data and model is satisfactory, for a given 

aim, reducing the initial uncertainty and providing adequate model inference.  

 

Solving the model calibration problem successfully will mainly depend on the intended aim, 

characteristics of the model, prior knowledge, and the nature, availability and quality of the 

data. Prior information on the model quantities (e.g. parameter ranges, constraints) should be 

explicitly incorporated, indicating their nature, characteristics, reliability and quality. The 

characteristics of the data define the quality boundaries of model calibration. Before 

calibration, it is recommended to analyse and treat data in order to detect and remove 

inadequacies and noise, and to discover important features and relationships. Also, it is 

recommended to reduce the number of calibrated parameters. For instance, by performing 

sensitivity analysis, in order to prevent unnecessary computational problems, identify the 

relevance of calibration and relevant model parameters and outputs. Parameters whose 
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variations have low influence on the model outcomes can be fixed establishing boundaries to 

the calibration effort.  

 

The characteristics of the model should be exposed by addressing the following: 

(a) aim and scope of the model;  

(b) model principles and major processes involved; 

(c) model components (i.e. features of parameters, initial and boundary conditions, 

state variables, model inputs and outputs);  

(d) governing equations;  

(e) technical information (numerical schemes, input data requirements, programming 

language, hardware requirements, run time etc.); 

(f) status of the model;  

(g) documentation.  

 

In the definition of the calibration problem certain issues must be addressed, such as, the 

uncertainty or variability present in the data, level of accuracy required for model application 

and availability of adequate numerical techniques. One of the major problems in calibrating 

environmental models is the imbalance between their complexity and data availability. This 

can be driven by different temporal and spatial scales addressed and will probably set the 

calibration limits.  

 

Misfits should be defined according to the intended use addressing the relevant model 

quantities. This will depend on data characteristics, prior parameter information and the error 

structure. One should specify, the parameters considered being candidates for calibration and 

denote prior knowledge, the outputs to be included and the methods used. Many parameter 

combinations can have a suitable agreement with the data but some of them will be more 

probable than others (Klepper and Hendrix, 1994 in Janssen and Heuberger, 1995). Misfit(s) 

can be employed in two different ways in the subsequent calibration: 

(a) In a direct way, directly expressing the 'degree of approximation' of the model. 

(b) In an indirect way, expressing the 'likelihood' of the model in relation to the 

available measurements and prior information on the model parameters. 

 

Calibration can be defined as a problem of optimization, set-identification, multi-criteria and/ 

or explicit evaluation of the posterior likelihood.  The optimization problem is used when it is 

appropriate to use one overall misfit function and it is meaningful to find parameters which 
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minimize it. The non-uniqueness of the optimal model parameters and the existence of 

various local misfit minima should be considered. The set-identification problem is used 

when it is inadequate to search for one specific optimal model and one should find a set of 

parameters. This can be driven by prominence of errors and/or uncertainties in the data and 

the future use of such set should be considered. The multi-criteria problem is a multiple 

simultaneous optimization procedure which minimizes several misfits and involves a trade-off 

between them. The non-uniqueness of minima is once again a critical issue. The explicit 

evaluation of the posterior likelihood incorporates prior knowledge in model parameters to 

assess the posterior likelihood. The availability of efficient numerical techniques is an issue 

that should be considered in all the approaches defined above.  

 

Model quality assessment is an ongoing process and model accuracy should be determined to 

make meaningful inferences and predictions with the model. Generally, there are three main 

aspects in model evaluation and assessment. Firstly, the ability of the model to reproduce the 

system behaviour should be assessed, preferably using an independent data set and bearing in 

mind the desired accuracy. It is recommended that techniques should be less data-oriented, 

and to check if the model incorporates the relevant processes adequately and if calibrated 

parameter values are realistic. Secondly, the suitability of the model for the intended use 

should be assessed, for instance, prediction of long range or episodic events. Thirdly, model 

robustness should be assessed, by comparing model simulations with different data sets under 

varied conditions and/or different misfit functions. If the model exhibits small differences in 

its simulations, than it is probable that it is robust and represents the relevant processes. 

Different model evaluations will lead to different conclusions and inferences. If the model is 

unsatisfactory, improvement may be obtained by: 

(i) Additional experimentation or data collection; 

(ii)  More adequate calibration (e.g. other misfit measures, alternative search 

techniques, new data sets);  

(iii)  Model adaptation (e.g. reparametrization, parameter aggregation or reduction). 

 

If the model is satisfactory its uncertainty should be taken into account for further 

applications. An adequate calibration should, therefore, provide relevant information on 

parameters and outputs uncertainty, which should be appropriately accounted for in further 

model applications. Calibration choices should be a mixture of sound judgement, insight, 

prior knowledge and the availability of suitable techniques. Subjective judgement is an 

indispensable component in the whole process. 
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Misfits quantitatively express the deviation between model predictions and will be used in a 

direct way, expressing the ‘degree of approximation’ of the model. In this work, both for 

calibration and assessment purposes, the mean absolute error in percentage (MAE %), the root 

mean square error (RMSE) and correlation coefficient (r) will be used. The MAE (%) was 

adapted to provide a normalized positive error measure (Equation 5) i.e. the average absolute 

difference between predictions and observations normalized according to the latter. Note that, 

Pi and Oi denote respectively the predicted and observed value and N is number of 

observations. This misfit provides a performance measure at an average level over the whole 

time span considered, providing only rough and incomplete information of the model-data 

discrepancy because averaging smooths out the dynamic features. 
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The RMSE measures the error in a quadratic way and is very sensitive to outliers (Equation 

6). If the model accurately describes the noise-free data, the RMSE should be approximately 

equal to the standard deviation of the measurement noise.  
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The correlation coefficient indicates, in an absolute sense, the degree and strength of the 

relationship between the independent (Oi) and dependent (Pi) variables, i.e. the tendency of 

the variables to increase or decrease. The sign reflects the relationship direction i.e. if it is 

direct or inverse. This misfit renders information on a population level and varies between -1 

and 1 (Mansfield, 1986). When appropriate, the coefficient of determination (r2) will also be 

computed and shown (Equation 7). 
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Besides quantitative analysis, qualitative assessment will be performed using time series and  

scatter plots of measured versus modelled values, among others. Furthermore, regression 

analysis was performed rendering the associated information like the regression line and 

coefficients.  
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3.3 - Ecological Model Calibration  

 

3.3.1 - General Considerations 

 

E2K was used to simulate phytoplankton spatial and temporal distribution in the Tagus 

estuary between 1998 and 2002. This approach was chosen due to lack of in-situ data to 

calibrate and assess the remote sensing products. Phytoplankton was simulated as chl-a 

concentration (in µg chl-a l-1), assuming that the latter is the predominant pigment and 

therefore representative of the pelagic producer’s biomass distribution in the whole estuary. 

The seasons were defined considering that Winter includes January, February and March. 

 

The first challenge was to identify the significant environmental variables which affect 

phytoplankton biomass. SPM, nutrients and zooplankton were the principal state variables 

and the ecosystem was forced by light, water temperature, hydrodynamics and the Tagus river 

flow. The second challenge was to resolve the main interrelations between state variables and 

chl-a, and also, between separate physical, chemical and biological processes. The model 

includes physical processes, such as the transport of nutrients, SPM, phytoplankton and 

zooplankton, through the system boundaries and between model boxes, and biological 

processes, namely, phytoplankton and zooplankton dynamics. The model aims towards a 

common structure that may be calibrated with a different set of parameters depending on 

regional and temporal characteristics (Ferreira et al., 2007a). Presently, E2K does not 

incorporate an automated method to perform sensitivity analysis and, therefore, the latter was 

performed manually regarding the impact on chl-a of  main objects and parameters (3.4.1). 

 

Phytoplankton biomass, as mentioned previously, is mainly influenced by hydrodynamic 

processes and both light and nutrient availability. Incident radiation at the surface was 

simulated using Brock (1981) formulations. SPM was simulated, due to its influence on sub 

surface light availability, providing a rough description of its dynamics in the estuary. 

Nutrients are essential to primary production, and ammonia, nitrate, nitrite, DIN, phosphate 

and silicate were considered. Zooplankton was simulated providing a production control 

which limits phytoplankton biomass. Regarding hydrodynamics, the ecosystem was assumed 

to be vertically homogeneous (e.g. Gameiro et al., 2004 & 2007) and divided into 13 boxes. 

The transport of particulate and dissolved substances between boxes and system boundaries 

was calculated using an upwind 1-D transport scheme, which simulates large scale advection 

and dispersion. 
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The most significant boundaries are the ocean and the Tagus river. The former is tidally 

averaged, importing and exporting substances to the system. The latter exports substances to 

the estuary through its upstream flow. Moreover, 27 boundaries were defined corresponding 

mainly to WWTP effluents, small creeks and the tributaries, Trancão and Sorraia rivers, 

providing a relevant ammonia input to the system. The boundary conditions, i.e. the 

substances concentration in the boundaries, were averaged in order to provide a constant 

value, defined object by object, concerning each boundary and representative of one or more 

years.  

 

Calibration was addressed as a multi criteria problem with the aim of optimizing the model 

according to the different statistical information the three misfits provided and accounting for 

the trade-off involved. Multiple variables were calibrated separately and with different 

timings. Forcing functions were calibrated first, followed by the state variables, and the 

phytoplankton object in last, assuming that it did not significantly influence any other objects. 

This assumption is necessary, although it is obvious that, for instance, phytoplankton 

influences the ammonia concentration in each model box. 

 

Due to its relevance, the phytoplankton object was calibrated using a slightly different 

procedure. A cost function was used in order to aggregate the different information that each 

misfit provides, into one global error indicator. The misfits were individually normalized 

according to their range, i.e. 1 gives the maximum cost or error and 0 gives the minimum. 

Note that the correlation coefficient was inverted to correspond to the scale defined above. 

Misfits were then average into a global error or cost, varying between 0 and 1. The 

aggregation method tended to smooth extreme performance measures. It was used with the 

aim of identifying sets of parameter combinations and areas with higher probability of 

parameter choice, i.e. the parameter combinations which corresponded to local minima. 

 

A simple semi-automate procedure, developed in Visual Basic for Applications (VBA), run in 

Microsoft Excel environment, was used to accomplish the tasks and steps defined above. It 

consisted in loading E2K outputs box by box, in spreadsheets, and comparing them to the 

respective measurements. E2K outputs were exported with a time step of half a day and the 

matches, exactly at noon, were used for comparison. The hour was chosen due to ecological 

relevance, the average behaviour of the model and especially because the remote sensing data 

is acquired close to solar noon. Finally, misfits were calculated and qualitative information 

was generated. The cost function was implemented in MatLab R2006a using exported misfits. 
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Data assimilation was carried out using the BarcaWin2000TM (B2k) software, which manages 

relational databases. B2k has been developed since 1985 and used in multiple research 

projects (Ferreira, et al., 2007b). In the present work, the available data  was scarce and 

resulted from two different campaigns which represent 4 years (Table 2). Only surface 

measurements (depth < 1m) were considered. Data availability limits the level of accuracy 

provided by the model, however, the uncertainty associated with the sampled data was not 

accounted for due to lack of information. Therefore, with scarce and uncertain data, one must 

address the calibration and evaluation effort with caution. Prior knowledge on model 

parameters and simulated variables provide relevant information for this task and were stated 

case by case in the following sections.  

Table 2 – In-Situ Data Characteristics 

Year 
Campaign 

Name 
Samples (N) 

Spatial Coverage 

(Boxes and Boundaries) 
Parameters 

1998 IH 1998 19 4; 11; 12; River ; Ocean 
Chl-a; Nutrients* SPM; 
Temperature; Salinity 

1999 IH 1999; 19 4; 11; 12; River; Ocean 
Chl-a; Nutrients* SPM; 
Temperature; Salinity 

1999 
IPIMAR - 

DGA 
8 

1; 3; 6; 8; 10; 11; 13; 
Ocean 

Chl-a; Nutrients* except 
nitrite; SPM; Salinity 

Temperature; 

2000 IH 2000 15 4; 12; River; Ocean 
Chl-a; Nutrients* SPM; 
Temperature; Salinity 

2002 IH 2002 5 4; 11; River; Ocean 
Chl-a; Nutrients* SPM; 
Temperature; Salinity 

* Nutrients include: ammonia, nitrate, nitrite, silicate and phosphate. 
 

 

E2K was calibrated using 1998 and 1999 data and evaluated using 2000 and 2002 data. The 

objects defined for the Tagus estuary in the E2K shell were the following: 

• Forcing functions (River Flow; Light; Water Temperature; Hydrodynamics) 

• Nutrients 

• Suspended particulate matter 

• Zooplankton 

• Phytoplankton 

 

The parameters suitable for calibration, prior knowledge and analyzed outputs were indicated 

object by object in the following sections. The quantitative and qualitative analyses performed 

reflected the intended use of the model i.e. to assess the accuracy of remote sensing products 

in the Tagus estuary, at an ecosystem spatial scale and at a monthly to seasonal temporal 

scale. 
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3.3.2 - EcoWin2000 Description (adapted from Ferreira, 1995) 

 

E2K is an ecological model which simulates processes in aquatic systems, developed using an 

object-oriented programming (OOP) approach, which represents the different ecosystem 

compartments and their interactions. Incorporated components, like hydrodynamics, 

biogeochemistry and population dynamics, consist in a series of self-contained objects, rather 

than multiple sub-models.  

 

E2K has two basic parts: a shell module and objects. The shell deals with the interface with 

the user, communication between the various objects, management of model inputs and 

outputs and general maintenance tasks. The ecological objects (or classes) encapsulate 

attributes (or properties/variables), with methods (or functions), which act upon them. 

Conceptually, an object resembles an actor whose actions (methods) are driven by its 

characteristics (attributes). For instance, phytoplankton, has as one of its attributes a standing 

crop and as one of its methods, productivity.  

 

OOP is implemented as a set of class hierarchies, in a way that, descendants inherit the 

ancestor’s attributes and methods, and may in turn modify the inherited properties. For 

instance, diatoms will inherit the properties of the phytoplankton ancestor and extend them in 

order to require silica for growth. Each object is self contained and groups together one or 

more related state variables that can be extended without affecting any other part of the 

model, avoiding error propagation. Moreover, the methods which control state variables 

within objects may easily be changed, due to inheritance and encapsulation properties.  

 

An object has public sections which are used for initialization and communication, both with 

the shell and between objects, together with flexible private sections conceptualized in three 

types: active, passive and neutral methods. For instance, for the phytoplankton object, growth 

is a typical active behaviour; grazing by zooplankton is a passive behaviour and transport, due 

to advection and diffusion mechanisms, is a neutral method. All are processes which affect 

the attributes of an object.  

 

The underlying structure is based on a box-model approach which typically divides the 

system into boxes, which may vary only with time (zero-D), or may vary also in space: 

longitudinally (one-D), in two dimensions ( two-D), or in layers (three-D) and performs 

simulations at the system scale. This approach for system division has been used in previous 
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studies (e.g. Raillard and Menesguen, 1994). The shell and the objects have been 

implemented in C++ and objects use Euler numerical integration. 

 

The advantages of using OOP for ecological modelling are the ease of development and 

flexibility associated with their inherent object properties: encapsulation, modularity, 

inheritance and polymorphism. Also, it provides a much greater conceptual approximation 

between natural ecosystems and interacting objects, in comparison with conventional 

structured programming methods, insuring reliability and re-usability. It insures improved 

model construction, flexibility and extensibility and adaptation of the objects to particular 

ecosystem characteristics. Since objects are encapsulated and have inheritance properties it is 

easy and feasible to develop modified or extended descendents according to their role in the 

ecosystem. The maintenance of a particular model is therefore simplified because new 

updates can be coded as descendants and polymorphism eases new code development. 

 

Objects may be switched on or off improving and facilitating the analysis of the model's 

sensitivity to different components by altering the characteristics of the ecosystem. The model 

is not computer intensive: for a simulation of one year with all objects on and an hourly time 

step takes only about 10 seconds, on a 2 GHz PC.  

 

E2K provides a platform for integration of the various other models, and adds functionality of 

its own. Although it can be used to run short-term simulations (e.g. Duarte and Ferreira, 

1997), it has mainly been used to run multi-year models involving simplification of some 

finer-scale system processes, capturing event-scale phenomena such as seasonal variability 

(e.g. Ferreira et al., 2007a; Nunes et al., 2003; Alvera-Azcárate et al., 2003). At the present, 

no documentation is available for the E2K. This model has been developed and extensively 

tested over the last 15 years proving to be a potentially useful tool for supporting an 

ecosystem approach to sustainable aquaculture development, research on nutrient loading and 

ecological assessment. Some examples of model application will be briefly discussed. 

 

E2k was used for short-simulations to assess phytoplankton photosynthesis dynamic 

behaviour in order to improve its estimation (Duarte and Ferreira, 1997), particularly in the 

Tagus estuary (Macedo et al., 1998). The majority of applications includes long term studies 

concerning aquaculture, response to environmental and culture changes, and anthropogenic 

driven impacts on wild species (Kianirad et al., 2006). It has been used in the SPEAR project 

(http://www.biaoqiang.org/) for interpretation of the coastal structure and dynamics 
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accounting for watershed interactions, ecological structure and human activities, with 

particular emphasis on aquaculture in China (Duarte et al., 2003). Moreover, it was applied in 

the Catchment To Coast (C2C) project in Southern Africa (http://www.ecowin.org/c2c/) to 

assess the influence of the different components of the system on the ecology of commercially 

exploited shrimp resources and to describe the dynamics and health of the mangrove forests 

(Franco et al., 2005). In the SMILE project, it was used to examine the effects of aquaculture 

on key ecological variables and evaluate sustainable carrying capacity from an ecosystem 

perspective (Ferreira et al., 2007a). Nunes et al. (2003) applied the model to simulate shellfish 

polyculture in the Sanggou Bay (Northern China). Currently, E2K is being used for 

ecosystem-scale carrying capacity modelling in the ECASA ongoing project aimed at 

understanding the effects of aquaculture on the environment (http://www.ecasa.org.uk/).  In 

an eutrophication assessment, using a hybrid approach, E2K outputs were used to drive the 

ASSETS screening model and simulate different nutrient loading scenarios (Nobre et al., 

2005; http://www.eutro.org). Alvera-Azcárate et al. (2003) used E2k to assess the role of 

intertidal seaweeds in the primary production of the Tagus estuary, whilst Simas and Ferreira 

(2007) studied the nutrient enrichment and role of the Tagus salt marches. Grillot and Ferreira 

(1996) and Ferreira and Duarte (1994) used the E2K to model phytoplankton in the Tagus 

estuary.  

 

3.3.3 - Spatial Domain 

 

According to WFD article 2.10, a water body is “a discrete and significant element of surface 

water such as (…) a transitional water or a stretch of coastal water” considered as a “sub unit 

in the river basin” that “will be used for reporting and assessing compliance” (WFD Guidance 

on Monitoring in Ferreira et al. 2005b). According to the same document, the water bodies’ 

identification must be done to “enable the status to be accurately described and compared to 

environmental objectives” and “must be capable of being assigned to a single ecological 

class”. In other words, transitional water ecosystems must be divided into homogeneous water 

bodies, enabling a focused environmental management according to the WFD objectives. 

 

Estuaries should be divided according to their natural and human dimensions. In the former, 

the key factors are morphology, affecting hydrodynamics and mixing, and salinity, controlling 

biogeochemical processes (Ferreira et al., 2005b). Because ecosystem models rarely require 

the spatial and temporal resolution needed for accurate hydrodynamic calculations, 

hydrodynamics were averaged over time and space (e.g. Bird and Hall 1988, Chen and Smith, 
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1979 in Raillard and Menesguen, 1994). Moreover, for simplicity purposes, work scope and 

references using the same delimitation as used hereafter, the extensive methodology proposed 

by Bettencourt et al. (2003) was not considered. Brogueira and Cabeçadas (2006) proposed 

the Tagus estuary delimitation into three main homogeneous zones which varied, regarding 

their spatial extension, according to the magnitude of the river flow suggesting that a coarse 

grid is suitable for model simulations. Therefore, process simulation at the ecosystem scale 

was done using a coarse grid of 13 model boxes defined heuristically according to Grillot and 

Ferreira (1996) (Figure 7). 

   

 

 

 

 Figure 7 - Model boxes and station sampling locations  
 

Two assumptions arose in the use of such model boxes in the Tagus estuary. Firstly, the 

compartments were assumed as “black boxes” i.e. boxes were homogeneous and 

representative of a determined spatial and temporal scale. Secondly, due to the numerical 

constraints in the advection-dispersion object, no lateral transport between boxes occurred i.e. 

transport was only done horizontally. For the latter assumption, in particular, the downstream 

flow in box 2 was distributed, in a 9:1 reason respectively, to boxes 6 and 3. Moreover, boxes 

3, 4, and 5, in the Northern Channel were considered to have no connection with boxes 6, 7 

and 8, being divided by a Mouchão and by intertidal areas. The numerical integration of 

variables is done according to the defined E2K boxes.   

 

After box definition and delimitation, morphology was defined using a Tagus bathymetry 

with approximately 30m pixel resolution. E2K was used to simulate the tidal height between 

1998 and 2002, with an hourly time step, establishing the lower and upper tidal limits, 0.2m 

and 4.2m respectively. Bathymetry was transformed considering the hydrographic zero to be 
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the lowest simulated tidal height, thus ranging from 0 and 4m. Due to numerical constraints in 

the advection-dispersion object, box volumes were constant throughout simulations. Mean 

depth was defined according to mean tide (2m). Box volumes were determined pixel by pixel, 

using the pixel area (i.e. the bathymetry resolution) and mean depth, and integrated at a box 

scale (Table 3).  

Table 3 - Model Boxes: Description and morphology 

Box Description 
Surface area 

(km2) 

Length 

(km) 

Intertidal area 

(km2) 

1 Upstream channel (Vila Franca) 3.9 3.8 2.3% 
2 Upstream channel (Alverca) 7.7 4.8 6.8% 
3 Cala do Norte (Povoa Sta. Iria) 4.5 4.4 23.7% 
4 Cala do Norte (centro) 8.5 4.8 71.1% 
5 Cala do Norte (EXPO98) 5.5 3.3 54.4% 
6 Mouchões (Pancas) 41.3 4.7 67.7% 
7 Mouchões (Alcochete) 50.9 4.3 42.1% 
8 Mouchões (Montijo) 41.6 4.5 31.8% 
9 Mar da Palha (Olivais-Barreiro) 36.9 4.4 23.6% 

10 Mar da Palha (centro) 43.8 4.6 26.0% 
11 Mar da Palha (Almada-Lisboa) 28.3 4.1 26.9% 
12 Outlet Channel (ponte 25 de Abril) 14.9 7.7 0.6% 
13 Outlet Channel (Barra) 24.0 6.5 2.3% 

Total Tagus Estuary 311.8 49.5 34.4% 

 
Sampling stations used in calibration and validation are shown in Figure 7 and 

correspondence with model boxes was assessed thru visual inspection. Note that in Figure 7 

and Table 3, the intertidal areas correspond to those observed in the lowest tidal height. 
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3.4 - EcoWin2000 Object Calibration 

 

3.4.1 - Sensitivity Analysis 

 

Sensitivity analysis provides increased insight on the model and identifies the relevance of the 

calibration process. It provides a good overview of the most sensitive components in the 

model concerning the state variables, forcing functions and parameters (Janssen and 

Heuberger, 1995; Jørgensen, 1994). Performing a thorough sensitivity analysis on each object 

is out of scope for simplicity reasons and because the main goal is to accurately simulate chl-

a. Therefore, only the phytoplankton object was analysed at a parameter level.  

 

Reference conditions for each object were adapted from Ferreira and Duarte (1994). The E2K 

does not have an automate sensitivity analysis method and, therefore, parameters in each 

object were varied and the outputs expressed in terms of percentage of variation regarding the 

reference run. Variation was annually averaged and normalized to a fifty percent range and 

the impact on phytoplankton biomass was registered. This threshold was chosen to be high 

due to expectable, and previously referenced, extreme ranges in the simulated variables. For 

instance, flow can vary inter and intra annually in several orders of magnitude as referenced 

previously. The same happens with SPM, where estuary values range from 5 to 250 mg l-1 

(e.g. Brogueira and Cabeçadas, 2006; Gameiro et al., 2007). Thus, the objects’ relevance 

depends on their natural and model variability. The model was run for two years and four 

boxes were used in order to provide a spatial insight of possible variations on each object’s 

impact (Table 4).  

 

Table 4 - Sensitivity Analysis: Forcing Functions and State Variables (in %) 
Variable Range Box 1 Box 4 Box 7 Box 11 Global 

+50 2.0 11.5 13.6 9.2 9.1 
Flow 

-50 -8.8 -18.2 -19.5 -14.2 -15.1 

+50 1.6 8.3 9.3 8.6 7.0 
Light 

-50 -1.9 -10.6 -11.2 -10.4 -8.5 

+50 0 0 0 0 0 Water 
Temperature -50 0 0 0 0 0 

+50 -2.2 -5.2 -8.7 -6.2 -5.4 
SPM 

-50 1.6 4.0 5.5 4.6 4.5 

+50 -1.6 -14.5 -13.6 -19.3 -12.8 
Zooplankton 

-50 1.0 6.6 7.4 12.9 6.9 
 

The variation in the four boxes was averaged providing a broad global impact indicator. The 

water temperature object has no effect on chl-a concentration, thus the object was excluded 

regarding further simulations. River flow had the higher impact on chl-a, consistent with 
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Brogueira & Cabeçadas (2006), followed by zooplankton and light availability. With the 

exception of SPM, objects had different impacts according to the signal of the variation, for 

instance, a flow decrease had a higher impact that an increase. Spatially, the upstream box 1 

was less sensitive to variations in all objects. Different impacts from box to box were 

probably due to their morphology (e.g. volume) and transport.  

 

The dissolved substances object has no parameters, however, some variations were imposed. 

Two simulations were performed: (1) Riverine nitrate concentration (constant throughout the 

year) was varied (2) Smaller boundaries concentration (constant throughout the year) was 

varied (see Annex III). Note that, the phytoplankton object settings, particularly Ks, play an 

important role in the rate of nutrient consumption. Nevertheless, these simulations provided a 

broad insight on the nutrient load impact on phytoplankton biomass (Table 5).  

 

Table 5 - Sensitivity Analysis:  Dissolved Substances Object (in %) 
Variable Range Box 1 Box 4 Box 7 Box 11 Global 

+50 0.21 0.50 0.71 0.58 0.50 
Nitrate 

-50 0.48 0.79 1.16 0.88 0.82 

+50 0.03 0.34 0.50 0.53 0.35 
Ammonia 

-50 0.05 0.50 0.69 0.73 0.49 
 

Compared to the other objects, the variation in nitrate and ammonia loads had significantly 

lower impacts, suggesting that nutrients were not limiting. Globally, nitrate increase had a 

higher impact than ammonia due to transport and higher associated flow. The phytoplankton 

object was analysed at a parameter level (Table 6). The more relevant parameters were 

maximum production (Pmax), followed by death loss and optimum light intensity (Iopt). The 

half-saturation constant had the lowest impact but its relevance depends on the simulated 

nitrogen concentrations. 

 

Table 6 - Sensitivity Analysis: Phytoplankton Object (in %) 
Parameter Range Box 1 Box 4 Box 7 Box 11 Global 

+50 3.2 5.8 7.8 6.1 5.7 
Pmax 

-50 -4.2 -17.8 -20.3 -18.6 -15.2 

+50 -0.3 -1.3 -2.0 -1.9 1.4 
Ks 

-50 0.3 1.4 2.0 2.0 1.4 

+50 -1.1 -3.8 -4.9 -4.3 -3.5 
Iopt 

-50 1.3 3.9 5.0 4.4 3.6 

+50 -1.6 -6.1 -8.2 -9.1 -6.2 
Death Loss 

-50 1.4 4.0 5.4 6.6 4.3 
 

In model calibration, the sensitivity analysis performed determined, at an object level, the 

degree of accuracy intended and the degree of detail considered. For the phytoplankton object, 

it provided information on the level of detail used in the parameter variation when searching 

for the best suitable set.  
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3.4.2 - Light 

 

The goal was to simulate the average available radiation at the water surface, temporally at a 

month to seasonal scale and spatially at an ecosystem scale. Photoperiod and incident surface 

radiation were calculated by the light object using standard formulations described in Brock 

(1981). Modelling incident solar radiation simplifies programming and reduces the necessity 

of extensive, and sometimes limiting, solar radiation data. The light object simulated incident 

surface radiation in Wm-2, enabling local adjustments in cloud cover and latitude.  

 

A dynamic periodic function of cloud cover, which varies from 0 to 1, was used to force a 

seasonal limitation on the top of the atmosphere radiation. No random clouds were included. 

Sub surface radiation and photic depth were calculated using the light attenuation coefficient 

k, provided by the SPM object. Measured values at Monte da Caparica (20D/01C) and Vila 

Franca de Xira (22B/01C) INAG meteorological stations were used for calibration. Both 

stations have temporally consistent recorded values since 2002. In order to fill punctual gaps 

of the Monte da Caparica station, the radiation values measured at the Vila Franca de Xira 

station were defined as a function of the former, thru linear regression presenting good 

agreements, r >0.90 (Annex I). An average year was defined averaging hourly radiation from 

2002 and 2003. Calibration was performed adjusting the parameters to match aggregated daily 

averaged radiation measurements (e.g. Grillot and Ferreira, 1996). The best parameters fitted 

(Annex I) exhibit a good agreement in an average sense, r = 0.93 (N=365), MAE =19% and 

RMSE = 616 Wm-2, although some outliers are evident (Figure 8). 

   

 

 

 

 Figure 8 - Daily average radiation: observed vs. simulated  
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3.4.3 - River Flow 

 

The river flow was simulated in m3s-1, using an empirical relationship between the time of the 

year and river flow, established by using field data. This object was responsible for computing 

freshwater flows into the model boxes and their temporal variation, using a cosine function 

based on the modal flow, the amplitude variation and a daily random flow (Ferreira, 1995).  

 

The flow object was calibrated using data from the INAG Ómnias (18E/04H) station, 

considered representative of the Tagus river flow due to the estuary proximity. However, this 

station only has recorded data since 2002. The Almourol INAG station (17G/02H), about 40 

kilometres upstream the former, with data since 1999, was therefore, used to model earlier 

flow values for the Ómnias station, using the 2002 and 2003 coincident data. The relationship 

derived follows a power law function with good agreement, r = 0.90 (N=674), enabling 

simulation of flow data at the Ómnias station from 1998 to 2001 and later years gap filling 

(AnnexI). Data was independently clustered to annual periods. 

 

E2K typically simulates flow using a relatively smooth function assuming average conditions. 

In particular for the Tagus river: average annual flow of 300-400m3s-1 with a monthly 

discharge of about 100-200 m3s-1, in the summer, and about 800-1000 m3s-1 in the winter 

(Grillot and Ferreira, 1996; Gameiro et al., 2004 & 2007; Brogueira and Cabeçadas, 2006). 

For instance, from 1999 to 2007, Gameiro et al. (2007) reported about 950 m3s-1 average 

monthly discharges with a 1200 m3s-1 standard deviation. The first months of simulation were 

characterized by extreme flow, about 10 fold that of the homologous months in 1999 (Table 

7). The river flow in the year 1998 was about 3 to 4 fold that of the year 1999. One can thus, 

state that they represent respectively a wet and a dry year. Note that, in 1999 the average 

month flow is 150 m3s-1, significantly lower than the referenced average flow. 

 

Table 7 - Statistics of modelled flow values (m3s-1) in the calibration years 

 1998 1999 

Season Wt Sp Su Au Year Wt Sp Su Au Year 

Total 3884 620 540 368 5412 263 339 238 961 1801 

Monthly Average 1295 207 180 123 451 88 113 79 320 150 

Standard Deviation 894 84 51 30 638 17 59 9 102 115 

The letters stand for: Wt: Winter; Sp: Spring; Su: Summer; Au: Autumn. 
 

The choice of including two very heterogeneous years in the calibration process is done with 

the expectation of accommodating this variability in posterior model application, and thus 

potentially improving the model capability of reproducing system behaviour under different 



 65 

forcing conditions. Due to the high variability and extreme flow measurements, the smooth 

averaged behaviour of the E2K cosine function had poor accuracy and agreement, especially 

after the year 2000, where r < 0.22 (Annex I). Therefore it was chosen, for simplicity and 

temporal relevance reasons, to use the modelled flow values at the Ómnias station, following 

the approach described above, and aggregate them to monthly average flows. Polynomial 

equations were adjusted to the former and inserted in the E2K code regarding independent 

annual periods (Figure 9), with good agreement, r >0.90, and reasonable errors (MAE~30%, 

RMSE~100m3s-1, see Annex I). 

   

 

 

 

 Figure 9 - Monthly averaged daily Tagus Flow (m3s-1) for 1998 and 1999  
   

 

3.4.4 - Hydrodynamics 

  

In natural waters, kinetics and transport are the main processes influencing how substances 

behave (Chapra, 1997). The latter was handled by the transport object which had the role of 

horizontally transporting other objects’ state variables, redistributing dissolved and particulate 

substances within the model boxes. The transport was solved simultaneously for all boxes 

calculating all advective-diffusive fluxes across box boundaries and integrating them for all 

state variables and model boxes (Ferreira, 1995).  

 

The object hasd two basic components: advection and dispersion. The former was modelled 

explicitly and the latter was modelled considering that, at a longer time scale, tides transport 

water cyclically and this motion could be classified as diffusive (Chapra, 1997). 

Hydrodynamics were, therefore, tidally averaged, modelling tidal transport using diffusion 

coefficients. Advection results from unidirectional flow and does not change the identity of 

the transported substance and mass is moved from one position to another, specifically, forced 
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by the Tagus river flow. Advection was modelled using Equation 8  where Q was the flow 

(m3s-1), S was the concentration of a conservative substance (e.g. mg m-3, psu) and x was the 

distance (m) across one axis (Chapra, 1997).  

    

( )
x

QS
Advection

∂

∂
=  Equation 8 

  

Diffusion is the mass movement due to random water motion or mixing, which causes 

substances to spread out and dilute over time. On a small scale, molecular diffusion is due to 

the random Brownian motion of water molecules. On a larger scale, turbulent diffusion results 

from eddies. Both have negligible movement of the centre of mass and tend to minimize 

concentration gradients by moving mass from regions of high to low concentration. Diffusion 

was modelled, adapting Fick’s First Law, following Equation 9, where E was the diffusion 

coefficient (m2s-1) and A was the cross-sectional area (m2) of the interface between two model 

boxes. The first term was defined as the bulk diffusion coefficient (E’) proportional to the 

concentration gradient and the cross-sectional area, between two model boxes (Chapra, 1997). 

    

( )
x

SEA
Diffusion

∂

∂∂
=  Equation 9 

  

An estuary can be treated as a series of coupled well-mixed reactors. The estimation of mass 

balances was solved in a coupled way and the equations were solved simultaneously using 

numerical methods assuming steady state, i.e. the reactors volume did not change over time, 

0=
∂

∂

t

S
V  (Chapra, 1997). For this type of transport models, a conservative substance is 

needed to define the diffusion coefficients, E2K specifically uses salinity. Typical average 

salinities, per box, were inserted and the E2K calculated the bulk diffusion coefficients 

stepwise up to downstream assuming steady state (Ferreira, personal communication). 

Calibration was performed by adjusting the mean salinities per box and comparing the model 

outputs (salinity) with available measurements.  

 

For any model box, the change of a state variable with time may be calculated by adding the 

total advective flows in/out of the box, and the total dispersive flows in/out of the box, and 

adding a term which represents non-conservative processes, sources and sinks, calculated by 

other objects (Ferreira et al., 1998). Both advection and diffusion are expressed in mass 

fluxes, gs-1, or gm-3s-1, if Equation 10 is expressed according to the derivative of concentration 

variation with time. 
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( )SinksSourcesDiffusionAdvection
t

S
V −+−=

∂

∂
 Equation 10 

  

A total of 27 samples, representing 7 different boxes, mainly collected during neap high tides 

were available. Mean box salinities were adjusted, thus adjusting the bulk diffusion 

coefficients, to account for the highly variable flow patterns in both calibration years. A 

reference run was performed using box mean salinities and initial box concentration, 

according to Ferreira and Duarte (1994) (Annex I). Using the reference situation, mean 

salinities were adjusted increasing the object accuracy in about 10%, maintaining a fair 

agreement, r = 0.70 (N = 27). Usually salinity is higher in the summer and lower in the winter 

(e.g. Grillot and Ferreira, 1996) due to the higher freshwater input in the latter and higher 

evaporation rates in the former. This flow dependency was evident in the simulations (Figure 

10) as sampled salinity was low in 1998, a wet year, and more stable and higher in 1999, a dry 

year. It should be noted that the model ‘spin up’ was done in about 2 months.  

 

On a box scale, significant errors were observed, specifically for boxes 1 and 4 (Table 8). For 

the latter, measured salinity was, on average, about 60% lower than modelled, in 1998, which 

had a total flow 4 times higher than 1999.  Low salinities (<20psu), probably due to the model 

‘spin’ up and the high flow in winter and spring months in 1998, were the main reason for the 

accuracy achieved (Annex I). This suggested that hydrodynamics would be accurate in an 

average-dry year, after ‘spin up’.  

 
Table 8 - Transport object performance statistics: box by box and ecosystem scale 

  Box 1 Box 3 Box 4 Box 6 Box 8 Box 11 Box 12 Global 

Matches 1 1 8 1 1 8 7 27 

RMSE 12.77 0.2 8.0 1.84 1.4 3.0 2.7 5.4 

MAE (%) 66% 1% 52% 7% 4% 10% 8% 23% 

r - - 0.80 - - 0.88 0.92 0.70 

 

In sum, the hydrodynamics were calibrated with an average 23% error and with a reasonable 

agreement, r = 0.70 (N=27). Salinities, especially in 1998, were overestimated by about 5 psu. 
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        Legend 
 

   - E2k Modelled salinity (psu); 
   - Sampled salinity (psu); 
 - Measured Flow (m3s-1) 

 

Figure 10 - Salinity time series box by box: sampled vs. modelled 
 

3.4.5 - Dissolved Substances  

 

The dissolved substances object encapsulates the attributes and methods for all dissolved 

nutrients in the system. Nutrients like ammonia, nitrite, nitrate, DIN (contribution of all 

nitrogen dissolved forms), phosphate and silicate were simulated and expressed in µmol l-1. 

Concentration is modified by transport, consumption, driven by phytoplankton production, 

and addition, driven by boundary loads and mortality. The particulate organic detritus are 

remineralized and dissolved nutrients are returned as ammonia followed by nitrification, using 
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a fixed rate of oxidation of reduced forms of DIN (Ferreira, 1995). Boundaries introduce 

nutrients and other substances into the system with different dynamics. The Tagus river 

freshwater inputs introduce nutrients into the estuary which depend on the flow and upstream 

concentrations (e.g. driven by diffuse pollution). Concentration was constant throughout the 

simulation, defined as the annual average using monthly water quality measurements from the 

INAG station, Valada do Tejo (19E/02). Silicate data was not measured at the INAG station 

and was therefore taken from B2k, as well as, the average concentration for all nutrients in the 

ocean boundary. A total of 27 smaller boundaries were defined, corresponding to small rivers 

and WWTPs nearby the estuary (Ferreira, personal communication; INAG, 2002). These 

introduced nutrients only in the form of ammonia due to relevance and model requirement, 

being modelled with a constant flow and concentration throughout the year (Annex III).  

 

Phosphate, silicate and DIN were used to determine the limiting nutrient for primary 

production in the Tagus estuary. When nutrients are not limiting, the molar element ratio 

C:N:P in most phytoplankton is 106:16:1 (in atoms). Diatoms need in addition silicate and the 

respective Redfield nutrient ratio is C:Si:N:P = 106:15:16:1 (Redfield, 1934). The N:P, N:Si 

and Si:P ratios were analysed and Figure 11 shows two different patterns. In 1998, the system 

is P limited, whilst in 1999 it is mainly N limited. The visual inspection of the N:P ratio in the 

validation years (not shown) suggested a smaller, but still consistent P limitation. The Si:P 

ratio exhibited a pronounced silicate limitation, which also occurred in the validation years 

(not shown). The N:Si ratio suggested the same (Figure 12). It is recalled that, besides 

requiring silicate to grow, diatoms are the most relevant form of phytoplankton in the Tagus 

estuary, especially in the mid-upstream zones (Gameiro et al., 2004 & 2007).  
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 Figure 11 - Nitrogen to Phosphate (N:P) and Silicate to Phosphate ratio (Si:P)  
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This type of information is critical to the modelling process determining the governing 

nutrient limitation equations in the phytoplankton object and future accuracy issues. The 

previously implemented phytoplankton object code only considered N limitation and, 

therefore, Si and P limitation were not considered. Moreover, historical data, taken from B2k 

with higher temporal and spatial resolution, indicated that N was the main limiting nutrient.  
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 Figure 12 - Nitrogen to Silicate ratio (N:Si) in atoms  
   

The dissolved substances object does not have parameters to perform calibration and, 

therefore, boundary loads were adjusted using auxiliary information and the phytoplankton 

object was kept with reference parameters. Initial box concentrations were defined according 

to Ferreira and Duarte (1994) and the nutrient simulation was compared with measured 

samples, for ammonia (Figure 13 and Table 9) and for the remaining nutrients (Annex III).  

 

Globally, the model significantly underestimated ammonia concentration in about 70% or 45 

µmol l-1. Boxes, 4, 11 and 12 had more than one match in the calibration period, thus the 

analysis was focused upon these. Box 4 and Box 11 had the largest errors, with about 60% 

model underestimation. Note that, box 4 had the higher ammonia values in the estuary, with 

two particularly high values in 1998, one of them above 200 µmol l-1. These drove a high 

global RMSE and a box error over 80 µmol l-1. The boxes referred, are near highly populated 

areas and probably the boundary loading was underestimated or other sources of ammonia 

were not included. Other spatial inferences were not feasible due to the low number of 

samples, particularly in the mid estuary.  

 

Ammonia concentration tended to have a regular annual distribution, atypical of sewage 

discharges, exhibiting low temporal correlation. However, it roughly tended to be smaller in 

the summer and higher in the remaining seasons, consistent with producer growth.  
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  - E2k Modelled Ammonia (µmol l-1); 
  - Sampled Ammonia (µmol l-1). 

 

Figure 13 - Ammonia time series box by box: sampled vs. modelled 
 

The remaining nutrients, silicate and phosphate, were modelled with approximately 50% 

underestimation error, while nitrate was underestimated by about 80%. One visible pattern 
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regards boxes 4 and 11, which underestimated all nutrients especially during the year 1998. 

Note that for all nutrients, except nitrate, there were two very high values in the summer and 

autumn samples during the year 1998 (Annex III).  

 

Table 9 - Ammonia Calibration: performance statistics box by box and ecosystem scale 

 Box 1 Box 3 Box 4 Box 6 Box 8 Box 10 Box 11 Box 12 Box 13 Global 
Matches 1 1 8 1 1 1 9 8 1 31 

RMSE 2.5 8.3 86.8 1.3 4.1 1.1 9.2 2.9 0.9 44.4 

MAE (%) 75% 98% 66% 24% 43% 28% 91% 64% 30% 70% 

r - - 0.06 - - - 0.04 0.22 - 0.49 

 
Due to the lack of resolution in the samples used, the comparison of modelled and sampled 

values reported by other authors was considered very important. Simulated nutrients were 

underestimated according to Brogueira and Cabeçadas (2006) and Gameiro et al. (2007). The 

best agreements regarded phosphate in the winter and summer, with some underestimation in 

the mid estuary. Ammonia was punctually overestimated in the whole estuary and summer 

periods were better modelled than winter both in average and wet conditions. Gameiro et al. 

(2004) performed a study from March 1999 to March 2000 in the mid and upstream zones of 

the estuary. Comparing it to with the former simulations, for the year 1999, ammonia seemed 

well modelled, especially in box 4, and nitrate was underestimated by about 100%. Nitrite had 

good agreement in the upstream zones, while in the mid estuary had lower agreement. 

Globally, simulated DIN was underestimated by about 10 µmol l-1 (Ferreira, 2000). 

Specifically, boxes 2 and 3 were in good agreement with the reported DIN values in Martins 

and Duffner (1982), Silva et al. (1986) and Gameiro et al. (2004). In box 8, DIN was in good 

agreement with the latter author, but underestimated by about 10 µmol l-1 in comparison with 

the former.  

 

Table 10 exhibits a seasonal comparison with averaged monthly values reported by Gameiro 

et al. (2007) between 1999 and 2007 concerning boxes 2, 3, 4, 7 and 8. Silicate and DIN were 

underestimated by about 100% throughout the whole year, with the exception of summer, 

regarding the latter nutrient. Phosphate was relatively well simulated, but also underestimated.  

 

Table 10 - Comparison of simulated nutrients with Gameiro et al. 2007 

 DIN Phosphate Silicate 

 
Gameiro et al. 

2007 
This Study 

Gameiro et al. 

2007 
This Study 

Gameiro et 

al. 2007 
This Study 

Spring 65 (32) 29 3.5 (1.4) 1,6 48 (32) 19 
Summer 27 (19) 27 3.9 (1.6) 1,4 32 (22) 17 
Autumn 67 (36) 34 4.5 (3.0) 1,9 73 (50) 24 
Winter 84 (33) 37 3.4 (1.1) 2,9 62 (45) 40 

All 57 (55) 32 3.8 (3.5) 1,9 51 (44) 23 
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3.4.6 - Suspended Particulate Matter 

 

The SPM object is responsible for calculating the SPM concentration and the light extinction 

coefficient in each model box. The deposition of suspended matter is calculated by the 

object's methods (see Eq.1 in Ferreira et al., 1998). The settling speed is calculated according 

to Stokes' law and the density of the water-column is based on the salinity and temperature in 

each box. Particle settling is related to grain-size, and the size distribution is mainly related to 

flocculation processes. The sedimentation rate is calculated using the ratio between the 

settling speed (m day-1) and the box depth, leading to a decrease in the SPM flux (Ferreira et 

al., 1998). Turbulence prevents settling of suspended matter and is simulated using an 

empirical coefficient, which reduces the downward flux of suspended matter. The deposition 

coefficients were used according to the parameterization used by the latter author regarding 

information in Stumm and Morgan (1981). Resuspension depends on the shear-stress at the 

sediment-water interface, and on the nature and compaction of the sediment. The light 

extinction coefficient k is estimated using an empirical relationship between SPM 

concentration in the water column and k values, expressed in Equation 11, where k is the light 

extinction coefficient (m-1) and SPM is the suspended particulate matter concentration (mg l-1) 

(Ferreira, et al., 1998). 

    

( )( )SPM
ek

ln734.0

)034.2exp(

7.1
×=  Equation 11 

  

The SPM object had two parameters, turbulence with ecosystem scale influence and SPM 

resuspension at a box scale. Because values were spatially significantly different, varying the 

turbulence had low effect on the global accuracy of the modelled values. Thus, varying the 

box resuspension was necessary to simulate such box to box differences. Initial concentration 

in the model boxes was defined according to Ferreira and Duarte (1994). Naturally, 

hydrodynamics transported SPM from these to other boxes with low values leading to a 

somewhat ambiguous calibration effort. Therefore, it was important to understand if the 

measured SPM values regarding the calibration years were representative at longer time scale, 

taking into consideration other studies, prior knowledge and other data sets. 

 

Calibration was performed comparing sampled with simulated SPM (Figure 14) and the best 

fitted parameters were detailed in Annex II.  Three boxes had higher number of samples, 

boxes 4, 11 and 12 and were in good agreement in what concerned magnitude although the 

average error was relatively high. The remaining boxes, especially in the mid estuary, were 
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significantly underestimated. Globally, the SPM was simulated with an average error of 70%, 

a 9.6 mgl-1 error and correlation of r = 0.65 (N = 31) (Table 11). 
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  - E2k Modelled SPM (mg l-1); 
  - Sampled SPM (mg l-1). 

 

Figure 14 - SPM time series box by box: sampled vs. modelled 
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Spatially, comparing simulations with average monthly values in 1999 reported by Gameiro 

et al. 2004, boxes 2, 3 and 4 were two fold underestimated, whilst boxes 7 and 8 were in good 

agreement. However, Fernandes (2005), in these two latter boxes, reported higher values and 

overestimation in the downstream boxes. Calibration suggested that the model did not 

reproduce the longitudinal exponential SPM gradient according to the distance to the ocean 

(Fernandes, 2005), particularly in the mid estuary, where errors were above 12 mg l-1.  

 

Table 11 - SPM object performance statistics: box by box and ecosystem scale 

 Box 1 Box 3 Box 4 Box 6 Box 8 Box 10 Box 11 Box 12 Box 13 Global 

Matches 1 1 8 1 1 1 9 8 1 31 

RMSE 2.0 15.7 8.3 12.7 16.7 16.3 4.9 4.9 31.1 9.6 

MAE (%) 12% 40% 63% 34% 49% 54% 51% 116% 88% 70% 

r - - 0.12 - - - -0.21 -0.27 - 0.65 

 

Temporally, comparing with Gameiro et al. 2007, values were within range but consistently 

higher than simulations. The best agreements were for summer and autumn but it was clear 

that the E2K object did not reproduce annual dynamics (Table 12). This was consistent with 

the comparison by Brogueira and Cabeçadas (2006), where the only fair agreement was 

achieved in the summer concerning the downstream boxes. Ramos (2002) stated that 

measured values near box 10, between 1994 and 1998, were highly variable, typically around 

10-15 mg l-1 and occasionally higher than 20 mg l-1.  

 

Table 12 - Comparison of simulated SPM with Gameiro et al. 2007 (adapted) 

 Gameiro et al. 2007 This Study 

Spring 26 (18) 20 
Summer 36 (15) 20 
Autumn 26 (17) 21 
Winter 30 (21) 19 

All 30 (24) 20 
 

Calibration was performed with a parallel goal: to match E2K simulation with historical data 

and reference studies, box by box. The collected information and subsequent SPM ranges 

were summarised in Annex II. With the collected information, another calibration effort was 

performed. The priority was set on increasing the accuracy in the mid section of the estuary 

without compromising it’s accuracy in the upper and downstream sections. Due to the average 

hydrodynamic behaviour and limitations of the SPM object, the temporal SPM dynamics 

were difficult to simulate, and therefore, the focus was set upon spatial magnitude.  

 

Besides SPM, the light extinction coefficient was compared with values reported by Gameiro 

et al. 2004 & 2007. Data was available for boxes 2,3,4,7 and 8 for the year of 1999. Although 

simulated SPM was lower than those reported by this author, the light extinction coefficient 
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(k) was higher for all boxes mentioned. The best agreement was for box 4 and the remaining 

had differences close to 1 m-1. Seasonally, comparing with values reported by Gameiro et al. 

2007, simulated k was within range but consistently higher and its temporal dynamics were 

not reproduced.  

 

A ratio Zmix:Zeuphotic lower than 1 indicates that the entire water column is located within the 

euphotic zone. Gameiro et al., (2007), for the up and mid estuary, indicates that the ratios 

ranged from 0.4 and 4.1, in average 1.3 and were similar for all seasons. Moreover, only in 

approximately 20% of the samples was the entire water column located within the euphotic 

zone, whilst the production upper limit (ratio=5) was never reached. Due to the vertical 

homogeneity, the Zmix was considered as the constant box depth. The modelled ratio was 

within the reported range, describing an expectable average behaviour, which was below 1 in 

about 15% of the cases and the upper limit was never reached (Figure 11). Seasonally, a slight 

decrease in the light limitation during Spring, was observed in the simulations. This analysis 

suggested that light availability was reasonably well modelled, particularly where it was more 

relevant to production limitation i.e. the upper and mid estuary regions.  
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 Figure 15 – Modelled  Zmix:Zeuphotic in the upper and mid estuary model boxes  
   

Calibration with sampled data provided extinction coefficients closer to the reported values 

for 1999, in the mid and upstream zones. Moreover, quantitative calibration is recommended 

over qualitative analysis, for reproducibility and uncertainty management in subsequent 

applications, and, therefore, were used for subsequent simulations.  

 

3.4.7 – Zooplankton 

 

No zooplankton data was available for the calibration and validation years. Therefore the goal 

when including this object in the model was to provide a phytoplankton grazing feature 
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enabling a production control. The object returns zooplankton biomass in mg m-3 of Fresh 

Weight. The parameters used were taken from Ferreira and Duarte (1994) and are described in 

Annex II. Initial concentration in the model boxes was defined according to the latter authors. 

 

3.4.8 - Phytoplankton  

 

The phytoplankton object returns biomass concentration in µg chl-a l-1, along with gross and 

net primary productivity in mgC m-3d-1. Gross primary production (GPP or pp) was estimated 

from maximum possible production, which was limited by light and nutrient (i.e. nitrogen) 

availability (Equation 12). The former was forced and calculated by the light and SPM objects 

and the latter, by the dissolved substances object. The light function or the photosynthetic 

response to light was defined by the P-I relationship taken from Steele (1962) and integrated 

over depth, whilst the nutrient function was calculated by a Michaelis-Menten function type 

(Equation 13), varying between 0 and 1, like a productivity limitation factor (Table 13) 

(Ferreira et al., 1998). It was assumed that growth is only limited by nitrogen.  

 

Table 13 - Phytoplankton Productivity: Equations (Ferreira et al., 1998) 
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where, ( )
lim

lim

nK

n
Nf

s +
=  Equation 13 

Parameter Description Value/Units 
Pmax Maximum photosynthesis Calibrated in h-1 

I Light intensity at box depth Calculated by the light object; m E m-2 s-1 
Isup Surface light intensity Calculated by the light object; m E m-2 s-1 
Iopt Optimum light intensity Calibrated in m E m-2 s-1 
k Light extinction coefficient Calculated by the SPM object; m-1 

f(N) Nutrient limitation Calculated (adim) 

nlim Nutrient concentration 
Calculated by the dissolved substances 

object; µmol N l-1 

Ks 
Half-saturation constant for 

limiting nutrient 
Calibrated in µmol N l-1 

 
The object also calculates exudation and respiration. In the literature, estimates of dissolved 

organic carbon (DOC) loss and related factors are widely variable, ranging from almost zero 

to 90 % of carbon fixed (Jørgensen et al., 1991). Increased DOC losses may be driven by poor 

growth conditions (e.g. Ittekot et al., 1981 in Ferreira et al., 1998) and some authors indicate 

greater exudation at high productivity rates. The phytoplankton object calculates exudation 

and respiration as a fixed fraction of gross production, respectively 0.1 and 0.3 h-1, converting 
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GPP into NPP (Net primary production) (Jørgensen et al., 1991). The main equations, 

parameters and processes regarding the phytoplankton object were described in Table 14. 

 
Table 14 - Phytoplankton object : equations and processes (Ferreira et al., 1998) 

( ) orophyllCarbontoClgZoomrepPhyt
t

Phyt
pppp −−−−=

∂

∂
 Equation 14 

Parameter Description Value/Units 
pp Phytoplankton gross photosynthetic rate Equation 12 in h-1 
ep Phytoplankton exudation rate Fraction of pp in h-1 
rp Phytoplankton respiration rate Fraction of pp in h-1 
mp Phytoplankton mortality Fraction of pp in h-1 

gZoo Zooplankton grazing pressure 
Provided by the 

Zooplankton object in h-1 
CarbontoClorophyll Conversion factor 0.03 

 
Initial concentration in the model boxes were defined according to Ferreira and Duarte 

(1994). The object had four parameters that could be adjusted, Pmax, Iopt, Ks and mp. 

Calibration was performed in three stages. The information retrieved in the sensitivity 

analysis suggested that Ks was the parameter with less relevance and was, therefore, set to 

1.19 µmol N l-1 (Ferreira and Duarte, 1994). Varying the death loss parameter in certain 

ranges introduced instability to the model and therefore this value was set to 0.1 h-1 for all 

simulations (Ferreira and Duarte, 1994). The photosynthesis parameters, Pmax and Iopt, were 

varied within a given range according to literature values (Ferreira et al., 1998; Jørgensen et 

al., 1991; Jørgensen, 1994; Macedo and Duarte, 2006). The former was varied from 0.02 to 

0.2 h-1 and the latter from 100 to 800 mE m-2 s-1, both divided into 8 intervals resulting in a 

total of 64 combined simulations. A simple cost function was employed (Figure 16 and 

Annex IV).  

 

The misfits provided different information suggesting that using only one performance 

measure would lead to ambiguity (Annex IV). Moreover, qualitative visual analysis was 

extremely important. The different parameter combination yielded several local minima 

regarding the cost function (Figure 16). Out of 64 simulations, 5 combinations were extracted 

for visual inspection and 2 (of the latter) were discarded due to model instability and lack of 

dynamic behaviour (not shown). The discarded simulations corresponded to Pmax 0.2 and 0.1 

h-1, respectively, with Iopt 200 and 700 m E m-2s-1. Regarding Pmax, it optimally ranged from 

0.075 to 0.1 h-1, while Iopt had a wider range, from 300 to 800 m E m-2s-1. 
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Figure 16 - Cost Function 3D plot: Parameter combination (Pmax and Iopt) 

 

The remaining combinations were crossed with different Ks values, ranging from 0.2 to 2.4 

µmolN l-1 and divided into 5 intervals. The variation of this parameter yielded low 

improvement, as would be expected, concerning the sensitivity analysis information. 

Moreover, simulated DIN was always well above the higher half saturation concentration 

used and was, therefore, set to the default value (Ferreira et al., 1998) for the remaining 

simulations. The parameter set that yielded the best agreement between predictions and 

observations was chosen solely regarding Pmax and Iopt. Visual inspection of all boxes (not 

shown), the lower cost function value and the particularly lower MAE (%), lead to the choice 

of the combination Pmax and Iopt, respectively, 0.1 h-1 and 800 mEm-2s-1 (Annex IV). This set 

of parameters along with Ks = 1.19 and mp = 0.1 was used in further simulations. The high 

Iopt, retrieved is consistent with data published by Valiela (1995). Figure 17 and Table 15 

show the calibration time series and statistics.  

 

Table 15 - Phytoplankton object performance statistics: box by box and ecosystem scale 

 Box 1 Box 3 Box 4 Box 6 Box 8 Box 10 Box 11 Box 12 Box 13 Global 

Matches 1 1 8 1 1 1 9 8 1 31 

RMSE 0.6 3.4 3.9 3.8 11.4 0.8 3.6 8.7 0.2 5.6 

MAE (%) 8% 43% 104% 45% 79% 48% 82% 73% 14% 77% 

r - - -0.66 - - - 0.09 0.16 - 0.06 

 

From Figure 17, one can infer that the object was unstable in the first 90-120 days due to 

model spin up and due to extreme flow variability (see 3.4.3). In the upstream boxes, the 

impact of flow variation induced model instability, particularly evident, in the beginning and 

in the end of the simulation. Increases in flow anomalously simulated high chl-a due to higher 

input of riverine phytoplankton, rather than by modifying the internal estuary dynamics.  
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  -  E2k Modelled chl-a (µg chl-a l-1); 
  -  Sampled chl-a (µg chl-a l-1). 
 - Measured Flow (m3s-1) 

 

 

Figure 17 – Chl-a time series box by box: sampled vs. modelled  
  

The phytoplankton object roughly translated the natural annual dynamics in the Tagus 

estuary, with a unimodal Spring bloom. In the upstream boxes, there was a late summer, early 

Autumn slight biomass increase which had been reported but for mid estuary regions. The 

flow increase and variability was probably the cause for the, early autumn, slight chl-a 

increase. The modal characteristics of chl-a peaks were consistent with those reported by 
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Gameiro et al. (2004), although, they were simulated slightly earlier (May). Furthermore, the 

spring blooms were simulated at the same time for all boxes, whilst the data reported by the 

latter author, suggested that the 1999 blooms occured between May and July with different 

timings concerning different sites. The sampled data suggested a later bloom, in July/August. 

It is recalled that, particularly in 1999, sampled data indicated a strong Si limitation (see 

Figure 11 & Figure 12) which was, as mentioned, required by the most relevant phytoplankton 

form in the upstream region: diatoms. This may explain why bloom dynamics were 

inaccurately reproduced. 

  

The more pronounced blooms were not reproduced, probably due to the E2K large scale and 

multi year characteristics (see Box 4 and 11). Note that the chl-a peaks registered in box 11 

and 12 corresponded to low peaks (near zero) of ammonia, suggesting a bloom event with 

extreme nutrient depletion. Furthermore, box 4 had an atypical winter bloom (in 1999), which 

was responsible for the negative correlation, which also occured, with lower magnitude, in 

box 11. The model reproduced fairly well, in an average sense, the spatial chl-a gradient, in 

which, chl-a increases with the distance to the ocean.  

 

Although the mid estuary had only 3 samples (1 per box) and few boxes were represented, 

there seemed to be a significant underestimation, which also occured with nutrients and SPM. 

Calibration was not aimed at the optimization of these middle estuary boxes, because, spatial 

inference was not feasible due to data limitations. Compared with Gameiro et al. (2004), in 

1999, the average concentration was slightly underestimated and the late Spring bloom was 

about three times higher than simulations. A previous study (Silva et al., 1986 in Gameiro et 

al., 2004) reported typical values within the simulated range, particularly for box 8. Moreover, 

compared with Brogueira and Cabeçadas (2006) for typical summer conditions, simulated 

values were underestimated in this estuary section. For the upstream boxes, chl-a values were 

within reported ranges for average winter and summer conditions (Brogueira and Cabeçadas, 

2006). Particularly in the latter, boxes 1 and 2 suggested that river inputs were accurately 

simulated, in an average sense. However, for the year 1999, in boxes 2 and 3 chl-a was 

significantly underestimated (Gameiro et al., 2004) and, in the Northern Channel, were within 

the annual average reported by the same author, although the bloom was simulated 2/3 

months earlier. According to Brogueira and Cabeçadas (2006), in the downstream section, 

chl-a was under and overestimated, respectively, for summer and winter average conditions.   
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3.5 - Remote Sensing Data Processing 

 

For the purpose of remote sensing application, daily Level 1B (L1B) MODIS Terra data was 

acquired from the NASA Level 1 and Atmosphere Archive and Distribution System 

(LAADS), after visual inspection of cloud cover and scene coverage. Level 1B data concerns 

reflectances at full resolution without communications artefacts, radiometrically corrected and 

geolocated (http://ladsweb.nascom.nasa.gov/) in WGS84 coordinates. The full 1km resolution 

is provided at nadir view so that shifted pixels have lower resolution, resulting in data 

arranged in an irregular grid.  

 

All data was processed with NASA Ocean Colour software, SeaDas 5.1, distributed freely and 

run in Linux environment (http://oceancolor.gsfc.nasa.gov/). MODIS scenes were subseted 

according to the study area delimitation to derive the Rrs from 412 nm to 869 nm. 

Atmospheric correction was applied to L1B data to derive the Rrs from 412 nm to 869 nm, 

which are the input for the majority of algorithms available, and in particular to all used in 

this work. Quality control flags were set in order to mask inaccurate pixels. The Rrs data was 

processed to L2, using several available chl-a algorithms, and exported to MatLab R2006a in 

ascii format. The second part of data processing was done in the latter software. Data was 

reprojected to a predefined 1km regular grid using the nearest neighbour method. All negative 

Rrs or chl-a retrievals were masked. The available bathymetry, with about 30m resolution, 

was resampled to 1km, using the bilinear method, to allow comparability and cross 

processing. Using tide simulations, provided independently by the E2K, daily water masks 

were developed for the sensor acquisition hour and all data was filtered according to it.  

 

In order to investigate the factors affecting the quality of chl-a retrieval in the Tagus estuary, 

several atmospheric procedures were tested, along with a variety of quality control flags 

combinations. These processing options influence the Rrs, which precede the chl-a retrieval. 

Specifically, very high and atypical chl-a values were identified and the processing options 

leading to better retrievals were assessed. Regarding the information gathered in 3.1.5 and 

3.4.8, these probably corresponded to noise. Since no reference, measured or modelled, Rrs 

were available, the OC3 chl-a algorithm, with standard atmospheric correction and quality 

flag settings, was defined as the reference data set. For simplicity, it was assumed that the 

impact of different processing options did not depend on the algorithm but solely on the input 

Rrs. The OC3 algorithm was chosen due to its simplicity, because it is the default MODIS 

algorithm and its operational constraints are straightforward. If this evaluation objective was 
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not achieved, at least the factors which were not responsible for such evident noise and the 

potential methods to diminish their impact could be identified.  

 

The atmospheric correction and quality control options were evaluated respectively in the 

sub-sections, 3.5.1 and 3.5.2. Daily processed products were transformed to 16day temporal 

composites and spatially aggregated to allow the comparison between E2K simulations and 

remote sensing chl-a retrievals, at a box scale (3.5.3). In a first stage, only boxes 4-13 were 

used, due to spatial resolution issues. The processing options which rendered improved 

accuracy were selected for further remote sensing analysis.  

 

3.5.1 - Atmospheric Correction 

 

Optical remote sensing data are affected by the atmosphere and from the direct reflectance of 

the water surface. These effects can be removed using suitable atmospheric corrections 

dependent on weather conditions. The choice of the atmospheric procedure is critical to the 

accurate retrieval of chl-a thru remote sensing techniques (e.g. Hu et al., 2005; Chen et al., 

2007; Franz et al., 2006). The SeaDas processing software supports a wide variety of 

correction procedures and this feature was exploited given its relevance. The atmospheric 

correction procedures used are only presented briefly due to their complexity and the 

unavailability of in-situ Rrs data.  

 

The standard atmospheric correction procedure used for global ocean, uses the NIR bands to 

determine aerosol type and concentration using the water-leaving radiance at 748 and 869nm 

(Gordon and Wang, 1994; Stumpf, 2003; Franz et al., 2006). In Case 1 waters, a simple 

iteration scheme can be used to predict the nLw in the NIR, adopting the “black pixel” 

assumption (Stumpf, 2003). However, in turbid waters, the assumption of negligible photon 

emergence at NIR wavelengths becomes invalid due to increased scattering and nLw are 

inaccurate, or impossible to estimate, leading to significant errors in chl-a retrieval (Siegel et 

al., 2000; Schalles, 2006). Relaxation of this assumption can significantly improve chl-a 

retrieval in waters with chl-a > 2 µgl-1 (Schalles, 2006). Recently, other atmospheric 

correction procedures have been developed over turbid or highly productive waters (e.g. 

Ruddick et al., 2000; Wang and Shi, 2005). Moreover, aerosol type and distribution in coastal 

waters differ greatly from those found in oceanic areas, influencing the accurate estimation of 

Rrs, thus chl-a (Siegel in http://oceancolor.gsfc.nasa.gov/forum/).  
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A set of atmospheric procedures was chosen and applied MODIS data of the year 2000 to 

assess their adequacy in chl-a estimation in the Tagus estuary (Table 16). All procedures are 

based on the 2-band atmospheric correction scheme proposed by Gordon and Wang (1994) 

varying humidity and the aerosol model. The MUMM procedure uses the same scheme with 

an alternative modification for NIR nLw (Franz in http://oceancolor.gsfc.nasa.gov/forum/).  

 

Table 16 - Atmospheric correction procedures tested 
Description Processing Code Reference 

Multi-scattering with 2-band model selection and 
NIR correction 

StandardOC3 
Gordon and Wang, 
1994; Stumpf, 2003 

Multi-scattering with fixed model (Coastal, 70% 
humidity) 

AtmCor1OC3 
Gordon and Wang, 
1994; Stumpf, 2003 

Single Scattering - white Aerosols AtmCor2OC3 
Gordon and Wang, 
1994; Stumpf, 2003 

Multi-scattering with fixed model (Coastal, 99% 
humidity) 

AtmCor3OC3 
Gordon and Wang, 
1994; Stumpf, 2003 

Multi-scattering with 2-band model selection AtmCor4OC3 
Gordon and Wang, 
1994; Stumpf, 2003 

Multi Scattering with MUMM correction 
MUMM NIR calculation 

AtmCorMUMM Ruddick et al., 2000 

 

The focus was set primarily on the magnitude of chl-a retrievals (i.e. errors) and, secondarily, 

on correlation because this may be mainly driven by algorithm performance. From the six 

atmospheric correction procedures used, three are clearly inadequate when compared with 

E2K simulations (Figure 18), with errors above 6 µgl-1, overestimating chl-a over 200 % 

(Annex VI). Therefore, the Standard, Atmcor1 and Atmcor4 procedures were removed from 

further analysis. The remaining methods had similar performance so a finer analysis was 

necessary. 

   
 

 

 

 Figure 18 – Atmospheric correction procedure : Time series Box 10 - 2000  
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The Atmcor2 and Atmcor3 had similar error magnitude and temporal correlation for all boxes, 

and AtmcorMUMM exhibited the lowest errors but had slightly lower correlations (Figure 19 

& Figure 20). Because the primary focus was set on magnitude and due to reasonable 

correlation, the MUMM procedure was chosen for the remaining remote sensing estimations. 

   
 

 

 

 Figure 19 – Atmospheric correction procedure : Time series Box 8 - 2000  
   

Discerning quantitatively the remaining two procedures may be ambiguous because, overall, 

errors and correlation are almost identical. A thorough analysis was presented in Annex VI. 

The Atmcor3 was chosen as the secondary atmospheric correction procedure because, 

theoretically, the assumption of a coastal profile with 99% of humidity was more probable 

than the single scattering assumption. Furthermore, the second choice was made because it 

revealed higher correlation than the MUMM procedure. Both procedures were addressed in 

the preliminary assessment (see 4.2.1) in order to assess their impact in the chl-a retrieval 

using all Case 1 algorithms chosen previously.  

   
 

 
 Figure 20 – Correlation and RMSE distribution, per box, using different atmospheric 

procedures : 2000 
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3.5.2 - Quality Control  

 

Quality control is common to all MODIS products and applications. Flags are set based on 

mathematical equations or simple conditions regarding the L1B radiance information. For 

ocean applications and, specifically for the L2 products, the most relevant quality flags are 

described in http://oceancolor.gsfc.nasa.gov/VALIDATION/flags.html. Retrieved pixels are 

masked if a flag is set and this procedure is determined by the user in SeaDas.  

 

For all simulations, high/saturated radiances and clouds/ice were masked. Pixels over shallow 

waters and over land were not masked in the SeaDas processing stage, because the available 

masks were coarse and static. To investigate the impact of quality options on the retrieval of 

chl-a, a set of simulations were performed, with different flag settings (Table 17). 

 

Table 17 - Quality Control flags tested 

Code Name Flags or Restrictions 

Standard Mask Clouds and Saturated radiances 
AngleMask Solar and Sensor zenith angle above 60º and 70º respectively * 
Mask Glint Sun Glint * 
Mask Stray Straylight Contamination * 
Mask All All flags and restrictions set above 

* Note that the standard flag masking is applied to all 
 

As mentioned, the SeaDas land mask is static and does not vary according to the tidal height. 

Daily images were masked according to a land mask developed, in MatLab R2006a 

environment, using a reprojected 1km bathymetry and tidal simulations. The latter, had a 1 

hour temporal resolution and, therefore, an interpolation was performed to match exactly the 

acquisition hour for a given day. All pixels with less than 1m depth were also masked to avoid 

errors due to bottom reflection which could significantly affect chl-a retrievals (e.g. Schalles, 

2006; Hu et al., 2004; Chen et al., 2007). Gameiro et al., (2007) reported light extinction 

coefficients (k) between 1.7 and 2.1 m-1. Estimating euphotic depth at 4.6/kpar, the minimum 

and maximum depths that light reaches were respectively 2.2 and 2.7m.  Assuming that the 

bottom is a lambertian surface and that the down and upwelling paths are the same, the 

minimum depth at which bottom reflection would be perceived is approximately between 1.1 

and 1.4m. Since the bottom is not a lambertian surface the minimum depth used provided, 

theoretically, a good agreement between simplicity and noise reduction. Higher wavelengths 

are less sensitive to bottom reflectance than lower wavelengths because of the greatly 

increased light attenuation by water at red and especially, at NIR region. It is recalled that 
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Case 1 chl-a algorithms typically use lower wavelengths potentially compromising their 

performance over shallow waters.  

 

The different simulations regarding the different setting of quality flags are exhibited in 

Figure 21. The chl-a distribution increased when sun glint was masked, probably due to the 

elimination of erroneously augmented Rrs values which lead to lower absorption and higher 

concentrations. Hu and Carder (2002) suggested that this feature, unlike for land applications, 

should always be removed to correctly obtain the water signal. Therefore, this flag was set for 

further simulations assuming that sun glint was well identified during the SeaDas processing. 

   
 

 

 

 Figure 21 – Quality Flags and Restrictions : Time series for Box 9 – 2000  
   

Masking the viewing angles had low impact in the chl-a estimation and values tended to be 

slightly lower. It would be expectable that higher solar and/or sensor zenith angles would lead 

to inaccurate chl-a retrievals due to the sensor field of view. Apparently, this did not occur in 

the data set used (Figure 22), reinforcing the idea that chl-a retrieval is relatively geometry 

independent in Case 2 waters (e.g. Wynne et al., 2006). Therefore, no geometry constraints 

were set in further simulations. 

 

Straylight results from radiance contamination from adjacent pixels which is often near bright 

sources such as clouds, coastlines or sun glitter. The largest impact is to low Rrs values which 

can be particularly relevant in highly productive, and thus absorbing, waters.  There is no pre-

launch procedure for stray light correction for MODIS, so the custom solution is to increase 

the mask on the edge of possible sources (http://oceancolor.gsfc.nasa.gov/). This resulted in 

the elimination of almost all pixels within the estuary and, therefore, the MaskStray time 

series was not shown. The MaskAll version (not shown) had, thus, even lesser pixels. Several 
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atypical and high chl-a values were detected in near shore pixels. A simple procedure was 

applied, in MatLab R2006a, considering stray light from land. A 7x7 pixel window was set 

around each pixel adjacent to the shore defined by the daily tidal land mask. Any pixel outside 

the threshold defined by the average ± two times the standard deviation was excluded, and 

visual inspection indicated improvements although some high chl-a values were still present 

(Annex VII). The largest influence of stray light contamination probably occured in box 12 

due to its narrowness and the topography of the adjacent land.  

   

 

  

 

Figure 22 – Geometry (solar and sensor zenith angle) vs. Error : 2000 
Note that, the legend indicates the compositing period i.e. the initial and final Julian day 

Senz : Sensor zenith angle ; Solz : solar zenith angle 
 

 

 

Annex VII thoroughly describes all the quality control analysis performed. In sum, saturated 

radiances, clouds and pixels with sun glint were removed at the top of the processing chain 

and a simple straylight removal procedure was used along with the daily tidal land masking. 

 

3.5.3 - Data Temporal and Spatial Compositing 

 

Cloud cover in optical satellite data acquisition seriously affects the usefulness of these data 

for surface water quality monitoring (e.g. Lavery et al., 1993 in Zhang et al., 2002b). 

Therefore, a time composite procedure was needed in order to enhance the geographical 

coverage, accumulating the information which was available during the compositing period. 

Data was composited assigning to a pixel the chl-a value closer to the average in the 16 day 

compositing period (Pinty et al., 2002). This temporal resolution was considered to be a good 

compromise solution between the E2K month to seasonal scale and the daily MODIS data. It 

should be noted that, the benefit of using composites is both spatial aggregation, in which 

clouds are a common problem, and temporal smoothing. 
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The best processing options identified above, which theoretically improved the accuracy of 

reflectance retrievals, were used in this section. Three temporal compositing options were 

tested independently. Firstly, during compositing, outliers for each pixel were removed using 

thresholds of 1 and 2 standard deviations. Secondly, daily data was filtered according to tidal 

state, both ebb/flood and high/low tide. Thirdly, chl-a values were crossed with the number of 

files in a composite in order to understand if the anomalously high composite values resulted 

from image scarcity within a given compositing period. Removing outliers and filtering files 

according to their tidal height and state had no apparent effect on accuracy (Annex VIII). 

Atypical high values were apparently related with the lower number of files in the 

compositing period (Figure 23). However, removing composites with few daily files would 

severely limit the number of samples in the dataset and, therefore, no filtering was applied. 

Moreover, from visual inspection of daily MODIS data (not shown), the low number of files 

also seemed to be related with correspondent low spatial coverage. The latter hypothesis was 

not investigated, but may be related to stray light from clouds. In sum, no temporal 

compositing restrictions were applied. 
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Figure 23 - Number of files in a composite vs. [chl-a] : 2000 
 

Data was spatially aggregated according to the model boxes allowing comparison with E2K 

chl-a simulations. The main issue in this step concerned the mathematical method used for 

spatial aggregation and understanding the chl-a distribution within each box was, therefore, 

extremely important. For each model box, histograms were made and average chl-a, 

percentiles 10 and 90, were plotted (Figure 24). The histograms were made for each box for 

every composite period. For the majority of the periods, the chl-a distribution was normal, 

although there were some exceptions (Annex VIII). Some of the distributions were shifted 

towards lower values. Some values were exceptionally high and, as mentioned, were 
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considered as outliers. For instance, in the compositing period 241-256, there were low 

frequency values of about 40µg l-1, which significantly increased the average. In fact, the 

average was higher than the percentile 90. A maximum threshold was defined as the 

percentile 90 of all pixels within each box. Every pixel above it was eliminated and the 

average value, computed without outliers, was assigned to a given model box. Values below 

the percentile 10 were not removed because there was no information suggesting they were 

outliers. 

 

 

  

 

Figure 24 – Spatial histograms : Box 8 – 2000 

 The histograms have the value frequency (%) in y axis and chl-a concentration in the x axis 
The scale bar represents the number of MODIS daily images in a composite 

  

 

Figure 24 suggested that a high number of files in a composite did not smooth box 

distributions up to the point where outliers have no significant effect on the box average. For 

the remaining boxes, the temporal coverage had no apparent effect on the shape of the 

distribution (Annex VIII). The referred Annex showed that box 12, both for 2000 and 2001, 

had highly irregular distributions, as in box 4 and 5 (not shown). This was probably due to the 

low box surface area, thus high sensitivity to errors, as mentioned, and therefore, only boxes 

between 6 and 13 were used in further analyses. To maintain box spatial representativeness, 

when its pixel coverage was less than 20%, a single box value was not assigned. 
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3.6 - Remote Sensing Regional Calibration 

 

The calibration of simple algorithms lead to two distinct assessments. Firstly, the calibration 

of regional Case 1 and Case 2 algorithms and the preliminary assessment of existing global 

Case 1 algorithms (see 4.2), were both done using the “best” processing options. Secondly, all 

algorithms were assessed using an independent data set (see 4.3). This choice was driven by 

the need of using a validated calibration dataset (2000) and an independent validation data set 

(2002) for accuracy related inferences. This section is divided in the regional calibration of 

the OC3 Case 1 algorithm and some Case 2 algorithms, proposed in literature.  

 

Calibration is typically done by establishing mathematical relations between Rrs values, 

usually thru band ratios, and chl-a measurements. In-situ samples coincident with MODIS 

imagery occured only in the year 2002. In 2001, no sampled data was available and for 2000, 

only 6 samples were coincident with the MODIS Terra operation, because, despite being 

launched in 1999, data was only available since late February 2000. These six samples 

corresponded to the model boxes 4 and 12 which, as mentioned, had low potential for remote 

sensing estimation. In 2002 there was only one sample in box 11. Therefore, sampled chl-a 

was not used. It should be noted that there is a MODIS data gap in early spring of 2000, 

coincident with the simulated chl-a peak, which limited both the calibration and assessment of 

remote sensing chl-a when it was expected to be high. 

 

The procedure already applied to chl-a processing (see 3.5) was also applied to Rrs, producing 

16day box reflectances, between 412 and 748nm. The only difference was that the spatial 

aggregation was made without removing outliers because there was no prior and present 

information regarding Rrs in the Tagus estuary. Only the E2K chl-a simulations, for the year 

2000, were used. Empirical relations were established between the MODIS Rrs and E2k chl-a 

simulations. It should be underlined that each box value was used as a “chl-a sample” because 

E2K simulations were representative at a box scale. Using every box pixel for calibration 

would resulted in a noisy procedure due to scale ambiguity between Rrs and simulated chl-a. 

Furthermore, in this calibration effort it was assumed vertical optical homogeneity within 

each model box. 

 

Due to the, somewhat, stringent processing options, the coarse resolution of MODIS data, and 

the morphology of both, model boxes and the Tagus estuary, boxes 6 and 12 were removed 

from regional calibration. As mentioned, due to their low surface area the upstream boxes (1-
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5), using 1km data, have low potential for remote sensing. Approximately 70% of Box 6 

corresponds to intertidal areas (see Table 3) and therefore, it had few valid composites per year 

and was probably highly sensitive to bottom reflectance contamination. Box 12 was very 

narrow, had low surface area and was probably highly sensitive to straylight from adjacent 

land. The removal of these boxes improved the fitting of all regionally derived empirical 

relationships. The number of total “samples”, for the year 2000, was reduced from 114 to 103. 

However, boxes 6 and 12 were included in the spectral signatures analysis, when relevant. 

  

The OC3 empirical algorithm was regionally tuned by adjusting its coefficients to match chl-a 

E2K box simulations. As mentioned, its original coefficients were derived using a global Case 

1 data set. Equation 4 was log scaled to determine the polynomial coefficients where the x 

variable was the R3M band ratio (Figure 25). The algorithm code was implemented in 

MatLab R2006a to produce 16day chl-a maps of the OC3 tuned Case 1 algorithm. The semi-

analytical algorithms used in this work, could also be regionally tuned, but due to their 

complexity, code accessibility, and the need for in-situ Rrs and IOPs, this procedure was not 

performed.  

 

 

 

log(chl-a) µg l -1 

R3M 

Figure 25 – OC3 regional calibration (2000) 

 

The OC3 fitted equation showed a fair agreement, r
2=0.55 (N=103). A linear relationship 

produced the same agreement. It was evident that with the increase in concentration, 

dispersion also increased, indicating that higher chl-a was less accurately retrieved. The 

majority of high chl-a values were simulated in the winter (Annex IX) and, for reasons 

mentioned in 3.4.8 (and 4.1), the confidence in them was lower that in the remaining seasons. 

Therefore, the relationship could be more accurate than it apparently was. Furthermore, there 

was also significant dispersion around average and low chl-a values, particularly when the 

R3M tended to lower values.  
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The regional calibration of Case 2 algorithms was based on several band ratios, proposed in 

literature (Gitelson et al., 2007; Tzortziou et al., 2007; Schalles, 2006). These are based on 

three main spectral features: the green peak, the upper red and the NIR reflectances. The latter 

two regions are, theoretically, used to discriminate the chl-a specific absorption maximum in 

the red, and the upper red/NIR peak reflectance, usually associated with chl-a fluorescence 

and cell scattering. MODIS has three bands in these regions with centre wavelengths in 667, 

678 and 748 nm. Therefore, reproducing these features is constrained by spectral resolution, 

and the number and position of the bands, which greatly affect the operational abilities to 

detect chl-a signals in different optical regimes. Furthermore, this is a particularly relevant 

limitation because it is known that the Rrs peak shifts from the upper red to NIR, around 

700nm, with increasing chl-a due to increased cell scattering (Schalles, 2006). 

 

A spectral signature analysis was performed plotting the 16day box Rrs, over the whole 

spectrum, for each compositing period, in order to understand the key optical features that 

could be exploited in the Tagus estuary (Figure 26). It should be noted that the lines result 

from a linear interpolation of the Rrs values for the discrete MODIS bands. The spectral 

signatures were highly variable over the whole year (Annex IX). There was a clear similarity 

with the reflectance spectra of Apalachicola bay and Duplin river presented in Figure 3. 

 

 Winter - 49:64  Spring - 145:160  
 

 

 

 

 

     

 Summer - 193:208  Autumn - 273:288  
 

 

 

 

 

 Figure 26 - Spectral Signatures for all boxes per season : 2000  
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Particularly for the former, the chl-a (9.2 µg l-1) and SPM (48.5 mgl-1) concentrations 

resembled those typically found in the Tagus estuary (see 3.1.3 and 3.1.5). This similarity 

suggested that the methodology used was robust and could be used in future works. 

According to Schalles (2006), the Ashepoo river had similar chl-a and SPM concentrations 

but with increased CDOM absorption (about 7m-1 against 1 m-1 in the former) lowering Rrs 

and smoothening the green peak to the point that it was no longer discernable. There was no 

information regarding CDOM absorption in the Tagus estuary, but, the spectral signature 

suggested, by comparison, that there was generally low CDOM absorption. The green peak 

was prominent and discernable in the majority of the compositing periods, which also 

suggested low CDOM absorption. The reflectance magnitude, over the whole spectrum and, 

particularly, in the green region, often increased with distance from the ocean suggesting 

spatial differentiation. This region, along with the NIR reflectance which, as mentioned, is not 

negligible in turbid waters, could potentially be used to establish SPM and Rrs relations 

(Schalles, 2006).  

 

The upper red “shoulder” was discernable in some occasions, for instance, in box 6 in the 

winter and summer. It, however, also presented high variability and did not necessarily 

indicate high chl-a concentrations. This feature could potentially differentiate chl-a 

concentrations, for instance in the summer for boxes 6, 7 and 8 where the green Rrs was 

similar but the red “shoulder” was different, particularly evident in box 6 where higher chl-a 

was expected. From the beginning of autumn 2000 to the beginning of winter 2001, 

reflectances increased in about 2%. By the end of the year 2000, the red peak increased 

significantly, sometimes higher than the green peak, and returned to typical values, similar to 

the 2000 winter, in late winter 2001 (Figure 27).  

     

2000 2001 
 

 

 

 

 

 Figure 27 - Spectral Signatures over time for box 7   

 The legend and associated line colours indicate the composites Julian day range  
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This feature was more evident in the mid estuary boxes. During this peak shift, the green and 

red regions had, respectively, low and high variability suggesting that the increase in the latter 

was probably not due to an increase in overall scattering but due to cell scattering. Therefore, 

the winter chl-a peak could be in fact correctly simulated and was discussed later on. 

However, CDOM could result from run off which could be constraining the green peak 

increase. 

 

Several Case 2 empirical relations, using different band ratios, were implemented using 

different approaches. Firstly, the fluorescence line height (FLH) was computed according to 

Letelier and Abbot (1996) formulations which rely on the 667, 678 and 748nm MODIS 

bands. One of these wavelengths was centred on the chl-a fluorescence maximum 

(approximately 683 nm) and the remaining were used to form a baseline below the 

fluorescence peak (Equation 15). The authors indicated that there was a strong agreement 

between the magnitude of the FLH and chl-a, although they could vary independently. All 

empirical relations developed hereafter had the condition that FLH>0, which eliminated 3 

“samples”.  
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667748

678748
748667748678 RrsRrsRrsRrsFLH  Equation 15 

  

Secondly, other two ratios were used, the Rrs748/Rrs678, proposed by Gitelson et al. (2007) 

and, the Rrs678/Rrs551, proposed by Tzortziou et al. (2007). The key features that they 

exploited were addressed previously (see 2.2.2). Thirdly, an altered version of the latter was 

proposed which added the NIR as follows: R678/(R551+R748). Scattering is discernible in the 

NIR region and high CDOM absorption can smooth the prominent green scattering peak 

(Schalles, 2006). Therefore, this proposed alteration could, theoretically, provide a more 

robust representation of the non-cell scattering and isolate the cell scattering signal in the red 

region, thus chl-a. Several combinations of these features were derived thru function fitting or 

by multiple regression, and Table 18 showed the most relevant. The y variable was the 

retrieved chl-a.  

 

The calibration plots (Annex IX) showed that dispersion was high and for the higher values 

the fitted functions were inaccurate, mainly because the majority of high values occured in the 

winter although some occured in the summer. Probably due to issues concerning the centre 

wavelength in the upper red/NIR, the band ratio proposed by Gitelson et al. (2007) had very 

low agreement (r2 = 0.21). It, thus, presented high variability and dispersion, with even lower 
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agreement that the general Case 1 relations tested (r2 = 0.39 and r2 = 0.52).  The low blue 

region had low spatial and temporal variability, probably due to pigment and CDOM 

overlapped absorption, being probably the reason for the better performance using the upper 

blue region (near 488nm). 

 

Table 18 – Description and performance of regionally calibrated algorithms 

Equation Description 
RMSE  

(µg l
-1

) 
r2 

y =  0.937 (R748/ R678) 
1.156 Adapted from Gitelson et al. 

2007 
1.21 0.21 

y = 4.857(R678/ R551)
2 - 0.083(R678/ R551) + 1.031 

Adapted from Tzortziou et al. 
2007 

0.75 0.68 

y = 1.194 (R443/R551) 
-1.825 General Case 1 Relation 1.51 0. 39 

y = 1.054 (R488/R551) 
-3.382 General Case 1 Relation 1.02 0.52 

y = 1432882.186 FLH2 + 143.988 FLH + 2.056 
Adapted from Letelier & 

Abbott, 1996 
0.85 0.59 

y = 0.976 + 486.940 FLH + 4.0835 ( R678/ R551)
2 

Combined Letelier & Abbott, 
1996 ; Tzortziou et al. 2007 

0.74 0.69 

y = -0.730 + 570.740 FLH + 5.370 (R678/ R551) 
Combined Letelier & Abbott, 
1996 ; Tzortziou et al. 2007 

0.77 0.67 

y = 20.493(R678/R551+R748)
2 - 11.544 (R678/R551+R748) + 

3.4010 
Adapted from Tzortziou et al. 

2007; NIR band added 
0.70 0.71 

432 31532.289x3 484.295331.87431.5550.17510 MRMRMRMR
y

−−−−=
 

Tuned OC3 (O’Reilly et al., 
2000) 

0.99 0.55 

 
The temporal shift in the red and green peaks from autumn of 2000 up to late winter of 2001, 

described previously, was probably the reason for the reasonable agreement (r2 = 0.68) of the 

band ratio proposed by Tzortziou et al. (2007). This seemed to be a key optical feature in the 

Tagus estuary. The FLH approach, by itself, had lower agreement (r2 = 0.59), which was 

increased when combined with the latter (r2 = 0.69 and r2 = 0.67). However, no significant 

improvement was accomplished when compared with the R678/R551
 ratio solely. The addition 

of the scattering contribution in the NIR region, however, provided a more robust empirical 

relationship and it was in fact the best agreement retrieved (r2 = 0.71) (Figure 28). The 

accuracy assessment of the remote sensing retrievals, using the regionally tuned algorithms, 

was made in 4.2.1. 
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 R678/(R551+R748)   
Figure 28 – Calibration plot using the ratio R678/(R551+R748) : 2000 

 
 

The main methodological steps performed for the assessment of chl-a remote sensing 

products in the Tagus estuary are exhibited in Figure 29. 

   
 

 

 

 Figure 29 - Main methodological steps and connections  
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4. Results and Discussion 

 

4.1 - Ecological Model Validation 

 

The evaluation of the model accuracy was performed comparing simulations with sampled 

chl-a, available in five distinct dates, in the years 2000 and 2002, interspersed between boxes 

4, 11 and 12. The year 2001 was also evaluated mainly because of the extreme winter chl-a 

peak simulated. Brief insights on the behaviour of nutrients and SPM were provided, for 

relevance, and model improvements were addressed later on (see chapter 5). 

 

Model validation was addressed carefully due to the scarcity of data. The model presented 

reasonable accuracy, with a 57% or 8.0 µg chl-a l-1 error (Table 19).  

 
Table 19 - Phytoplankton object performance statistics: box by box and ecosystem scale 

 Box 4 Box 11 Box 12 Global 

Matches 5 1 4 10 
RMSE 10.9 0.6 2.8 8.0 

MAE (%) 76% 43% 37% 57% 
r 0.28 - 0.63 0.37 

 

The correlation was very low (r = 0.37; N=10) but the number of matches was too scarce to 

make quantitative inferences. However, it was clear that the blooms that occured in the 

summer, both in box 4 and 12, were not reproduced (Figure 30 and Figure 31) leading to the 

high RMSE. 
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Figure 30 - Pairwise Scatter plot: sampled vs. simulated 

 

In the remaining seasons, the chl-a simulations were in good agreement with the sampled 

data. The underestimation could be related with SPM overestimation, in about 100%, limiting 
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light availability, thus production. However, compared with the calibration (see 3.4.8), the 

Zmix:Zeuph ratio was simulated in a similar fashion suggesting that light availability is well 

reproduced, in an average sense. Ammonia seemed to be in agreement with sampled values. 

However, in box 4, samples were highly variable (from 6 to 76 µmol N l-1), being over and 

underestimated. Nitrate concentrations were consistently underestimated (Annex V). 
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Figure 31 –  E2k chl-a validation, time series box by box:  sampled vs. modelled 
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Annual average chl-a for the whole estuary was in agreement with reported values by 

Gameiro et al. (2007) and Ferreira (2000). The annual dynamics suggested a different bloom 

distribution, while in the calibration years peaks appeared to be unimodal, in the validation 

years, data indicated a moderate spring peak followed by a higher summer peak. Sampled 

data was scarce and, therefore, the comparison of model estimations with values reported in 

literature was crucial. Comparing with the 7 year study performed by Gameiro et al. (2004), 

in 2000, the up and mid estuary boxes 3, 6 and 7 had bimodal blooms in late spring and late 

summer. Box 8 was an exception has the higher values occured only in the latter period. For 

these boxes, simulated chl-a was slightly underestimated, with the exception of the summer 

increase/bloom, which simply was not simulated. 

 

The 2000 and 2002 winters were in good agreement with reported values (Gameiro, et al. 

2004 & 2007). In 2002, in box 3 and 6 there was a spring increase, which was simulated, and 

chl-a values were slightly underestimated (about 1µg chl-a l-1) throughout the year. The 

summer bloom of about 20µg chl-a l-1, like in 2000, was not simulated. In the Northern 

Channel, the spring bloom was simulated, but it was about half the one reported by Gameiro 

et al. (2007). Chl-a values were significantly underestimated in spring and summer months. In 

box 7 and 8 a bloom occured in late spring, with a slight increase in the summer. The model 

simulated the former but not the latter, concomitant with was mentioned above. Seasonally, 

the comparison with Gameiro et al. (2007) is expressed in Table 20. 

 
Table 20 - Comparison of simulated chl-a with Gameiro et al. 2007 (adapted) 

 
Gameiro et al. 2007 2000 2001 2002 2000-2002 

Winter  1.4 (1.7) 1.8 11.3 1.8 5.0 
Spring 4.5 (4.1) 2.0 3.4 1.7 2.4 

Summer 8.0 (4.8) 1.7 1.6 1.6 1.6 
Autumn 2.4 (1.7) 3.7 1.9 2.2 2.6 

The values in parentheses indicate the standard deviation 
 

The 2001 simulations were addressed with caution in the following sections because no 

quantitative evaluation was made. It was clear that the extreme modelled flow in 2001 had a 

large impact in simulated chl-a, driven by riverine import rather than by internal production. 

As a consequence, the simulated chl-a annual distribution departed from typical dynamics and 

there was no clear spring or summer bloom. Gameiro et al. (2007) reported data for 2001 with 

typical dynamics exhibiting bi-modal blooms in the up and mid estuary. According to 

Brogueira and Cabeçadas (2006), as mentioned, after extreme winter flows the upstream 

freshwater influenced region extends downstream limiting the marine influenced area. 



 101 

However, according to data published by the same author, current simulations significantly 

overestimated chl-a values (over 6 µg l-1), in the 2001 winter. One particular feature was 

evident, in box 7/8 reported concentrations were about 4 µg l-1 for chl-a and 11 µg l-1 for 

phaeopigments. The latter, were usually associated with the death of phytoplankton cells, 

which most likely occurred after such an extreme flow as the one modelled in 2001. This 

feature could relevant in the next sections because phaeopigment concentrations have been 

retrieved in the past, using remote sensing techniques (e.g. Esaias et al., 1998). 

 

The reasons behind the underestimation of the chl-a peaks could be due to small scale 

phenomena which were not reproduced by the model, due to its average nature and, in 

particular, due to the large scale transport object used. The latter object could also be 

responsible for not simulating accurately the spatial chl-a gradient, with upstream 

underestimation and downstream slight overestimation.  

 

In 2000, flow data showed a slight increase in late summer, coincident with the chl-a increase. 

This increase, along with the consistent Si limitation in the calibration and validation years, 

could explain why the model was not simulating the late summer blooms. It is recalled that, Si 

is mainly introduced by river flow and diatoms, which are predominant in the upstream 

regions require Si to grow. The Redfield ratio, for both 2000 and 2000, also indicated a P 

limitation, which was not considered in the phytoplankton growth. Nitrogen was the only 

nutrient limiting growth, being clearly underestimated, concerning nitrate, and the ammonia 

variability was not reproduced. Nutrients were probably one of the main reasons for the 

consistent chl-a underestimation. 

 

In sum, the model did not simulate the summer blooms. It underestimated chl-a concentration 

in the spring and summer. In the winter and autumn, the low chl-a concentrations were fairly 

well simulated. Upstream boxes were underestimated and downstream boxes were slightly 

overestimated. The suitability for the intended use was limited, regarding the comparison 

made with data published by Gameiro et al. (2004 & 2007) and Brogueira and Cabeçadas 

(2006). Therefore, E2K simulations were addressed with caution in the following sections.  
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4.2 - Remote Sensing Preliminary Assessment 

 
The preliminary assessment aimed at identifying the error and correlation magnitudes, and the 

potentialities and limitations of the remote sensing algorithms in retrieving chl-a 

concentration. The assessment was addressed spatially, at an ecosystem scale, and temporally, 

at a month to seasonal scale, comparing the E2K simulations with the MODIS chl-a products. 

The focus was set on the year 2000 because the 2001 data set was not quantitatively assessed 

and had an atypical, flow driven, chl-a peak in the winter (see 4.1). The existing Case 1 

products, available in the SeaDas software, were compared with the E2K 16day box simulated 

chl-a in 4.2.1. The regionally calibrated Case 2 products were compared in 4.2.2. Included in 

this section, was the regionally tuned OC3 algorithm assessment, although it is based on Case 

1 relationships. All products mentioned were assessed using an independent data set (2002) in 

chapter 4.3. 

 
4.2.1 - Performance of Case 1 Algorithms (2000) 
 

In broad terms, all algorithms seemed to increase the retrieved chl-a towards the spring, 

maintaining relatively high concentrations up to the end of the summer. During this period 

retrievals were highly variable, but in average sense, tended do decrease until autumn, 

achieving a generalized minimum. The atypical E2K autumn chl-a increase, discussed 

previously, was probably due to an artefact driven by extreme river flow. However, in most 

cases, the Case 1 algorithms retrieved a winter increase varying only the occurrence timing. 

For instance, the OC3 tended to start the increase before the Carder algorithm (Figure 32). 

Overall, the algorithms seemed to reproduce reasonably well the chl-a seasonal dynamics. 

 

The OC3 and Carder algorithms had very similar temporal behaviours, because the latter 

used, for the majority of the compositing periods, the empirical form, which is similar to the 

former (Figure 32; Figure 33). Both consistently overestimated simulated chl-a in about 70-

80%, or about 2.0 µg chl-a l-1 (Figure 34). The correlation was, in spatially averaged terms, 

about 0.50 with a maximum of about 0.80 in box 11 and a minimum in box 12 (discussed 

latter). The Carder algorithm had a slight better performance, concerning both error 

magnitude (-6% and -0.1 µg chl-a l-1) and correlation (+0.05). Good correlations in box 10 

and 11 occured (r≥0.80). Since only the OC3 algorithm was regionally calibrated it was 

expected that error magnitude decreased maintaining correlation (see 4.2.2). 
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 Figure 32 –  Case 1 algorithms performance: time series for box 7 - 2000  
   

The GSM algorithm exhibited correlation which ranged from r < 0, in the mid estuary boxes 6 

and 7, to r = 0.62 in the estuary mouth, in box 13, showing an accuracy gradient which 

decreased with the distance to the ocean. Considering all boxes, average correlation was low, 

about r=0.34, due to the negative correlation in boxes 6 and 7. The magnitude of chl-a 

retrievals was similar to those simulated, with an average RMSE for all boxes of about 1.4 µg 

chl-a l-1 or about 30%, both under and over estimating. The distribution along the year 

increased from winter to spring, peaking despite the data gap, and decreased towards the 

summer. In the summer, a distinct peak above 4 µg chl-a l-1 occured, about 1 month earlier 

than the peak reported by Gameiro et al., (2007) for sampling sites near boxes 7 and 8. The 

relatively low correlation could be deceiving and also attributed to this feature. Following the 

peak, the GSM retrievals decreased followed by a winter data gap due to negative chl-a 

retrievals.  

 

 

 

 

 

 Figure 33 –  Case 1 algorithms performance: time series for box 11 - 2000  
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In fact, the GSM algorithm was particularly unstable because it often retrieved negative chl-a 

values and punctually retrieved very high anomalous chl-a (not shown). This limited data 

availability because both were masked at the top of the processing chain. One particular 

spatial feature refers to the fact that this algorithm had the highest correlation and lowest 

errors in box 12, being the only algorithm which increased its accuracy in the downstream 

estuary (Figure 34). 

 

The Clark algorithm had better correlations than GSM, particularly for boxes 10 and 11, 

increasing retrieved chl-a towards the winter and peaking slightly in late summer. However, 

this algorithm seemed to have less ability do reproduce the temporal dynamics and, despite 

the data gap, seemed unable to reproduce the first chl-a peak in spring. In comparison with 

GSM, the latter seemed to reproduce better the E2K spring bloom. Despite this, the Clark 

algorithm had the higher accuracy between box 9 and 11 and although his behaviour was 

smooth and flattened, there was a pronounced peak in box 12 in autumn (see Annex X). Note 

that, the Clark algoritm had a temporal distribution very similar to the OC3 algorithm but with 

different magnitudes, since the latter retrieved chl-a two times higher. Both are empirical 

polynomials which use the 443, 488 and 551nm bands. The difference relies on the fact that 

the Clark algorithm uses the three bands and the OC3 uses only two bands, depending on the 

highest band ratio (see 2.2.3).  
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Figure 34 –  Case 1 algorithms performance per box : 2000  
Bars indicate RMSE and lines the correlation (r) 

 

 

For all algorithms some spatial features were evident. As mentioned, boxes 6 and 12, due to 

their intertidal nature and narrowness, respectively, had lower potential for remote sensing 

chl-a estimation. As a consequence, both had the lowest agreements and the highest errors 
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(Figure 34). Moreover, box 6 had more temporal gaps, about 50 % of the composites were 

missing, because retrievals depended on the simulated tidal height at the MODIS acquisition 

time. Box 12, was potentially highly sensitive to contamination due to urban features, like 

boats and the 25 Abril bridge, and straylight because it was very close to land surfaces. Note 

that this box was situated in the main navigation channel of the estuary. This probably drove 

the irregular and inaccurate retrievals without a distinct temporal trend. Data with increased 

spatial resolution would probably increase data quality and quantity because the factors 

mentioned impact mainly on the retrieved Rrs. 

 

Concerning the spatial distribution of errors, the GSM and Clark algorithm tended to have 

decreasing errors, both MAE(%) and RMSE, with decreasing distance to the ocean (Figure 

35) with the exception of box 12.  The high RMSE for box 6 was driven by a low retrieved 

chl-a in the winter whereas the E2K simulated a peak, explaining why the highest RMSE 

occured in the latter box whilst the MAE (%) was relatively low. For the remaining 

algorithms, OC3 and Carder, the error distribution was relatively independent of the distance 

to the ocean, except for the mentioned boxes 6 and 12. Near the ocean (box 13), where optical 

complexity should theoretically be lower and closer to the Case 1 waters definition, were 

particularly high, probably due to high SPM concentration. However, both algorithms had 

similar errors, comparing with the mid estuary retrievals, and GSM and Clark had the lowest 

errors. Estimates were variable along the year (Figure 1 in Annex X) and the latter algorithm 

seemed to have the best performance. It is recalled, that E2K seemed to slightly overestimate 

chl-a in the downstream boxes although taken this into account, the OC3 and Carder 

algorithms still overestimated chl-a. Also in the estuary mouth, the Carder algorithm 

correlation was high (r~0.80) whilst for the remaining algorithms, was reasonable (r~0.60). 

 

 
Figure 35 –  Case 1 algorithms performance per box : 2000 
Dashed and filled lines indicate respectively RMSE and MAE (%)  
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Gameiro et al. (2004), for a site corresponding to box 7, reported a late spring (180-210 Julian 

day) peak of about 4 µg chl-a l-1 which seemed to be reproduced by all algorithms used, 

although with different magnitudes. The GSM algorithm had retrievals closest to those 

reported (Figure 32). The same author, concerning the same box, indicated another peak in 

late summer (240-270) of about 6 µg chl-a l-1. The Clark, Carder and OC3 algorithms 

retrieved a coincident peak and the latter with similar magnitude. However, the remote 

sensing retrievals of the OC3 and Carder algorithms were variable and during spring and 

summer exhibited 2 to 3 distinct peaks. Moreover, the highest peak was reported in the 

summer and remote sensing chl-a indicated that the highest peak was in Spring. These 

features may be driven by the different temporal resolution used: the MODIS data concerned 

16day composites and, data from Gameiro et al. (2004 & 2007), concerned an individual 

sample representative of one month. Furthermore, it is recalled that the comparisons were 

made using data integrated at a box scale whilst samples represented one distinct point. The 

same author, for a site corresponding to box 8, reported a slight increase in chl-a in the 

summer (210-270 Julian day), ranging 2-4 µg chl-a l-1. All the algorithms indicated, once 

again, that the highest values occured in Spring (see Figure1 in Annex X). The GSM and 

Clark algorithms had a slight distinct peak (near 210) with a coincident chl-a concentration. 

 

The chl-a values tended to increase with increasing shallowness, which could indicate that the 

algorithm reproduced the expectable spatial chl-a distribution in the Tagus estuary (Figure 

36). It could also indicate that bottom reflectances interfered with the remote sensing signal 

leading to incorrect inferences. Since the bottom reflectances were accounted for during data 

processing (see 3.5.2) it suggests that the spatial trend revealed a remote sensing potentiality 

or “strong point”. Note that, the high chl-a values in deeper waters concerned box 12.  
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Figure 36 –  Chl-a concentration vs. Depth: GSM algorithm 2000 

The bar indicates frequency 
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In Annex X, the distribution of chl-a values against their distance to the ocean was plotted for 

the GSM algorithm using all 16day pixels i.e. without spatial aggregation. There was a clear 

spatial gradient: with increasing distance to the ocean, chl-a increased and the relation was 

steeper towards the summer. Temporally, the autumn distributions had high dispersion and in 

the upper boxes the algorithm reproduced high values in late spring and early summer. It is 

clear that between 5 and 10 km from the ocean (i.e. box 12) retrievals were dispersive and 

scarce producing a distinct gap and some atypical high chl-a values. 

 

The RMSE distribution (Figure 37) exhibited two different patterns. Firstly, the OC3 and 

Carder algorithms had higher errors in the summer, as mentioned before, consistently 

overestimating the E2K simulations particularly in this season. As the E2K simulations 

peaked towards the end of the year, both algorithms tended to have lower errors. Secondly, 

the Clark and GSM algorithms followed the inverse trend and errors were more significant in 

the winter. It was expectable that remote sensing retrievals, both for land and ocean 

applications, due to atmospheric contamination and cloud limitation, had higher errors in late 

autumn and winter.  
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Figure 37 –  Case 1 Algorithms RMSE distribution: box 9 2000 
 

   

Concomitant with the analysis for the year 2000, in 2001, the OC3 and Carder algorithms had 

similar temporal behaviours and magnitudes, and both, GSM and Clark, were also very 

similar, reproducing two distinct types of retrievals. Following the wet winter in 2001, the 

OC3 and Carder algorithms retrieved high chl-a concentrations similar to the ones retrieved 

later in the year 2000 (see Annex X). Afterwards, concentrations slightly decreased, peaking 

in late spring/early summer and showing increased variability in the end of the year. The 

GSM apparently had an independent behaviour in the winter and was the only algorithm 
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without a clear winter chl-a peak, reproducing well the theoretical chl-a dynamics. Both GSM 

and Clark chl-a retrievals were within the 57% E2K simulation error for 2000. Comparing 

with Brogueira and Cabeçadas (2006), for the winter of 2001, between boxes 7 and 13, only 

the GSM estimates were within the range of reported chl-a. Comparing with Gameiro et al. 

(2007), the retrievals by the Carder and GSM algorithm in box 8 were similar to those 

reported, indicating two peaks in late spring and mid summer, both underestimated. Overall, 

the retrievals by all algorithms were fuzzier than in 2000, concomitant with the sampled data 

reported by the latter author. Comparing with Brogueira and Cabeçadas (2006), in the summer 

for boxes 7-13, only the OC3 and Carder retrievals were within reported chl-a range, although 

with a slight underestimation.  

 

The extreme winter flow in 2001 probably flushed large quantities of riverine phytoplankton 

cells into the estuary. It was likely that these cells were dead when they reached the estuary 

because of their salinity tolerance and because the extreme flow acted faster than their 

reproduction rate. It is known that when phytoplankton dies or degrades, the phaeopigment 

concentration increases which has impacts on the remote sensing signal and have been 

estimated using MODIS and CSZS data (e.g. Esaias et al., 1998). Moreover, when excited at 

420 nm, phaeopigments also emit fluorescence at 680 nm (e.g. Breves et al., 2003) which 

could explain the increases and peaks in the red reflectance during the shift from autumn 2000 

to winter 2001 (see Figure 27). This fact, along with the increased absorption in the blue 

region, could be the reason for the high chl-a retrievals, during the mentioned period, by the 

Case 1 algorithms. To reinforce this idea, Brogueira and Cabeçadas (2006) reported 

concentrations of 4 µg l-1 for chl-a and 11 µg l-1 for phaeopigments near boxes 7 and 8. The 

increased flow could have also introduced a large SPM loading. According to Schalles (2006), 

this feature by itself, would probably lead to the underestimation chl-a. One possible reason to 

the increase in the retrieved chl-a was the higher concentration of CDOM, which strongly 

absorbs blue light, which could have been also introduced by the increased river flow.   

 

To assess the accuracy impact of the chosen processing options, the error distribution per box 

for the year 2000 was plotted using the default processing options (Figure 38). The water tidal 

mask was also applied. The Clark algorithm was very sensitive to the different Rrs inputs, 

overestimating chl-a above 1000%. The GSM algorithm was unstable, as mentioned, and the 

high error in box 8 was probably related to erroneous pixels which were not flagged. This 

suggestion was driven by a fairly low error in the remaining boxes indicating that the 

magnitude of Rrs inputs should not be the “local” reason. For all algorithms, the errors and 
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correlations significantly increased and decreased respectively, using the standard processing 

options. However, the Carder algorithm was still the one with the best correlation in 

comparison with the remaining algorithms. The introduced processing options lead to an 

increase in accuracy over 200% or 6 µg chl-a l-1 and correlation of about 0.3. The 

performance of the OC3 algorithm using the AtmCor3 and MUMM atmospheric correction 

procedures was compared (Figure 9 in Annex X). The AtmCor3 retrieved higher correlation 

(+0.1-0.15) but with higher associated errors (+ 50%). The MUMM correction procedure was 

kept has the reference data set, due to lower chl-a errors, although both procedures were 

compared in the next sections. The analysis suggested that to monitor chl-a in Case 2 estuaries 

it is crucial to have an accurate atmospheric correction procedure and a strict setting of quality 

control flags to diminish the data set noise. The former, should be made using in-situ 

reflectances and vicariously calibrating the Rrs retrievals (discussed latter on). 
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Figure 38 –  Standard Processing options – Performance per box : 2000 
Bars indicate RMSE and lines the correlation (r), per box 

 

 

4.2.2 - Performance of Case 2 Algorithms (2000) 
 

It is recalled that calibration was performed by adjusting the algorithms to match the E2K 

16day box chl-a simulations, using only the year 2000 because it was quantitatively validated. 

Although the OC3 is a typical Case1 algorithm, it was regionally calibrated, along with the 

R488/R551 and R433/R511, typical Case 1 band ratios. These were assessed to understand how 

they would reproduce chl-a in a Case 2 environment. Also, the aim was to show that using 

other spectral regions, such as the green, red and NIR, was more suitable for chl-a monitoring 

in optically complex waters.  
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The OC3 calibration for Case 2 waters adjusted the magnitude of chl-a retrievals, whilst the 

correlation was very similar because it mainly depended on the dependent variable i.e. the 

band ratio (Figure 39 and Figure 40). For the year 2000, there was a significant error decrease, 

about 60% or 1.1 µg chl-a l-1, and a slight correlation improvement (r=0.55 vs. r=0.47), from 

a global estuary perspective. The OC3 algorithm, with adjusted coefficients for Case 2 waters, 

had good agreements between box 9 and 13 (r~0.80), where the higher improvements occured 

(Figure 40).  The error temporal distribution was flattened, and the high summer and early 

autumn errors of the OC3 original algorithm were greatly decreased (Annex XI). 

    

 

 

 

 

 Figure 39 –  OC3 fitted vs. original OC3 : box 10 – 2000  
   

The tuned OC3 algorithm was compared with 2001 E2K simulations. Because OC3 was fitted 

using the 2000 data set its performance in 2001 was greatly reduced and the original form had 

higher accuracy (Figure 2 in Annex XI). The latter was derived from a large data set and, 

therefore is more robust, suggesting that an algorithm must be calibrated using an extensive 

Case 2 data set comprising large ranges of chl-a, SPM and CDOM concentrations. 
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Figure 40 –  Tuned OC3 performance : 2000  
Bars indicate RMSE and lines the correlation (r) 
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The regional relationships developed using the typical Case 1 ratios, R488/R551 and R433/R511, 

had similar performance compared with the tuned version of the OC3 algorithm, as expected, 

and differences were probably driven by the equation form (see Table 18 & Equation 4). The 

R488/R551 had better performance than the typical R433/R511 ratio (Annex XI), both exhibiting 

errors of approximately 20% or 1µg chl-a l-1. The former ratio had good correlation in box 9 

(r=0.76) (not shown). This analysis suggested that the low blue region, probably overlapped 

by CDOM, chl-a and other pigments absorptions, and scattering, was not suitable to 

reproduce chl-a in the Tagus estuary. 

 

The band ratio proposed by Gitelson et al. (2007), which used the NIR and the upper red 

regions (R748/R678) (see Table 18), underestimated the E2K chl-a up to box 9 and, 

overestimated from box 10 to 13. The overall error was about 28% or 1.10 µg chl-a l-1 and 

correlation ranged from null, in box 7, to 0.89, in box 11, with an average agreement of 

r~0.50. The algorithm performance increases with proximity to the ocean (Figure 41). 

Theoretically the band ratio should have a band closer to the 700nm to accommodate the peak 

shift from the upper red to NIR with increasing chl-a (Gitelson, et al., 2007; Schales, 2006). 

MODIS Terra and Aqua do not have any band closer to 700nm and the low 748nm variability 

probably limited the algorithm performance. The relationship developed using the FLH 

adapted from Letelier and Abbott (1996) presented a higher accuracy than the latter 

algorithm. Its correlation ranged from 0, in box 13, to 0.89, in box 8, with fair inner estuary 

agreements (r~0.75, box 13 excluded). 
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Figure 41 –  Case 2 algorithms performance per box : 2000 
Bars indicate RMSE and lines the correlation (r), per box 
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The band ratio proposed by Tzortziou et al. (2007), which related the green peak and the 

upper red region (R678/R551), had 19% error or 0.70 µg chl-a l-1 with correlation ranging from 

0.46-0.85 and an average agreement of r~0.74. Particularly, this algorithm had good 

correlations in the mid estuary, from box 7 to 11 with r >0.73, usually near 0.80. The 

combined versions, using the FLH and the Tzortziou ratio (see Table 18), had similar 

performance introducing small improvements (not shown). The proposed ratio 

R678/(R551+R748), which added the NIR reflectance to the Tzortziou ratio, also had similar 

performance. It is recalled that, that NIR reflectance is relevant and seemed to be coupled 

with total scattering (Figure 26 & Figure 27), possibly coupled with SPM distribution. This 

proposed ratio had the best performance of all Case 2 ratios tested, with errors of 18% or 0.66 

µg chl-a l-1 and correlation which ranged from 0.53, in box 13, to 0.86, in box 8. The latter 

two ratios had performances slightly better than the OC3 algorithm in box 13, suggesting that 

the estuary mouth, probably due to SPM concentrations, was closer to the Case 2 definition 

than Case 1. Both had, as it was expected, better performances than the existing global Case 1 

algorithms, which were not regionally calibrated.  

 

Regarding temporal distribution, almost all of the band ratios used seemed to simulate a late 

spring/early summer peak followed by an autumn chl-a bloom. As a consequence of the 

calibration performed, the best fitted algorithms exhibited the lowest errors, thus had temporal 

distributions similar to those exhibited by the E2K simulations. Given the limitations of the 

simulated chl-a, namely the underestimation and non simulation of summer blooms in the mid 

estuary, the discussion was focused in the statistical “inaccuracies”. In others words, the Case 

2 algorithms were well fitted and it was important to understand the ability of remote sensing 

to fill the identified model flaws. The Case 2 ratios simulated late spring and summer peaks 

(Annex XI; Figure 42; Figure 43) which the E2k did not.  

 

 

 

 

 

 
Figure 42 –  Case 2 algorithms : time series for box 7 - 2000 
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Comparing with Gameiro et al. (2007), for box 7, the reported late spring peak (near Julian 

day 200) was retrieved using the Tzortziou ratio, its adapted version, and the tuned OC3 

algorithm. The summer peak, reported by the same author for box 7, was only retrieved by the 

tuned OC3 version. For box 8, the late summer peak was not retrieved, although there was a 

slight increase in chl-a retrieved by the latter algorithm. It is recalled that the in-situ data used 

in the E2K validation also suggested a summer bloom (see 4.1). One spatial feature standed 

out, the Tzortziou and the adapted version retrieved a chl-a peak in the upper boxes (7-9), 

near Julian day 200, which was shifted, by about 16 days, in the downstream boxes (10 and 

11) (Figure 43 and Annex XI). Considering the typical residence time of the Tagus estuary, 

this shift could be related to chl-a transported up to downstream sections. 

 

 

 

 

 

 Figure 43 –  Case 2 algorithms (all)  : time series for box 9 - 2000  
   

All the algorithms which used the green and red ratio retrieved an increase in chl-a 

concentration even sooner than the E2K (Annex XI). As seen in section 3.6, this increase was 

associated with a peak reflectance at 678nm, which sometimes exceeded the prominent green 

peak and did not occur in any other period (see Figure 26 & Figure 27). Extreme flows input 

large loadings of SPM, driven by upstream watershed erosion, and may have contributed to 

the increase of Rrs in the whole spectra, but presumably, it would not drive a higher red than 

green peak. Phaeopigments, as discussed previously, are associated with dead or degraded 

phytoplankton cells and as a consequence of the extreme run off, may have been massively 

introduced in the estuary. As stated by Breves et al. (2003), these pigments also exhibit 

fluorescence at 680nm and could be the cause of the extreme red peak. However, one 

particular feature must be taken into account: when the red peaking occured, the green 

reflectance was relatively unaltered but, the NIR reflectance also increased. As mentioned, the 

latter can be used to estimate SPM using remote sensing techniques. The red and NIR peaks 
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could be driven by increased SPM scattering, and the green peak could be flattened by the 

presence of high CDOM concentrations (see the the Ashepoo river example in Figure 3), 

which could also have been flushed out by the extreme river flow. So the possible combined 

effects of phaeopigments, SPM and CDOM, introduced by river flow, probably induced a 

higher red than green peak.  
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4.3 - Case 1 and Case 2 Algorithms: Independent Assessment (2002) 
 

The remote sensing retrievals were compared with the equivalent E2K 16day box chl-a 

retrievals to independently attain their performance in the year 2002. Both, Case 1 and 

regionally developed Case 2 algorithms were compared. The E2K chl-a simulations had 

similar patterns, considering the years 2000 and 2002, regarding both temporal distribution 

and magnitude, probably due to their annual flow resemblances. Particularly, no extreme 

events occured contrary to 2001. Both years could be considered as “average” years and 

therefore it was expected similar performance regarding the remote sensing retrievals.  

 

As occurred for 2000, during the simulated early spring peak, in 2002 there was also a 

MODIS imagery gap, limiting the analysis. The retrievals were highly variable and fuzzy with 

constant increases and decreases, except for the GSM algorithm (Figure 44). The latter was 

the only algorithm exhibiting a fair performance (Figure 45) with errors ranging from 15% to 

32%, or 0.47 to 0.88 µg chl-a l-1, and an average for the whole estuary of about 25% or 0.70 

µg chl-a l-1. It is recalled that, only boxes 6-11 and 13 were used in this analysis. The 

correlation ranges from 0.17 to 0.81, the latter is achieved in box 10. However, it should be 

underlined that the GSM is an unstable algorithm, as the often negative retrieved chl-a values 

reduce the available composites (see Annex XII) because they are masked during data 

processing. 

 

 

 

 

 

 Figure 44 –  Case 1 algorithms : time series for box 8 - 2002  
   

The remaining algorithms had very low correlations, r<0.20. Both, Carder and OC3 

algorithms had errors above 2 µg chl-a l-1, consistently overestimating chl-a between 50 and 

120%. The Clark algorithm had low errors, of 0.70 µg chl-a l-1 or 25%, despite the low 

correlation. Once again, the very low accuracy of the Case 1 algorithms in the near ocean box 
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13 suggested that this box optically resembled Case 2 waters. However, it is recalled that the 

E2K probably underestimated chl-a in box 13, particularly, in the spring/summer. 
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Figure 45 –  Case 1 algorithms performance per box : 2002 
Bars indicate RMSE and lines the correlation (r), per box 

 

 

 

The error distribution showed similar patterns for the three algorithms, errors were higher in 

the winter and autumn (Figure 46), except for GSM, which had scarce data in the latter 

season. This may driven by factors such as, high water vapour, cloud coverage and other 

inadequate atmospheric conditions, which affected the accuracy of remote sensing retrievals. 

The retrievals were consistently above the simulations in the extremes of the year, and during 

spring and summer, values fluctuated with a few discernable peaks in late spring and mid 

summer but without any clear temporal trend. The GSM algorithm was the only algorithm 

with low variability, thus a flattened behaviour, presenting less discernible peaks, particularly 

in the mid spring when the other two algorithms also peaked (see also Annex XII). Compared 

with the year 2000, the Case 1 algorithm performance was significantly lower. 

 

 

  

 

 

 Figure 46 – Case 1 algorithms Pairwise and MAE(%) distribution for box 10 (2002)  
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Comparing with Gameiro et al. (2007), for a sampling site located in box 7 and considering 

only the spring and summer periods, the remote sensing estimates of the OC3, Carder and 

Clark seemed to reproduce the principal peak in May (120-150 Julian day). Moreover, they 

also seemed to reproduce the reported summer peak (180-210 Julian day). Concerning 

reported magnitude, the OC3 was the only algorithm which was within reported range. 

Comparing with the same author, but for box 8, the findings were similar to box 7, concerning 

a peak in June (150-180) (see Annex XII). The difference was that in the mid/late summer, 

algorithms reproduced a slight peak, which was not reported.  

 

The spatial distribution of chl-a, for the GSM algorithm between 113-128 Julian days, is 

shown in Figure 47. Despite the coarse resolution and the low variability of the algorithm, 

spatial differences were discernable and were theoretically consistent. The map shows higher 

chl-a concentrations in the upper estuary, the south part of the intertidal areas near Alcochete 

and in the Montijo bay. The spatial gradient was evident as the distance from the ocean 

increased, generally, so did chl-a. Furthermore, the outlet plume was discernable along with 

the near shore chl-a gradient. The synoptic ability of remote sensing to reproduce the spatial 

distribution of chl-a is a major potentiality which cannot be achieved using in-situ data.  
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 Figure 47 –  GSM chl-a spatial 16day distribution: 113-128 (2002)  
 

The spatial analysis arose an important feature: box variability. From visual inspection it was 

clear, for instance, that box 9 and 10 (see Figure 7) had great variability due to two very 

distinct chl-a ranges. The Montijo bay exhibited concentrations near 5 µg chl-a l-1, whilst near 

the main channel, concentrations were about 50% lower. Some studies, which also used 

model boxes, divided the estuary delimiting the small bays in the south part of the estuary 

from the remaining boxes (Antunes, 1998; Pina, 2001; Saraiva, 2001). This could be a factor 
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that caused the high variability in chl-a retrievals, because the other algorithms (not shown) 

suggested a similar spatial pattern. 

 

The performance of the regionally tuned Case 2 algorithms was lower than the Case 1 

algorithms. Distributions were even more variable and one particular feature was common, 

the chl-a retrievals were higher in the winter and in the autumn, when the simulated chl-a was 

relatively low (Figure 48).  

 

 

 

 

 

 Figure 48 –  Case 2 algorithms : time series for box  - 2002  
 

This similar trend could be driven by varied causes, namely:  

1) Parallel internal processes could be more relevant in those periods and affect the 

IOP’s of the Tagus estuary. The CDOM dynamics were poorly known in the Tagus estuary 

and may influence greatly the band ratios using shorter wavelengths. Note that, the ratio 

R748/R678, which used regions less sensitive to CDOM absorption, did not retrieve such high 

chl-a concentrations in the year extremes. Also, the SPM dynamics were simulated in an 

average sense and were poorly described.  

2) The chl-a dynamics cannot be retrieved with the spectral regions used. This may 

driven by the distribution of the MODIS bands, which lack spectral resolution in the upper red 

and NIR regions (e.g. Schalles, 2006).   

3) Atmospheric conditions, which are typically more adverse to remote sensing in both 

periods, could be influencing the accurate Rrs retrieval.  

4) The MODIS Terra sensor, besides not being tailored for ocean application, is not 

calibrated according to it (Franz in http://oceancolor.gsfc.nasa.gov/forum/). Moreover, the 

pronounced sensor degradation mentioned before (Franz et al., 2007) could affect the Rrs 

retrievals. Note that in Figure 5 of the Annex XII it is clear that spectral signatures were 
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fuzzier and more variable, compared with the year 2000 and 2001 (see Figure 27), indicating 

that Rrs were probably the main cause for the lack of accuracy in 2002.  

 

The error and correlation spatial distribution clearly showed that the tuned algorithms had a 

poor performance in 2002 (Figure 49). The accuracy was very low for all boxes and decreased 

with decreased distance to the ocean. In fact, correlation wass often negative indicating that 

the temporal trend retrieved was inverse to the simulated one. The OC3 fitted algorithm had a 

slightly better performance than the original form (see Annex XII), suggesting that the 

remaining Case 1 algorithms would probably have increased accuracy if they were tuned for 

the Tagus estuary conditions. 
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Figure 49 –  Case 2 algorithms performance per box : 2002 

Bars indicate RMSE and lines the correlation (r), per box 
 

Comparing with Gameiro et al. (2007), for box 7, only the Tzortziou et al (2007) and its 

adapted version retrieved both the May and July peak, respectively. However, after the latter 

concentrations increased significantly contrary to reported dynamics. Also, comparing with 

the same author, but for box 8, both algorithms mentioned and the OC3 fitted algorithm 

retrieved a June peak (150-180 Julian days) although estimates were widely variable.  

 

The analysis of seasonal spectral signatures of boxes 6 to 13, indicated some similar patterns 

between 2000 (Figure 26) and 2002 (Figure 50). The upper red shoulder was, in some periods 

and boxes, discernable and possibly indicated higher chl-a concentration. After the summer, 

this region increased its relative magnitude, exceeding in some occasions the green peak, 

producing a flat bound in the green-red region. Moreover, as the red reflectance increased so 

did the NIR. This suggested, like in 2000, that phaeopigments could be increasing the red Rrs 

thru fluorescence and/or cell scattering and/or, that, CDOM concentration increased in the 

year extremes flattening the green peak and masking the increased scattering. The NIR peak 

may be a good independent indicator of the SPM spatial gradient, and could possibly be used 
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in further work, instead of the green region. In fact, the Case 1 band ratios which used the 

NIR instead of the green region (e.g. R443 or R488 /R551 vs. R443 or R488 /R748) had better 

performances. Between compositing periods, the spectral signatures were highly variable 

probably explainning the consistent “up and down” behaviour of retrieved chl-a. The 

magnitudes of Rrs also were widely variable suggesting that the retrievals were influenced, 

for instance, by atmospheric conditions, not accounted for.  
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Figure 50 - Spectral Signatures for all boxes per season : 2002 

 

In summary, both Case 1 and regionally tuned Case 2 algorithms had low performances for 

the year 2002 exhibiting high small scale variability and poor temporal trends when compared 

with the E2k simulations and the expectable chl-a distribution. The spectral signatures 

provided valuable information that should be exploited, in order to understand how to retrieve 

chl-a, and other variables, in the Tagus estuary. The development of a robust algorithm can 

only be achieved accommodating other regions of the spectra, like the red and NIR. Of all the 

algorithms tested, the GSM was the more constant and accurate among all. The reasons 

behind the better performance of GSM when compared, for instance, with the also used semi-

analytical Carder algorithm, were poorly known. The different coefficients, inversion methods 

and slightly different equations, could have driven these differences and understanding them 

required a thorough analysis which was beyond the scope of this work. The necessity, 

expressed by many authors, of a particular regional calibration for Case 2 algorithms and the 

increased performance of the OC3 tuned algorithm, suggest that regional algorithms could be 

more suitable for chl-a monitoring in Case 2 waters.  
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5. Limitations and Future Work 

 

This section was dedicated to identifying the major limitations of this work and point out the 

future work required to develop a robust method for remote sensing retrieval of chl-a in the 

Tagus estuary. The current work was based in two different, but complementary, components: 

ecological modelling and remote sensing of chl-a. This section, therefore, addressed the 

limitations and future work needed for each one and integrates both.  

 

The use of an ecological model to compare and assess remote sensing retrievals of chl-a was 

an innovation. It attempted to assess the accuracy of remote sensing algorithms to monitor 

chl-a, using a large scale approach, both spatial and temporally. The overall assessment was 

constrained by the model accuracy and its limitations. The few and interspersed available 

samples were a major limitation to the ecological model development and for remote sensing 

assessment and calibration. For the latter, the majority of the studies performed in estuaries 

compare optical signals with chl-a, SPM and/or CDOM concentrations and/or IOPs 

(discussed later). A larger number of in-situ samples, with increased temporal and spatial 

resolution, along with a wider temporal coverage, would probably increase the model 

accuracy and applicability. An improved spatial coverage, particularly in the mid estuary 

where the available data was very scarce, would allow the model to be more robust where 

remote sensing data was more abundant. Future work should aim towards at using a large in-

situ data set with finer spatial resolution, particularly to assess large scale trends, and at using 

large temporal series. Furthermore, most of the comparisons made throughout the work were 

based in published data regarding a coincident period. This comparison was complex and 

ambiguous for many reasons. Firstly, data was not accessible in spreadsheets or tables not 

allowing an objective comparison. In fact, in most of the cases, making accurate inferences 

from plotted data was very difficult and limited its potentialities.  Secondly, the comparison 

was made subjectively matching the point sampling locations to the model boxes. Thirdly, the 

methodologies and objectives of the consulted works were very different.  

 

As mentioned above, the ecological model had its major limitations where the remote sensing 

had its higher potential: the mid estuary zone. Besides the availability of in-situ data for 

model calibration and assessment, the model was also limited by its components. The more 

relevant were addressed. The major model limitation refered to its transport component suited 

for tidally averaged simulations, but unable to resolve small-medium scale hydrodynamic 

events, which may be crucial to both chl-a bloom development and its spatial distribution 
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(e.g. Lucas et al., 1999b). For 8 or 16 day periods this influence could be smoothened, but for 

instance, if a neap tide induced a bloom development and the remote sensing imagery had low 

temporal coverage, this effect would have enhanced the differences between the latter and the 

chl-a simulations. It should be noted that, the low temporal coverage was very often in the 

MODIS Terra data sets used, frequently having just 3 or 4 days without the full spatial 

coverage, per composite. In spite of the effect of high frequency events such as tides, an 

accurate hydrodynamic model should provide a good description of the main transport 

processes in the estuary. The impact of such processes, like lateral sloshing and the effect of 

the main channel, probably had higher impacts in the mid estuary. Therefore, the use of 

coarse transverse model boxes was by far a rough approximation to reality because the 

transport is probably disproportionate, considering the north and south parts of the main 

channel. The transport of materials is probably not done according to a homogenous 

longitudinal gradient and, therefore, transversal transport in the mid estuary is probably an 

important mechanism. For instance, a clear limitation was the assumed constrained 

communication between the highly productive Northern channel and the mid estuary. Another 

obvious limitation was the numerical necessity of assuming a constant box volume, which had 

impact on the definition of the transport fluxes and concentration of dissolved and particulate 

substances. This feature probably had higher impacts especially in the intertidal areas, key 

components of the estuarine chl-a dynamics, which are mainly located in the south mid 

estuary. Furthermore, the residence time computed by the transport model is  important for 

bloom development and a more detailed approach would probably have increased the 

ecological model accuracy. For instance, Cartaxana (1999 in Gameiro et al., 2007) stated that, 

in the up-mid regions, the suspended materials remained entrapped and probably stimulated 

ammonia and phytoplankton production. In sum, the transport model may be suitable for inter 

annual comparisons (e.g. Ferreira et al., 2007a) but lacked in accuracy regarding intra annual, 

weekly or bi-weekly simulations, being the major limiting component. Furthermore, the 

model should have been calibrated prior to 1998 to allow the model to spin up, enhance the 

use of the sampled data for that year in the model calibration. The use of the more extensive 

in-situ data set of the 80’s decade would have probably increased the model robustness. 

 

Future work using the ecological model approach to assess remote sensing retrievals should 

focus on the use of a detailed transport model, which is crucial to attain robust ecological 

simulations. Currently, for the Tagus estuary, some studies have used MOHID, a detailed 3-D 

transport model, with good results and extensive validation (Trancoso et al., 2005; Antunes, 

1998; Fernandes, 2005; http://www.maretec.mohid.com/). The incorporation of such a model 
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in the E2K shell, in a compatible fashion, would enhance the benefits of using ecological 

models to retrieve the chl-a concentration in the Tagus estuary and to assess the accuracy of 

remote sensing products. The transport model drove the definition of coarse model boxes for 

the ecological integration and the box definition used was an imperative limitation because 

the transport model did not allow lateral transport between boxes. The MOHID transport 

model has been integrated in the coarse box grid with a similar number of boxes, compared 

with E2K. However, it uses boxes with lateral transport with two main differences: it divides 

the mid estuary into a northern and southern part, evidencing the importance of the 

transversally disproportionate transport, driven by the existence of a main channel. 

Specifically, it divides the adjacent small bays (Seixal and Montijo) from the remaining 

estuary (http://www.maretec.mohid.com/). This work reinforced the idea that these particular 

(see section 4.3) areas should be separated because they have specific dynamics with higher 

intertidal nature and are dependent of the highly organic loading of adjacent streams. 

Furthermore, the MOHID model separates the intertidal area near Alcochete. Future work 

should use a different box definition coupled with a more detailed transport model. 

 

The simulated river flow has proven to be a major limitation to this work. The E2K uses a 

periodic function, which may adapt to a fairly regular and average annual flow distribution, 

but clearly fails to reproduce the hydrological variability in the years used in this work. The 

flow impact on chl-a retrievals, using the implemented polynomial functions, introduced high 

instability, reaching high atypical peaks in autumn and winter. One of the main reasons was 

the discussed transport model, which would probably better redistribute the extreme water 

input and smoothen its effect on chl-a retrievals. The other main reason was the monthly 

polynomials adjusted to simulated data, which lack in temporal resolution and accuracy 

because they were fitted using a power law explainning the extreme flows. This major 

limitation had a pronounced impact on chl-a simulations, particularly in the year 2001, and 

also for the wet seasons of the other years used. The power law should be replaced, for 

instance, by a smooth linear function which does not amplify any high flows measured at the 

Almourol station. A promising improvement in future work would be to adapt the E2K model 

so as to use time series as an input, with the advantage of using real, or near real, measured 

data with a temporal resolution adequate to finer scale simulations. This was a major 

limitation because climatic factors are key forcing functions to phytoplankton production (e.g. 

Gameiro et al., 2007) and were specifically difficult to model accurately. Using sampled data 

surely diminishes the error propagation, when compared with using models over models.  
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The capability of using time series was also a limitation for boundary loads, ocean, river and 

smaller streams or WWTPs. For instance, the assumption of a constant nutrient and SPM 

riverine concentration over a simulation period was very rough and broad. Seasonal dynamics 

in flow and concentrations probably drove major impacts in estuarine phytoplankton (e.g. 

Gameiro et al., 2007). For the ocean boundary, dynamic models have been used in other E2K 

applications (Ferreira, personal communication) and remote sensing can, potentially, be a 

valuable tool in its quantitative characterization. In order to assess the remotely sensed chl-a 

retrievals, a fair description of SPM and CDOM dynamics is needed to understand the 

possible IOPs that underlie in a “black” model box. The analysis performed suggested that 

SPM were roughly described mainly because the transport model did not accurately simulate 

the particulate dispersion within the estuary (e.g. Cartaxana, 1999 in Gameiro et al., 2007) and 

also because it did not simulate the SPM resuspension in a tidal cycle. The latter has been 

pointed out as the major process ruling the SPM magnitude and distribution in the Tagus 

estuary. As mentioned, the constant riverine input concentration was also a limiting factor. 

Furthermore, the SPM model had limited parameters and a more detailed model is needed in 

future work.  

 

The main limitation of the phytoplankton object was the fact that it only considered nitrogen 

limitation. Several authors have suggested that phosphorous and nitrogen limit production 

with different seasonal patterns. Furthermore, silicate limitation can indirectly drive the after 

spring chl-a decrease due to lower river flow and stimulate it, when river flow increases. The 

analysis of the Redfield ratio suggested that silicate was limiting, both in calibration and the 

validation years, probably causing a higher impact in the up and mid estuary regions where 

salinity was lower, diatoms were more abundant and silicate was, therefore, more relevant. 

 

For the application of remote sensing techniques to monitor chl-a in the Tagus estuary, the 

main limitation were the data used due to the MODIS Terra band degradation which 

influenced ocean retrievals (Franz et al., 2007). Furthermore, the Terra data was not calibrated 

for ocean applications. These two factors coupled were a major limitation. Future work on 

retrieving estuarine chl-a should use the recent AQUA sensor data, which is expected to 

greatly increase the accuracy of Rrs retrievals. Concerning the processing options used, two 

major limitations were evident. Firstly, the assessment of the most adequate atmospheric 

correction procedure based on chl-a retrievals, and secondly, the procedure used to remove 

straylight contamination. As mentioned, in remote sensing of aquatic systems the atmospheric 

correction is critical to accurate Rrs retrievals because the optical signal is very low. In future 
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work, it is highly recommended to use in-situ radiometer samples to assess the most adequate 

atmospheric correction procedure in the Tagus estuary (e.g. Hu et al., 2004). Furthermore, 

specific aerosol and atmosphere profiles should be developed to insure a robust and 

potentially operational monitoring procedure in the Tagus estuary. The simple straylight 

procedure was a clear limitation because it did not completely remove contaminated pixels 

even if it insured that some were removed. No pre-launch procedure for straylight 

identification was developed for MODIS. The ocean applications, due to their global scale 

monitoring aim, are probably less sensitive to straylight errors. However, for estuarine 

applications, due to their smaller geographic scale, a more robust and accurate procedure 

should be developed in future work. The water daily water mask developed may not fully 

correct for bottom reflectance and intertidal contamination. Because tidal simulations were 

made for the port of Lisbon and there was a pronounced lag, for instance, when estimating the 

tidal height, for the same hour and day, in the 40km upstream intertidal areas. Therefore, 

assuming that the tidal height of box 6 was equal to the one simulated in the Lisbon port was 

a rough approximation. It was expected that spatial resolution would be a major limitation, 

but it was shown that it was not, theoretically reproducing the chl-a spatial dynamics. 

However, in future work, and to monitor the upstream zones, the Northern Channel, the 

intertidal areas and the main navigation narrow channel, increased resolution data would be of 

great benefit. The methods proposed by Shutler et al. (2006) and Franz et al. (2007) can be of 

great value, providing synoptic, near daily medium resolution data.  

 

For future algorithm development, simultaneous in-situ samples of IOPs, Rrs and substances 

concentration are crucial. These must be compatible with the sensor characteristics and must 

allow a match comparison for vicarious calibration of Rrs and specific algorithm 

development. As demonstrated and stated by other authors, the spectral signature analysis was 

a valuable tool to understand dynamics in optically complex waters. These were highly 

variable and contain various overlapping signals “underneath” the “black box” driven by 

varying SPM, CDOM and chl-a contributions. For the SPM component, E2K clearly did not 

simulate it at the required scale. Therefore, reflectance spectra retrieved by radiometer 

sampling is very important in future work. However, the resemblance of the spectral 

signatures with those reported by Schalles (2006), for similar contents, indicated that the 

methodology used was robust and could be used in future works. Also, calibrating algorithms 

with average radiances may smooth temporal variability to a point that its impact is difficult 

to assess. In-situ samples should be used to calibrate further Case 2 algorithms and afterwards 

information may be aggregated for long term assessment purposes.  
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6. Conclusions 
  

This work demonstrated that, an ecosystem scale assessment of remotely sensed chl-a was 

feasible in the Case 2 Tagus estuary, although with limitations. It was shown that several 

issues arise when using data sets which provide information at different spatial and temporal 

scales. The ecological model provided broad and average information on the chl-a dynamics 

in the estuary by using large model boxes and reproducing monthly to seasonal dynamics, 

whilst the remote sensing approach provided daily\weekly imagery with higher spatial 

resolution. A major task in this work was to make these different scale data compatible and 

comparable. The methods used provide a good and robust approximation to an ecosystem 

scale assessment, since they successfully removed the noise associated with remote sensing 

data, maintaining ecological significance.  

 

The simulated chl-a concentration, using the E2k model, had a 57% error when compared 

with sampled data in the years 2000 and 2002. The availability of in-situ data and some model 

constraints limit its accuracy, thus the simulated chl-a. Further work is needed to improve the 

E2K chl-a simulations, namely the implementation of a detailed transport model which 

simulates transversal fluxes and tidal processes, the accommodation of phosphorous and 

silicate limitation in the phytoplankton object, as well as the incorporation of detailed river 

flow time series. The latter had a pronounced impact in chl-a simulations, driving an 

excessive and atypical winter chl-a peak in 2001 and in the wet seasons of 2000 and 2002.   

 

The remote sensing of chl-a in the Tagus estuary is feasible but requires regionally developed 

algorithms, using in-situ data. As demonstrated, processing options such as atmospheric 

correction and quality control had a large impact on chl-a retrievals. The analysis performed 

for the year 2000, specifically showed an error reduction of more than 100% by using an 

atmospheric correction procedure more adequate for turbid waters. The MUMM algorithm 

was used successfully in this work but, in the future, work must aim at retrieving suitable 

water leaving radiances comparing top of the atmosphere reflectances with in-situ radiometer 

data and vicariously fitting an adequate atmospheric correction method. The quality control 

flags were also relevant, namely the sun glint and straylight correction were implemented 

successfully by removing noise thus improving accuracy. The latter needs a more robust and 

validated procedure but the simple method used provided reasonable improvements.  
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Remotely sensed chl-a was retrieved by using pre-existing Case 1 algorithms and regionally 

tuned algorithms. The latter were divided in the regionally tuned OC3 empirical algorithm 

and simple Case 2 band ratios relationships. In the Case 1 algorithms, the Carder algorithm 

revealed the higher correlations in both 2000 and 2001 (r~0.55), but retrieved chl-a with 

relatively high errors, about 2.5 µg chl-a l-1, or 70% errors for the whole estuary. In the year 

2002, this algorithm revealed a lower performance, inadequate for chl-a monitoring. The 

GSM was the algorithm with better and more constant performance for the analyzed years. In 

the year 2000, the GSM resulted in an accuracy of about 1.5µg chl-a l-1, or 30% error for the 

whole estuary, with correlation of about r~0.40. In 2001, the performance was lower, as it was 

for all algorithms used. However, in 2002 the GSM algorithm had the best performance, but, 

still below the quality requisites needed for consistent, periodic and robust monitoring of chl-a 

in the Tagus estuary. The correlation was approximately 0.45, with average errors of about 

30% or 1 µg chl-a l-1. The Case 2 band ratios also had low accuracy, indicating that much 

work is needed to retrieve a robust Case 2 algorithm suitable for chl-a monitoring in the 

Tagus estuary. 

 

Spatially, some remote sensing limitations were evident. The intertidal box 6 was poorly 

retrieved in terms of accuracy and in terms of temporal coverage due to the low number of 

composites analyzed. Box 12 was also very difficult to assess using remote sensing 

techniques due to its narrowness and high sensitivity to urban features and land 

contamination. The remote sensing of chl-a has its “strong point” in the mid region, between 

box 7 and 11 because it is wider and less “optically contaminated”. The correlations peaked in 

this region and the errors were reasonable. Historically, this mid section has been less 

monitored than the remaining areas, such as the upstream region, the Northern Channel and 

the outlet channel. Therefore, information provided by remote sensing techniques could 

improve the spatial coverage of chl-a information over the Tagus estuary. Furthermore, the 

regional calibration of the OC3 algorithm dramatically increased its accuracy, namely by 

adjusting the magnitude of retrievals to the Tagus estuary reality, diminishing the absolute 

errors. However, it was demonstrated that when applied to other data sets, not used in its 

calibration, the accuracy diminished dramatically. This analysis suggestd that future work 

should be focused in the regional calibration of semi-analytical algorithms, such as, the GSM 

algorithm. 
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ANNEX I – FORCING FUNCTIONS CALIBRATION 
 

1. LIGHT OBJECT CALIBRATION 

 
In order to fill punctual gaps of the Monte Caparica station, the radiation values measured at 

the Vila Franca de Xira station were defined as a function of the former, thru linear 

regression. Both stations have radiation values since 2001, and the latter station, has scarce 

and interspersed data and was, therefore, excluded. The relationship derived presented good 

agreements (Table 1) providing confidence in data gap filling. 

 

Table 21 - Regression statistics between Monte Caparica and Vila Franca de Xira stations 

Year Number of Samples (N) Correlation (r) RMSE 

2002 8486 0.90 40.3 
2003 8566 0.97 4.4 

“Average Year” 8566 0.92 26.50 
 

The figures below exhibit the scatter plot of coincident hourly radiation values measured at 

both stations for 2002 (Figure 51) and 2003 (Figure 52). Note that in 2002, there are some 

large radiation values will null correspondence.  

   

 

 

 

 Figure 51 - Pairwise scatter plot: hourly radiation values (2002)  
An average year was defined, has the arithmetic average of 2002 and 2003 hourly radiation 

values in Monte Caparica station, and aggregated into daily average radiation in order to 

simplify the light object calibration process, maintaining ecological significance (e.g. Grillot 

& Ferreira, 1996).   

 

Moreover, this choice was made to account for error overestimation due to: 
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a) occasional night time radiation positive values;  

b) systematic 1 to 2 hours shift between measured and modelled values  

c) smoothing of errors in radiation measurement. 

   
 

 

 

 Figure 52 - Pairwise scatter plot: hourly radiation values (2003)  
 
The three distinct daily datasets are shown in Figure 53. 

   
 

 

 

 Figure 53 - Daily average radiation values distribution (Monte da Caparica)  
   

Photoperiod and top of the atmosphere radiation were calculated by the light object and the 

latter was limited according to a fractional cloud cover, which varies from 0 to 1, defined by a 

dynamic periodic function, relating the time of the year (Julian day) with the cloud coverage 

(Equation 9). 

    

tudeCloudAmpli
CloudPhase

CloudPeakJulianDay
ModalCloudCloudCover ×















 +
×+= πcos  Equation 16 

  

The above function models the seasonal cloud distribution. The “average year” was set to 

represent all years used. Calibration parameters (Table 22) corresponded to 19.5% errors with 

good correlation, r2 = 0.93 (N=365). 
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Table 22 - Set of parameters used in the light object calibration 

Year Latitude (º) Modal Cloud 
Cloud Peak  
(Julian day) 

Cloud 
Phase (º) 

Cloud 
Amplitude 

Average Year 40.5 0.6 350 180 0.1 
 
2. FLOW OBJECT CALIBRATION  
 
Flow was modelled using a yearly cosine function based on the modal flow, the amplitude 

variation and daily random flow (Equation 17), typically calibrated using field data. Tflow is 

the river flow; Tmodal is the modal flow; τ , the calculation timestep; λ a lag factor; maxh the 

maximum amplitude; fr the random fluctuation (Ferreira, 1995). 

    

( )
( )
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
+×







 −×
+= ralflow fhTT max

180
cosmod

λτπ
 

Equation 
17 

  

The Almourol INAG station (17G/02H), about 40 kilometers upstream the former, with data 

since 1999, was used to model flow values for the Ómnias station using 2002 and 2003 

coincident data. The relationship derived follows a power law function, with good agreement 

r
2 = 0.82 (N=674), enabling flow simulation at the Ómnias station from 1998 to 2001 also 

used in latter years gap filling. Each year was treated independently. The agreement decreases 

when flows are higher than 600m3s-1 (Figure 54).  
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 Figure 54 - Pairwise scatter plot : Daily flow m3s-1 (2002 and 2003)  
   

The function was fitted for a 0-2100 m3s-1 range and when applied to flows outside this 

interval, the data confidence was lower. For instance, in the year 2001, the highest monthly 

flow, recorded in Almourol station, was 2900 m3s-1 and the simulated flow was about 6700 

m3s-1. This can potentially introduce significant errors. Firstly, the E2k flow standard object 

was compared with month average flows (Table 23). Random flow was set to null favouring 

model stability. High flow events in typically dry months (and vice versa) are examples of 
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phenomena which were not simulated accurately using the E2k flow function, and therefore, 

another approach was tested. 

Table 23 - E2k flow simulation performance 
 1998 1999 2000 2001 2002 

RMSE 143 109 300 1000 205 
MAE (%) 82% 69% 92% 336% 75% 

r 0.55 0.63 0.63 <0 0.22 

 

Secondly, polynomial equations were adjusted to daily flows, resulting in periods with 

negative simulated flow. Therefore, to simplify the programming effort, 4th and 5th order 

polynomial equations were fitted to monthly averaged daily flows and inserted in the E2k 

code leading to increased accuracy, however, with significant errors (Table 24). 

Table 24 - Statistics regarding monthly averaged daily flows (polynomial) 

 1998 1999 2000 2001 2002 

RMSE 164 43 233 603 64 
MAE (%) 29% 32% 89% 75% 160% 

r 0.96 0.92 0.92 0.97 0.93 
 
3. ADVECTION-DISPERSION 
 
The advection-dispersion object was calibrated matching salinity samples, taken between 

1998 and 1999, with E2K simulations. The first year had a significantly higher average 

salinity and total flow than the second, especially for the winter months. The calibration 

performed slightly increased the model accuracy (Figure 55) when compared with a reference 

run (Ferreira and Duarte, 1994) (Figure 56). 
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 Figure 55 - Pairwise salinity comparison: measured vs. modelled  
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         Legend 
 

   - Modelled salinity (psu); 
   - Sampled salinity (psu); 
  
 

Figure 56 - Reference time series box by box: Sampled vs. modelled 
 



 147 

 ANNEX II – SPM AND ZOOPLANKTON CALIBRATION 
 
1. SPM OBJECT CALIBRATION 
 
SPM in-situ measurements were available for 9 boxes and system boundaries, the Tagus river 

and ocean. The best parameters achieved, concerning the calibration dataset were turbulence 

= 1.1 and box resuspension as detailed in Table 25. 

 
Table 25 - Parameters achieved in SPM calibration (sampled data) 

Box 1 2 3 4 5 6 7 8 9 10 11 12 13 

Ressuspension (%) 0 0 4 0 0 6 5 0 0 0 0 0 0 

 
The comparison with other studies, historical data and sampled data indicates that simulated 

SPM was significantly underestimated. Another calibration effort was performed to include a 

broader insight, temporal and spatially, using a mixture of historical data, reference studies 

and the calibration dataset (Table 26). The best parameters achieved are described in Table 27 

considering the same turbulence. Quantitative assessment is not possible and therefore 

qualitative evaluation was made thru visual inspection of Figure 57. 

 

Table 26 - Historical and reference studies comparison 

  

Historical 

data 
(1980-
1995) 

Sampled 
1998-1999 

Gameiro 

et al. 
2004 

Fernandes, 
2005 

Brogueira 

and 
Cabeçadas, 

2006 

Proposed 

Box 3 65 40 (1) 40 - 40-50 40-50 
Box 4 49 15 (8) 50 - - 30-45 
Box 6 97 38 (1) - - 35-50 40-50 
Box 8 66 34 (1) 20 20-30 35-50 25-35 

Box 10 49 30 (1) - 5-15 10-40 20-35 
Box 11 25 10 (9) - 5-10 10-35 10-15 

Boxes 12 & 

13 
16 8 (9) - 5 10-35 10-15** 

* The values in parenthesis mean number of samples  
** Ramos (2002) was also considered (see text) 

 
Table 27 - Parameters achieved in SPM calibration (historical and reference data) 

Box 1 2 3 4 5 6 7 8 9 10 11 12 13 

Ressuspension 
(%) 

0 0 10 4 4 9 6 2 0 0 0 0 0 

 
Simulated values are relatively within ranges and are in some cases significantly higher than 

the ones modelled according to measured data in 1998 and 1999. Still, the mid estuary is 

underestimated and the downstream boxes slightly overestimated, except for box 13. The 

simulation does not reproduce the longitudinal exponential SPM gradient from mid to 

downstream estuary (Fernandes, 2005).  
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Legend 
 

 

  - Modelled SPM (mg l-1); 
  - Sampled SPM (mg l-1). 

 

Figure 57 - SPM Calibration using auxiliary data, box by box: sampled vs. modeled 
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2. ZOOPLANKTON OBJECT CALIBRATION 

 

The parameters used for the calibration of the zooplankton object, described in Table 28, were 

adapted from Ferreira and Duarte (1994). A thorough description of the equations and 

parameters used is provided in Parsons et al. (1984). 

 
Table 28 - Parameters used in the zooplankton object 

Parameter Description Units Value 

KGraze 
Proportionality Constant for 

Zooplankton Ration 
(µg C l-1) -1 0,01 

PhytoLowerLimit 
Minimum Phytoplankton 

concentration at which feeding starts 
µg C l-1 40 

Rmax Maximum ration 
mg FW (mg FW)-1 

day-1 
5 

Death Loss Death loss day-1 0,05 

Metabolism 
Fraction of energy used for 

zooplankton activity, internal 
maintenance, digestion and growth 

% 0,75 

MaximumDeathLoss Maximum death loss day-1 0,75 

KZooStarvedByPhyto 
Proportionality Constant relating 

Zooplankton Death Loss and 
Phytoplankton concentration 

(µg Chla l-1) -1 0,1 
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ANNEX III - Boundary Conditions and Dissolved Substances Calibration 
 
1. Boundary Conditions  
 
This annex provides a brief description of the boundary conditions defined for the calibration 

process (1998, 1999), validation and model application (2000-2002). Three types of 

boundaries are considered in the model: Tagus river, ocean and smaller estuary affluents, such 

as small rivers, streams and WWTP’s. The particulate and dissolved substances are nutrients, 

SPM, phyto and zooplankton. The E2k requires the definition of a constant concentration 

throughout the simulation period concerning each boundary. The substances loading into the 

Tagus estuary can be variable, for the river and ocean, or constant, for the smaller affluents. 

Loading behaviour is therefore driven by the boundary flow modelling. Advective river flow 

varies in a month scale concerning independent years. Ocean flow, from a tidally averaged 

standpoint, is done by diffusion transport. For the smaller affluents a constant flow and 

concentration were defined (Ferreira, pers.comm.; INAG, 2002; www.insaar.inag.pt). For the 

coincident boundaries concerning both data sources, modelled and measured ammonia were 

compared tuning flow and concentration within ranges and depending on the need to simulate 

higher or lower loadings, thus improving the nutrients object accuracy. Note that, this is 

highly dependent on phytoplankton concentration and therefore a reference simulation was 

defined to access if there were significant modelled to measured differences. For the three 

distinct periods, the concentration at the river and ocean is presented in Table 29 and 
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Table 30, for smaller affluents in Table 31 and Figure 58. Two different data sources were 

used. The INAG station Valada do Tejo (19E/02) with monthly measurements was used 

specifically for the Tagus river. The BarcaWin2000 software with punctual samples that result 

from campaigns performed in the Tagus estuary was used for both river and ocean. No 

zooplankton data was available and were defined according to Ferreira and Duarte (1994), 15 

and 2 mgm-3 for river and ocean respectively. 

 

Table 29 - Boundary conditions for the Tagus river and ocean – Calibration 

Variable Units Tagus River Ocean 

Ammonia  µmol l-1 4.1 
a 1.0 b 

Nitrite µmol l-1 0.7 
a 0.3 b 

Nitrate µmol l-1 55.0 
a 5.0 b 

Phosphate µmol l-1 6.2 
a 0.4 b 

Silica µmol l-1 88.5 
a 3.8 b 

Phytoplankton µg Chla l-1 10.1 
a 1.7 b 

Suspended matter mg l-1 15.4 
a 2.0 b 

The different letters refer to the data source: INAG station (a) and BarcaWin2000 (b) 
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Table 30 - Boundary conditions for the Tagus river and ocean – Calibration 
Variable Units Tagus River Ocean 

Ammonia  µmol l-1 3.6 a 1.6 b 
Nitrite µmol l-1 0.7 a 0.4 b 
Nitrate µmol l-1 58.1 a 5.2 b 

Phosphate µmol l-1 6.9 a 0.5 b 
Silica µmol l-1 101.9 a 4.9 b 

Phytoplankton µg Chla l-1 13.6 a 2.1 b 
Suspended matter mg l-1 13.5 a 1.5 b 

The different letters refer to the data source: INAG station (a) and BarcaWin2000 (b) 
 

Table 31 - Boundary description and setting for smaller estuary affluents (Ferreira, personal 
communication; INAG, 2002 and www.insaar.inag.pt ) 

Boundary Description 
Ammonia 

(µmol l-1) 
Flow (m3s-1) Box connection 

3 Sorraia River 43 39.50 6 
4 Trancão River 1000 5.00 5 
5 Portinho da Costa Caparica 3000 0.24 13 
6 Almada 3000 0.25 11 
7 Seixal 3000 0.24 11 
8 Palhais 1029 0.79 11 
9 Coina 3000 0.05 11 

10 Pinhal do General 3000 0.03 11 
11 Barreiro 3000 0.46 10 
12 Moita 3000 0.11 9 
13 Afonsoeiro 3000 0.13 9 
14 Seixalinho 3000 0.17 9 
15 Pegões Gare 3000 0.03 8 
16 Pegões Velhos 3000 0.02 8 
17 Faias 3000 0.02 8 
18 Passil Terroal 3000 0.01 8 
19 Atalaia 3000 0.00 8 
20 Alcochete 3000 0.02 8 
21 Alverca 3000 0.18 2 
22 Granja Alpriate 3000 0.01 3 
23 Ponte de Frielas 3000 0.69 3 
24 Povoa da Galega 3000 0.00 3 
25 Beirolas 3000 0.31 5 
26 Chelas 3000 0.23 10 
27 Alcantara 3000 0.53 12 
28 S. João da Talha 3000 0.14 5 
29 Quinta da Bomba 936 0.71 11 
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 Figure 58 - Pollution Sources in the Tagus watershed  
   

2. Dissolved Substances Calibration 
 

The comparison of modelled with sampled nitrate, phosphate and silicate in the calibration 

years is exhibited in Figure 59, Figure 60 and Figure 61 respectively. Performance statistics in 

Table 32, Table 33 and Table 34. Nitrate is modelled with about 80% or 19 µmol l-1 error but 

exhibiting good temporal agreement, r=0.84. Phosphate is simulated with lower errors than 

the former, 51% and 2.8 µmol l-1 and silicate is with 47% and 25.2 µmol l-1. 

Table 32 - Nitrate Calibration : performance statistics box by box and ecosystem scale 

 Box1 Box3 Box4 Box6 Box8 Box10 Box11 Box12 Box13 Global 
Matches 1 1 8 1 1 1 9 8 1 31 

RMSE 18.0 26.6 26.9 22.8 20.7 0.1 17.1 10.3 1.2 18.8 
MAE (%) 35% 64% 151% 60% 66% 1% 79% 40% 16% 80% 

r - - 0.82 - - - 0.74 0.86 - 0.84 

 
Table 33 - Phosphate Calibration : performance statistics box by box and ecosystem scale 

 Box1 Box3 Box4 Box6 Box8 Box10 Box11 Box12 Box13 Global 
Matches 1 1 8 1 1 1 9 8 1 31 

RMSE 1.0 2.0 5.0 1.5 2.1 1.2 1.9 0.6 0.2 2.8 

MAE (%) 21% 50% 66% 41% 63% 53% 54% 39% 23% 51% 

r - - -0.15 - - - 0.09 0.63 - 0.25 

 
Table 34 - Silicate Calibration : performance statistics box by box and ecosystem scale 

 Box1 Box3 Box4 Box6 Box8 Box10 Box11 Box12 Box13 Global 

Matches 1 1 8 1 1 1 9 8 1 31 

RMSE 27.9 1.7 42.9 3.9 2.4 5.0 16.9 15.5 0.2 25.2 

MAE (%) 77% 8% 60% 21% 18% 143% 40% 44% 6% 47% 

r - - 0.67 - - - 0.97 0.96 - 0.72 
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Legend 
 

 

  - E2k Modelled Nitrate (µmol l-1); 
  - Sampled Nitrate (µmol l-1); 
 - Modelled Flow (m3s-1) 

 

 

Figure 59 - Nitrate Calibration box by box: sampled vs. modelled  
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 - E2k Modelled Phosphate (µmol l-1); 
 - Sampled Phosphate (µmol l-1); 
- Modelled Flow (m3s-1) 

 

 

Figure 60 - Phosphate Calibration box by box: sampled vs. sampled 
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  - E2k Modelled Silicate (µmol l-1); 
  - Sampled Silicate (µmol l-1); 
 - Modelled Flow (m3s-1) 

 

 

Figure 61 - Silicate Calibration box by box: sampled vs. modelled  
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ANNEX IV : PHYTOPLANKTON OBJECT CALIBRATION 
 
The parameters Pmax and Iopt were combined, within ranges, and performance measures were 

calculated (Figures 1-3; Tables 1-3). A simple cost function was employed which aggregates 

the normalized misfits in a 0-1 range. Table 38 shows the cost function for each combination 

and Table 15 and Table 40 exhibit the performance for two discarded simulations.  

  

 

M
A
E
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) 

 
 Figure 62 – MAE (%) 3D plot: Parameter combination (Pmax and Iopt) 
   
 

 
  Figure 63 - Pearson correlation coefficient 3D plot: Parameter combination (Pmax & Iopt) 
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Figure 64 - RMSE 3D plot: Parameter combination (Pmax & Iopt) 

 
Table 35 - MAE (%): Parameter combination (Pmax & Iopt) 

 Iopt 

Pmax  
100 200 300 400 500 600 700 800 

0.02 63  63  62  62  62  62  62  62  
0.05 74  71  69  67  65  64  63  63  
0.075 92  88  83  79  76  73  70  68  
0.1 101  99  95  93  89  84  80  77  

0.125 102  101  100  99  95  94  91  88  
0.15 104  104  103  101  99  99  95  94  
0.175 100  105  106  103  102  100  99  98  
0.2 103  105  104  105  105  103  101  99  

 
Table 36 - Pearson Correlation Coefficient : Parameter combination (Pmax & Iopt) 

 Iopt 

Pmax  
100 200 300 400 500 600 700 800 

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 
0.05 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04 

0.075 0.11 0.11 0.10 0.10 0.09 0.08 0.07 0.07 
0.1 0.13 0.12 0.11 0.11 0.11 0.11 0.11 0.10 

0.125 0.14 0.14 0.13 0.11 0.11 0.11 0.11 0.11 
0.15 0.14 0.14 0.14 0.14 0.13 0.11 0.11 0.11 

0.175 0.13 0.15 0.14 0.14 0.14 0.13 0.12 0.11 
0.2 0.08 0.22 0.14 0.15 0.14 0.14 0.14 0.13 
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Table 37 –RMSE: Parameter combination (Pmax & Iopt) 
 Iopt 

Pmax  
100 200 300 400 500 600 700 800 

0.02 1.33 1.34 1.34 1.34 1.34 1.34 1.34 1.35 
0.05 1.26 1.27 1.28 1.29 1.30 1.30 1.31 1.31 

0.075 1.20 1.21 1.22 1.23 1.24 1.25 1.26 1.27 
0.1 1.18 1.19 1.20 1.20 1.21 1.21 1.22 1.23 

0.125 1.18 1.18 1.18 1.19 1.20 1.20 1.21 1.21 
0.15 1.17 1.17 1.18 1.18 1.19 1.19 1.20 1.20 

0.175 1.18 1.17 1.17 1.18 1.18 1.18 1.19 1.20 
0.2 1.20 1.15 1.18 1.17 1.18 1.18 1.18 1.18 

 
Table 38 – Cost function: Parameter Combination (Pmax & Iopt) 
 Iopt 

Pmax  
100 200 300 400 500 600 700 800 

0.02 0.71 0.71 0.72 0.73 0.73 0.73 0.74 0.75 
0.05 0.51 0.51 0.52 0.53 0.54 0.56 0.57 0.59 

0.075 0.43 0.40 0.37 0.38 0.40 0.42 0.44 0.46 
0.1 0.42 0.43 0.42 0.44 0.41 0.37 0.34 0.34 

0.125 0.39 0.39 0.41 0.46 0.42 0.44 0.45 0.41 
0.15 0.44 0.41 0.40 0.38 0.41 0.47 0.43 0.43 

0.175 0.40 0.42 0.44 0.42 0.39 0.39 0.43 0.47 
0.2 0.61 0.30 0.42 0.42 0.43 0.40 0.39 0.39 

* local minima are identified as italic and bold in the Table 
 

Table 39 - Phytoplankton object performance statistics for Iopt = 300 & Pmax = 0.075 

 Box1 Box3 Box4 Box6 Box8 Box10 Box11 Box12 Box13 Global 

Matches 1 1 8 1 1 1 9 8 1 31 

RMSE 0.4 4.0 3.9 4.3 11.9 0.4 3.7 8.8 0.1 5.8 

MAE 
(%) 

5% 51% 105% 51% 83% 25% 78% 68% 8% 75% 

r - - -0.71 - - - -0.03 0.07 - 0.06 

 
Table 40 - Phytoplankton object performance statistics for Iopt = 600 & Pmax = 0.1 

 Box1 Box3 Box4 Box6 Box8 Box10 Box11 Box12 Box13 Global 

Matches 1 1 8 1 1 1 9 8 1 31 

RMSE 0.9 2.73 3.9 3.1 10.9 1.2 3.5 8.7 0.3 5.6 

MAE 
(%) 

11% 35% 111% 37% 76% 70% 91% 82% 20% 84% 

r - - -0.68 - - - 0.08 0.15 - 0.06 
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ANNEX V: VALIDATION OF THE DISSOLVED SUBSTANCES AND SPM 
OBJECTS 
 

Although the main goal of the modelling process was to access the accuracy of simulated 

chlorophyll a, the dissolved substances (ammonia and nitrate) and SPM were also be 

evaluated. This analysis provided auxiliary information for the validation process along with a 

broad idea of the accuracy achieved in the simulation of the system’s components for future 

applications. Moreover, due to the interdependence of SPM and nutrients concerning the 

phytoplankton biomass production and distribution, theoretically if both were accurately 

simulated the probability of an accurate chlorophyll a simulation would be increased.  

 

Nitrate is highly dependent of the freshwater flow as exhibited in Figure 65. Moreover, the 

nitrate concentration is underestimated consistently, in average about 100%, consistent with 

the information retrieved during calibration. Ammonia was in fair agreement with sampled 

values, however, in box 4, samples were highly variable (from 6 to 76 µmol N l-1) being 

systematically over and underestimated (Figure 66). SPM was consistently overestimated in 

about 100% probably over limiting primary production (Figure 67). In sum, calibration and 

validation of both objects retrieved similar results. 
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 - E2k Modelled Nitrate (µmol N l-1);    - Sampled Nitrate  (µmol N l-1). 

Figure 65 – Nitrate Validation box by box:  sampled vs. modelled 
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 - E2k Modelled Ammonia  (µmol N l-1);     - Sampled Ammonia (µmol N l-1). 

Figure 66 – Ammonia Validation box by box: sampled vs. modelled 
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 - E2k Modelled SPM  (mg l-1);    - Sampled SPM a (mg l-1). 
Figure 67 – SPM Validation box by box:  sampled vs. modelled 
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ANNEX VI – ATMOSPHERIC CORRECTION PROCEDURES 
 
To assess the atmospheric procedure(s) more adequate to chl-a estimation in the Tagus 

estuary. The analysis was performed comparing the E2k simulations with remote sensing 

retrievals using several atmospheric correction procedures. The OC3 algorithm was the 

reference data set and comparisons were made at a box scale for the years 2000 and 2001. 

Note that only the E2k simulations for the year 2000 were validated and therefore are 

considered more robust than those of the year 2001. Time series for specific boxes are 

presented thru Figure 5-4 and performance regarding RMSE (Figure 71) and correlation 

(Figure 72). 

   

 

 

 

 Figure 68 – Atmospheric correction procedure : Time series Box 7 - 2000  
   
 

 

 

 Figure 69 – Atmospheric correction procedure : Time series Box 9 - 2000  
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 Figure 70 – Atmospheric correction procedure : Time series Box 7 - 2001  
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  Figure 71 – RMSE distribution over the model boxes : 2000  
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  Figure 72 – Correlation distribution over the model boxes : 2001  
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ANNEX VII – QUALITY CONTROL MASKING 
 
This annex presents the analysis performed to assess the quality control i.e. flag masking 

more adequate for chl-a retrieval. Comparisons were made at a box scale for the years 2000 

and 2001. Once again, the OC3 algorithm was the reference data set. Both 2000 (Figure 5 & 

Figure 69) and 2001 (Figure 75 & Figure 76) years, exhibited low impact on the chl-a 

retrievals. Two trends are distinct, masking glint increases chl-a distributions and angle 

masking slightly decreases them. There is no apparent relationship between sensor and solar 

zenith angle and chl-a error, in both years (Figure 22). Some daily maps were presented in 

Figure 78 to exhibit the differences resulting from the correction procedure of possible 

straylight contaminated pixels. 

   
 

 

 

 Figure 73 – Quality Control  Options : Time series Box 7 - 2000  
   
 

 

 

 Figure 74 – Quality Control  Options : Time series Box 11 - 2000  
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 Figure 75 – Quality Control  Options : Time series Box 08 - 2001  
   
 

 

 

 Figure 76 – Quality Control  Options : Time series Box 13 - 2001  
   
 

  

 

 Figure 77 – Geometry (solar and sensor zenith angle) vs. RMSE : 2001 
The legend indicates the compositing period i.e. the initial and final Julian day 
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 Uncorrected Straylight Corrected  
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 Figure 78 - Daily chl-a images before (left) and after (right) straylight correction 
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ANNEX VIII – TEMPORAL AND SPATIAL COMPOSITING 
 

1) TEMPORAL COMPOSITING: 16day 

 

Some hypothesis were tested to assess their impact on the 16day composited images ( 

 

Figure 79 & Figure 80): 

a) Outliers were removed according to 1 and 2 standard deviation thresholds 

b) Daily images were filtered according to tidal state both ebb\flood and high\lowtide 

c) Minimum number of files in a composite 

Note pixels were not spatially aggregated into boxes and the plots below show all pixels 

within the estuary. Besides the reference data set, these hypotheses were also tested using the 

MUMM atmospheric procedure with glint masking.   

 

 Reference Data Set  Outliers Removed STD = 1  

 

 

 

 

 

 Outliers Removed STD = 2  Only High and Medium tides  

 

 

 

 

 

 Only High Tides    

 

 

   

 
 
 

Figure 79 - Outlier and Tidal Height impact on  16day composites : 2000 
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 Reference Data Set  Only Ebb Tides  

 

   

 

 Only Flood Tides    

 

 

   

 Figure 80 – Tidal state impact on  16day composites : 2000  
 

Tidal state, height and outlier removal using STD thresholds showed no clear pattern 

concerning the anomalously high chl-a values. Flood tides, apparently, contribute to higher 

errors, however, the data set as scarce images acquired during ebb tides and therefore no 

robust inference could be made. The number of files in a composite can influence the 16day 

composite accuracy, particularly, if there are scarce daily images within and/or if their spatial 

coverage is limited. Atypically high chl-a values seemed to be linked to lower number of files 

in the compositing period. However, removing files with few files would result in a scarce 

data set.  

 

2) SPATIAL  COMPOSITING: 13 Model Boxes 

 

In order to understand the chl-a distribution within each model box, spatial histograms were 

made for each box and for every compositing period. The majority were normal distributions 

but some exceptions occur (Figure 24; Figure 82; Figure 83; Figure 84). Frequently, the 

average is deviated from the gross distribution of chl-a values due to the presence of apparent 

outliers, Figure 24 is a good example. For boxes 4, 5 (not shown) and 12 the distributions are 

highly irregular probably due to their limited spatial coverage thus high sensitivity to 

resampling and land and bottom reflectance contamination.  
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 Figure 81 – Spatial histograms : Box 10 – 2000 
The histograms have the value frequency (%) in y axis and chl-a concentration in the x axis 

The scale bar represents the number of MODIS daily images in a composite 

  

 
    
 

 

 

 

 Figure 82 – Spatial histograms : Box 12 – 2000 
The histograms have the value frequency (%) in y axis and chl-a concentration in the x axis 

The scale bar represents the number of MODIS daily images in a composite 
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 Figure 83 – Spatial histograms : Box 6 – 2001 
The histograms have the value frequency (%) in y axis and chl-a concentration in the x axis 

The scale bar represents the number of MODIS daily images in a composite 

  

 
    
 

 

 

 

 Figure 84 – Spatial histograms : Box 11 – 2001 
The histograms have the value frequency (%) in y axis and chl-a concentration in the x axis 

The scale bar represents the number of MODIS daily images in a composite 
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ANNEX IX – REGIONAL CALIBRATION OF CASE 2 ALGORITHMS 

 

This annex exhibits the spectral analysis performed for the year 2000 (Figure 85) and 2001 

(Figure 86). Calibration plots for regional Case 2 algorithms are exhibited in Figure 87, 

Figure 88. The comparison between the predictions using the ratio R678/ R551 and E2K 

simulations, along with the temporal distribution of the latter, are exhibited in Figure 89. 
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 Figure 85 - Spectral Signatures for all boxes per compositing period : 2000 
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 Figure 86 - Spectral Signatures all boxes per compositing period:2001 



 175 

 
C

hl
-a

 (
µ

g 
l-1

) 

 

 

 R678/ R551  
 Figure 87 – Calibration plot using the ratio R678/ R551 : 2000  
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 Figure 88 – Calibration plot using the Fluorescence Line Height : 2000  
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 Figure 89 – Predictions vs. Observations using the ratio R678/ R551
 (blue); Chl-a temporal 

distribution (2000) 
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ANNEX X – PRELIMINARY ASSESSMENT CASE 1 CHL-A ALGORITHMS 

 

This annex comprises some of the results obtained comparing the E2k 16day box chl-a 

simulations with the equivalent Case 1 remote sensing retrievals. Time series for all analyzed 

boxes is showed for 2000 (Figure 90) and 2001( Figure 92). The error analysis for both years 

is done in Figure 34, Figure 37, Figure 94 and Figure 93, and Table 41-Table 46). Spatial 

analysis is done using non-spatially aggregated 16day chl-a values plotted against the distance 

to ocean (Figure 96). River flow is also plotted against chl-a retrievals by the Carder 

algorithm (Figure 97). The performance of the OC3 algorithm using the AtmCor3 and MUMM 

atmospheric correction procedures is compared in Figure 98. 

Table 41 – Case 1 algorithms performance for 
the year 2000 - MAE (%)  

Table 42 – Case 1 algorithms performance 
2000 - RMSE (µg chl-al-1) 

Box OC3 Carder Clark GSM  Box OC3 Carder Clark GSM 
6 58.0 56.6 36.0 43.4  6 2.35 2.35 2.65 3.99 
7 68.2 65.7 28.5 31.3  7 2.48 2.33 1.98 2.02 
8 66.8 68.3 25.5 27.5  8 2.04 2.13 1.54 1.39 
9 54.7 56.5 25.6 20.7  9 1.65 1.70 1.20 1.01 

10 67.1 53.9 19.5 21.8  10 1.82 1.56 0.87 0.88 
11 78.3 68.2 15.7 22.6  11 2.00 1.88 0.56 0.81 
12 139.5 125.9 52.0 27.8  12 3.30 3.13 1.68 0.79 
13 93.4 88.1 16.8 31.8  13 1.71 1.67 0.35 0.64 

 
Table 43 – Case 1 algorithms performance for 

the year 2000 - correlation (r)  
Table 44 – Case 1 algorithms performance for 

the year 2001-MAE (%) 
Box OC3 Carder Clark GSM  Box OC3 Carder Clark GSM 

6 0.23 0.33 0.15 -0.34  6 52.9 62.1 42.7 45.6 
7 -0.01 0.09 0.04 -0.17  7 68.9 62.7 38.7 34.5 
8 0.45 0.33 0.35 0.29  8 69.8 63.0 37.6 35.6 
9 0.68 0.60 0.57 0.59  9 64.5 60.3 35.5 32.6 

10 0.67 0.80 0.77 0.49  10 69.0 62.0 33.5 28.8 
11 0.81 0.82 0.82 0.41  11 78.6 72.7 31.4 27.2 
12 0.31 0.41 0.04 0.62  12 146.0 133.8 496.0 >1000 
13 0.62 0.83 0.58 0.63  13 111.7 105.7 47.3 34.7 

 
Table 45 – Case 1 algorithms performance for 

the year 2001 - RMSE (µg chl-a l-1)  
Table 46 – Case 1 algorithms performance for 

2001 - correlation (r) 
Box OC3 Carder Clark GSM  Box OC3 Carder Clark GSM 

6 3.54 3.76 4.50 5.22  6 -0.06 0.03 -0.19 0.24 
7 3.41 3.85 4.25 4.23  7 0.41 0.14 0.28 0.25 
8 3.21 3.11 3.87 4.07  8 0.43 0.44 0.26 0.04 
9 3.11 2.85 3.68 3.69  9 0.33 0.48 0.23 0.15 

10 3.04 2.72 3.29 3.38  10 0.29 0.46 0.21 0.08 
11 2.79 2.45 2.77 2.88  11 0.45 0.60 0.33 0.25 
12 4.07 3.49 46.72 >1000  12 0.39 0.57 -0.10 -0.10 
13 2.36 2.37 1.79 0.83  13 0.35 0.64 0.04 0.37 
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Figure 90 - Existing Algorithms Pre-Assessment : Time Series 2000 
    

 

 

 

 

 
 

Figure 91 –  Case 1 Algorithms RMSE distribution: box 13 2000 
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Figure 92 - Existing Algorithms Pre-Assessment : Time Series 2001 

    

 

 

 

 

 Figure 93 –  Case 1 Algorithms RMSE distribution: box 8 2001  
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 Figure 94 –  Case 1 Algorithms MAE distribution: box 10 2001  
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Figure 95 –  Case 1 algorithms performance per box : 2001 
Bars indicate RMSE and lines the correlation (r), per box 

 

 
 

 

 

 

Figure 96 –  Chl-a concentration vs. Distance to Ocean: GSM (2000)  

The legend indicates the compositing period  
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Figure 97 –  Chl-a concentration vs. 16day Flow: Carder algorithm in 2000 for box 9, r=0.63 
(on the left) and box 8, r=0.50 (on the right) 
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Figure 98 –  Performance comparison Cor3 and MUMM atmospheric correction 

procedures, using the OC3 algorithm (2000) 
 

 Bars indicate RMSE and lines the correlation (r)  
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ANNEX XI – PRELIMINARY ASSESSMENT OF REGIONALLY TUNED 

ALGORITHMS 

 
The temporal distribution of the tuned and original OC3 algorithm was exhibited in Figure 99 

and its performance, in Figure 100. The most relevant regionally tuned Case 2 algorithms 

were exhibited in Figure 101 along with their performance per box, in Tables 1-3, for the year 

2000. 
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Figure 99 – Comparison of OC3 tuned vs. OC3 original: Time Series 2000 
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Figure 100 –  Tuned OC3 performance : 2001 

Bars indicate RMSE and lines the correlation (r), per box 
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 Legend    

 

 

Figure 101 – Time Series of all Case 2 regional algorithms 
(2000)  
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Table 47 – Case 2 algorithms performance for the year 2000 - RMSE (µg chl-a l-1) 

Box OC3 tuned FLH R678/R551 
R678/  

(R551 +R748)
 R748/R678

 

7 1.51 1.13 1.13 1.06 1.92 

8 1.25 0.70 0.84 0.74 1.50 

9 0.83 1.23 0.77 0.72 0.99 

10 0.86 0.55 0.69 0.64 0.72 

11 0.62 0.56 0.44 0.48 0.45 

13 0.48 0.76 0.33 0.34 1.04 

 
Table 48 – Case 2 algorithms performance for the year 2000 – MAE (%) 

Box OC3 tuned FLH R678/R551 
R678/  

(R551 +R748)
 R748/R678

 

7 24.53 22.57 30.12 27.42 34.31 

8 25.14 19.96 21.19 18.73 30.57 

9 16.89 31.76 17.81 16.80 21.52 

10 17.38 16.99 15.90 15.50 18.73 

11 17.68 18.89 13.86 14.28 15.44 

13 19.28 35.42 14.63 14.50 46.32 

 
Table 49 – Case 2 algorithms performance for the year 2000 - Correlation 

Box OC3 tuned FLH R678/R551 
R678/  

(R551 +R748)
 R748/R678

 

7 0.43 0.75 0.73 0.76 0.01 

8 0.49 0.89 0.81 0.86 0.25 

9 0.76 0.51 0.79 0.80 0.71 

10 0.56 0.87 0.79 0.81 0.75 

11 0.67 0.74 0.85 0.85 0.89 

13 0.56 0.00 0.46 0.53 0.42 
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ANNEX XII – CASE 1 AND CASE 2 ALGORITHMS: INDEPENDENT ASSESSMENT 

(2002) 

 

The comparison between E2k simulations and the remotely retrieved chl-a was exhibited 

using the Case 1 algorithms (Figure 99) and regionally tuned algorithms (Figure 103). The 

error and correlation comparison, between the performance of the OC3 original and tuned 

algorithms, was shown in Figure 100. Finally, the spectral signatures for 2002 concerning all 

boxes are shown in Figure 86 and Figure 106. 
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 Box12 Box 13 Legend  

 

 

 

 

     
Figure 102 – Case 1 Algorithms Assessment : Time Series 2002 
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 Legend    

 

 

Figure 103 – Case 2 Algorithms Assessment : Time Series 
2002 
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Figure 104 –  Tuned OC3 performance : 2002 

Bars indicate RMSE and lines the correlation (r), per box 
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Table 50 – Case 1 algorithms performance for 2002 - MAE (%) 
Box OC3 Carder Clark GSM 

6 52.75 77.71 52.97 61.20 
7 66.09 102.10 36.39 32.05 
8 41.42 35.46 29.91 45.88 
9 95.21 73.07 36.95 25.88 

10 105.62 66.83 41.55 28.62 
11 103.32 54.41 34.67 27.36 
12 110.37 58.07 31.42 15.94 
13 122.59 67.73 39.02 18.34 

 

Table 51 – Case 1 algorithms performance for 2002 - RMSE (µg chl-a l-1) 
Box OC3 Carder Clark GSM 

6 2.65 3.99 4.58 2.35 
7 2.85 4.81 1.97 1.68 
8 2.33 1.86 2.05 2.57 
9 3.10 2.53 1.39 0.88 
10 3.09 2.35 1.36 0.80 
11 2.82 1.64 1.02 0.88 
12 2.84 1.73 0.92 0.47 
13 2.93 2.33 1.07 0.49 

 

Table 52 –  Case 1 algorithms performance for 2002 - correlation (r) 
Box OC3 Carder Clark GSM 

6 0.11 0.13 0.16 0.31 
7 0.13 0.22 0.17 0.43 
8 0.23 0.23 0.15 0.51 
9 0.25 0.01 0.05 0.58 

10 0.12 -0.12 -0.08 0.51 
11 0.06 -0.25 -0.02 0.32 
12 0.22 -0.02 0.07 0.81 
13 0.20 0.11 0.01 0.30 

 

Table 53 – Case 2 algorithms performance for year 2002- RMSE (µg chl-a l-1) 
Box OC3 tuned FLH R678/R551 R678/ (R551 +R748)

 R748/R678
 

7 0.92 1.94 1.99 1.92 0.96 
8 1.08 1.32 1.93 1.83 0.87 
9 1.07 1.33 1.69 1.70 0.83 

10 0.85 1.16 1.36 1.42 0.89 
11 1.02 1.36 1.23 1.30 0.99 
13 0.65 0.90 0.80 0.84 1.13 

 

Table 54 – Case 2 algorithms performance for the year 2002 – MAE (%) 
Box OC3 tuned FLH R678/R551 R678/ (R551 +R748)

 
R748/R678

 

7 26.72 60.70 62.43 60.88 27.54 
8 34.47 45.29 63.76 61.67 28.87 
9 36.07 47.81 59.37 59.69 30.70 
10 27.99 42.92 51.42 52.33 34.92 
11 36.48 53.04 47.57 49.21 41.28 
13 27.00 45.34 33.99 33.12 55.45 

 

Table 55 – Case 2 algorithms performance for the year 2000 - Correlation 

Box OC3 tuned FLH R678/R551 R678/ (R551 +R748)
 

R748/R678
 

7 0.46 -0.18 -0.08 -0.03 0.30 
8 0.29 -0.21 -0.15 -0.12 0.19 
9 0.22 -0.23 -0.34 -0.40 0.03 
10 0.56 0.00 -0.17 -0.15 -0.07 
11 0.44 -0.46 -0.31 -0.28 -0.20 
13 0.05 -0.39 -0.58 -0.53 -0.48 
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Figure 105 - Spectral 
signatures all boxes per 

compositing period:2002 
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Figure 106 – Spectral signature distribution over time (2002) 

The legend and associated line colours indicate the composites Julian day range  

 

 
  

 


